
Reinforcement Learning for Robotic Assembly with Force
Control

Jianlan Luo
Pieter Abbeel, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-20
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-20.html

February 26, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am deeply grateful to my research advisor Professor Pieter Abbeel for his
tremendous support; Pieter is always encouraging and pointing to the right
research direction. This thesis would not be possible at all without Pieter’s
continuous engagement. I would also express my deep thanks to Professor
Aviv Tamar who was then a post-doc scholar at Berkeley; for his mentorship,
patience and time revising this thesis. I would also thank Professor Alice
Agogino for her time serving on the second reader of this thesis. Some of
results presented in this paper was supported in part by Siemens.

Reinforcement Learning for Robotic Assembly with Force Control

by Jianlan Luo

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Pieter Abbeel
Research Advisor

(Date)

Professor Alice Agogino
Second Reader

(Date)

Jianlan Luo
15-FEB-2020

Jianlan Luo
15-FEB-2020

iii

Acknowledgments

I am deeply grateful to my research advisor Professor Pieter Abbeel for his tremendous
support; Pieter is always encouraging and pointing to the right research direction.
This thesis would not be possible at all without Pieter’s continuous engagement. I
would also express my deep thanks to Professor Aviv Tamar who was then a post-doc
scholar at Berkeley; for his mentorship, patience and time revising this thesis. I would
also thank Professor Alice Agogino for her time serving on the second reader of this
thesis. Some of results presented in this paper was supported in part by Siemens.

1

Abstract

Reinforcement Learning for Robotic Assembly with Force Control

by

Jianlan Luo
Master of Science in Computer Sciences

University of California, Berkeley
Professor Pieter Abbeel, Chair

Precise robotic manipulation skills are desirable in many industrial settings, reinforce-
ment learning (RL) methods hold the promise of acquiring these skills autonomously.
In this paper, we explicitly consider incorporating operational space force/torque in-
formation into reinforcement learning; this is motivated by humans heuristically map-
ping perceived forces to control actions, which results in completing high-precision
tasks in a fairly easy manner. Our approach combines RL with force/torque infor-
mation by incorporating a proper operational space force controller; where we also
explore di↵erent ablations on processing this information. Our method can be used
in both inherently compliant and non-compliant robots; we tackle two specific use-
cases: 1)deformable object manipulation 2)the open-source Siemens Robot Learning
Challenge; both of them requires precise and delicate force-controlled robotic be-
havior. Video results are available at: https://sites.google.com/berkeley.edu/
rl-robotic-assembly/

https://sites.google.com/berkeley.edu/rl-robotic-assembly/
https://sites.google.com/berkeley.edu/rl-robotic-assembly/

Contents

1 Introduction 2

2 Related Work and Proposed Method 4

2.1 Related Work . 4
2.2 Preliminaries . 5
2.3 Operational Space Force Controller 5
2.4 Model-based Reinforcement Learning algorithm: iLQG 6

3 Case 1: Non-compliant robot arm with deformable objects 8

3.1 Problem Statement . 8
3.2 Experiments . 9

4 Case 2: Compliant robot arm with rigid objects 13

4.1 Problem Statement . 13
4.2 Experiments . 14
4.3 Combination of Learned Policy with Grasping 17

5 Conclusion 21

2

Chapter 1

Introduction

Today, industrial robots deployed across various industries are mostly doing
repetitive tasks. The overall task performance hinges on the accuracy of their con-
trollers to track pre-defined trajectories. To this end, endowing these machines with
a greater level of intelligence to autonomously acquire skills is desirable. The main
challenge is to design adaptable, yet robust, control algorithms in the face of inherent
di�culties in modeling all possible system behaviors and the necessity of behav-
ior generalization. Reinforcement learning (RL) methods hold promises for solving
such challenges, because they promise agents to learn behaviors through interaction
with their surrounding environments and ideally generalize to new unseen scenarios
[1, 2, 3, 4].

In this research, we aim to learn policies for robotic assembly in high-precision
settings. Specifically, we tackle two such problems detailed in Chapter 2 and Chapter
3 respectively : 1) assembly of a rigid peg into a deformable hole, where the diameter
of the hole is smaller than that of the peg; and the robot is non-compliant which
only provides position and velocity control interface; 2) assembly of high-precision
work-pieces, in this case robot is compliant, we can access torque control interface.

In both tasks, the required precision exceeds the robot position controller’s accu-
racy. In real manufacturing, human labor can accomplish such high-accuracy complex
tasks in a fairly easy manner. For example, a peg in hole insertion is achieved by
“feeling” the contacts. This can be achieve with heuristics based on force feedback,
for instance by probing the hole before inserting or moving the peg around the surface
to search for the insertion point. Hence, designing robust strategies by properly pro-
cessing observations is more desirable than estimating perfect physical dynamics. RL
allows to find control policies automatically for problems where traditionally heuris-
ticis have been used. The question arises how do we properly integrate observed force

information into reinforcement learning process to produce desirable behaviors?

RL is a method for learning such reactive policies automatically, through trial
and error interaction in the domain, guided only by a reward signal that specifies how
well the robot is performing the task. In practice, RL requires an informative reward

3

signal to works e↵ectively, which can be hard to design automatically. With sparse
reward that just specifies successful task completion, RL is prone to getting stuck
in local optima. However operational space control could mitigate this problem by
specifying high-level goals in task-space. [5, 6, 7, 8]. One particular way to achieve
this is to combine RL with a proper operational force controller, this has the benefit
of implicitly shaping control actions so that policies only search the space where a
“good” solution exists for our problems.

Furthermore, combing RL with such force controllers is highly relevant to in-
dustrial applications if we want such robots to learn contact-rich manipulation skills.
Currently, most policy search algorithms for contact-rich assemblies are implemented
on inherently compliant robot arms such as the PR2, the iiwa or Rethink Robotics’
Sawyer [9, 10, 11]. These robot arms have either passive compliance through spring
mechanism in motors or have the ability to measure and command joint torques.
These properties enable safe physical interaction of the robot with its environment,
and joint torque readings can be encoded as features in learning algorithms to describe
contact situations. Unfortunately, this is only of limited use for industrial applica-
tions because industrial robots are in general not compliant and o↵er only velocity
and position control, but no torque control. However, they can often be equipped
with a wrist force-torque sensor. While this still does not provide the ability to com-
mand joint torques, it opens the possibility for admittance force-torque control in
task space, which introduces a principled way for such non-compliant robots to learn
contact-rich tasks.

The reminder of this paper is organized as follows: Chapter 2 describes pro-
posed method; Chapter 3 studies a case where proposed method is applied to a
non-compliant robot assembling deformable objects; Chapter 4 studies another case
where a compliant robot needs to learn more complex assembly skills.

4

Chapter 2

Related Work and Proposed

Method

2.1 Related Work

Recent advances in RL have gained great success in solving a variety of prob-
lems from playing video games [12, 13, 14] to robotic locomotion[15, 16, 17, 18, 19],
manipulation[20, 21, 22, 23, 24, 25, 4, 26, 27, 28]. Reinforcement learning can be dis-
tinguished in model-based methods and model-free methods [1, 3, 2]. While model-
based policy search is computationally more expensive than model-free methods, it
requires less data to solve a task. Recent progresses in the area of Deep Neural Net-
works suggest to also deploy them for parametrizing policies and other functions in
RL methods [4, 29, 17]. This is often referred to as Deep Reinforcement Learning
(DRL).

A recently developed model-based reinforcement learning algorithm called guided
policy search (GPS) provided new insights into training end-to-end policy for solving
contact-rich manipulation problems [18, 29, 30, 4, 31]; however; this method is not
suitable for this high-precision setting because it has no means of avoiding local op-
tima by its formulation. There are also approaches tackling this problem by explicitly
modeling contact dynamics [32, 33, 34, 35, 36] Inoue et al. [37] use LSTM to learn two
separate policies for finding and inserting a peg into a hole; however, their methods
require several pre-defined heuristics, and also the action space is discrete.

Thomas et al. [38] combine RL with a motion planner to shape state cost in
high-precision settings. This method essentially learns a trajectory following torque
controller, and assumes access to a trajectory planner that could roughly avoid local
optima. They also encode such planned reference into a neural network with attention
mechanism, they show good generalization results in simulation.

5

2.2 Preliminaries

We consider all tasks here that can be described as moving already-grasped
objects to their goal position. This is the most common setting in today’s manu-
facturing. The success of such tasks can be measured as minimizing the distance
between objects and their goal positions. We make no particular assumptions about
encountered dynamics during tasks especially contacts. These need to be learned by
the robot from various interaction with its environment. Let xt and ut denote robot
states and actions respectively ; `(xt,ut) be the cost function related to the task, T
be the time horizon of a task. Our problem can be formulated as

min
u1,u2...uT

TX

t=1

`(xt,ut)

s.t. xt+1 = f(xt,ut) t = 1, 2...T � 1,

where f governs (unknown) system dynamics, x, u can also be subject to other alge-
braic constraints.

We consider our control action u to be operational force controller Ftip =
[Fx, Fy, Fz,Mx,My,Mz]. They represent desired force/torque or impedance in op-
erational space, our goal is to optimize them through reinforcement learning. We
make no particular assumption about the implementation of such controller; neither
the specific reinforcement learning algorithm.

2.3 Operational Space Force Controller

There are various ways to implement such controller in operational space with or
without a wrist force/torque sensor [5] [39][40]. We present two such force controllers
depending on whether a wrist force/torque sensor is available.

For setup in Figure 3.1, a wrist force/torque sensor is mounted on the robot’s
end-e↵ector; we feed Cartesian-space force/torque sensor signals to the robot’s Cartesian-
space velocity control loop. Specifically, denote ⌧ as the desired force/torque vector
in tool space; this includes three forces and three torques in three corresponding
Cartesian axes. ⌧̂ denotes the measured force/torque vector from the robot’s wrist
sensor. We apply a PD feedback controller to the di↵erence between ⌧ and ⌧̂ , and feed
the resulting control to the Cartesian-space velocity command interface of the robot.
This involves calculating the inverse Jacobian matrix of the robot and converting
Cartesian-space velocity into joint-space velocity. We set this admittance controller
as output of reinforcement learning algorithm.

For setup in Figure 4.1, no force/torque sensor is available; however we have
access to joint torque readings. We can convert operational space force into joint
space using robot Jacobian, then close the control loop in joint space using joint

6

torque feedback. Let Ftip be the desired wrench on the end-e↵ector, we can then
express the control law in joint space as [41]

M(q)q̈ + c(q, q̇)q̇ + g(q) + JT (q)Ftip = ⌧, (2.1)

where q represents joint angles in generalized coordinates, M(q) is the inertia, c(q, q̇)
is the Coriolis matrix, g(q) are gravitational forces, J(q) is the Jacobian, ⌧ is the
torque vector applied to manipulators’ joints. In many force control tasks, robots
move slowly, hence we ignore acceleration and velocity terms in Eq. 2.1. For a 7-
DOF Sawyer manipulator arm that we consider in this paper, we can also project
torques to its non-empty nullspace. Denoting the nullspace torque vector as ⌧null,
joint space control law is:

⌧ = g(q) + JT (q)Ftip + [I � JT (q)JT †(q)]⌧null, (2.2)

where JT †(q) is the pseudo-inverse of JT (q). The control law in Eq.2.2 is appealing
and simple, but it would generate undesirable and dangerous motion without enough
resistance provided by the environment. In our experimental setup, we do not assume
in-contact situations of objects being assembled, there is a relative open free-space
that the robot needs to move through; directly applying Eq.2.2 would result in contin-
uous acceleration. To mitigate this issue, in all our experiments, we wrap a position
loop with small gains around the controller in Eq.2.2:

⌧ = g(q) + JT (q)Ftip + [I � JT (q)JT †(q)]⌧null (2.3)

+Kqp(q � q⇤) +Kqd(q̇ � q̇⇤), (2.4)

where Kqp and Kqd are diagonal gain matrices with small entries, q and q̇ are current
joint positions and velocities, q⇤ and q̇⇤ are the desired ones obtained via inverse
kinematics from end-e↵ector pose. Aforementioned Ftip will be calculated by an RL
controller.

2.4 Model-based Reinforcement Learning algorithm:

iLQG

The specific model-based reinforcement learning algorithm that we consider here
is iterative Linear-Quadratic-Gaussian (iLQG) [42, 18]. It is sample e�cient and
convenient second-order methods are available to solve it quickly [43]. Let ! =

{x1,u1, ... ,xT ,uT} denote a trajectory, such that p(!) = p(x1)
TQ
t=1

p(xt+1|xt,ut)p(ut|xt),

`(!) =
PT

t=1 `(xt,ut) denotes the cost along a single trajectory !; where x typically
consists of joint angles, end-e↵ctor pose and their time derivatives. We wish to min-
imize this cost; the goal is to minimize the expectation Ep(!)[`(!)] over trajectory

7

! by iteratively optimizing linear-Gaussian controllers and re-fitting linear-Gaussian
dynamics. This algorithm iteratively linearizes the dynamics around the current
nominal trajectory, constructs a quadratic approximation of the cost, computes the
optimal actions with respect to this approximation of the dynamics and cost by dy-
namic programming, and forward runs resulting actions to obtain a new nominal
trajectory. We use subscripts, e. g. `xut to denote derivatives with respect to vector
[xt;ut]. Under the dynamics model and the cost function described in this section,
we can write the Q-function and value function as

V (xt) =
1

2
x
|
tVx,xtxt + x

|
tVxt + const

Q(xt,ut) =
1

2
[xt,ut]

|Qxu,xut[xt;ut] + [xt;ut]
|Qxut + const.

We can solve for V and Q with a recurrence that can be computed backwards through
time starting from the last time step t = T :

Qxu,xut = `xu,xut + f|
xutVx,xt+1fxut

Qxut = lxut + f|
xutVxt+1

Vx,xt = Qx,xt �Q|
u,xtQ

�1
u,utQu,xt

Vxt = Qxt �Q|
u,xtQ

�1
u,utQut. (2.5)

This actually leads to the MaxEntropy LQR objective whose solution is a time-
varying linear-Gaussian controller p(ut|xt):

min
p(ut|xt)

TX

t=1

Ep(ut|xt)[`(xt,ut)�H(p(ut|xt))]

The entropy term in the objective function above encourages exploration to acquire
diverse samples for fitting dynamics. This objective can be optimized by setting
p(ut|xt) = N (Ktxt + kt,Ct), and Ct = Q�1

u,ut.We brief the overall scheme in Alg. 1.

Algorithm 1 Force-based RL controllers

1: for iteration k 2 {1, ..., K} do

2: Train local RL controller using iLQG, where ut is set as operational space force
controller

3: Project calculated desired force to joint space according to Chapter 2.3 depend-
ing on robot type

4: end for

8

Chapter 3

Case 1: Non-compliant robot arm

with deformable objects

3.1 Problem Statement

Figure 3.1: Experimental setup for peg insertion task.

Consider a robot arm without the possibility of joint torque sensing or joint
torque control as in Fig. 3.1 The robot has no inherent compliance and permits
only position and velocity control. However, the robot arm is equipped with a wrist
mounted force-torque sensor, whose signals are available. Moreover, the joint angles
of the robot are accessible as well. The robot end-e↵ector holds a rigid peg whose
position and orientation relative to the end-e↵ector are known with a certain degree of
uncertainty. Moreover, the grasp is not tight and the peg exhibits some bounded mo-
tion relative to the end-e↵ector whenever the peg is in contact with the environment.

9

rigid peg

gripper

robot arm

deformable
material

force/torque
wrist sensor

(a) Peg in hole. (b) Peg stuck in material.

Figure 3.2: Assembly modes for rigid peg and deformable material.

A work piece with a hole is placed in the work space of the robot. The work piece
consists of a deformable material with nonlinear material properties. The diameter
of the hole is smaller than the diameter of the peg. The position of the whole relative
to the robot frame is known, but also exhibits uncertainty.

The goal of the peg-in-hole problem is to control the robot in order to insert the
rigid peg into the deformable hole. It is challenging to design a feedback control law
for achieving this task due to the unknown contact mechanics. Figure 3.2 illustrates
the assembly situation. In Figure 3.2 (a) the peg is successfully inserted into the
elastic hole. The deformation posses challenges to the insertion tasks, because unlike
rigid pairings, material yields if the robot pushes the peg into it as shown in Fig Fig.
3.2 (b). The key to escape from this local optimum is to properly adjust force/torque
on the end-e↵ector promptly.

3.2 Experiments

3.2.1 Experimental Setup Details

As shown in Figure 3.1, we use a UR5 robot manufactured by Universal Robots,
Polyscope version 3.5 with the motherboard in the control box having been upgraded
to CB3.1. We use the force/torque sensor FT300 from Robotiq with a range of
measurements of 300N for forces and 30Nm for torques. The noise levels (estimated
standard deviations) for Fx, Fy are 1.2N; Fz is 0.5N; Mx,My are 0.02Nm; and Mz

is 0.03Nm. The data output frequency is 100Hz. We use a 85mm adaptive gripper
from Robotiq. We remove the fingertips from the gripper, and fixed the peg directly

10

to the gripper. However, the gripper connection allows bounded motions of the peg,
which introduces some uncertainty. The hole is part of a work piece, which is made
of ethylene-vinyl acetate. Its diameter is 20mm while the peg’s diameter is 25mm.
The cycle time for the UR5 is 8ms, the robot does not provide access to its real-time
control loop, also the force/torque sensor rate is 100Hz. The robot neither has joint
compliance nor does it o↵er joint torque control. Hence, it is well suited to benchmark
our approach.

We vary the robot starting configuration for training local policies. The algo-
rithm will be iteratively executed by deterministic reset to the same configuration
after sampling trajectories. We collect five samples for each starting configuration
in every iteration. We send control commands at 25 HZ; and each trajectory is 3.5
seconds long.

The robot state space consists of joint angles, joint velocities, the end-e↵ector
pose, which is represented by three Cartesian points and the velocities of these points.
For an initial condition (robot configuration), we specify their target end-e↵ector
pose by three points in end-e↵ector plane, the cost function is given by r`(d) =
wd2 + vlog(d2 + ↵), with ↵ = 10�5, v = 0.01 and w = 1.0. This shaped cost function
performs better than an l2 distance cost function because the second term encourages
precise placement near the target position. In order not to damage the material, in all
our experiments, we locked rotations in three Cartesian axes, thus the policy outputs
an action ut = [Fx, Fy, Fz]. Denote the forces measured by F/T sensor as ût, the
commanded joint velocity vt to the robot can be calcuated as following:

Kp ⇤ (ut � ût) = Jt ⇤ vt

where Kp is the feedback gain, and Jt represents robot Jacobian matrix.

3.2.2 Results

Figure 3.3: (a) Successful insertion. (b) Failure mode where the policy is unable to
locate the hole.

We design our experiments by varying the starting positions of the peg, near to
far; to test the if our method could learn policies e↵ectively searching for the hole.

11

Since the robot can only be position or velocity controlled, 1) it is not capable of
running RL algorithm using torque control, which will provide compliant behaviors;
2) it is not capable of running RL algorithm directly commanding velocity or position
either, it will stick to pre-calculated trajectories thus yielding unexpected large force
or moments when facing contact. So, we consider only one baseline that includes
several way-points, and use robot position controller to track them; since the hole is
smaller than the peg, this baseline almost failed every single time because of safety
stop from the robot itself. We report following results in Figure 3.4, three di↵erent
starting positions are tried, the distance is regarded as di↵erence of horizontal projec-
tion between center of peg and hole; we can see the policy training is able to reach a
reliable convergence in roughly five iterations. Success rate comparison of our method
and aforementioned baseline is listed on Table 3.1.

1 2 3 4 5 6 7 8

Iterations

0

2

4

6

8

10

D
is

ta
n

c
e

 (
m

m
)

Condition 1

Condition 2

Condition 3

Figure 3.4: Learning curve in three experiments starting from di↵erent positions.

Table 3.1: Comparison of success rate, with di↵erent distance to the hole.

distance to hole 1 mm 6 mm 8 mm

our method 5/5 5/5 3/5

baseline 3/5 0/5 0/5

Figure 3.3(a)(b) shows some of the successes and failures. Several learned strate-
gies can be observed. In the case that the initial position is slightly o↵ the hole, the
robot tends to apply large vertical forces to “slide” into the hole. While for the case
that the initial position is further o↵ the hole, the robot often first gets stuck in the
material, then slightly lifts its arm to reduce the exerted force from the material, and
moves its arm quickly after the lifting to find the hole.

To summarize our contributions: We introduce a principled way for extend-
ing non-compliant robots to learning contact-rich manipulation skills. Currently,
most policy search algorithms for contact-rich assemblies are implemented on inher-
ently compliant robot arms such as the PR2, the iiwa or Rethink Robotics’ Sawyer

12

[9, 10, 11]. These robot arms have either passive compliance through spring mech-
anism in motors or have the ability to measure and command joint torques. These
properties enable safe physical interaction of the robot with its environment, and
joint torque readings can be encoded as features in learning algorithms to describe
contact situations. Unfortunately, this is only of limited use for industrial applica-
tions because industrial robots are in general not compliant and o↵er only velocity
and position control, but no torque control. However, they can often be equipped
with a wrist force-torque sensor. While this still does not provide the ability to com-
mand joint torques, it opens the possibility for admittance force-torque control in
task space. We show how this can be exploited for GPS usage even if joint torques
cannot be directly commanded, but only positions and velocities. To the best of our
knowledge force-torque signals have not been incorporated in variants of the GPS
algorithm yet.

13

Chapter 4

Case 2: Compliant robot arm with

rigid objects

a) Robot learning for complex assemblies. b) Assembled gear.

Figure 4.1: Learning control policies for assembly tasks.

4.1 Problem Statement

Consider the task of assembling the gear set shown in Fig. 4.1. The gear model
was introduced by Siemens Corporation as a benchmark task for robotic assembly
www.usa.siemens.com/robot-learning. The overall assembly task consists of four
sequential steps, which are illustrated in Fig.4.2: first the robot needs to insert a
cylindrical peg into its matching hole; then the large brown gear should be inserted
through the gear shaft; then the small brown gear with the squared hole should be
assembled; lastly the gear wheels need to be matched by aligning the corresponding
gear teeth. In general the tolerances are tight. For example, step two requires toler-
ances tighter than 0.1 mm, which is beyond most deployed industrial robots’ accuracy

www.usa.siemens.com/robot-learning

14

a) Round peg in round hole. b) Gear wheel on shaft. c) Squared hole on squared shaft. d) Teeth Alignment.

Figure 4.2: Four tasks that represent di↵erent assembly challenges. Each task requires
a flexible control policy that needs to consider contacts and friction.

today. Additionally, in step two, the peg can freely rotate at contact, the gear must
be precisely oriented to match the squared peg; in step three, the small brown gear
must be rotated by the large brown gear properly so that they can align with each
other. This poses additional challenges: since none of these pegs or gears are fixed
during assembly, this added uncertainty makes assembly even more di�cult.

4.2 Experiments

In this section we answer the following questions. How does the proposed iLQG
with force control perform? Is it actively exploiting contact constraint dynamics as
we hypothesized? How does it compare to its ablations where force information is
integrated di↵erently?

4.2.1 Experimental Setup Details

We evaluate our methods on four assembly tasks, which are shown in Fig.4.2.
We use a Rethink Robotics Sawyer robot. Sawyer o↵ers an interface to query its wrist
force/torque measurement, the noise levels (estimated standard deviations) for Fx, Fy

are 2.0N; Fz is 0.5N; Mx,My are 0.5Nm; and Mz is 0.1Nm. Sawyer is commanded
via ROS at 20 Hz. During training, we take four roll-outs per iteration. Typically, it
takes three iterations to achieve successful behaviors, five iterations for convergence.
We define a plane by three points in end-e↵ector space, the cost function is a weighted
mixture of the `1 and `2 norms of the di↵erences between the current plane and the
target plane as specified by the three aforementioned points.

4.2.2 Assembly Performance Results

We compare our method with the following baselines:

• Kinematics Only: We verify the di�culty of the tasks and the necessity for
learning as a sanity check. For task 1 and task 2, we only specify target poses;
for the more di�cult task 3 and task 4, we also introduce several way-points.

15

Note that for task 1 and 2, we should get the same result every single time since
robot kinematic controller is deterministic as well as these tasks. But for task
3 and 2, the peg and gear can move freely, so it is hard to specify the desired
trajectory. For all these tasks, we use built-in position controllers from Sawyer
robot.

• iLQG with torque control: This is the main baseline for comparison. The
control actions from iLQG are directly the seven joint torques. For comparison,
we use the same cost function as in our method, i.e., sparsely-defined target
end-e↵ector pose, no intermediate way-points are introduced.

• iLQG with torque control, augmented state space: We augment the
state space with the F/T vector such that x̃t = [xt, ft], where ft are F/T
measurements. We apply direct torque control. The purpose of this is to verify
if other formulation other than what we proposed could also actively use this
additional information.

• Our Method: We refer to the operational space controller in Chapter 2 with
iLQG. Sawyer robot provides an interface to directly command desired opera-
tional space forces, we use this for experiments where we only use these forces
as control; we implement our own controller in eq.2.3 where position loop is
wrapped.

• Our Method with augmented state space: Additional to operational space
controller, we augment the state space to x̃t = [xt, ft]. This experiment is for
verifying if our method can be further improved.

A success is considered if an object is being assembled to a desired pose with defined
tolerance. We report success rates for each individual task separately, because we train
an individual policy for each task. However, it would be straightforward to report
overall success rate by multiplying individual success rates together since policies are
trained independently. We execute learned policies after training to calculate the
success rates. Table 4.1 presents aforementioned success rates for four di↵erent tasks.

We interpret these results several fold: (1) kinematics baseline fails consecu-
tively, this confirms the required accuracy and complexity for the gear set; (2) a
vanilla iLQG with torque control, but without extensive cost shaping fails; the single
success we observed is due to Gaussian noise in the controller, which generated some
lucky motion to insert, and it is on the easiest task. (3) we did not find reliable
improvement by augmenting state space with F/T information. Since F/T signals
are not Markovian: F/T information at time step t ⌧t is not necessarily a function of
previous time step ⌧t�1. Therefore fitting a time-correlated dynamics model to them
does not produce meaningful information. We made several interesting observations
during the experiments. During task one, the robot moves quickly in free-space to
reach in-contact status, then it reduces its speed to slowly probe around, trying to

16

Table 4.1: Comparison of success rates for di↵erent tasks. Baseline 1 refers to kine-
matics only; baseline 2 refers to iLQG with direct torque control; baseline 3 refers to
iLQG with direct torque control, augmented state space, our method w/ augmented
refers augmented state space in our method.

Task 1 Task 2 Task 3 Task 4

baseline 1 0/5 0/5 0/5 0/5

baseline 2 1/5 0/5 0/5 0/5

baseline 3 0/5 0/5 0/5 0/5

our method 5/5 5/5 2/5 4/5

our method w/ augmented 5/5 5/5 3/5 3/5

”feel” the surface; once it has a level of confidence of the hole’s position, it becomes
aggressive towards the goal it predicted, resulting in quick motions followed by a
large downward force to complete insertion. The most interesting experiment is task
3, where the added uncertainty comes from a rotating peg. The robot first brings
the small gear in contact with the peg, while applying a downward force so that
small gear would not fall into free-space again; but this amount of downward force
also allows room for applying additional rotating torque to the peg and gear aligning
them with each other roughly; then the downward force increases to try insertion, if
not successful, downward forces decrease but small horizontal force are also observed
to fine-tune poses, this procedure iterates until the peg is fully inserted. This kind
of behavior roughly aligns with humans’ heuristics when facing such tasks. We also
notice that the generated noise has some e↵ect on the final performance, but not
dominant. For instance, in task 4 where one gear needs to rotate to match the other
one; if we remove the noise term from Gaussian policy, it will harm the performance
a little bit; however as the learning process goes on, the learned rotating torque will
becomes larger, thus compensate the performance loss of removing exploration noise.

Fig.4.3 shows computed actions at nearly convergence (only desired forces in x-
directions and y-directions are plotted) for task 2 during one successful insertion. It
is interesting to observe how the variance computed by the policy changes over time:
initially, there is a certain level of variance for exploration to search for the target po-
sition; once the policy is confident about the goal, the variance reduces dramatically,
the robot aggressively moves the object towards the goal; finally during the insertion
phase, a certain level of noise is again injected for fine-tuning the gear’s pose to over-
come friction. This force-based insertion pattern is automatically discovered through
interactions by the algorithm, and matches a human’s intuition on such tasks well.
Fig.4.4 presents F/T measurements during a successful insertion. We can observe
peaks in the data, which motivates explicit use of F/T measurements, because of its

17

Exploration
Confident
about goals Insertion

Figure 4.3: Action computed by learned policy during one successful insertion. Solid
line shows computed action mean, and error bar for computed variance.

informative nature.

4.3 Combination of Learned Policy with Grasping

In all previous discussions, we assume objects are pre-grasped by the robot,
and firmly held in the gripper. Here, we show the learned policy could actually be
combined with a grasping pipeline; so that objects could be picked up anywhere but
always moved to the position it was trained; this is useful for industrial automa-
tion applications since pre-grasp is not always available. Some uncertainty is also
introduced to the policy since the grasping point could be di↵erent from where it
was trained from. Figure 4.5 shows setup for this: 3D scanner (Photoneo) generates
point clouds of scanned objects, then compare the objects with their CAD models to
segment them out and perform pose estimation by surface matching. Once we know
objects’ poses, we grasp them at pre-selected points, then objects will be moved to
positions where assembly policies were trained from; we run trained policies from
there. Figure 4.6 shows scanned result and pose estimation results. This task con-
sists of four sequential steps: first the robot needs to grasp the big gear and perform
insertion using learned policy; then small gear needs to be grasped and insert into
the gear base in the presence of big gear. Several way-points are added to smooth
robot’s motion; we use robot’s motion controller to move between these way-points.
We consider a success as all parts being picked up and assembled properly, we achieve
93.3% success rate (14/15), where the only failure resulted from small gear got stuck
while being assembled into the big gear. A demo video is available on website.

18

0 20 40 60 80 100

Time Step

-10

0

10

20

30

F
o

rc
e
 (

N
)

X axis force data

0 20 40 60 80 100

Time Step

-10

0

10

20

F
o

rc
e
 (

N
)

Y axis force data

0 20 40 60 80 100

Time Step

-100

-50

0

50

F
o

rc
e
 (

N
)

Z axis force data

0 20 40 60 80 100

Time Step

-2

-1

0

1
T

o
rq

u
e
 (

N
m

)
X axis torque data

0 20 40 60 80 100

Time Step

-5

0

5

10

T
o

rq
u

e
 (

N
m

)

Y axis torque data

0 20 40 60 80 100

Time Step

-1

-0.5

0

T
o

rq
u

e
 (

N
m

)

Z axis torque data

Figure 4.4: Six degree of freedom force torque measurements from a successful Task
2 insertion.

19

Figure 4.5: Setup for grasping and learned policy execution. A 3D scanner is mounted
on the table, and registered to the robot frame. Objects are being placed on the table
being scanned by the scanner. Gear base is fixed to the table.

20

Figure 4.6: (a) Original scanned point cloud by scanner (b)Big gear segmentation
and pose estimation (c)Small gear segmentation and pose estimation.

21

Chapter 5

Conclusion

In this paper we combine RL with an operational space force controller to solve
the problem of high-precision robotic assembly. We specifically exploited one of the
model-based RL algorithm, iLQG, compared with several ablations. We evaluated our
method with two use-cases: deformable object manipulation with a non-compliant
robot, high-precision assembly with a compliant robot. Results show our method
can not only perform well in high-precision settings, but o↵er a principled way for
industrial non-compliant robot learning contact-rich assembly skills.

22

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press Cambridge, 1998, vol. 1.

[2] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy search for
robotics,” Foundations and Trends in Robotics, vol. 2, no. 1–2, pp. 1–142, 2013.

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp.
1238–1274, 2013.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” The Journal of Machine Learning Research, vol. 17, no. 1,
pp. 1334–1373, 2016.

[5] O. Khatib, “A unified approach for motion and force control of robot manip-
ulators: The operational space formulation,” IEEE Journal on Robotics and

Automation, vol. 3, no. 1, pp. 43–53, February 1987.

[6] J. Peters and S. Schaal, “Learning to control in operational space,” The Inter-

national Journal of Robotics Research, vol. 27, no. 2, pp. 197–212, 2008.

[7] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational space
control: A theoretical and empirical comparison,” The International Journal of

Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.

[8] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable impedance
control,” The International Journal of Robotics Research, vol. 30, no. 7, pp.
820–833, 2011.

[9] Kuka , “Kuka lbr iiwa.” [Online]. Available: https://www.kuka.com/en-us/
products/robotics-systems/industrial-robots/lbr-iiwa

[10] Rethink Robotics, “Sawyer user guide.” [Online]. Avail-
able: http://mfg.rethinkrobotics.com/mfg-mediawiki-1.22.2/images/1/1a/
Sawyer User Guide 3.3.pdf

https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
http://mfg.rethinkrobotics.com/mfg-mediawiki-1.22.2/images/1/1a/Sawyer_User_Guide_3.3.pdf
http://mfg.rethinkrobotics.com/mfg-mediawiki-1.22.2/images/1/1a/Sawyer_User_Guide_3.3.pdf

23

[11] Willow Garage, “Pr2 robot manual.” [Online]. Available: https://www.
clearpathrobotics.com/wp-content/uploads/2014/08/pr2 manual r321.pdf

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[13] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in International Conference on Machine Learning, 2016, pp. 1928–1937.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[15] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Proceedings of the

19th International Conference on Neural Information Processing Systems, ser.
NIPS’06. Cambridge, MA, USA: MIT Press, 2006, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976456.2976457

[16] J. Luo, R. Edmunds, F. Rice, and M. Agogino, “Tensegrity robot locomotion
under limited sensory inputs via deep reinforcement learning,” in Robotics and

Automation (ICRA), 2018 IEEE International Conference on. IEEE, 2018.

[17] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in International Conference on Machine Learning, 2015,
pp. 1889–1897.

[18] S. Levine and P. Abbeel, “Learning neural network policies with guided policy
search under unknown dynamics,” in Advances in Neural Information Processing

Systems (NIPS), 2014.

[19] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies
for autonomous aerial vehicles with mpc-guided policy search,” in Robotics and

Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016, pp.
528–535.

[20] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manipulation skills
with guided policy search,” in International Conference on Robotics and Automa-

tion (ICRA), 2015.

[21] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine, “Path
integral guided policy search,” in Robotics and Automation (ICRA), 2017 IEEE

International Conference on. IEEE, 2017, pp. 3381–3388.

https://www.clearpathrobotics.com/wp-content/uploads/2014/08/pr2_manual_r321.pdf
https://www.clearpathrobotics.com/wp-content/uploads/2014/08/pr2_manual_r321.pdf
http://dl.acm.org/citation.cfm?id=2976456.2976457

24

[22] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.” in AAAI.
Atlanta, 2010, pp. 1607–1612.

[23] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[24] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation skills with
online dynamics adaptation and neural network priors,” in Intelligent Robots and

Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016,
pp. 4019–4026.

[25] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local
models: Application to dexterous manipulation,” in Robotics and Automation

(ICRA), 2016 IEEE International Conference on. IEEE, 2016, pp. 378–383.

[26] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learning from the
Hindsight Plan – Episodic MPC Improvement,” ArXiv e-prints, Sep. 2016.

[27] P. Englert and M. Toussaint, “Learning manipulation skills from a single demon-
stration,” The International Journal of Robotics Research, vol. 37, no. 1, pp.
137–154, 2018.

[28] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep latent features
for model predictive control,” in Robotics: Science and Systems, 2015.

[29] S. Levine and V. Koltun, “Guided policy search,” in International Conference

on Machine Learning, 2013, pp. 1–9.

[30] W. H. Montgomery and S. Levine, “Guided policy search via approximate mirror
descent,” in Advances in Neural Information Processing Systems, 2016, pp. 4008–
4016.

[31] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine,
“Combining model-based and model-free updates for trajectory-centric reinforce-
ment learning,” in International Conference on Machine Learning (ICML) 2017,
Aug. 2017.

[32] S. S. M. Salehian and A. Billard, “A dynamical-system-based approach for
controlling robotic manipulators during noncontact/contact transitions,” IEEE

Robotics and Automation Letters, vol. 3, no. 4, pp. 2738–2745, Oct 2018.

[33] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical
systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27,
no. 5, pp. 943–957, Oct 2011.

25

[34] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex behaviors
through contact-invariant optimization,” ACM Trans. Graph., vol. 31, no. 4,
pp. 43:1–43:8, Jul. 2012.

[35] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body dynamic
motion planning that transfers to physical humanoids,” in 2015 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), Sept 2015,
pp. 5307–5314.

[36] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. V. Todorov, “Interactive
control of diverse complex characters with neural networks,” in Advances in

Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp.
3132–3140.

[37] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep
reinforcement learning for high precision assembly tasks,” in Intelligent Robots

and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2017, pp. 819–825.

[38] G. Thomas, M. Chien, A. Tamar, J. Aparicio Ojea, and P. Abbeel, “Learning
Robotic Assembly from CAD,” ArXiv e-prints, 2018.

[39] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational space
control: A theoretical and empirical comparison,” The International Journal of

Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.

[40] B. Siciliano and L. Villani, Robot force control. Springer Science & Business
Media, 2012, vol. 540.

[41] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Con-

trol, 1st ed. New York, NY, USA: Cambridge University Press, 2017.

[42] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling interaction via the
principle of maximum causal entropy,” in Proceedings of the 27th International

Conference on International Conference on Machine Learning, ser. ICML’10.
USA: Omnipress, 2010, pp. 1255–1262.

[43] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal
feedback control of constrained nonlinear stochastic systems,” in Proceedings of

the 2005, American Control Conference, 2005., June 2005, pp. 300–306 vol. 1.

	Introduction
	Related Work and Proposed Method
	Related Work
	Preliminaries
	Operational Space Force Controller
	Model-based Reinforcement Learning algorithm: iLQG

	Case 1: Non-compliant robot arm with deformable objects
	Problem Statement
	Experiments

	Case 2: Compliant robot arm with rigid objects
	Problem Statement
	Experiments
	Combination of Learned Policy with Grasping

	Conclusion

