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Abstract

The Design of Any-scale Serverless Infrastructure with Rich Consistency Guarantees

by

Chenggang Wu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Serverless computing has gained significant attention over the last few years. The core advantage
of serverless is that it abstracts away low-level operational concerns and opens up opportunities
for developers without sophisticated systems expertise to harness the power of the cloud and build
scalable distributed applications. However, there are three main challenges that limit the capabil-
ity and prevent the adoption of serverless infrastructure. First, serverless systems need to deliver
high performance at any scale, from a single multicore machine to a geo-distributed deployment.
Second, serverless systems need to dynamically respond to workload shifts and autoscale to meet
performance goals while minimizing cost. Third, serverless systems need to offer robust consis-
tency guarantees to support a wide variety of applications while maintaining high performance.

This dissertation presents a line of research that addresses these challenges. We first introduce
Anna, a high-performance key-value store that employs a lattice-based coordination-free execu-
tion model. The design of Anna achieves seamless scaling while offering rich consistency guaran-
tees. We then discuss how we extend Anna to become a serverless, tiered storage system. Anna’s
autoscaling mechanisms and policies enable intelligent trade-off between latency and cost un-
der dynamic workloads. Finally, we present HydroCache, a caching layer that sits in between a
function-as-a-service platform and the underlying storage system. HydroCache maintains the ben-
efit of resource disaggregation offered by existing serverless computing platforms while delivering
low-latency request handling and transactional causal consistency, the strongest consistency model
that can be achieved without coordination.
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Chapter 1

Introduction

Over the past decade, innovations in cloud computing have transformed how we build large-scale
applications. Cloud providers such as Amazon Web Services [13] (AWS), Google Cloud [41], and
Microsoft Azure [15], use hardware virtualization technology [21] to provide application develop-
ers with a virtual machine (VM) with access to CPUs, RAM, and disks. This has revolutionized
the computing landscape, allowing organizations that previously had no access to large computing
clusters to deploy and scale distributed applications. Indeed, the vast majority of today’s large-
scale applications, from scientific computing projects to machine learning pipelines, are run in
the cloud. Moreover, Developer Operations (or “DevOps”) tools are now widely used to maintain
large computing clusters. Kubernetes [55], for example, is a container orchestration tool for de-
ploying and scaling clusters. It hides the complexity of managing node membership, transparently
handles node failures via heartbeats and automatic restarts, and offers state-of-the-art security and
performance isolation across computing units. With Kubernetes, developers can now more easily
maintain clusters with thousands of nodes.

As cloud technologies continue to evolve, serverless computing systems have emerged to bring
cloud computing to the next level [44, 49, 5, 45, 77, 94]. Serverless computing is a new software
design pattern with two core advantages. First, it offers a higher-level abstraction to program the
cloud. Function-as-a-service (FaaS) platforms such as AWS Lambda, Google Cloud Functions,
and Azure Functions allow programmers to write application code locally and upload the code
to the platform without having to worry about resource configurations or the systems environment
under which the applications are run. FaaS platforms then serve the application code in response to
a wide variety of trigger events. AWS Lambda, for example, support triggers including events from
API Gateway, S3, and DynamoDB. In contrast, in the pre-serverless world, to run an application
in the cloud, a common practice was to first use containerization tools such as Docker to build an
image consisting of the application as well as the appropriate versions of the operating system,
author YAML configuration files specifying the resource requirements (e.g., CPUs, GPUS, RAM),
and finally launch the containers with Kubernetes. Serverless computing abstracts away these
complexities and lets developers focus on the application logic. This enables programmers without
DevOps expertise to harness the power of the cloud and build scalable distributed applications.

The other key advantage of serverless is usage-based pricing; FaaS platforms such as AWS
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Lambda charge based on compute time at the granularity of milliseconds for each function in-
vocation. Similarly, serverless storage systems such as AWS DynamoDB bill users based on the
storage consumption of the datasets. Usage-based pricing is attractive for both developers and the
cloud providers. It offers developers peace of mind by eliminating the burden of manual dealloca-
tion of resources when the application is not being run. Cloud providers, on the other hand, can
efficiently pack multiple customers’ workloads on the same VM for resource multiplexing. The
resulting fine-grained resource allocation reduces resource reservation during idle periods, leading
to significant cost savings.

1.1 The Challenges
Despite the promises, today’s serverless systems face three core challenges. First, modern cloud
providers offer dense hardware with multiple cores and large memories, hosted in global platforms.
Amazon, for example, now offers EC2 instances with up to 64 physical CPU cores and gigabytes of
RAM. Conventional wisdom says that software designed for one scale point needs to be rewritten
when scaling up by 10-100× [32]. However, due to the elastic scaling requirement of serverless
systems, they need to scale seamlessly from a single core to multicore to the globe. Therefore,
the challenge is to design a unified execution model that enables a system to deliver excellent
performance at any scale, from a single multicore machine to a geo-distributed deployment.

Second, each of today’s serverless systems offers a fixed trade-off of performance and cost.
Taking Amazon’s cloud storage systems as examples, S3 is a relatively economical option but it
is not designed for low latency. On the other end of the spectrum, ElastiCache, despite achieving
high performance, is very costly and cumbersome to scale. This is undesirable because application
workloads dynamically shift over time. As a result, systems either over-allocate resources, leading
to idle periods and increased billing, or under-allocate resources, leading to performance SLO vi-
olation. To achieve cost-efficiency, it is crucial to implement fine-grained autoscaling mechanisms
and policies that optimize resource allocation to flexibly support user-defined goals in performance
and cost budget.

Finally, today’s serverless computing infrastructure employs a disaggregated architecture be-
tween the compute layer and the storage layer. This enables independent scaling of the two layers,
leading to improved resource efficiency. However, this design comes with a cost: the compute layer
needs to cross the network boundary to access the data in the remote storage. For data-intensive ap-
plications, the added network roundtrip introduces significant latency, hampering the performance
of the system. Moreover, existing storage backends such as DynamoDB and ElastiCache offer
limited consistency guarantees [114], leading to increased consistency anomalies observed within
the application. This calls for a novel redesign that keeps the resource disaggregation benefit of
existing serverless platforms while simultaneously achieving low latency and robust consistency
guarantees.
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Figure 1.1: An overview of the systems discussed in this dissertation: a serverless key-value store
Anna, and a stateful function-as-a-service platform Cloudburst built on top of Anna.

1.2 Towards Any-scale Serverless Infrastructure with Rich
Consistency Guarantees

In this dissertation, we discuss a line of research projects that address these challenges. Figure 1.1
shows a high-level overview of the systems we built. In Chapter 2, we study the design principles
of building an any-scale, high-performance system in the context of a key-value store (KVS) called
Anna [114]. Anna is a partitioned, multi-mastered system that achieves high performance and elas-
ticity via wait-free execution, which eliminates thread synchronization overhead within a single
machine by letting each thread access private memory and exchange information via explicit mes-
sage passing instead of via shared memory. As a result, this design efficiently exploits multicore
parallelism by allowing each thread to focus on request handling instead of dealing with locking
or atomic instruction overheads. Anna’s multi-master replication also enables different replicas to
accept updates concurrently, making the system suitable for handling both read-intensive and write
intensive workloads. In addition, the wait-free execution model is extensible across different scale
points; Anna employs the same execution model both within a single machine and across multiple
machines, significantly reducing the system complexity.

However, although the wait-free execution model achieves excellent performance and smooth
scaling, it introduces a new challenge in data consistency; because updates are propagated across
threads asynchronously, the same set of updates may arrive at each thread in different orders.
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To solve this challenge, Anna encapsulates system state in lattice data structures, which accept
updates in a way that is associative, commutative, and idempotent. This allows data replicas to
converge to the same state even under network message reordering and duplication. Moreover,
Anna provides native support for a wide variety of coordination-free consistency guarantees via
lattice composition, and allows programmers to register user-defined lattices to meet application-
specific consistency requirements. The resulting system outperforms state-of-the-art alternatives
such as Redis and DynamoDB by up to 100x. The diverse set of consistency models also allows a
wide range of applications, from caching services to online shopping carts to large-scale indexing
applications, to take advantage of the system.

In Chapter 3, we describe how we extended Anna into a serverless storage system for the
cloud [112]. In its extended form, Anna is designed to overcome the narrow cost-performance
limitations typical of current cloud storage systems. We describe three key aspects of Anna’s new
design. First, Anna monitors data access frequency and selectively replicates hot keys to spread
the load across multiple nodes. Second, Anna employs a vertical tiering of storage layers with
different cost-performance tradeoffs. Anna consists of two tiers: a memory tier where the data is
maintained in an in-memory hash table, and a disk tier where the data is kept in EBS volumes.
Anna promotes hot keys to the memory tier for high performance and demotes cold keys to the
disk tier for cost savings. Third, Anna tracks incoming request volumes and horizontally scales
the system by adding and removing storage nodes. The two tiers of Anna scale independently,
achieving maximum flexibility in cost-performance trade-offs.

In addition to the new autoscaling mechanisms, Anna implements policies to balance service-
level objectives (SLOs) for cost, latency and fault tolerance. Given a fault-tolerance requirement
(e.g., every key must be replicated across at least 3 nodes), when a latency SLO is given, Anna’s
policy strives to meet the SLO with a system configuration that incurs the minimum cost. When
the cost budget is specified, Anna attempts to minimize request latency while keeping the system’s
cost below the budget. Our experimental results explore the behavior of Anna’s mechanisms and
policy, exhibiting orders-of-magnitude efficiency improvements over both commodity cloud KVS
services and research systems.

Finally, in Chapter 4, we turn our attention to the setting of serverless FaaS platforms, where
storage services are disaggregated from the machines that support function execution. FaaS appli-
cations consist of compositions of functions, each of which may run on a separate machine and
access remote storage. We address the challenge of improving I/O latency in this setting while also
providing application-wide consistency. Previous work has explored providing causal consistency
for individual I/Os by carefully managing the versions stored in a client-side data cache. In our
setting, a single application may execute multiple functions across different nodes, and therefore
issue interrelated I/Os to multiple distinct caches. This raises the challenge of Multisite Transac-
tional Causal Consistency (MTCC): the ability to provide causal consistency for all I/Os within
a given transaction even if it runs across multiple physical sites. We present distributed proto-
cols for MTCC implemented in a system called HydroCache [113], a caching layer co-located
with the function execution layer. We also discuss how different variants of the protocol can be
combined to simultaneously minimize transaction aborts and coordination overheads. Our eval-
uation demonstrates orders-of-magnitude performance improvements due to caching, while also
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protecting against consistency anomalies that otherwise arise frequently.
In summary, the contribution of this dissertation are as follows:

• Demonstrating that wait-free execution plus coordination-free consistency levels are the key
design principles to unlocking systems that deliver excellent performance at any scale.

• Introducing fine-grained autoscaling mechanisms that detect and respond swiftly to work-
load shifts, as well as intelligent policies that perform goal-oriented optimization to achieve
cost-efficiency in a serverless KVS.

• Showing that resource disaggregation, low-latency data access, and robust consistency guar-
antees can be achieved simultaneously in a FaaS system.

We believe this level of improved performance, scalability, and consistency will enable server-
less computing platforms to support a broader spectrum of mission-critical applications. The ex-
panded use cases will motivate new design requirements that drive future research, eventually mak-
ing serverless platforms the de facto infrastructure for running general distributed applications.
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Chapter 2

Anna: A KVS For Any Scale

As we discussed, delivering high performance at any scale is crucial for serverless systems. In this
chapter, we explore the design principles that achieve this property in the context of KVS systems.
High-performance KVS systems are the backbone of many large-scale applications ranging from
retail shopping carts to machine learning parameter servers. Many KVS systems are designed
for large-scale and even globally-distributed usage (e.g., [33, 12, 76]); others are designed for
high-performance single-machine settings (e.g., [75, 86]). In recent years, these distinct hardware
targets have begun to converge in the cloud. For example, Amazon now offers EC2 instances with
up to 64 physical cores, while continuing to provide the ability to scale across machines, racks and
the globe.

Given the convergence of dense hardware and the globe-spanning cloud, we set out to design
a KVS that can run well at any scale: providing excellent performance on a single multi-core
machine, while scaling up elastically to geo-distributed cloud deployment. In addition to wide-
ranging architectural flexibility, we wanted to provide a wide range of consistency semantics as
well, to support a variety of application needs.

In order to achieve these goals, we found that four design requirements emerged naturally. The
first two are traditional aspects of global-scale data systems. To ensure data scaling, we assumed
from the outset that we need to partition (shard) the key space, not only across nodes at cloud
scale but also across cores for high performance. Second, to enable workload scaling, we need
to employ multi-master replication to concurrently serve puts and gets against a single key from
multiple threads.

The next two design requirements followed from our ambitions for performance and general-
ity. To achieve maximum hardware utilization and performance within a multi-core machine, our
third requirement was to guarantee wait-free execution, meaning that each thread is always do-
ing useful work (serving requests), and never waiting for other threads for reasons of consistency
or semantics. To that end, coordination techniques such as locking, consensus protocols or even
“lock-free” retries [38] need to be avoided. Finally, to support a wide range of application seman-
tics without compromising our other goals, we require a unified implementation for a wide range
of coordination-free consistency models [19].
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Given these design constraints, we developed a system called Anna1, which meets our per-
formance goals at multiple scales and consistency levels. The architecture of Anna is based on a
simple design pattern of coordination-free actors (Section 2.4), each having private memory and
a thread of execution mapped to a single core. Actors communicate explicitly via messaging, be
it across nodes (via a network) or within a multi-core machine (via message queues [22]). To
ensure wait-free execution, Anna actors never coordinate; they only communicate with each other
to lazily exchange updates, or repartition state. Finally, as discussed in Section 2.5, Anna pro-
vides replica consistency in a new way: by using lattice composition to implement recent research
in coordination-free consistency. This design pattern is uniform across threads, machines, and
data-centers, which leads to a system that is simple and easy to reconfigure dynamically.

We describe the design and implementation of Anna, providing a set of architectural and ex-
perimental lessons for designing across scales:

• Coordination-free Actors: We confirm that the coordination-free actor model provides ex-
cellent performance from individual multi-core machines up to widely distributed settings,
besting state-of-the-art lock-free shared memory implementations while scaling smoothly
and making repartitioning for elasticity extremely responsive.

• Lattice-Powered, Coordination-Free Consistency: We show that the full range of coordination-
free consistency models taxonomized by Bailis, et al. [19] can be elegantly implemented in
the framework of distributed lattices [95, 27], using only very simple structures in a composi-
tional fashion. The resulting consistency code is small and modular: each of our consistency
levels differs by at most 60 lines of C++ code from our baseline.

• Cross-Scale Validation: We perform comparison against popular KVSes designed for dif-
ferent scale points: Redis [86] for single-node settings, and Apache Cassandra [12] for geo-
replicated settings. We see that Anna’s performance is competitive at both scales while
offering a wider range of consistency levels.

2.1 Related Work
Anna is differentiated from the many KVS designs in the literature in its assumptions and hence
in its design. Anna was inspired by a variety of work in distributed and parallel programming,
distributed and parallel databases, and distributed consistency.

2.1.1 Programming Models
The Coordination-free actor model can be viewed as an extension to distributed event-loop pro-
gramming, notably Hewitt’s Actor model [46], more recently popularized in Erlang and Akka.
Anna follows the Actor spirit of independent local agents communicating asynchronously, but dif-
fers from Actors in its use of monotonic programming in the style of Bloom [8] and CRDTs [95],

1The tiny Anna’s hummingbird, a native of California, is the fastest animal on earth relative to its size [26].
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System Scale Memory Model
Masstree M SM
Bw-tree M SM
PALM M SM
MICA M SM
Redis S N/A

COPS, Bolt-on D MP
Bayou D MP

Dynamo D MP
Cassandra D MP
PNUTS D MP

CouchDB D MP
Voldemort D MP

HBase D MP
Riak D MP

DocumentDB D MP
Memcached M & D SM & MP
MongoDB M & D SM & MP

H-Store M & D MP
ScyllaDB M & D MP

Anna M & D MP

Table 2.1: Taxonomy of existing KVS systems. The scale column indicates whether a system is
designed to run on a Single core (S), a multi-core machine (M), in a distributed setting (D), or a
combination (M & D). The memory model column shows whether a system uses shared-memory
model (SM), explicit message passing (MP), or both (SM & MP).

providing a formal foundation for reasoning about distributed consistency. Anna’s actors also bear
some resemblance to SEDA [110], but SEDA focuses on preemptable thread pools and message
queues, whereas Anna’s actors target a thread-per-core model with lattices to ensure consistency
and performance.

Recent systems, such as ReactDB [93] and Orleans [23] also explore Actor-oriented program-
ming models for distributed data. In both those cases, the Actor model is extended to provide a
higher level abstraction as part of a novel programming paradigm for users. By contrast, Anna
does not attempt to change user APIs or programming models; it exposes a simple key/value API
to external applications. Meanwhile, those systems do not explore the use of lattice-oriented actors.

2.1.2 Key-value Stores
Table 2.1 and 2.2 show a taxonomy of existing KVS systems based on the scale at which they are
designed to operate, the memory model, and the per-key as well as multi-key consistency levels
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System Per-Key Consistency Multi-key Consistency
Masstree Linearizable None
Bw-tree Linearizable None
PALM Linearizable None
MICA Linearizable None
Redis Linearizable Serializable

COPS, Bolt-on Causal Causal
Bayou Eventual, Monotonic Reads/Writes, Read Your Writes Eventual

Dynamo Linearizable, Eventual None
Cassandra Linearizable, Eventual None
PNUTS Linearizable Writes, Monotonic Reads None

CouchDB Eventual None
Voldemort Linearizable, Eventual None

HBase Linearizable None
Riak Eventual None

DocumentDB Eventual, Session, Bounded Staleness, Linearizability None
Memcached Linearizable None
MongoDB Linearizable None

H-Store Linearizable Serializable
ScyllaDB Linearizable, Eventual None

Anna Eventual, Causal, Item Cut, Writes Follow Reads
Monotonic Reads/Writes, Read Your Writes, PRAM

Read Committed
Read Uncommitted

Table 2.2: Consistency models offered by existing KVS systems.

supported. The remainder of this section discusses the state of the art in KVS systems in the context
of the four design requirements (introduced at the beginning of this chapter) for building any-scale
KVS.

Single-server storage systems

Most single-server KVS systems today are designed to efficiently exploit multi-core parallelism.
These multi-core-optimized KVS systems typically guarantee that reads and writes against a single
key are linearizable.

Shared memory is the architecture of choice for most single-server KVS systems. Masstree [73]
and Bw-tree [63] employ a shared-memory design. Furthermore, the single-server mechanisms
within distributed KVS systems, such as memcached [75] and MongoDB [76], also employ a
shared-memory architecture per node. Shared-memory architectures use synchronization mecha-
nisms such as latches or atomic instructions to protect the integrity of shared data-structures, which
can significantly inhibit multi-core scalability under contention [38].
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PALM [92] and MICA[66]2 each employ a partitioned architecture, assigning non-overlapping
shards of key-value pairs to each system thread. KVS operations can therefore be performed
without any synchronization because they are race-free by default. However, threads in partitioned
systems (with single-master request handling) are prone to under-utilization if a subset of shards
receive a disproportionate fraction of requests due to workload skew. To address workload skew,
both PALM and MICA make selective use of shared-memory design principles. For instance,
MICA processes only writes in a partitioned fashion, but allows any thread to process reads against
a particular key.

Redis [86] uses a single-threaded model. Redis permits operations on multiple keys in a sin-
gle request and guarantees serializability. While single-threaded execution avoids shared-memory
synchronization overheads, it cannot take any advantage of multi-core parallelism.

The systems above are carefully designed to execute efficiently on a single server. Except
for Redis, they all use shared-memory accesses; some directly employ the shared-memory archi-
tecture, while others employ a partitioned (“shared-nothing”) architecture but selectively exploit
shared memory to ameliorate skew. The designs of these systems are therefore specific to a single
server, and cannot be generalized to a distributed system. Moreover, the shared-memory model
is at odds with wait-free execution (Section 2.3), and therefore does not meet our performance
requirement for any-scale KVS.

Moreover, as noted in Figure 2.2, prior single-node KVS systems invariably provide only a
single form of consistency; typically either linearizability or serializability. Furthermore, with the
exception of Redis, which is single-threaded, none of the single-node KVS systems provide any
consistency guarantees for multi-key operations for groups of keys. Hence, these systems choose a
different design point than we explore: they offer strong consistency at the expense of performance
and scalability.

Distributed KVS

As shown in Figure 2.1, the majority of distributed KVS systems are not designed to run on a
single multi-core machine, and it is unclear how they exploit multi-core parallelism (if at all). The
exceptions are H-Store [51] and ScyllaDB [90]. Within a single machine, these systems partition
the key-value index across threads, which communicate via explicit message-passing. However, as
discussed earlier, partitioned systems with single-master request handling cannot scale well under
skewed workload.

In terms of consistency, most distributed KVSes support a single, relaxed consistency level.
COPS [67] and Bolt-on [17] guarantee causal consistency. MongoDB [76], HBase [43], and mem-
cached [75] guarantee linearizable reads and writes against individual KVS objects. PNUTS [29]
guarantees that writes are linearizable, and reads observe a monotonically increasing set of updates
to key-value pairs.

Bayou [105] provides eventually consistent multi-key operations, and supports application-
specific conflict detection and resolution mechanisms. Cassandra [12] and Dynamo [33] use

2Note that MICA is a key-value cache, and can hence evict key-value pairs from an index in order to
bound its memory footprint for improved cache-locality.
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quorum-based replication to provide different consistency levels. Applications can fix read and
write quorum sizes to obtain either linearizable or eventually consistent single-key operations. In
addition, both Cassandra and Dynamo use vector clocks to detect conflicting updates to a key,
and permit application-specific conflict resolution policies. As noted in Figure 2.2, Azure Docu-
mentDB [16] supports multiple single-key consistency levels.

We note that the majority of distributed KVS systems do not provide any multi-key guarantees
for arbitrary groups of keys. Some systems, such as HBase, provide limited support for transactions
on single shard, but do not provide arbitrary multi-key guarantees. COPS and Bolt-on provide
causally consistent replication. Bayou supports arbitrary multi-key operations but requires that
each server maintains a full copy of the entire KVS. H-Store supports serializability by performing
two-phase commit. However, achieving this level of consistency requires coordination and waiting
amongst threads and machines, leading to limited scalability.

State machine replication [89] (SMR) is the de facto standard for maintaining strong consis-
tency in replicated systems. SMR maintains consistency by enforcing that replicas deterministi-
cally process requests according to a total order (via a consensus protocol such as Paxos [60] or
Raft [78]). Totally ordered request processing requires waiting for global consensus at each step,
and thus fundamentally limits the throughput of each replica-set. Anna, in contrast, uses lattice
composition to maintain the consistency of replicated state. Lattices are resilient to message re-
ordering and duplication, allowing Anna to employ asynchronous multi-master replication without
need for any waiting.

2.2 Lattices
A central component of the design of Anna is its use of lattice composition for storing and asyn-
chronously merging state. Lattices prove important to Anna for two reasons.

First, lattices are insensitive to the order in which they merge updates. This means that they
can guarantee consistency across replicas even if the actors managing those replicas receive up-
dates in different orders. Section 2.4 describes Anna’s use of lattices for multi-core and wide-area
scalability in detail.

Second, we will see in Section 2.5 that simple lattice building blocks can be composed to
achieve a range of coordination-free consistency levels. The coordination-freedom of these levels
was established in prior work [19], and while they cannot include the strongest forms of con-
sistency such as linearizability or serializability, they include relatively strong levels including
causality and read-committed transactions. Our contribution is architectural: Anna shows that
these many consistency levels can all be expressed and implemented using a unified lattice-based
foundation. Section 2.5 describes these consistency levels and their implementation in detail.

To clarify terminology, we pause to review the lattice formalisms used in settings like conver-
gent and commutative replicated data-types (CRDTs) [95], and the BloomL distributed program-
ming language [27].

A bounded join semilattice consists of a domain S (the set of possible states), a binary operator
t, and a “bottom” value ⊥. The operator t is called the “least upper bound” and satisfies the
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following properties:
Commutativity: t(a, b) = t(b, a) ∀a, b ∈ S
Associativity: t(t(a, b), c) = t(a,t(b, c)) ∀a, b, c ∈ S
Idempotence: t(a, a) = a ∀a ∈ S

Together, we refer to these three properties via the acronym ACI. The t operator induces a
partial order between elements of S. For any two elements a, b in S, if t(a, b) = b, then we
say that b’s order is higher than a, i.e. a ≺ b. The bottom value ⊥ is defined such that ∀a ∈ S,
t(a,⊥) = a; hence it is the smallest element in S. For brevity, we use “lattice” to refer to “bounded
join semilattice” and “merge function” to refer to “least upper bound”.

2.3 Distributed state model
This section describes Anna’s representation and management of state across actors. Each actor
maintains state using lattices, but we observe that this is not sufficient to achieve high performance.
As we discuss, the potential advantages of lattices can be lost in the high cost of synchronization
in shared-memory key-value store architectures. Accordingly, Anna eschews shared-memory state
model for one based on asynchronous message-passing.

2.3.1 Limitations of shared-memory
The vast majority of multi-core key-value stores are implemented as shared-memory systems, in
which the entirety of the system’s state is shared across the threads of a server: each thread is
allowed to read or write any part of the state. Conflicting accesess to this state, at the level of reads
and writes to memory words, need to be synchronized for correctness. Synchronization prevents
concurrent writes from corrupting state, and ensures that reads do not observe the partial effects
of in-progress writes. This synchronization typically occurs in the form of locks or lock-free
algorithms, and is widely acknowledged as one of the biggest limiters of multi-core scalability.
Both locks and lock-free algorithms can severely limit scalability under contention due to the
overhead of cache-coherence protocols, which is proportional to the number of physical cores
contending on a word in memory [24, 38]. For instance, even a single word in memory incremented
via an atomic fetch-and-add can be a scalability bottleneck in multi-version database systems
that assign transactions monotonically increasing timestamps [37].

Lattices do not change the above discussion; any shared-memory lattice implementation is sub-
ject to the same synchronization overheads. On receiving update client requests, actors must update
a lattice via its merge function. Although these updates commute at the abstraction of the merge
function, threads must synchronize their access to a lattice’s in-memory state to avoid corrupting
this in-memory state due to concurrent writes. Thus, while lattices’ ACI properties potentially al-
low a system to scale regardless of workload, a shared-memory architecture fundamentally limits
this potential due to the its reliance on multi-core synchronization mechanisms.



CHAPTER 2. ANNA: A KVS FOR ANY SCALE 13

2.3.2 Message-passing
In contrast to using shared memory, a message-passing architecture consists of a collection of
actors, each running on a separate CPU core. Each actor maintains private state that is inacces-
sible to other actors, and runs a tight loop in which it continuously processes client requests and
inter-core messages from an input queue. Because an actor can update only its own local state,
concurrent modification of shared memory locations is eliminated, which in turn eliminates the
need for synchronization.

A message-passing system has two alternatives for managing each key; single-master and
multi-master replication.

In single-master replication, each key is assigned to a single actor. This prevents concurrent
modifications of the key’s value, which in turn guarantees that it will always remain consistent.
However, this limits the rate at which the key can be updated to the maximum update rate of a
single actor.

In multi-master replication, a key is replicated on multiple actors, each of which can read and
update its own local copy. To update a key’s value, actors can either engage in coordination to
control the global order of updates, or can leave updates uncoordinated. Coordination occurs on
the critical path of every request, and achieves the effect of totally-ordered broadcast. Although
multiple actors can process updates, totally ordered broadcast ensures that every actor processes
the same set of updates in the same order, which is semantically equivalent to single-master repli-
cation. In a coordination-free approach, on the other hand, each actor can process a request locally
without introducing any inter-actor communication on the critical path. Updates are periodically
communicated to other actors when a timer is triggered or when the actor experiences a reduction
in request load.

Unlike synchronous multi-master and single-master replication, a coordination-free multi-master
scheme could lead to inconsistencies between replicas, because replicas may observe and process
messages in different orders. This is where lattices come into play. Lattices avoid inconsistency
and guarantee replica convergence via their ACI properties, which make them resilient to message
reordering and duplication. Anna combines asynchronous multi-master replication with lattice-
based state management to remain scalable across both low and high conflict workloads while still
guaranteeing consistency.

2.4 Anna Architecture
Figure 2.1 illustrates Anna’s architecture on a single server. Each Anna server consists of a col-
lection of independent threads, each of which runs the coordination-free actor model. Each thread
is pinned to a unique CPU core, and the number of threads never exceeds the number of available
CPU cores. This 1:1 correspondence between threads and cores avoids the overhead of preemption
due to oversubscription of CPU cores. Anna’s actors share no key-value state; they employ con-
sistent hashing to partition the key-space, and multi-master replication with a tunable replication
factor to replicate data partitions across actors. Anna actors engage in epoch-based key exchange
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Figure 2.1: Anna’s architecture on a single server. Remote users are served by client proxies that
balance load across servers and cores. Anna actors run thread-per-core with private hashtable state
in shared RAM. Changesets are exchanged across threads by multicasting in memory; exchange
across servers is done over the network with protobufs.

to propagate key updates at a given actor to other masters in the key’s replication group. Each
actor’s private state is maintained in a lattice-based data-structure (Section 2.5), which guarantees
that an actor’s state remains consistent despite message delays, re-ordering, and duplication.

2.4.1 Anna actor event loop
We now discuss Anna’s actor event loop and asynchronous multicast in more detail.

Each Anna actor repeatedly checks for incoming requests for puts and gets from client proxies,
serves those requests, and appends results to a local changeset, which tracks the key-value pair
updated within a period of time (the multicast epoch).

At the end of the multicast epoch, each Anna actor multicasts key updates in its changeset to
relevant masters responsible for those keys, and clears the changeset. It also checks for incoming
multicast messages from other actors, and merges the key-value updates from those messages
into its local state. Note that the periodic multicast does not occur on the critical path of request
handling.

Anna exploits the associativity of lattices to minimize communication via a merge-at-sender
scheme. Consider a “hot” key k that receives a sequence of updates {u1, u2, ..., un} in epoch t.
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Exchanging all these updates could be expensive in network and computation overhead. However,
note that exchanging {u1, u2, ..., un} is equivalent to exchanging just the single merged outcome
of these updates, namely t(...t (u1, u2), ...un). Formally, denote s as the state of key k on another
replica, we have

t(... t (t(s, u1), u2), ...un) = t(s,t(... t (u1, u2), ...un))

by associativity. Hence batches of associative updates can be merged at a sending replica with-
out affecting results; merging at the sender can dramatically reduce communication overhead for
frequently-updated hot keys, and reduces the amount of computation performed on a receiving
replica, which only processes the merged result of updates to a key, as opposed to every individual
update.

2.5 Flexible Consistency
As discussed at the beginning of this chapter, high-performance KVSes can benefit a wide range
of applications, each of which may vary in its consistency requirements. For example, Amazon’s
Dynamo shopping cart [33] focuses on supporting causally consistent single-key updates. On
the other hand, applications that require multiple writes to succeed atomically need transactional
support like read committed isolation [19].

Recent research has found that a wide array of consistency levels, including causal consistency
and read committed, can be implemented in a coordination-free fashion [19]. A common require-
ment for coordination-free consistency levels is convergence: replicas of the same items should
converge when they process the same set of messages, regardless of the order in which these mes-
sages arrive. This can be achieved by handling client requests and gossip in a way that is ACI
(Associative, Commutative, Idempotent).

These properties are attractive, but they are far from trivial to achieve in general-purpose pro-
grams. Writing a large system to be ACI – and guaranteeing its correctness – is a difficult challenge.

In this section, we describe how Anna leverages ACI composition across small components to
achieve a rich set of consistency guarantees—a modular software design pattern derived from the
Bloom language [27]. Using ACI composition, we were able for the first time to easily build the
full range of coordination-free consistency models [19] from the literature in a single KVS.

2.5.1 ACI Building Blocks
Proposals for ACI systems go back decades, to long-running transaction proposals like Sagas [40],
and have recurred in the literature frequently. An ongoing question of the ACI literature was
how programmers could achieve and enforce ACI properties in practice. For the Bloom language,
Conway et al. proposed the composition of simple lattice-based (ACI) building blocks like coun-
ters, maps and pairs, and showed that complex distributed systems could be constructed with ACI
properties checkable by induction [27]. Anna adopts Bloom’s lattice composition approach. This
bottom-up composition has two major advantages: First, in order to verify that a system is ACI, it
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Figure 2.2: A general template for achieving coordination-free consistency

is sufficient to verify that each of its simple building blocks is a valid lattice (has ACI properties),
and the composition logic is ACI—this is more reliable than directly verifying ACI for a complex
data structure. Second, lattice composition results in modular system design, which allows us to
easily figure out which component needs to be modified when maintaining or updating the system.

2.5.2 Anna Lattice Composition

1 template <typename K, typename L>
2 class Anna {
3 protected:
4 MapLattice<K, L> kvs;
5 public:
6 V get(const K& k)
7 {
8 return kvs.reveal(k);
9 }

10

11 void put(const K& k, const L& l)
12 {
13 return kvs.merge(k, l);
14 }
15 };

Listing 1: Anna C++ Template

Anna is built using C++ and makes use of C++’s template structures to offer a flexible hierarchy
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of lattice types. As shown in Listing 1, the main data member in an Anna instance is represented
as a C++ template of type MapLattice, which is a hash map parameterized by an immutable
key type K, and a value type L that descends from Lattice. Any descendant of Lattice must
implement a merge method that is ACI.

Users’ GET requests are handled via the MapLattice.reveal method, which returns the
current values associated with the requested keys. PUT requests are handled via the MapLattice.merge
method, which merges the new key-value pairs into the MapLattice. If an input’s key does not
exist in the hash map, Anna simply stores the new key-value pair into the hash map. Otherwise,
the values associated with the key are merged using the merge function of lattice type L.

This design allows for a wide range of ACI, coordination-free objects to be stored in Anna. The
design of those object classes determine the consistency model that is provided. Figure 2.2 sketches
a general template for achieving this coordination-free consistency. In the style of existing systems
such as Cassandra and Bayou, programmers can embed application-specific conflict resolution
logic into the merge function of an Anna ValueLattice. Anna gives the programmer the freedom
to program their ValueLattices in this ad hoc style, and in these cases guarantees only replica
convergence. We define this level of ad hoc consistency as simple eventual consistency.

2.5.3 Consistency via Lattices: Examples
One of Anna’s goals is to relieve developers of the burden of ensuring that their application-specific
merge functions have clean ACI semantics. To achieve this, we can compose ad hoc user-defined
merge logic within simple but more principled lattices that maintain update metadata with ACI
properties guaranteed by construction. In this section we demonstrate that a variety of well-known
consistency levels can be achieved in this fashion. We begin by reviewing two popular consistency
levels and demonstrating how Anna’s modular design helps achieve their guarantees with minimal
programming overhead.

Causal Consistency

Causal consistency keeps track of the causal relationship between different versions of the same
object. Under causal consistency, if a user Alice updates a record, and the update is observed by
a user Bob, then Bob’s later update to the same record will overwrite Alice’s update (instead of
invoking the record’s merge operator) since the two updates are causally related. However, if Bob
updates the record without observing Alice’s update, then there is no causal relationship between
their updates, and the conflict will be resolved by invoking the record’s merge operator.

Figure 2.3 shows Anna’s lattice composition that supports causal consistency. Note that a
vector clock can be implemented as a MapLattice whose keys are client proxy ids and values
are version numbers associated with each proxy id. A version number can be implemented as
a MaxIntLattice whose element is an integer and merge function takes the maximum between
the input and its current element. Therefore, the integer associated with MaxIntLattice is always
increasing, which can be used to represent the monotonically increasing version number. When the
proxy performs a read-modify-write operation, it first retrieves the current vector clock, increments
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Figure 2.3: Lattice composition for achieving causal consistency

the version number corresponding to the proxy id, and writes the updated object together with the
new vector clock to the server. The merge function of PairLattice works in lexicographic order
on the pair; where the first element of the pair corresponds to a vector clock, and the second
corresponds to the actual value lattice associated with a key. Given two PairLattices P (a, b) and
Q(a, b), if P.a � Q.a, then P (a, b) causally follows Q(a, b), and the result is simply P (a, b);
the opposite is true if Q.a � P.a. However if P.a and Q.a are incomparable, then the two pairs
correspond to concurrent writes, and the result is merged as (P (a) t Q(a), P (b) t Q(b)). The
implementation of the merge function of PairLattice for achieving causal consistency in given in
Listing 2.
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1 template <typename T>
2 class CausalPairLattice {
3 protected:
4 VersionValuePair<T> element;
5 public:
6 void merge(const VersionValuePair<T> &p)
7 {
8 // store the previous vector clock
9 // before merging

10 MapLattice<int, MaxLattice<int>> prev
11 = this->element.vector_clock;
12 // merge the current and
13 // the input vector clocks
14 this->element.vector_clock
15 .merge(p.vector_clock);
16 if (this->element.vector_clock == prev)
17 {
18 // do nothing, as the new
19 // vector clock is dominated
20 }
21 else if (this->element.vector_clock
22 == p.vector_clock)
23 {
24 // overwrite the current value with
25 // the new one, as its vector clock
26 // is dominated
27 this->element.value.assign(p.value);
28 }
29 else
30 {
31 // merge the two values, as
32 // the vector clocks are not
33 // comparable
34 this->element.value.merge(p.value);
35 }
36 }
37 };

Listing 2: Implementation of the merge function of PairLattice for achieving causal consistency
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Figure 2.4: Lattice composition for achieving read committed

As a simple example, consider a scenario where we have two clients (x, y) performing read-
modify-write operations to Anna, whose ValueLattice has set as the element and set union as the
merge function. Initially, the value corresponding to key k is an empty set, with vector clock (x: 0,
y: 0). Consider the following two cases. In the first case, x reads key k, retrieves the vector clock
(x: 0, y: 0), and writes value {a} with updated vector clock (x: 1, y: 0). After receiving the update,
Anna determines that vector clock (x: 1, y: 0) dominates (x: 0, y: 0), and therefore overwrites the
empty set with {a}. Then, y reads k, retrieves the vector clock (x: 1, y: 0), and writes value {b}
with updated vector clock (x: 1, y: 1). Anna determines that vector clock (x: 1, y: 1) dominates
(x: 1, y: 0), and therefore overwrites {a} with {b}. In the second case, x and y simultaneously
read key k, retrieve the vector clock (x: 0, y: 0), and write back {a} and {b} with updated vector
clock (x: 1, y: 0) and (x: 0, y: 1). Suppose x’s update arrives first. As in the previous case, Anna
updates the value of k to {a} and sets its vector clock to (x: 1, y: 0). However, when y’s update
arrives, Anna determines that (x: 1, y: 0) and (x: 0, y: 1) are incomparable, and therefore invokes
the merge function (set union) to resolve conflicts. The resulting value is then set to {a, b}, with
vector clock (x: 1, y: 1).

Read Committed

Read committed is a widely used isolation level in transactional databases [18]. Anna employs the
coordination-free definition of read committed introduced in [19]. Here, consistency is discussed
at the granularity of transactions, consisting of a sequence of reads and writes to the KVS. Read
committed prevents both dirty writes and dirty reads, and ensures atomicity of writes. In order to
prevent dirty writes in a weakly consistent system, it is sufficient to ensure that writes to each key
exhibit a total ordering with respect to transactions. Although different replicas may receive writes
in different orders, the final state of the KVS should be equivalent to the result of a serial execution
of transaction writes. This can be achieved by appending a timestamp to each transaction (and to
each write within the transaction) and applying a “larger timestamp wins” conflict resolution policy
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at each replica. Note that this monotonically increasing timestamp can be easily implemented using
a MaxIntLattice.

To prevent dirty reads, we buffer all writes of a transaction at the client proxy until commit
time, ensuring that uncommitted writes never appear in the KVS. To guarantee atomicity of writes,
the client sends all writes in one batch to a single Anna actor, ensuring that either all writes reach
the Anna server or none. The actor then distributes writes to other actors following the consistent
hash ring. Figure 2.4 shows the lattice composition that supports read committed isolation level.
The difference between the lattice composition for causal consistency and read committed is that
we replace the MapLattice that represented growing vector clocks with a MaxIntLattice that repre-
sents transaction timestamps. The merge function of the new PairLattice compares the timestamp
(MaxIntLattice) and modifies the ValueLattice to be the ValueLattice corresponding to the larger
timestamp. If the timestamps are equal, then it implies that these writes are issued within the same
transaction, and in this case the ValueLattice’s merge logic is invoked3. The implementation of the
merge function of PairLattice for achieving read committed isolation level is given in Listing 3.

Consider an example where we have two transactions T1 and T2, with timestamp 1 and 2
respectively. T1 performs the following sequence of operations: {w1[k1], w1[k2], r1[k3]}, and T2

performs {w2[k1], w2[k2], r2[k4]}. Under read committed, T1 and T2 perform reads to Anna and
buffer all writes locally. Both transactions issue the buffered write requests only after receiving the
responses of the read requests and determining that the transactions are safe to commit.

Buffering writes on the client proxy prevents dirty reads. For example, if T1 failed after w1[k1],
this uncommitted write is not visible to other transactions since it is buffered at the proxy.

Anna avoids dirty writes by using transaction timestamps to consistently order writes. Consider
a case where one replica of k1 receives the writes in the order {w1[k1], w2[k1]} , and another replica
in the order {w2[k1], w1[k1]}. However, the value of both replica converge to w2[k1], as T2’s write
has a larger timestamp, and therefore dominates T1’s write, w1[k1]. Multi-key writes are also
eventually consistently ordered via the above timestamp precedence mechanism.

3To support SQL’s multiple sequential commands per transaction, we can replace these flat timestamps with a
nested PairLattice of (transaction timestamp, command number), both being MaxIntLattices.
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1 template <typename T>
2 class ReadCommittedPairLattice {
3 protected:
4 TimestampValuePair<T> element;
5 public:
6 void merge(const TimestampValuePair<T>& p)
7 {
8 if (p.timestamp >
9 this->element.timestamp)

10 {
11 this->element.timestamp
12 .merge(p.timestamp);
13 // overwrite the current value
14 // with the new one, as its
15 // timestamp is smaller
16 this->element.value = p.value;
17 }
18 else if (p.timestamp ==
19 this->element.timestamp)
20 {
21 // merge the two values, as
22 // their timestamps are equal
23 this->element.value
24 .merge(p.value);
25 }
26 }
27 };

Listing 3: Implementation of the merge function of PairLattice for achieving read committed

2.5.4 More Kinds of Consistency
Anna’s modular design allows us to easily identify which component needs to be changed as we
switch from simple eventual consistency to other consistency levels. This prevents the CACE
(Changing Anything Changes Everything) phenomenon commonly observed in systems with mono-
lithic design. To further demonstrate the flexibility of lattice composition, we modified Anna to
support several other consistency levels including read uncommitted, item-cut isolation, and read
your writes [19]. It turns out that the lattice composition for these consistency levels are the same
as that of read committed.
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Type of Consistency Lattice Server Client Proxy
Causal Consistency 20 12 22
Read Uncommitted 17 7 4
Read Committed 17 10 9
Item Cut Isolation 17 7 10
Monotonic Reads 17 7 4
Monotonic Writes 17 7 4

Writes Follow Reads 17 7 18
Read Your Writes 17 7 4

PRAM 17 7 4

Figure 2.5: Lines of code modified per component across consistency levels.

Since read uncommitted does not require preventing dirty reads, we can easily achieve this
level by disabling client-side buffering. Consider the same example in read committed, if T1
issues w1[k1] and then fails, it is possible for other transactions to observe the value v1 even if it is
an uncommitted result that need to be rolled back.

Item cut isolation requires that if a transaction reads the same record more than once, it has to
read the same value. To provide this guarantee, we buffer the record read at the client side, and
when the transaction attempts to read the same record, it invokes the client-side cache instead of
querying the server. Again, no modification to the lattice composition is required to achieve this
requirement.

Read your writes is a session-based isolation level. Within a session, if a client reads a key after
updating it, the read must either reflect the updated value or a value that overwrote the previously
written value. Anna achieves this guarantee by attaching a unique timestamp to each client session
and applying the same “larger timestamp wins” conflict resolution policy as before. The client
also caches all the writes performed within the session. After it retrieves the value of a previously
updated key, it merges the value with the cached value before returning the result. This way, Anna
ensures that the value being read is at least as recent as the client’s own update in terms of the
timestamp.

Figure 2.5 shows the additional number of lines of code (loc) in C++ required on top of sim-
ple eventual consistency for each coordination-free consistency level. It is easy to conclude that
extending Anna beyond simple eventual consistency incurs very little programming overhead.

2.6 Implementation
The Anna actor and client proxy are implemented entirely in C++. The codebase—including the
lattice library, all the consistency levels, the server code, and client proxy code—amounts to about
2000 lines of C++ on top of commonly-used libraries including ZeroMQ and Google Protocol
Buffers. In the ensuing discussion, we refer the reader back to Figure 2.1.
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2.6.1 Actor
To store the private KVS replica at each actor, we use the unordered map from the C++ standard
library. Inter-actor multicast is achieved via the pub-sub communication mechanism of ZeroMQ,
a high-performance asynchronous messaging library. To perform well across scales, we leverage
ZeroMQ in different ways depending on whether we are communicating within or across machines.
When two actors communicate within a single machine, the sender first moves the message into
a shared memory buffer, and then sends the address of the buffer to the receiver using ZeroMQ’s
inproc transport, which is optimized for intra-process communication. The receiver, after getting
the address, reads the shared buffer, updates its local KVS replica, and garbage collects the shared
buffer. When two actors communicate across different machines, the sender first serializes the
message into a byte-string using Google Protocol Buffers. It then sends the byte-string using
ZeroMQ’s tcp transport, which is designed for inter-node communication. After receiving the byte-
string, the receiver first de-serializes the message, and then updates its KVS replica accordingly.

Anna uses consistent hashing to partition and replicate key-value pairs across actors. Following
the design of Dynamo [33], each actor has a unique id, and Anna applies a CRC32 hash on the id
to assign the actor to a position on the hash ring. It applies the same hash function to a key in order
to determine the actors responsible for storing the key. Each key-value pair is replicated N-1 times
on the clockwise successor actors, where N is the user-provided replication factor.

Anna actors support three operations: GET, PUT, and DELETE. GET retrieves the value of a
key from a (single) replica. Coordination-free consistency, as discussed in Section 2.5, does not
require a quorum, so GET need not merge values from more than one replica. The GET response
may be stale; the staleness is bounded by the multicast period, which is an adjustable parameter to
balance performance and staleness. PUT persists the merge of a new value of a key with a (single)
replica using the lattice merge logic. DELETE is implemented as a special PUT request with an
empty value field. Actors free the heap memory of a key/value pair only when the DELETE’s
timestamp dominates the key’s current timestamp. To completely free the memory for a key, each
actor maintains a vector clock that keeps track of the latest-heard timestamps of all actors, which
is kept up-to-date during multicast. Actors free the memory for a key only when the minimum
timestamp within the vector-clock becomes greater than the DELETE’s timestamp. After that
time, because Anna uses ordered point-to-point network channels, we can be sure no old updates
to the key will arrive. This technique extends naturally to consistency levels that require per-key
vector-clocks (such as causal consistency) instead of timestamp. The difference is that before an
actor frees a key, it asynchronously queries other replicas for the key’s vector-clock to make sure
they are no less than the DELETE’s vector-clock.

2.6.2 Client Proxy
Client proxies interact with actors to serve user requests. In addition to GET, PUT, and DELETE,
proxies expose two special operations to the users for consistency levels that involve transactions:
BEGIN TRANSACTION and END TRANSACTION. All operations that fall in between a pair
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of special operations belong to a single transaction. Transaction ID is uniquely generated by con-
catenating a unique actor sequence number with a local timestamp.

Specific data structures are required at the proxy to support certain advanced consistency levels;
these data structures are only accessible in a single client-proxy thread. For read committed, we
need to create a message buffer that stores all PUT requests from a single transaction. For item-
cut isolation, we need to cache key-value pairs that have already been queried within the same
transaction. Currently, both the message buffer and the cache are implemented with the unordered
map from the C++ standard library.

Client-actor communication is implemented with Linux sockets and Protocol Buffers. The
client proxy uses the same consistent hashing function to determine the set of actors that maintain
replicas of a given key. For load balancing, requests are routed to a randomly chosen replica. In
case of failure and network delay, the client proxy times out and retries the request on other actors.

2.6.3 Actor Joining and Departure
In order to achieve steady performance under load burst, actors can be dynamically added or re-
moved from the Anna cluster without stalling the system. Anna handles actor joining and departure
in a similar fashion as Dynamo [33] and the work in [65]. Note that a new actor can be spawned
from within an existing node, or from a new node. When a new actor joins the cluster, it first
broadcasts its id to all existing actors. Each existing actor, after receiving the id, updates its local
copy of the consistent hash ring and determines the set of key-value pairs that should be managed
by the new actor. It then sends these key-value pairs to the new actor and deletes them from its
local KVS replica. If the pre-existing actor receives queries involving keys that it is no longer
responsible for, it redirects these requests to the new actor. After the new actor receives key-value
pairs from all existing actors, it multicasts its id to all client proxies. Upon receiving the id, client
proxies update the consistent hash ring so that relevant requests can be routed to the new actor.

When an actor is chosen to leave the cluster, it first determines the set of key-value pairs every
other actor should be responsible for due to its departure. It then sends them to other actors along
with its intention to leave the cluster. Other actors ingest the key-value pairs and remove the leaving
actor from the consistent hash ring. The leaving actor then broadcasts to all client proxies to let
them update the consistent hash ring and retry relevant requests to proper actors.

2.7 Evaluation
In this section, we experimentally justify Anna’s design decisions on a wide variety of deploy-
ments. First we evaluate Anna’s ability to exploit parallelism on a multi-core server and quantify
the merit of our Coordination-free actor model. Second, we demonstrate Anna’s ability to scale
incrementally under load burst. We then compare Anna against state-of-the-art KVS systems on
both a single multi-core machine and a large distributed deployment. Finally, we show that the
consistency levels from Section 2.5 all provide high performance.
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2.7.1 Coordination-free Actor Model
Exploiting Multicore Parallelism

Recall that under the Coordination-free actor model, each actor thread maintains a private copy of
any shared state, and asynchronously multicasts the state to other replicas. This section demon-
strates that the Coordination-free actor model can achieve orders of magnitude better performance
than a conventional shared-memory architecture on a multi-core server.

To establish comparison against the shared-memory implementation, we built a minimalist
multi-threaded key-value store using the concurrent hash map from the Intel Thread Building
Blocks (TBB) library [48]. TBB is an open source library consisting of latch-free, concurrent
data structures, and is among the most efficient libraries for writing scalable shared-memory soft-
ware. We also benchmark Anna against Masstree, another shared-memory key-value store that
exploits multi-core parallelism [73]. Finally, we implemented a multi-threaded key-value store
using the C++ unordered map without any thread synchronization such as latching or atomic in-
structions. Note that this key-value store is not even thread-safe: torn writes could occur when
multiple threads concurrently update the same key. It reflects the ideal performance one can get
for any shared-memory KVS implementation like Masstree, TBB, etc.

Our experiments run on Amazon m4.16xlarge instances. Each instance is equipped with 32
CPU cores. Our experiments utilize a single table with 1M key-value pairs. Keys and values are 8
bytes and 1KB in length, respectively. Each request operates on a single key-value pair. Requests
are update-only to focus on potential slowdowns from conflicts, and we use zipfian distributions
with varying coefficients to generate workloads with different levels of conflict.

In our first experiment, we compare the throughput of Anna against the TBB hash map, Masstree,
and the unsynchronized KVS (labeled as “Ideal”) on a single multi-core machine. We measure the
throughput of each system while varying the number of threads available. We pin each thread to a
unique CPU core, and increase thread count up to the hardware limit of 32 CPU cores. In addition
to measuring throughput, we use Linux’s perf profiler to obtain a component-wise breakdown of
CPU time. To measure the server’s full capacity, requests are pre-generated based on the workload
distribution at each thread. Since Anna is flexible about data placement policy, we experiment with
different replication factors, from pure partitioning (like Redis Cluster or MICA) to full replication
(a la Bayou) to partial replication (like ScyllaDB). As a baseline, Anna employs simple eventual
consistency, and threads are set to multicast every 100 milliseconds. We use the same consistency
level and multicast rate in all subsequent experiments unless otherwise stated. For each thread
count, we repeat the experiment 10× and plot the average throughput.

Figure 2.6a and 2.7a show the result of the high-contention experiment, with zipf coefficient
set to 4. We observe that both the TBB hashmap and Masstree fail to exploit parallelism on this
workload because most requests perform an update against the same key, and concurrent updates
to this key have to be serialized. Furthermore, both the TBB hashmap and Masstree must em-
ploy synchronization to prevent a single key-value pair from concurrent modification by multiple
threads. Synchronization overhead is proportional to the number of contending threads, which
causes those systems’ performance to plateau as we increase the number of threads in the system.
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Figure 2.6: Anna’s single-node throughput across thread counts.

Synchronization cost manifests as cache coherence overhead on multi-core hardware [87]. Fig-
ure 2.7a shows that TBB and Masstree spend 92% - 95% of the CPU time on atomic instructions
under high contention, and only 4% - 7% of the CPU time is devoted to request handling. As a
result, the TBB hash map and Masstree perform 50× slower than Anna (rep = 1) and 700× slower
than Anna (full replication).

The unsynchronized store performs 6× faster than the TBB hashmap and Masstree but still
much slower than Anna. Although it does not use any synchronization to prevent threads from
concurrently modifying the same key-value pairs, it suffers from cache coherence overhead result-
ing from threads modifying the same memory addresses (the contended key-value pairs). This is
corroborated in Figure 2.7a, which shows that although both Anna and the unsynchronized store
spend the majority of the CPU time processing requests, the unsynchronized store incurs 17×more
cache misses than Anna.

In contrast, threads in Anna perform updates against their local state in parallel without syn-
chronizing, and periodically exchange state via multicast. Although the performance is roughly
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KVS RH AI LM M O CM
Anna (full) 90% 0% 4% 4% 2% 1.1

Anna (rep=3) 91% 0% 5% 2% 2% 1
Anna (rep=1) 94% 0% 5% 0% 1% 1

Ideal 97% 0% 0% 0% 3% 17
TBB 4% 95% 0% 0% 1% 19

Masstree 7% 92% 0% 0% 1% 16

(a) High Contention

KVS RH AI LM M O MF
Anna (full) 3% 0% 3% 92% 2% 32

Anna (rep=3) 25% 0% 4% 69% 2% 3
Anna (rep=1) 93% 0% 5% 0% 2% 1

Ideal 97% 0% 0% 0% 3% 32
TBB 70% 26% 0% 0% 4% 32

Masstree 20% 78% 0% 0% 2% 32

(b) Low Contention

Figure 2.7: Performance breakdown for different KVSes under both contention levels when using
32 threads. CPU time is split into 5 categories: Request handling (RH), Atomic instruction (AI),
Lattice merge (LM), Multicast (M), and others (O). The number of L1 cache misses (CM) for the
high-contention workload and the memory footprint (MF) for the low-contention workload relative
to Anna (rep=1) are shown on the right-most column.

bounded by the replication factor under high contention, it is already far better than the shared-
memory implementation across the majority of replication factors. Figure 2.7a indicates that Anna
indeed achieves wait-free execution: the vast majority of CPU time (90%) is spent processing re-
quests without many cache misses, while overheads of lattice merge and multicast are small. In
short, Anna’s Coordination-free actor model addresses the heart of the scalability limitations of
multi-core KVS systems.

Figure 2.6b and 2.7b show the result of the low-contention experiment, with zipf coefficient
0.5. Unlike the high contention workload, all data are likely to be accessed with this contention
level. Anna (rep=1) achieves excellent scalability due to its small memory footprint (data is parti-
tioned across threads). However, despite the linear-scaling of Anna (rep=3), its absolute throughput
is 4× slower than Anna (rep=1). There are two reasons that have led to this performance degrada-
tion. First, increasing the replication factor increases the thread’s memory footprint. Furthermore,
under low contention, the number of distinct keys being updated within the gossip period increases
significantly. Therefore, we can no longer exploit merge-at-sender to reduce the gossip overhead.
Figure 2.7b shows that 69% of the CPU time is devoted to processing gossip for Anna (rep=3).
Following this analysis, Anna (full replication) does not scale because any update performed at
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Figure 2.8: Anna’s throughput while incrementally adding threads to multiple servers.

one thread will eventually be gossiped to every other thread, and therefore the performance is
equivalent to serially executing requests with one thread. Although TBB and Masstree do not
incur gossip overhead, they suffer from larger memory footprint and high cost of (conservative)
synchronization operations as shown by our profiler measurements in Figure 2.7b. The lesson
learned from this experiment is that for systems that support multi-master replication, having a
high replication factor under low contention workloads can hurt performance. Instead, we want to
dynamically monitor the data’s contention level and selectively replicate the highly contented keys
across threads. We come back to this subject in Section 2.8.

Scaling Across Scales

This section demonstrates Anna’s ability to scale smoothly from a single-node deployment to a
multi-node deployment. Anna’s replication factor is set to 3, and we use the low contention work-
load from the multi-core scalability evaluation in Section 2.7.1. We measure throughput while
varying the number of available threads. The first 32 threads reside on a single node. The next
32 threads reside on a second node, while any remaining threads (at thread count greater than 64)
reside on a third node.

Figure 2.8 shows that Anna exhibits smooth linear scaling with increasing thread count, on
both a single node (32 or fewer threads) and multiple nodes (33 or more threads). We observe
a small drop in performance as we add a 33rd thread because this is the first thread that resides
on the second node, and therefore triggers distributed multicast across the network. We do not
observe a similar drop in performance as we add threads on the third node (at 65 threads) because
the overhead of distributed multicast already affects configurations with thread counts between 33
and 64. Figure 2.8 illustrates that Anna is able to achieve near-linear scalability across different
scales with the Coordination-free actor model.
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Figure 2.9: Anna’s ability to elastically scale under load burst while maintaining performance.

2.7.2 Elastic Scalability
This section explores how well Anna’s architecture achieves elastic scaling under load bursts.
Our goal in this study is not to compare thread allocation policies per se, but rather to evaluate
whether the Coordination-free actor model enables fine-grained elasticity. Hence we focus on
Anna’s reaction time, assuming an omniscient policy.

The experiment runs a read-modify-write, low contention YCSB workload [28], and uses 25
byte key, 1KB value records in a single table of 1M records. We perform our experiment on
Amazon EC2 m4.x16 large instances. Anna is configured with replication factor 3. Note that the
performance characteristics of experiments performed in this subsection and the next (2.7.3) differ
from previous experiments. In earlier experiments, the goal was to evaluate Anna’s maximum
processing capacity when handling concurrent update requests; as a result, requests were update-
only and pre-generated on actor threads to avoid request overhead due to network. Here, the goal
is to evaluate how Anna performs in a more real-world setting, so requests are chosen to have a
mix of reads and writes, and are being sent from client proxies on other nodes. Therefore in this
section we expect to observe network overhead; the effects are further discussed in Section 2.7.3.

At the beginning of our experiment, we use one EC2 instance with 32 threads as the server
and a sufficient number of client proxy instances to saturate the server. At the 10-second mark, we
triple the load from the client proxies to create a burst. At the same time, 64 more threads from two
server nodes are added to the Anna cluster. At the 20-second mark, we reduce the load back to the
original and remove 64 threads from the cluster. Throughout the YCSB benchmark, we monitor
Anna’s throughput and the request latency.

As shown in Figure 2.9, Anna’s throughput increases by 2× at the 10-second mark when we
add in 64 additional threads, and drops to the original throughput at the 20-second mark when we
remove the same number of threads. Throughout the experiment, the request latency stays roughly
the same. The brief latency spikes at the 10-second mark and the 20-second mark are due to adding
and removing nodes to the cluster.
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Figure 2.10: Throughput comparison between Anna and Redis on a single node.

2.7.3 Comparison with Popular Systems
This section compares Anna against widely-deployed, state-of-the-art key value stores. We per-
form two experiments; the first compares Anna against Redis [86] on a single node, and the second
compares Anna against Cassandra [12] on a large distributed deployment. Both experiments run
YCSB, and use the same configuration as in Section 2.7.2 with different contention levels.

Single node multi-core experiment

This section compares Anna with Redis on a single multi-core server. While Anna can exploit
multi-core parallelism, Redis is a single-threaded KVS system, and cannot exploit any parallelism
whatsoever. We therefore additionally compare Anna against Redis Cluster, which knits together
multiple independent Redis instances, each of which contain a shard of the KVS.

In this experiment, we use a single EC2 instance as a server and enough client proxy instances
to saturate the server. The Redis Cluster baseline runs an independent Redis instance on each
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available server thread.
Figure 2.10a compares each system under high contention while varying thread count. As in

our earlier high contention experiments, clients pick keys with a zipfian coefficient of 4. Under high
contention, each Redis Cluster’s instances are subject to skewed utilization, which limits overall
throughput. In contrast, Anna can spread load for hot keys across replicas. When the replication
factor is greater than 1, Anna’s throughput increases until the number of threads is slightly larger
than the replication factor and then plateaus. If the hot keys are fully replicated, we observe that
the throughput continues to grow as we increase the number of threads.

Figure 2.10b shows the result of the low contention experiment. As expected, Redis’ through-
put remains constant with increasing thread count. In contrast, both Anna and Redis Cluster can
exploit multi-core parallelism, and their throughputs scale with increasing thread count. Interest-
ingly, Anna (rep=3) and Anna (full replication) scale quite nicely, and the performance penalty due
to gossip is far less significant compared to the result in Section 2.7.1. The reason is that when the
network is involved, the majority of overhead goes to network packet handling and message seri-
alization and deserialization. Within a single node, gossip is performed using the shared memory
buffer, and does not incur network overhead. Therefore, the overhead becomes far less significant.
Experiments in this section show that Anna can significantly outperform Redis Cluster by repli-
cating hot keys under high contention, and can match the performance of Redis Cluster under low
contention.

Note that unlike the experiments in Section 2.7.1, we do not observe linear scalability for Anna
and the y axis has reduced by orders of magnitude. This is in keeping with earlier studies [54, 1],
which demonstrate that this is due to message overheads: at a request length of 1KB we cannot
expect to generate much more than 10Gbps of bandwidth due to message overheads. We attempted
to improve the performance by varying the request size and batching the requests. Although these
techniques did improve the absolute throughput, the scalability trend remained the same, and we
continued to be bottlenecked by the network.

Distributed experiment

In a distributed setting, we compare Anna against Cassandra, one of the most popular distributed
KVS systems [12]. To ensure that Cassandra achieves the best possible performance, we configure
it to use its weakest consistency level (ONE), which only requires that an update is reflected on a
single node before returning success. Updates are asynchronously propagated in the background.

We deployed Cassandra and Anna across four EC2 geographical regions (Oregon, North Vir-
ginia, Ireland, and Tokyo) and measured their scalability by adjusting the number of nodes per
region. The replication factor of both Cassandra and Anna are set to 3. As in the multi-core exper-
iment, each server node is a m4.x16large instance and we use multiple client instances to saturate
the server. Clients pick keys to update from a uniform distribution.

Figure 2.11 shows that both Anna and Cassandra scale near-linearly as we increase the number
of nodes. However, Anna has better absolute performance due to its low-overhead single-threaded
execution. Indeed, when we varied the number of threads available to Anna, we found that Anna
could significantly outperform Cassandra with just four threads per node (even though Cassandra
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Figure 2.11: Anna vs Cassandra, distributed throughput.
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Figure 2.12: Performance Across Consistency Levels

used multi-threading). When permitted to use all 32 available cores, Anna outperformed Cassandra
by ∼10×. This experiment demonstrates the importance of Anna’s fast single-node mechanisms;
even when a system can scale to large clusters, fast single-node mechanisms can make significantly
more efficient use of available resources.

2.7.4 Performance Across Consistency Levels
Having implemented various consistency levels, we study the performance implications of the ad-
ditional codepath for more advanced consistency levels. Anna is configured to use all 32 available
cores, and the replication factor is set to 3. We use the low contention requests from Section 2.7.3.
For transaction-based consistency levels, we group every six operations into one transaction at the
YCSB client side. Figure 2.12 shows the throughput evaluation across different consistency levels.
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In general, we observe that the overhead incurred by these advanced consistency levels is not sig-
nificant. As explained in Section 2.5.3, client-side buffering and caching requirement sometimes
lead to higher throughput for Anna, which we show using green bars in Figure 2.12.

For causal consistency, we observe a slight degradation in throughput as Anna has to maintain
the vector clock associated with each key-value pair, requiring more sophisticated lattice merge
logic. In addition, the size of the vector clock for a given key is proportional to the number of
client proxies that access the key. Therefore, periodic garbage collection is required to reduce the
size of the vector clock. Similar throughput degradation is observed for read uncommitted due
to the management of timestamps. For read committed, throughput increases because the client
is required to buffer all write requests and send them as a single batch at the end of a transaction,
which amortizes the number of round-trips between the server and the client. For item cut isolation,
we also observe an increase in throughput because repeated reads to the same record are handled
by a client-side cache (which again saves a round-trip between the server and the client). The
throughput improvement gained from client-side buffering and caching is highlighted in green.
Note that although other consistency levels does not require client-side buffering or caching, it is
possible to use these techniques to improve throughput.

2.8 Conclusion and Takeaways
Conventional wisdom says that software designed for one scale point needs to be rewritten when
scaling up by 10− 100× [32]. In this work, we took a different approach, exploring how a system
could be architected to scale across many orders of magnitude by design. That goal led us to some
challenging design constraints. Interestingly, those constraints led us in the direction of simplicity
rather than complexity: they caused us to choose general mechanisms (background key exchange,
lattice compositions) that work well across scale points. Perhaps the primary lesson of this work
is that our scalability goals led us by necessity to good software engineering discipline.

The lattice composition model at the heart of Anna was critical to both performance and expres-
sivity. The asynchronous merging afforded by lattices enabled wait-free performance; the lattice
properties provided a conceptual framework for ensuring consistency; the composition of simple
lattices enabled a breadth of consistency levels. Scale-independence might seem to be in conflict
with richly expressive consistency. The lattice composition model resolved that design conflict.

As discussed in Chapter 1, serverless systems need to not only deliver excellent performance at
any scale but also react promptly to changing workload distributions for cost-efficiency. The ini-
tial architecture of Anna lacked the mechanisms to monitor and respond to usage and workloads.
Another notable weakness was its need to aggressively replicate the entire database across the
main memory of many machines to achieve high performance. This gave the system an unattrac-
tive cost-performance tradeoff and made its resource allocation very rigid. As a result, although a
benchmark-beater, the initial design suffered from the problems highlighted above: it was expen-
sive and inflexible for large datasets with non-uniform access distributions. We describe how we
extended Anna to become an autoscaling, tiered serverless KVS in the next chapter.
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Chapter 3

Autoscaling Tiered Cloud Storage in Anna

As public infrastructure cloud providers have matured in the last decade, the number of storage
services they offer has soared. Popular cloud providers like AWS [13], Microsoft Azure [15],
and Google Cloud Platform (GCP) [41] each have at least seven storage options. These services
span the spectrum of cost-performance tradeoffs: AWS ElastiCache, for example, is an expensive,
memory-speed service, while AWS Glacier is extremely high-latency and low-cost. In between,
there are a variety of services such as the Elastic Block Store (EBS), the Elastic File System
(EFS), and the Simple Storage Service (S3). Azure and GCP both offer a similar range of storage
solutions.

Each one of these services is tuned to a unique point in that design space, making it well-suited
to certain performance goals. Application developers, however, typically deal with a non-uniform
distribution of performance requirements. For example, many applications generate a skewed
access distribution, in which some data is “hot” while other data is “cold”. This is why traditional
storage is assembled hierarchically: hot data is kept in fast, expensive cache while cold data is
kept in slow, cheap storage. These access distributions have become more complex in modern
settings, because they can change dramatically over time. Realistic workloads spike by orders
of magnitude, and hot sets shift and resize. These large-scale variations in workload motivate an
autoscaling service design, but most cloud storage services today are unable to respond to these
dynamics.

The narrow performance goals of cloud storage services result in poor cost-performance trade-
offs for applications. To improve performance, developers often take matters into their own hands
by addressing storage limitations in custom application logic. This introduces significant complex-
ity and increases the likelihood of application-level errors. Developers are inhibited by two key
types of barriers when building applications with non-uniform workload distributions:

Cost-Performance Barriers
Each of the systems discussed above—ElastiCache, EBS, S3, etc.—offers a different, fixed trade-
off of cost, capacity, latency, and bandwidth. These tradeoffs echo traditional memory hierarchies
built from RAM, flash, and magnetic disk arrays. To balance performance and cost, data should



CHAPTER 3. AUTOSCALING TIERED CLOUD STORAGE IN ANNA 36

ideally move adaptively across storage tiers, matching workload skew and shifting hotspots. How-
ever, current cloud services are largely unaware of each other, so software developers and DevOps
engineers must cobble together ad hoc memory hierarchies. Applications must explicitly move
and track data and requests across storage systems in their business logic. This task is further com-
plicated by the heterogeneity of storage services in terms of deployment, APIs, and consistency
guarantees. For example, single-replica systems like ElastiCache are linearizable, while replicated
systems like DynamoDB are eventually consistent.

Static Deployment Barriers
Cloud providers offer very few truly autoscaling storage services; most such systems have hard
constraints on the number and type of nodes deployed. In AWS for example, high-performance
tiers like ElastiCache are surprisingly inelastic, requiring system administrators to allocate and
deallocate instances manually. Two of the lower storage tiers—S3 and DynamoDB—are autoscal-
ing, but are insufficient for many needs. S3 autoscales to match data volume but ignores workload;
it is designed for “cold” storage, offering good bandwidth but high latency. DynamoDB offers
workload-based autoscaling but is prohibitively expensive to scale to a memory-speed service.
This motivates the use of ElastiCache over DynamoDB, which again requires an administrator to
monitor load and usage statistics, and manually adjust resource allocation.

In Chapter 2, we presented the initial architecture of the Anna KVS and described a design
with excellent performance across orders of magnitude in scale. Here, we extend the initial ver-
sion of Anna to perform serverless autoscaling, allowing the system to span the cost-performance
design space more flexibly and adapt dynamically to workload variation in a cloud-native setting.
The architecture presented here removes the cost-performance and static deployment barriers by
adding three key mechanisms: (1) horizontal elasticity to adaptively scale deployments; (2) verti-
cal data movement in a storage hierarchy to reduce cost by demoting cold data to cheap storage;
and (3) multi-master selective replication of hot keys across nodes and cores to efficiently scale
request handling for non-uniform access patterns. The architecture we present here is simplified
by deploying the same storage kernel across many tiers, by entirely avoiding coordination, and by
keeping most components stateless through reuse of the storage engine. The additions to Anna
described in this chapter enable system operators to specify high-level goals such as fault tolerance
and cost-performance objectives, without needing to manually configure the number of nodes and
the replication factors of keys. A new policy engine automatically responds to workload shifts us-
ing the mechanisms mentioned above to meet these SLOs. While Chapter 2’s evaluation focused
on raw performance, here we also emphasize efficiency: the ratio of performance to cost. For var-
ious cost points, Anna beats in-memory systems (e.g., AWS ElastiCache, Masstree [73]) by up to
an order of magnitude in performance. Anna also outperforms DynamoDB, an elastic database, by
more than two orders of magnitude in efficiency.

The rest of this chapter proceeds as follows. In Section 3.1, we describe the mechanisms that
Anna uses to respond to mixed and changing workloads. Section 3.2 introduces the architecture of
Anna including the implementation of these mechanisms, and Section 3.3 describes Anna’s policy
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engine. Section 3.4 introduces Anna’s API. In Section 3.5, we present an evaluation of Anna’s
mechanisms and policies, and we describe how they fare in comparison to the state of the art.
Section 3.6 discusses related work, and we conclude with future work in Section 3.7.

We use AWS as the public cloud provider underlying Anna. The design principles and lessons
learned here are naturally transferable to other cloud providers with similar offerings.

3.1 Distributions and Mechanisms
In this section, we first classify and describe common workload distributions across data and time.
We then discuss the mechanisms that Anna uses to respond to the workload properties and changes.
We believe that an ideal cloud storage service should gracefully adapt to three aspects of workload
distributions and their dynamics in time:

A. Volume. As overall workload grows, the aggregate throughput of the system must grow. During
growth periods, the system should automatically increase resource allocation and thereby cost.
When workload decreases, resource usage and cost should decrease correspondingly as well.

B. Skewness. Even at a fixed volume, skewness of access distributions can affect performance
dramatically. A highly skewed workload will make many requests to a small subset of keys. A
uniform workload of similar volume will make a few requests to each key. Different skews warrant
different responses, to ensure that the resources devoted to serving each key are proportional to its
popularity.

C. Shifting Hotspots. Workloads that are static in both skew and volume can still exhibit changes
in distribution over time: hot data may become cold and vice versa. The system must be able to
not only handle skew, but also changes in the specific keys associated with the skew (hotspots) and
respond accordingly by prioritizing data in the new hot set and demoting data in the old one.

We address these three workload variations with three mechanisms in Anna, which we describe
next.

Horizontal Elasticity. In order to adapt to variation in workload volume, each storage tier in Anna
must scale elastically and independently, both in terms of storage and request handling. Anna needs
the storage capacity of many nodes to store large amounts of data, and it needs the compute and
networking capacity of many nodes to serve large numbers of requests. This is accomplished by
partitioning (sharding) data across all the nodes in a given tier. When workload volume increases,
Anna can respond by automatically adding nodes and repartitioning a subset of data. When the
volume decreases, Anna can remove nodes and repartition data among the remainders.

Multi-Master Selective Replication. When workloads are highly skewed, simply adding shards
to the system will not alleviate pressure. The small hot set will be concentrated on a few nodes
that will be receiving a large majority of the requests, while the remaining nodes lie idle. The only
solution is to replicate the hot set onto many machines. However, we do not want to repeat the
mistakes of our first iteration of Anna’s design, replicating cold keys as well—this simply wastes
space and increases overhead. Instead, replication must be selective, with hot keys replicated more
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Table 3.1: The mechanisms used by Anna to deal with various aspects of workload distributions.

Workload Dynamics Relevant Mechanisms
Volume Elasticity
Skew Replication, Tiering

Hotspot Replication, Tiering

than cold keys. Thus, Anna must accurately track which data is hot and which is cold, and the
replication factors and current replica locations for each key. Note that this aids both in handling
skew in general and also changes in hotspots with fixed skew.

Vertical Tiering. As in a traditional memory hierarchy, hot data should reside in a fast, memory-
speed tier for efficient access; significant cost savings are available by demoting data that is not
frequently accessed to cold storage. Again, Anna must correctly classify hot and cold data in
order to promote or demote appropriately to handle skew and hotspots. While the previous two
mechanisms are aimed at improving performance, this one primarily attempts to minimize cost
without compromising performance.

3.1.1 Summary
Table 3.1 shows which mechanisms respond to which properties of workload distributions. There is
a direct mapping between an increase (or decrease) in volume—with other factors held constant—
and a requirement to automatically add (or remove) nodes. Changes in workload skew require
a response to the new hot set size via promotion or demotion, as well as appropriate selective
replication. Similarly, a change in hotspot location requires correct promotion and demotion across
tiers, in addition to shifts in per-key replication factors. We describe how Anna implements each
one of these mechanisms in Sections 3.2 and 3.3. In Section 3.5, we evaluate how well Anna
responds to these dynamics.

3.2 Systems Architecture
In this section, we introduce Anna’s (extended) architecture and illustrate how the mechanisms
discussed in Section 3.1 are implemented. We present an overview of the core subsystems and
then discuss each component in turn. As mentioned at the beginning of this chapter, Anna is built
on AWS components. In our initial implementation and evaluation, we validate this architecture
over two storage tiers: one providing RAM cost-performance and another providing flash disk
cost-performance. Anna’s memory tier stores data in RAM attached to AWS EC2 nodes. The flash
tier leverages the Elastic Block Store (EBS), a fault-tolerant block storage service that masquerades
as a mounted disk volume on an EC2 node. There is nothing intrinsic in our choice of layers. We
could easily add a third layer (e.g., S3) and a fourth (e.g., Glacier), but demoting data to cold
storage in these tiers operates on much longer timescales that are beyond the scope of this work.
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Figure 3.1: The Anna architecture.

3.2.1 Overview
Figure 3.1 presents an overview of Anna, with each rectangle representing a node. In Chapter
2, we described an extremely performant, coordination-free key-value store with a rich variety of
consistency levels. We demonstrated how a KVS could scale from multicore to distributed set-
tings while gracefully tolerating the natural messaging delays that arise in distributed systems. To
enable the mechanisms described in Section 3.1, we first extended the storage kernel (labeled as
Anna v0 in Figure 3.1) to support multiple storage media and then designed three new subsystems:
a monitoring system/policy engine, a routing service, and a cluster management system. Each sub-
system is bootstrapped on top of the key-value storage component in Anna, storing and modifying
its metadata in the system.

The monitoring system and policy engine are the internal services responsible for responding
to workload dynamics and meeting SLOs. Importantly, these services are stateless and thus are not
concerned with fault tolerance and scaling; they rely on the storage service for these features.

The routing service is a stateless client-facing API that provides a stable abstraction above the
internal dynamics of the system. The resource allocation of each tier may be in flux—and whole
tiers may be added or removed at workload extremes—but clients are isolated from these changes.
The routing service consistently returns a correct endpoint that will answer client requests. Finally,
the cluster management system is another stateless service that modifies resource allocation based
on decisions reached by the policy engine.

3.2.2 Storage System
Figure 3.2 shows the architecture of Anna’s storage kernel. As discussed in Chapter 2, the kernel
contains many worker threads, and each thread interacts with a thread-local storage medium (a
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Figure 3.2: The architecture of storage kernel.

memory buffer or disk volume), processes client requests, and sends & receives multicasts to &
from other Anna workers.

The Anna storage kernel is deployed across many storage tiers. The only difference be-
tween tiers is the procedure for translating data for persistence (serialization/deserialization, a.k.a.
“serde”). Memory-tier nodes read from and write to local memory buffers, while disk-tier nodes
serialize data into files that are stored on EBS volumes. Anna’s uniformity across storage tiers
makes adding additional tiers very simple: we set the serde mode and adjust the number of worker
threads based on the underlying hardware. For instance, the total number of threads for memory
nodes matches the number of CPU cores to fully utilize computing resources and to avoid costly
preemption of threads. However, in other storage tiers where the performance bottleneck lies in
serializing the key-value pairs to and from persistent storage, the optimal strategy for resource al-
location is different. Our EBS tier allocates 4× as many threads per node (4) as we have physical
CPU core (1).

Anna uses consistent hashing [52] to partition and replicate keys. For performance and fault
tolerance (discussed further in Sections 3.3 and 3.5), each key may be replicated onto many nodes
in each tier and multiple threads in each node. Following the model of early distributed hash tables,
we use virtual nodes [83] in our consistent hashing algorithm. Each physical node (or thread)
handles traffic for many virtual nodes (or threads) on the hash ring to ensure an even distribution.
Virtual nodes also enable us to add heterogeneous nodes in the future by allocating more virtual
nodes to more powerful physical machines.
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3.2.3 Metadata Management
Anna requires maintaining certain metadata to efficiently support mechanisms discussed in Sec-
tion 3.1 and help the policy engine adapt to changing workloads. In this section, we introduce
the types of metadata managed by Anna and how they are stored and used by various system
components.

Types of Metadata

Anna manages three distinct kinds of metadata. First, every storage tier has two hash rings. A
global hash ring, G, determines which nodes in a tier are responsible for storing each key. A local
hash ring, L, determines the set of worker threads within a single node that are responsible for a
key.

Second, each individual key K has a replication vector of the form [< R1, ...Rn >,<
T1, ...Tn >]. Ri represents the number of nodes in tier i storing key K, and Ti represents the
number of threads per node in tier i storing key K. In our current implementation, i is either M
(memory tier) or E (EBS tier). During request handling and multicast, both hash rings and key
K’s replication vector are used to determine the threads responsible for the key. For every tier, i,
that maintains a replica of K, we first hash K against Gi, tier i’s global hash ring to determine
which nodes are responsible for K. We then look at Li, tier i’s local hash ring to determine which
threads are responsible for the key.

Lastly, Anna tracks monitoring statistics, such as the access frequency of each key and the
storage consumption of each node. This information is analyzed by the policy engine to trigger
actions in response to variations in workload. Currently, we store 16 bytes of metadata per key and
about 10 KB of metadata per worker thread.

Metadata Storage

Clearly, the availability and consistency of metadata is as important as that of regular data—
otherwise, Anna would be unable to determine a key’s location (under changing node membership
and keys’ replication vectors) or get an accurate estimate of workload characteristics and resource
usage. In many systems [97, 103, 57, 109], metadata is enmeshed in the implementation of “mas-
ter nodes” or stateful services like ZooKeeper [47]. Anna simply stores metadata in the storage
system. Our metadata automatically derives all the benefits of our storage system, including perfor-
mance guarantees, fault tolerance, and consistency. Anna employs last-writer-wins consistency to
resolve conflicts among metadata replicas. Due to the eventual consistency model, worker threads
may have stale views of hash rings and replication vectors. This can cause threads to disagree on
the location of a key and can potentially cause multiple rounds of request redirection. However,
since the metadata will eventually converge, threads will agree on the key’s location, and requests
will reach the correct destination. Note that multicast is performed every few seconds, while clus-
ter state changes on the order of minutes, so cluster state metadata is guaranteed to converge before
it undergoes further changes.
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Enabling Mechanisms

Interestingly, manipulating two of these types of metadata (hash rings and replication vectors) is
the key to enabling the mechanisms described earlier in Section 3.1. In this section, we discuss
only the implementation of each mechanism. When and why each action is executed is a matter of
policy and will differ based on system configuration and workload characteristics—we save this
discussion for Section 3.3.

Elasticity. Anna manages cluster churn similarly to previous storage systems [33, 12] that use
consistent hashing and distributed hash tables. When a new node joins a storage tier, it queries
the storage system to retrieve the hash ring, updates the ring to include itself, and broadcasts its
presence to all nodes in the system—storage, monitoring, and routing. Each existing node updates
its copy of the hash ring, determines if it stores any keys that the new node is now responsible for,
and gossips those keys to the new node. Similarly, when a node departs, it removes itself from the
hash ring and broadcasts its departure to all nodes. It determines which nodes are now responsible
for its data and gossips its keys to those nodes. Once all data has been broadcast, the node goes
offline and its resources are deallocated.

Key migration overheads can be significant (see Section 3.5.4). To address this challenge,
Anna interleaves key migration with client request handling to prevent system downtime. This is
possible due to Anna’s support for coordination-free consistency: The client may retrieve stale data
during the key migration phase, but it can maintain a client-side cache and merge future retrieved
results with the cached value. Anna’s lattice-based conflict resolution guarantees that the state of
the cached data is monotonically growing.

Selective Replication & Cross-Tier Data Movement. Both these mechanisms are implemented
via updates to replication vectors. Each key in our two-tier implementation has a default replication
vector of the form [< 1, k >,< 1, 1 >], meaning that it has one memory tier replica and k EBS-
tier replicas. Here, k is the number of replica faults per key the administrator is willing to tolerate
(discussed further in Section 3.2.7 and 3.3). By default, keys are not replicated across threads
within a single node. Anna induces cross-tier data movement by simply manipulating metadata. It
increments the replication factor of one tier and decrements that of the other tier; as a result, gossip
migrates data across tiers. Similarly, selective replication is achieved by adjusting the replication
factor in each tier, under the fault tolerance constraint. After updating the replication vector, Anna
updates metadata across replicas via asynchronous multicast.

3.2.4 Monitoring System & Policy Engine
In this section, we discuss the design of the monitoring system and the policy engine. As shown in
Figure 3.3, each monitoring node has a monitoring thread, a statistics buffer, and a policy engine.
The monitoring thread is stateless and periodically retrieves the stored statistics from the storage
engine and triggers the policy engine. Note that per-key statistics such as key access frequency are
reported by each worker thread that maintains the key replica. The monitoring thread aggregates
the per-key statistics across all replicas before sending them to the policy engine.
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Figure 3.3: Monitoring node architecture.

The policy engine analyzes these statistics and issues actions to meet its SLOs. Anna currently
supports three types of actions: elasticity change, hot-key replication, and cross-tier data move-
ment. The implementation of these actions is covered above in Section 3.2.3. We discuss when
each of these actions is triggered and describe the end-to-end policy algorithm in Section 3.3.

3.2.5 Routing Service
The routing service isolates clients from the underlying storage system: A client asks where to
find a key and is returned the set of all valid addresses for that key. Anna’s routing service only
maintains soft state. Each routing node caches the storage tiers’ hash rings and key replication
vector metadata to respond to the clients’ key address requests. If a key has any memory-tier
replicas, the routing service only returns memory-tier addresses to maximize performance. The
client caches these addresses locally to reduce request latency and load on the routing service.

When a client’s cached address set becomes invalid because of a change in cluster configura-
tion, a storage server receiving an invalid request will give the client the correct set of addresses.
These will again be cached until they are invalidated, and the routing service will also refresh its
cached cluster state.
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3.2.6 Cluster Management
Anna uses Kubernetes [55] as a cluster management tool. Kubernetes is responsible for allocating
and deallocating nodes, ensuring that nodes are alive, and rebooting failed nodes. An Anna de-
ployment has four kinds of nodes: storage nodes, routing nodes, monitoring nodes, and a single,
stateless “cluster management” node described below.

A “pod” is the atomic unit of a Kubernetes application and is a collection of one or more
Docker [34] containers. Each node in Anna is instantiated in a separate Kubernetes pod, and each
pod contains only one instance of a Anna node. Storage system and routing service pods are
pinned on separate EC2 instances for resource isolation purposes. The monitoring system is less
resource intensive and can tolerate preemption, so it is not isolated. Finally, Anna maintains a
singleton cluster management pod, whose role is to issue requests to add or remove nodes to the
Kubernetes cluster. A simple, stateless Python server in this pod receives REST requests from the
policy engine and uses bash scripts to add or remove nodes.

3.2.7 Fault Tolerance
Anna guarantes k-fault tolerance by ensuring k + 1 replicas are live at all times. The choice of k
determines a trade-off between resilience and cost. The k + 1 replicas of each key can be spread
across tiers arbitrarily, according to hotness.

When a storage node fails, other nodes detect the failure via a timeout and remove the node
from the hash ring. When such a timeout happens, Anna automatically repartitions data using the
updated hash ring. The cluster management pod then issues a request to spawn a new node, which
enters the join protocol discussed in Section 3.2.3.

Anna does not rely on the persistence of EBS volumes for fault tolerance in the disk tier.
Similar to nodes in the memory tier, these nodes lose their state when they crash—this is desirable
because it allows all tiers to be symmetric, regardless of the durability of the underlying storage
medium.

Both routing nodes and monitoring nodes only store soft state and do not require any recovery
mechanisms. If a routing node fails, it queries other routing nodes for up-to-date cluster informa-
tion, and if a monitoring node fails, it retrieves system statistics from the storage service.

When the cluster management pod fails, Kubernetes automatically revives it. No recovery is
necessary as it does not manage any state. The state of the cluster will not change while the pod
is down since it is the actor responsible for modifying resource allocation. As a result, the policy
engine will re-detect any issue requiring an elasticity change before the crash and re-issue the
request upon revival.

In summary, Anna consists of a stateful storage kernel that is partitioned and selectively repli-
cated for performance and fault tolerance with multi-master updates. Every other component is
either stateless and optionally caches soft state that is easily recreated. As a result, the only single
point of failure in Anna is the Kubernetes master. Kubernetes offers high-availability features to
mitigate this problem [56]. We also note that Kubernetes is not integral to the design of Anna; we
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rely on it primarily to bootstrap the system and reduce the engineering burden of mundane tasks
such as receiving heartbeats, allocating VMs, and deploying containers.

3.3 Policy Engine
Anna supports three kinds of SLOs: an average request latency (Lobj) in milliseconds, a cost budget
(B) in dollars/hour, and a fault tolerance (k) in number of replicas. The fault tolerance indicates the
allowed number of replica failures, k. The latency objective, Lobj , is the average expected request
latency. The budget, B, is the maximum cost per hour that will be spent on Anna.

As discussed in Section 3.2.7, Anna ensures there will never be fewer than k + 1 replicas of
each key to achieve the fault tolerance goal. The latency objective and cost budget goals, however,
are conflicting. The cheapest configuration of Anna is to have k+1 EBS nodes and 1 memory node
(for metadata). Clearly, this configuration will not be very performant. If we increase performance
by adding memory nodes to the system, we might exceed our budget. Conversely, if we strictly
enforce the budget, we might not be able to achieve the latency objective.

Anna administrators only specify one of the two goals. If a latency SLO is specified, Anna
minimizes cost while meeting the latency goal. If the budget is specified, Anna uses no more than
$B per hour while maximizing performance.

In Sections 3.3.1, 3.3.2, and 3.3.3, we describe heuristics to trigger each policy action—data
movement, hot key replication, and elasticity. In Section 3.3.4, we present Anna’s complete policy
algorithm, which combines these heuristics to achieve the SLO. Throughout this section, we rep-
resent each key’s replication vector as [< RM , RE >,< TM , TE >] (a general form is defined in
Section 3.2.3) since our initial prototype only uses two tiers—M for memory and E for EBS.

3.3.1 Cross-Tier Data Movement
Anna’s policy engine uses its monitoring statistics to calculate how frequently each key was ac-
cessed in the past T seconds, where T is an internal parameter. If a key’s access frequency exceeds
a configurable threshold, P , and all replicas currently reside in the EBS tier, Anna promotes a
single replica to the memory tier. If the key’s access frequency falls below a separate internal
threshold, D, and the key has one or more memory replicas, all replicas are demoted to the EBS
tier. The EBS replication factor is set to k + 1, and the local replication factors are restored to
1. Note that in Anna, all metadata is stored in the memory tier, is never demoted, and has a
constant replication factor. If the aggregate storage capacity of a tier is full, Anna adds nodes (Sec-
tion 3.3.3) to increase capacity before performing data movement. If the budget does not allow for
more nodes, Anna employs a least-recently used caching policy to demote keys.

3.3.2 Hot-Key Replication
When the access frequency of a key stored in the memory tier increases, hot-key replication in-
creases the number of memory-tier replicas of that key. In our initial implementation, we configure
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only the memory tier to replicate hot keys. Because the EBS tier is not intended to be as perfor-
mant, a hot key in that tier will first be promoted to the memory tier before being replicated. This
policy will likely vary for a different storage hierarchy.

The policy engine classifies a key as “hot” if its access frequency exceeds an internal threshold,
H , which is s standard deviations above the mean access frequency. Because Anna is a shared-
nothing system, we can replicate hot keys both across cores in a single node and across nodes.
Replicating across nodes seems preferable, because network ports are a typical bottleneck in dis-
tributed system, so replicating across nodes multiplies the aggregate network bandwidth to the
key. However, replicating across cores within a node can also be beneficial, as we will see in Sec-
tion 3.5.2. Therefore, hot keys are first replicated across more nodes before being replicated across
threads within a node.

The policy engine computes the target replication factor, RM ideal, using the ratio between the
observed latency for the key and the latency objective. Cross-node replication is only possible
if the current number of memory replicas, RM , is less than the number of memory-tier nodes in
the cluster, NM . If so, we increment the key’s memory replication factor to min(RM ideal, NM).
Otherwise, we increment the key’s local replication factor on memory-tier machines up to the max-
imum number of worker threads (NT memory) using the same ratio. Finally, if the access frequency
of a previously-hot key drops below a threshold, L, its replication vector is restored to the default:
RM , TM , and TE are all set to 1 and RE is set to k.

3.3.3 Elasticity

Node Addition. Anna adds nodes when there is insufficient storage or compute capacity. When
a tier has insufficient storage capacity, the policy engine computes the number of nodes required
based on data size, subject to cost constraints, and instructs the cluster management service to
allocate new nodes to that tier.

Node addition due to insufficient compute capacity only happens in the memory tier because
the EBS tier is not designed for performance. Compute pressure on the EBS tier is alleviated by
promoting data to the memory tier since a memory node can support 15× the requests at 4× the
cost. The policy engine uses the ratio between the observed latency and the latency objective to
compute the number of memory nodes to add. This ratio is bounded by a system parameter, c, to
avoid overly aggressive allocation.

Node Removal. Anna requires a minimum of one memory node (for system metadata) and k + 1
EBS nodes (to meet the k-fault SLO when all data is demoted). The policy engine respects these
lower bounds. We first check if any key’s replication factor will exceed the total number of storage
nodes in any tier after node removal. Those keys’ replication factors are decremented to match
the number of nodes at each tier before the nodes are removed. Anna currently only scales down
the memory tier based on compute consumption and not based on storage consumption. This is
because selective replication can significantly increase compute consumption without increasing
storage consumption. Nonetheless, this may lead to wasteful spending under adversarial work-
loads; we elaborate in the next section.
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Grace Periods. When resource allocation is modified, data is redistributed across each tier, briefly
increasing request latency (see Section 3.5.4). Due to this increase, as well as data location
changes, key access frequency decreases. To prevent over-correction during key redistribution,
we apply a grace period to allow the system to stabilize. Key demotion, hot-key replication, and
elasticity actions are all delayed till after the grace period.

3.3.4 End-to-End Policy
In this section, we discuss how Anna’s policy engine combines the above heuristics to meet its
SLOs. If the average storage consumption of all nodes in a particular tier has violated configurable
upper or lower thresholds (Supper and Slower), nodes are added or removed respectively. We then
invoke the data movement heuristic from Section 3.3.1 to promote and demote data across tiers.
Next, the policy engine checks the average latency reported by clients. If the latency exceeds a
fraction, fupper (defaulting to 0.75), of the latency SLO and the memory tier’s compute consump-
tion exceeds a threshold, Cupper, nodes are added to the memory tier. However, if not all nodes are
occupied, hot keys are replicated in the memory tier, as per Section 3.3.2. Finally, if the observed
latency is a fraction, flower (defaulting to 0.5), below the objective and the compute occupancy is
below Clower, we invoke the node removal heuristic to check if nodes can be removed to save cost.

The compute threshold, Cupper, is set to 0.20. Consistent with Chapter 2, each storage node
saturates its network bandwidth well before its compute capacity. Compute occupancy is a proxy
for the saturation of the underlying network connection. This threshold varies significantly based
on the hardware configuration; we found that 20% was optimal for our experimental setup (see
Section 3.5).

Discussion

Storage Node Saturation. There are two possible causes for saturation. If all nodes are busy
processing client requests, Anna must add more nodes to alleviate the load. Performing hot-key
replication is not productive: Since all nodes are busy, replicating hot keys to a busy node will, in
fact, decrease performance due to additional gossip overhead. The other cause is a skewed access
distribution in which most client requests are sent to a small set of nodes serving the hot keys
while most nodes are free. The optimal solution is to replicate the hot keys onto unsaturated nodes.
If we add nodes to the cluster, the hot keys’ replication factors will not change, and clients will
continue to query the few nodes storing those keys. Meanwhile, the newly added nodes will idle.
As discussed in Section 3.3.4, Anna’s policy engine is able to differentiate the two causes for node
saturation and take the appropriate action.

Policy Limitations. There are cases in which our policy engine fails to meet the latency objective
and/or wastes money. Due to current cloud infrastructure limitations, for example, it takes about
five minutes to allocate a new node. An adversary could easily abuse this limitation. A short work-
load spike to trigger elasticity, followed by an immediate decrease would lead Anna to allocate
unnecessary nodes. These nodes will be under-utilized, but will only be removed if the observed
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Table 3.2: A summary of all variables mentioned in Section 3.3.

Variable
Name Meaning Default Value Type

Lobj
Latency

Objective
2.5ms

SLO
Spec

B
Cost

Budget
N/A

(user-specified)
SLO
Spec

k
Fault

Tolerance
2

SLO
Spec

T
Monitoring

report
period

15 seconds
Policy
Knob

H
Key

hotness
threshold

3 standard
deviations

above the mean
key access
frequency

Policy
Knob

L
Key

coldness
threshold

The mean key
access

frequency

Policy
Knob

P
Key

promotion
threshold

2 accesses in 60
seconds

Policy
Knob

[Slower,
Supper]

Storage
consump-

tion
thresholds

Memory: [0.3,
0.6] EBS: [0.5,

0.75]

Policy
Knob

[flower,
fupper]

Latency
thresholds

[0.5, 0.75]
Policy
Knob

[Clower,
Cupper]

Compute
occupancy
thresholds

[0.05, 0.20]
Policy
Knob

c

Upper
bound for

latency
ratio

1.5
Policy
Knob
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latency drops below flower ∗ Lobj . Unfortunately, removing this constraint would make Anna sus-
ceptible to reducing resource allocation during network outages, which is also undesirable. We
discuss potential solutions to these issues in future work.

Knobs. There are a small number of configuration variables mentioned in this section, which are
summarized in Table 3.2. We distinguish variables that are part of the external SLO Spec from
the internal parameters of our current policy. In our evaluation, our parameters were tuned by
hand to match the characteristics of the AWS services we use. There has been interesting work
recently on autotuning database system configuration knobs [107]; our setting has many fewer
knobs than those systems. As an alternative to auto-tuning our current knobs, we are exploring
the idea of replacing the current threshold-based policy entirely with a dynamic Reinforcement
Learning policy that maps directly and dynamically from performance metrics to decisions about
system configuration changes. These changes to the policy engine are easy to implement, but
tuning the policy is beyond the scope of this work: It involves extensive empirical work on multiple
deployment configurations.

3.3.5 Algorithm Pseudocode
We include pseudocode for the algorithms described in Section 3.3 here. Note that some algorithms
included here rely on a latency objective, which may or may not be specified. When no latency
objective is specified, Anna aspires to its unsaturated request latency (2.5ms) to provide the best
possible performance but caps spending at the specified budget.

Algorithm 1 DataMovement

Input: Key, [< RM , RE >< TM , TE >]
1: if access(Key, T )> P & RM = 0 then
2: adjust(Key, RM + 1, RE − 1, TM , TE)
3: else if access(Key, T )< D & RM > 0 then
4: adjust(Key, 0, k + 1, 1, 1)

3.4 Anna API
As shown in Table 3.3, Anna exposes seven APIs to the application: Get, Put, Delete,
GetAll, PutAll, GetDelta, and Subscribe. The first three APIs are straightforward and
discussed in detail in Chapter 2. Here, we introduce four new APIs that we added.

GetAll. Unlike the Get API, which queries a single replica of a key, GetAll queries all replicas
of a key, merges them on the client side, and returns the merged result to the user. This allows the
user to observe the most up-to-date state of a key in Anna. As an extension, the Anna client can
query a subset of the replicas, achieving a trade-off between performance and data freshness.
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Algorithm 2 HotKeyReplication

Input: Key, [< RM , RE >< TM , TE >]
1: if access(Key, T )> H & RM < NM then
2: SET RM ideal = RM ∗ Lobs/Lobj

3: SET R′
M = min(RM ideal, NM)

4: adjust(Key, R′
M , RE , TM , TE)

5: else if access(Key, T )> H & RM = NM then
6: SET TM ideal = TM ∗ Lobs/Lobj

7: SET T ′
M = min(TM ideal, NT memory)

8: adjust(Key, RM , RE , T ′
M , TE)

9: else if access(Key, T )< L & (RM > 1 ‖ TM > 1) then
10: adjust(Key, 1, k, 1, 1)

Algorithm 3 NodeAddition
Input: tier, mode

1: if mode = storage then
2: SET Ntarget = required storage(tier)
3: if Costtarget > Budget then
4: SET Ntarget = adjust()
5: add node(tier, Ntarget −Ntier current)
6: else if mode = compute & tier = M then
7: SET Ntarget = NM current∗min(Lobs/Lobj , c)
8: if Costtarget > Budget then
9: SET Ntarget = adjust()

10: add node(M , Ntarget −NM current)

Algorithm 4 NodeRemoval
Input: tier, mode

1: if mode = storage & tier = E then
2: SET Ntarget = max(required storage(E), k + 1)
3: reduce replication()
4: remove node(E, NE current −Ntarget)
5: else if mode = compute & tier = M then
6: if NM current > 1 then
7: reduce replication()
8: remove node(M , 1)
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Algorithm 5 AnnaPolicy

Input: tiers = {M,E}, keys
1: for tier in tiers do
2: if storage(tier)> Supper then
3: NodeAddition(tier, storage)
4: else if storage(tier)< Slower then
5: NodeRemoval(tier, storage)
6: for key ∈ keys do
7: DataMovement(key)
8: if Lobs > fupper ∗ Lobj & compute(M )> Cupper then
9: NodeAddition(M , compute)

10: else if Lobs > fupper ∗ Lobj & compute(M )<= Cupper then
11: for key ∈ keysmemory do
12: HotKeyReplication(key)
13: else if Lobs < flower ∗ Lobj & compute(M )< Clower then
14: NodeRemoval(M , compute)

Table 3.3: Summary of Anna’s APIs.

API Description
Get(key)->value Retrieves the value of key from a single replica.
Put(key, value) Performs an update to a single replica of key.
Delete(key) Deletes key.
GetAll(key)->value Retrieves the value of key from all replicas and re-

turns the merged result.
PutAll(key, value) Performs an update to all replicas of key.
GetDelta(key, id) Retrieves the value of key only when it has changed

from the previously queried version, identified by id.
Subscribe(key, address) Subscribes to key and receives the updated value at

address.

When GetAll is used in place of Get on an 8-byte key with a replication factor of 3, we
observe no performance change for the median latency (0.58ms) and a 6% performance degrada-
tion (from 0.68ms to 0.72ms) for the 99-th percentile latency. This is because the client needs to
wait for responses from every node that stores a replica of the key before responding to the user,
which impacts the tail latency. The node configuration of this micro-benchmark is the same as
other experiments in Section 3.5.

PutAll. Anna’s regular Put API updates a single replica of a key and relies on asynchronous
gossip for the update to propagate to other replicas. However, if the node accepting the client
update crashes before gossiping, the update will be lost. To avoid potential data loss, PutAll
sends the updates to all replicas of a key and returns only when all replicas accept the update. As
an extension, the Anna client can send the update to a subset of the replicas, achieving a trade-off
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between performance and fault-tolerance.
When PutAll is used in place of Put on an 8-byte key with a replication factor of 3, we

observe similar performance changes as in the comparison between GetAll and Get; the median
latency increases from 0.58ms to 0.59ms and the 99-th percentile latency increases from 0.66ms
to 0.69ms.

GetDelta. A client interacting with Anna may query the same key multiple times. GetDelta
returns the value of the key only when its payload has changed since the previous query. This API
takes two arguments: a key and a version identifier of the key from the previous query. GetDelta
is currently supported under last-writer-wins consistency and causal consistency. When enabled,
the client sends the version metadata (timestamp and vector clock, respectively) as part of the
request for Anna to check if the payload has changed. In case the payload has not changed, Anna
responds with just an acknowledgement. Since the payload is not shipped as part of the response,
this optimization significantly reduces network overhead for workloads that involves large payload.

For keys with small payload, however, GetDelta may be less efficient than Get, as the
overhead of shipping the version metadata becomes pronounced. Accordingly, the Anna client
makes GetDelta request only when the payload is larger than the version identifier. Otherwise,
it falls back to the regular Get protocol.

To support the GetDeltaAPI, the Anna client maintains the following metadata for each pre-
viously queried key: the size of the payload and the key’s version identifier. The size information
is stored as an 8-byte integer. For last-writer-wins consistency, each key’s timestamp is 8 bytes.
For causal consistency, each key’s vector clock typically ranges from 10 bytes to 1KB. The Anna
client stores these identifiers in a buffer and uses LRU policy for eviction. When the previously
queried key’s version identifier is unavailable, Anna falls back to the regular Get protocol.

Subscribe. A client can subscribe to a key and get notified when the value of the key changes.
Subscribe takes two arguments: a key to subscribe and a notification IP address. When the
value of the key changes, Anna pushes the new value to the notification address. This API is
suitable for applications that operate in a passive, event-driven mode. To support this API, for each
key under subscription, Anna maintains a list of IPs that listen for the key updates.

3.5 Evaluation
In this section, we present an evaluation of Anna. We first explore the optimal instance type for
Anna’s memory-tier storage node that balances the CPU, memory, and network bandwidth (Sec-
tion 3.5.1). This instance type is used throughout the experiments. We then explore the advantage
of different replica placement strategies in Section 3.5.2. Next, we show the benefit of selective
replication in Section 3.5.3. We demonstrate Anna’s ability to detect and adapt to variation in
workload volume, skew, and hotspots in Sections 3.5.4 and 3.5.5. Section 3.5.6 covers Anna’s
ability to respond to unexpected failures. Finally, Section 3.5.7 evaluates Anna’s ability to trade
off performance and cost according to its SLO.
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Figure 3.4: Performance comparison across different node types. The cost across all node types
is set to $6.384 per hour. This corresponds to 3 r4.8xlarge nodes, 6 r4.4xlarge nodes, 12
r4.2xlarge nodes, 24 r4.xlarge nodes, and 48 r4.large nodes. The Zipfian coefficient
of the workload is set to 0.5.

Anna uses r4.2xlarge instances for memory-tier nodes and r4.large instances for EBS-
tier nodes. Each node has 4 worker threads; at peak capacity they can handle a workload that
saturates the network link of the node. r4.2xlarge memory nodes have 61GB of memory,
which is equally divided among all worker threads. Each thread in a EBS node has access to its
own 64GB EBS volume. In our experiments, Anna uses two m4.large instances for the routing
nodes and one m4.large instance for the monitoring node. We include these nodes in all cost
calculation below. Unless otherwise specified, all experiments are run on a database with 1 million
key-value pairs. Keys and values are 8 bytes and 256KB long, respectively. We set the k-fault
tolerance goal to k = 2; there are 3 total replicas of each key. This leads to a total dataset size of
about 750GB: 1M keys× 3 replicas× 256KB values.

Our workload is a YCSB-style read-modify-write of a single key chosen from a Zipfian distri-
bution. We adjust the Zipfian coefficient to create different contention levels—a higher coefficient
means a more skewed workload. We use the regular Get and Put APIs in our experiments. The
clients were run on r4.16xlarge machines, with 8 threads each. Client machines ran in the
same AWS region (us-east-1) as the server machines. Unless stated otherwise, experiments used
40 client machines for a total of 320 concurrent, single-threaded clients.

3.5.1 Node Configuration
Our first experiment explores the most cost-effective node configuration offered by the cloud ven-
dor. Specifically, we explore which node types deliver the best performance relative to their cost
on AWS for Anna’s memory-tier. We mainly focus on the r4 instance family, as nodes from this
instance family are well-suited for high-performance in-memory databases.
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For each instance type, we first adjust the number of nodes to match a fixed cost budget
of $6.384 per hour. This corresponds to 3 r4.8xlarge nodes, 6 r4.4xlarge nodes, 12
r4.2xlarge nodes, 24 r4.xlarge nodes, and 48 r4.large nodes. We then record sys-
tem’s latency and throughput as we increase the workload volume (number of concurrent client
threads) until the system is saturated. In this experiment, we set the Zipfian coefficient to 0.5. We
see in Figure 3.4 that performance characteristics vary significantly across node types. Interest-
ingly, although larger instance types such as m4.16xlarge, r4.8xlarge, and r4.4xlarge
have abundant CPU cores and memory, their peak throughput is relatively poor (less than 30K
operations per second). According to Anna’s monitoring system, their CPU utilization at peak
throughput are all below 15% and performance is bottlenecked by the network bandwidth (10Gbps
- 25Gbps), consistent with the observations made in Chapter 2. On the other hand, small instances
such as r4.large and r4.xlarge deliver better peak throughput (60K operations per second).
However, these instances are bottlenecked by the CPU, as we observe that their CPU utilization
are above 95% at peak throughput.

In comparison, r4.2xlarge instance achieves the best peak throughput (70K operations per
second) with a CPU utilization of around 80%. Therefore, it has the best balance of CPU, memory,
and network resources for our workload and we pick this instance for Anna’s memory-tier for the
rest of the experiments.

3.5.2 Replica Placement
In this section, we compare the benefits of intra-node vs. cross-node replication; for brevity, no
charts are shown for this topic. On 12 memory-tier nodes, we run a highly skewed workload with
the Zipfian coefficient set to 2. With a single replica per key, we observe a maximum throughput
of just above 2,000 operations per second (ops). In the case of cross-node replication, four nodes
each have one thread responsible for each replicated key; in the intra-node case, we have only one
node with four threads responsible for each key. Cross-node replication improves performance by
a factor of four to 8,000 ops, while intra-node replication only improves performance by a factor
of two to 4,000 ops. This is because the four threads on a single node all compete for the same
network bandwidth, while the single threads on four separate nodes have access to four times the
aggregate bandwidth. Hence, as discussed in Section 3.3.2, we prioritize cross-node replication
over intra-node replication whenever possible but also take advantage of intra-node replication.

3.5.3 Selective Replication
A key weakness of our initial work in Chapter 2 (referred to as Anna v0) is that all keys are as-
signed a uniform replication factor. A poor choice of replication factor can lead to significant
performance degradation. Increasing the replication factor boosts performance for skewed work-
loads, as requests to hot keys can be processed in parallel on different replicas. However, a uniform
replication factor means that cold keys are also replicated, which increases gossip overhead (slow-
ing down the system) and storage utilization (making the system more expensive). By contrast,
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Anna selectively replicates hot keys to achieve high performance, without paying a storage cost
for replicating cold keys.

This experiment explores the benefits of selective replication by comparing Anna’s memory-
tier against Anna v0, AWS ElastiCache (using managed Memcached), and a leading research sys-
tem, Masstree [73], at various cost points. We hand-tune Anna v0’s single replication factor to
the optimal value for each Zipfian setting and each cost point. This experiment uses a database of
100,000 keys across all cost points; we use a smaller database since the data must fit on one node,
corresponding to the minimum cost point. We configure keys in Anna to have a default replication
factor of 1 since neither ElastiCache nor Masstree supports replication of any kind. To measure
the performance for a fixed price, we also disabled Anna’s elasticity mechanism.

Figure 3.5(a) shows that Anna consistently outperforms both Masstree and ElastiCache un-
der low contention. As discussed in our previous work, this is because Anna’s thread-per-core
coordination-free execution model efficiently exploits multi-core parallelism, while other systems
suffer from thread synchronization overhead through the use of locks or atomic instructions. Nei-
ther Anna nor Anna v0 replicates data in this experiment, so they deliver identical performance.

Under high contention (Figure 3.5(b)), Anna’s throughput increases linearly with cost, while
both ElastiCache and Masstree plateau. Anna selectively replicates hot keys across nodes and
threads to spread the load, enabling this linear scaling; the other two systems do not have this
capability. Anna v0 replicates the entire database across all nodes. While Anna v0’s performance
scales, the absolute throughput is worse than Anna’s because naively replicating the entire database
increases multicast overhead for cold keys. Furthermore, Anna v0’s storage consumption is signif-
icantly higher: At $7.80/hour (14 memory nodes), Anna v0’s constant replication generates 13×
the original data size, while Anna incurs <1% extra storage overhead.

3.5.4 Dynamic Workload Skew & Volume
We now combine selective replication and elasticity to react to changes in workload skew and
volume. In this experiment, we start with 12 memory-tier nodes and a latency objective of 3.3ms—
about 33% above our unsaturated latency. All servers serve a light load at time 0. At minute 3,
we start a high contention workload with a Zipfian coefficient of 2. We see in Figure 3.6(a) that
after a brief spike in latency, Anna replicates the highly contended keys and meets the latency SLO
(the dashed red line). At minute 13, we reduce the Zipfian coefficient to 0.5, switching to a low
contention workload. Simultaneously, we increase the load volume by a factor of 4. Detecting
these changes, the policy engine reduces the replication factors of the previously-hot keys. It finds
that all nodes are occupied with client requests and triggers addition of four new nodes to the
cluster. We see a corresponding increase in the system cost in Figure 3.6(b).

It takes 5 minutes for the new nodes to join the cluster. Throughput increases to the saturation
point of all nodes (the first plateau in Figure 3.6(b)), and the latency spikes to the SLO maximum
from minutes 13 to 18. At minute 18, the new nodes come online and trigger a round of data
repartitioning, seen by the brief latency spike and throughput dip. Anna then further increases
throughput and meets the latency SLO. At the 28-minute point, we reduce the load, and Anna
removes nodes to save cost.
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Figure 3.5: Cost-effectiveness comparison between Anna, Anna v0, ElastiCache, and Masstree.

Throughout the 32-minute experiment, the latency SLO is satisfied 97% of the time. We first
violate the SLO during hot-key replication by 4× for 15 seconds. Moreover, the latency spikes to
7× the SLO during redistribution for about 30 seconds. Data redistribution causes multicast over-
head on the storage servers and address cache invalidation on the clients. The latency effects are
actually not terrible. As a point of comparison, TCP link latencies in data centers are documented
tolerating link delays of up to 40× [6].

From minutes 13 to 18, we meet our SLO of 3.3ms exactly. With a larger load spike or lower
initial resource allocation, Anna could have easily violated its SLO during that period, putting SLO
satisfaction at 83%—a much less impressive figure. Under any reactive policy, large workload vari-
ations can cause significant SLO violations. As a result, cloud providers commonly develop client-
specific service level agreements (SLAs) that reflect access patterns and latency expectations. In
practice, these SLAs allow for significantly more leeway than a service’s internal SLO [42].
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Figure 3.6: Anna’s response to changing workload.

3.5.5 Varying Hotspot
Next, we introduce multiple tiers and run a controlled experiment to demonstrate the effectiveness
of cross-tier promotion and demotion. The goal is to evaluate Anna’s ability to detect and react to
changes in workload hotspots. We do not consider a latency objective and disable autoscaling; we
narrow our focus to how quickly Anna identifies hot data.

We fix total data size while varying the number of keys and the length of the values. This stress-
tests selective replication, for which the amount of metadata (i.e., a per-key replication vector)
increases linearly with the number of keys. Increasing the number of keys helps us evaluate how
robust Anna’s performance is under higher metadata overheads.

We allocate 3 memory nodes (insufficient to store all data) and 15 EBS-tier nodes. At time 0,
most data is in the EBS tier. The blue curve in Figure 3.7 shows a moderately skewed workload,
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Figure 3.7: Adapting to changing hotspots in workload.

and the green curve shows a highly skewed workload. At minute 0, we begin a workload centered
around one hotspot. At minute 5, we switch to a different, largely non-overlapping hotspot, and at
minute 10, we switch to a third, unique hotspot. The y-axis measures what percent of queries are
served by the memory tier—the “cache hit” rate.

With 1 million keys and 256KB values (Figure 3.7(a)), we see that Anna is able to react almost
immediately and achieve a perfect hit rate under a highly skewed workload (the green curve). The
hot set is very small—on the order of a few thousand keys—and all hot keys are promoted in about
ten seconds. The moderately skewed workload shows more variation. We see the same dip in
performance after the hotspot changes; however, we do not see the same stabilization. Because the
working set is much larger, it takes longer for hot keys to be promoted, and there is a probabilistic
“fringe” of keys that are in cold storage at time of access, leading to hit-rate variance. Nonetheless,
Anna is still able to achieve an average of 81% hit rate less than a minute after the change.

Increasing the number of keys (Figures 3.7(b, c)) increases the time to stabilization. Achieving
a hit-rate of 99.5% under the highly skewed workload (the green curves) takes around 15 and 25
seconds for 10 million and 100 million keys, respectively. Under the moderately skewed workload
(the blue curves), the hit-rate in both settings takes around 90 seconds to stabilize. We observe a
slightly reduced average hit-rate (79% and 77%, respectively) due to a larger probabilistic fringe
of cold keys. Overall, despite orders of magnitude more keys, Anna still adapts and achieves a
high memory tier hit-rate. In Section 3.7, we discuss opportunities to improve time to stabilization
further via policy tuning.

3.5.6 Recovery
We evaluate Anna’s ability to recover from node failure and compare against Redis on AWS Elas-
tiCache. We choose Redis because it is the only KVS in our experiments with recovery features.
Both systems were run on 42 memory-tier nodes and maintain three replicas per key. The results
are shown in Figure 3.8. Note that we report normalized throughput here to compare against each
system’s baseline.

Both systems are run at steady state before a random node is terminated non-gracefully at
minute 4, marked with a red line in Figure 3.8. Anna (the blue curve) experiences a 1.5-minute dip
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Figure 3.8: Impact of node failure and recovery for Anna and Redis (on AWS ElastiCache).

in performance while requests to the now-terminated node timeout. The performance change is not
immediately apparent as the node continues serving requests for a few seconds before all processes
are terminated. Nonetheless, Anna maintains above 80% of peak throughput because replication
is multi-mastered; the remaining replicas still serve requests. After a minute, the system detects a
node has departed and updates its hash ring. There is slightly diminished performance (about 90%
of peak) from minutes 5.5 to 8.5 while the system operates normally but with 1 fewer node. At
minute 8.5, we see another dip in throughput as a new node joins and the system repartitions data1.
By minute 9, the system returns to peak performance.

User requests are set to time out after 500ms. We observe a steady state latency of about 18ms.
After node failure, roughly 1

42
of requests query the failed node and wait until timeout to retry

elsewhere. This increases latency for those requests, but reduces load on live nodes; as a result,
other requests observe latencies drop to about 10ms. Hence with one failed node, we expect to see
an average latency of 510 × 1

42
+ 10 × 41

42
= 21.90ms. This implies throughput at roughly 82%

of peak and matches the performance in Figure 3.8. A larger cluster would further mitigate the
performance dip.

Redis maintains 14 shards, each with one primary and two read replicas. We terminate one of
the primary replicas. The yellow curve in Figure 3.8 shows that throughput immediately drops to
0 as Redis stops serving requests and elects a new leader for the replica group with the failed node.
A new node is allocated and data is repartitioned by minute 6, after which Redis returns to peak
performance. As a single-master system that provides linearizability, it is not designed to run in an
environment where faults are likely.

In summary, Anna is able to efficiently respond to node failure while maintaining over 80%
peak throughput, whereas Redis pauses the system during leader election. Anna’s high availability

1Note that repartitioning overhead is not as high as in Section 3.5.4 because here we are using more machines and
only add one new node, as opposed to four in that experiment.
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Figure 3.9: Varying contention, we measure (a) Anna latency per cost budget; (b) Anna cost per
latency objective.

makes it a much better fit for cloud deployments. On the other hand, Redis’s performance normal-
izes after a minute as its node spin-up time is much lower than ours (about 4 minutes)—we return
to this point in Section 3.7.

3.5.7 Cost-Performance Tradeoffs
Finally, we assess how well Anna is able to meet its SLOs. We study the Pareto efficiency of
our policy: How well does it find a frontier of cost-performance tradeoffs? We sweep the SLO
parameter on one of the two axes of cost and latency and observe the outcome on the other. Anna
uses both storage tiers and enable all policy actions. We evaluate three contention levels—Zipfian
coefficients of 0.5 (about uniform), 0.8, and 1.0 (moderately skewed). For a database of 1M keys
with a three replicas per key, Anna needs four EBS nodes to store all data and one memory node
for metadata; this is a minimum deployment cost of $2.06 per hour.

At each point, we wait for Anna to achieve steady state, meaning that nodes are not being added
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Table 3.4: Throughput comparison between Anna and DynamoDB at different cost budgets.

Cost Anna DynamoDB
$2.50/hour 1271 ops/s 35 ops/s
$3.60/hour 3352 ops/s 55 ops/s
$4.40/hour 23017 ops/s 71 ops/s
$5.50/hour 33548 ops/s 90 ops/s
$6.50/hour 38790 ops/s 108 ops/s
$7.60/hour 43354 ops/s 122 ops/s

or removed and latency is stable. In Figure 3.9(a), we plot Anna’s steady state latency for a fixed
cost SLO. We measure average request latency over 30 seconds. At $2.10/hour (4 EBS nodes and 1
memory node), only a small fraction of hot data is stored in the memory tier due to limited storage
capacity. The observed latency ranges from 50ms to 250ms across contention levels. Requests
under the high contention workload are more likely to hit the small set of hot data in the memory
tier. As we increase the budget, latency improves for all contention levels: more memory nodes
are added and a larger fraction of the data is memory-resident. At $4.40/hour, Anna can promote
at least one replica of all keys to the memory tier. From here on, latency is under 10ms across all
contention levels. Performance differences between the contention levels are negligible thanks to
hot-key replication.

We also compare the throughput between Anna and DynamoDB at each cost budget. Similar
to Anna, DynamoDB is a serverless KVS. System deployment details, such as node instance type,
node count, and resource utilization, are hidden from the users. DynamoDB allows users to define
high-level objectives such as read/write capacity units which translate to maximum throughput,
and cost budget. The system autoscales based on the workload to meet these goals. Note that in
this experiment, DynamoDB is configured to provide the same eventual consistency guarantees and
fault tolerance metric (k = 2) as Anna. As shown in Table 3.4, Anna outperforms DynamoDB by
36× under a low-cost regime and by as much as 355× at higher costs. Our observed DynamoDB
performance is actually somewhat better than AWS’s advertised performance [9], which gives us
confidence that this result is a reasonable assessment of DynamoDB’s efficiency.

Lastly, we set Anna to minimize cost for a stated latency objective (Figure 3.9(b)). Once more,
when the system reaches steady state, we measure its resource cost. To achieve sub-5ms latency—
the left side of Figure 3.9(b)—Anna requires $9-11 per hour depending on the contention level.
This latency requires at least one replica of all keys to be in the memory tier. Between 5 and 200ms,
higher contention workloads are cheaper, as hot data can be concentrated on a few memory nodes.
For the same latency range, lower contention workloads require more memory and are thus more
expensive. Above 200ms, most data resides on the EBS tier, and Anna meets the latency objective
at about $2 an hour.
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3.6 Related Work
As a KVS, Anna builds on prior work, both from the databases and distributed systems literature.
Nonetheless, it is differentiated in how it leverages and combines these ideas to achieve new levels
of efficiency and automation.

Autoscaling Cloud Storage. A small number of cloud-based file systems have considered work-
load responsiveness and autoscaling. Sierra [106] and Rabbit [10] are single-master systems that
handle the problem of read and write offloading: when a node is inactive or overloaded, requests
to blocks at that node need to be offloaded to alternative nodes. This is particularly important for
writes to blocks mastered at the inactive node. SpringFS [115] optimizes this work by finding a
minimum number of machines needed for offloading. By contrast, Anna supports multi-master
updates and selective key replication. When nodes go down or get slow in Anna, writes are simply
retried at any existing replica, and new replicas are spawned as needed by the policy.

ElastMan [96] is a “bolt-on” elasticity manager for cloud KVSes that responds to changing
workload volume. Anna, on the other hand, manages the dynamics of skew and hotspots in addition
to volume. ElastMan’s proactive policy is an interesting feature that anticipates workload changes
like diurnal patterns; we return to this in Section 3.7.

Consistent hashing and distributed hash tables [52, 101, 84] are widely used in many storage
systems [33, 12] to facilitate dynamic node arrival and departure. Anna allows request handling
and key migration to be interleaved, eliminating downtime during node membership change while
ensuring consistency, thanks to its lattice-based conflict resolution.

Key-Value Stores. There has been a wide range of work on key-value stores for both multicore
and distributed systems—more than we have room to survey. Chapter 2 offers a recent snapshot
overview of that domain. Here, our focus is not on the KVS kernel, but on mechanisms to adapt to
workload distributions and trade-offs in performance and cost.

Selective Key Replication. Selective replication of data for performance has a long history, dating
back to the Bubba database system [30]. More recently, the ecStore [108], Scarlett [11], E2FS [25],
and SWORD [81] systems perform single-master selective replication, which creates read-only
replicas of hot data to speed up read performance. Content delivery network (CDN) providers such
as Google Cloud CDN [41], Swarmify [104], and Akamai [3] use similar techniques to replicate
content close to the edge to speed up delivery. In comparison, Anna’s multi-master selective repli-
cation improves both read and write performance, achieving general workload scaling. Conflicting
writes to different replicas are resolved asynchronously using our lattices’ merge logic [114].

Selective replication requires maintaining metadata to track hot keys. ecStore uses histograms
to reduce hot-key metadata, while Anna currently maintains access frequencies for the full key set.
We are exploring two traditional optimizations to reduce overhead: heavy hitter sketches rather
than histograms [62] and the use of distributed aggregation for computing sketches in parallel with
minimal bandwidth [72].

Another effort to address workload skew is Blowfish [53], which combines the idea of replica-
tion and compression to trade-off storage and performance under time-varying workloads. Adding
compression to Anna to achieve fine-grained performance cost trade-off is an interesting future
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direction.

Tiered Storage. Beyond textbook caching, there are many interesting multi-tier storage sys-
tems in the literature. A classic example in the file systems domain is the HP AutoRaid sys-
tem [111]. Databases also considered tertiary storage during the era of WORM devices and storage
robots [102, 69]. Broadcast Disks envisioned using multiple broadcast frequencies to construct
arbitrary hierarchies of virtual storage [2]. More recently, there has been interest in filesystem
caching for analytics workloads. OctopusFS [50] is a tiered file system in this vein. Tachyon [64]
is another recent system that serves as a memory cache for analytics working sets, backing a file
system interface. Our considerations are rather different than prior work: The size of each tier in
Anna can change due to elasticity, and the volume of data to be stored overall can change due to
dynamic replication.

3.7 Conclusion and Takeaways
Anna provides a simple, unified API to efficient key-value storage in the cloud. Unlike popular
storage systems today, it supports a non-trivial distribution of access patterns by eliminating com-
mon static deployment and cost-performance barriers. Developers declare their desired tradeoffs,
instead of managing a custom mix of heterogenous services.

Behind this API, three core mechanisms are the keys for Anna to meet performance SLOs.
Horizontal elasticity right-sizes the service by adding and removing nodes, while vertical data
movement across tiers and multi-master selective replication scale request handling at a fine gran-
ularity. Integration of these features makes Anna an efficient, autoscaling system that represents a
new design point for cloud storage. These features are enabled by a policy engine which monitors
workloads and responds by taking the appropriate actions.

Our evaluation shows that Anna is extremely efficient. In many cases, Anna is orders of mag-
nitude more cost-effective than popular cloud storage services and prior research systems. Anna is
also unique in its ability to automatically adapt to variable workloads.

Up to now, we have focused on studying how to build scalable, performant serverless stor-
age systems with rich consistency guarantees. In the next chapter, we turn our attention to the
compute layer, specifically FaaS infrastructure, and discuss how the design principles of Anna
inspired innovations in distributed caching and consistency protocols that simultaneously achieve
smooth autoscaling, low latency request handling, and robust consistency models for a serverless
computing platform.
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Chapter 4

Low Latency Transactional Causal
Consistency for Serverless Computing

As we discussed in Chapter 1, Serverless computing has gained significant attention recently, with
a focus on Function-as-a-Service (FaaS) systems [44, 49, 5, 45, 77, 94]. These systems—e.g.,
AWS Lambda, Google Cloud Functions—allow programmers to upload arbitrary functions and
execute them in the cloud without having to provision or maintain servers.

These platforms enable developers to construct applications as compositions of multiple func-
tions [59]. For example, a social network generating a news feed might have three functions:
authenticate a user, load posts in that user’s timeline, and generate an HTML page. Functions in
the workflow are executed independently, and different functions may not run on the same physical
machine due to load balancing, fault tolerance, and varying resource requirements.

For developers, the key benefit of FaaS is that it transparently autoscales in response to work-
load shifts; more resources are provisioned when there is a burst in the request rate, and resources
are de-allocated as the request rate drops. As a result, cloud providers can offer developers attrac-
tive consumption-based pricing. Providers also benefit from improved resource utilization, which
comes from dynamically packing the current workload into servers.

FaaS platforms achieve flexible autoscaling by disaggregating the compute and storage layers,
so they can scale independently. For example, FaaS applications built on AWS Lambda typically
use AWS S3 or DynamoDB as the autoscaling storage layer [14]. This design, however, comes at
the cost of high-latency I/O—often orders of magnitude higher than attached storage [44]. This
makes FaaS ill-suited for low-latency services that would naturally benefit from autoscaling—e.g.
webservers managing user sessions, discussion forums managing threads, or ad servers managing
ML models. These services all dynamically manipulate data based on request parameters and are
therefore sensitive to I/O latency.

A natural solution is to attach caches to FaaS compute nodes to eliminate the I/O latency
for data that is frequently accessed from remote storage. However, this raises challenges around
maintaining consistency of the cached data—particularly in the context of multi-I/O applications
that may run across different physical machines with different caches [99, 100].

Returning to the social network setting, consider a scenario where Alice updates her photo
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access permissions to ban Bob from viewing her pictures and then posts a picture that makes fun
of him. When Bob views his timeline, the cache his request visits for Alice’s permissions may
not yet reflect her recent update, but the cache visited to fetch posts may include the picture that
she posted. The authentication process mistakenly will allow Bob to view the picture, creating a
consistency anomaly [79, 67, 29].

The source of this inconsistency is that reads and writes fail to respect causality: Bob first
observes a stale set of permissions, then observes a photo whose write was influenced by a newer
permission set. Such anomalies can be prevented by transactional causal consistency (TCC), the
strongest consistency model that can be achieved without expensive consensus protocols [19, 71,
67] required in stricter consistency models such as serializable transactions.

However, providing TCC for low-latency applications creates unprecedented challenges in a
serverless environment, where cluster membership rapidly changes over time due to autoscaling
infrastructure and user requests span multiple compute nodes. Recent systems such as Cure [4] and
Occult [74] enforce TCC at the storage layer, so FaaS-layer caches would need to access storage for
each causally consistent I/O, which reintroduces network roundtrips and violates our low-latency
goal. Moreover, the consistency mechanisms in prior work rely on fixed node membership, which
we cannot assume of an autoscaling system.

An alternative approach is Bolt-on Causal Consistency [17] (BCC). BCC enforces consistency
in a cache layer similar to the one proposed here and does not rely on fixed-size clusters. However,
BCC only guarantees Causal+ Consistency [67], which is weaker than TCC and inadequate to
prevent the anomaly described above. BCC also does not guarantee consistency across multiple
caches.

To solve these challenges, we present HydroCache, a distributed caching layer attached to
each node in a FaaS system. HydroCache simultaneously provides low-latency data access and
introduces multisite transactional causal consistency (MTCC) protocols to guarantee TCC for
requests that execute on multiple nodes. Our MTCC protocols do not rely on the membership of
the system, and HydroCache does not interfere with a FaaS layer’s crucial autoscaling capabilities.
In summary, this chapter’s contributions are:

1. The design of HydroCache, which provides low latencies while also guaranteeing TCC for
individual functions executed at a single node (Section 4.2).

2. Efficient MTCC protocols to guarantee TCC for compositions of functions, whose execution
spans multiple nodes (Section 4.3).

3. An evaluation that shows TCC offers an attractive trade-off between performance and con-
sistency in a serverless setting and HydroCache achieves a 10× performance improvement
over FaaS architectures without a caching layer while simultaneously offering stronger con-
sistency (Section 4.4).
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Figure 4.1: Cloudburst architecture.

4.1 Background
In this section, we briefly introduce the system architecture within which we implement Hydro-
Cache. We also define causal consistency and its extensions, which are essential for understanding
the material in the rest of this chapter.

4.1.1 System Architecture
Figure 4.1 shows an overview of our system architecture, which consists of a high-performance
key-value store (KVS) Anna [114, 112] and a function execution layer Cloudburst [100]. We
chose Anna as the storage engine as it offers low latencies and flexible autoscaling, a good fit for
serverless. Anna also supports custom conflict resolution policies to resolve concurrent updates.
As we discuss in Section 4.1.2, this provides a necessary foundation to support causal consistency.

Cloudburst deploys KVS-aware caches on the same nodes as the compute workers, allowing
for low-latency data access. We build our own function execution layer as there is no way to
integrate our cache into existing FaaS systems.

In Cloudburst, all requests are received by a scheduler and routed to worker threads based on
compute utilization and data locality heuristics. Each compute node has three function executor
threads, each of which has a unique ID. As we discuss in Section 4.1.2, these IDs are used to cap-
ture causal relationships. The compute threads on a single machine interact with one HydroCache
instance, which retrieves data for the function executors as necessary. The cache also transparently
writes updates back to the KVS.

Cloudburst users write functions in vanilla Python, and register them with the system for ex-
ecution. The system enables low-latency function chaining by allowing users to register function
compositions forming a DAG of functions. DAG execution is optimized by automatically pass-
ing results from one function executor to the next. Each DAG has a single sink function with no
downstream functions, the results of which are either returned to the user or written to Anna.
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4.1.2 Causal Consistency

Causal Consistency (CC). Under CC, reads and writes respect Lamport’s “happens-before” rela-
tion [61]. If a read of key ai (i denotes a version of key a) influences a write of key bj , then ai
happens before bj , or bj depends on ai; we denote this as ai → bj . happens before is transitive:
if ai → bj ∧ bj → ck, then ai → ck. In our system, dependencies are explicitly generated during
function execution (known as explicit causality [20, 58]). A write causally depends on keys that
the function previously read from storage.

A key ki has four components [k, V Cki , deps, payload]; k is the key’s identifier, V Cki is a
vector clock [85, 98] that identifies its version, deps is its dependency set, and payload is the
value. V Cki consists of a set of 〈id, clock〉 pairs where the id is the ID of a function executor
thread that updated ki, and the clock represents that thread’s monotonically growing logical clock.
deps is a set of 〈dep key, V C〉 pairs representing key versions that ki depends on.

During writes, the V C and dependency set are modified as follows. Let thread e1 write ai.
Thread e2 then writes bj with ai → bj . ai will have V Cai = 〈〈e1, 1〉〉 and an empty dependency
set, and bj will have V Cbj = 〈〈e2, 2〉〉 and a dependency set 〈〈ai, V Cai〉〉. If another thread e3
writes bk such that bj → bk, then bk will have V Cbk = 〈〈e2, 2〉, 〈e3, 3〉〉 and a dependency set
〈〈ai, V Cai〉〉. In this example, 1, 2 and 3 are the values of logical clocks of e1, e2 and e3 during
the writes. Dependencies between versions of the same key are captured in the key’s V C, and
dependencies across keys are captured in the dependency set.

Given ai and aj , ai → aj ⇐⇒ V Cai → V Caj . Let E be a set that contains all executor
threads in our system. We define V Ci → V Cj as ∀e ∈ E | e /∈ V Ci ∨ V Ci(e) ≤ V Cj(e) and
∃e′ ∈ E | (e′ /∈ V Ci ∧ e′ ∈ V Cj) ∨ (V Ci(e

′) < V Cj(e
′)). In other words, V Cj “dominates” V Ci

if and only if all 〈id, clock〉 pairs of V Cj are no less than the matching pairs in V Ci and at least
one of them dominates. If ai 9 aj ∧ aj 9 ai, then ai is concurrent with aj , denoted as ai ∼ aj .

CC requires that if a function reads bj , which depends on ai (ai → bj), then the function can
subsequently only read ak | ak 9 ai—i.e. ak == ai, ai → ak, or ak ∼ ai.

Causal+ Consistency (CC+) [67] is an extension to CC that—in addition to guaranteeing
causality—ensures that replicas of the same key eventually converge to the same value. To en-
sure converence, we register a conflict resolution policy in Anna by implementing the following
definitions:

Definition 1 (Concurrent Version Merge). Given two concurrent versions ai and aj , let ak be a
merge of ai and aj (denoted as ak = ai ∪ aj). Then V Cak = V Cai ∪ V Caj = 〈〈e, c〉|〈e, ci〉 ∈
V Cai ∧ 〈e, cj〉 ∈ V Caj ∧ c = max(ci, cj)〉.

The merged V C is the key-wise maximum of the input V Cs. Note that the above definition has
a slight abuse of notation: e might not exist in one of the two V Cs. If 〈e, ci〉 /∈ V Cai , we simply
set 〈e, c〉 = 〈e, cj〉 ∈ V Caj and vice versa.

In addition to merging the V Cs, we also merge the dependency sets using the same
mechanism above. Finally, we merge the payloads by taking a set union (ak.payload =
〈ai.payload, aj.payload〉). When a function requests a key that has a set of payloads, applica-
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tions can specify which payload to return; by default we return the first element in the set to avoid
type error. If ai and aj are not concurrent (say ai → aj), then aj overwrites ai during the merge.

Transactional Causal Consistency (TCC) [4, 74] is a further extension of CC+ that guarantees
the consistency of reads and writes for a set of keys. Specifically, given a read set R, TCC requires
that R forms a causal snapshot.

Definition 2. R is a causal snapshot ⇐⇒ ∀(ai, bj) ∈ R, @ak | ai → ak ∧ ak → bj .

That is, for any pair of keys ai, bj in R, if ak is a dependency of bj , then ai is not allowed to
happen before ak; it can be equal to ak, happen after ak, or be concurrent with ak. Note that TCC
is stronger than CC+ because issuing a sequence of reads to a data store that guarantees CC+ does
not ensure that the keys read are from the same causal snapshot.

In the social network example, the application explicitly specifies that Alice’s photo update de-
pends on her permission update. TCC then ensures that the system only reveals the new permission
and the funny picture to the application, which rejects Bob’s request to view the picture.

TCC also ensures atomic visibility of written keys; either all writes from a transaction are seen
or none are. In our context, if a DAG writes ai and bj and another DAG reads ai and bk, TCC
requires bk == bj ∨ bj → bk.

4.2 HydroCache
In this section, we introduce the design of HydroCache and discuss how it achieves TCC for
individual functions executed at a single node. To achieve both causal snapshot reads and atomic
visibility, each cache maintains a single strict causal cut C (abbreviated as cut) which we define
below.

Definition 3. C is a cut ⇐⇒ ∀ki ∈ C,
∀dj ∈ get tuple(ki.deps), ∃dk ∈ C | dk == dj ∨ dj → dk.

A cut requires that for any dependency, dj , of any key in C, there is a dk ∈ C such that either
the two versions are equal or dk happens after dj . We formally define this notion:

Definition 4. Given two versions of the same key ki and kj , we say that ki supersedes kj
(supersede(ki, kj)) when ki == kj ∨ kj → ki. Similarly, given two sets of key versions T and S,
let K be a set of keys that appear in both T and S. We say that T supersedes S if ∀k ∈ K, let
ki ∈ T and kj ∈ S, we have supersede(ki, kj).

Note that a cut differs from a causal snapshot in two ways. First, cuts are closed under depen-
dency: If a key is in the cut, so are its dependencies. Second, the happens-before constraint in a
cut is more stringent than in a causal snapshot: The key dk must be equal-to or happen after every
dependency dj associated with other keys in the cut—concurrency is disallowed. We will see why
this is important in Section 4.2.2.
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Updating the Local Cut. HydroCache initially contains no data, so it trivially forms a cut, C.
When a function requests a key b that is missing from C, the cache fetches a version bj from
Anna. Before exposing it to the functions, the cache checks to see if all of bj’s dependencies are
superseded by keys already in C. If a dependency ai is not superseded, the cache fetches versions
of a, am, from Anna until ai is superseded by am. HydroCache then recursively ensures that all
dependencies of am are superseded. This process repeats until the dependencies of all new keys
are superseded. At this point, the cache updates C by merging the new keys with keys in C and
exposes them to the functions. If a cache runs out of memory during the merge of requested keys,
the requesting function is rescheduled on another node.

The cache “subscribes” to its cached keys with Anna, and Anna periodically pushes new ver-
sions to “refresh” the cache. New data is merged into C following the same process as above.
When evicting key k, all keys depending on k are also evicted to preserve the cut invariant.

In the rest of this section, we first discuss how HydroCache guarantees TCC at a single node—
providing a causal snapshot for the read set (Section 4.2.1) and atomic visibility for the write set
(Section 4.2.2). We then discuss garbage collection and fault tolerance in Section 4.2.3.

4.2.1 Causal Snapshot Reads
From Definition 3, we know that for any pair of keys ai, bj in a cut C, if ak → bj , then ai super-
sedes ak—either ak == ai ∨ ak → ai. This is stronger than the definition of a causal snapshot
(Definition 2), as that definition permits ak to be concurrent with ai. Since each function reads
from the cut in its local cache, the read set trivially forms a causal snapshot.

As we show below, this stricter form of causal snapshot (disallowing ak and ai to be concurrent)
also ensures atomic visibility. Therefore, from now on, we consider this type of causal snapshot
and abbreviate it as snapshot.

4.2.2 Atomic Visibility
Say a function writes two keys, ai and bj; in order to make them atomically visible, HydroCache
makes them mutually dependent—ai → bj and bj → ai. If another function reads a snapshot that
contains ai and bk, since bj → ai, the snapshot ensures that bk == bj ∨ bj → bk, satisfying atomic
visibility. When executing a DAG, in order to ensure that writes across functions are mutually
dependent, all writes are performed at the end of the DAG at the sink function.

There is, however, a subtle issue. Recall that V Cs consist of the IDs of threads that modify a
key along with those threads’ logical clocks. All functions performing writes through an executor
thread share the same ID. This introduces a new challenge: Consider two functions F and G both
using executor e to write key versions ai and aj . When e writes these two versions—say ai first,
then aj—ai may be overwritten since e attaches a larger logical clock to V C(e) of aj . However,
ai and aj may in fact be logically concurrent (ai ∼ aj) since F may not have observed aj before
writing ai and vice versa. This violates atomic visibility: If a function writes ai and bk, ai can be
overwritten by a concurrent version from the same thread. For a later read of a and b, bk is visible
but ai is lost.
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To prevent this from happening, each executor thread keeps the latest version of keys it has
written. When a function writes ai at executor e, e inspects its dependency set to see whether this
write depends on the most recent write of the same key, alatest, performed by e. If so, e advances its
logical clock, updates V Cai(e), writes to Anna, and updates alatest to ai. If not, then ai ∼ alatest.
This is because since alatest is not in ai’s dependency set, alatest 9 ai, and since e wrote alatest
before ai, ai 9 alatest. Since the versions are not equal, we have ai ∼ alatest. In this case, e first
merges ai and alatest following Definition 1 to produce ak, advances its logical clock and updates
V Cak(e), writes to Anna, and sets alatest to ak. Doing so prevents each executor from overwriting
keys with a potentially concurrent version.

4.2.3 Discussion

Dependency Metadata Garbage Collection. Causal dependencies accumulate over time. For a
key bj | ai → bj , we can safely garbage collect 〈ai, V Cai〉 ∈ bj.deps if all replicas of a supersede
ai. We run a background consensus protocol to periodically clear this metadata.

Fault Tolerance. When writes to Anna fail due to storage node failures or network delay, they
are retried with the same key version, guaranteeing idempotence. Function and DAG executions
are at least once. Heartbeats are used to detect node failures in the compute layer, and unfinished
functions and DAGs at a failed node are re-scheduled at other nodes.

4.3 MTCC Protocols
Although the design introduced in Section 4.2 guarantees TCC for individual functions executed at
a single node, this is insufficient for serverless applications. Recall that a DAG in Cloudburst con-
sists of multiple functions, each of which can be executed at a different node. To achieve TCC for
the DAG, we must ensure that a read set spanning multiple physical sites forms a distributed snap-
shot. A naı̈ve approach is to have all caches coordinate and maintain a large distributed cut across
all cached keys at all times. This is infeasible in a serverless environment due to the enormous
traffic that protocol would generate amongst thousands of nodes.

In this section, we discuss a set of MTCC protocols we developed to address this challenge
while minimizing coordination and data shipping overheads across caches. The key insight is
that rather than eagerly constructing a distributed cut, caches collaborate to create a snapshot of
each DAG’s read set during execution. This leads to significant savings for two reasons. First,
snapshots are constructed per-DAG; the communication to form these snapshots is combined with
that of regular DAG execution, without any global coordination. Second, snapshots are restricted
to holding the keys read by the DAG, whereas a cut must include all keys’ transitive dependencies.

We start with the centralized (CT) protocol in which all functions in a DAG are executed at
a single node. We then introduce three protocols—optimistic (OPT), conservative (CON), and
hybrid (HB)—that allow functions to be executed across different nodes. Throughout the rest of
this section, we assume the read set of each function is known, but we return to cases in which the
read set is unknown in Section 4.3.6.
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4.3.1 Centralized (CT)
Under CT, all functions in a DAG are executed at a single node, accessing a single cache. This
significantly simplifies the challenge of providing TCC, as we do not need to worry about whether
reads from cuts on different nodes form a snapshot. Before execution, the cache creates a snapshot
from the local cut that contains the read set of all functions in the DAG. All reads are serviced
from the created snapshot to ensure that they observe the same cut, regardless of whether the cut is
updated while the DAG is executing.

The main advantage of CT is its simplicity: Since all functions are executed on the same
node, there is no network cost for passing results across nodes. However, CT suffers from some
key limitations. First, it constrains scheduling: Scheduling happens at the DAG level instead
of at the level of individual functions. The distributed nature of our scheduler sometimes leads
to load imbalances, as schedulers do not have a global view of resource availability. When the
scheduling granularity becomes coarse (from function to DAG), the performance penalty due to
load imbalance will be amplified. Second, CT requires the data requested by all functions to be
co-located at a single cache. The overheads of fetching data from remote storage and constructing
the cut can be significant if there are many cache misses or if the read set is large. Finally, CT
limits the amount of parallelism in a DAG to the number of executor threads on a single node.
In Section 4.4.2, we evaluate these limitations and quantify the trade-off between CT and our
distributed protocols.

4.3.2 Towards Distributed Snapshots
The goal of our distributed protocols below is to ensure that each DAG observes a snapshot as
computation moves across nodes. This requires care, as reading arbitrary versions from the various
local cuts may not correctly create a snapshot.

Theorems

Before describing our protocols, we present simple theorems and proofs that allow us to combine
data from each node to ensure the distributed snapshot property.

Definition 5 (Keysets and Versionsets). A keyset R̃ is a set of keys without specified versions. A
versionset R is a binding that maps each k ∈ R̃ to a specific version ki.

In subsequent discussion, we notate keysets with a tilde above. As a mild abuse of notation,
we will refer to the intersection of a keyset K̃ with a versionset V ; this is the maximal subset of
V whose keys are found in the keyset K̃. Each element in the versionset only contains the key
identifier and its V C; dependency and payload information are not included.

Definition 6 (Keyset-Overlapping Cut). Given a versionset V and a keyset K̃, we say that V is
a keyset-overlapping cut for K̃ when ∀ki ∈ V, we have k ∈ K̃ ∧ ∀dj → ki, if d ∈ K̃, then
∃djs ∈ V | supersede(djs, dj).
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In essence, a keyset-overlapping cut for K̃ is similar to a cut with the relaxation that it only
consists of keys and dependencies that overlap with K̃.

Lemma 1. Given a keyset K̃ and a cut C, S = C ∩ K̃ is a keyset-overlapping cut for K̃.

Proof. This follows directly from Definition 6. S is the intersection of the versionset C and K̃; the
fact that C is a cut ensures that the conditions of Definition 6 hold.

Definition 7 (Versionset Union). Given two versionsets V1 and V2, their union V3 = V1 ∪ V2

includes all keys km such that:

km =


ki ∈ V1 @kj ∈ V2

ki ∈ V2 @kj ∈ V1

ki ∪ kj ∃ki ∈ V1 ∧ ∃kj ∈ V2

We show keyset-overlapping cuts are closed under union:

Theorem 1 (Closure Under Union). Given keyset K̃, let S1 = C1 ∩ K̃, S2 = C2 ∩ K̃ be keyset-
overlapping cuts for K̃. Then S3 = S1 ∪ S2 is a keyset-overlapping cut for K̃.

Proof. Let k3 ∈ S3 and d3 → k3. Since S3 = S1 ∪ S2, we know k3 = k1 ∪ k2 where k1 ∈ S1,
k2 ∈ S2, and d3 = d1 ∪ d2 where d1 → k1, d2 → k2.

If d ∈ K̃, according to Definition 6, ∃d1s ∈ S1 | supersede (d1s, d1) and ∃d2s ∈ S2 |
supersede(d2s, d2). It follows that supersede(d1s∪d2s, d1∪d2), where d1∪d2 = d3 and d1s∪d2s =
d3s ∈ S3; we have supersede(d3s, d3). This holds for all dependencies in K̃. We omit cases where
@k1 ∈ S1 or @k2 ∈ S2 as they follow trivially from set union and Definition 6. Therefore, S3 is a
keyset-overlapping cut for K̃.

We conclude with a simple lemma that ensures the snapshot property that is the goal of our
protocols in this section.

Lemma 2. Every keyset-overlapping cut is a snapshot.

Proof. Let S be a keyset-overlapping cut for keyset K̃. For (ai, bj) ∈ S, if ak → bj , since
a ∈ K̃, from Definition 6 we know supersede(ai, ak). The same holds for other pairs of keys in
S. Therefore, S is a snapshot.

4.3.3 Optimistic (OPT)
OPT is our first MTCC protocol. The idea is to eagerly start running the functions in a DAG
and check for violations of the snapshot property at the time of each function execution. If no
violations are found—e.g. when updates are infrequent so the cuts at different nodes are roughly
in sync—then no communication costs need be incurred by constructing a DAG-specific snapshot
in advance. Even when violations are found at some node, we can potentially adjust the versionset
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being read at that node to re-establish the snapshot property for the DAG. However, we will see
that in some cases the violation cannot be fixed, and we must restart the DAG.

OPT validates the snapshot property in two cases: when an upstream function triggers a down-
stream function (linear flow), and when multiple parallel functions accumulate their results (paral-
lel flow). We present an algorithm for each case.

Linear Flow Validation

In the linear flow case, we have an “upstream” function in the DAG that has completed with its
readset bound to specific versions, and an about-to-be-executed “downstream” function whose
readset is still unbound. If we are lucky, the current cut at the downstream node forms a snapshot
with the upstream function’s readset; if not, we will try to modify the downstream readset to suit.

Specifically, given a versionset Ru read until now in the DAG, a downstream function Fd must
bind a keyset R̃d to a versionset Rd, where Rd ∪ Ru is a snapshot. This require two properties:
(Case I) Rd supersedes Ru’s dependencies, Ru.deps (see Definition 4), and (Case II) Ru supersedes
Rd.deps.

Algorithm 6 shows the validation process. When an upstream function Fu triggers Fd, it sends
the results (Ru, Su) from running Algorithm 6 on Fu. Ru is the versionset read by Fu and any of
its upstream functions. Su is a versionset with two properties: It is a keyset-overlapping cut for the
DAG’s read set (R̃DAG), and Ru ⊆ Su—all keys in Ru are present in Su. Since Su is a snapshot
(Lemma 2), we know Su supersedes the dependencies of Ru. We show later how Su is constructed
and prove its properties in Theorem 2. Recall that Su and Ru only contain the id and vector clock
for each key. Dependency metadata and payloads are not shipped across functions.

In lines 1-2 of Algorithm 6, we check if the upstream validation process decided to abort (a is
an abort flag from the upstream). If so, we also abort. Otherwise, beginning on line 3, we ensure
that the keys R̃d to be read in Fd are available. For each k ∈ R̃d that is not present in the local
cut C, if k exists in Su as ki, we add it to the versionset Rremote (line 6); it will be fetched from
upstream at the end of the algorithm. Otherwise, we update C to include k (line 8) following the
Local Cut Update process described in Section 4.2.

Next, we begin handling the two cases mentioned above. In Case I (lines 9-12), we start by
forming a candidate mapping for R̃d, Rlocal, by simply binding R̃d to the overlap of the local cut C
(line 9). We then check each element of Rlocal to see if it supersedes the corresponding element of
Ru.deps. It is sufficient to check if each element of Rlocal supersedes the corresponding element
of Su, which in turn supersedes the element of Ru.deps. When we discover a violation, we add the
corresponding key from Su to Rremote.
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Algorithm 6 Linear Flow Validation

Input: a, Su, Ru, R̃d, R̃DAG, C
1: if a == True then
2: return “Abort”
// Ensure all keys in R̃d are available for execution
3: Rremote := ∅
4: for k ∈ R̃d do
5: if ki /∈ C ∧ kj ∈ Su then
6: Rremote.add(kj)
7: else if ki /∈ C ∧ kj /∈ Su then
8: C.update(k)
// Case I
9: Rlocal := C ∩ R̃d

10: for ki ∈ Su do
11: if kj ∈ Rlocal∧!supersede(kj , ki) then
12: Rremote.add(ki)

// Case II
13: abort := False
14: S map := {} // an empty map
15: for ki ∈ Rlocal do
16: Si = RetrieveCut(k, R̃DAG, C) // Algorithm 7
17: S map[ki] = Si

18: for mi ∈ Si do
19: if mj ∈ Ru∧!supersede(mj ,mi) then
20: // key k violates Case II. Try to move it to Rremote

21: if kj /∈ Su then // cannot read k from upstream to fix
22: abort = True
23: break
24: else // can read k from upstream to fix
25: Rremote.add(kj)
26: Rlocal.remove(ki)
27: if abort then
28: return “Abort”
29: else
30: Sd := ∅
31: for ki ∈ Rlocal do
32: Sd = Sd ∪ S map[ki]

33: Sd.version() // create temporary versions for keys in Sd

34: Rd := Rlocal

35: for ki ∈ Rremote do
36: Rd.merge(fetch(ki))
37: return Snew u = Su ∪ Sd, Rnew u = Ru ∪Rd

In Case II (line 13), we ensure that Ru supersedes Rd.deps. To do so, we identify elements in
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Algorithm 7 RetrieveCut

Input: k, R̃DAG, C
1: C ′ := ∅
2: to check := {ki ∈ C} // ki is the version of k in C
3: while to check 6= ∅ do // transitively add dependencies
4: for vj ∈ to check do . // of k to construct the cut C ′

5: for dk ∈ vj .deps do
6: if dl /∈ C ′ then // C ′ does not contain d
7: C ′.add(dm ∈ C)
8: to check.add(dm ∈ C)
9: to check.remove(vj)

10: return C ′ ∩ R̃DAG // a keyset-overlapping cut for R̃DAG

Rlocal whose dependencies are not superseded by the corresponding keys in Ru (line 19).
For ki ∈ Rlocal, it is sufficient to construct Si, a keyset-overlapping cut for R̃DAG that contains

ki and check if Ru supersedes Si. Si is created as follows: we first construct a cut C ′ from C that
includes ki and intersect C ′ with R̃DAG to get Si (Algorithm 7). According to Lemma 1, Si is a
keyset-overlapping cut for R̃DAG. We remove elements not in R̃DAG as they need not be checked
for supersession. This optimization significantly reduces the amount of causal metadata we ship
across nodes (line 10 of Algorithm 7).

If Ru does not supersede Si, then ki cannot be included in Rd, and we try to use the upstream
versions instead. If k does not exist upstream, we fail to form a snapshot and abort (lines 21-22).
Otherwise, we add an older version kj ∈ Su to Rremote (line 25) and remove ki from Rlocal (line
26).

At this point we can construct Sd, a union of all keyset-overlapping cuts for R̃DAG that su-
persedes dependencies of Rlocal (lines 31-32). By Theorem 1, Sd is a keyset-overlapping cut for
R̃DAG. The cache creates temporary versions that are stored locally for keys in Sd in case they
need to be fetched by other caches during the distributed snapshot construction (line 33). Finally,
we initialize Rd to Rlocal and fetch the keys in Rremote to merge into Rd. Rd is now provided to
Fd for execution, and Snew u = Su ∪ Sd, Rnew u = Ru ∪ Rd are used for validation in subsequent
functions.

Correctness. Snew u passed to subsequent functions must have the same properties as Su. Recall
that Su has two properties. First, it is a keyset-overlapping cut for R̃DAG. Second, Ru ⊆ Su. For
the first property, recall that Sd is also a keyset-overlapping cut for R̃DAG. Hence by Theorem 1, we
know Snew u = Su∪Sd is also a keyset-overlapping cut for R̃DAG. We now show Rnew u ⊆ Snew u.

Theorem 2. If the validation process in Algorithm 6 succeeds, let Rnew u = Ru∪Rd and Snew u =
Su ∪ Sd. Then Rnew u ⊆ Snew u.

Proof. We prove by induction. We first prove the base case where there is no upstream. In this
case, Ru = ∅, Su = ∅, so it is sufficient to show Rd ⊆ Sd. Recall by construction Sd contains all
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Algorithm 8 Parallel Flow Validation
Input: (S1, R1, a1), (S2, R2, a2), ..., (Sn, Rn, an)

1: a :=
n∨

i=1
ai

2: if a == True then
3: return “Abort”
4: S :=

n⋃
i=1

Si

5: for i ∈ [1, n] do
6: for km ∈ Ri do
7: if !supersede(km, kn ∈ S) then
8: return “Abort”
9: R :=

n⋃
i=1

Ri

10: return S, R

keys in Rlocal (line 34-35). Since there is no upstream function, we do not fetch any data to update
Rd (line 39), so we have Rd = Rlocal. Hence, Rnew u ⊆ Snew u.

Inductive hypothesis: Given Ru, Su such that Ru ⊆ Su, we want to show Rnew u ⊆ Snew u. It
is sufficient to show that Ru ⊆ Snew u and Rd ⊆ Snew u. For the first part, let ki ∈ Ru, km ∈ Sd

and kj ∈ (Su ∪ Sd). Since Ru ⊆ Su, we know ki ∈ Su, and therefore kj = ki ∪ km. Since Case
II of the validation process ensures that supersede(ki, km), we know ki ∪ km = ki, and therefore
ki == kj . If km /∈ Sd, it is trivially true that ki == kj . Hence, Ru ⊆ Snew u.

We now prove the second half of the inductive hypothesis. If k ∈ R̃d, there are two cases:
either k is read from C (and potentially from upstream) or k is not read from C. In the first case,
let km ∈ C. By construction, we know km ∈ Sd. Suppose kj ∈ Su and ki ∈ Rd. If k is also read
from the upstream, then ki = km ∪ kj . Otherwise, ki = km. Note that since Case I ensures that
supersede(ki, kj), we can still express ki as km ∪ kj . Therefore, regardless of whether k is read
from the upstream, we always have ki = km ∪ kj . Also, since km ∈ Sd and kj ∈ Su, we know
ki = (km ∪ kj) ∈ (Su ∪ Sd). We now have Rd ⊆ Snew u. If k is not read from C, ki ∈ Rd is read
from Su, so ki ∈ Su, and Case II ensures that kj /∈ Sd. Hence Rd ⊆ Snew u, and Snew u has the
same properties as Su.

Parallel Flow Validation

When multiple parallel upstream functions (U1, U2, ..., Un) accumulate their results to trigger a
downstream function, we need to validate if the versionsets read across these parallel upstreams
form a snapshot. To this end, we check if their read sets (R1, R2, ..., Rn) supersede (S1, S2, ..., Sn),
each Si being a keyset-overlapping cut for R̃DAG that contains each upstream Ui’s read set Ri.

In Algorithm 8, we first check if any upstream function aborts due to linear flow validation. If
so, we also abort. Otherwise, we create S, a union of all upstream Sis that contains the read sets of
all parallel upstreams; it follows that S supersedes the dependencies of all parallel upstream read
sets. For each km in each read set Ri, we check if km supersedes the corresponding kn ∈ S. Since
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Algorithm 9 CreateSnapshot

Input: R̃i, R̃DAG, C
1: for k ∈ R̃i — k /∈ C do
2: C.update(k)
3: Si := ∅
4: for k ∈ R̃i do
5: Si = Si∪ RetrieveCut(k, R̃DAG, C) // Algorithm 7
6: Si.version() // create temporary versions for keys in Si

7: return Si

Algorithm 10 Distributed Snapshot Construction

Input: (F1, R̃1), (F2, R̃2), ..., (Fn, R̃n), R̃DAG

1: S := ∅
2: R := [] // empty list
3: for i ∈ [1, n] do
4: Si = Fi.GetCache.CreateSnapshot(R̃i, R̃DAG) // Algorithm 9
5: Ri = Si ∩ R̃i

6: R.append(Ri)
7: S = S ∪ Si

8: Rremote := {} // an empty map
9: for Ri ∈ R do

10: for km ∈ Ri do
11: if !supersede(km, kn ∈ S) then
12: Rremote[i].add(kn) // cache i needs to fetch kn

13: for i ∈ Rremote do
14: Fi.GetCache.Fetch(Rremote[i])

we are validating between parallel upstreams whose functions have already been executed, OPT
cannot perform any “repair” as in Algorithm 6. Therefore, if validation fails, we abort. Note that
S has exactly the same properties as Si if validation succeeds. We omit the proof as it is almost the
same as Theorem 2.

4.3.4 Conservative (CON)
CON is the opposite of OPT: Instead of lazily validating read sets as the DAG progresses, the
scheduler coordinates with all caches involved in the DAG request to construct a distributed snap-
shot of R̃DAG before execution. Each function’s corresponding cache first creates Si, a keyset-
overlapping cut for R̃DAG, such that Si contains the function’s read set. According to Theorem 1
and Lemma 2, the distributed snapshot S can then be formed by taking the union of all Sis.

In Algorithm 10, the scheduler instructs each function Fi’s cache to create Si (line 4) via
Algorithm 9. If a key in R̃i is missing from C, the cache updates C to include the key (lines
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1-2 of Algorithm 9). Then, for each key k ∈ R̃i, the cache creates a keyset-overlapping cut for
R̃DAG that includes k and unions all the keyset-overlapping cuts to create Si (line 5). It then
creates temporary versions for keys in Si in case they need to be fetched by other caches during the
distributed snapshot construction (line 6). After that, the scheduler forms Ri, the versionset that Fi

reads from the local cut, by binding R̃i to the overlap of Si (line 5 of Algorithm 10). After all Sis
are created, the scheduler unions them to create S (line 7). It then inspects the Ri of each function.
If a key km ∈ Ri cannot supersede kn ∈ S (line 11), then the corresponding cache fetches from
remote caches to match kn (line 14). The scheduler only begins execution after all remote reads
finish; each function reads from a partition of S.

4.3.5 Hybrid (HB)
The OPT protocol starts a DAG immediately without coordination but is susceptible to aborts, and
there is no guarantee as to how many times it retries before succeeding. On the other hand, the
CON protocol never aborts but has to pay the cost of coordinating with all caches involved in a
request to construct a distributed snapshot.

The hybrid protocol (HB) combines the benefits of the OPT and CON protocols. HB (run by
the scheduler) starts the OPT subroutine and simultaneously performs a simulation of OPT. This
simulation is possible because OPT only needs the read set of each function and the local cut
at each cache to perform validation, and the simulation process can get the same information by
querying the caches. The simulation is much faster than executing the request because no functions
are executed and no causal metadata is passed across nodes. The CON subroutine is activated only
when the simulation aborts. HB includes some key optimizations that enable the two subroutines
to cooperate to improve performance.

Pre-fetching. After the simulation, we know what data must be fetched from remote storage
during each function’s validation process (Algorithm 6). In this case, the HB protocol notifies
caches involved in the request to pre-fetch relevant data before the OPT subroutine reaches these
caches.

Early Abort. When our simulation aborts, HB notifies all caches to stop the OPT process to save
unnecessary computation. This is especially useful for DAGs with parallel functions: A function
is not aware that a sibling has aborted in Algorithm 6 until they “meet” and abort in Algorithm 8.

Function Result Caching. After each function is executed under OPT, its result and key versions
read are stored in the cache. If OPT aborts, the function is re-executed under CON, and if CON’s
key versions match the original execution’s, we skip execution and retrieves the result from the
cache. This data is cleared immediately after the DAG finishes.

4.3.6 Discussion
We now discuss a few important properties of our MTCC protocols and how to handle cases when
R̃DAG is unknown.
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Interaction with Autoscaling. Recall the naı̈ve approach at the beginning of Section 4.3 in which
all caches coordinate to maintain a large distributed cut at all times. Such an approach requires
knowing the membership of the system, which dynamically changes in a serverless setting. This
protocol will thus require expensive coordination mechanisms to establish cluster memberhsip
before each cut update; the autoscaling policy cannot act while the cut is being updated.

On the other hand, none of protocols described in this section rely on node membership to
achieve TCC. Each cache independently maintains its own cut, and only a small number of caches
involved in a DAG request needs to communicate to ensure the snapshot property. Therefore,
HydroCache guarantees TCC in a way that is orthogonal to autoscaling.

Repeatable Read. If two functions in a single request both read key k, it is natural to expect that
they will read the same version of k [19]. The CT and CON protocols trivially achieve repeatable
read because their snapshots are constructed prior to DAG execution. For OPT, repeatable read is
a simple corollary of Theorem 2. Given Ru, Rd, Snew u, ki ∈ Ru ⇒ ki ∈ Snew u, and kj ∈ Rd ⇒
kj ∈ Snew u. Hence ki == kj , and OPT and HB achieve repeatable read.

Versioning. Our protocols do not rely on aggressive multi-versioning; they create temporary ver-
sions (line 33 of Algorithm 6 and line 6 of Algorithm 9) so that remote caches can retrieve the
correct versions of keys to construct snapshots. These versions are garbage collected after each
request finishes, significantly reducing storage overhead.

Unknown Read Set. When the readset is unknown, CON can no longer pre-construct the dis-
tributed snapshot. Instead, we rely on OPT to “explore” the DAG’s read set as the request pro-
gresses and validate if the keys read so far form a snapshot. When the validation fails, we invoke
CON to construct a distributed snapshot for all keys read thus far before retrying the request. This
way, the next trial of OPT will not abort due to causal inconsistencies between keys that we have
already explored. We switch between OPT and CON until the read sets of all functions in the DAG
are fully explored.

With an unknown R̃DAG, we can no longer perform the optimization in line 10 of Algorithm 7
to reduce causal metadata shipped across nodes. Finally, as OPT explores new keys, the protocol
may abort multiple times. However, in practice, a DAG will likely only read a small number
of keys that are updated very frequently. These keys are the primary culprits for aborts, and the
number of aborts will roughly be bounded by the number of such write-heavy keys.

4.4 Evaluation
This section presents a detailed evaluation of HydroCache. We first study aspects of HydroCache
in isolation: MTCC’s performance (§4.4.2), a comparison to other consistency models (§4.4.3), and
scalability (§4.4.4). We then evaluate HydroCache’s broader benefits by comparing its performance
and consistency against cache-less architectures (§4.4.5).
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4.4.1 Experiment Setup and Workload
Our experiments were run in the us-east-1a AWS availability zone (AZ). Function schedulers
were run on AWS c5.large EC2 VMs (2 vCPUs and 4GB RAM), and compute nodes used
c5.4xlarge EC2 VMs (16 vCPUs and 32GB RAM); hyperthreading was enabled. Each com-
pute node had 3 function executors that shared a HydroCache. Cloudburst was deployed with
3 scheduler nodes; the system’s auto-scaling policy enforced a minimum of 3 compute nodes (9
Python execution threads and 3 caches total). Clients were run on separate machines in the same
AZ.

Unless otherwise specified, for each experiment, we used 6 concurrent benchmark threads,
each sequentially issuing 500 DAG execution requests. The cache “refresh” period for cut updates
was set to 100ms. Our dataset was 1 million keys, each with an 8-byte payload. Caches were
pre-warmed to remove the data retrieval overheads from the KVS.

Our benchmarks evaluate two DAG topologies: a linear DAG and a V-shaped DAG. Linear
DAGs are chains of three sequentially executed functions, where the result of each upstream func-
tion is passed in as an argument to the downstream function. V-shaped DAGs also contain three
functions, but the first two functions are executed in parallel, and their results are passed as argu-
ments to the third function.

Every function takes two arguments, except for the sink function of the V-shaped DAG, which
takes three arguments. The arguments are either a reference to key in Anna (drawn from a Zipfian
distribution) or the result of an upstream function. At the end of a DAG, the sink function writes its
result into a key randomly chosen from the DAG’s read set; the write is causally dependent on the
keys in the read set. Each function returns immediately to eliminate function execution overheads,
and we assume the read set is known.

4.4.2 Comparison Across Protocols
In this section, we evaluate the protocols proposed in Section 4.3. Figure 4.2 shows the end-to-end
DAG execution latency for our protocols, with varying topologies and Zipfian distributions (1.0,
1.25, and 1.5). Our experiments show that HB has the best performance of the three distributed
protocols and highlight a trade-off between CT and HB, which we discuss in more detail. We omit
discussion of the experiments with a Zipfian coefficient of 1.25, as the performance is in between
that of the other two contention levels.

Centralized (CT) achieves the best median latency in all settings because each request has only
one round of communication with a single cache to create its snapshot before execution. This
avoids the additional overhead of passing causal metadata across caches; neither DAG topology nor
workload contention affect performance. Furthermore, function results within a DAG are passed
between threads rather than between nodes, avoiding expensive network latencies. Nonetheless,
its 99th percentile latency is consistently worse than the conservative protocol’s (CON) and the
hybrid protocol’s (HB), because requiring all functions to execute on a single node leads to more
load imbalance (Section 4.3.1).
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Figure 4.2: Median (bar) and P99 (whisker) latencies across different protocols for executing
linear and V-shaped DAGs.

Optimistic (OPT) achieves excellent performance for linear DAGs (Figure 4.2 (a)) when the Zip-
fian coefficient is set to 1.0, a moderately contended distribution. Key accesses are spread across
the entire key space, so each read likely accesses the most recent update, which has already been
propagated and merged into the cut of all caches. As a result, 88% of DAG executions see local cuts
that form a distributed snapshot without any intervention, significantly improving performance.

For the most contended workload (Zipf=1.5), the median latency increases by 40% due to in-
creased data shipping costs (line 39 of Algorithm 6) to construct a snapshot; data shipping occurred
in 82% of DAG executions. Correspondingly, 99th percentile latency was 2.1× worse. Under high
contention, the probability of the OPT protocol’s validation phase failing increases, which leads to
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HB Subroutines (Linear)

OPT Metadata Only OPT Data Fetch CON

Z
ip

f

1.0 90% 7% 3%

1.25 37% 55% 8%

1.5 10% 81% 9%

Table 4.1: Percentage of different HB subroutines activated across contention levels for linear DAGs.
The first column shows when OPT subroutine succeeds and only causal metadata is passed across nodes.
The second column means the OPT subroutine succeeds but data is shipped across nodes to construct the
snapshot. In the third column, OPT subroutine aborts and the DAG is finished by the CON subroutine with
data shipping.

HB Subroutines (V-shaped)

OPT Metadata Only OPT Data Fetch CON

Z
ip

f

1.0 83% 5% 12%

1.25 29% 17% 54%

1.5 10% 12% 78%

Table 4.2: Percentage of different HB subroutines activated across different contention levels for V-shaped
DAGs.

more aborts and retries. In this experiment, 8% of the DAGs aborted at least once, and in the worst
case, a DAG was retried 7× before succeeding.

OPT performs similarly for V-shaped DAGs (Figure 4.2 (b)). The key difference is that in-
creasing contention significantly degrades 99th percentile latencies. By design, OPT is unaware
of the causal metadata required across the two parallel functions until parallel flow validation (Al-
gorithm 8). The probability of validation failure is much higher since repair cannot be performed
during Algorithm 8. For the most contended workload, 75% of DAGs were aborted at least once;
in the worst case, a request required 14 retries.

Conservative (CON)’s median latency is 40% higher than OPT’s due to the coordination prior to
DAG execution. However, 99th percentile latency is more stable for high-contention workloads,
with an increase of 1ms from the least to most contention. Each cache already has a snapshot for
the DAG’s read set before executing, so requests never abort.

Hybrid (HB) offers the best median and 99th percentile latency in all settings. To explain the per-
formance improvements, Tables 4.1 and 4.2 show how often each protocol subroutine was activated
for each topology and contention level.

Under moderate contention (Zipf=1.0), HB has OPT’s advantages of immediately executing
the DAG without coordination. We see that in a large majority of cases—90% for linear DAGs
and 83% for V-shaped DAGs—no data fetching is required; the OPT subroutine of HB simply
passes causal metadata along the DAG. Much of the DAG has already been executed under HB
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by the time the CON protocol finishes constructing its snapshot. This explains the 44% and 38%
improvements in median latency for linear DAGs and V-shaped DAGs, respectively.

Under high contention (Zipf=1.5), HB offers 35% better median latency than CON for linear
DAGs. However, for V-shaped DAGs, the performance improvement is less than 15%. The reason,
seen in Table 4.2, is that the OPT subroutine aborts frequently under high contention: In 78% of
the cases, the CON subroutine is activated. Nevertheless, for the remaining 22% of requests, the
OPT subroutine succeeds, leading to a moderate improvement in median latency.

Interestingly, the median latency of HB is even lower than OPT. There are two reasons for
this: First, the CON subroutine prevents aborts to which OPT is susceptible. Second, while the
OPT subroutine executes, the CON subroutine pre-fetches data to help OPT construct the snapshot
(see Section 4.3.5). At the 99th percentile, HB matches the performance of CON and significantly
outperforms OPT due to the avoided aborts.

Takeaway: HB consistently achieves the best performance among the distributed protocols, by
taking advantage of optimistic execution while avoiding repeated aborts.

Centralized vs. Hybrid

From the previous section, it is clear that HB is the best distributed protocol, but CT achieves better
median latencies while compromising on 99th percentile latencies. We now turn to the question of
whether our system should choose to use CT, as it is a simpler protocol that achieves reasonable
performance.

As discussed in Section 4.3.1, CT has three key limitations: coarse-grained scheduling, forcing
all data to a single node, and limited parallelism. In this section, we have not seen the data retrieval
overhead as all caches were warmed up in advance. As we show in Section 4.4.5, the overhead of
remote data fetches can be significant, especially for large data.

To better understand the limitation due to parallelism, we use a single benchmark thread to
issue V-shaped DAGs with varying fanout (number of parallel functions), ranging from 1 to 9.
To emphasize the performance gains from parallelism, each parallel function executes for 50ms,
and the sink function returns immediately (for brevity, no figure is shown for this experiment).
We observe that under a workload with moderate contention, HB’s performance (median latency)
is relatively stable, as it parallelizes sibling functions across nodes. However, CT executes all
functions on the same node, so parallelism is limited to the three executors on that node. Therefore,
we observe latency jumps as fanout grows from 3 to 4 and from 6 to 7. For DAGs with fanout
greater than 7, HB outperforms CT by 3×.

Takeaway: Many factors affect the optimal protocol for a given workload, including load bal-
ancing, cache hits rates, and the degree of parallelism within a DAG. In general, the HB protocol
offers the most flexibility.

4.4.3 Consistency Overheads
In this section, we compare the performance of the HB protocol against two weaker consistency
protocols (last-writer-wins (LWW) and Bolt-on Causal Consistency (BCC) [17]) and one strong
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Figure 4.3: Median and P99 latencies between LWW, BCC, HB, and simulated SI protocols.

consistency protocol (Snapshot Isolation (SI)). We begin by discussing LWW and BCC and re-
turn to SI in Section 4.4.3. We evaluate linear DAGs in this experiment and vary the workload’s
contention level.

The LWW protocol attaches a timestamp to each write, and concurrent updates are resolved by
picking the write with the largest timestamp. LWW only guarantees eventual replica convergence
for individual keys but offers the best performance as there are no constraints on which key ver-
sions can be read. BCC only guarantees CC+ (see Section 4.1.2) for keys read within individual
functions.

As shown in Figure 4.3 LWW and BCC are insensitive to workload skew. No causal metadata
need be passed across nodes, and no data is shipped to construct a distributed snapshot. HB, as
discussed previously (Section 4.4.2), incurs higher overheads under high contention due to the data
fetching overhead incurred by the OPT subroutine and the coordination overhead incurred by the
CON subroutine.

Under moderate contention (Zipf=1.0), HB matches the performance of BCC and is 62%
slower than LWW. Under high contention, HB is 44% slower than BCC and 2× slower than LWW.
However, Table 4.1 shows that 90% of DAGs require data shipping across caches under high con-
tention. Since BCC does not account for multiple caches, over 90% of the BCC requests violated
the TCC guarantee.

In addition to latency, we measure the maximum causal metadata storage overhead for each
key in the working set for the HB protocol. Under moderate contention (Zipf=1.0), the median
metadata overhead is 120 bytes and the 99th percentile overhead is 432 bytes. Under high con-
tention (Zipf=1.5), the median and the 99th percentile overheads increase to 300 bytes and 852
bytes, respectively. Under high contention, both the keys’ vector clock lengths and dependency
counts increase: The 99th percentile vector clock length is 9 and the dependency count is 7.
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Snapshot Isolation

HydroCache relies on Anna for its storage consistency; both components are coordination-free
by design. However, there are databases that provide “strong” isolation with serverless scaling.
Notably, AWS Serverless Aurora [91] provides Snapshot Isolation (SI) via its PostgreSQL config-
uration. SI is stronger than TCC in two ways: (1) it guarantees that reads observe all committed
transactions, and (2) at commit time, SI validates writes and aborts transactions that produce write-
write conflicts. TCC allows transactions to observe stale data and also allows concurrent updates,
asynchronously resolving conflicts via the convergent conflict resolution policy (set union in our
case).

To determine whether a strongly consistent serverless framework could compete with Hydro-
Cache and Anna, we conduct two experiments. As a baseline, we replace Anna with Aurora-
PostgreSQL (with SI) and measure performance. We warm the Aurora database by querying every
key once in advance of the experiment, so that all future requests hit Aurora’s buffer cache and
there are no disk accesses on the critical path. Second, we perform a more apples-to-apples com-
parison using HydroCache and Anna, replaying the cache misses and abort/retry patterns observed
in Aurora.

In the first experiment, we observe that SI is over an order of magnitude slower than HB at
both the median and the 99th percentile across all contention levels. (Due to space constraints, no
figure is shown for this experiment.) There are four likely reasons for this gap. The first three echo
the guarantees offered by SI. (a) Guarantee (1) requires that when a transaction first reads any key
k, it must bypass our cache and fetch k from an up-to-date database replica. (b) Both guarantees
(1) and (2) require coordination inside Aurora to ensure that replicas agree on the set of committed
transactions. (c) Guarantee (2) causes transactions to abort/retry. The fourth reason is a matter of
system architecture: (d) Aurora is built on PostgreSQL, almost certainly resulting in more query
overhead than HydroCache and Anna.

The absolute numbers from this experiment do not provide much insight into the design space
due to reason (d). However, workload traces can be used to simulate the performance of SI in
HydroCache and Anna.

Therefore, in our second experiment, we take the Aurora trace (accounting for cache misses and
abort/retry count) and run it under LWW (our fastest option) using HydroCache and Anna. This
is a lower bound on the latency of a full SI implementation, as it doesn’t account for coordination
overheads (reason (b)). The overhead of coordination protocols such as two-phase commit is at
least 17ms as reported by Google Spanner [31] and worsens as the system scales.

The SI (mock) bars in Figure 4.3 show the simulated results. Median latency is worse than
HB’s due to the added network round-trip overhead during cache misses. While HB’s 99th per-
centile latency is insensitive to workload skew, SI’s tail latency is over 3x worse as we increase the
contention from Zipf=1.0 to 1.5. Under high contention, a large number of transactions concur-
rently update a single key and only one is allowed to commit. All other transactions are aborted
and retried, contributing to the high tail latency. In fact, 23% of the transactions are retried at least
once, and in the worst case, a transaction is retried 18 times before committing. Thus, SI does not
meet our goal of low-latency function serving.
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Figure 4.4: Normalized median latency as we increase the length of a linear DAG.

Takeaway: MTCC protocols incur a reasonable overheads—at most 2× performance penalty
and sub-KB metadata overheads—compared to weaker protocols while preventing anomalies on
up to 90% of requests. MTCC also avoids the cache misses and expensive aborts caused by snap-
shot isolation.

4.4.4 Scalability
Thus far, we have only studied small DAGs of length at most 3. In this section, we explore the
scalability of our MTCC protocol as DAG length increases. Figure 4.4 reports the performance
of the HB protocol as a function of the length of a linear DAG for different contention levels.
We normalize (divide) the latency by the length of the DAG. Ideally, we would expect a constant
normalized latency for each skew.

In practice, as we increase DAG length from 3 to 15, the normalized latency grows under
all contention levels. Longer DAGs with larger read sets require creating larger snapshots, so
the volume of causal metadata being passed along the DAG increases linearly with respect to
DAG length. Furthermore, the protocol must communicate across a larger number of caches to
construct the snapshot as the DAG grows. Under moderate contention (Zipf=1.0), the normalized
latency grows from 1.15ms to 1.53ms (a 33% increase), while under high contention (Zipf=1.5),
the normalized latency doubles.

The reason for the difference across contention levels is that the OPT subroutine avoids data
fetches for 91% of requests under moderate contention. Under high contention, 75% of requests
require OPT to ship data across caches, and 12% of requests require the CON subroutine to com-
municate with all caches, significantly increasing latencies.

Takeaway: Our MTCC protocols scale well from short to long DAGs under moderate con-
tention, with normalized latencies only increasing by 33%; however, high contention workloads
require large amounts of expensive data shipping, leading to a 2× increase in normalized latency.



CHAPTER 4. LOW LATENCY TRANSACTIONAL CAUSAL CONSISTENCY FOR
SERVERLESS COMPUTING 87

0

10

20

30

40

50

60

70

80

90

H
C
 uniform

H
C
 skew

ed

Anna

ElastiC
ache

H
C
 uniform

H
C
 skew

ed

Anna

ElastiC
ache

H
C
 uniform

H
C
 skew

ed

Anna

ElastiC
ache

0.5MB 1.0MB 2.0MB

L
a
te

n
c
y
 (

m
s
)

3.7 5.6

11 11

18
22

27
23

4.3
7.8

20 19

34

45
40

37

4.5

12

40 39

70

88

77
80

Figure 4.5: Median and P99 latency comparison against architectures without HydroCache.

4.4.5 Life Without HydroCache
Finally, we investigate the benefits of HydroCache (using the HB protocol) relative to a cache-
less architecture. We study two different architectures: One fetches data directly from Anna, and
another fetches data from AWS ElastiCache (using Redis in cluster mode). Although ElastiCache
is not an autsocaling system, we include it in our evaluation because it is an industry-standard,
memory-speed KVS [82].

Caching Benefits

We first study the performance benefits of HydroCache. We begin with caches empty, and execute
linear DAGs with 3 functions. In previous experiments, the reads and writes were drawn from the
same distribution. Here, we draw the read set from a Zipfian distribution of 100,000 keys with a
coefficient of 1.5. We study two, less-skewed distributions for the write set—a uniform distribution
and a Zipfian distribution with coefficient 0.5. This variation in distributions is commonly observed
in many social network applications [39].

Writing new key versions forces HydroCache to exercise the MTCC protocol, which highlights
its performance overhead under different levels of write skew. To focus on the benefit of caching
large payloads, we configure each DAG executed with HydroCache to write a small (1 byte) pay-
load to avoid the overhead of expensive writes to the KVS. To prevent this write from clobbering
the original large payload—thereby reducing the cost of future KVS reads—we attach the 1 byte
payload with a vector clock concurrent with what is stored in Anna. This payload will be merged
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Write Skew

Uniform 0.5 0.75 1.0 1.25 1.5

HydroCache 0% 0% 0% 0% 0% 0%

Anna 0.02% 0.4% 1.9% 6.6% 15% 21%

ElastiCache 0.03% 0.4% 2.0% 6.6% 14% 20%

Table 4.3: Rates of inconsistencies observed with varying write skew for HydroCache/Anna, Anna only,
and ElastiCache.
with the original payload via set union so that further reads to the same key still fetch both pay-
loads. Since ElastiCache does not support payload merge, we simplify the workload of cache-less
architectures by making the DAG read-only.

Figure 4.5 compares HydroCache, Anna, and ElastiCache as we increase payload size from
0.5MB to 2MB. Anna and ElastiCache exhibit similar performance for all payload sizes. Hydro-
Cache with uniform random writes outperforms both systems by 3× at median for small payloads
and 9× for large payloads. 99th percentile latencies are uniform across systems because cache
misses incur remote data fetches.

With a slightly skewed write distribution (Zipf=0.5), our protocol is forced to more frequently
ship data between executor nodes to construct a distributed snapshot. For large payloads, the
median latency is only 3.5× better than other systems, and 99th percentile latency is in fact 14%
higher.

Takeaway: HydroCache improves performance over cache-less architectures by up to an order-
of-magnitude by avoiding expensive network hops for large data accesses.

Consistency Benefits

We measure how many inconsistencies HydroCache prevents relative to Anna and ElastiCache,
neither of which guarantee TCC. To track violations in the other systems, we embed causal meta-
data directly into each key’s payload when writing it to storage. At the end of a request, we extract
the metadata from the read set to check whether the versions formed a snapshot.

Table 4.3 shows the rates of TCC violations for different write skews. The number of inconsis-
tencies increases significantly as skew increases. For the two most skewed distributions, over 14%
of requests fail to form a causal snapshot.

Takeaway: In addition to improving performance, HydroCache prevents up to 21% of requests
from experiencing causal consistency anomalies that occur in state-of-the-art systems like Redis
and Anna.

4.5 Related Work
Many recent storage systems provide causal consistency in various settings, including COPS [67],
Eiger [68], Orbe [36], ChainReaction [7], GentleRain [35], Cure [4] and Occult [74]. However,
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these are fixed-deployment systems that do not meet the autoscaling requirements of a serverless
setting. [74, 4, 7, 36, 35] rely on linear clocks attached to each data partition to version data, and
they use a fixed-size vector clock comprised of the linear clocks to track causal dependencies across
keys. The size of these vector clocks is tightly coupled with system deployment—specifically, the
shard and replica counts. Correctly modifying this metadata when the system autoscales requires
an expensive coordination protocol, which we rejected in HydroCache’s design. [67] and [68] re-
veal a new version only when all of its dependencies have been retrieved. This design is susceptible
to “slowdown cascades” [74], in which a single straggler node limits write visibility and increases
the cost of write buffering.

By extending the Bolt-On Causal Consistency approach [17], HydroCache guarantees TCC
at the caching layer, separate from the complexity of the autoscaling storage layer. Each cache
creates its own causal cut without coordination, eliminating the possibility of a slowdown cascade,
which removes concerns about autoscaling at the compute tier. Our cache tracks dependencies
via individual keys’ metadata rather than tracking the linear clocks of fixed, coarse-grained data
partitions. This comes at the cost of increased dependency metadata overhead; we return to this in
Section 4.6.

Another causal system that employs a client-side caching approach is SwiftCloud [116]. That
work assumes that clients are resource-poor entities like browsers or edge devices, and the core
logic of enforcing causal consistency is implemented in the data center to which client caches con-
nect. We did not consider this design because constructing a causal cut for an entire datacenter is
expensive, especially in a serverless setting where the system autoscales. Moreover, SwiftCloud is
not designed to guarantee causal consistency across multiple caches, one of the main contributions
of our work.

4.6 Conclusion and Takeaways
Disaggregating compute and storage services allows for an attractive separation of concerns re-
garding autoscaling resources in a serverless environment. However, disaggregation introduces
performance and consistency challenges for applications written on FaaS platforms. In this work,
we presented HydroCache, a distributed cache co-located with a FaaS compute layer that mitigates
these limitations. HydroCache guarantees transactional causal consistency for individual functions
at a single node, and we developed new multisite TCC protocols that offer the same guarantee for
compositions of functions spanning multiple physical nodes. This architecture enables up to an
order-of-magnitude performance improvements while also preventing a plethora of anomalies to
which existing cloud infrastructure is susceptible.

Through this work, we learned that resource disaggregation is not at odds with low latency and
consistency. By rearchitecting the system with a caching layer and employing efficient consistency
protocols, we managed to combine features for high-performance request handling, independent
scaling of compute and storage layers, and robust consistency within a single FaaS system.
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Chapter 5

Summary and Open problems

We have seen tremendous progress in cloud technologies over the past decade. Hardware virtu-
alization and VM technology allow every organization to harness the power of large computing
clusters. Innovations around pay-as-you-go FaaS platforms further allow programmers without
deep systems expertise to deploy and serve applications with a few clicks without having to worry
about resource configurations, scaling, fault-tolerance, and systems security. However, as we dis-
cussed throughout this dissertation, state-of-the-art systems still face key limitations that prevent
them from meeting the demanding requirements of serverless computing. In this chapter, we sum-
marize our solutions to these challenges and highlight interesting future research directions.

Any-scale high performance

As cloud providers continue to roll out powerful machines, it becomes crucial to design systems
that efficiently utilize the processing capacity as much as possible. In Chapter 2, we showed that
traditional shared memory architectures incur significant coordination overheads. This cost is pro-
nounced especially under high-contention write-heavy workloads; in these cases, up to 90% of the
CPU time is devoted to lock acquisition or atomic retry. That is why we built Anna, which elim-
inates coordination by employing wait-free execution that lets each thread access private memory
and asynchronously gossip updates via message passing in the background. The most elegant
aspect of this design is that it requires no change as the system scales from a single multi-core
machine to a distributed cluster. Moreover, the coordination-free execution model leads to an
opportunity for Anna to support a wide spectrum of consistency models via lattice composition,
allowing the system to support a diverse set of applications.

It is worth noting, however, that coordination-free consistency levels put burden on program-
mers to reason about the appropriate consistency models required to prevent application anomalies.
An open research problem is how to let the programmers conveniently declare a set of application-
level invariants and let the system automatically configure the most performant consistency model
that satisfies these constraints.
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SLO-driven autoscaling

As we discussed in Chapter 3, the majority of systems today are designed for a specific point in the
cost-performance trade-off space. However, real-world workloads dynamically change over time,
which introduces systems challenges around elastically scaling the deployment to maintain high
performance and reduce resource inefficiency. To this end, we have studied various autoscaling
mechanisms and policies in the context of Anna. The resulting serverless KVS allows users to
specify high-level SLOs around performance, cost budget, and fault-tolerance. The system seam-
lessly adapts to shifting workloads, outperforming competing solutions such as DynamoDB by
orders-of-magnitude in terms of cost-efficiency.

Despite the promising results, we believe there are a few directions in policies and SLOs worth
exploring further. First, our current policy design is entirely reactive, taking action based on cur-
rent state. To improve this, it would be interesting to explore proactive policies that anticipate
upcoming workload changes and act in advance [96, 88, 80, 70]. By combining advanced predic-
tive techniques with Anna’s swift adaptivity, we believe Anna will further excel in meeting SLOs
& SLAs. Second, the system administrator currently defines a single latency objective correspond-
ing to an overall average. For any system configuration, there are adversarial workloads that can
defeat this SLO. For example, in Section 3.5.4, a larger load spike could have forced Anna above
its stated SLO for a long period. Therefore, it would be interesting to use pricing and incentives to
design SLOs, SLAs and policies for both expected- and worst-case scenarios.

Low-latency with robust consistency

The key advantage of today’s FaaS systems is the disaggregation of compute and storage. De-
coupling the two layers allows them to scale independently, which significantly improves resource
efficiency on a wide range of workloads from compute-intensive applications such as online model
serving to data-intensive applications such as retail shopping cart management. Unfortunately, the
current design comes at the cost of high latency I/O and poor consistency guarantees. In our
HydroCache project (Chapter 3), we have redesigned the FaaS infrastructure from the ground
up and shown that it is possible to simultaneously achieve resource disaggregation, low latency
request serving, and support transactional causal consistency (the strongest amongst coordination-
free models). With novel distributed caching and consistency protocols, HydroCache reduces the
amount of cross-node data fetching while preventing a large number of consistency anomalies
otherwise observed in traditional FaaS systems.

To further expand the applicability of FaaS platforms, we believe it is crucial to add support
for strong consistency levels. Certain pieces of an application that require strong guarantees will
be deployed on a set of nodes with limited elasticity, which achieve strong consistency via coor-
dination protocols such as Paxos and two-phase commit. Other components will run on top of a
coordination-free layer, enjoying the benefits of low latency and autoscaling. We think the prob-
lem of automating this deployment process while minimizing developer intervention is an exciting
avenue for future research.
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