
Vertex: Programming the Edge

Brian Kim

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-205
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-205.html

December 17, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

Vertex: Programming the Edge 
 

Brian Kim 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 

Committee: 
 
 
 

Professor Scott Shenker 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Sylvia Ratnasamy 
Second Reader 

 
 

(Date) 

Scott Shenker
12/16/2020

Sylvia Ratnasamy
12/16/2020



Vertex: Programming The Edge

Brian Kim
UC Berkeley

Abstract
By expanding the computational power of the public cloud
to include resources closer to clients, edge computing serves
as a natural extension of cloud computing. The resulting re-
ductions in latency and network bandwidth have continued
attracting developers to deploy applications at the edge. To
accommodate the evolving ecosystem of edge applications,
however, the underlying system must be rich in functionality,
providing primitives for handling the geo-distributed topology
and dynamic environment, while simultaneously delivering
on client needs. Current offerings have not been holistic along
these dimensions, as core abstractions such as shared data
and location-agnostic communication have largely been over-
looked. In this paper, we articulate the requirements of edge
applications that must be addressed to encourage application
evolvability. We follow up by proposing our Vertex system, a
programming model and underlying execution environment
that provides a unified approach for programming the edge.

1 Introduction

In cloud computing, clients interact with applications de-
ployed in datacenters managed by cloud providers such as
Amazon. Edge computing geographically broadens this com-
pute domain, enabling applications to also be deployed on any
computational resources closer to clients. The term edge is
often employed to signify the network edge, which broadly de-
scribes these physical locations in close proximity to clients,
i.e. in reference to where end devices and local networks
connect with the public Internet [13]. These resources at
the edge are both globally ubiquitous and diverse in nature,
ranging from smaller datacenters also managed by cloud
providers [4], to server racks in cell towers managed by tele-
com companies [7] and IoT gateways owned by human con-
sumers [17]. Consequently, edge computing is fundamentally
a geo-distributed paradigm, existing over a global topology
composed of these distributed compute nodes, and application
logic can be partitioned across these nodes.

Though the benefits of utilizing the edge are manifold, the
high-level notion of computing closer to clients most intu-
itively aligns with reductions in latency and network band-
width. Application logic at the edge can respond to client
requests in lieu of cloud datacenters, eradicating the longer
latencies incurred by client to cloud communication. In a
similar flavor, the amount of traffic leaving the edge can be
decreased if the edge application logic can process or filter
traffic from clients before the traffic reaches the cloud. These
characteristics have continued to entice diverse families of
applications that extend beyond edge computing’s original
roots in serving web content through content delivery net-
works [16], such as MMO gaming [38], video streaming [22],
medical wearables [18], and web security [33].

At the same time, however, edge computing is associated
with a rich problem space, rendering it difficult to design
general-purpose edge systems over which applications can be
built and deployed. We proceed to introduce these challenges
by roughly grouping them into three general categories. First,
there exists environmental challenges specific to the edge and
its unique structure as a dynamic extension of the cloud, such
as enabling clients to be mobile and migrate from one edge
resource to another. Second, as a distributed paradigm, edge
computing encounters classic problems in distributed systems,
such as consistent access to shared data. Third, edge systems
must also meet additional explicit client needs, such as the
latency requirements that justify utilizing the edge in the first
place.

We claim that the current ecosystem of academic and indus-
trial edge systems does not extensively identify and address
these challenges, not only constraining current applications
but also stymieing the evolution of future applications. To
buttress our claims, we provide discourse on these shortcom-
ings and propose Vertex, a holistic and unified edge system.
The remainder of this paper is structured as follows:

• In §2, we motivate Vertex by distilling the edge problem
space into more succinct terms (§2.1), articulating the core
requirements of edge applications that the underlying sys-

1



(a) Original topology (b) Topology after a client moves from one edge node to the other

Figure 1: An example of our edge model, where different colors represent different applications and arrows represent computa-
tional flow.

tem must address (§2.2), and demonstrating how the current
ecosystem is deficient in these regards (§2.3).

• In §3 and §4, we present the high-level design and imple-
mentation of Vertex, respectively, diving into its program-
ming model and underlying execution environment for edge
applications.

• In §5, we perform quantitative benchmarks to evaluate
Vertex’s performance in enabling applications to take ad-
vantage of the edge, as well as qualitative evaluations to
assess Vertex’s adoptability.

2 Motivation

2.1 A Clarified Model of the Edge
Given the eclectic nature of the edge, we endeavor to capture
the essence of the problem space by laying out terminology
for clarity, and then describing and justifying the assumptions
in our model of the edge.

2.1.1 Definitions

Edge clients are end devices that utilize applications de-
ployed at the edge, such as mobile phones or sensors.

Edge nodes are logical units of edge infrastructure over
which applications can be deployed, such as network
gateways or servers in edge datacenters.

Backend nodes are servers in cloud datacenters. Edge appli-
cations may leverage the cloud as a backend, e.g. if an
edge node only provides a portion of the functionality, a
backend node can complete the remainder.

Edge providers are organizations that manage and provide
the computational resources of edge nodes for applica-
tion developers, such as cloud or network providers.

2.1.2 Assumptions

Certain types of edge nodes are specialized, i.e. they fulfill a
single organization’s needs or target a certain family of appli-
cations. A single company, for instance, may leverage AWS
Outposts [5] as a fully managed extension of Amazon cloud
services running on the company’s on-premise infrastructure.
Similarly, IoT gateways [14] often sit near a group of related
IoT sensors, aggregating and analyzing the data from these
sensors. Instead of these specialized edge nodes, we concern
ourselves with multenant edge nodes, i.e. those that are ca-
pable of supporting various applications and can be shared
among unrelated edge clients, such as servers in CDNs [2,12]
or small-scale datacenters for mobile devices [29]. We envi-
sion that multitenant edge nodes can help unlock the edge as
a publicly accessible and ubiquitous extension of the public
cloud, and under this lens, specialized edge nodes represent a
degenerate use case. Albeit a separate conversation, multite-
nancy may also reap other benefits such as economies of scale
for edge providers as well as a more streamlined deployment
process for applications.

For edge clients, we target those that are mobile, i.e. that
are capable of physically moving around at any time, such as
medical wearables or mobile devices. Our justifications here
are twofold. First, in relation to our targeting of multitenant
edge nodes, stationary edge clients (namely fixed IoT sensors
and devices) are generally associated with specialized edge
nodes that we have excluded from our edge model. Second,
stationary clients do not pose any more conceptual difficul-
ties compared to mobile clients, and can be simplified as a
degenerate case of the latter.

The notions of multitenancy and mobility broach the ad-
ditional question of how edge clients are matched to edge
nodes. For the degenerate case of stationary clients attached
to a specialized edge node, this process is trivial. For the
multitenant and mobile case, however, two factors must be
addressed when considering this matching mechanism. First,
we assume that edge clients being matched to the physically
nearest edge node maximizes application utility, i.e. because

2



the primary goal of edge computing is to bring computation
closer to clients. Quantitatively proving the soundness of this
assumption is orthogonal to our work, and we employ high-
level intuition as justification, leaving more rigorous rationale
for future work in this area [32]. Second, we assume that
existing techniques such as DNS-based mechanisms [31] can
be leveraged for clients to learn about nearby edge nodes, as
mobility implies that clients may be matched to multiple edge
nodes throughout their lifetimes.

Figure 1 demonstrates an example of our edge model. The
two colors (green and red) represent two different applica-
tions, and the direction of the arrows represent the flow of
computation. For example, the green application might rep-
resent a mobile application where edge nodes respond to
requests from the mobile phones, improving response latency
compared to the edge-less case where the phones instead
send requests to the cloud backend node. The red application
might represent a video application, where the edge node
receives a visual feed from the IoT glasses and compresses
the data before sending it to the cloud backend node for fur-
ther processing, reducing the amount of network traffic. The
difference between subfigures 1a and Figure 1b demonstrates
our mobility assumptions, as the mobile phone that moves
closer to the other edge node now communicates with that
closer edge node.

2.2 Requirements For Edge Applications
While there have been endeavors in academia to identify the
needs of edge applications that the underlying system must
fulfill [32], clear articulation of these needs is impeded by the
diversity of applications that stand to benefit from the edge.
For example, applications like MMO gaming [38] are tax-
ing on the distributed nature of the edge, requiring stringent
latency needs and coordination across potentially many geo-
distributed clients. On the other end of the spectrum, appli-
cations like machine learning inference [35] merely leverage
the edge as a means of computational offloading, and thus
logically represent a single interaction between an edge client
and edge node.

For our articulation of application needs, we target appli-
cations that fit within the scope of our specific edge model,
enabling sharper justification for our proposed needs. Fur-
thermore, we attempt to capture the core requirements. As
referenced in 1, we utilize three general categories for appli-
cation needs: requirements stemming from the specific of the
structure of the edge (2.2.1), requirements that are more gen-
erally observed in distributed systems (2.2.2), and additional
requirements that are imposed by edge clients (2.2.3).

2.2.1 Edge-specific Requirements

These application requirements revolve around environmental
challenges that are specific to the edge and its structure as a

dynamic extension of the cloud.

Migration: As stated in our assumptions (2.1.2), edge clients
being matched to the closest edge node maximizes application
utility, and we assume existing mechanisms can be employed
for clients to learn of nearby edge nodes. Providing applica-
tions with the ability to migrate state from one edge node to
another gives them control over mobility. For instance, smart
cars [9] working together to mark a local map of hazards may
desire to migrate to the next edge node if they have traveled
substantially far away from the first area. Explicit migration
is also necessary for applications where the overhead of im-
mediate migration upon detecting a closer edge node would
prove too costly compared to the benefit of attaching to that
closer node [25]. An example is AR or VR gaming [38],
where immediate migration might disrupt gameplay, and the
game application could instead flexibly choose to migrate
state across edge nodes while optimizing for user experience.

Location-agnostic communication: In our edge model,
clients are mobile and can migrate from edge node to edge
node depending on physical proximity. This dynamic environ-
ment may also be characterized by abundant edge clients and
edge nodes. Furthermore, client and edge node locations for
an application are not known a priori - clients due to mobility,
and edge nodes due to the fact that an application may not
need to run on an edge until demand for that application forms
nearby. Since the application logic is potentially spread out
across edge clients (i.e. the client portions of applications),
as well as across edge nodes and backend nodes, commu-
nication between distributed components of an application
may be difficult. The underlying edge system must provide
primitives for distributed application components to commu-
nicate regardless of location. An use case that could benefit
from location-agnostic communication primitives is social
sensing [37] (where data is collected and shared by mobile
devices on the behalf of humans, such as disaster reporting
applications), as edge clients may desire to communicate to
other clients about a particular event.

2.2.2 Distributed System Requirements

These following requirements are associated with classic prob-
lems in distributed systems, and generally involve use cases
where an application utilizes distributed edge nodes that actu-
ally share data among one another.

Consistent access to shared data: For applications where
edge nodes operate over a shared dataset, consistent access to
data is mandatory. Furthermore, a range of consistency levels
must be supplied to match application needs - stronger consis-
tency levels provide more guarantees for shared data access
but incur larger overheads to enforce these guarantees, while

3



weaker consistency levels allow data to be left in inconsistent
states for the sake of reduced latency. The underlying system
must provide expressive primitives across consistency levels
for applications to work with shared data. While the need for
consistent access to shared data is pervasive across applica-
tions, some varied examples include federated learning [21],
where weaker consistency may suffice for edge nodes col-
laborating over a shared machine learning model, and MMO
gaming [38], where clients may expect components of the
game to remain up-to-date, calling for stronger consistency.

Fault tolerance model: In a similar flavor as data consis-
tency, applications where distributed edge nodes share data
must possess a failure model to gracefully recover state if
edge nodes go down. In a geo-distributed setting potentially
involving many edge nodes, failures will be imminent, and
the underlying system must provide applications with well-
defined behavior for mitigating failures [23]. Similar to con-
sistent data access, fault tolerance in the face of shared data
is a common desire for edge applications. In the context of
smart cities [19], for example, where a vast network of edge
clients and edge nodes function together to collect and operate
on massive amounts of data, one can imagine frequent failures
necessitating a set of well-defined fault tolerance protocols.

2.2.3 Explicit Client Requirements

This final category of requirements focuses on additional
explicit client needs.

Privacy concerns: Edge computing also opens up a domain
in security where clients can specify their privacy needs, e.g.
client-driven policies about where data can be placed or ac-
cessed among abundant and geo-distributed edge node lo-
cations [1]. In particular, the underlying system must pro-
vide edge applications with the ability to enforce privacy
constraints in the context of other primitives. For example,
primitives for shared data may insinuate the movement of data
to enforce consistency, but this movement may not always be
in compliance with the client’s privacy requirements.

Response latency: Finally, the underlying system must be
efficient in terms of response latencies, which serves the pur-
pose of leveraging the edge in the first place. In particular,
there are two implications here - first, the startup overhead of
the execution environment should be fast when clients need
to invoke computation at an edge node. Second, the system
must ensure that rich semantics to do not come at the expense
of response latency. For example, support for mobile clients
migrating across edge nodes should impose as little overhead
as possible.

2.3 Limitations of Current Offerings
Given these set of core functionalities that edge systems must
provide, we claim that the current ecosystem of edge offer-
ings among edge providers is deficient. Especially in industry,
these offerings are variegated across edge providers, leading
to inconsistent developer experience. A subset of these of-
ferings, i.e. MobiledgeX [24], provide low-level interfaces
like VMs and containers to developers. These interfaces pro-
vide no primitives for the requirements listed in 2.2, requiring
developers to manually deal with these challenges. Other
offerings are higher-level in providing function-as-a-service
interfaces, such as AWS Lambda@Edge [6] and Cloudflare
Workers [11] that may offer core abstractions like shared
data [10]. However, there are two primary shortcomings with
the primitives that are offered for these abstractions. First,
these primitives are often incomplete, e.g. Lambda@Edge
leverages s3 blob storage [3] for shared data, which only offers
strong read-after-write consistency, or are even non-existent,
e.g. migration and communication are sparsely supported.
Second, even for the primitives that are provided, the se-
mantics vary across across edge providers, e.g. s3’s strong
read-after-write eventual consistency versus CloudFlare KV
Store’s eventual last-writer-wins consistency [10].

Given this ecosystem, we make the observation that edge
offerings lack a uniform and extensive approach that holis-
tically deals with migration, communication, consistent and
fault-tolerant access to shared data, and privacy. Therefore,
current offerings not only fail to generalize to a diverse set of
applications, but also stymie the evolvability of future appli-
cations. Without a uniform approach, customers are locked
into the services of a particular edge provider, as inconsistent
semantics across offerings impose a barrier for developers to
migrate edge providers - consequently, application developers
will be constrained by the semantics and services of a particu-
lar offering. Without an extensive approach that provides rich
primitives for the edge’s needs, writing edge applications be
unnecessarily rendered more difficult by the semantics and
services of that particular offering. Furthermore, without a
uniform and extensive interface, edges clients may not not be
able to be matched to the closest edge nodes due to application
deployment being restricted to a particular set of edge nodes,
which hinders our assumption that clients being matched to
the closest edge node maximizes application utility.

Academic endeavors in edge computing have also been
diverse, addressing specific challenges of programming the
edge, ranging from Lasp [23], which offers weaker consis-
tency for improved availability and performance in the face
of shared data, or TinyFaas [27], which offers a lightweight
function-as-a-service platforms for edge nodes for faster ex-
ecution. Our conversation on academic edge offerings will
remain brief and we will focus on industrial offerings, as our
claim here is that there exist little endeavors to put all the
pieces together for an uniform and extensive edge system that

4



(a) High-level, syntactically sugarized version of Vertex’s
API.

(b) Vertex system design, where arrows represent computational flow.

Figure 2: Vertex Design

tackles all the core challenges.
To combat these limitations, we present Vertex, an edge

system that is a combination of a programming model and
an underlying execution environment. The programming
model is exposed through a rich API that provides first-class
primitives for communication, migration, consistent and fault-
tolerant access to shared data, and privacy. The underlying
execution environment is necessarily high-level to provide
these primitives directly to application developers, and Vertex
utilizes a function-as-a-service environment to achieve this
interface. We envision that Vertex can be adopted across all
edge providers and help unlock the potential of the edge for
diverse applications. A detailed design of Vertex is presented
in the following section.

3 Vertex Design

Vertex is an edge system that runs across edge clients, edge
nodes, and backed nodes. Figure 2a shows the high-level API
(implemented as RPC calls) that is exposed to application de-
velopers, while figure 2b demonstrates the underlying system.
We break up our description into three components as shown
in 2b: the underlying execution environment 3.1, shared data
3.2, and communication 3.3.

3.1 Execution Environment
The benefits of cloud-based serverless computing, specifi-
cally the Function-as-a-service (FaaS) model, can extend to
the edge. In the context of Vertex, the attributes of FaaS con-
ducive to our target edge environment are its performance
- invocations that spin up a compute environment must be
fast - and the efficient hardware utilization for edge providers
through statistical multiplexing. While the Vertex prototype
currently leverages OpenFaas [26] due its open-source and
well-documented nature, Vertex uses a wrapper around the
execution environment so that that any serverless engine can

be plugged in underneath. In particular, the API shows two
high-level functions, add_function and run_function that
applications developers can use to register their functions to
Vertex and allow edge clients to trigger these functions at edge
nodes, respectively. Currently, Vertex’s prototype supports
functions written in Python, and the access to the remain-
ing Vertex subsystems are packaged in as imperative-style
libraries with the functions, as demonstrated in 2b. Further-
more, the communication subsystem can be accessed by edge
clients directly, as will be demonstrated later in our expanded
discussion of communication.

3.2 Shared Data
At the heart of Vertex’s contributions is its shared data model,
which revolves around strong consistency. Vertex’s shared
data model was initially designed to provide strong con-
sistency (both linearizability and serializability) in a fault-
tolerant manner since industrial offerings often omit these
strongest consistency from their features. For extensiveness
and performance, we are also working to expand Vertex’s
semantics to weaker levels of consistency. The shared data
subsystem is composed of an object-based, shared_read and
shared_write library calls exposed to functions, a daemon
running at each edge node that supports Vertex, and additional
functionality running on backend nodes that the edge nodes
are logically connected to. Application developers can anno-
tate functions with pragmas to signify their consistency needs
to Vertex.

3.2.1 Linearizability

To provide linearizability in the face of object-level replica-
tion across edge nodes, Vertex leverages the MESI cache
coherence protocol [34] and coordinates individual object
access across edge nodes. In order to enforce linearizaiblity,
Vertex assumes that edge nodes within a general area are
attached to one or more backend node that provides this coor-

5



dination. For performance optimizations in the edge setting,
Vertex uses a directory-based write-invalidation protocol that
avoids the overhead of broadcasting shared object updates
across edge nodes, and instead requires all other replicas of
that shared object to be invalidated upon a write. This invali-
dation approach implies that Vertex maintains a shared object
metadata directory which is maintained at the backend node.
This directory is maintained at two granularities - first, the
backend node maintains the global directory which tracks the
coherence states shared objects replicated across edge nodes,
and each edge node also maintains a local directory that keeps
track of the coherence states of objects at that node.

Vertex achieves linearizability by using compile-time pro-
gram analysis. By analyzing function pragmas that call for
linearizability when an application registers that function us-
ing add_function, Vertex records a function’s read and write
set of shared objects and registers this set to the backend node.
Our use of the term "function" is overloaded - while we have
previously referred to function in the context of FaaS, our
prototype currently prescribes modular functions for appli-
cation developers. For example, a function may be logically
modularized into multiple functions, and for each modular
function marked with a linearizability pragma, Vertex regis-
ters the read and write set of shared objects that the function
operates on. We do not prescribe a particular scheme for
modularizing functions. For example, each sub-function may
be deployed as its own function, or a monolithic function
can be deployed that takes arguments to invoke a specific
sub-function within it. Moving forward we will refer to these
smaller sub-functions as "functions."

To implement the MESI protocol, shared objects at a par-
ticular edge node can be in a modified, exclusive, shared, or
invalid state. When the object is initialized, only the backend
node has exclusive access to the shared object. Edge nodes
can only write to an object if that object is in a modified or
exclusive state at that node, but reads can be performed in
those two states as well as the shared state. An object in a
modified state implies that the edge node has not yet written
back the value to the backend node. The computational flow
starts with an edge client triggering a function that makes
one or more requests to read or write a shared object through
shared_read and shared_write. The edge node (i.e. the
shared data daemon running on the edge node) first checks if
it has access to the entire read and write set for that function.
If it does, the execution environment performs the function
and returns the result. Otherwise, the shared data daemon
communicates to the backend node that it is missing access
to its read and write set, as well as the specific function it is
trying to execute.

When the backend node receives this request, the backend
checks if it has access to read access to the entire read set and
write access to the entire write set of shared objects in ques-
tion. If it does not, it checks the write set of the requesting
edge node and invalidates replicas at other edge nodes that

have exclusive access to those objects. The backend must
also check the read set of the requesting edge node, and down-
grade replicas to the shared state at other edge nodes that have
exclusive access to these objects. Note that these previous
steps would be skipped if the backend already has read and
write access to these objects. At this point, the backend node
executes the function on behalf of the original requesting
edge node, gives this edge node upgraded coherence states
(exclusive for written objects and shared for read objects),
and communicates this information back to the original edge
node’s shared data daemon. At that point, barring any other
reads and writes from other edge nodes to those objects, fur-
ther invocations of the function to the original edge node will
be executed at the edge node instead of having to go to the
backend node.

While potential race conditions across edge nodes are en-
forced by the MESI invariants maintained by the backend
node, Vertex must handle potential race conditions that arise
from multiple edge clients concurrently invoking functions
within the same edge node that may operate on the same
shared objects. Currently, Vertex handles these race condi-
tions by enforcing that edge node-local operations related to
linearizability (e.g. linearizable function execution, requests
to the backend node, or coherence state updates) are executed
in a critical section.

Thus far, the conversation on linearizability has focused
on consistency guarantees. However, Vertex also ensures that
its linearizaiblity mechanism is fault tolerant, another key
requirement for edge applications. To achieve this fault toler-
ance, Vertex leverages leases and barriers, and also assumes
that the backend node is failure-free. To deal with failed
edge nodes or network partitions, Vertex leverages leases by
having edge nodes send heartbeat messages to the backend
node. The backend node will invalidate an edge node’s ac-
cess to its shared objects if it does not hear from the edge
node within a certain time period, and gives itself the coher-
ence states over those objects instead, i.e. if the failed edge
node had exclusive access to an object, the backend node now
has exclusive access to that object. Conversely, edge nodes
can also detect failures (i.e. network partitions), since they
expect the backend to send backs acknowledgements upon
receiving heartbeat messages. If no acknowledgements are
received within a certain time period, the edge node will no
longer service edge client requests until the network partition
is resolved.

However, with only leases, Vertex cannot recover shared
object state that is lost if an edge goes down. To rectify this,
Vertex supplements leases with barriers. More specifically,
functions that write to shared objects are forced to write back
to the backend node, and nothing is returned to the edge client
that invoked the function until this value has been written back
and acknowledged by the backend node. This use of barriers
guarantees that any function invocation will have necessarily
been successful in persisting updates to data.

6



3.2.2 Serializability

Vertex’s linearizability feature is apt for short-lived operations
on shared objects, and can be summarized as bringing com-
pute to data - Vertex checks whether the edge node or the
backend node possesses control over the data, and performs
the computation at the corresponding node. However, for
functions consisting of potentially many reads and writes, the
application developer may find serializability to be a more
fitting mechanism for enforcing strong consistency. At a
high-level, Vertex allows functions to be marked as needing
serializabilty, and instead of bring data to compute, Vertex
brings compute to data, allowing functions to lock a set of
objects and perform computations locally at edge nodes when
triggered by edge clients. Vertex also leverages caching of
objects to improve performance.

In particular, Vertex’s serializability mechanism enforces
snapshot isolation, [8] which provides most of of the con-
sistency guarantees of serializabilty while also improving
performance. In order to achieve snapshot isolation, Vertex
assigns globally unique logical start times to functions invo-
cations marked with the serializability pragma. Throughout
its invocation, a function may read shared objects (i.e. using
shared_read) if no other function with a logically later start
time has written to those objects. Otherwise, the function
aborts and is restarted. If the function has to write shared
objects (i.e. using shared_write), Vertex buffers these writes,
and these writes only persist if the function is able to commit
after it completes its execution.

A function can commit if two conditions are met - first,
the function is the only one writing to the object, and second,
no other function that has a later logical start time has read
the objects that the original function has written. To verify
these conditions, Vertex leverages per-object reader-writer
locks so that functions can ensure they have write access to
objects. If this lock cannot be acquired, Vertex will abort
and restart this function. Furthermore, Vertex tracks the start
time of the function who last read an object so that functions
that need write access can be guaranteed to have a logical
start time later than the logical start time of this last read. If
this condition is not met when trying to acquire the lock, the
function is aborted and restarted. Finally, on top of these
guarantees, Vertex ensures that writes are atomic, i.e. either
all or none of a function’s writes become available to other
functions.

To more generally comment on these consistency guaran-
tees, the combination of Vertex’s atomicity and ensuring that
objects read by a function have been written after the read
started provides snapshot isolation. Compared to serializ-
ability, which requires analyzing the of reads and writes of
functions when determining whether to abort or to commit,
snapshot isolation only requires the write set to be tracked,
leading to improved performance. Vertex further improves
performance by caching objects at edge nodes, ameliorat-

ing the overhead incurred by accessing the underlying object
store. These caches are lazily sychronized to the backend
node. To achieve all these functionalities, Vertex utilizes a
backend node to run a metadata coordinator that controls and
tracks information like logical start times for functions across
edge nodes. Daemons running at edge nodes communicate
with the backend node to determine object accesses, enabling
functions to commit/abort, and providing Vertex’s caching
feature.

In addition to consistency guarantees, Vertex ensures that
snapshot isolation is provided in a fault-tolerant manner. The
metadata coordinator running on backend nodes is replicated,
and the primary coordinator ensures that it backs up its state
at the secondary coordinator. When daemons running on
edge nodes cannot connect to the primary coordinator, they
communicate with the secondary coordinator, which makes
sure that the primary has failed and services the edge nodes
daemons in lieu of the primary. In addition to metadata co-
ordinator failures, Vertex also deals with edge node daemon
failures, which may lead to a loss of state stemming from
daemon’s role of handling object access through locks and
enabling functions to commit and abort (e.g. a downed dae-
mon can no longer release shared object locks for functions).
Vertex utilizes leases and timeouts to deal with these potential
problems. Instead of vanilla locks, the daemons use a leased
version of locks instead so that if the daemon times out, the
locks are automatically released. Furthermore, if functions
have not successfully returned due to being blocked by a
downed daemon, Vertex uses the timeout to restart these func-
tions. Finally, to deal with potential data loss that results if a
daemon goes down (i.e. if data cached at an edge node that
had yet to be persisted is lost), Vertex leverages lineage-based
reconstruction - multiple versions of an object are stored, and
upon a daemon failure, Vertex can reconstruct the lost data by
observing lineage information. Lineage is encoded as a list
of objects accessed by a function as well as timestamps for
when the function modified the data, and when the daemon
comes back up, it reexecutes functions in the lineage-based
order that enables the recovery of the lost data.

3.2.3 Weaker Consistency Models

To provide an expressive range of consistency guarantees and
improved performance, we are working on integrating weaker
forms of consistency into Vertex’s shared data subsystem.
Currently, Vertex’s baseline model of eventual consistency
enables application developers to write merge functions for
shard objects along with a recency parameter indicating how
much time can elapse before data can be assumed to be stale.
Merge functions, such as last-writer-wins, allow applications
to reserve conflicted versions of shared objects based on the
application’s semantics, and the recency parameter force syn-
chronizes potentially stale versions of shard objects using the
merge functions across versions across edge nodes. In order

7



to provide a more rigorous form of eventual consistency, we
have also implemented different CRDTs (i.e. a grow-counter)
using the underlying locking and broadcast primitives that
are used to implement Vertex’s linearizability. However, we
are still considering how we would incorporate CRDTs [30]
into Vertex’s API with minimal interference. Finally, we
have found that eventual consistency, causal consistency, and
strong consistency are generally sufficient to meet the diverse
needs of edge application, and are planning on incorporating
causal consistency into Vertex’s shared data module as well.

3.3 Communication
While shared data implies some persistent state, applications
also may require more ephemeral primitives for communica-
tion across edge clients and edge nodes. In particular, commu-
nication must be location-agnostic, as outlined in 2.2.1, and
account for edge client mobility, as edge clients that attaches
to another edge node due to physical proximity must not in-
terrupt the semantics of communication. To achieve this, part
of Vertex’s API includes a pub-sub interface, accompanied
by a primitive for migrating communication state. Vertex’s
communication subsystem leverages ZeroMQ [36] as the un-
derlying messaging library but leverages a wrapper over it so
any underlying messaging library can be utilized.

3.3.1 Pub-Sub Communication

As demonstrated in 2a, developers have a familiar set of pub-
sub tools to build their applications. subscribe allows any
endpoint, i.e. an edge client or an edge node, to subscribe to
a named topic, while publish allows an endpoint subscribed
to a particular topic to publish a message to all endpoints sub-
scribed to that topic. The nuance of Vertex’a pub-sub model
is how messages are stored and broadcast to subscribed end-
points, a mechanism that makes use of an additional backend
node. When an edge client subscribes to a topic, the edge
node it is currently matched to (which is the closest edge
node, as stated in our assumptions) implicitly also subscribes
to that topic if it has already not done so. That edge node
then checks with the backed node to see if that topic has al-
ready been registered, and if not, registers that topic with that
backend so that other edges can subscribe to the same topic.
When a client or edge node publishes to a topic, the edge
node records the message, associating the message with the
topic, and also persists the message to the backend, which is
responsible for publishing the message to all subscribed edge
nodes.

In effect, the edge node acts as a message aggregrator on
behalf of clients, while the backend node serves as the ag-
gregator for edge nodes. Note that while we have described
how edge nodes receive messages for subscribed topics from
the backend node, we have thus far has omitted the details
of how edge clients can receive messages for topics they are

subscribed to. To retrieve messages for a topic, clients can
leverage get_messages, which retrieves all messages for a
particular topic from the edge node that the client is attached
to (which we assume is the closest edge node). To ensure
the edge node does not send duplicate messages to the client
upon multiple get_messages calls, that edge node is respon-
sible for keeping track of message offsets - i.e. for each client
attached to that edge node, the edge node maintains message
offset information (where the offset represents how many
messages that client has consumed for a topic) for all topics
that client is subscribed to. Finally, unsubscribe allows either
edge clients or nodes to unsubscribe from a particular topic.
Another topic of discussion is how subscribe, publish, and
unsubscribe do not require another parameter for clients to
specify which edge to perform these actions on - this is due
to our assumption that edge clients are matched to the nearest
edge node, thus these calls are routed to that nearest edge
node. In a similar flavor, client calls to get_messages default
to the nearest edge node as well; however, we allow endpoints
(clients or edge nodes) to specify any specific edge to retrieve
messages from. This makes our pub-sub mechanism flexible
by enabling any endpoint to query an edge node within the
system for the messages associated with a particular topic.
Furthermore, Vertex also utilizes timeouts, i.e. if a particular
endpoint does not check in with the communication subsys-
tem, they are implicitly unsubscribed from their topics. Once
all subscribers have read all updates to a particular topic, or
all subscribes have timed out, then the edge node can proceed
to prune the messages from its internal state.

We observe that this mechanism achieves location-agnostic
communication in two granularities. From the edge client per-
spective, they do not know the locations of other edge clients
a priori, but can leverage Vertex’s communication daemon
on edge nodes as a means of publishing and subscribing to
topics. From the edge node perspective, the set of edge nodes
needed for an application is also not known a priori since
this set depends on mobile edge clients dynamically attaching
to edge nodes - however, by leveraging the datacenter as a
rendezvous point, edge nodes can publish and subscribe to
topics across one another, allowing them to implement the
functionalities to provide location-agnostic communication
for edge clients. As a final note on Vertex’s pub-sub, we note
that there are two entry points into Vertex’s communication
subsystem. While we have addressed edge clients directly
invoking the edge node communication subsystem, functions
deployed and triggered on edge node may also talk to the
subsystem, using the Vertex library hooked into functions.

3.3.2 Migration

Our assumptions of client mobility raises the question of what
happens to the communication state if a mobile edge client
reconnects to a closer edge node. More specifically, if the
client migrates edge nodes, the set of channels it is subscribed

8



(a) Vertex usability study (b) Cost of Vertex with OpenFaas (c) Latency Gains From Vertex

Figure 3: Various Vertex Evaluations

to as well as its message offsets are stored at its previous edge
node. To address this, the Vertex API supports client-driven
mobility enabling clients to migrate their communication state
to the new, closer edge node. The combination of Vertex’s
pub-sub functionality and migration primitive enables com-
munication to be fully decoupled from location. Note that in
our assumptions, clients can learn about nearby edge nodes
using existing techniques, thus they can specify the new edge
address as a parameter to migrate. Internally, a migrate call
from edge node A to edge node B implies that node A will
notify node B about all topics that the client is subscribed to,
messages that the client has yet to consume for subscribed
topics, as well as message offsets per topic, so node B can
take over in servicing the client for communication. If edge
B does is not already subscribed to a topic sent over from
a migrate call, it will itself subscribe to this topic so it can
continue to service the client.

3.4 Privacy
While we have briefly touched on edge client privacy needs
in 2.2.3, the clear semantics and functionalities of Vertex’s
privacy subsystem are still a work in progress. In addition to
general privacy policies, we are also specifically considering
how client privacy needs may affect Vertex’s shared data and
communication subsystems, i.e. bringing data to compute for
linearizability may violate client privacy needs.

4 Implementation

Being a holistic edge framework that applications can be de-
ployed over, Vertex runs across edge clients, edge nodes, and
backend nodes. Edge nodes that support Vertex are organized
as Kubernetes [20] clusters, each of which runs an instance
of a serverless engine (which is currently OpenFaas). For the
remaining Vertex subsystems, i.e. the shared data and com-
munication daemons on edge nodes, we use a microservices-
based approach, where each of these subsystems are deployed
on a dedicated Kubernetes pod. Furthermore, the components
of Vertex that run on backend nodes also assumes that back-

end nodes are organized as Kubernetes clusters that run a
serverless engine. The reason for this assumption stems from
the fact that Vertex’s linearizability feature implies that the
backend node may execute functions if the edge node does
not have access to a shared object. Similar to Vertex edge
nodes, backend edge nodes running as clusters also have com-
munication and shared data components running on dedicated
pods.

All communication between Vertex components is
achieved using RPC calls. Both edge clients (which are
currently emulated as Python client programs) as well as
functions deployed at edge nodes can invoke Vertex’s API as
RPC calls. Since we leverage OpenFaas as our underlying
serverless framework, we package in RPC libraries along with
function code so they can invoke the API. The pub-sub com-
munication module, built around ZeroMQ, is implemented in
C++ and wrapped in a Python RPC library and exports the
API calls described in 3.3. The execution environment wraps
OpenFaas with a Python RPC library, exporting the API calls
described in 3.1. For the shared data module, linearizability
and eventual consistency are implemented in Rust, while seri-
alizability is implemented in C++, and these are also wrapped
in a Python RPC library that exports the API calls described in
3.2. Furthermore, Vertex edge nodes can talk to the backend
edge nodes using RPC calls to implement the edge to backend
mechanisms (e.g. cachce coherence traffic for linearizability).

5 Evaluation

5.1 Quantitative Evaluations
To test Vertex in a real-world environment, we used Amazon
Elastic Kubernetes Service (EKS). In our setup, we provi-
sioned two clusters in the same region (us-east-2), one for
a Vertex edge node and another for a Vertex backend node.
Both these clusters were statically provisioned with m5.large
instances each, and the control plane for both clusters con-
sisted of OpenFaas and our shared data and communication
pods abstracted as services. To emulate a client, we wrote a
client script on the EKS cluster representing the edge node.

9



We first wanted to test the overhead of our serverless engine
- while we used OpenFaas for its convenient usage, we ex-
pected the performance overhead to be nontrivial. To measure
this, we deployed a toy function on the edge that leverages
Vertex’s linearizability feature and increments a shared ob-
ject (a counter). The client function on the edge triggers the
function, and we repeat this 100 times for our measurement.
In our setup, the edge node already has access to the shared
object, thus it can execute the function locally when the client
triggers the function. Despite local processing at the edge
node, we noticed huge latency overheads, which we observed
to be from OpenFaas, shown in our boxplot (3b). To sup-
plement the plot with aggregate statistics, we measured the
median, mean, and standard deviation of the latency across
100 trials to be 424,28, 427.40, and 14.33 ms, respectively.
While the results across invocations were relatively stable, the
response latencies for edge applications were overall too high.
This proves our conjecture that the choice and design of FaaS
frameworks on the edge require require more thought.

Comparatively, we also measured the network latency from
our edge node cluster to our backend node cluster, and the
round-trip-time averaged to be 13.1 ms across 100 trials. We
note two caveats about this measurements. First, the locations
of the clusters within the same AWS region were not within
our control, and second, more investigation is needed to if
these network latency numbers are realistic in a real world
scenario where an edge node communicates with a backend
node in the cloud.

Building off these two measurements, we performed an
evaluation that represents an ideal scenario where the under-
lying serverlesss framework poses no overhead. Instead of
invoking OpenFaas on the clusters to invoke our toy func-
tion, we directly invoked the function in Python on the EC2
instances in our clusters. We had two setups for this experi-
ment. First, the client, which is attached to the edge, invokes
the toy function on the edge cluster, which increments the
shared object counter directly without going through Open-
Faas. Second, the client instead invokes the function across
the network on the backend node instead, which also incre-
ments the shared object counter without using OpenFaas.

The goal of this experiment was to observe the latency gains
from directly running the functions, as well as to compare
the scenarios when a client does not use the edge node versus
when the client uses the cloud instead for the same compu-
tation. For both the edge and the backend, we repeated the
experiment 100 times, and the resulting boxplots are shown
in figure 3c. The mean, median, and standard deviation were
65.84, 67,63, and 8.15 ms for the backend, and 60.98, 61.27,
3.66 ms for the edge. While further performance optimiza-
tions and fine-tuning of our setup will are necessary, these
results demonstrate the potential that computing on the edge
offers over computing at the cloud.

Going forward, the immediate next steps in our evaluation
process are to deploy another edge node cluster on EKS, so

we can more expressively evaluate our shared data and com-
munication subsystems, which are particularly useful when
there are multiple, collaborating edge nodes. Furthermore,
while integrating Vertex with EKS, we found a range of per-
formance bugs that did not manifest themselves in a local
setup, especially in our shared data subsystem, and we plan
to continue fixing these bugs.

5.2 Qualitative Evaluations
In addition to our quantitative evaluations, we also wanted
to evaluate the feasability of writing edge applications over
Vertex, and our results are demonstrated in 3a. We first wrote
an object detection application as a Vertex function that uses
the YOLO object detection system [15]. The function per-
forms object detection on behalf of an edge client using the
YOLOv4-tiny model, and took 90 lines of code to build. We
also built a federated learning application as a Vertex applica-
tion, where an edge node uses PyTorch [28] in collaborating
with other edge nodes to train a model and also allowing
clients to make inference requests to this model. This ap-
plication took us 116 lines to build. While the semantics of
Vertex’s API are still being refined, we see these results as
a positive preliminary indicator of the feasibility of building
edge applications over Vertex.

6 Conclusion

In this paper we have endeavored to identify location-agnostic
communication, migration, shared data, and privacy as core re-
quirements for edge applications which have been overlooked
by industrial offerings. We follow up by presenting Vertex,
an edge framework that represents a unified and extensive
environment for deploying edge applications by providing
primitives for these core requirements. While we plan to
continue working on improving Vertex’s performance and the
expressivity of its API, we hope that it can serve as a step-
ping stone to reimagine how a unified edge environment that
supports a rich range of applications can unlock the potential
benefits of the edge.

10



References

[1] A. Alwarafy, K. A. Al-Thelaya, M. Abdallah, J. Schnei-
der, and M. Hamdi. A survey on security and privacy is-
sues in edge computing-assisted internet of things. IEEE
Internet of Things Journal (Early Access), pages 1–1,
2020.

[2] Amazon. Amazon cloudfront. https://aws.amazon.
com/cloudfront/. Accessed 12-5-2020.

[3] Amazon. Amazon s3. https://aws.amazon.com/
s3/. Accessed 12-5-2020.

[4] Amazon. AWS local zones. https://aws.
amazon.com/about-aws/global-infrastructure/
localzones/. Accessed 12-5-2020.

[5] Amazon. AWS outposts. https://aws.amazon.com/
outposts/. Accessed 12-5-2020.

[6] Amazon. Lambda@edge. https://aws.amazon.
com/lambda/edge/. Accessed 12-5-2020.

[7] AT&T. AT&T multi-access edge comput-
ing. https://www.business.att.com/products/
multi-access-edge-computing.html. Accessed
12-5-2020.

[8] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of ansi
sql isolation levels. In ACM SIGMOD International
Conference on Management of Data, 1995.

[9] Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang,
and Song Fu. F-cooper: feature based cooperative per-
ception for autonomous vehicle edge computing system
using 3d point clouds. In 4th ACM/IEEE Symposium on
Edge Computing (SEC 2019), pages 88–100, 2019.

[10] Cloudflare. Cloudfare workers kv. https://
www.cloudflare.com/products/workers-kv/. Ac-
cessed 12-5-2020.

[11] Cloudflare. Cloudflare workers. https://workers.
cloudflare.com/. Accessed 12-5-2020.

[12] Cloudflare. What is a data center? https:
//www.cloudflare.com/learning/cdn/glossary/
data-center/. Accessed 12-5-2020.

[13] Cloudflare. What is edge computing? https:
//www.cloudflare.com/learning/serverless/
glossary/what-is-edge-computing/. Accessed
12-5-2020.

[14] Dell. Dell edge gateways for iot.
https://www.dell.com/en-us/work/
shop/gateways-embedded-computing/sf/
edge-gateway/. Accessed 12-5-2020.

[15] YOLO: Real-Time Object Detection. https://
pjreddie.com/darknet/yolo/. Accessed 12-5-
2020.

[16] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop,
Ramesh Sitaraman, and Bill Weihl. Globally distributed
content delivery. IEEE Internet Computing, 6:50–58,
November 2002.

[17] Google. Google nest. https://store.google.
com/us/category/connected_home? Accessed 12-
5-2020.

[18] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and
Soo-Mook Moon. IONN: Incremental offloading of
neural network computations from mobile devices to
edge servers. In ACM Symposium on Cloud Computing
(SOCC), pages 401–411, 2018.

[19] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi,
T. N. Dang, and C. S. Hong. Edge-computing-enabled
smart cities: A comprehensive survey. IEEE Internet of
Things Journal, 7(10):10200–10232, 2020.

[20] Kubernetes. Kubernetes. https://kubernetes.io/.
Accessed 12-5-2020.

[21] Wei Yang Lim, Nguyen Cong Luong, D. Hoang, Y. Jiao,
Ying-Chang Liang, Qiang Yang, D. Niyato, and Chun-
yan Miao. Federated learning in mobile edge networks:
A comprehensive survey. IEEE Communications Sur-
veys & Tutorials, 22:2031–2063, 2020.

[22] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan
Seskar, and Francesco Bronzino. Scalability and per-
formance evaluation of edge cloud systems for latency
constrained applications. In ACM/IEEE Symposium on
Edge Computing (SEC), pages 286–299, 2018.

[23] Christopher Meiklejohn and Peter Van Roy. Lasp:
a language for distributed, coordination-free program-
ming. In 17th International Symposium on Principles
and Practice of Declarative Programming (PPDP ’15),
pages 184–195, 2015.

[24] MobiledgeX. Mobiledgex edge-cloud. https://
mobiledgex.com/product. Accessed 12-5-2020.

[25] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadil.
DPaxos: Managing data closer to users for low-latency
and mobile applications. In ACM International Con-
ference on Management of Data (SIGCOMM), pages
1221–1236, 2018.

[26] OpenFaaS. Openfaas. https://www.openfaas.com/.
Accessed 12-5-2020.

11

https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
 https://aws.amazon.com/outposts/
 https://aws.amazon.com/outposts/
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://www.business.att.com/products/multi-access-edge-computing.html
https://www.business.att.com/products/multi-access-edge-computing.html
https://www.cloudflare.com/products/workers-kv/
https://www.cloudflare.com/products/workers-kv/
https://workers.cloudflare.com/
https://workers.cloudflare.com/
https://www.cloudflare.com/learning/cdn/glossary/data-center/
https://www.cloudflare.com/learning/cdn/glossary/data-center/
https://www.cloudflare.com/learning/cdn/glossary/data-center/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://www.dell.com/en-us/work/shop/gateways-embedded-computing/sf/edge-gateway/
https://www.dell.com/en-us/work/shop/gateways-embedded-computing/sf/edge-gateway/
https://www.dell.com/en-us/work/shop/gateways-embedded-computing/sf/edge-gateway/
 https://pjreddie.com/darknet/yolo/
 https://pjreddie.com/darknet/yolo/
https://store.google.com/us/category/connected_home?
https://store.google.com/us/category/connected_home?
 https://kubernetes.io/
https://mobiledgex.com/product
https://mobiledgex.com/product
https://www.openfaas.com/


[27] T. Pfandzelter and D. Bermbach. tinyfaas: A lightweight
faas platform for edge environments. In 2020 IEEE
International Conference on Fog Computing (ICFC),
pages 17–24, 2020.

[28] PyTorch. https://pytorch.org/. Accessed 12-5-
2020.

[29] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Cac-
eres, and Nigel Davies. The case for vm-based cloudlets
in mobile computing. volume 8, pages 14–23. IEEE
Pervasive Computing, 2009.

[30] Marc Shapiro, Nuno Preguica, Carlos Baquero, and
Marek Zawirski. A comprehensive study of convergent
and commutative replicated data types. In SSS, 2011.

[31] Masaki Suzuki, Takuya Miyasaka, Debashish
Purkayastha, Yonggang Fang, Qiang Huang, Jinguo
Zhu, Balendu Burla, Xiaopeng Tong, Dan Druta, Jane
Shen, Hanyu Ding, Guo Song, Marco Angaroni, and
Viscardo Costa. Enhanced DNS support towards
distributed MEC environment, 9 2020. Whitepaper No.
29.

[32] Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru
Iosup. Sharing and caring of data at the edge. In 3rd
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 20). USENIX Association, June 2020.

[33] Kenton Varda. Introducing cloudflare work-
ers: Run javascript service workers at the
edge. https://blog.cloudflare.com/
introducing-cloudflare-workers/. Accessed
12-5-2020.

[34] David A. Wood, Mark Hill, Daniel Sorin, and Vijay
Nagarajan. A Primer on Memory Consistency and
Cache Coherence. Morgan and Claypool Publishers,
2011.

[35] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury,
M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia,
T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak,
F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Ma-
chine learning at facebook: Understanding inference
at the edge. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 331–344, 2019.

[36] ZeroMQ. Zeromq. https://zeromq.org/. Accessed
12-5-2020.

[37] D. Zhang, N. Vance, and D. Wang. When social sensing
meets edge computing: Vision and challenges. In 2019
28th International Conference on Computer Communi-
cation and Networks (ICCCN), pages 1–9, 2019.

[38] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and
Dipankar Raychaudhuri. Towards efficient edge cloud
augmentation for virtual reality MMOGs. In ACM/IEEE
Symposium on Edge Computing (SEC), 2017.

12

 https://pytorch.org/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://zeromq.org/

