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Abstract

Compositionality and Modularity for Robot Learning

by

Coline Devin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Co-chair

Assistant Professor Sergey Levine, Co-chair

Humans are remarkably proficient at decomposing and recombining concepts they have
learned [16, 102]. In contrast, while deep learning-based methods have been shown to fit
large datasets and out-perform humans at some tasks [126], they often fail when presented
with conditions even just slightly outside of the distribution they were trained on [59, 152, 7].
In particular, machine learning models fail at compositional generalization, where the model
would need to predict how concepts fit together without having seen that exact combination
during training [78]. This thesis proposes several learning-based methods that take advantage
of the compositional structure of tasks and shows how they perform better than black-box
models when presented with novel compositions of previously seen subparts. The first type
of method is to directly decompose neural network into separate modules that are trained
jointly in varied combinations. The second type of method is to learn representations of tasks
and objects that obey arithmetic properties such that tasks representations can be summed
or subtracted to indicate their composition or decomposition. We show results in diverse
domains including games, simulated environments, and real robots.
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Chapter 1

Introduction

Advances in deep learning have resulted in impressive results across many domains, including
computer vision and robotics. The key to these increased capabilities is the ability of deep
neural networks to improve based on data (“learn”), rather than relying on humans to iterate
on a system manually. However, if deep networks are only thought of as learning black boxes,
where data goes in and a trained system comes out, we lose the opportunity to shape how
the trained network is making decisions. For example, if we train a network to classify dogs
and wolves, will it look at their ears, or will it just look for snow around the animal [117]? As
long as the trained network is only used on images similar to the ones seen during training,
it doesn’t matter, but if we expect the network to generalize to new images performance
could drop if they depict wolves inside houses. Since we cannot yet train networks on all
scenarios, how can we set up a learning system to have the most chance of generalizing to
new situations while still benefiting from learning directly from data? We seek to answer this
question in the domain of robot learning.

1.1 Modularity and Compositionality

A common paradigm in robot learning is to train on a particular distribution of environment
or tasks, and then test the robot’s behaviors on the same distribution. While the particular
instantiations of environment may differ between train and test, the learned policy is only
asked to interpolate within what it has see, rather than extrapolate to out-of-distribution
situations.

In this thesis, we explore the problem of learning robotic skills that generalize to new
situations. Taken at its extreme this is of course an impossible task: a robot cannot be
expected to know what to do with a sauce pan if it has only been trained on mowing grass.
Instead, we focus on the problem of generalizing learned behaviors to novel compositions of
previously seen tasks. For example, a robot that has learned to pick up a cup with its right
hand and slice vegetables with its left hand should be able combine these learned behaviors
and infer how to pick up a cup with the left hand and vice versa, as illustrated in Figure 1.1.



CHAPTER 1. INTRODUCTION 2

“Compositionality” as a problem statement in machine learning can take various forms. At
its center is the assumption that concepts we want agents to learn are all made up of subparts,
and that these subparts are reused across many concepts. We hypothesize that learning
algorithms that take advantage of the compositional structure of tasks should perform better
than black-box models when presented with novel compositions of previously seen subparts.
In this work we focus on a few types of compositionality: the compositions of different robot
morphologies performing different behaviors, the compositions of behaviors and objects, the
compositions of objects within visual scenes, and finally the compositions of tasks with each
other over time.

1.2 Organization, and Contributions
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Figure 1.1: While learning based methods can
learn behaviors given enough data for that task,
they often fail to perform well in novel situa-
tions, even if those situations are compositions
of the previously seen tasks.

We begin in Chapter 3 by demonstrating
how a modular network architecture can en-
able generalization to novel compositions of
robots and tasks. We propose to divide a neu-
ral network into modules that each assigned
to a robot or a task. Without supervising
how these modules should interface, we train
them together from data of different robots
performance different tasks. We show that
by recombining the modules in novels ways
at evaluation, the tasks can be transferred
between the robots. This simple approach
illustrates the power of neural network archi-
tecture for encoding structural biases. This
structure can lead to improved compositional
generalization while retaining the benefits of
learning from data. This work was published
at the International Conference on Robotics
and Automation (ICRA) in 2017.

In Chapter 4 we study an object-centric approach to modular robotic learning, where
we structure image-conditioned policies as the composition of object localization and motor
control. Rather than train each component independently, we develop an attention based
object detector that can be trained directly from a handful demonstrations of the robot task.
This modular structure enables swapping different object attention parameters to change
how the task is performed. Additionally, by basing the detection on deep features trained on
an image classification dataset, we transfer visual robustness from the dataset to the robot’s
behavior: if the robot is trained with a brown mug, the object attention detects all kinds of
mugs without having been explicitly trained to do so. This work was published at ICRA in
2018.
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In Chapter 5 we extend the ideas in the previous chapter by proposing a self-supervised
approach to learning object-centric representations. Rather than relying on fixed dataset of
human-labeled images, we posit that a robot should be able to learn to identify novel objects
directly by interacting with them. When a robot picks up an object, the images before and
after the object was grasped contain the information needed to learn about the object. By
contrasting the difference between these images with a close up of the object in the robots
gripper, the robot can learn to localize and grasp novel objects when presented with pictures
of them. We achieve this by learning to embed images into a vector space where adding and
subtracting vectors corresponds to adding and removing objects from the scene. This work
was published at the Conference on Robot Learning (CoRL) in 2018.

Chapter 6 revisits the problem of task compositionality, this time from a temporal
perspective. We previously showed that images containing multiple objects can be embedded
into a vector equal to the sum of the embeddings of each of the objects. We hypothesize
that embeddings of tasks can be learned with the same property: the embedding of a task
should equal the sum of the embeddings of the sub-tasks within it. By applying this principle
to a multi-task imitation learning setting, we are able to train policies that can perform
novel, more complex, compositions of subtasks than what was seen during training. To
conclude, Chapter 7 reflects on the limitations of this work and offers ideas for future research
in compositionality and modularity for robot learning. This work was published at Neural
Information Processing Systems (NeurIPS) in 2019.
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Chapter 2

Related Work

Reinforcement learning (RL) can automate a wide variety of robotic skills [27, 71, 110,
112], but learning each new skill requires considerable real-world data collection and manual
representation engineering to design policy classes or features. Using deep reinforcement
learning to train general purpose neural network policies alleviates some of the burden
of manual representation engineering by using expressive policy classes, but exacerbates
the challenge of data collection, since such methods tend to be less efficient than RL with
low-dimensional, hand-designed representations. The ability to transfer information from one
skill or environment to another is crucial for robot learning in the real world, where collecting
data is expensive and slow, as well as for training robots that can perform many tasks and
which are robust to novel settings. Transfer learning has been recognized as an important
direction in robotic learning [138, 11, 12, 31, 73], due to its potential for reducing the burden
of expensive on-policy data collection for learning large repertoires of complex skills. [115]
and [93] transfer between tasks by storing symbolic knowledge in knowledge bases.

We are particularly focused on transferring skills and generalization through compositional
learning. Guestrin et al. learned to play many versions of a computer strategy game by
decomposing the value function into different domains [46]. The PG-Ella algorithm uses
policy gradients for sequential multitask learning [2]. Past work in transfer on robotics
domains includes shaping the target reward function from the source policy [74, 96] and
learning a mapping between tasks [139]. Another compositional approach used by [32] is
to split each task into sub-tasks and transfer the sub-tasks between tasks. An early work
by Caruana uses back-propagation to learn many tasks jointly [11]. Our work in Chapter 3,
where we decompose neural networks into modules for tasks and robots, is based on the
hypothesis that deep learning methods can find good representations for composing skills.
The concurrent work by Andreas et al. is based on the same hypothesis, but focuses more on
building primitive skills than on transferring tasks between robots [5].

The methods in Chapter 4 build upon the vast body of work in machine perception.
Machine perception has often been concerned with object detection and localization at either
the instance level or category level. Instance level approaches have used methods such as 3D
representations [121] [57], keypoints [91], or deep neural networks [55]. At the category level,
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deep learning of detectors with large datasets has been successful [116, 51]. Category-level
reasoning is appealing because it can generalize across object instances, but is limited by the
labels included in a dataset. Instance level reasoning can be limited in how well it generalizes
to visual changes. Guadarrama et al. use textual descriptions of objects to combine task and
category level reasoning [45].

Chapter 5 makes use of interaction and self-supervision to learn task-relevant object
features. Past works on interactive learning have used egomotion of a mobile agent or
poking motions [1, 34, 113, 63, 66, 41] to provide data-efficient learning of perception and
control. Our approach learns representations that abstract away position and appearance,
while preserving object identity and the combinatorial structure in the world (i.e., which
objects are present) via a single feature vector. A recent body of work has focused on deep
visuomotor policies for picking up arbitrary objects from RGB images [114, 84, 79, 151]. By
automatically detecting whether some object was grasped, these methods can learn without
human supervision.

Our work also draws from prior work in metric learning. For many types of high
dimensional inputs, Euclidean distances are often meaningless in the raw input space. Words
represented as one-hot vectors are equally distant from all other words, and images of the
same scene may have entirely different pixel values if the viewpoint is shifted slightly. This has
motivated learning representations of language and images that respect desirable properties.
[17] showed that a simple contrastive loss can be used to learn face embeddings. A similar
method was also used on image patches to learn general image features [127]. Word2vec
found that word representations trained to be predictive of their neighbor words support some
level of addition and subtraction [97, 85, 70]. More recently, Nagarajan used a contrastive
approach in learning decomposable embeddings of images by representing objects as vectors
and attributes as transformations of those vectors [105]. These methods motivate our goal
of learning an embedding space over tasks that supports transformations such as addition
and subtraction. Notably, these methods don’t rely on explicit regularization for arithmetic
operations, but rather use a simple objective combined with the right model structure to allow
a compositional representation to emerge. Our approach also uses a simple end-to-end policy
learning objective, combined with a structural constraint that leads to compositionality.

Chapter 6 combines the idea of learning arithmetic embeddings spaces with hierarchical
multi-task imitation learning. Hierarchical RL algorithms learn representations of sub-tasks
explicitly, by using primitives or goal-conditioning [20, 108, 89, 42, 94, 25, 8, 145], or by
combining multiple Q-functions [48, 129]. Our approach does not learn explicit primitives or
skills, but instead aims to summarize the task via a compositional task embedding. A number
of prior works have also sought to learn policies that are conditioned on a goal or task [72,
26, 77, 133, 22, 47, 54, 95, 23, 120], but without explicitly considering compositionality.
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Chapter 3

Learning Modular Networks for
Multi-Task and Multi-Robot Transfer

3.1 Introduction

Deep reinforcement learning (RL) has been successful in multiple domains, including learning
to play Atari games [101], simulated qnd real locomotion [123, 103] and robotic manipula-
tion [83]. The onerous data requirements for deep RL make transfer learning appealing, but
the policies learned by these algorithms lack clear structure, making it difficult to leverage
what was learned previously for a new task or a new robot. The relationship between the
optimal policies for different combinations of tasks and robots is not immediately clear, and
doing transfer via finetuning does not work well for robotic RL domains due to the lack of
direct supervision in the target domain.

However, much of what needs to be learned for robotic skills (dynamics, perception, task
steps) is decoupled between the task and the robot. Part of the information gained during
learning would help a new robot learn the task, and part of it would be useful in performing a
new task with the same robot. Instead of throwing away experience on past tasks, we propose
learning structured policies that decompose in a way that we can use transfer learning to help
a robot benefit from its own past experience on other tasks, as well as from the experience of
other, morphologically different robots, to learn new tasks more quickly.

In this chapter, we address the problem of transferring experience across different robots
and tasks. Specifically, we consider the problem of transferring information across robots
with varying morphology, including varying numbers of links and joints and across a diverse
range of tasks. The discrepancy in the morphologies of the robots and the goals of the
tasks prevents us from directly reusing policies learned on multiple tasks or robots for a new
combination, and requires us to instead devise a novel modular approach to policy learning.
An additional difficulty is determining which information can be transferred to a new robot
and which can be transferred to a new task. As discussed in Chapter 1, consider a robot
that has learned to slice vegetables. Given a new robot robot which only knows how to
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pickup a cup, we would like to transfer something about slicing from the first to the second
robot, which when combined with the second robot’s experience with the cup, would help it
perform the slicing task. The first robot would transfer task information to the second, while
the second robot would transfer its understanding of its own dynamics and kinematics from
picking up to slicing.

In this chapter, we explore modular decomposable policies that are amenable to cross-
robot and cross-task transfer. By separating the learned policies into a task-specific and
robot-specific component, we can train the same task-specific component across all robots,
and the same robot-specific component across all tasks. The robot and task-specific modules
can then be mixed and matched to execute new task and robot combinations or, in the case of
particularly difficult combinations, jump start the learning process from a good initialization.
In order to produce this decomposition of policies into task-relevant and robot-relevant
information, we show that policies represented by neural networks can be decomposed into
task-specific or robot-specific modules. We demonstrate that these modules can be trained
on a set of robot-task combinations and can be composed to enable zero-shot performance or
significantly sped up learning for unseen robot-task combinations.

Our contributions are as follows:

1. We address robotic multi-task and transfer learning by training policy modules that
are decomposed over robots and tasks, so as to handle novel robot-task combinations
with minimal additional training.

2. We analyze regularization techniques that force the modules to acquire a generalizable
bottleneck interface.

3. We present a detailed evaluation of our method on a range of simulated tasks for both
visual and non-visual policies.

3.2 Relation to prior work

Our work differs from prior methods in that we explicitly consider transfer across tasks with
two factors of variation, which in our experiments are robot identity and task identity. This
allows us to decompose the policy into robot-specific and task-specific modules, which perform
zero-shot transfer by recombining novel pairs of modules. Our method is complementary
to prior transfer learning techniques in that we address primarily the question of policy
representation, while prior methods focus on algorithmic questions.

Beyond robotic learning, recent work in computer vision and other passive perception
domains has explored both transfer learning and recombination of neural network modules.
Pretraining is a common transfer learning technique in deep learning [30]. However, pretraining
cannot provided zero-shot generalization, and finetuning is ill-defined outside of supervised
learning. Domain adaptation techniques have been used to adapt training data in the face
of systematic domain shift [143], and more recently, work on modular networks for visual
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Figure 3.1: The 3DoF and a 4DoF robot which specify one degree of variation (robots) in
the universe described in Section 3.3 as well as the tasks of opening a drawer and pushing a
block which specify the other degree of variation (tasks) in the universe.

Figure 3.2: The possible worlds enumerated for all combinations of tasks and robots for the
universe described in Section 3.3

question answering has been demonstrated with good results [5]. Our method differs from
these prior approaches by directly considering robotic policy learning, where the policy must
consider both the invariances and task-relevant differences across domains.

Although our method is largely agnostic to the choice of policy learning algorithm, we use
the guided policy search method in our experiments [83]. This algorithm allows us to train
high-dimensional neural network policy representations, which can be readily decomposed
into multiple interconnected modules. Other recent work on high-dimensional neural network
policy search has studied continuous control tasks for simulated robots [123, 86], playing Atari
games [101], and other tasks [106]. Recent work on progressive neural network also proposes a
representation suitable for transfer across Atari games [119], but does not provide for zero-shot
generalization to new domains, and work by Braylen et al. used evolutionary algorithms to
recombine networks trained for different Atari games, but again did not demonstrate direct
zero-shot generalization [9]. We further emphasize that our approach is not in fact specific
to neural networks, and our presentation of the method describes a generic framework of
composable policy modules that can easily be extended to other representations.
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3.3 Modular Policy Networks

The problem setting that this work addresses is enabling transfer across situations that can
vary along some predefined discrete degrees of variation (DoVs). These DoVs can be different
robot morphologies, different task goals, different object characteristics, and so forth. We
define a “world” w to be an instantiation of these DoVs, and our “universe” U to be the set
of all possible worlds. To illustrate this formalism, consider a universe with the following
2 DoVs: robot structure (3 DoF and 4 DoF), and task (open drawer and pushing a block).
This universe would have 4 possible worlds: 3 DoF arm opening a drawer, 3 DoF arm pushing
a block, 4 DoF arm opening a drawer, and 4 DoF arm pushing a block.

Learning a single policy to act in all worlds is non-optimal because differences in the
degrees of variation result in different optimal policies. Strategies required to push a block
are quite different from those for a drawer, and robots with different numbers of joints would
require different controls.

Standard reinforcement learning algorithms would treat each world w as a separate
problem and learn an optimal policy for that world from scratch. However, the worlds have
overlap: although a 3 DoF arm pushing a block and a 3 DoF arm opening a drawer are doing
different tasks, they share the same arm, and thus will have commonalities in their optimal
policy. This concept can be extended to other degrees of variation, such as when different
arms perform the same task, or when the same arm interacts with different objects. Using
this notion of commonality between worlds that share some DoVs, we tackle the problem of
training policies for a subset of all worlds in a universe, and use these to enable fast transfer
to new unseen worlds. Our experiments operate in the regime of 2 DoVs, which we take to
be the identity of the robot and the identity of the task. However, we emphasize that this
formalism can be extended to include variations like different objects, different environment
dynamics, and so forth. In our subsequent method description, we adhere to the regime
specified above, where our universe has 2 DoVs: the robot and the task being performed. We
use R to denote the number of robots and K to denote the number of tasks. The robots can
have different system parameters, such as link length, configuration, geometry, and even state
and action spaces of completely different dimensionality, with different numbers of joints and
actuators. We assume that the K tasks are achievable by all of the robots.

3.3.1 Preliminaries

For each world w, let us define observations ow and controls uw. The observations ow are the
input that a robot would receive at test time, which could include images, encoder readings,
motion capture markers, etc. In the case of complete information, the observations ow would
be the full state xw. The controls uw are the commands sent to the robot’s motors, which
could be joint torques, velocities, positions, etc. We assume access to a policy optimization
algorithm that can perform policy search to learn a separate optimal policy πw for each world
w. A policy πw(uw|ow) specifies a distribution over controls uw given an observation ow. A
policy search algorithm aims to search in policy space to find optimal parameters for πw
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which minimize the expected sum of costs Eπw(
∑T

t=0 c(ow, t)). Given an optimal policy π∗w,
we can draw actions uw given observations ow from the distribution π∗w(uw|ow).

For most worlds we consider, an observation ow can be split into a robot-specific “intrinsic”
observation ow,R containing elements of the observation corresponding to the robot itself, and
a task-specific “extrinsic” observation ow,T containing elements of the state corresponding to
the task being performed. ow,R could include robot joint state and sensor readings, while
ow,T could include images, object locations, and the position of the robot’s end-effector. We
assume that the state can be decomposed in the same way into xw,R and xw,T . In order to
decompose the policy by tasks and robots, we assume that the cost can be decomposed into
a term that depends on the intrinsic state, and a term that depends on the extrinsic state:
c(xw, uw) = cR(xw,R, uw) + cT (xw,T ), where the actions only affect the robot-dependent term,
since they are inherently intrinsic. This assumption is reasonable, as the cost tends to be in
terms of object locations and torque penalties. This decomposition of states and observations
is crucial to being able to learn modular policies, as explained in Section 3.3.2.

3.3.2 Modularity

The problem we tackle is that of transferring information along values of each degree of
variation while the remaining DoVs change. We intuit that for a particular degree of variation,
all worlds with that DoV set to the same value can share some aspect of their policies. Going
back to our 2-DoV universe as shown in Fig. 3.2, with 3 DoF and 4 DoF arms, performing the
tasks of opening a drawer and pushing a block, consider 2 of the possible worlds: w1, which
is a 3 DoF arm opening a drawer, and w3, a 3 DoF arm pushing a block. Although these
worlds require different strategies due to the different tasks being performed, the robots are
the same and hence robot kinematics, and control dimensionality matches across both worlds.
We hypothesize that, for a particular degree of variation, all worlds with that DoV set to the
same value can share some aspect of their policies. This is achieved by making the policies
modular, so that the policies for worlds w1 and w3 share a “3 DoF arm” part of the policy.

We let πwrk
(u|o) be the policy for the world w with robot r performing task k. To make

the notation clearer, let us say that πwrk
(u|o) is a distribution parametrized by a function

φwrk
(o). For example, πwrk

(u|o) can be a Gaussian N (φwrk
(o),Σ) with mean set to φwrk

(o),
and φwrk

can be an arbitrary function on observations.
For modular policies, we express φwrk

(o) as a composition of functions fr and gk that
represent robot-specific and task-specific parts of the policy for robot r and task k. Note that
throughout our explanation, f shall represent robot-specific modules and g shall represent task-
specific modules. These functions fr and gk act on the decomposed parts of the observation
ow,R and ow,T respectively. The compositionality of modules can be represented as

φwrk
(ow) = φwrk

(ow,T , ow,R) = fr(gk(ow,T ), ow,R) (3.1)

We refer to fr as the robot-module for robot r and the function gk as the task-module for
task k. A separate set of parameters is used for each robot-module and task-module, such
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that worlds with the same robot instantiation r would reuse the same robot module fr, while
worlds with the same task instantiation k would use the same task module gk.

The reason the modules are composed in this particular order for the scenarios we consider
is because we expect that the identity of the task would affect the task plan of the policy,
while the robot configuration would affect the control output. An important point to note
here is that the output of the task module gk is not fixed or supervised to have a specific
semantic meaning. Instead it is a latent representation that is learned while training the
modules.

If we consider a larger number of DoVs, such as robots, tasks, and objects on which those
tasks are performed, we could arrange the modules in an arbitrary ordering, so long as the
ordering forms a directed acyclic graph (DAG). In the general case, each module receives
inputs from its children and the observation corresponding to its DoV, and the root module
outputs the action.

This definition of modularity now allows us to reuse modules across worlds. Given an
unseen new world wtest, using robot rtest to perform task ktest, modules frtest and gktest , which
have been learned from other worlds in the training set, can be composed to obtain a good
policy. We do require that some world in the training set must have used robot rtest and some
other world must have performed ktest, but they need not have ever been trained together.
For the unseen world, we have

φwtest(otest) = φwtest(owtest,T , owtest,R)

= frtest(gktest(owtest,T ), owtest,R)

Note that we do not attempt to build a mapping relating different robots or tasks to each
other, but instead use the experience of our desired robot on other task and the performance
of our desired task with other robots to enable transfer of skills. As the number and variety
of worlds which use a particular module increase, the module becomes increasingly invariant
to changes in other DoV’s, which is crucial for generalization. For example, as the number
of robots being trained increases, each task module will need to work with various robot
modules, which encourages them to become robot-agnostic. Similarly robot modules become
task-agnostic as more tasks are performed with the same robot.

3.3.3 Architecture and Training

For this work, we choose to represent the modules f and g as neural networks due to their
expressiveness and high capacity, as well as the ease with which neural networks can be
composed. Specifically, for a world with robot r and task k, we choose φwrk

(o) to be a neural
network, and we choose the policy πwrk

(u|o) to be a Gaussian with mean set to φwrk
(o), and

a learned but observation-independent covariance. Each policy mean is thus a composition of
two neural network modules fr, gk, where the output of the task module is part of the input
to the robot module.

Several training worlds are chosen with combinations of robots and tasks, such that every
module has been trained for at least one world. This is illustrated in Fig. 3.3.
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Figure 3.3: Modular policy composition for a universe with 2 tasks and 2 robots. There
are 4 available modules - 2 task modules and 2 robot modules, and each module is a nerual
network. For the training worlds, these modules are composed together to form the individual
policy networks. Modules of the same color share their weights. Policy networks for the
same task share task modules and those for the same robot share robot modules. The
training worlds are composed and then trained end-to-end. On encountering an unseen world,
the appropriate previously trained modules are composed to give a policy capable of good
zero-shot performance

The combined grid of policy networks, with weights tied between modules, are trained
using inputs from all the worlds. This is done synchronously, by first collecting samples from
each of the worlds and them feeding them forward through their corresponding modules to
output predicted controls for each world. However, asynchronous training methods could
also be explored in future work.

Formally, training proceeds by minimizing the reinforcement learning loss function L,
which is the sum of individual loss functions Lw from each of the training worlds w. The
details of the loss function and how it might be minimized, depends on the particular
RL algorithm used to train the policies. In our experiments, we use guided policy search
(GPS) [83], though other methods could be readily substituted. GPS proceeds by using local
policy solvers to supervise the training of the final neural network policy, such that the loss
for Lw is a Euclidean norm loss for regression onto the generated training actions. A more
standard policy gradient might instead use the approximate linearization of the expected
return as the loss [123]. Most policy learning methods, including GPS and policy gradient
methods, require computing the gradient of log π(u|o) with respect to its parameters. In our
method, as πwrk

is parametrized by a neural network φwrk
(with parameters θk for the task

module and parameters θr for the robot module), we get the following gradients.

∂πwrk

∂θr
=
∂πwrk

∂φwrk

∂φwrk

θr
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∂πwrk

∂θk
=
∂πwrk

∂φwrk

∂φwrk

θk

As φwrk
= fr(gk(ow,T ), ow,R), we can rewrite the gradients as follows,

∂πwrk

∂θr
=
∂πwrk

∂fr

∂fr
∂θr

∂πwrk

∂θk
=
∂πwrk

∂fr

∂fr
∂gk

∂gk
∂θk

These gradients can be readily computed using the standard neural network backpropaga-
tion algorithm.

3.3.4 Regularization

In order to obtain zero-shot performance on unseen robot-task combinations, the modules
must learn standardized interfaces. If, for example, a robot module overfits to the robot-task
combinations seen during training, it might partition itself into different “receptors” for
different tasks, instead of acquiring a task-invariant interface. With only a few robots and
tasks (e.g. 3 robots and 3 tasks), we have found overfitting to be problematic. To mitigate
this effect, we regularize our modules in two ways: by limiting the number of hidden units in
the module interface, and by applying the dropout method, described below.

Limiting the number of hidden units in the outputs of the first module forces that module
to pass on information compactly. A compact representation is less likely to be able to overfit
by partitioning and specializing to each training world, since it would not be able to pass on
enough information to the next module.

Dropout is a neural network regularization method that sets a random subset of the
activations to 0 at each minibatch [132]. This prevents the network from depending too
heavily on any particular hidden unit and instead builds redundancy into the weights. This
limits the information flow between the task and robot modules, reducing their ability to
overspecialize to the training conditions.

3.4 Experiments

To experimentally evaluate modular policy networks, we test our transfer approach on a
number of simulated environments. For each experiment we use multiple robots and multiple
tasks and demonstrate that using modular policy networks allows us to train on a subset of the
possible worlds in a universe, and achieve faster or zero-shot learning for an unseen world. We
evaluate our method against the baseline of training a separate policy network for each world
instantiation. In order to evaluate our method on a challenging suite of simulated robotic tasks,
we constructed several simulated environments using the MuJoCo physics simulator [142].



CHAPTER 3. MODULAR NETWORKS 14

Figure 3.4: Basic visuomotor policy network for a single robot. The two convolutional layers
and spatial softmax form the task module, while the last few fully connected layers form the
robot module

We evaluate our method on tasks that involve discontinuous contacts, moving and grasping
objects, and processing raw images from simulated cameras.For all experiments, further details
and videos can be found at https://sites.google.com/site/modularpolicynetworks/

3.4.1 Reinforcement Learning Algorithm

The policy search algorithm we use to learn individual neural network policies is the guided
policy search method described in [81]. This work splits policy search into trajectory
optimization and supervised learning. To learn a number of local policies under unknown
dynamics, the method uses a simple trajectory-centric reinforcement learning algorithm based
on LQR. This algorithm generates simple local time-varying linear-Gaussian controllers from
individual initial states of each system, with different controllers for different initial states.
These controllers then provide supervision for training a global neural network policy using
standard supervised learning, with a Euclidean loss regression objective. In our experiments,
we use the BADMM-based variant of guided policy search which applies an additional penalty
on the trajectory optimization for deviating from the neural network policy to stabilize
the learning process [83]. This choice of learning algorithm enables us to train deep neural
networks with a modest number of samples. However, more standard methods, such as policy
gradient [148, 123] and actor-critic [86, 111] methods, could also be used with modular policy
networks.

https://sites.google.com/site/modularpolicynetworks/
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Figure 3.5: Grid of tasks vs robots for the reaching colored blocks task in simulation described
in 3.4.3. We train on all the worlds besides the 4link robot reaching to black, and test on
this held out world.

3.4.2 Network Architecture

For tasks that require performing simulated vision, we used a neural network architecture
as shown in Fig. 3.4. This architecture follows prior work [83]. In non-vision tasks, the
convolutional layers are replaced with fully connected layers. In both cases, the task module
also takes as input the position of the robot’s end-effector. Since the end-effector is present
in all robots, we provide this to the task module so as to make it available to the policy in
the earliest layers.

3.4.3 Reaching Colored Blocks in Simulation

In the first experiment, we evaluate a simple scenario that tests the ability of modular policy
networks to properly disentangle task-specific and robot-specific factors in a visual perception
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Test Position Random network Wrong task module Ours

1 1.16 2.34 0.12
2 1.29 1.75 0.28
3 1.35 1.65 0.21
4 1.29 2.41 0.08

Table 3.1: We evaluate the zero shot performance of the 4-link arm reach to the black block.
The numbers shown in the table are average distances from the end-effector to the black
block over the last 5 timesteps of a sample from the policy; a perfect policy would get 0.
We see that composing the 4-link robot module with the reach to black-block task module
generates very good performance (under the column Ours), while composing a different task
module with the correct robot module, or running a random policy does quite poorly.

task. In this task, the environment consists of four colored blocks (red, green, yellow, and
black) positioned at random locations in the workspace, and each task requires the robot to
reach for a particular colored block. The universe for this scenario includes three robots: a
3-link arm, a 3-link arm with links of a different lengths, and a 4-link arm. Each robot has
its own robot module, and is controlled at the level of joint torques. The size of the image
passed is 80x64x3, and the state space for each robots is its joint angles and its joint angle
velocities. This results in 15366 inputs for the 3-link robots and 15368 for the 4-link robots.
An illustration of this task is shown in Figure 3.5.

Although this task is not kinematically difficult, it requires the task modules to pick up on
the right cues, and the small number of tasks and robots makes overfitting a serious challenge.
In order to evaluate zero-shot transfer in this setup, we train the modules on 11 out of the 12
possible world instantiations, with the 4 link robot reaching the black block being the unseen
world. None of the other policies being learned can be trivially transferred to this world, as
the 3 link robots have different dimensionality and the other task modules have never learned
to reach towards other blocks. Successful transfer therefore requires perception and control
to be decomposed cleanly across the task and robot modules. This is illustrated in Fig. 3.5.

We compare the performance of our method against two baselines: the first baseline
involves executing a random policy, while the second involves running a policy learned for
the 4 link robot but for a different colored block. These baselines are meant to test for trivial
generalization from other tasks. The results, shown in Table 3.1, show that our method
is able to perform the task well without any additional training, while the baselines have
significant error. This illustrates that we are able to transfer visual recognition capabilities
across robots, which is crucial for learning transferable visuomotor policies.
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Figure 3.6: Grid of tasks vs robots for the object manipulation tasks described in 3.4.4.
The horizontal drawer tasks involve sliding the grey drawer horizontally to the target in the
direction indicated by the arrow on the image. The vertical drawer tasks involve sliding the
grey drawer vertically up in the direction indicated by the arrow on the image. The block
push tasks involve pushing the white block to the red goal. All positions shown in this image
are the final successful positions for each world.

3.4.4 Object Manipulation

In the next experiment, we evaluate our method on tasks that are more physically different
to understand how well modular policy networks can transfer skills for manipulation tasks
with complex contact dynamics. In this experiment, we use 3 robots and 3 tasks, as shown
in Fig. 3.6. The robots have 3, 4, or 5 links, with state spaces of different dimensionality, and
we input target coordinates instead of images. The tasks are: pulling a drawer horizontally,
pushing a drawer vertically, and pushing a block to a target location. The arrows in the
Fig. 3.6 indicate direction of motion for the tasks. Each of these tasks involve complex
discontinuous contact dynamics at the point where the robot contacts the object. A grid of
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tasks and robots is presented in Fig 3.6. In order to successfully transfer knowledge in this
environment, kinematic properties of the tasks need to be transferred as well as dynamics of
the robot.

We train 8 out of the 9 possible worlds, with the 3 link robot pulling the horizontal drawer
being held out. Although our method does not successfully perform zero-shot generalization
directly simply by composing the modules for the held-out world, the transferred policy
provides an excellent initialization for further learning. Figure 3.7 shows the learning curves
with policies initialized using four paradigms: composing modules appropriately using our
method, composing modules using the incorrect task-module (vertical drawer), and learning
from scratch with and without shaping. In this task, the shaping term in the cost encourages
the robot’s gripper to reach for the drawer, while the standard cost without shaping simply
considers the distance of the drawer from the target. Typically, tasks like this are extremely
challenging to solve without shaping or a good initialization, since the robot must rely entirely
on random exploration to learn to push the drawer before receiving any reward.

The results indicate that the transferred policy is able to learn the drawer task faster
without shaping than the task can learned from scratch with shaping. When learning from
scratch without shaping, the learning algorithm is unable to make progress at all. Therefore,
if the shaping cost is not available, the policy obtained by transferring knowledge via modular
policy networks is essential for successful learning. This indicates that, despite the wide
variability between the tasks and robots and the small number of task-robot combinations,
modular policy networks are able to transfer meaningful knowledge into the held-out world.

3.4.5 Visually Distinct Manipulation Tasks

In the third experiment, we evaluated our method on a set of worlds that require both vision
and physically intricate manipulation skills to succeed. An illustration of the tasks and robots
in the experiment is presented in Figure 3.8. The robots again include the 3-link arms with
different link lengths and a 4-link robot. The tasks require reaching to a given position,
pushing a block to a given target, and inserting a peg into a hole. The goals for each task are
visually distinct, and the tasks require a different pattern of physical interactions to handle
the contact dynamics.

We choose 8 out of the 9 possible worlds to train, with the held out world being the 4 link
robot pushing the block. This task is particularly difficult, since it involves discontinuous
dynamics. Modular policy networks were able to succeed at zero-shot transfer for this task,
significantly outperforming both a random baseline and policies from different robot-task
combinations. This indicates that the modules were able to decompose out both the perception
and the kinematic goal of the task, with the robot modules handling robot-specific feedback
control to determine the joint torques needed to realize a given task.
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Figure 3.7: Results on the 3-link robot performing horizontal drawer pulling. The initialization
from composing the 3-link robot module with the horizontal pull task module provides the
fastest learning. Although the vertical drawer module was trained with the 3-link robot, the
task is too different to directly transfer. Random initialization performs well with reward
shaping, but without it is unable to learn the task.

Test Position Random network Wrong task module Ours

1 0.95 0.95 0.48
2 1.79 1.14 0.19
3 1.54 1.27 0.25
4 0.94 1.32 0.23

Table 3.2: Zero-shot results on the 4-link performing the block-pushing task from section 3.4.5.
The values are the distance between the drawer and its target position averaged over tha
last five time steps of each sample. Forming the policy by composing the 4-link module
with the block pushing module performs best even those modules were not trained together.
Choosing the reach module instead performs on par with a random network. We show that
the task and robot modules are able to generalize to unseen robot-task combinations without
additional training.

3.5 Discussion and Future Work

In this chaper, we presented modular policy networks, a method for enabling multi-robot and
multi-task transfer with reinforcement learning. Modular policy networks allow individual
component modules for different degrees of variation, such as robots and tasks, to be trained
together end-to-end using standard reinforcement learning algorithms. Once trained, the
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Figure 3.8: R-obots for visually distinct tasks mentioned in 3.4.5. The reach task involves
reaching the white target. The push task involves pushing the white block to the red goal.
The peg insertion task involves inserting the peg at the tip of the robot into the hole specified
by the black square. These tasks involve manipulation and are also visually distinct in that
they do not use the colors in the same way (the target and block colors are not consistent).
We train on all combinations besides the 4link robot pushing the block.

modules can be recombined to carry out new combinations of the degrees of variation, such
as new robot-task combinations. The task-specific modules are robot-invariant, and the
robot-specific modules are task-invariant. This invariance allows us to compose modules to
perform tasks well for robot-task combinations that have never been seen before. In some
cases, previously untrained combinations might generalize immediately to the new task, while
in other cases, the composition of previously trained modules for a new previously unseen
task can serve as a very good initialization for speeding up learning.

One of the limitations of the current work is that, by utilizing standard reinforcement
learning algorithms, our method requires different task-robot combinations to be trained
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Figure 3.9: The final positions of the zero-shot performance of our method on the blockpushing
task. Our method performs the task very well on zero shot and gets the white block to the
red goal.

simultaneously. In a practical application, this might require multiple robots to be learning
simultaneously. A promising direction for future work is to combine our approach with more
traditional, sequential methods for transfer learning, such that the same robot can learn
multiple tasks in sequence, and still benefit from modular networks. This would enable
combined lifelong and multirobot learning, where multiple robots might learn distinct robot-
specific modules, trained sequentially, while contributing to shared task-specific modules,
trained in parallel. By training on a larger variety of robots and tasks, the generalization
capability of modular policy networks is likely to increase also. This could make it practically
to automatically train large repertoires of different skills across populations of heterogeneous
robotic platforms.

Since publication, other papers have built upon this research direction. Modular networks
have been used for hierarchical agents which must perform multiple tasks in a row [5, 107],
or to navigate within multiple cities [98].
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Chapter 4

Deep Object-Centric Representations
for Generalizable Robot Learning

4.1 Introduction

The previous chapter’s use of a composable neural modules enabled transfer between tasks
and robots. However, this method was only shown to work on manipulation tasks from
state, or from very simple visual observations. In real world scenarios, the state of the world
is not known, and visual observations are much more complex and varied. In this chapter
we address learning visuomotor policies that generalize across objects and diverse visual
conditions.

Recent years have seen impressive improvements in the performance of computer vision
systems, brought about by larger datasets [118], improvements in computational capacity
and GPU computing, and the widespread adoption of deep convolutional neural network
models [53]. However, the gains in computer vision on standard benchmark problems such
as ImageNet classification or object detection [87] do not necessarily translate directly into
improved capability in robotic perception, and enabling a robot to perform complex tasks in
unstructured real-world environments using visual perception remains a challenging open
problem.

Part of this challenge for robot perception lies in the fact that the effectiveness of modern
computer vision systems hinges in large part on the training data that is available. If the
objects for a task happen to fall neatly into the labels of dataset, then using a trained
object detector for perception makes sense. However, as shown in Figure 4.2, objects outside
the label space may be labeled incorrectly or not at all, and objects that the robot should
distinguish may be labeled as being the same category. These difficulties leave us with several
unenviable alternatives: we can attempt to collect a large enough dataset for each task that
we want the robot to do, painstakingly labeling our object of interest in a large number of
images, or we can attempt to use the pretrained vision system directly, suffering from possible
domain shift and a lack of flexibility. The Visual Genome dataset is notable for labelling
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Figure 4.1: Deep object-centric representations learn to attend to task-relevant objects from
just a few trajectories. The representation is robust to clutter and generalizes to new object
instances.

regions with textual descriptions, bypassing the problem of rigid classes [75]. Another option
is to train on both detection datasets and classification datasets with adaptation technique,
as classification labels include more classes [58]. Similarly, using language to bridge instance
matching and category matching can provide flexible object detection [45]. However, if the
robot’s environment looks too different from the detector’s training data, the performance
may suffer with limited recourse. A key property of our method is that small amounts of
new data can be used to correct the model if it is not behaving as desired.

An alternative view of robotic vision has emerged in recent years with advances in deep
reinforcement learning [60, 100], end-to-end learning from demonstrations [24, 150], and
self-supervised learning [113, 114, 84]. These methods bypass the standard computer vision
representation of class labels and bounding boxes and directly train task-specific models
that predict actions or task success from raw visual observations. While these methods can
overcome the challenges associated with large-scale semantic labeling and dataset bias by
training directly on the task that the robot aims to solve, their ability to generalize is critically
dependent on the distribution of training data. For example, if a robot must learn to pour
liquid from a bottle into a cup, it can achieve instance-level proficiency with a moderate
number of samples [38], but it must train on a huge number of bottles and cups in order to
generalize at the category level. Switching from the standard vision framework to end-to-end
training therefore allows us to bypass the need for costly human-provided semantic labels,
but sacrifices the generalization that we can get from large computer vision datasets.

In this work, we seek to develop a robotic vision framework that operates on sets of
objects rather than raw pixels, and leverages prior datasets to learn a generic object concept
model. Our principal insight is that, if the robot will be using learning (e.g., reinforcement
learning or learning from demonstration) to perform the final task that is set out before it, it
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Figure 4.2: Faster RCNN trained on MSCOCO does not differentiate between cups and mugs,
and gives higher probability to the cup, making it difficult to train a policy that needs to
locate the mug. With our method, the attention can learn to prioritize mugs over cups. The
dustpan is labeled as a spoon and thus can be distracted by other spoon-like objects. As
limes are not in the MSCOCO dataset, the object detector does not label them.

does not require precise labels or segmentation. It simply needs to be able to consistently
localize visual cues in the observed image that correlate with the objects that are necessary
for it to perform the task. However, to learn generalizable policies, the visual cues should
be semantic in nature such that a policy trained on one object instance can function on a
similar object when desired.

We therefore take a two-stage approach to robotic vision: in the first stage, we construct
an object-centric attentional prior based on a region proposal network. This stage requires
a large amount of data, but does not require any task-specific data, and can therefore
use a standard existing computer vision dataset. The second stage narrowly focuses this
general-purpose attention by using a very small number of example trajectories, which can
be provided by a human or collected automatically during the reinforcement learning process.
This teaches the system to attend to task-relevant objects, while still benefiting from the
generalizable representations present in the general-purpose attention. Furthermore, because
the second stage is trained with only a handful of example trajectories, it makes it easy
for the user to correct mistakes or control the class of objects that the system generalizes
to, simply by providing additional demonstrations. For example, if the user needs a policy
specific to a particular type of cup, they can simply provide demonstrations with other cups
present in the scene, illustrating that they should be ignored. If the user prefers broader
category-level generalization, for example to cause a robot generalize across all types of fruits,
they might provide demonstrations that show interactions with fruits of different types. In
all cases, the total number of provided trajectories remains very small (less than 15).

The main contribution of our work is a perception framework that facilitates generalization
over objects and environments while requiring minimal data or supervision per task. Our
method incorporates general-purpose object-centric priors in the form of an object attention
trained on a large, generic computer vision dataset, and combines it with an extremely
sample efficient task-specific attention mechanism that can either be learned from a very
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small number of demonstrations, or even specified directly by a human operator. We show
that this framework can be combined with reinforcement learning to enable a real-world
robotic system to learn vision-based manipulation skills. Our experiments demonstrate that
our approach achieves superior generalization to an end-to-end trained approach, through
the incorporation of prior visual knowledge via the general-purpose attention. We illustrate
how the user can control the degree of generalization by including or excluding other objects
in the demonstrations. Our source code is available online in a stand-alone ROS package 1.
A video of results is also available 2.

4.2 Relation to Prior Work

Our method combines prior knowledge about “objectness” from pretrained visual models
with an attentional mechanism for learning to detect specific task relevant objects. A number
of previous works have sought to combine general objectness priors with more specific object
detection in the context of robotics and other visual tasks. Ekvall et al. used region proposals
and SIFT features for quickly detecting objects in the context of SLAM [35]. Prior work used
an active search approach where the camera could zoom in certain parts of the receptive
field to search at higher resolutions [68]. In manipulation, SIFT features have also been used
for 3D pose estimation and object localization, using object-specific training data gathered
individually for the task [18, 136]. Similarly to these prior works, our method constrains the
observations using an object-centric prior. However, we do not require object level supervision
for each task, instead using visual features from a pretrained visual model to index into the
proposals from the object-centric prior. This approach drastically reduces the engineering
burden for each new task, picking out task-relevant objects from a few demonstrations, and
provides good generalization over object appearance, lighting, and scale, as demonstrated in
our experiments.

An alternative to building perception systems for task-specific objects is to learn the entire
perception system end-to-end together with the control policy. A number of recent works
have explored such end-to-end approaches in the context of skill learning, either for direct
policy search [82, 113, 114], unsupervised learning of representations for control [44, 39], or
learning predictive models [1, 37]. A major challenge with such methods is that their ability
to generalize to varied scenes and objects depends entirely on the variety of objects and
scenes seen during policy training. Some methods have sought to address this by collecting
large amounts of data with many objects [114, 84]. In this work, we instead study how we
can incorporate prior knowledge about objects from pretrained visual models, while still
being able to train rich neural network control policies. In this way, we can obtain good
generalization to appearance, lighting, and other nuisance variables, while only training the
final policy on a single object instance and in a single scene.

1https://github.com/cdevin/objectattention
2https://sites.google.com/berkeley.edu/object-representations

https://github.com/cdevin/objectattention
https://sites.google.com/berkeley.edu/object-representations


CHAPTER 4. OBJECT-CENTRIC REPRESENTATIONS 26

Figure 4.3: Method Overview. The parameters outlined in bright green are optimized
during pretraining, while those outlined in dark blue are optimized during policy learning.
The attention is trained to predict the movement seen in the provided demonstrations or
trajectories. The “attention map” illustrates a soft attention where vectors f(oi) close to
w are given high probability (black) and ones far away are have low probability (white).
The distribution is regularized to have low entropy, and the weighted sum of bounding box
coordinates is fed to the next layers of the bright green network. The policy (in blue) is
trained with w held fixed, and the arg-max bounding box is used instead of the weighted
average. Note: this diagram illustrates only a single attention vector w; more attention
vectors can be added as needed.

4.3 Deep Object-Centric Representations

The goal of our method is to provide a simple and efficient process for quickly acquiring useful
visual representations in the context of policy learning. Specifically, we aim to compress
an image into a vector ν of object descriptors and select task-relevant objects from it. We
impose an object-centric structure on our representation, which itself is learned from prior
visual data in the form of standard computer vision image datasets. We define a 2-level
hierarchy of attention over scenes for policy learning. The high level, which we call the
task-independent attention, is shared for all tasks. The task-independent attention is
intended to identify possible objects in the scene regardless of the task. The lower level, which
we call task-specific attention, is learned per-task and identifies which of the possible
objects is relevant to the task being performed.
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Algorithm 1 Robot Learning with Object Centric Representations

1: Train task-independent attention on an object detection dataset (shared for all tasks).
2: Train a convolutional network f for image classification (shared for all tasks).
3: for each task do
4: Collect demonstrations.
5: Learn task-specific attention W as described in Section 4.3.1 from the trajectories.
6: Train control policy using reinforcement learning, with the robot’s configuration and
ν as the observation inputs. W is fixed during this step.

4.3.1 Task-Independent Attention

The task-independent attention is a function that takes an image and returns a set of object
hypotheses {oi : i ∈ [0, N)}. Each object hypothesis consists of a semantic component (given
by f(oi)) and a position component (given by g(oi)). The semantic component describes the
identity of the object with a feature vector, and the position component describes where the
object is located within the image. Importantly, this task-independent attention is reused for
all tasks without retraining, and can be trained entirely on standard vision datasets.

4.3.2 Task-Specific Attention

The goal of the task-specific attention is to choose which object(s) are relevant for a task
given a small amount of task-specific data. In the tasks we examine, we assume that the
relevant object(s) have consistent semantic features f(oi) over the entire course of the task.
For example, if the task is to pour into a mug, the object that looks like a mug should be
selected, regardless of its current position. Thus, to select which objects to pay attention to,
the model learns a task-specific attention over the semantic features f(oi). We assume that
the user knows an upper bound K for the number of task-relevant objects. In order to be
able to quickly learn the task-specific attention from only a small number of trajectories, it is
parametrized as a matrix W ∈ RK×D, where D is the dimension of f(oi). The probability of

object proposal oi being the kth relevant object is proportional to eW
(k)>f(oi).

4.4 Implementation

There a number of possible choices in implementing our proposed object-centric representation.
The choice of objectness prior may affect which objects proposed, while the semantic features
influence the generalizability of the task-specific attention.

4.4.1 Architecture

Although a number of task-independent attention mechanisms are possible, we use a region
proposal method to provide a set of possible objects. The objects o0, ..., oN are the proposed
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Figure 4.4: The region proposals (task-independent attention) are drawn in blue and the
task-specific attended regions are drawn in red. For the pouring task, the attention locks on
to the mug as its position defines the trajectory. For the sweeping task, we use two attention
vectors, one attends to the orange and one attends to the dustpan, which each have variable
starting positions.

crops and the position component g(oi) are the bounding box coordinates of the proposal.
Because the task-specific attention is linear with respect to the semantic features, the

choice of these semantic features is crucial for the flexibility and generalization capability of
the method. While we could choose the features to simply correspond to semantic class (e.g.,
using classes from a standard image classification dataset), this would limit the flexibility
of the method to identifying only those object classes. If we choose overly general features,
such as a histogram of oriented gradients or even raw pixels, the task-specific attention
would be too limited in its ability to generalize in the presence of changes in appearance,
lighting, viewpoint, or pose. To strike the right balance between flexibility and generalization,
we define the semantic component f to be a mean-pool over the region proposal crop of
the convolutional features pretrained on ImageNet classification [118]. Such features have
previously been shown to transfer effectively across visual perception tasks and provide a
good general-purpose visual representation [128, 124]. An overview of our method is provided
in Algorithm 1.

4.4.2 Optimization

Given trajectories of a task, the objects that are relevant to the task will be predictive of
future robot configurations. Trajectories could come from a variety of sources; in this chapter
we use either kinesthetic demonstrations, or directly make use of the trajectories obtained
during reinforcement learning (in our case, with guided policy search). We optimize for W as
part of a larger neural network shown at the top of Figure 4.3 that aims to predict the next
step in the trajectory: an action if available, or a change in position of the end-effector. The
network for this is two hidden layers with 80 units each. In order to backpropagate through
W , a soft attention mechanism is used. First, we use a Boltzmann distribution to obtain a
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probability p(oi|wj) for each object proposal.

p(oi|wj) =
e
w>

j
f(oi)

||f(oi)||2∑N
i=0 e

w>
j

f(oi)

||f(oi)||2

Then, the soft attention map is calculated by taking a weighted sum of the object locations.

νj,soft =
N∑
i=0

g(oi)p(oi|wj).

To obtain the prediction, νsoft is concatenated with robot joint state and end-effector state
before being fed into the movement prediction network at the top of Figure 4.3. While
f(oi) is normalized for each oi, W is not normalized to allow the optimization to control the
peakiness of the attention. To encourage more discrete attention distributions, the attention
is regularized to have low entropy:

Lent(w) =
M∑
j=0

N∑
i=0

−p(oi|wj) log p(oi|wj)

The network is optimized with the Adam optimizer [69].
To better condition the optimization when the task-relevant objects are known, the task-

specific attention can be initialized by providing one example crop of the desired object(s)
before finetuning on the demonstration data. We found this to be unnecessary in the pouring
task, which only has one object, but very useful in the seeping task.

4.5 Experiments

We evaluate our proposed object-centric model on several real-world robotic manipulation
tasks. The experiments are chosen to evaluate two metrics: the reliability of this representation
for robotic learning, and its ability to generalize across visual changes in the environment.
The use of discrete region proposals should provide robustness against distractor objects. By
attending over features trained on the diverse images found in ImageNet, we expect that
policies learned with our visual representation will naturally generalize to visual changes.
Through this evaluation, we demonstrate that the proposed model learns generalizable
polices that behave correctly with new object instances and environments. Additionally, we
show that the scope of generalization can be modified by showing different objects during
demonstrations, which is particularly useful for correcting mistakes that the attention might
make.



CHAPTER 4. OBJECT-CENTRIC REPRESENTATIONS 30

4.5.1 Training Details

The task-independent attention is provided by a region proposal network (RPN) [116] trained
on the MSCOCO dataset [87]. For the semantic component of each object, we use conv5 of
AlexNet [76], resulting in a 256-dimensional feature vector which is then normalized to have
magnitude 1. Videos of the results can be found at https://sites.google.com/berkeley.
edu/object-representations.

The attention vector w is learned by training a model on trajectory data as described in
Section 4.3.2. The attended regions learned for both tasks are shown in Figure 4.4. To learn to
perform the task, we use the guided policy search algorithm [81], which involves training local
time-varying linear-Gaussian controllers for a number of different initial conditions. Then
supervised learning is used to learn a single global neural network policy that can perform
the task for all of the conditions. In our experiments, the conditions refer to different starting
positions of objects in the world. The neural network policy takes as input the joint angles,
joint velocities, end-effector positions and velocities, as well as the output of the perception
system ν, which corresponds to the attended region’s bounding box coordinates. The learned
policies have 4 hidden layers with 80 hidden units each, and directly output the torques for
the 7 joints of the PR2 robot used in our experiments. Note that our representation can be
used with any reinforcement learning algorithm, including both deep reinforcement learning
methods (such as the one used in our experiments) and trajectory-centric reinforcement
learning algorithms such as PI2 [141] or REPS [109].

4.5.2 Generalizing Across Visual Changes

In this experiment, we evaluate the hypothesis that attending over high-level features trained
on classification will generalizes across objects of the same class. The goal of the this task
is to position a bottle to pour into a mug. Success requires the ability to locate a mug
from an image and the global policy is not given the mug location, and we use different
mugs for training and test. We compare against a task-specific approach from Levine et
al., which learns the policy directly from raw pixels with a spatial softmax architecture [82].
While optimizing perception directly for the task objective performs well on particular mug
seen during training, our method can generalize to new mug instances and to cluttered
environments. Although the method in Levine et al. pretrains the first convolutional layer
on ImageNet, conv1 features are too low-level to provide semantic generalization.

For evaluation, the policy is run with almonds in the bottle. A rollout is marked as
successful if more almonds fall into the mug than are spilled, as seen in the included video.
For evaluation, eight rollouts at different mug positions are performed for the uncluttered
environments and three for the cluttered ones; results are in Figure 4.5 and environment
photos are in Figure 4.6.

While the policy was only trained on a single brown mug in a plain environment, it
successfully generalizes to other mugs of various colors. By using hard attention, the visual
features are robust to clutter. Interestingly, when presented with all four mugs, the policy

https://sites.google.com/berkeley.edu/object-representations
https://sites.google.com/berkeley.edu/object-representations


CHAPTER 4. OBJECT-CENTRIC REPRESENTATIONS 31

Figure 4.5: Results for the pouring task testing on different mugs not seen during training.
Each group of bars shows performance on different unseen mugs, comparing our method with
a policy trained from raw pixels. Our policy successfully generalizes to a much wider range
of mugs than the raw pixel policy, which does not benefit from the object-centric attention
prior. The “no vision” baseline indicates the performance of always pouring at the average
mug position.

chose to pour into the pink mug rather than the brown mug the attention was trained with.
The “no vision” baseline is a policy trained without visual features; its behavior is to pour
to the average of the different targets seen during training. The low performance of this
baseline indicates that the task requires a high level of precision. We compare to the method
described in [82], where policies are learned directly from raw pixels and pretrained on a
labeled data for detecting the target object.

Our model is able to generalize to new mugs of different appearances because it uses
deep classification features that were trained on a wide variety of objects including mugs.
An approach that learns robot skills directly from pixels such as [84] could not be expected
to know that the brown mug and the pink mug are similar objects. We investigate this by
training a policy from raw pixels with the architecture described in [84]. The convolutional
layers are pretrained on detecting the training mug in 2000 labeled images. As shown in
Table 4.5, this policy can perform the task on the training mug and on another brown mug,
but completely ignores the other mugs. This indicates that a policy learned from raw pixel
images can perform well on the training environments, the kinds of features it pays attention
to have no incentive to be semantically meaningful and general. Our method of using features
pretrained on image classification defines how a policy should generalize.

4.5.3 Learning to Ignore Distractors

In the first experiment, generalizing across mugs was a desired outcome. However, it is easy
to imagine that a task might require pouring specifically into the brown mug and ignoring
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Figure 4.6: Left: Mugs used for evaluation. Note that only the brown mug was seen during
training. Center: Successful pouring into the pink mug. Right: Pouring into the brown mug
in a cluttered environment that was not seen during training.

all other mugs. Our method provides a simple way for the user to adjust which features
the task-specific attention is sensitive to. In order to learn a task-specific attention that has
a narrower scope, the user can simply add another mug – in this case, a pink mug – as a
distractor during the demonstrations. As described in Section 4.3.2, the vector W is trained
such that the attended box allows predicting the arm’s movement in the demo trajectories.
As the pink mug is not predictive of the trajectories, the gradient pushes the attention vector
to lock on to brown mug specifically. We used 6 additional demonstrations to finetune the
attention.

At test time, the pouring policy consistently chooses the brown training mug over both
the pink mug and the black-and-white mug. This indicates that including distractors in the
demonstrations helps restrict the scope of attention to ignore these distractors. Figure 4.7a
shows how an attention initialized just on the brown mug is distracted by the distractor
mug. After finetuning on the demonstrations, the attention is firmly on the brown mug. In
experiments, the robot poured into the correct mug 100% of the time with either the pink
mug or the black and white mug present as distractors. In comparison, the attention trained
solely on demonstrations without distractors preferred the pink mug over the brown mug
and obtained 50% success. This experiment shows that if a roboticist were to find that the
attention vector is over-generalizing to distracting objects, it is easy for them to gather a
couple more demonstrations to narrow down the attention.

4.5.4 Increasing the Scope of Generalization

Since our method is not limited by the labels present in available datasets, the attention vectors
can also be pushed to attend to a greater variety objects. For example, a vector that attends
to oranges may not always generalize to other citrus fruit. However, if generalizing across
citruses is desired, the user can easily correct this mistake by adding a couple demonstrations
with limes and lemons and finetuning W . In comparison, if a researcher relying on an off-the-
shelf detector were to disagree with the detector’s performance, modifying the model could
require relabeling data the model was trained on or collecting and labeling new detection
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(a) Left: The soft attention from just training on the brown mug is shown in red.
Right: The soft attention after finetuning on demonstrations where the pink mug
is present. When initialized on only the brown mug, the attention is sensitive to
”mug” features, and therefore can be distracted by the pink mug. After adding
demonstrations of pouring into the brown mug with the pink mug in the background
and finetuning, the attention has locked on to just the brown mug. The blue squares
show the task-independent attention.

(b) Top: The soft attention in red from just training on the orange. Bottom: The soft attention
after finetuning on demonstrations of sweeping oranges, lemons, and limes. Although the attention
was initially sensitive to ”orange-specific” features, finetuning on other fruit made the attention
generalize to lemons and limes.The blue squares show the task-independent attention.

Figure 4.7
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data.
As shown in Figure 4.7b, the attention only attends to oranges when first initialized, but

finetuning expands the scope of the attention to include the lime and lemon present in the
demonstration data. The resulting sweeping policy is robust to distractors including an apple,
apricot, and a purple cup, but is confused by the orange and green cups. The round base of
the citrus-colored cups perhaps appear to be idealized fruit.

4.5.5 Attending to Multiple Objects

In this experiment we demonstrate that we can use multiple attention vectors to learn a policy
that depend on the location of two objects. The robot learns to perform a sweeping task
where the object to be swept (a plastic orange) and the dustpan each can start in different
positions. Ten kinesthetic demonstrations were collected to learn a pair of attention vectors,
initialized with a single crop of the objects. This policy successfully sweeps the orange into
the dustpan for 77% of the trials. The policy is robust to distractors and works even if the
dustpan is held by a person. As shown in the video, this task is difficult because the robot’s
angle of approach needs to be a function of the relative positions of the orange and dustpan,
and the orange changes in appearance as it rolls. A baseline policy which did not use images
at all succeeded at 11% of the test positions indicating that visual perception is necessary for
this task.

4.6 Discussion

In this chapter, we proposed a visual representation for robotic skill learning that makes use
of object-centric priors from pretrained visual models to achieve robust perception for policies
trained in just a single scene with a single object. Our approach uses region proposal networks
as a task-independent attention that picks out potential objects in the scene independently of
the task, and then rapidly selects a task-specific representation via an attentional mechanism
based on visual features, which can be trained from a few trajectories. Since the visual
features used to index into the object proposals are themselves invariant to differences in
lighting, appearance, viewpoint, and object instance, the resulting vision system can generalize
effectively to new object instances with trivial additional training. The attention’s scope
is easily controlled able by the objects seen during demonstrations. Our results indicate
that this provides for a robust, generalizable, and customizable visual representation for
sensorimotor skills. This representation generalize across different mugs when trained on only
one mug, but could also be instance-specific if shown a handful of additional trajectories.
In the opposite case, we show that an attention that was narrower than desired could be
broadened as needed. Finally, for tasks that require interacting with multiple objects we can
learn multiple attention vectors that and sensitive to different objects.

While our method attains good results on two real-world manipulation tasks, it has a
number of limitations. First, the visual representation that is provided to the policy is
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constrained to correspond to image-space object coordinates. Although this is sufficient for
many manipulation tasks, some tasks, such as those that require fine-grained understanding
of the configuration of articulated or deformable objects, might require a more detailed
representation. Secondly, our current system is still trained in a stagewise manner, with
the region proposals trained on prior vision data, the attention trained from demonstration,
and the policy trained from experience. An exciting direction for future work would be to
enable end-to-end finetuning of the entire system, which would lift many of these limitations.
Since each stage in the current method is trained with simple and scalable gradient descent
methods, end-to-end training should be entirely feasible, and should improve the performance
of the resulting policies on tasks that require more subtle perception mechanisms.

Other work has continued this direction. In autonomous driving, drivign behavior has
been shown to improve when supervising the perception layers with object detection [147] or
segmentation [104]. Discrete object attention slots have also been used for scene representa-
tions [90] and affordance learning [49].
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Chapter 5

Grasp2Vec: Learning Object
Representations from Self-Supervised
Grasping

5.1 Introduction

The method in the previous chapter relied on pre-trained ImageNet features for learning to
attend to task relevant objects. However, these features offer no guarantees at representing
novel objects, or at being consistent multiple image scales. In this chapter we develop a
self-supervised approach for learning object features just by picking and placing objects
randomly. This enables a robot to learn based on the objects it actually sees, rather than
ones pre-collected in a dataset, without requiring humans to provide any labels.

We study a specific instance of the problem of self-supervised representation learning :
acquiring object-centric representations through autonomous robotic interaction with the
environment. By interacting with the real world, an agent can learn about the interplay of
perception and action. For example, looking at and picking up objects enables a robot to
discover relationships between physical entities and their surrounding contexts. If a robot
grasps something in its environment and lifts it out of the way, then it could conclude that
anything still visible was not part of what it grasped. It can also look at its gripper and see
the object from a new angle. Through active interaction, a robot could learn which pixels in
an image are graspable objects and recognize particular objects across different poses without
any human supervision.

While object-centric representations can be learned from semantically annotated data
(e.g., the MSCOCO dataset [88]), this precludes continuous self-improvement: additional
experience that the robot collects, which lacks human annotations, is not directly used to
improve the quality and robustness of the representation. In order to improve automatically,
the representation must be self-supervised. In that regime, every interaction that the robot
carries out with the world improves its representation.
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Qπ(s, a, g = ) ← φo( ) · φo( )

Instance Grasping Representation Learning

Goal
Before After Outcome

φs( )− φs( ) = φo( )

Generates Labels

Generates Labels

Object Embedding Space

OutcomeGoal Goal

Outcome

Figure 5.1: Instance grasping and representation learning processes generate each other’s
labels in a fully self-supervised manner. Representation learning from grasping: A
robot arm removes an object from the scene, and observes the resulting scene and the object
in the gripper. We enforce that the difference of scene embeddings matches the object
embedding. Supervising grasping with learned representations: We use a similarity
metric between object embeddings as a reward for instance grasping, removing the need to
manually label grasp outcomes.

Our representation learning method is based on object persistence: when a robot picks
up an object and removes it from the scene, the representation of the scene should change
in a predictable way. We can use this observation to formulate a simple condition that an
object-centric representation should satisfy: the features corresponding to a scene should
be approximately equal to the feature values for the same scene after an object has been
removed, minus the feature value for that object (see Figure 5.1). We train a convolutional
neural network feature extractor based on this condition, and show that it can effectively
capture individual object identity and encode sets of objects in a scene without any human
supervision.

Leveraging this representation, we propose learning a self-supervised grasping policy
conditioned on an object feature vector or image. While labeling whether the correct object
was grasped would typically require human supervision, we show that the similarity between
object embeddings (learned with our method) provides an equally good reward signal.

Our main contribution is grasp2vec, an object-centric visual embedding learned with
self-supervision. We demonstrate how this representation can be used for object localization,
instance detection, and goal-conditioned grasping, where autonomously collected grasping
experience can be relabeled with grasping goals based on our representation and used to train
a policy to grasp user-specified objects. We find our method outperforms alternative unsuper-
vised methods in a simulated goal-conditioned grasping results benchmark. Supplementary
illustrations and videos are at https://sites.google.com/site/grasp2vec/gma

https://sites.google.com/site/grasp2vec/gma
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Figure 5.2: Self-supervised robotic setup for learning grasp2vec and goal-conditioned grasping.
Left: A KUKA iiwa uses a monocular RGB camera to pick up objects from a bin. Right: The
same setup in simulation. Bottom right: Example images that are fed into the Q function
shown in Figure 5.3.

5.2 Relation to Prior Work

Addressing the task of instance grasping requires inferring whether the correct object was
grasped. Jang et al. propose a system where the robot presents images of objects to the
camera after it has grasped them and attempts to label their class given human labels. [62]
Fang et al. obtain labels in simulation and use domain adaptation to generalize the policy to
real-world scenes, which requires solving a simulation-to-reality transfer problem [36].

In the standard RL setting, several past works have studied labeling off-policy behavior
with “unintentional rewards” [6, 10]. However, such algorithms do not address how to
detect whether the desired goal was achieved, which is non-trivial outside of the simulator.
Our methods circumvent the problem of labeling entirely via self-supervised representation
learning. To our knowledge, this is the first work that learns the instance grasping task in a
completely label-free manner.

5.3 Grasp2Vec: Representation Learning from

Grasping

Our goal is to learn an object-centric embedding of images. The embeddings should represent
objects via feature vectors, such that images with the same objects are close together, and
those with different objects are far apart. Because labels indicating which objects are in an
image are not available, we rely on a self-supervised objective. Specifically, we make use
of the fact that, when a robot interacts with a scene to grasp an object, this interaction
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Figure 5.3: (a) The Grasp2Vec architecture. We use the first 3 blocks of Resnet-50 V2 to
form φs and φo, which are randomly initialized. φs(spre) and φs(spost) have tied weights. The
output of the third resnet block is passed through a ReLu to yield a spatial feature map
we call φspatial. This is then mean pooled globally to output the single vector embddings φs
and φo. The n-pairs loss is applied as described in Section 5.3. (b) The instance grasping
architecture is conditioned on Grasp2Vec goal embeddings of goal images, and is trained via
Q-learning.

is quantized: it either picks up one or more whole objects, or nothing. When an object
is picked up, we learn that the initial scene must have contained the object, and that the
scene after must contain one fewer of that object. We use this concept to structure image
embeddings by asking that feature difference of the scene before and after grasping is close
to the representation of the grasped object.

We record grasping episodes as images triples: (spre, spost,o), where spre is an image of the
scene before grasping, spost is the same scene after grasping, and o is an image of the grasped
object held up to the camera. The specific grasping setup that we use, for both simulated
and real image experiments, is described in Section 5.5. Let φs(spre) be a vector embedding
of the input scene image (i.e., a picture of a bin that the robot might be grasping from).
Let φo(o) be a vector embedding of the outcome image, such that φs(spre) and φo(o) are the
same dimensionality. We can express the logic in the previous paragraph as an arithmetic
constraint on these vectors: we would like (φs(spre)− φs(spost)) to be equal to φo(o). We also
would like the embedding to be non-trivial, such that (φs(spre)− φs(spost)) is far from the
embeddings of other objects that were not grasped.

Architecture. In order to embed images of scenes and outcomes, we employ convolutional
neural networks to represent both φs and φo. The two networks are based on the ResNet-
50 [52] architecture followed by a ReLU (see Figure 5.3), and both produce 3D (HxWx1024)
convolutional feature maps φs,spatial and φg,spatial. Since our goal is to obtain a single vector
representation of objects and sets of objects, we convert these maps into feature vectors by
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globally average-pooling:

φs =

∑
i<H

∑
j<W φs,spatial(X)[i][j]

H ∗W
and equivalently for φo. The motivation for this architecture is that it allows φs,spatial to
encode object position by which receptive fields produce which features. By applying a
ReLU non-linearity to the spatial feature vectors, we constrain object representations to be
non-negative. This ensures that a set of objects can only grow as more objects are added;
one object cannot be the inverse of another.

Objective. The problem is formalized as metric learning, where the desired metric places
(φs(spre) − φs(spost)) close to φo(o) and far from other embeddings. Many metric learning
losses use the concept of an “anchor” embedding and a “positive” embedding, where the
positive is brought closer to the anchor and farther from the other “negative” embeddings.
One way to optimize this kind of objective is to use the n-pairs loss [130] to train the encoders
φs and φo, such that paired examples (i.e., (φs(spre)−φs(spost)) and φo(o) are pushed together,
and unpaired examples are pushed apart. Rather than processing explicit (anchor, positive,
negative) triplets, the n-pairs loss treats all other positives in a minibatch as negatives for an
(anchor, positive) pair. Let i index into the anchors a of a minibatch and let j index into the
positives p. The objective is to maximize ai>pi while minimizing ai>pj 6=i. The loss is the
the sum of softmax cross-entropy losses for each anchor i accross all positives p.

NPairs(a, p) =
∑
i<B

− log

(
eai>pi∑
j<B e

ai,pj

)
+ λ(||ai||22 + ||pi||22).

The hyperparameter λ regularizes the embdding magnitudes and B is the batch size. In our
experiments, λ = 0.0005 and B = 16. This loss is asymmetric for anchors and positives, so
we evaluate with the embeddings in both orders, such that our final training objective is:

LGrasp2Vec = NPairs((φs(spre)− φs(spost)), φo(o)) + NPairs(φo(o), (φs(spre)− φs(spost))).

5.4 Self-Supervised Goal-Conditioned Grasping

The Grasp2Vec representation can enable effective goal-conditioned grasping, where a robot
must grasp an object matching a user-provided query. In this setup, the same grasping
system can both collect data for training the representation and utilize this representation for
fulfilling specified goals. The grasping task is formulated as a Markov decision process (MDP),
similar to the indiscriminate grasping system proposed by [67]. The actions a correspond
to Cartesian gripper motion and gripper opening and closing commands, and the state \

includes the current image and a representation of the goal g. We aim to learn the function
Qπ(\, a,g) under the following reward function: grasping the object specified by g yields a
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(a) Nearest neighbors of goal and scene images.
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o(o)· spatial(spre)
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(b) Localization results. The heatmap is defined as φo(o)>φs,spatial(spre), resulting in a H ×W × 1 array. Note
that the embeddings were never trained on this task, nor was any detection supervision provided. The fourth
column shows a failure case, where two different mugs have similar features and the argmax is on the wrong
mug. The right half shows results on real images. The representations trained on real grasping results are able
to localize objects with high success.

Figure 5.4: An analysis of our learned embeddings. Examples shown were chosen at random
from the dataset.
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terminal reward of r = 1, and r = 0 for all other time steps. The architecture of Qπ is shown
in Figure 5.3.

Learning this Q-function presents two challenges that are unique to self-supervised goal-
conditioned grasping: we must find a way to train the policy when, in the early stages of
learning, it is extremely unlikely to pick up the right object, and we must also extract the
reward from the episodes without ground truth object labels.

Algorithm 2 Goal-conditioned policy learning

1: Initialize goal set G with 10 present images
2: Initialize Qπ and replay buffer B
3: while π not converged do
4: g, g′ ← sample(G)
5: (\,a, rany,o)← ExecuteGrasp(π,g)
6: // Posthoc Labeling (PL)
7: if rany = 1 then
8: B ← B

⋃
(\,a, [o, 1]) (outcome is successful goal)

9: else
10: B ← B

⋃
(\,a, [g, 0]) (desired goal is a failure)

11: end if
12: // Embedding Similarity (ES)
13: if rany = 1 then

14: B ← B
⋃

(\,a, [g, φ̂o(o) · φ̂o(g)])
15: // Auxiliary Goal (AUX)
16: B ← B

⋃
(\,a, [g′, φ̂o(o) · φ̂o(g′)])

17: end if
18: (\,a, [g, r], s′)← sample(B)
19: π ← π − α∇π(Qπ(\,a,g)− (r + γVπ(s′,g)))2

20: end while

We assume that the grasping system can determine automatically whether it successfully
grasped an object, but not which object was grasped. For example, the robot could check
whether the gripper is fully closed to determine if it is holding something. We will use rany to
denote the indiscriminate reward function, which is 1 at the last time step if an object was
grasped, and 0 otherwise. Q-learning can learn from any valid tuple of the form (\, a, r,g),
so we use the rany to generate these tuples without object labels. We utilize three distinct
techniques to automatically augment the training data for Q-learning, making it practical to
learn goal-conditioned grasping:

Embedding Similarity (ES) A general goal labeling system would label rewards based
on a notion of similarity between what was commanded, g, and what was achieved, o,
approximating the true on-policy reward function. If the Grasp2Vec representations capture
this similarity between objects, setting r = φ̂o(g) · φ̂o(o) would enable policy learning for
instance grasping.
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Posthoc Labeling (PL) Embedding similarity will give close to correct rewards to the Q
function, but if the policy never grasps the right object there will be no signal to learn from.
We use a data augmentation approach similar to the hindsight experience replay technique
proposed by [6]. If an episode grasps any object, we can treat o as a correct goal for that
episode’s states and actions, and add the transition (\, a,o, r = 1) to the buffer. We refer to
this as the posthoc label.

Auxiliary Goal Augmentation (Aux) We can augment the replay buffer even further
by relabling transitions with unacheived goals. Instead of sampling a single goal, we sample
a pair of goals (g,g′) from the goal set G without replacement If rany == 1 after executing

the policy conditioned on g, we add the transition (\, a,g′, r = φ̂o(g
′) · φ̂o(o)) to the replay

buffer. In baselines that do not use embeddings, the reward is replaced with 0 under the
assumption that g′ is unlikely to be the grasped object.

Pseudocode for the goal-reward relabeling schemes, along with the self-supervised instance
grasping routine, are summarized in Algorithm 2.

5.5 Experiments

Our experiments answer the following questions. For any grasp triplet (spre,o, spost), does
the vector φs(spre)− φs(spost) indicate which object was grasped? Can φs,spatial(spre) be used
to localize objects in a scene? Finally, we show that instance grasping policies can be trained
by using distance between grasp2vec embeddings as the reward function.
https://sites.google.com/site/grasp2vec/

Experimental setup and data collection. Real-world data collection for evaluating
the representation on real images was conducted using KUKA LBR iiwa robots with 2-
finger grippers, grasping objects with various visual attributes and varying sizes from a
bin. Monocular RGB observations are provided by an over-the-shoulder camera. Actions a
are parameterized by a Cartesian displacement vector, vertical wrist rotation, and binary
commands to open and close the gripper. The simulated environment is a model of the real
environment simulated with Bullet [21]. Figure 5.2 depicts the simulated and real-world
setup, along with the image observations from the robot’s camera.We train and evaluate
grasp2vec embeddings on both the real and simulated environments across 3 tasks: object
recall from scene differences, object localization within a scene, and use as a reward function
for instance grasping.

5.5.1 Grasp2Vec embedding analysis.

We train the goal and scene embeddings on successful grasps. We train on 15k successful
grasps for the simulated results and 437k for the real world results. The objective pushes
embeddings of outcome images to be close to embedding difference of their respective scene

https://sites.google.com/site/grasp2vec/
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images, and far from each other. By representing scenes as the sum of their objects, we
expect the scene embedding space to be structured by object presence and not by object
location. This is validated by the nearest neighbors of scenes images shown in Figure 5.4a,
where nearest neighbors contain the same same objects regardless of position or pose.

sim seen sim novel real seen real novel
Retrieval (ours) 88% 64% 89% 88%
Outcome Neighbor (ImageNet) — — 23% 22%

Localization (ours) 96% 77% 83% 81%
Localization (ImageNet) — — 18% 15%

Table 5.1: Quantitative study of Grasp2Vec embeddings. As we cannot expect weights
trained on ImageNet to exhibit the retrieval property, we instead evaluate whether two
nearest neighbor outcome images contain the same object. For object localization, the
ImageNet baseline is performed the same as the grasp2vec evaluation. See Figure 5.4b for
examples heatmaps and Appendix A.1 for example retrievals.

For any grasp triplet (spre,o, spost), does the vector φs(spre) − φs(spost) indicate
which object was grasped? We can evaluate the scene and and outcome feature spaces
by verifying that the the difference in scene features φs(spre)− φs(spost) are near the grasped
object features φo(o). As many outcome images of the same object will have similar features,
we define the retrieval as correct if the nearest neighbor outcome image contains the same
object as the one grasped from spre. Appendix A.1 shows example successes and failures. As
shown in Table 5.1, retrieval accuracy is high for the training simulated objects and all real
objects. Because the simulated data contained fewer unique objects that the real dataset, it
is not surprising that the embeddings trained on real images generalized better.

Can φs,spatial(spre) be used to localize objects in a scene? The grasp2vec architecture
and objective enables our method to localize objects without any spatial supervision.

By embedding scenes and single objects (outcomes) into the same space, we can use the
outcome embeddings to localize that object within a scene. As shown in Figure 5.4b, we
compute the dot product of φo(o) with each pixel of φs,spatial(spre) to obtain a heatmap over
the image corresponding to the affinity between the query object and each pixel’s receptive
field. A localization is considered correct only if the point of maximum activation in the
heatmap lies on the correct object. As shown in Table 5.1, grasp2vec embeddings perform
localization at almost 80% accuracy on objects that were never seen during training, without
ever receiving any position labels. The simulated objects seen during training are localized at
even higher accuracy. We expect that such a method could be used to provide goals for pick
and place or pushing task where a particular object position is desired. For this localization
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evaluation, we compare grasp2vec embeddings against the same ResNet50-based architecture
used in the embeddings, but trained on ImageNet [118]. This network is only able to localize
the objects at 15% accuracy, because the features of an object in the gripper are not necessary
similar to the features of that same object in the bin.

5.5.2 Simulated instance grasping

While past work has addressed self-supervised indiscriminate grasping, we show that instance
grasping can be learned with no additional supervision. We perform ablation studies in
simulation and analyze how choices in model architecture and goal-reward relabeling affect
instance grasping performance and generalization to unseen test objects.

Overall instance grasping performance is reported in Table 5.2. All models using our
method (Grasp2Vec embedding similarity) in the reward function achieve at least 78%
instance grasping success on seen objects. Our experiments yield the following conclusions:

How well can a policy learn without any measure of object similarity? Looking at
experiments 1 and 3, we see that posthoc labeling performs more than twice as well as
indiscriminate grasping, while requiring no additional information. However, the PL only
experiment is far behind the upper bound of using the true labels in experiment 3. Adding in
auxiliary goal supervision in experiment 4, where data is augmented by randomly sampling a
different goal image and marking it as a failed trajectory, only worsens the performance.

Does any embedding of the goal image provide enough supervision? The goal of the reward
label is to indicate whether two goal images contain the same object, in order to reward
the policy for grasping the correct object. We already found in Table 5.1 that ImageNet
weights failed at this task. In experiment 5, we find that an autoencoder trained to encode
goal images fails to provide a good reward label, performing no better than a indiscriminate
policy.

How close can grasp2vec embeddings get to the oracle performance? The oracle labels
requires knowing the true identity of the objects in the goal an outcome images. The cosine
similarity of the goal and outcome image’s grasp2vec embeddings approximates this label
much better than the autoencoder embeddings. Experiments 6 and 7 show that using
grasp2vec similarity leads to performance on-par to the oracle on objects seen in training,
and outperform the oracle on new objects that the policy was trained on. Unlike the oracle,
grasp2vec similarity requires no object identity labels during either training or testing.

Should the grasp2vec embedding also be used to condition the policy? In experiment 8, we
condition the policy on the embedding of the goal image instead of on the image itself. This
reduces performance only on the unseen objects, indicating that the embeddings may hurt
generalization by a small margin.

Composite goals. The additive compositionality of Grasp2Vec embeddings enables users
to freely manipulate embeddings interactively to enable rich behavior at test time, without
the policy ever having been explicitly trained to handle such goals. Our results show that
policies conditioned on φo can grasp one of two simultaneously commanded goal embeddings
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# Goal Conditioning Reward Labels Seen Objects Unseen Objects
1 Indiscriminate Grasping N/A 18.3 21.9
2 Raw Image CNN Oracle Labels 83.9 43.7
3 Raw Image CNN PL 50.4 41.1
4 Raw Image CNN PL + Aux(0) 22.1 19.0
5 Raw Image CNN PL + ES (autoencoder) 18.7 20.9
6 (ours) Raw Image CNN PL + ES (grasp2vec) 80.1 53.9
7 (ours) Raw Image CNN PL + Aux + ES (grasp2vec) 78.0 58.9
8 (ours) φo(g) PL + ES (grasp2vec) 78.4 45.4

Table 5.2: Evaluation and ablation studies on a simulated instance grasping task, averaged over
700 trials. In simulation, the scene graph is accessed to evaluate ground-truth performance,
but it is withheld from our learning algorithms. Performance is reported as percentage
of grasps that picked up the user-specified object. Table reports early stopping scores for
instance grasping on training objects and evaluation for the same checkpoint on test objects.
Best numbers (for unsupervised approaches) in bold font.

Figure 5.5: Instance grasping with grasp2vec outcome similarity. The goal image is shown on
the left, and the center shows the robot during the trajectory. The final outcome image is on
the right along with its grasp2vec similarity to the goal.

that are averaged together: in simulation the composite-goal conditioned policies obtains
51.9% and 42.9% success for seen and unseen objects, respectively. The policy, which was
only trained on single goals, generalizes to composite goals due to the additive semantics of
grasp2vec embeddings.
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5.5.3 Real-world instance grasping.

To further evaluate the real-world grasp2vec embeddings, we design an instance grasping
method that requires no additional on-policy training. We leverage the localization property
of grasp2vec embeddings and use a indiscriminate grasping policy (for example, the one used
to collect the original grasping data). To grasp a goal object pictured in g from a scene s,
we obtain the 2D localization coordinate (x, y) = arg max(φo(g) ∗ φs,spatial(s)). Using the
known camera calibration, we convert this into a 3D coordinate in the base frame of the
arm and move the end-effector to that position. From there, an indiscriminate grasping
policy is executed, which grasps the object closest to the gripper. To reduce the likelihood of
accidentally picking up the wrong object, we compute the grasp2vec cosine similarity of a
wrist-mounted camera image with the goal image. If the robot has just grasped an object and
similarity falls below a threshold of 0.7, we drop the object and re-localize the goal object.
We run this policy for a maximum of 40 time steps. Using this method, we obtain 80.8%
and 62.9% instance grasp success on training and test objects, respectively.

5.6 Discussion

We presented grasp2vec, a representation learning approach that learns to represent scenes
as sets of objects, admitting basic manipulations such as removing and adding objects as
arithmetic operations in the learned embedding space. Our method is supervised entirely with
data that can be collected autonomously by a robot, and we demonstrate that the learned
representation can be used to localize objects, recognize instances, and also supervise a goal-
conditioned grasping method that can learn via goal relabeling to pick up user-commanded
objects. Importantly, the same grasping system that collects data for our representation
learning approach can also utilize it to become better at fulfilling grasping goals, resulting in
an autonomous, self-improving visual representation learning method. Our work suggests
a number of promising directions for future research: incorporating semantic information
into the representation (e.g., object class), leveraging the learned representations for spatial,
object-centric relational reasoning tasks (e.g., [64]), and further exploring the compositionality
in the representation to enable planning compound skills in the embedding space.

Since the publication of this work, other papers have presented related self-supervised
approaches for object picking [135, 29, 144], rope manipulation [134], surgical robotics [137],
and general robot reinforcement learning [15].
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Chapter 6

Plan Arithmetic: Compositional Plan
Vectors for Multi-Task Control

6.1 Introduction

In this chapter we extend the idea of training representations to obey arithmetic properties to
the problem of task composition. Instead of adding and subtracting objects, we train a policy
conditioned on the addition and subtraction of embeddings of demonstrations. We show that
CPVs can be learned within a one-shot imitation learning framework without any additional
supervision or information about task hierarchy, and enable a demonstration-conditioned
policy to generalize to tasks that sequence twice as many skills as the tasks seen during
training.

Many tasks can be expressed as compositions of skills, where the same set of skills is
shared across many tasks. For example, assembling a chair may require the subtask of
picking up a hammer, which is also found in the table assembly task. We posit that a task
representation that leverages this compositional structure can generalize more easily to more
complex tasks. We propose learning an embedding space such that tasks could be composed
simply by adding their respective embeddings. This idea is illustrated in Figure 6.2.

In order to learn these representations without additional supervision, we cannot depend
on known segmentation of the trajectories into subtasks, or labels about which subtasks are
shared between different tasks. Instead, we incorporate compositionality directly into the
architecture of the policy. Rather than conditioning the policy on the static embedding of the
reference demonstration, we condition the policy on the difference between the embedding
of the whole reference trajectory and the partially completed trajectory that the policy is
outputting an action for.

The main contributions of our work are the compositional plan vector (CPV) representation
and a policy architecture that enables learning of CPVs without any sub-task level supervision.
CPVs enable policies to generalize to significantly longer tasks, and they can be added together
to represent a composition of tasks. We evaluate CPVs in the one-shot imitation learning
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Figure 6.1: Compositional plan vectors embed tasks into a space where adding two vectors
represents the composition of the tasks, and subtracting a sub-task leaves an embedding of
the remaining sub-tasks needed for the task.

paradigm [33, 40, 61] on a discrete-action environment inspired by Minecraft, where tools
must be picked up to remove or build objects, as well as on a 3D simulated pick-and-place
environment.

6.2 Relation to Prior Work

In the one-shot imitation learning paradigm, the policy is conditioned on reference demon-
strations at both test and train time. This problem has been explored with meta-learning [40]
and metric learning [61] for short reaching and pushing tasks. Duan et al. used attention
over the reference trajectory to perform block stacking tasks [33]. Our work differs in that
we aim to generalize to new compositions of tasks that are out of the distribution of tasks
seen during training. Hausman et al. obtain generalization to new compositions of skills by
training a generative model over skills [50]. However, unlike our method, these approach
does not easily allow for sequencing skills into longer horizon tasks or composing tasks via
arithmetic operations on the latent representation.

Prior methods have learned composable task representations by using ground truth
knowledge about the task hierarchy. Neural task programming and the neural subtask graph
solver generalize to new tasks by decomposing a demonstration into a hierarchical program
for the task, but require ground-truth hierarchical decomposition during training [149, 131].
Using supervision about the relations between tasks, prior approaches have uses analogy-based
objectives to learn task representations that decompose across objects and actions [107]
or have set up a modular architectures over subtasks [4] or environments [28]. Unlike our
approach, these methods require labels about relationships. We implicitly learn to decompose
tasks without supervising the task hierarchy.
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Figure 6.2: By adding the CPVs for two different tasks, we obtain the CPV for the composition
of the tasks. To determine what steps are left in the task, the policy subtracts the embedding
of its current trajectory from the reference CPV.

6.3 Compositional Plan Vectors

In this chapter, we introduce compositional plan vectors (CPVs). The goal of CPVs is to
obtain policies that generalize to new compositions of skills without requiring skills to be
labeled and without knowing the list of skills that may be required. Consider a task named
“red-out-yellow-in” which involves taking a red cube out of a box and placing a yellow cube
into the box. A plan vector encodes the task as the sum of its parts: a plan vector for taking
the red cube out of the box plus the vector for putting the yellow cube into the box should
equal the plan vector for the full task. Equivalently, the plan vector for the full task minus
the vector for taking the red cube out of the box should equal the vector that encodes “put
yellow cube in box.”

If the list of all possible skills was known ahead of time, separate policies could be learned
for each skill, and then the policies could be used in sequence. However, this knowledge is
often unavailable in general and limits compositionality to a fixed set of skills. Instead, our
goal is to formulate an architecture and regularization that are compositional by design and
do not need additional supervision. With our method, CPVs acquire compositional structure
because of the structural constraint they place on the policy. To derive the simplest possible
structural constraint, we observe that the minimum information that the policy needs about
the task in order to complete it is knowledge of the steps that have not yet been done. That
is, in the cube example above, after taking out the red cube, only the “yellow-in” portion of
the task is needed by the policy. One property of this representation is that task ordering
cannot be represented by the CPV because addition is commutative. If ordering is necessary
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to choose the right action, the policy will have to learn to decode which component of the
compositional plan vector must be done first.

As an example, let ~v be a plan vector for the “red-out-yellow-in” task. To execute the
task, a policy π(o0, ~v) outputs an action for the first observation o0. After some number t
of timesteps, the policy has successfully removed the red cube from the box. This partial
trajectory O0:t can be embedded into a plan vector ~u, which should encode the “red-out”
task. We would like (~v − ~u) to encode the remaining portion of the task, in this case placing
the yellow block into the box. In other words, π(ot, ~v − ~u) should take the action that leads
to accomplishing the plan described by ~v given that ~u has already been accomplished. In
order for both ~v and ~v − ~u to encode the yellow-in task, ~u must not encode as strongly as ~v.
If ~v is equal to the sum of the vectors for “red-out” and “yellow-in,” then ~v may not encode
the ordering of the tasks. However, the policy π(o0, ~v) should have learned that the box must
be empty in order to perform the yellow-in task, and that therefore it should perform the
red-out task first.

We posit that this structure can be learned without supervision at the subtask-level.
Instead, we impose a simple architectural and arithmetic constraints on the policy: the
policy must choose its action based on the arithmetic difference between the plan vector
embedding of the whole task and the plan vector embedding of the trajectory completed so
far. Additionally, the plan vectors of two halves of the same trajectory should add up to the
plan vector of the whole trajectory, which we can write down as a regularization objective
for the embedding function. By training the policy and the embedding function together to
optimize their objectives, we obtain an embedding of tasks that supports compositionality
and generalizes to more complex tasks. In principle, CPVs can be used with any end-to-end
policy learning objective, including behavioral cloning, reinforcement learning, or inverse
reinforcement learning. In this work, we will validate CPVs in a one-shot imitation learning
setting.

One-shot imitation learning setup. In one-shot imitation learning, the agent must
perform a task conditioned on one reference example of the task. For example, given a
demonstration of how to fold a paper crane, the agent would need to fold a paper crane.
During training, the agent is provided with pairs of demonstrations, and learns a policy by
predicting the actions in one trajectory by using the second as a reference. In the origami
example, the agent may have trained on demonstrations of folding paper into a variety of
different creatures.

We consider the one-shot imitation learning scenario where an agent is given a reference
trajectory in the form of a list of T observations Oref

0:T = (oref
0 , ...,o

ref
T ). The agent starts with

o0 ∼ p(o0), where o0 may be different from oref
0 . At each timestep t, the agent performs an

action drawn from π(at|O0:t,O
ref
0:T ).

Plan vectors. We define a function gφ(Ok:l), parameterized by φ, which takes in a trajectory
and outputs a plan vector. The plan vector of a reference trajectory gφ(Oref

0:T ) should encode an
abstract representation of the milestones required to accomplish the goal. Similarly, the plan
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vector of a partially accomplished trajectory gφ(O0:t) should encode the steps already taken.
We can therefore consider the subtraction of these vectors to encode the steps necessary to
complete the task defined by the reference trajectory. Thus, the policy can be structured as

πθ(at|ot, gφ(Oref
0:T )− gφ(O0:t)), (6.1)

a function parameterized by θ that takes in the trajectory and is learned end-to-end.
In this work we use a fully observable state space and only consider tasks that cause a

change in the state. For example, we do not consider tasks such as lifting a block and placing
it exactly where it was, because this does not result in a useful change to the state. Thus,
instead of embedding a whole trajectory O0:t, we limit g to only look at the first and last
state of the trajectory we wish to embed. Then, π becomes

πθ(at|ot, g(oref
0 ,o

ref
T )− g(oo,ot)). (6.2)

Training. With π defined as above, we learn the parameters of the policy with imitation
learning. Dataset D containing N demonstrations paired with reference trajectories is
collected. Each trajectory may be a different arbitrary length, and the tasks performed by
each pair of trajectories are unlabeled. The demonstrations include actions, but the reference
trajectories do not. In our settings, the reference trajectories only need to include their first
and last states. Formally,

D = {(Orefi
[0,T i],O

i
[0:Hi],A

i
[0:Hi−1])}Ni=1,

where T i is the length of the ith reference trajectory and H i is the length of the ith demon-
stration. Given the policy architecture defined in Equation 6.1, the behavioral cloning loss
for a discrete action policy is

LIL(D, θ, φ) =
N∑
i=0

Hi∑
t=0

− log(πθ(a
i
t|oit, gφ(orefi

0,o
refi

T )− gφ(oi0,o
i
t))).

We also introduce a regularization loss function to improve compositionality by enforcing
that the sum of the embeddings of two parts of a trajectory is close to the embedding of
the full trajectory. We denote this a homomorphism loss LHom because it constrains the
embedding function g to preserve the structure between concatenation of trajectories and
addition of real-valued vectors. We implement the loss using the triplet margin loss from [122]
with a margin equal to 1:

ltri(a, p, n) = max{||a− p||2 − ||a− n||2 + 1.0, 0}

LHom(D, φ)
N∑
i=0

Hi∑
t=0

ltri(gφ(oi0,o
i
t) + gφ(oit,o

i
T ), gφ(oi0,o

i
T ), gφ(oj0,o

j
T ))
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BuildHouseChopTree MakeBread EatBread BreakRock

Figure 6.3: Illustrations of the 5 skills in the crafting environment. To ChopTree, the agent
must pick up the axe and bring it to the tree, which transforms the tree into logs. To
BuildHouse, the agent picks up the hammer and brings it to logs to transform them into a
house. To MakeBread, the agent brings the axe to the wheat which transforms it into bread.
The agent eats bread if it lands on a state that contains bread. To BreakRock, the agent
picks up a hammer and destroys the rock.

Finally, we follow James et al. in regularizing embeddings of paired trajectories to be close
in embedding space, which has been shown to improve performance on new examples [61]. This
“pair” loss LPair pushes the embedding of a demonstration to be similar to the embedding of
its reference trajectory and different from other embeddings, which enforces that embeddings
are a function of the behavior within a trajectory rather than the appearance of a state.

LPair(D, φ)
N∑
i=0

Hi∑
t=0

ltri(gφ(oi0,o
i
T ), gφ(orefi

0,o
refi

T ), gφ(orefj

0,o
refj

T )

for any j 6= i. We empirically evaluate how these losses affect the composability of learned
embeddings. While LPair leverages the supervision from the reference trajectories, LHom is
entirely self-supervised.

Measuring compositionality. To evaluate whether the representation learned by g is
compositional, we condition the policy on the sum of plan vectors from multiple tasks and
measure the policy’s success rate. Given two reference trajectories Orefi

0:T i and Orefj
0:T j ,

we condition the policy on gφ(orefi
0,o

refi
T i) + gφ(orefj

0,o
refj
T j). The policy is successful if it

accomplishes both tasks. We also evaluate whether the representation generalizes to more
complex tasks.
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Figure 6.4: Two example skills from the pick and place environment. Time evolves from left
to right. If the relevant objects are in the box, the agent must first remove the lid to interact
with the object and also return the lid to the box in order to complete a task.

6.4 Sequential Multitask Environments

We introduce two new learning environments, shown in Figures 6.3 and 6.4, that test an
agent’s ability to perform tasks that require different sequences and different numbers of
sub-skills. We designed these environments such that the actions change the environment
and make new sub-goals possible: in the 3D environment, opening a box and removing its
contents makes it possible to put something else into the box. In the crafting environment,
chopping down a tree makes it is possible to build a house. Along with the environments, we
will release code to generate demonstrations of the compositional tasks.

6.4.1 Crafting Environment

The first evaluation domain is a discrete-action world where objects can be picked up and
modified using tools. The environment contains 7 types of objects: tree, rock, logs, wheat,
bread, hammer, axe. Logs, hammers, and axes can be picked up, and trees and rocks block
the agent. The environment allows for 6 actions: up, down, left, right, pickup, and drop.
The transitions are deterministic, and only one object can be held at a time. Pickup has
no effect unless the agent is at the same position as a pickup-able object. Drop has no
effect unless an object is currently held. When an object is held, it moves with the agent.
Unlike the Malmo environment which runs a full game engine [65], this environment can be
easily modified to add new object types and interaction rules. We define 5 skills within the
environment, ChopTree, BreakRock, BuildHouse, MakeBread, and EatBread, as illustrated
in Figure 6.3. A task is defined by a list of skills. For example, a task with 3 skills could
be [ChopTree, ChopTree, MakeBread ]. Thus, considering tasks that use between 1 and 4
skills with replacement, there are 125 distinct tasks and about 780 total orderings. Unlike in
[4, 107], skill list labels are only used for data generation and evaluation; they are not used
for training and are not provided to the model. The quantities and positions of each object
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are randomly selected at each reset. The observation space is a top-down image view of the
environment, as shown in Figure B.1a.

6.4.2 3D Pick and Place Environment

The second domain is a 3D simulated environment where a robot arm can pick up and drop
objects. Four cubes of different colors, as well as a box with a lid, are randomly placed
within the workspace. The robot’s action space is a continuous 4-dimensional vector: an
(x, y) position at which to close the gripper and an (x, y) position at which to open the
gripper. The z coordinate of the grasp is chosen automatically. The observation space is a
concatenation of the (x, y, z) positions of each of the 4 objects, the box, and the box lid.
We define 3 families of skills within the environment: PlaceInCorner, Stack, and PlaceInBox,
each of which can be applied on different objects or pairs of objects. Considering tasks that
use 1 to 2 skills, there are 420 different tasks. An example of each skill is shown in Figure 6.4.

6.5 Experiments

o0,T
ref

4-layer CNN FC layer

flatten

CPV

at

5 FC layers

o0,t

4-layer CNN FC layer

flattenot

g

𝝅

Figure 6.5: The network architecture used for the craft-
ing environment. Orange denotes convolutional layers and
dark blue denotes fully connected layers. The trajectories
(oref

0 ,oref
T ) and (o0,ot) are each passed through g (the pale

green box) independently, but with shared weights. The
current observation ot is processed through a separate convo-
lutional network before being concatenated with the vector
g(oref

0 ,oref
T )− g(o0,ot).

Our experiments aim to understand how
well CPVs can learn tasks of varying
complexity, how well they can general-
ize to tasks that are more complex than
those seen during training (thus demon-
strating compositionality), and how well
they can handle additive composition of
tasks, where the policy is expected to
perform both of the tasks in sequence.
We hypothesize that, by conditioning a
policy on the subtraction of the current
progress from the goal task embedding,
we will learn a task representation that
encodes tasks as the sum of their compo-
nent subtasks. We additionally evaluate
how regularizing objectives improve gen-
eralization and compositionality.

Implementation. We implement gφ
and πθ as neural networks. For the craft-
ing environment, where the observations
are RGB images, we use the convolu-
tional architecture in Figure 6.5. The
encoder g outputs a 512 dimensional CPV. The policy, shaded in red, takes the subtraction
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of CPVs concatenated with features from the current observation and outputs a discrete
classification over actions.

For the 3D environment, the observation is a state vector containing the positions of
each object in the scene, including the box and box lid. The function g again concatenates
the inputs, but here the network is fully connected, and the current observation is directly
concatenated to the subtraction of the CPVs. To improve the performance of all models and
comparisons, we use an object-centric policy inspired by Chapter 4, where the policy outputs
a softmaxed weighting over the objects in the state. The position of the most attended object
is output as the first coordinates of the action (where to grasp). The object attention as well
as the features from the observation and CPVs are passed to another fully connected layer to
output the position for placing.

Data generation. For the crafting environment, we train all models on a dataset containing
40k pairs of demonstrations, each pair performs the same task. The demonstration pairs
are not labeled with what task they are performing. The tasks are randomly generated
by sampling 2-4 skills with replacement from the five skills listed previously. A planning
algorithm is used to generate demonstration trajectories. For the 3D environment, we collect
180k trajectories of tasks with 1 and 2 skills. All models are trained on this dataset to predict
actions from the environment observations shown in Figure B.1a. For both environments,
we added 10% of noise to the planner’s actions but discarded any trajectories that were
unsuccessful. The data is divided into training and validation sets 90/10. To evaluate
the models, reference trajectories were either regenerated or pulled from the validation set.
Compositions of trajectories were never used in training or validation.

Comparisons. We compare our CPV model to several one-shot imitation learning mod-
els. All models are based on Equation 6.2, where the policy is function of four images:
o0,ot,o

ref
0 ,o

ref
T . The näıve baseline simply concatenates the four inputs as input to a neural

network policy. The TECNets baseline is an implementation of task embedding control
networks from [61], where the embeddings are normalized to a unit ball and a margin loss is
applied over the cosine distance to push together embeddings of the same task. The policy in
TECNets is conditioned on the static reference embedding rather than the subtraction of two
embeddings. For both TECNets and our model, g is applied to the concatenation of the two
input observations.

We perform several ablations of our model, which includes the CPV architecture (including
the embedding subtraction as input the policy), the homomorphism regularization, and the
pair regularization. We compare the plain version of our model, where the objective is purely
imitation learning, to versions that use the regularizations. CPV-Plain uses no regularization,
CPV-Pair uses only LPair, CPV-Hom uses only LHom, and CPV-Full uses both. To ablate
the effect of the architecture vs the regularizations, we run the same set of comparisons
for a model denoted TE (task embeddings) which has the same architecture as TECNets
without normalizing embeddings. These experiments find whether the regularization losses
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Table 6.1: Evaluation of generalization and compositionality in the crafting envi-
ronment. Policies were trained on tasks using between 1 and 4 skills. We evaluate the
policies conditioned on reference trajectories that use 4, 8, and 16 skills. We also evaluate the
policies on the composition of skills: “2, 2” means that the embeddings of two demonstrations
that each use 2 skills were added together, and the policy was conditioned on this sum. For
the näıve model, we instead average the observations of the references, which performed
somewhat better. All models are variants on the architecture in Figure 6.5. The max horizon
is three times the average number of steps used by the expert for that length of task: 160,
280, and 550, respectively. Numbers are all success percentages.

Model 4 Skills 8 Skills 16 Skills 1+1 2,2 4,4

Naive 29± 2 9± 2 7± 2 29± 10 24± 5 5± 2
TECNet 49± 11 17± 7 7± 6 59± 11 43± 11 29± 23

TE 53± 4 28± 2 25± 20 32± 1 44± 25 18± 12
TE-Pair 64± 1 31± 1 18± 2 55± 3 53± 8 21± 2
TE-Hom 50± 4 27± 2 21± 1 51± 1 52± 1 20± 1
TE-Full 61± 8 28± 8 13± 2 60± 1 47± 7 23± 7

CPV-Naive 51± 8 19± 5 9± 2 31± 16 30± 15 5± 2
CPV-Pair 68± 11 44± 14 31± 13 2± 3 1± 2 0± 0
CPV-Hom 63± 3 35± 5 27± 8 71± 8 60± 11 26± 14
CPV-Full 73± 2 40± 3 28± 6 76± 3 64± 6 30± 10

produce compositionality on their own, or whether they work in conjunction with the CPV
architecture.

Results. We evaluate the methods on both domains. To be considered successful in the
crafting environment, the agent must perform the same sub-skills with the same types of
objects as those seen in the reference trajectory. The results on the crafting environment are
shown in Table 6.1, where we report the mean and standard deviation across 3 independent
training seeds. We see that both the näıve model and the TECNet model struggle to represent
these complex tasks, even the 4 skill tasks that are in the training distribution. We also
find that both the CPV architecture and the regularization losses are necessary for both
generalizing the longer tasks and composing multiple tasks. The pair loss seems to help mostly
with generalization, while the homomorphism losses helps more with compositionality. CPVs
are able to generalize to 8 and 16 skills, despite being trained on only 4 skill combinations, and
achieve 76% success at composing two tasks just by adding their embedding vectors. Recall
that CPVs are not explicitly trained to compose multiple reference trajectories in this way –
the compositionality is an extrapolation from the training. The TE ablation, which does not
use the subtraction of embeddings as input to the policy, shows worse compositionality than
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Table 6.2: 3D Pick and Place Results. Each model was trained on tasks with 1 to 2 skills.
We evaluate the models on tasks with 1 and 2 skills, as well as the compositions of two 1
skill tasks. For each model we list the success rate of the best epoch of training. All numbers
are averaged over 100 tasks. All models are variants of the object-centric architecture, shown
in the supplement. We find that the CPV architecture plus regularizations enable composing
two reference trajectories better than other methods.

Model 1 Skill 2 Skills 1,1

Naive 65± 7 34± 8 6± 2
TECNet 82± 6 50± 2 33± 4

TE-Plain 91± 2 55± 5 22± 2
TE-Pair 81± 11 51± 8 15± 3
TE-Hom 92± 1 59± 1 24± 12
TE-Full 88± 2 55± 8 9± 6

CPV-Plain 87± 2 55± 2 52± 2
CPV-Pair 82± 4 42± 3 7± 1
CPV-Hom 88± 1 54± 5 55± 4
CPV-Full 87± 4 54± 4 56± 6

our method even with the homomorphism loss. This supports our hypothesis that structural
constraints over the embedding representation contribute significantly to the learning.

These trends continue in the pick and place environment in Table 6.2, were we report the
mean and standard deviation across 3 independent training seeds. In this environment, a
trajectory is successful if the objects that were moved in the reference trajectory are in the
correct positions: placed in each corner, placed inside the box, or stacked on top of a specific
cube. As expected, TECNet performs well on 1 skill tasks which only require moving a single
object. TECNet and the näıve model fail to compose tasks, but the CPV model performs as
well at composing two 1-skill tasks as it does when imitating 2-skill tasks directly. As before,
the TE ablation fails to compose as well as CPV, indicating that the architecture and losses
together are needed to learn composable embeddings.

6.6 Discussion

Many tasks can be understood as a composition of multiple subtasks. To take advantage
of this latent structure without subtask labels, we introduce the compositional plan vector
(CPV) architecture along with a homomorphism-preserving loss function, and show that this
learns a compositional representation of tasks. Our method learns a task representation and
multi-task policy jointly. Our main idea is to condition the policy on the arithmetic difference



CHAPTER 6. PLAN ARITHMETIC 59

between the embedding of the goal task and the embedding of the trajectory seen so far.
This constraint ensures that the representation space is structured such that subtracting
the embedding of a partial trajectory from the embedding of the full trajectory encodes the
portion of the task that remains to be completed. Put another way, CPVs encode tasks as a
set of subtasks that the agent has left to perform to complete the full task. CPVs enable
policies to generalize to tasks twice as long as those seen during training, and two plan vectors
can be added together to form a new plan for performing both tasks.

We evaluated CPVs in a one-shot imitation learning setting. Extending our approach to
a reinforcement learning setting is a natural next step, as well as further improvements to
the architecture to improve efficiency. A particularly promising future direction would be to
enable CPVs to learn from unstructured, self-supervised data, reducing the dependence on
hand-specified objectives and reward functions.
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Chapter 7

Conclusion

In this thesis, we approached the problem of compositional generalization in robotics by
building modular neural network architectures and learning representations with arithmetic
properties. In chapters 3 and 4, we showed that modular networks can be trained directly
from data by applying different losses to different modules but still backpropagating gradients
through the module interfaces. Particularly in chapter 3, we show that simply by training
the modules in varied compositions with each other, they learn standard enough interfaces
such that when modules that were never trained together are composed, they are able to
produce a reasonable behavior.

In chapters 4 and 5 we took an object-centric view of robot learning. In chapter 4 we
defined an object as a bounding box with consistent features as in and in chapter 5 we defined
it more broadly as something that can be grasped and removed from a scene. We showed
that by integrating these concepts of an object into the neural architecture and loss function
of a robot learner, the learned behavior could learn more quickly and with less supervision
than learning purely from image pixels.

Finally, in chapters 5 and 6 we developed an arithmetic approach to representing compo-
sitionality, where we trained embedding functions such that the embedding of a composition
of concepts was equal to the sum of the embeddings of the concepts themselves. In chapter 5
the concepts were objects in the robot’s view, while in chapter 6 the concepts were primitive
skills that composed into longer, more complex tasks for an agent. As a whole, this body of
work demonstrated the effectiveness of structural priors, such as modularity and structured
representations, in achieving compositional generalization for robotics without sacrificing the
power of learning-based methods.

Of course, this work is only one step towards solving the problem of compositional
generalization in robots. We offer some future directions of research that could advance this
question:

Lifelong learning. While being able to generalize zero-shot to novel situations is important
for artificial agents, in practice there will many situations that are simply too different for
the agent to perform well on it’s first try. Instead, agents should be able to continue learning
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from their experience in order adapt to new situations and acquire new concepts [80]. With
a modular network architecture, the ability to spawn and train new modules as the learning
progresses could enable continual learning without forgetting older skills. If an agent is
learning an arithmetic feature space over tasks, then new tasks/objects could be integrated
by continually optimizing for the arithmetic property as the agent acquires new data.

Learning with language. The compositional properties of natural language make it a
good candidate for providing supervision for robots. A lot of progress has been made in
language-conditioned instruction following [92, 146, 140, 13, 56], including policies operating
over images [99, 3, 14] and in environments with object interactions [43, 125]. Modular
networks have been shown to improve out of domain transfer in instruction following by
composing neural task modules in accordance to the language instruction [19]. Further
decomposition of the architecture across objects and space has the potential to improve
generalization even more. A lifelong modular learning setting could benefit from in-the-loop
language supervision to label novel concepts and decide when to create new modules. In a
representation learning setting, language supervision can help structure the embedding space
of tasks by enforcing that the task embeddings show the same compositional properties as
the language.
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Appendix A

Grasp2Vec

A.1 Qualitative Detection Results

Success Cases Figures A.2, A.3, A.4 depict examples from the real-world localization task
in which grasp2vec demonstrates surprisingly effective localization capabilities.

Figure A.2: Training objects. Recognize deformable object (bag) in a large amount of clutter.
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Figure A.3: Testing objects. Recognizes correct object, even when goal is presented from a
different pose than the object’s pose in the bin.
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Figure A.4: Testing objects. Recognizes objects by parts when the goal object is occluded by
the gripper.

Failure Cases Figures A.5, A.6 depict examples where Grasp2Vec embeddings make
mistakes in localization.
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Figure A.5: Training objects. Embedding localizes objects with the correct colors but wrong
(though similar) shape.

Figure A.6: Test objects. Failed grasp incorrectly labeled as successful, resulting in an empty
(meaningless) goal for localization.

A.2 Simulation Experiment Details

The simulated experiments use the Bullet [21] simulator with a model of a 7-DoF Kuka arm.
We use 44 unique objects for training and 15 unique objects for evaluation. The training and
evaluation objects are mutually exclusive, and each object has a unique mesh and texture.
All objects are scans of mugs, bottles, cups, and bowls.
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For data collection and evaluation, a particular scene has up to 6 objects sampled from
the total objects without replacements; this means that no scene has multiple copies of a
particular object. The objects are dropped into the scene at a random pose, and the objects
may bounce onto each other.

To train the grasping policy, we use the following procedure. In each episode of the data
collection and learning loop, an indiscriminate grasping policy collects 10 objects from the bin
and saves their images to a goal set G. Afterwards, the data collection protocol is switched
to on-policy instance grasping, using previously grasped images o(1)...o(10) as subsequent
goals. Exploration policy hyperparameters are as described in [67], and we parallelize data
collection across 1000 simulated robots for each experiment.

A.2.1 Real-World Experiment Details

We use roughly 500 objects for training and 42 unseen objects for evaluation. Objects are
not restricted to object categories. For data collection and evaluation, 6 objects are placed
randomly into the bin. After grasping an object, the robot drops it back into the bin to
continue. The objects in a bin are switched out about twice a day and 6-7 robots are used in
parallel, each with its own bin.
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Pregrasp Scene Groundtruth 
Outcome Retrieved Outcome Postgrasp Scene

Training objects
Test objects

R
eal

Figure A.1: This table illustrates the object recall property. From left to right: The scene
before grasping, the grasped object, the outcome image retrieved by subtracting the postgrasp
scene embedding from the pregrasp scene embedding, and lastly the postgrasp scene. We
show example successes and failures (the later are marked with a red X). Failures occur in
the test object set because multiple white objects had similar embeddings. Failures occur in
the real data because the diversity of objects is very high, which likely makes the embeddings
less partitioned between object instances.
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Outcome 
Image

Dot product 
heatmap

Arg-Softmax

(a) Localization using untrained weights in simulation.

Outcome 
Image 
(cropped)

�흓o(o)·�흓spatial(spre)

(with weights 
trained on 
ImageNet)

Argmax

(b) Localization using weights trained on imagenet.

Figure A.7: (a)The detection analysis with an untrained model. This verifies that our loss,
rather than the architecture on it’s own, enables the detection property. (b) The failure of
localization indicates that Imagenet features are not consistent between scene and outcome
images, probably because of resolution and pose differences.
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Figure A.8: Objects used for evaluation on unseen (test) objects.
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Appendix B

Compositional Plan Vectors

B.1 Network Architectures

Crafting environment The observation is an RGB image of 33x30 pixels. The architecture
for g concatenates the first and last image of the reference trajectory along the channel
dimension, to obtain an input size of 33x30x6. This is followed by 4 convolutions with 16,
32,64, and 64 channels, respectively, with ReLU activations. The 3x3x64 output is flattened
and a fully connected layer reduces this to the desired embedding dimension. The same
architecture is used for the TECNet encoder. For the policy, the observation is passed through
a convolutional network with the same architecture as above and the output is concatenated

(a) Shows a state observation as rendered for
the agent. The white square in the bottom
left indicates that an object is held by the
agent.

(b) Shows the same state, but rendered in a
human-readable format. The axe shown in the
last row indicates that the agent is currently
holding an axe.
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with the subtraction of embeddings as defined in the paper’s method. This concatenation is
passed through a 4 layer fully connected network with 64 hidden units per layer and ReLU
activations. The output is softmaxed to produce a distribution over the 6 actions. The
TECNet uses the same architecture, but the reference trajectory embeddings are normalized
there is no subtraction; instead, the initial image of the current trajectory is concatenated
with the observation. The naive model uses the same architecture but all four input images
are concatenated for the initial convolutional network and there is no concatenation at the
embedding level.

3D environment The environment has 6 objects: 4 cubes (red, blue, green, white), a box
body and a box lid. The state space is the concatenation of the (x, y, z) positions of these
objects, resulting in an 18-dimensional state. As the object positions are known, we use an
attention over the objects as part of the action, as shown in Figure B.1. The actions are 2
positions: the (x0, y0) position at which to grasp and the the (x1, y1) position at which to
place. When training the policy using the object centric model, (x0, y0) is a weighted sum
of the object positions, with the z coordinate being ignored. Weights over the 6 object are
output by a neural network given the difference of CPVs and the current observation. At
evaluation time, (x0, y0) is the arg max object position. This means that all policies will
always grasp at an object position. For (x1, y1), we do not have the same constraint. Instead,
the softmaxed weights over the objects are concatenated with the previous layer’s activations,
and another fully connected layer maps this directly to continuous valued (x1, y1). This
means that the policy can place at any position in the workspace. The näıve model, TECNet
model, and CPV models all use this object-centric policy, then only differ in how the input
to the policy.

B.2 Hyperparameters

We compared all models across embedding dimension sizes of [64,128,256, and 512]. In the
crafting environment, the 512 size was best for all methods. In the grasping environment,
the 64 size was best for all methods. For TECNets, we tested λctr = 1 and 0.1, and found
that 0.1 was best. All models are trained on either k-80 GPUs or Titan X GPUs.

B.3 Additional Experiments

We ran a pared down experiment on a ViZDoom environment to show the method working
from first person images, as shown in B.3. In the experiment, the skills are reaching 4
different waypoints in the environment. The actions are “turn left,” “turn right,” and “go
forward.” The observation space consists of a first person image observation as well as the
(x, y) locations of the waypoints. We evaluate on trajectories that must visit 1 or 2 waypoints
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3 FC layers

o0,T
ref

CPV

ot

g

𝝅
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Object 
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* grasp 
position

place 
position

Figure B.1: The object-centric network architecture we use for the 3D grasping environment.
Because the observations include the concatenated positions of the objects in the scene, the
policy chooses a grasp position by predicting a discrete classification over the objects grasping
at the weighted sum of the object positions. The classification logits are passed back to the
network to output the position at which to place the object.

(skills), and also evaluate on the compositions of these trajectories. The policies were only
trained on trajectories that visit up to 3 waypoints. These evaluations are shown in B.1.

Figure B.2: First person
view in VizDoom env.

Table B.1: ViZDoom Navigation Results. All num-
bers are success rates of arriving within 1 meter of each
waypoint.

Model 1 Skill 2 Skills 1+1 2+2

Naive 97 94 36.7 2
TECNet 96 95.3 48.3 0
CPV 93 90.7 91 64
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