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Abstract

Extracting and Using Preference Information from the State of the World

by

Rohin Monish Shah

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Anca Dragan, Co-chair

Professor Stuart Russell, Co-chair

Typically when learning about what people want and don’t want, we look to human action as
evidence: what reward they specify, how they perform a task, or what preferences they express
can all provide useful information about what an agent should do. This is essential in order
to build AI systems that do what we intend them to do. However, existing methods require a
lot of expensive human feedback in order to learn even simple tasks. This dissertation argues
that there is an additional source of information that is rather helpful: the state of the world.

The key insight of this dissertation is that when a robot is deployed in an envi-
ronment that humans have been acting in, the state of the environment is already
optimized for what humans want, and is thus informative about human preferences.

We formalize this setting by assuming that a human H has been acting in an environment for
some time, and a robot R observes the final state produced. From this final state, R must
infer as much as possible about H’s reward function. We analyze this problem formulation
theoretically and show that it is particularly well suited to inferring aspects of the state that
should not be changed – exactly the aspects of the reward that H is likely to forget to specify.
We develop an algorithm using dynamic programming for tabular environments, analogously
to value iteration, and demonstrate its behavior on several simple environments. To scale
to high-dimensional environments, we use function approximators judiciously to allow the
various parts of our algorithm to be trained without needing to enumerate all possible states.

Of course, there is no point in learning about H’s reward function unless we use it to guide
R’s decision-making. While we could have R simply optimize the inferred reward, this suffers
from a “status quo bias”: the inferred reward is likely to strongly prefer the observed state,
since by assumption it is already optimized for H’s preferences. To get R to make changes to



2

the environment, we will usually need to integrate the inferred reward with other sources
of preference information. In order to support such reward combination, we use a model
in which R must maximize an unknown reward function known only to H. Learning from
the state of the world arises as an instrumentally useful behavior in such a setting, and can
serve to form a prior belief over the reward function that can then be updated after further
interaction with H.
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For humanity,

that we may navigate the challenging times ahead.
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Chapter 1

Introduction

Traditional computer programs are instructions on how to perform a particular task: to
compute a factorial, we tell the machine to enumerate the integers from 1 to n, and multiply
them together. However, we do not know how to mechanically perform more challenging
tasks like translation. The field of artificial intelligence raises the level of abstraction so that
we simply show what the task is, and let the machine to figure out how to do it. For instance,
we present pairs of sentences which provide examples of translation, and let the machine
determine how to translate well.

Unfortunately, as we apply our techniques to increasingly complex tasks, even specifying
the task becomes difficult. When we specify reward functions for reinforcement learning
by hand, the resulting agents often “game” their reward function by finding solutions that
technically achieve high reward without doing what the designer intended. In a particularly
famous example, an agent trained to maximize its score in the boat racing game CoastRunners
got stuck in a loop collecting high-scoring speed boosts instead of winning the game (Clark
and Amodei, 2016). Both Lehman et al. (2018) and Krakovna (2018) collect several examples
of similar behavior from a variety of sources.

As the environment becomes more complex, it becomes important not just to specify what
should be done, but also what should not be changed (McCarthy and Hayes, 1981). As put
by Stuart Russell, “A system that is optimizing a function of n variables, where the objective
depends on a subset of size k < n, will often set the remaining unconstrained variables to
extreme values; if one of those unconstrained variables is actually something we care about,
the solution found may be highly undesirable” (Russell, 2014). A robot that cleans houses
must be taught not just the appropriate way to fluff pillows, but also that it should not break
any vases on end tables in the course of completing its task (Amodei et al., 2016).

1.1 Why is inaction a safe default?

A common intuition in response to this issue is to suggest that our AI systems should have
safety margins: if they are uncertain about what to do, they should default to inaction.
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Figure 1.1: Imagine that you walk into a room and you see this giant house of cards. You
would likely slow down, be a lot more careful, and stay far away. This is probably not because
somebody taught you that it’s bad to knock down a house of cards; rather, you can tell
that someone must have put a lot of effort into constructing this house of cards, and so they
probably care a lot about it. In other words, you have inferred something about what another
person cares about, by looking at the state of the room in which they had acted.

This intuition has driven research on impact penalties, which aim to ensure that our AI
systems do not cause any unnecessary “large” changes (Armstrong and Levinstein, 2017).
Researchers have proposed penalizing reduction in the number of reachable states (Krakovna
et al., 2018) or attainable utility (Turner et al., 2020). However, such approaches will penalize
all irreversible effects, including ones that humans want to occur. Can we instead infer which
impacts humans don’t want, and penalize only those?

To answer this question, it will help to delve deeper into our assumptions. Why is the
“do nothing” action privileged in the first place? Of all the actions that our AI system could
take, why is that the safest one?

As a concrete example, let us consider entering the room in Figure 1.1 and seeing the
huge house of cards. It is intuitively obvious that we should be very careful around this
construction, and seek to avoid knocking it down. This isn’t because we were taught that
it is bad to knock down houses of cards – even people who had never heard of a house of
cards before would probably know not to knock it down. The reason that we intuitively
know to avoid messing with the house of cards is that if we were to do so, the person who
constructed it would likely be upset. It is obvious that someone had put in a lot of effort into
constructing it, and thus they probably care quite a lot that it remains standing.

This shows us how we might infer which impacts are good and which ones are bad: we
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Figure 1.2: Learning preferences from the state of the world. Alice (H) attempts to accomplish
a goal in a room with an easily breakable vase in the center. The robot (R) observes the
state of the environment, s0, after H has acted for some time from an even earlier state s−T .
R considers multiple possible reward functions that H might have had, and infers that states
where vases are intact usually occur when H’s reward penalizes breaking vases. In contrast,
it doesn’t matter much what the reward function says about carpets, as we would observe
the same final state either way. Note that while we consider a specific s−T for clarity here,
the robot could also reason using a prior over H’s initial state s−T .

can notice aspects of the environment that humans have put effort into, and thereby deduce
that they care about these aspects. This is our key insight: when an agent is deployed in
an environment that humans have been acting in, the state of the environment is already
optimized for human preferences and thus informative. The heuristic of having agents do
nothing by default is appealing precisely because the current state of the world has already
been optimized for human preferences, and action is more likely to ruin it than inaction,
since inaction preserves the current state.

1.2 Learning from the state of the world

To make this more concrete, such that we could see how to implement it algorithmically, let
us consider a simplified example, in which a robot (R) must assist its human user Alice (H).
Consider a simple room environment, in which there is a breakable vase placed in the center,
as illustrated in Figure 1.2. If either H or R walks over this center square, the vase breaks,
and can never be fixed. At the time R is deployed, it observes that the vase is still intact. It
can then reason about each of the possible reward functions that H could have:

1. If H wants to break the vase, then she would have walked through the center square to
get to the door, breaking the vase in the process. In this case, the robot would observe
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a broken vase at deployment, which contradicts the observation that the vase is still
intact. Thus, H probably did not actively want to break the vase.

2. If H was indifferent to the vase being broken or intact, then she still would have walked
through the center square, simply because that would be the shortest path, and the
vase would still be broken. Thus, H was probably not indifferent to the vase either.

3. If H wants to keep the vase intact, then she would have walked around the vase to
get to the door. In this world, the robot would observe an intact vase at deployment,
which is in fact what it observes.

Only one of these cases is consistent with R’s observations, and so R can infer that H
probably wants to keep the vase intact. If we did the same reasoning for standing on carpets,
all three cases would be consistent with the robot’s observation, and so the robot cannot
make any inferences about whether H cares about standing on carpets. It should be noted
that this assumes that the carpets and vase are fixed, unchangeable features of the room; if
we also model the fact that H chose to buy the carpets and place them in the room, R might
then infer that H prefers to walk over carpets.

While we have so far talked about how to infer what side effects humans care about, the
state of the world can contain information about other preferences as well. For example, if
the robot observes a basket full of apples near an apple tree, it can reasonably infer that
Alice wants to harvest apples.

1.3 Using the learned reward

Everything we have discussed so far only requires modeling H and the environment she is
acting in: at no point have R’s actions come into the story. This is because we have been
talking about what the robot can learn from the state of the world; what the robot can do is
irrelevant to such learning. Nonetheless, the entire point of learning about a reward function
is so that we can then use the learned reward to guide the agent’s action selection.

However, here a problem arises: typically, by looking at the state of the world, R will
infer what should not be changed about the world – for example, vases should not be broken.
It is less common (though still possible) for R to learn what changes it should make to the
world: for any proposed change, if that change were good that wouldn’t H have already
implemented it? While there are many possible reasons (for example, it may be hard for H
but easy for R, or H may not have had the time to do it), there will nonetheless be some
information about the reward that R does not learn from the state of the world. We need a
way to solicit and incorporate additional information.

The typical paradigm for this is that of reward learning. Reward learning splits the overall
problem into two parts: first, a learning phase during which the agent gains more information
about the reward from external human feedback, and second, an action phase during which
the agent acts to maximize expected reward. However, it seems beneficial for the agent
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to be able to reason about how these phases interact with each other. We recast reward
learning as a special case of the assistance framework, which models the human as internal
to the environment, with some uncertain reward to be inferred. The agent must then act to
maximize the (uncertain) reward in this environment. This forces the agent to learn and act
simultaneously and jointly, which enables several qualitative benefits.

We thus formalize learning from the state of the world within the assistance paradigm,
leading to a model in which H and R are both part of the environment, but R only starts
acting and observing after a discrete “deployment” event. At this point, R can update its prior
over reward functions using the state of the environment, which gives it some information
about the reward. If it still needs additional information, it can get this through more typical
mechanisms such as asking H what she wants, or observing how H acts in order to infer her
intent. This enables agents that can assist humans while learning about what they should do
from the state of the world, and only asking H questions when it is truly necessary.

1.4 Thesis overview

The central claim of this Ph.D. dissertation is that with only empirical knowledge of how the
world works, simply by observing the state of the world, an AI system can make significant
inferences about what the human must care about for the world to look as it does, which it
can then use to assist the human H. Unlike other methods of learning human preferences, it
is not necessary for the human to explicitly provide any feedback to the agent, making this
information effectively free.

Central to our approach is the assumption that H has already acted in the environment. It
is this assumption that implies that the current state of the environment is already optimized
towards her preferences. Chapter 3 formalizes this assumption by describing the environment
using a Markov Decision Process (MDP) in which H acts. The reward function of the MDP
represents what H cares about. The agent then gets to observe a state that is generated by
allowing H to act in the environment for some amount of time.

When the MDP is combined with a model of how H chooses actions given a particular
reward function, we obtain a generative model that allows us to model H’s actions from the
reward function, which in turn allows us to model the observed state of the environment from
the initial state and H’s actions. We can then invert this model in order to make inferences
about the reward function from the observed state.

After establishing this formalism, we turn to its theoretical implications in Chapter 4.
An immediate limitation is that since we observe only a single state, it is not possible to
distinguish between the full set of possible reward functions. A particular challenge is the
possibility of the “status quo reward”, which assigns maximal reward to the observed state
and minimal reward to every other state. Such a reward will often (though not always) have
maximal likelihood, since it would strongly incentivize H to seek the observed state. To
avoid having these “weird” reward functions dominate our posterior distribution, we restrict
the space of reward functions to be linear functions of high-level features of the state. This
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often forces reward to be assigned to multiple states, and requires that states with the same
features be assigned the same reward. The introduction of features allows us to formally
prove a crucial property of learning from the state of the world: nothing can be inferred
about a feature that H could not have affected.

We then turn to efficient algorithms that can perform these inferences in practice. We first
consider the setting in which H has been acting Boltzmann-rationally (Ziebart et al., 2010)
for a known amount of time in a tabular MDP with a prespecified feature function. Chapter 5
derives an algorithm, Reward Learning by Simulating the Past (RLSP), by applying dynamic
programming to efficiently compute the gradient of the log probability of the observed state
with respect to the parameters of the reward function.

However, in practice, our environments are high-dimensional, and we have neither an
exact model of the transition dynamics, nor a prespecified function that identifies the relevant
features. To extend the algorithm to these kinds of settings, in Chapter 6 we assume access to
an environment simulator (or some other source of environment interaction data), and apply
self-supervised learning with neural networks to learn models of the transition dynamics and
features. We then adapt RLSP to work in this new setting with learned models and large
state spaces that can no longer be enumerated, resulting in the Deep RLSP algorithm.

What can these algorithms do in practice? In Chapter 7, we test the algorithms in multiple
settings to demonstrate their qualitative behaviors. We evaluate both RLSP and Deep RLSP
on a suite of gridworlds designed to test their ability to infer negative side effects as well as
positive actions that can be taken. To test Deep RLSP in high-dimensional environments, we
use it to imitate MuJoCo robot behaviors, given only a small number of states sampled from
rollouts of those behaviors.

All of the work until this point primarily focuses on reward learning, using standard
algorithms for planning and reinforcement learning in order to then learn good policies that
use the inferred reward. However, for the most benefit we would like to continue to learn
more information after observing the state of the world, and then use that information to act.
We identify two paradigms which allow for this: reward learning and assistance. Chapter 8
compares and contrasts these two paradigms, and finds that the integration of learning and
decision-making in assistance leads to several qualitative benefits. We thus choose to use the
assistance paradigm, and show how to formalize learning from the state of the world in an
assistance setup.

Chapter 9 concludes by offering a look at how these ideas may be applied to AI systems
that are increasingly being deployed in the real world. This dissertation only scratches the
surface of what could be done by learning from the state of the world. We are excited to see
future research on this topic.

Chapters 4, 5, and 8 can be read after Chapter 3. Chapter 6 depends on Chapter 5, and
Chapter 7 depends on both Chapters 5 and 6.
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Chapter 2

Background

This chapter provides background, notation and related work to set the context for the rest
of this dissertation. It should be possible to skip this chapter and refer back to it when
necessary.

2.1 Sequential decision-making

Our key insight is that the human H has already acted in the environment in order to optimize
it towards her preferences. In order to formalize this, we need to have the mathematical
language to talk about agents that act in environments to achieve goals. This can be done
using the formalism of sequential decision-making, in which we model the agent as interacting
with an environment. Every timestep, the environment is in some particular state, and the
agent can take an action which leads to the environment moving to a new state. To formalize
the goal, we assume that there is some reward function that assigns values to states; an agent
pursues the reward function if their actions systematically lead to states with high reward.

Markov Decision Processes (MDPs). Let ∆(X) be the set of probability distributions
over X. Then, a Markov decision process (MDP) M = 〈S,A, T ,R, PS , γ〉 consists of:

• A set of states S, known as the state space,

• A set of actions A, known as the action space,

• A transition function T : S ×A → ∆(S), that given a possible state and the agent’s
action in that state produces a distribution over the next state of the environment,

• A reward function R : S × A × S → R, that given a state, agent action, and the
resulting next state, specifies the reward that the agent accrues for this transition,

• An initial state distribution PS : ∆(S), that determines the initial state of the environ-
ment from which the agent begins to act, and
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• A discount rate γ ∈ (0, 1), that specifies how much less valuable reward is in the next
timestep than in the current timestep.

An agent in the environment is specified by a policy π : S → ∆(A), which specifies
how the agent will act (perhaps stochastically) in every possible state in the MDP. Given a
policy, we can compute the expected discounted sum of rewards that an agent would accrue
by following the policy from the initial state of the environment:

ER(π) = E
s0∼PS

at∼π(·|st)
st+1∼T (·|st,at)

[
∞∑
t=0

γtR(st, at, st+1)

]
.

An optimal policy π∗ for the MDP is one that maximizes expected reward, that is,
π∗ ∈ argmaxπ ER(π).

Partially observable MDPs (POMDPs). One issue with the MDP formalism is that
the agent is implicitly assumed to be able to observe the entire state of the environment, since
an agent policy π(· | s) is conditioned on the state s. However, in reality, most agents are not
able to observe the entirety of their environment: for example, humans only have directional
sight. To address this, we can posit an observation function, that given an environment state,
specifies what aspects of the state the agent can observe.

Formally, a partially observable MDP (POMDP) M = 〈S,A,Ω, O, T ,R, PS , γ〉 consists
of all of the ingredients of an MDP, and adds two more:

• A finite set of observations Ω, known as the observation space,

• An observation function O : S → ∆(Ω), that specifies what aspects of the state an
agent can observe. We will write ot to signify the tth observation O(st).

Since the purpose of introducing partial observability was to better model the agent, our
policies will have to change. In particular, rather than allowing policies to condition on
the state, we now allow a policy π : (O ×A)∗ × O → ∆(A) to condition on the history of
observations and actions. We now allow a history in order to allow the agent to “remember”
previous observations. The expected reward of a policy is nearly unchanged

ER(π) = E
s0∼PS

at∼π(·|o0:t,a0:t−1)
st+1∼T (·|st,at)

[
∞∑
t=0

γtR(st, at, st+1)

]
,

and an optimal policy continues to be one that maximizes expected reward.



CHAPTER 2. BACKGROUND 9

Using decision processes for modeling humans

So far, we have been agnostic to what exactly counts as an “agent”. When learning from the
state of the world, our job is to think about how the human H has acted in order to produce
the current state of the world; thus in our context the agent of interest is H. We will denote
the action space by AH and individual actions by aH to emphasize this.

Since we typically do not know exactly what goal a human is pursuing, we will often
want to specify an MDP or POMDP without reward M\R, also known as a world model,
which contains all the ingredients of an MDP or POMDP, except for the reward function.
Instead, we have a human model that specifies how a policy π is chosen given a potential
reward function or goal R. Common choices are that humans are perfectly optimal (Ng and
Russell, 2000) or noisily rational (Ziebart et al., 2010), though recent work argues that such
models should first condense similar trajectories into a single option (Bobu et al., 2020).

The approach of modeling humans using sequential decision-making processes has been
used to infer human goals (Ng and Russell, 2000), model human pedagogic behavior (Ho and
Ermon, 2016), and infer human internal state (Sadigh et al., 2016), among other applications.

Reinforcement learning and planning

While in this dissertation, we typically model the human as an agent in an MDP or POMDP,
it is also possible to build an artificial agent to optimize reward in a pre-specified MDP or
POMDP. In this case, we are given an MDP or POMDP M, and we must find an optimal
policy π∗ that maximizes expected reward. There is a rich literature in this field going back
decades; we refer the reader to Sutton and Barto (2018) for an overview.

Recent work in deep reinforcement learning combines function approximation with rein-
forcement learning (Mnih et al., 2013; Schulman et al., 2017). This has shown great success,
leading to expert agents at challenging games like Go (Silver et al., 2017) and Dota (OpenAI,
2018).

2.2 Reward misspecification

However, reinforcement learning comes with a major challenge: since our artificial agent
maximizes the specified reward function, it is crucial that the developer specify the reward
function correctly. The reward function can be thought of as a specification of how the agent
should behave in every possible situation it could ever encounter; it is perhaps not surprising
that it is challenging to provide such a specification.

In games, there is a simple reward function that works well: a reward of 1 if the agent wins,
and 0 otherwise. Whether or not the agent wins can usually be determined algorithmically.
Even in such situations, agents will sometimes find and exploit bugs in the game, such as
teleporting through a wall to progress further in Sonic (Hesse et al., 2018), or getting a large
amount of points for no apparent reason in Qbert (Chrabaszcz et al., 2018).
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However, the real challenge is in specifying reward functions in more complex, open-ended
environments. Both Krakovna (2018) and Lehman et al. (2018) catalog a wide variety of
creative and surprising ways in which artificial agents found methods of achieving high reward
that were a) surprising to the developer and b) not what the developer intended. So far,
these surprising behaviors have been primarily limited to sandboxed digital environments, in
which these failures are mere curiosities, but they would be actively dangerous in real-world
settings such as self-driving cars.

This is not just a problem in which we are unable to effectively communicate our desires
to the agent: often, our desires are themselves inconsistent. This is best illustrated in criminal
recidivism, in which we would like an AI system to predict whether a criminal is likely to
commit another crime after being released, and to do so fairly, without showing a bias based
on race. When we attempt to write a specification for “fairness”, we end up finding two
different criteria that are both intuitively necessary properties. Unfortunately, it turns out
to be provably impossible to simultaneously these two different criteria, suggesting that a
formal fairness specification will remain elusive (Kleinberg et al., 2016; Chouldechova, 2017;
Corbett-Davies et al., 2017).

Furthermore, unlike many other potential failures of AI systems, the risks from reward
misspecification grow as the agent becomes more capable, because with increasing capability
agents would presumably become better at finding these surprising behaviors that achieve
high reward that we did not anticipate in advance. If we imagine that reward misspecification
continues to afflict agents whose capabilities are at par with or exceeding those of humans, it
seems that by pursuing instrumental subgoals (Omohundro, 2008) such as resisting shutdown
and accumulating resources and power (Turner, 2019), these agents could pose catastrophic
risks to human society, potentially leading to human extinction (Bostrom, 2014).

2.3 Minimizing side effects

One perspective on this problem is that the issue is primarily that reward designers cannot
be expected to think of everything, and will forget to specify some aspects of what they care
about. As described in Chapter 1, if the reward function fails to account for variables that
we care about, an optimal agent will tend to set those variables to extreme values, which
could be highly undesirable (Russell, 2014).

This is very related to the frame problem in AI (McCarthy and Hayes, 1981), which refers
to the issue that we must specify what stays the same in addition to what changes. In formal
verification, this manifests as a requirement to explicitly specify the many quantities that the
program does not change (Andreescu, 2017). Analogously, rewards are likely to specify what
to do (the task), but may forget to say what not to do (the frame properties).

Given this, recent research has focused on solving this problem by finding general methods
for penalizing side effects, that is, impacts on the environment that are not necessary
for completing the primary task (Armstrong and Levinstein, 2017). One approach is to
penalize a reduction in the number of reachable states (Krakovna et al., 2018) or attainable
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utility (Turner et al., 2020). However, such approaches will penalize all irreversible effects,
including ones that humans want.

By learning from the state of the world, we can instead learn to penalize only those side
effects that humans do not want, while allowing effects that are desirable. If H has put effort
into ensuring that some effect does not happen, for example preventing the accumulation
of dust by cleaning regularly, then we can infer that she must not want that side effect to
happen. In contrast, if some effect would not have happened regardless of what H did, then
we cannot infer anything about it. This can be a downside: it implies that we could not
learn about cases where H is optimized for the environment, rather than optimizing the
environment herself. For example, H could probably not change the temperature of the Earth
even if she wanted to, and so R could not make any inferences about H’s preferences over
the temperature of the Earth by looking at the state of the world; nonetheless we would not
want R to drastically change the temperature. This suggests that we may want to combine
learning from the state of the world with impact penalization in order to achieve the virtues
of both.

2.4 Learning from human feedback

A natural solution to reward misspecification is not to specify the reward at all, and to
instead build an agent that infers the reward function to optimize from human feedback. To
the extent that human feedback is inconsistent, the agent would remain uncertain about the
true objective. As a result, instead of the current model of intelligent agents optimizing for
their objectives, we would now have beneficial agents optimizing for our objectives (Russell,
2019).

Active vs passive. An active method is one in which R chooses what feedback H gives,
typically by asking questions, whereas in a passive method the feedback is specified upfront
and cannot be chosen by R. Active methods can allow R to learn from less feedback, since
the feedback can be chosen to be most useful for reducing R’s uncertainty (Sadigh et al.,
2017; Lopes et al., 2009; Mindermann et al., 2018).

Another major difference amongst methods is in the type of feedback obtained:

Demonstrations. A common form of feedback is demonstrations, in which H shows (from
R’s perspective, perhaps using teleoperation) how to accomplish the desired task. R can then
either use imitation learning to directly learn a policy that imitates the demonstrations (Bain
and Sammut, 1999; Ho and Ermon, 2016), or use inverse reinforcement learning (IRL) to
infer what reward function H must have in order to produce the demonstrations (Ng and
Russell, 2000; Ziebart et al., 2010; Ramachandran and Amir, 2007; Fu et al., 2017; Finn et al.,
2016). Using ranked demonstrations can improve performance (Brown et al., 2019).
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One issue with learning from demonstrations is that we require the demonstrations to
have action labels. For imitation learning, these action labels must come from R’s action
space AR, even though they are presumably demonstrated by H. In the case of inverse
reinforcement learning, the action labels can be from any action space, as long as R has
a model of the environment from the perspective of agents with that action space. (If the
action space is not AR, then the inferred reward function must not depend on the action, if
we want to use it to learn a policy for R.)

Observations. Since action labels can be fairly challenging to get, and since demonstrations
without action labels can often be plentiful (such as YouTube videos), we would like to learn
from demonstrations without action labels. Learning from Observations (LfO; Yu et al.,
2018; Torabi et al., 2018; Gandhi et al., 2019; Edwards et al., 2018) aims to recover a policy
from such demonstrations. This makes it much more generally applicable than learning from
demonstrations, though it still requires the demonstrations to have observations from R’s
perspective, or from a different perspective for which R has a model of how the observations
are produced.

Comparisons. Some tasks may be sufficiently difficult that H cannot perform them all,
making demonstrations infeasible. However, in such situations, H may still be able to
evaluate whether or not a particular behavior is good. In this case, we can ask H to compare
which of two behaviors is better, and fit a reward model that predicts these comparisons
well (Christiano et al., 2017; Sadigh et al., 2017; Wirth et al., 2017).

Other sources. Many other potential sources of information have been proposed; we refer
the reader to Jeon et al. (2020) for an overview. Some sources not yet mentioned include
ratings (Daniel et al., 2014), reinforcement signals (Knox and Stone, 2009; Warnell et al., 2017;
MacGlashan et al., 2017), proxy rewards (Hadfield-Menell et al., 2017b), corrections (Bajcsy
et al., 2017), proxy rewards (Hadfield-Menell et al., 2017b), instructions (Bahdanau et al.,
2019), natural language (Fu et al., 2019), summary statistics of demonstrations (Kangasrääsiö
and Kaski, 2018), or combinations of multiple feedback types (Ibarz et al., 2018).

This dissertation proposes a new type of human feedback: the state of the world in which
H has been operating. Unlike most of the other sources of feedback described above, the state
of the world does not require any active effort on the part of H that they weren’t already
planning to do; R is supposed to learn simply by observing the state when it is deployed.
For this reason, it is fundamentally a passive method. While one could formalize and build
algorithms for an active variant of learning from the state of the world, it is not clear why we
would want to do so. If we are going to ask H to act optimally in a new environment, rather
than one she had already been acting in, we might as well observe her full demonstration,
rather than limiting ourselves to just the final state.
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2.5 Maximum Causal Entropy Inverse Reinforcement

Learning

In this section, we explain a particular algorithm for inverse reinforcement learning, called
Maximum Causal Entropy IRL (MCEIRL) (Ziebart et al., 2010). This is both a typical
example of an algorithm that learns from human feedback, and an explanation of an algorithm
and human model that we will be using in Chapters 5 and 6.

As a passive IRL algorithm, MCEIRL aims to learn a reward function that explains a set
of demonstrations given as input. We assume that the reward function is linear in features,
that is, it is of the form Rθ(s) = θTf(s), where θ is a set of parameters that defines the
reward function, and f is a feature function that extracts a set of features of the state that
may be relevant to the reward.

MCEIRL models H as Boltzmann rational, that is, she is assumed to be more likely to
take actions if they are of higher value, but at least some probability is assigned to all actions.
Concretely, H is assumed to act according to the policy computed by soft value iteration:

πsoft
t (aH | s, θ) = exp(Qt(s, a

H ; θ)− Vt(s; θ))

Vt(s; θ) = ln
∑
aH

exp(Qt(s, a
H ; θ))

Qt(s, a
H ; θ) = θTf(s) +

∑
s′

T (s′ | s, aH)Vt+1(s′; θ)

VT+1(s; θ) = 0.

Here, Vt plays the role of a normalizing constant for the policy at timestep t. Intuitively,
H is assumed to act close to randomly when the difference in expected total reward across
the actions is small, but nearly always chooses the best action when it leads to a substantially
higher expected return. The soft Bellman backup for the state-action value function Q is
similar to the standard Bellman backup, with the hard maximum over actions replaced with
a soft maximum (logsumexp) over actions.

The likelihood of a trajectory τ = s0a
H
0 . . . sTa

H
T given the reward parameters θ is:

p(τ | θ) = p(s0)

( T−1∏
t=0

T (st+1 | st, aHt )πsoft
t (aHt | st, θ)

)
πsoft
T (aHT | sT , θ). (2.1)

MCEIRL finds the reward parameters θ∗ that maximize the log-likelihood of the demon-
strations:

θ∗ = argmaxθ ln p(D | θ) = argmaxθ
∑
i

∑
t

lnπsoft
t (aHi,t | si,t, θ). (2.2)

Ziebart et al. (2010) shows that θ∗ gives rise to a policy whose feature expectations match
those of the expert demonstrations. It proposes a gradient ascent algorithm for solving this
problem, and derives the following gradient:
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∇θ ln p(D | θ) =

(∑
i

T∑
t=0

f(τi,t)

)
−

 E
s0∼PS

aH0:T−1∼π
soft
θ

s1:T∼T

[
T∑
t=0

f(st)

] , (2.3)

where τi,t is the tth timestep of the ith demonstration in D.
Unfortunately, the derivation for this gradient assumes access to the expert policy. The

feature counts for the expert policy are then approximated with the feature counts of the
demonstrations. This is an unbiased estimator of the true gradient, but in settings with
limited data the variance can be extremely high. So, we derive a gradient directly from the
assumption that the trajectory was obtained by rolling out a policy computed using soft
value iteration.

Deriving an exact gradient

Given a trajectory τT = s0a
H
0 . . . sTa

H
t , we seek the gradient ∇θ ln p(τT | θ). We assume that

the expert has been acting according to the maximum causal entropy IRL model given above.
In the following, unless otherwise specified, all expectations over states and actions use the
probability distribution over trajectories from this model, starting from the state and action
just prior. For example, given st−1 and at−1, we have:

E
st,aHt

[
X(st, a

H
t )
]

=
∑
st∈S

aHt ∈AH

T (st | st−1, a
H
t−1)πsoft

t (aHT | sT , θ)X(sT , a
H
T ).

First, we compute the gradient of Vt(s; θ). We have ∇θVT+1(s; θ) = 0, and for 0 ≤ t ≤ T :
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∇θVt(st; θ)

= ∇θ ln
∑
aH
′

t

exp(Qt(st, a
H′

t ; θ))

=
1

exp(Vt(st; θ))

∑
aH
′

t

exp(Qt(st, a
H′

t ; θ))∇θQt(st, a
H′

t ; θ)

=
1

exp(Vt(st; θ))

∑
aH
′

t

exp(Qt(st, a
H′

t ; θ))∇θ

[
θTf(st) + E

s′t+1

[
Vt+1(s′t+1; θ)

]]

=
∑
aH
′

t

exp(Qt(st, a
H′

t ; θ)− Vt(st; θ))

[
f(st) + E

s′t+1

[
∇θVt+1(s′t+1; θ)

]]

=
∑
aH
′

t

πsoft
t (aH

′

t | st, θ)

[
f(st) + E

s′t+1

[
∇θVt+1(s′t+1; θ)

]]
= f(st) + E

aH
′

t ,s′t+1

[
∇θVt+1(s′t+1)

]
.

Unrolling the recursion, we can prove using induction that the gradient is the expected
feature counts under the policy implied by θ from st onwards. If we define

Ft(st; θ) , f(st) + E
aH
′

t:T−1,s
′
t+1:T

[
T∑

t′=t+1

f(s′t′)

]
,

then we have

∇θVt(st; θ) = Ft(st; θ).

This makes intuitive sense: since the reward is linear in features, for a single state we
have ∇θRθ(s) = ∇θθ

Tf(s) = f(s), and so for the value of a state Vt(st; θ) the gradient simply
sums up the expected feature counts for the rest of the trajectory when acting according to
πsoft.

We can now calculate the gradient we actually care about:
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∇θ ln p(τ | θ)

= ∇θ

[
lnPS(s0) +

T∑
t=0

lnπsoft
t (aHt | st, θ) +

T−1∑
t=0

ln T (st+1 | st, aHt )

]

=
T∑
t=0

∇θ lnπsoft
t (aHt | st, θ) only πsoft

t depends on θ

=
T∑
t=0

∇θ

[
Qt(st, a

H
t ; θ)− Vt(st; θ)

]
=

T∑
t=0

∇θ

[
θTf(st) + E

s′t+1

[
Vt+1(s′t+1; θ)

]
− Vt(st; θ)

]

=
T∑
t=0

(
f(st) + E

s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft(st; θ)

)
.

The last term of the summation is f(sT ) + Es′T+1

[
FT+1(s′T+1; θ)

]
− FT (sT ; θ), which

simplifies to f(sT ) + 0− f(sT ) = 0, so we can drop it. Thus, our gradient is:

∇θ ln p(τ | θ) =
T−1∑
t=0

(
f(st) + E

s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft(st; θ)

)
. (2.4)

The term inside the summation has an intuitive meaning: the first two terms together
compute the expected feature counts if we take action aHt in st and then follow πsoft, while the
last term computes the expected feature counts if we always follow πsoft from state st. It is
thus analogous to the advantage of the demonstrated action aHt over the action recommended
by the policy πsoft. We define g(st, a

H
t ; θ) to represent this quantity:

g(st, a
H
t ; θ) , f(st) + E

s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft(st; θ) (2.5)

This lets us rewrite our gradient as

∇θ ln p(τ | θ) =
T−1∑
t=0

g(st, a
H
t ; θ). (2.6)

This is the gradient we will use in Chapter 5, but a little more manipulation allows us to
compare with the gradient provided in Ziebart et al. (2010).

Comparing the two gradient expressions

We reintroduce the terms that we cancelled above:
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∇θ ln p(τ | θ) =
T∑
t=0

(
f(st) + E

s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft(st; θ)

)

=

(
T∑
t=0

f(st)

)
+

(
T−1∑
t=0

E
s′t+1

[
Ft+1(s′t+1; θ)

])
−

(
F0(s0) +

T−1∑
t=0

Ft+1(st+1; θ)

)

=

(
T∑
t=0

f(st)

)
−F0(s0; θ) +

T−1∑
t=0

(
E
s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft+1(st+1; θ)

)
.

Compare this to Equation 2.3. The first term matches our first term exactly. Our second
term matches the second term in the limit of sufficiently many demonstrations. Our third
term converges to zero with as the number of demonstrations increases, since as the number
of st, a

H
t pairs increases, the empirical counts of st+1 will match the expected proportions

prescribed by T (· | st, aHt ), leading to a smaller correction.
In a deterministic environment, we have T (s′t+1 | st, aHt ) = 1[s′t+1 = st+1] since only one

transition is possible. Thus, the third term is zero and even for one trajectory the gradient

reduces to
(∑T

t=0 f(st)
)
−F0(s0; θ). This differs from the gradient in Ziebart et al. (2010)

only in that it computes feature expectations from the observed starting state s0 instead of
using the initial state distribution PS(s0).

In a stochastic environment, the third term need not be zero, and corrects for the “bias”
in the observed states st+1. Intuitively, when the expert chose action aHt , she did not know
which next state s′t+1 would arise, but the first term of our gradient upweights the particular
next state st+1 that we observed. The third term downweights the future value of the observed
state and upweights the future value of all other states, all in proportion to their transition
probability T (s′t+1 | st, aHt ).
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Chapter 3

Formalism: Defining a state of the
world problem

In this chapter, we will describe how to mathematically formalize the problem of learning
from the state of the world, and describe some “free variables” that can be varied to produce
different formulations that have slightly different properties.

3.1 Problem statement

Let us consider the example of a room with a breakable vase from Chapter 1 (Figure 1.2).
Recall that in this example, Alice (H) has been walking around in a room that contains a
vase and carpets. Intuitively, when the robot (R) observes that the vase is still intact, it
should infer that H does not want the vase to be broken, since in any other case R would
likely have observed a broken vase.

We focus for now on the case where R is only learning about the reward, rather than
acting based on the learned reward. Thus, all we need to specify for R is a parameterized
hypothesis space over reward functions combined with an initial prior over likely reward
functions, given by 〈Θ,Rθ, PΘ〉. In contrast, for H we do need to model her behavior, and so
we model the environment as an MDP without reward M\R = 〈S,AH , T , γ, PS〉, in which
H pursues expected reward ER(πH) for some unknown reward function.

In the room with vase example, we would have an MDP in which S consists of combinations
of H’s possible locations and whether the vase is broken, AH includes up, down, left and
right, T simply moves H according to the selected action, and then breaks the vase if H is
standing on it, and PS specifies that H starts to the left of the vase. For R, we could assume
that it is already known that the reward depends linearly on four features: whether the vase
is broken, whether H is standing on a carpet, whether H is at the black door, or whether
H is at the purple door. Thus, we would have Θ = R4 with Rθ(s) = θTf(s), where f(s)
produces a vector of the four features described above. The prior PΘ could be a Gaussian
distribution centered at θ = ~0. One possible true reward Rθ∗ for H could assign negative
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reward to breaking the vase and positive reward for going to the black door.
We assume that R observes a single state s ∈ S. Since this is meant to occur at the

time that R is deployed, we will call this timestep 0, and thus write the observed state as s0.
R’s goal is then to compute P (θ | s0). However, in order to do this, we need to have some
assumption on how s0 is connected to θ. Since the state of the world is informative of human
preferences because humans have already optimized it, our model is that s0 was produced by
H acting in the environment for the last T timesteps, for some T . If we are given a human
model πH , then we get a generative model of s0 as follows:

P (s0 | θ) =
∑

s−T ,···s−2,s−1∈S
aH−T ,···a

H
−2,a

H
−1∈AH

PS(s−T )
−1∏

t=−T

πH(aHt | st, θ)T (st+1 | st, aHt ). (3.1)

Notice that Equation 3.1 involves marginalizing over the possible past trajectories that
“could have happened”. Note that not every sequence of past states and actions is feasible:
the term T (s0 | s−1, a

H
−1) enforces that it must at least be possible to transition to the state

that we actually observe, s0. This enforces a strong constraint on how much different past
trajectories are weighted: for example, in our room with vase environment, any trajectory
that ever breaks a vase would have zero weight and would not contribute to the likelihood at
all, since T (s0 | s−1, a

H
−1) would be zero if s−1 contains a broken vase.

The problem is then to invert this generative model to get a posterior over reward
functions:

P (θ | s0) ∝ P (s0 | θ)PΘ(θ). (3.2)

Putting it all together, we get the following problem statement:

Definition 1. A state of the world problem is a tuple 〈M\R, s0, π
H , T, 〈Θ,Rθ, PΘ〉〉, where

M\R is an MDP without reward that specifies H’s environment, s0 is the observed state after
H acts in M for T timesteps following policy πH , and PΘ is R’s prior over the parameters
θ ∈ Θ for the parameterized reward function Rθ.

3.2 Choice of problem parameters

In the rest of this chapter, we discuss the implications of particular choices of the parameters
in a state of the world problem.

Human model

Given that we have an MDP M for H, it may seem odd that we also require a policy πH for
her. Why not just assume that she acts according to the optimal policy of M?

This would correspond to an assumption of perfect rationality, but we know that humans
are suboptimal and biased (Kahneman, 2011). In areas of AI research that require a human
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model, there is active research on how exactly to construct such a model, with approaches
including perfect rationality (Ng and Russell, 2000), Boltzmann or noisy rationality (Ziebart
et al., 2010; Bobu et al., 2020), modeling specific biases (Evans et al., 2016; Shah et al., 2019a;
Majumdar et al., 2017), handling humans learning over time (Chan et al., 2019; Jacq et al.,
2019), and using machine learning (Bourgin et al., 2019; Carroll et al., 2019; Choudhury
et al., 2019).

The choice of πH is significant, as it can radically change the interpretation of a particular
piece of observed evidence. For example, suppose a household robot observes that the fire
extinguisher has been used up, and much of the furniture is significantly charred. If R
assumes that H was following an optimal policy, it would have to conclude that H loves to
extinguish fires. If we instead have R model H as error-prone, or still learning about how to
work with fire, then the true explanation presents itself: H accidentally set the house on fire,
but she would prefer it if her house was not on fire.

Rather than baking in a specific human model into our formalism, we instead leave it as
a free parameter that must be specified upfront. In future chapters, we shall derive theory
and algorithms for specific common choices of πH .

Time horizon

Another parameter of interest in the problem statement is the time horizon T . This is the
number of actions that we assume H has taken in the MDP M. In addition to positive
integers, we also allow setting T =∞. In this case, s0 is assumed to have been drawn from
the stationary distribution over states when executing the policy πH on the MDP M.

Like the human model, T can have a significant impact on R’s inferences:

Incorrectly learning what to do. If T is too small, then it will appear to R that H
managed to accomplish quite a lot in a small amount of time, suggesting that H cares a lot
about whatever features that R can observe, even if in reality H only has weak preferences
and puts in a bare minimum of effort. For example, if the house is a little dusty but still
mostly clean, but R incorrectly assumes that H has only had half an hour to act, then R
would infer that H cares strongly about having a clean house, and simply has not yet had
the time to finish the job. In extreme cases, R might conclude that no H trajectories could
explain the evidence it observes, and then P (θ | s0) would be undefined (as we would be
conditioning on an event with zero probability).

Conversely, if T is too large, R may underestimate the fraction of time that H has put
into a task, and so underestimate how much H cares about that task.

Incorrectly learning what not to do. When we consider properties that H avoids, the
conclusions reverse. If T is too small, then R may think that H has simply not had the
chance to do some action, rather than specifically avoiding that action. For example, in our
room with vase example, if R assumes that H has only been walking around the room for a
short period of time, then it may conclude that H’s path might never have crossed the vase,
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and so the vase is only intact due to random luck, and so it may still be the case that the
vase can be broken. Conversely, if T is too large, R may conclude that H has been taking
more care to avoid actions than she actually is.
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Chapter 4

Theory: What can we learn from the
state of the world?

We first theoretically analyze what we can qualitatively learn from the state of the world,
before delving into algorithmic approaches. We study three different qualitative behaviors
that emerge when learning from the state of the world.

First, we expect that learning from the state of the world will tend to encourage preserva-
tion of the the observed state sobserved: after all, our original motivation for learning from
the state of the world was that it explains why the “do nothing” action is a safe default.
Section 4.2 formalizes this connection by proving that “preservation” reward functions that
incentivize doing nothing are maximum likelihood estimates of the reward in many (though
not all) circumstances.

Second, since our key assumption is that sobserved is optimized by H towards her preferences,
the information we can extract is limited by what H could have done in the past. In Section 4.3
we prove that if there is no policy that H could have taken to affect some aspect of the
environment, then we cannot learn anything about H’s preferences over that aspect of the
environment.

Finally, in our running vase example of Figure 1.2, we can make a strong inference that
breaking the vase is dispreferred. Intuitively, this is because breaking the vase is an irreversible
event, and so just from sobserved we can infer that the vase was never broken over the last T
timesteps, which is unlikely to be a coincidence. Is it generally the case that if an irreversible
event has not happened in sobserved, then we can conclude that that event is dispreferred? In
Section 4.4, we show that the answer is no: it is possible that the irreversible event would
have happened in a different counterfactual world, in which case it cannot be arbitrarily
strongly dispreferred.

Setting. For the sake of simplifying the theory, we would prefer not to deal with arbitrary
time horizons T , and so we work with the infinite-horizon case, that is T =∞. This implies
that the observed state sobserved is drawn from the stationary distribution of a rollout from
H’s policy.
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We will assume that the environment is both finite and ergodic, that is, for every possible
policy πH , the Markov chain induced by the policy in the environment is ergodic. In this
case, the H’s policy πH uniquely determines the stationary distribution over states when
executing the policy. In particular, it does not depend on the initial state distribution PS .
We will additionally assume that H is executing an optimal policy for her reward function
Rθ∗ .

We make these assumptions primarily to simplify the theoretical analysis, rather than
because they will be literally true. We expect that the insights generated in this setting will
still apply to other settings in which our assumptions do not hold perfectly.

4.1 Formalism

We make the discussion above more concrete and introduce notation to describe it.

Markov chains

A Markov chain over a set of states S consists of a transition distribution P : S → ∆(S),
where P (s′ | s) denotes the probability of transitioning from state s to state s′. A stationary
distribution µ of a Markov chain is a distribution over states that is invariant under transitions,
that is:

∀s ∈ S : µ(s) =
∑
s′∈S

P (s | s′)µ(s′).

Alternatively, viewing P as a transition matrix, we have µ = µ · P .
A Markov chain is ergodic if there is some finite time T0 such that for any two states si

and sj, if the Markov chain is in state si at timestep t, then at all times T ≥ t+ T0, there a
non-zero probability that the Markov chain is in state sj. Intuitively, no matter what the
current state is, eventually every state will have positive probability. A fundamental fact
about ergodic Markov chains is that they are guaranteed to have a single, unique stationary
distribution µ, that the chain will converge to regardless of initial conditions. Following Levin
and Peres (2017, Chapter 4), we define the total variation distance ||µ − ν||TV between
distributions µ and ν to be

||µ− ν||TV = max
S⊆S
|µ(S)− ν(S)| (4.1)

Note that a bound on total variation also gives a bound on the variation in the probability
assigned to a specific state s, by choosing S = {s} in the definition of total variation:

Proposition 1. If ||µ− ν||TV ≤ ε, then for any s ∈ S, we have |µ(s)− ν(s)| ≤ ε.

For an ergodic Markov chain, we can prove that the chain converges to the stationary
distribution regardless of initial conditions:
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Proposition 2. (Levin and Peres, 2017, Theorem 4.9) For an ergodic Markov chain P with
stationary distribution µ, there exist constants α ∈ (0, 1) and C > 0 such that

max
s∈S
||P t(s, ·)− µ||TV ≤ Cαt.

While the theorem considers deterministic initial conditions where we start at a partic-
ular state s, the bound also applies to stochastic initial conditions, since they are convex
combinations of the deterministic cases.

Ergodic MDPs

Given an MDPM = 〈S,AH , T ,R, PS , γ〉 and a policy πH , we say that πH induces a Markov
chain in M given by:

P (s′ | s) =
∑

aH∈AH
πH(aH | s)T (s′ | s, aH).

Intuitively, if we observe an agent with policy πH acting in M, the sequence of states
visited by the agent behaves like the Markov chain induced by πH in M.

An MDP M is ergodic if for all possible policies πH , the Markov chain induced by πH in
M is ergodic. For an ergodic MDP, the stationary distribution of states can never depend
on the initial state distribution PS , regardless of the choice of πH . We write µπ

H

∞ to denote
the stationary distribution of the resulting Markov chain, which is the limit of the t-step
visitation distribution, defined recursively with µπ

H

0 = PS and

µπ
H

t (s) =
∑
s′∈S

P (s | s′)µπHt−1(s′).

Learning from an optimal human

In this chapter, we will assume that H pursues her goals optimally, that is, πH is an optimal
policy given her true reward function Rθ∗ . When two or more actions are equally valuable,
we assume H chooses uniformly at random between these actions. We can formalize this
using the Bellman equations (which are guaranteed to have a unique solution):

πH(aH | s, θ) ∝ 1

[
aH ∈ argmax

aH′∈AH
Q∗(s, aH

′
; θ)

]
Q∗(s, aH ; θ) = E

s′∼T (·|s,aH)

[
Rθ(s, a

H , s′) + γV ∗(s; θ)
]

V ∗(s; θ) = max
aH∈AH

Q∗(s, aH ; θ)



CHAPTER 4. THEORY: WHAT CAN WE LEARN FROM THE STATE OF THE
WORLD? 25

We denote this policy by πHopt(θ) (read as “the optimal policy for θ”), and thus its

stationary distribution is µ
πHopt(θ)
∞ . Now, recall that our goal is to learn from the state of the

world. For clarity, we will denote the observed state as sobserved. We now want to compute
the posterior P (θ | sobserved), which is given by Equation 3.2:

P (θ | sobserved) ∝ P (θ) · P (sobserved | θ) = P (θ) · µπ
H
opt(θ)
∞ (sobserved).

In other words, the likelihood ratio is given by µ
πHopt(θ)
∞ (sobserved), and so any information that

we can learn comes from the variation of this quantity with θ. For this reason, µ
πHopt(θ)
∞ (sobserved)

will be the primary object of study in this chapter.

4.2 Preserving the observed state

We argued in Chapter 1 that upon observing some optimized state, our first instinct would
be to “do nothing” and leave the state as is. There is a fully general argument for this point:
if all we know is that H optimized the environment to lead to state sobserved, then clearly H
expects that sobserved is a high-value state, and so perhaps we should try not to change it.

Let us suppose there is reward function that rewards being in the state sobserved, and never
rewards any other state. Intuitively, the “goal” of this reward function would be to visit
sobserved as often as possible. As long as γ is sufficiently large, it will care primarily about
how much we visit sobserved in the stationary distribution. So, the optimal policy for this
reward is the policy that maximizes the visitation of sobserved at the stationary distribution.
We formalize this below:

Proposition 3. Suppose there is some θpreserve such that Rθpreserve(s, a, s
′) = 1 [s = sobserved].

Then there exists some γ0 < 1 such that if γ > γ0 then θpreserve maximizes µ
πHopt(θ)
∞ (sobserved).

Proof Sketch. If there is some other θ that achieves higher likelihood than θpreserve, it must visit
sobserved more often in the limit as t→∞. Then πHopt(θ) must achieve higher reward according
to θpreserve than πHopt(θpreserve) in the limit as t → ∞, despite the fact that πHopt(θpreserve) is
optimal for θpreserve. The only way this can hold is if πHopt(θpreserve) visited sobserved early at
the cost of failing to visit sobserved later. This allows us to bound γ.

Proof. Note that for the reward Rθpreserve , the expected reward is simply the sum of the

discounted probabilities of being in sobserved, and so ERθpreserve(π
H) =

∞∑
t=0

γtµπ
H

t (sobserved).

Consider two arbitrary policies πH1 and πH2 . Assume that they satisfy the following two
conditions:

1. πH1 has lower likelihood: µ
πH1∞ (sobserved) < µ

πH2∞ (sobserved).

2. πH1 has higher expected reward: ERθpreserve(π
H
1 ) ≥ ERθpreserve(π

H
2 ).
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Define p to be the lower of the two stationary distribution probabilities, and ε to be half
the difference, so that we have:

µπ
H
1∞ (sobserved) = p

µπ
H
2∞ (sobserved) = p+ 2ε

By the application of the convergence theorem (Proposition 2), we can find some time T
such that for any t ≥ T :

1. µ
πH1
t (sobserved) ≤ p+ ε

2

2. µ
πH2
t (sobserved) ≥ p+ 3ε

2

Putting these together, we get:

∀t ≥ T : µ
πH2
t (sobserved)− µπ

H
1
t (sobserved) ≥ ε.

We now use the inequality from the second condition and simplify:

ERθpreserve(π
H
2 )− ERθpreserve(π

H
1 ) ≤ 0

∞∑
t=0

γt(µ
πH2
t (sobserved)− µπ

H
1
t (sobserved)) ≤ 0[

T−1∑
t=0

γt(µ
πH2
t (sobserved)− µπ

H
1
t (sobserved))

]
+[

∞∑
t=T

γt(µ
πH2
t (sobserved)− µπ

H
1
t (sobserved))

]
≤ 0

For the first terms where t < T , we use the fact that µt must be a probability, and so is
bound by [0, 1]. For the second terms where t ≥ T , we use the bound from above:

[
T−1∑
t=0

γt(0− 1)

]
+

[
∞∑
t=T

γtε

]
≤ 0

−(1− γT )

1− γ
+

γT

1− γ
ε ≤ 0

γ ≤
(

1

1 + ε

) 1
T

< 1
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So far, we have shown that for an arbitrary pair of policies πH1 , π
H
2 , if they satisfy the two

conditions above then we can derive a bound on γ, which we will denote as γ-bound(πH1 , π
H
2 ).

Equivalently, if γ > γ-bound(πH1 , π
H
2 ), then it is not possible for πH1 , π

H
2 to satisfy the two

conditions above.
Then, we can define γ0 , maxπH1 ,πH2 γ-bound(πH1 , π

H
2 ). Note that every γ-bound is less

than 1. Since S and AH are finite, so too is the space of deterministic policies, and so we
also have γ0 < 1, as required.

Now suppose γ > γ0, and consider an arbitrary policy πH . For the pair πHopt(θpreserve), πH ,
both conditions cannot be satisfied. However, since πHopt(θpreserve) maximizes ERθpreserve , the
second condition must be satisfied. Thus, the first condition cannot be satisfied. Therefore

πHopt(θpreserve) maximizes µ
πHopt(θ)
∞ (sobserved).

The above theorem only applies when γ is sufficiently large, effectively because only then
are we sufficiently confident that H cared enough about sobserved that we can infer that it
must be a high-value state. However, even when γ is small, we would find a policy that
prioritizes reaching sobserved when possible. Is it possible that despite its focus on the near
term, such a policy would nonetheless maximize the probability of sobserved in the stationary
distribution? It turns out the answer is no: the agent may sacrifice the long-term reward
from the stationary distribution in order to get a more enticing short-term reward.

A B

C

D

a1

0.5

0.5

a2

a1, a2

a1, a2a1, a2

Figure 4.1: An MDP in which a
greedy goal-seeking agent will sac-
rifice long-term reward in pursuit of
short-term reward. The blue A is the
important state to analyze, and the
red B is the observed state sobserved.

Consider the MDP in Figure 4.1, in which the
observed state is sobserved = B. Every time the agent
takes an action, there is an ε = 0.04 chance that the
next state is chosen uniformly at random from all states.
(This is necessary in order to ensure that the MDP is
ergodic, as we have assumed in this chapter.)

In this MDP, the only relevant decision for a policy
is whether to take action a1 or a2 in state A, which we
will refer to as π1 and π2 respectively. The stationary
distribution of π1 is {A : 0.01, B : 0.311, C : 0.37, D :
0.309}, while that of π2 is {A : 0.01, B : 0.368, C :
0.25, D : 0.372}. The crucial feature is just that π1

visits C more while π2 visits B and D more, as one
would expect looking at Figure 4.1.

We assume the reward space is parameterized such
that Rθi assigns 1 to state i and 0 to all other states.
For this MDP, θpreserve = θB. For this reward, we face
a choice: whether to take a1 in the hopes of getting to
state B immediately, or to take a2 to guarantee that
we eventually get to state B.

Intuitively, if γ is sufficiently low, then it is better
to take a1, because the uncertain chance of reaching B
is better than being forced to wait a full timestep before being able to reach B. For example,
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when γ = 0.1, the value of π1 in each state is about {A : 0.0497, B : 1.0106, C : 0.0013, D :
0.0982}, whereas the value of π2 in each state is about {A : 0.0105, B : 1.0105, C : 0.0012, D :
0.0981}. π1 strictly dominates π2 (where the difference is most pronounced in A, since that
is where the two policies differ).

Meanwhile, the optimal policy for θD is clearly π2, since a2 goes directly to D and
preserves the ability to keep going to D, whereas a1 does not go to D and has some
chance of severely curtailing the agent’s ability to go to D. Thus at γ = 0.1, we have

µ
πHopt(θD)
∞ (sobserved) > µ

πHopt(θpreserve)
∞ (sobserved), and θpreserve is not a maximizer of µθ∞(sobserved).

Thus, the requirement in Proposition 3 that γ be sufficiently high cannot be completely
eliminated.

This counterexample relied on our ability to set up the dynamics to offer the agent a
“lottery” (action a1) that could severely curtail its ability to reach sobserved. What if we remove
the ability to set up such lotteries by requiring that the environment be deterministic?

One issue is that deterministic environments are typically not ergodic. However, we can
apply the same trick as in our counterexample above, where to every action we add an ε
probability that the new state is chosen uniformly at random. Specifically, given an MDP
M, define the ε-randomized version of M to be the same as M except that the transition
dynamics are modified to T ′(s, aH , s′) = (1− ε)T (s, a, s′) + ε

|S| .

Then, an MDP M is ε-deterministic if there exists an MDP M′ with a deterministic
transition function Td, such that M is the ε-randomized version of M′. We will sometimes
abuse notation and write Td(s, aH) to denote the unique state s′ such that Td(s, aH , s′) = 1.

As long as the reward does not depend on the next state, the optimal policy for an
ε-deterministic MDP can be found by solving an associated fully deterministic MDP:

Lemma 4. Let M = 〈S,AH , T ,R, PS , γ〉 be an ε-deterministic MDP with deterministic
transitions Td, where the reward does not depend on next state and is written as R(s, aH).
Then a policy πH is optimal for M iff it is optimal for M′ = 〈S,AH , Td,R, PS , γe〉, where
the effective discount γe = γ(1− ε).

Proof. An optimal policy can be computed from the optimal Q-function, which can be
calculated by value iteration, in which we initialize V0(s) = 0, and then define the recurrence:

Qt(s, a
H) = R(s, aH) +

∑
s′∈S

γT (s, aH , s′)Vt−1(s′)

=
[
R(s, aH) + γ(1− ε)Vt−1(Td(s, aH))

]
+

ε

|S|
∑
s′∈S

Vt−1(s′)

Vt(s) = max
aH∈AH

Qt(s, a
H).

Note that optimal policies for a Q-function are unchanged if we subtract a constant from
Qt. This allows us to drop the last term from Qt. Using γe = γ(1− ε), we have:
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Qt(s, a
H) = R(s, aH) + γ(1− ε)Vt−1(Td(s, aH)).

This is equivalent to the Q-value backup for a fully deterministic MDP with dynamics Td
with effective discount rate γe.

In an ε-deterministic MDP, we we once again find that the likelihood µ
πHopt(θ)
∞ (sobserved) is

highest for θpreserve:

Proposition 5. Suppose there is some θpreserve for M as in Proposition 3, and assume that

M is ε-deterministic with 0 < ε < 1. Then θpreserve maximizes µ
πHopt(θ)
∞ (sobserved).

Proof Sketch. In an ε-deterministic environment, πHopt(θpreserve) is always traversing the short-
est path in Td to sobserved, which means that at every timestep t it will be maximizing the

average visitation, 1
t+1

∑t
t′=0 µ

πHopt(θ)

t′ (sobserved), which in the limit converges to the stationary

distribution µ
πHopt(θ)
∞ (sobserved).

Proof. First, we show that πHopt(θpreserve) always chooses an action a that is on a shortest
path in Td to sobserved. By Lemma 4, we know that πHopt(θpreserve) is an optimal policy for the
Q-function computed by the backups:

Qt(s, a
H) = 1 [s = sobserved] + γeVt−1(Td(s, aH))

Vt(s) = max
aH∈AH

Qt(s, a
H).

This is equivalent to the Q-value backup for a fully deterministic MDP with dynamics Td
with effective discount rate γe. It is clear that the optimal policy in such an MDP is to follow
the shortest path to sobserved.

To elaborate, let L(s) be the length of the shortest path from s to sobserved in Td (or ∞
if no such path exists), with L(sobserved) , 0. In addition, define L0 to be the length of the
shortest (non-empty) path from sobserved to itself. Then, we can prove by induction using the
previous recurrence relations that:

Vt(s) =

γL(s)
e

1−γ
d t−L(s)

L0
eL0

e

1−γL0
e

t > L(s)

0 else
.

It is easy to see that either all actions are equally good (the else case above), or the best
action is the one which progresses on a shortest path (so that in the next state L(s) has
decreased, or if we are in sobserved then we are following a shortest path back to sobserved).

We have so far shown that πHopt(θpreserve) always chooses an action aH that is on a shortest
path in Td to sobserved. Since the only other effect of any action besides traversing paths in Td
is to teleport the agent randomly, which the agent cannot control, we only need to analyze
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how paths in Td are traversed. Clearly, always traversing the shortest path to sobserved will
maximize the expected number of times that sobserved is visited, and so we have:

πHopt(θpreserve) ∈ argmax
πH

t∑
t′=0

µπ
H

t′ (sobserved) for finite t

πHopt(θpreserve) ∈ argmax
πH

lim
t→∞

1

t+ 1

t∑
t′=0

µπ
H

t′ (sobserved)

πHopt(θpreserve) ∈ argmax
πH

lim
t→∞

µπ
H

t (sobserved) Limit of average is limit of sequence

πHopt(θpreserve) ∈ argmax
πH

µπ
H

∞ (sobserved)

θpreserve ∈ argmax
θ

µ
πHopt(θ)
∞ (sobserved)

4.3 Features as a form of prior information

Overall, it seems quite likely that θpreserve will have a high likelihood ratio (if it exists). We have
derived two distinct sufficient conditions: first, when H is modeled as sufficiently farsighted
(that is, with sufficiently high γ), and second, when the environment is ε-deterministic.

This is in some sense a disappointing result: it suggests that it is hard to learn anything
more sophisticated than “preserve the observed state”, even though intuitively it seems like
we should be able to infer more from the state of the world. We view this as having similar
implications as the no-free-lunch theorem of machine learning: just as we need to assume
some prior simplicity of the environment in order for machine learning to be feasible at all,
we similarly need to assume some prior information about Rθ∗ in order to make non-trivial
inferences about the reward that H is optimizing.

We will use a particularly simple form of prior information: we will assume that we have
access to a feature function f : S → RF that describes each state by a vector of real-valued
features of that state. We will use fi : S → R to denote the ith feature function, so that
fi(s) = [f(s)]i. Just as we have visitation distributions for states, we can have feature counts:

FπHt =
t∑

t′=0

∑
s∈S

µπ
H

t′ (s)f(s).

The reward Rθ∗ is then assumed to be of the form Rθ∗(s, a
H , s′) = gθ∗(f(s)) for some

simple function g. Unless otherwise specified, we will use rewards that are linear over the
features, that is, Rθ(s, a

H , s′) = θTf(s). Note that for a constant c > 0, Rθ and Rcθ have
the same optimal policy; as a result we may sometimes assume that θ is normalized.
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Once we use features, we can formalize an important fact about learning from the state of
the world: if there was no way that H could have affected a particular feature, then we can’t
infer anything about her preferences over that feature. Note that this is not specific to learning
from the state of the world: we could prove a similar theorem for inverse reinforcement
learning as well.

Proposition 6. Assume that for a specific feature fi and any timestep t, the feature count

(FπHt )i is independent of πH . Then µ
πHopt(θ)
∞ (sobserved) is invariant to the value of θi.

Proof Sketch. Since there is no policy that can affect the value of fi, changing the value of θi

has no effect on the optimal policy, and so cannot have an effect on µ
πHopt(θ)
∞ (sobserved).

Proof. Consider some arbitrary θ, and let θ′ be the same as θ, except θi has been increased
by an arbitrary constant c (which may be negative). Then, for any policy πH :

ERθ′(π
H) =

∞∑
t=0

γt
∑
s∈S

µπ
H

t (s)Rθ′(s)

=
∞∑
t=0

γt
∑
s∈S

(θ′)TFπHt

=
∞∑
t=0

γt
∑
s∈S

θTFπHt + c(FπHt )i

= K +
∞∑
t=0

γt
∑
s∈S

θTFπHt where K is independent of πH

= K + ERθ(π
H).

In the fourth line above, we have used the fact that (FπHt )i is independent of πH to extract
out a constant K that is also independent of πH .

Thus, for any policy πH , the expected reward of the policy under θ′ only changes by a
constant. This can never change the ordering over policies, and so πHopt(θ) = πHopt(θ

′); that

is, optimal policies are invariant to changes in θi. Thus, µ
πHopt(θ)
∞ (sobserved) is also invariant to

changes in θi.

4.4 Information from irreversibility

Recall our motivating example of an intact vase: since a vase that is broken can never be
repaired, the fact that it is still intact in the observed state is strong evidence that H preferred
that the vase stays intact. This is an instance of a general pattern: if you observe that some
irreversible action was not taken, this is a strong signal that the consequences of that action
are particularly unwanted. If we have a feature that tracks whether the irreversible transition
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has been taken, then presumably the reward weight of that feature should indicate that the
transition is not to be taken. We formalize this below:

Definition 2. Binary feature. A feature fi is binary if it only takes on the values 0 or 1,
that is, ∀s, fi(s) ∈ {0, 1}.

Definition 3. Irreversible feature. A binary feature fi is irreversible in M if it satisfies the
following conditions:

1. Initially off: ∀s ∈ Support(PS), fi(s) = 0.

2. Can be turned on: ∃πH , t : µπ
H

t (fi) > 0.

3. Cannot be turned off: ∀s : [fi(s) = 1 =⇒ ∀a∀s′ ∈ Support(T (· | s, a)), fi(s
′) = 1].

For example, the “broken vase” feature in the vase environment of Figure 1.2 is an
irreversible feature. Note that in an ergodic MDP, there cannot be irreversible features,
since there is always positive probability of eventually transitioning back to the initial state.
However, we can instead consider non-ergodic MDPsM, which can have irreversible features,
and then ask what we would infer about the reward in an ε-randomized version of M (which
is always ergodic, if ε > 0).

A

B

C

a1, a2

a1, a2

a1, a2

Figure 4.2: An ε-deterministic chain
MDP in which the agent has no con-
trol over the irreversible blue feature.
B is the observed state sobserved.

Can we get a general result saying that if we observe
that an irreversible feature is not turned on, then
we can infer that the feature should not be turned
on? Unfortunately the answer is no. Consider the
ε-deterministic MDP in Figure 4.2, in which there is a
feature that indicates whether or not the state is blue
(that is, whether the state is C or not). This is a binary,
irreversible feature in the deterministic transitions Td,
and we do observe that the agent is in a state where
the feature is not yet on. However, the agent has no
control over anything, and so by Proposition 6 nothing
can be inferred about the weight on this feature.

The core issue is that we can only make strong
inferences about irreversible events if we believe that
H controlled whether or not the irreversible event hap-
pened. In the chain MDP of Figure 4.2, the irreversible
event is inevitable, and can only be undone by the ε
chance of randomly transitioning to a randomly chosen
state.

It should be noted that this is not an artifact of ε-randomization. If we did not have
the ergodic restriction, then we could still have an MDP in which the agent’s first action
randomly sends it into one of two halves of the state space. In one half the agent is forced to
turn on the irreversible feature f1, and in the other half it is forced to turn on the irreversible
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Start Food

Fire

TV

Dousedacook

0.9

0.1

aTV

adouse

adouse

adouse

anoop

anoop

anoop

anoop

anoop

Figure 4.3: Fire extinguisher MDP. At the start, the agent can choose whether to cook food
or watch TV. Watching TV always succeeds. Cooking usually succeeds in making food, but
also has a 10% chance of starting a fire. At any point the agent may use the fire extinguisher,
irreversibly covering the house in foam but extinguishing any fires present. The agent may
always take a noop, and if it takes an action that is not applicable to the given state, that is
treated equivalently to a noop.

feature f2. The observed state sobserved will have exactly one of the two irreversible features
turned on, but again by Proposition 6 we cannot infer anything about either of the features.

What if we added an assumption that the irreversible transition was “controllable”? For
example, we could assume that in every state s where fi(s) = 0, there is at least one action
that guarantees that the next state s′ also satisfies fi(s

′) = 0. Could we then say that the
irreversible feature’s weight can be made arbitrarily negative?

It turns out that even with this assumption, we cannot conclude that the irreversible
feature is arbitrarily dispreferred. While we do know that along the trajectory the feature
was never turned on, it is possible that had the environment randomness been different then
the optimal policy would have turned the feature on. For example, using a fire extinguisher
is irreversible, and we usually observe that fire extinguishers have not been used, but there
certainly are situations in which we would use fire extinguishers, and so the reward weight
for using a fire extinguisher cannot be arbitrarily negative.

Concretely, consider the fire extinguisher MDP in Figure 4.3. For ergodicity, we need the
environment to be ε-randomized, but we ignore this dependence during analysis for the sake
of clarity. In this MDP, the agent starts out in the state Start, and can choose to watch
TV, or to cook, which has a 90% chance of producing Food, and a 10% chance of igniting
Fire. From any of these states, the agent may use the fire extinguisher to Douse a fire (if
present). We have four features: fFood, fTV, fFire and fDoused, each of which take on value 1
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in the corresponding state and 0 everywhere else. Note that fDoused is a binary, controllable,
irreversible feature.

Suppose that we observe sobserved = Food. Intuitively, H cooked food and was willing to
take the risk of igniting a fire. Assuming that γ is sufficiently large, the optimal policy for
the reward θ = [θFood, θTV, θFire, θDoused] = [1, 0,−20, 0] is to cook food and then take noop

actions, and to douse the fire if one is ignited. This policy leads to µ
πHopt(θ)
∞ (sobserved) = 0.9

(ignoring ε-randomness), which is the highest possible value (since the maximum probability
of entering the Food state is 0.9). However, θDoused cannot be made arbitrarily negative: for
example, if θDoused is set to -100, then it is no longer worth cooking. The expected cost of the
fire outweighs the expected benefit of the food, since we would no longer be willing to douse
the fire if it did occur. As a result, the agent would watch TV instead of cooking (or execute
some other 0 reward policy), in which case µπ

H

∞ (sobserved) = 0.
This type of reasoning is a feature, not a bug: the entire point of a fire extinguisher is

to deal with accidental fires, and so we want our agent to learn that we are not completely
averse to using fire extinguishers, despite the fact that using a fire extinguisher is irreversible
and we have never (yet) done it.

4.5 Discussion

In this chapter, we theoretically analyzed solutions to the problem of learning from the state
of the world. We first analyzed the general argument that the inferred reward would tend to
prioritize preserving the observed state of the world. When a “preservation” reward function
exists, it often does seem to have high likelihood. We identified two different sufficient
conditions for such a reward function to maximize the likelihood:

1. H is sufficiently farsighted, that is, γ is sufficiently large (Proposition 3), or

2. The dynamics of the MDP are ε-deterministic (Proposition 5).

These are not guaranteed: there are some cases like Figure 4.1 where with stochastic
dynamics and low γ the preservation reward function does not maximize the likelihood.
Nonetheless, it seems likely that in most realistic cases, a preservation reward function would
tend to have high or even maximal likelihood.

We also analyzed another general argument from Chapter 1: if we observe that some
irreversible transition has not happened, then H probably did not want that irreversible
transition to happen. While this is certainly sometimes true, as in the vase example of
Figure 1.2, there are often realistic scenarios in which it is not. In particular, just because H
has not yet irreversibly used a fire extinguisher, doesn’t mean that she doesn’t want it to be
used in the event of a fire.

Further research could also consider how to best formalize the argument from effort: “if
H put effort into a particular feature, then that is very informative about the reward weight
for that feature”. For example, if the transition dynamics lead to a vase accumulating dust
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over time, that H must wipe off in order to make it clean, and we then observe a clean vase
in sobserved, that is informative about H’s preferences over dusty vases.

Having clarified what we can hope to do by learning from the state of the world, we now
turn to the design of algorithms that can efficiently solve such problems. We will leverage the
assumption that the reward is linear in features, as identified in Section 4.3. We will then
use these algorithms to further explore conceptually what can be done by learning from the
state of the world, in Chapter 7.
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Chapter 5

An exact algorithm for tabular
environments

Having discussed the inferences that could be made in theory, we now turn to the task
of creating an algorithm that can make these inferences in practice. In this chapter, we
will consider finite-horizon tabular environments, that is, in our state of the world problem
〈M, s0, π

H , T, 〈Θ,Rθ, PΘ〉〉, we will require that T 6= ∞, and that M is sufficiently small
that we can iterate over it, analogously to value iteration.

In Chapter 4 we saw that allowing for arbitrary reward functions often leads to degenerate
solutions. So, we assume that M is equipped with a feature function f that identifies the
relevant features, and the the reward function is linear in features, so that Rθ(s) = θTf(s).

Equation 3.1 specifies how to compute the likelihood of a particular reward Rθ. We
reproduce it here:

P (s0 | θ) =
∑

s−T ,···s−2,s−1∈S
aH−T ,···a

H
−2,a

H
−1∈AH

PS(s−T )
−1∏

t=−T

πH(aHt | st, θ)T (st+1 | st, aHt ). (5.1)

Our goal is to compute the posterior P (θ | s0). However, typically θ will be drawn from
a continuous space, and the transition dynamics T can be complex and nonlinear, making
it very difficult if not impossible to compute an exact form for the posterior that works for
arbitrary θ. This remains true even if we do not require the distribution to be normalized.
We thus need to use approximate inference methods in order to estimate the posterior.

5.1 MCMC sampling

One standard way to address the computational challenges involved with the continuous and
high-dimensional nature of θ is to use MCMC sampling to sample from p(θ | s0) ∝ p(s0 | θ)p(θ).
We apply this sampling in a standard manner to derive an algorithm that we present in
Algorithm 1.
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Algorithm 1 MCMC sampling to estimate the state of the world posterior

Require: State of the world problem 〈M, s0, π
H , T, 〈Θ,Rθ, PΘ〉〉, step size δ

1: θ ← random sample(PΘ)
2: Compute the last-step occupancy measure p(s0 | θ)
3: p← P (s0 | θ)PΘ(θ)
4: repeat
5: θ′ ← random sample(N (θ, δ))
6: Compute the last-step occupancy measure p(s0 | θ′)
7: p′ ← p(s0 | θ′)p(θ′)
8: if random sample(Unif(0, 1)) ≤ min(1, p

′

p
) then

9: θ ← θ′

10: end if
11: Append θ to the list of samples
12: until have generated the desired number of samples

While this Algorithm 1 gives us an estimate of the full posterior distribution, even for
relatively simple environments it can take quite a long time to converge, and so we seek a
better solution.

5.2 Reward Learning by Simulating the Past

To obtain a more efficient algorithm, we take inspiration from the research literature on
inverse reinforcement learning (IRL). The problem formulation in IRL is similar to ours: the
primary difference is that R can observe a set of trajectories {τi} rather than a single state
s0. If we apply MCMC sampling to IRL as we did in the previous section, then we recover
the Bayesian IRL algorithm (Ramachandran and Amir, 2007).

Instead of sampling with Bayesian IRL, it is common to use the Maximum Causal Entropy
IRL framework (MCEIRL) (Ziebart et al., 2010). As discussed in Section 2.5, MCEIRL
computes a point estimate of the true reward Rθ∗ rather than the full posterior P (θ | s0). It
also assumes that πH is the Boltzmann-rational policy, which can be computed using soft
value iteration.

We adopt both of these assumptions in our setting to derive a new algorithm analogous
to MCEIRL for the state of the world setting.

Deriving the gradient

Our goal is now to find the maximum a posteriori estimate of the reward:

θ∗ = argmaxθ ln p(θ | s0) = argmaxθ ln p(s0 | θ) + lnPΘ(θ). (5.2)
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MCEIRL uses gradient ascent to solve the problem, since it is convex in the reward
parameters θ. We adopt the same approach. We assume that the gradient of the log prior
∇θ lnPΘ(θ) is easy to compute, and so we focus on computing the gradient of the log likelihood
∇θ ln p(s0 | θ).

First, we note that the likelihood in Equation 3.1 can be rewritten in terms of the
likelihoods of individual trajectories:

p(s0 | θ) =
∑

s−T ,...s−2,s−1∈S
aH−T ,...a

H
−2,a

H
−1∈AH

p(τ | θ), (5.3)

where τ = s−Ta
H
−T . . . s−1a

H
−1s0 is the (hypothesized) trajectory that H took in the

environment.
We can then rewrite our desired gradient in terms of the gradients of individual trajectories

as follows:

∇θ ln p(s0 | θ) =
1

p(s0 | θ)
∇θp(s0 | θ)

=
1

p(s0 | θ)
∑

s−T :−1∈S
aH−T :−1∈A

H

∇θp(τ | θ)

=
1

p(s0 | θ)
∑

s−T :−1∈S
aH−T :−1∈A

H

p(τ | θ)∇θ ln p(τ | θ).

This has a nice interpretation: compute the MCEIRL gradients for each trajectory, and
then take their weighted sum, where each weight is the probability of the trajectory given
the evidence s0 and current reward θ. In Section 2.5 we derived the exact gradient for a
trajectory under the MCEIRL assumption of Boltzmann-rationality. We now substitute it in
to get:

∇θ ln p(s0 | θ) =
1

p(s0 | θ)
∑

s−T :−1∈S
aH−T :−1∈A

H

[
p(τ | θ)

−1∑
t=−T

g(st, a
H
t ; θ)

]
, (5.4)

where we have used the definitions from Section 2.5:

g(st, a
H
t ; θ) , f(st) + E

s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft(st; θ)

Ft(st; θ) , f(st) + E
aH
′

t:T−1,s
′
t+1:T

[
T∑

t′=t+1

f(s′t′)

]
.
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Computing the gradient with dynamic programming

The gradient in Equation 5.4 still involves a combinatorially large summation over all
possible past trajectories. In order to solve even simple environments, we need to avoid this
combinatorial explosion. Our approach is to use dynamic programming.

We first express the gradient in Equation 5.4 as G0(s0;θ)
p(s0|θ) , which can be done if we define

Gt(st; θ) ,
∑

s−T :t−1,a
H
−T :t−1

[
p(τ−T :t−1, st | θ)

t−1∑
t′=−T

g(st′ , a
H
t′ ; θ)

]
. (5.5)

Thus, to compute the gradient, we only need to compute G0(s0; θ) and p(s0 | θ) efficiently.
The latter is particularly easy, as it is just the probability of observing a state at a specific
timestep:

p(s−T | θ) = PS(s−T )

p(st+1 | θ) =
∑
st∈S

aHt ∈AH

p(st | θ)πsoft
t (aHt | st, θ)T (st+1 | st, aHt ).

Note that πsoft
t can be computed using soft value iteration, as detailed in Section 2.5.

Before we tackle G, we first derive a recursive rule for F :

F0(s0; θ) = f(s0)

Ft−1(st−1; θ) = f(st−1) + E
aH
′

t−1:−1,s
′
t:0

[
0∑

t′=t

f(s′t′)

]

= f(st−1) + E
aH
′

t−1,s
′
t

[
f(s′t) + E

aH
′

t:−1,s
′
t+1:0

[
0∑

t′=t+1

f(s′t′)

]]
= f(st−1) + E

aH
′

t−1,s
′
t

[Ft(s′t; θ)]

= f(st−1) +
∑
aH
′

t−1,s
′
t

πsoft
t−1(aH

′

t−1 | st−1, θ)T (s′t | st−1, a
H′

t−1)Ft(s′t).

Note that g(st, a
H
t ; θ) can easily be computed using its definition given F . We are now

ready to derive a recursive relation for G:
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Gt+1(st+1; θ)

=
∑

s−T :t∈S
aH−T :t∈A

H

[
p(τ−T :t, st+1 | θ)

t∑
t′=−T

g(st′ , a
H
t′ ; θ)

]

=
∑
st∈S

aHt ∈AH

∑
s−T :t−1∈S
aH−T :t−1∈A

H

T (st+1 | st, aHt )πsoft
t (aHt | st, θ)p(τ−T :t−1, st | θ)

(
g(st, a

H
t ; θ) +

t−1∑
t′=−T

g(st′ , a
H
t′ ; θ)

)

=
∑
st∈S

aHt ∈AH

T (st+1 | st, aHt )πsoft
t (aHt | st; θ)

 ∑
s−T :t−1∈S
aH−T :t−1∈A

H

p(τ−T :t−1, st | θ)

 g(st, a
H
t ; θ)



+
∑
st∈S

aHt ∈AH

T (st+1 | st, aHt )πsoft
t (aHt | st; θ)

∑
s−T :t−1∈S
aH−T :t−1∈A

H

(
p(τ−T :t−1, st | θ)

t−1∑
t′=−T

g(st′ , a
H
t′ ; θ)

)
=

∑
st∈S

aHt ∈AH

T (st+1 | st, aHt )πsoft
t (aHt | st; θ)

(
p(st | θ)g(st, a

H
t ; θ) +Gt(st; θ)

)
.

For the base case, note that

G−T+1(s−T+1) =
∑

s−T ,a
H
−T

[
p(s−T , a

H
−T , s−T+1)g(s−T , a

H
−T , s−T+1)

]
=

∑
s−T ,a

H
−T

T (s−T+1 | s−T , aH−T )πsoft
−T (aH−T | s−T )

(
p(s−T )g(s−T , a

H
−T , s−T+1)

)
.

Comparing this to the recursive rule, for the base case we can set G−T (s−T ) = 0.

Overall algorithm

Combining all of these ingredients together gives us our final algorithm, presented in Algo-
rithm 2. Since we combine gradients from simulated past trajectories, we name the algorithm
Reward Learning by Simulating the Past (RLSP).
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Algorithm 2 Reward Learning by Simulating the Past.

Require: State of the world problem 〈M, s0, π
H , T, 〈Θ,Rθ, PΘ〉〉, learning rate α

1: θ ← random sample(PΘ)
2: repeat
3: ∀s−T ∈ S : p(s−T | θ)← PS(s−T )
4: ∀s0 ∈ S : F0(s0; θ)← f(s0)
5: ∀s−T ∈ S : G−T (s−T ; θ)← 0
6: πsoft ← soft value iteration(M, θ, T )
7: // Compute probabilities of states

8: for t in [−T, . . . ,−2,−1] do
9: ∀st+1 ∈ S : p(st+1 | θ)←

∑
st,aHt

p(st | θ)πsoft
t (aHt | st, θ)T (st+1 | st, aHt )

10: end for
11: // Compute expected feature counts

12: for t in [−1,−2, . . . ,−T ] do
13: ∀st ∈ S : Ft(st; θ)← f(st) +

∑
aH
′

t ,s′t+1

πsoft
t (aH

′
t | st, θ)T (s′t+1 | st, aH

′
t )Ft+1(st+1; θ)

14: end for
15: // Compute G
16: for t in [−T, . . . ,−2,−1] do
17: ∀st+1 ∈ S : Gt+1(st+1; θ)← 0
18: for st, a

H
t in S ×AH do

19: g(st, a
H
t ; θ)← f(st) + E

s′t+1

[
Ft+1(s′t+1; θ)

]
−Ft(st; θ)

20: target ← πsoft
t (aHt | st; θ)

[
p(st | θ)g(st, a

H
t ; θ) +Gt(st; θ)

]
21: ∀st+1 ∈ S : Gt+1(st+1; θ)← Gt+1(st+1; θ) + T (st+1 | st, aHt ) · target
22: end for
23: end for
24: // Gradient ascent

25: θ ← θ + α ·
[
G0(s0;θ)
p(s0|θ) +∇θ lnPΘ(θ)

]
26: until convergence
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5.3 Requirements

The algorithms that we have presented here can infer information about human preferences,
but require fairly strong assumptions. In particular, in order to apply either RLSP or the
sampling algorithm, we need to have:

1. Small state and action spaces, so that we can enumerate all possible state-action pairs,

2. Perfect knowledge of the transition dynamics T of the environments, and

3. A feature function f that identifies relevant features of interest.

In the next chapter, we relax these restrictions.
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Chapter 6

Function approximation for
high-dimensional environments

Our goal now is to scale RLSP to realistic environments, where we cannot enumerate states,
the dynamics of the environment are not fully known in advance, and a feature function may
not be available. Consider for example the balanced cheetah in Figure 6.1. Just by looking
at this single balanced state, it should be possible to infer the “goal” of balancing. However,
we cannot apply the RLSP algorithm from the previous chapter for several reasons: the state
space is continuous, we cannot simply enumerate the transition matrix, and there is no clear
way to obtain a feature function.

Once again, we can take inspiration from corresponding research in inverse reinforcement

Figure 6.1: Suppose we observe a Cheetah balancing on its front leg (left). The state contains
joint velocities in addition to positions, which are fairly low, showing that the cheetah is
indeed balancing rather than, say, falling over. Intuitively, just by observing this balanced
state, we should be able to reason that the Cheetah is “trying” to balance – other plausible
goals, such as running forward, falling over, hopping on a single leg, and so on would not
have led to this kind of state. We would like to have an algorithm that can make these sorts
of inferences, despite the continuous state space, the lack of a feature function, and only
having access to a simulator (rather than a full transition matrix as in the previous chapter).
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learning. Recent IRL algorithms (Fu et al., 2017; Finn et al., 2016) have shown how to
generalize tabular IRL algorithms to work in high-dimensional environments. The key idea
is to use a neural net function approximator to represent the reward function and learn a
policy in tandem with the reward function. We can then compute gradients by comparing
rollouts from the policy with the provided demonstrations, as in Equation 2.3.

This is a useful starting point for us, but does not solve everything. Our first challenge is
that unlike the MCEIRL gradient of Equation 2.3, the RLSP gradient in Equation 5.4 cannot
be easily expressed as a comparison between policy rollouts and the observed state s0, and so
it is unclear how the gradient can be computed. Our key insight here is that to sample from
the distribution over past trajectories p(τ−T :−1 | s0, θ), we can start at the observed state s0

and simulate backwards in time. To enable this, we derive a gradient that is amenable to
estimation through backwards simulation, and learn an inverse policy and inverse dynamics
model using supervised learning to perform the backwards rollouts.

Our second challenge is that we cannot use a deep neural net as our reward function,
because this is too expressive: we would start learning the degenerate reward functions
identified in Section 4.2 that only assign reward to the observed state and ignore everything
else. We need a reward representation that can be meaningfully updated from a single
state observation, yet also can capture complex functions of the input in order to express
concepts like the “balanced Cheetah”. Our solution here is to represent the reward as a linear
combination of features, where the features are learned through self-supervised representation
learning techniques in a pretraining step.

6.1 Gradient as backwards-forwards consistency

Here we tackle the first challenge: expressing the RLSP gradient in a form that we can work
with when we only have access to a simulator for the environment. We start with the gradient
from Section 5.2:

∇θ ln p(s0 | θ) =
1

p(s0 | θ)
∑

s−T :−1∈S
aH−T :−1∈A

H

p(τ | θ)∇θ ln p(τ | θ)

=
∑

s−T :−1∈S
aH−T :−1∈A

H

p(τ−T :−1 | s0, θ)∇θ ln p(τ | θ)

= E
τ−T :−1∼p(·|s0,θ)

[∇θ ln p(τ | θ)] .

Approximating the expectation

For higher-dimensional environments, we must approximate the expectation over past trajec-
tories p(τ−T :−1 | s0, θ). We would like to sample from the distribution, but it is not clear how
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to sample the past conditioned on the present. Our key idea is that just as we can sample
the future by rolling out forwards in time, we should be able to sample the past by rolling out
backwards in time. Note that by the Markov property we have:

p(τ−T :−1 | s0, θ) =
−1∏

t=−T

p(st | aHt , st+1, . . . s0, θ)p(a
H
t | st+1, a

H
t+1, . . . s0, θ)

=
−1∏

t=−T

p(st | aHt , st+1, θ)p(a
H
t | st+1, θ)

Thus, given the inverse policy (πH)−1
t (aHt | st+1, θ) as well as the inverse dynamics

T −1
t (st | aHt , st+1, θ), we can sample a past trajectory τ−T :−1 ∼ p(τ−T :−1 | s0, θ) by iteratively

applying (πH)−1 and T −1, starting from s0. Thus, our gradient can be written as

E
aH−1:−T ∼ (πH)−1

s−1:−T ∼ T −1

[∇θ ln p(τ | θ)] .

In order to learn (πH)−1, we must first have πH . We assumed that the human was
Boltzmann-rational, which corresponds to the maximum entropy reinforcement learning
objective (Levine, 2018). We use Soft Actor-Critic (SAC; Haarnoja et al., 2018) to estimate
the policy πH(a | s, θ), since it explicitly optimizes the maximum entropy RL objective.

Given the forward policy πH(aH | s, θ) and simulator T , we can construct a dataset of
sampled forward trajectories, and learn the inverse policy (πH)−1 and the inverse dynamics
T −1 using supervised learning. Given these, we can then sample τ−T :−1, allowing us to
approximate the expectation in the gradient. In general, both (πH)−1 and T −1 could be
stochastic and time-dependent, even if πH and T are themselves deterministic and time-
independent.

Estimating the gradient for a trajectory

We now turn to the term within the expectation, which is the inverse reinforcement learning
gradient given a demonstration trajectory τ = s−Ta

H
−T . . . s0. Assuming that the user is

Boltzmann-rational, this is the MCEIRL gradient from Section 2.5:

∇θ ln p(τ | θ) =

(
0∑

t=−T

f(st)

)
−F−T (s−T ; θ)+

−1∑
t=−T

(
E

s′t+1∼T (·|st,aHt )

[
Ft+1(s′t+1; θ)

]
−Ft+1(st+1; θ)

)
(6.1)

(Recall that Ft(st; θ) is the expected feature count when continuing to act from state st
according to policy πH , that is, F−t(s−t; θ) , E

aH−t:−1 ∼ πH

s−t:0 ∼ T

[∑0
t′=−t f(st′)

]
.)
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The first term computes the feature counts of the demonstrated trajectory τ , while the
second term computes the feature counts obtained by the policy for the current reward
function θ (starting from the initial state s−T ). Since r(s) = θTf(s), these terms increase the
reward of features present in the demonstration τ and decrease the reward of features under
the current policy. Thus, the gradient incentivizes consistency between the demonstration
and rollouts from the learned policy.

The last term is essentially a correction for the observed dynamics: if we see that st, a
H
t

led to st+1, it corrects for the fact that we “could have” seen some other state s′t+1. Since this
correction is zero in expectation (and expensive to compute), we drop it for our estimator.

Gradient estimator

After dropping the last term in Equation 6.1, expanding the definition of F , and substituting
in to our earlier gradient expression, our final gradient estimator is:

∇θ ln p(s0 | θ) = E
aH−1:−T ∼ (πH)−1

s−1:−T ∼ T −1


(

0∑
t=−T

f(st)

)
− E

s′−T=s−T
aH−T :−1 ∼ πH

s−T+1:0 ∼ T

[(
0∑

t=−T

f(s′t)

)] (6.2)

Thus, given s0, θ, π
H , T , (πH)−1, and T −1, computing the gradient consists of three

steps:

1. Simulate backwards from s0, and compute the feature counts of the resulting trajectories.

2. Simulate forwards from s−T of these trajectories, and compute their feature counts.

3. Take the difference between these two quantities.

This again incentivizes consistency, this time between the backwards and forwards trajec-
tories: the gradient leads to movement towards “what the human must have done” and away
from “what the human would do if they had this reward”. The gradient becomes zero when
they are identical.

It may seem like the backwards and forwards trajectories should always be consistent
with each other, since (πH)−1 and T −1 are inverses of πH and T . The key difference is that
s0 imposes constraints on the backwards trajectories, but not on the forward trajectories.
For example, suppose we observe s0 in which a vase is unbroken, and our current hypothesis
is that the user wants to break the vase. When we simulate backwards, our trajectory will
contain an unbroken vase (even though the policy usually breaks vases), and when we simulate
forwards from s−T , πH will break the vase. The gradient would then reduce the reward for a
broken vase and increase the reward for an unbroken vase.
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6.2 Learning a latent MDP

Our gradient still relies on a feature function f , with the reward parameterized as r(s) =
θTf(s). A natural way to remove this assumption would be to instead allow θ to parameterize
a neural network, which can then learn whatever features are relevant to the reward from the
RLSP gradient.

However, this approach will not work. The information contained in the RLSP gradient
is insufficient to identify the appropriate features to construct: after all, it is derived from a
single state. If we were to learn a single unified reward using the same gradient, the resulting
reward would likely be degenerate: for example, it may simply identify the observed state,
that is R(s) = 1 [s = s0]. Thus, we continue to assume that the reward is linear in features,
and instead learn the feature function using self-supervised representation learning. Such
techniques define an auxiliary task and train the neural net to perform well on the task, in
the hopes that the neural net learns generally useful features that can then be used for the
task of interest. There are many potential auxiliary tasks that we could use:

Contrastive tasks. Contrastive approaches (Oord et al., 2018) give the model a discrim-
ination task: given a context, select which of a large set of targets is “most related” to
the context. The notion of relatedness can change: in image classification, two images are
“related” if they are different augmentations of the same base image (He et al., 2020; Chen
et al., 2020); while in reinforcement learning, two states could be related if they come from
the same trajectory (Lee et al., 2020; Stooke et al., 2020).

Reconstruction. In reconstructive approaches, the input state must be encoded into a
low-dimensional representation vector, in such a way that the original state can then be
decoded back from this vector (Kingma and Welling, 2014). In sequential environments, the
decoder can instead predict past or future states. This has been applied in reinforcement
learning (Stooke et al., 2020) as well as natural language processing (Radford et al., 2019).
Alternatively, tasks can be defined over the sequence as a whole, for example to predict a
missing word in a sentence (Devlin et al., 2019; Clark et al., 2020).

State space models. For partially observable environments recurrent state space models
(RSSMs; Karl et al., 2017; Doerr et al., 2018; Hafner et al., 2019, 2020; Buesing et al., 2018;
Kurutach et al., 2018) could be used instead: such methods aim to learn a latent MDP. They
do so by allowing the latent states to be computed by a recurrent model over the observations,
thus allowing the states to encode the history. For such a model, we can imagine that the
underlying POMDP has been converted into a latent MDP whose feature function f is the
identity. We can then compute RLSP gradients directly in this latent MDP, where T and f
are known.

Goal-based exploration. By default, in the absence of a dataset of environment behavior,
the methods above would have to be applied to a dataset of environment interaction using
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rollouts of a random policy. However, in many environments, a random policy will stay
within a small subset of the state space with high probability. To cover more of the state
space, we can extent any of the methods above with methods that increase the diversity
of the data on which the features are trained. These methods include unsupervised skill
learning (Achiam et al., 2018; Eysenbach et al., 2018; Nair et al., 2018; Sharma et al., 2020),
curiosity-driven exploration (Burda et al., 2018), and goal-conditioned policies with a diverse
goal space (Schaul et al., 2015; Andrychowicz et al., 2017).

Experimental choices. In our experiments, we use a variational autoencoder (VAE; Kingma
and Welling, 2014) to learn the feature function. The VAE encodes the states into a latent
feature representation, which we can use to learn a reward function if the environment is
fully observable, i.e., the states contain all relevant information. However, we expect that
better results could be obtained using other, more recent methods, if tuned well.

6.3 Deep RLSP

Putting these components together gives us the Deep RLSP algorithm (Algorithm 3). We first
learn a feature function f using self-supervised learning, and then train an inverse dynamics
model T −1, all using a dataset of environment interactions (such as random rollouts). Then,
we update θ using Equation 6.2, and continually train πH , and (πH)−1 alongside θ to keep
them up to date. The full algorithm also adds a few bells and whistles that we describe
below.

Initial state distribution PS. The attentive reader may wonder why our gradient appears
to be independent of PS . This is actually not the case: while πH and T are independent
of PS , (πH)−1 and T −1 do depend on it. For example, if we observe Alice exiting the San
Francisco airport, the corresponding (πH)−1 should hypothesize different flights if she started
from New York than if she started from Tokyo.

However, in order to actually produce such explanations, we must train (πH)−1 and T −1

solely on trajectories of length T starting from s−T ∼ PS . We instead train (πH)−1 and T −1

on a variety of trajectory data, which loses the useful information in PS , but leads to several
benefits. First, we can train the models on exactly the distributions that they will be used
on, allowing us to avoid failures due to distribution shift. Second, the horizon T is no longer
critical: previously, T encoded the separation in time between s−T and s0, and as a result
misspecification of T could cause bad results. Since we now only have information about s0,
it doesn’t matter much what we set T to, and as a result we can use it to set a curriculum
(discussed next). Finally, this allows Deep RLSP to be used in domains where an initial state
distribution is not available.

Since we are no longer able to use the information from PS through (πH)−1 and T −1, we
add in a heuristic to incorporate the information elsewhere. Specifically, we weight every
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Algorithm 3 The Deep RLSP algorithm. The initial dataset of environment interactions D
can be constructed in many different ways: random rollouts, human play data, curiosity-driven
exploration, etc. The specific method will determine the quality of the learned features.

procedure Deep RLSP({s0}, T )
D ← dataset of environment interactions
Initialize f, πH , (πH)−1, T −1, θ randomly.
f ← SelfSupervisedLearning(D) . Train encoder and decoder for latent MDP
T −1 ← SupervisedLearning(D) . Train inverse dynamics
T ← 1 . Start horizon at 1
for i in [1..num epochs] do

πH ← SAC(θ) . Train policy
{τ} ← Rollout(πH , T ) . Collect dataset by rolling out πH

(πH)−1 ← SupervisedLearning(f, {τ}) . Train inverse policy
θ ← θ + α × ComputeGrad({s0}, πH , T , (πH)−1, T −1, T , f) . Update θ
if gradient magnitudes are sufficiently low then

T ← T + 1 . Advance horizon
end if

end for
return θ, f

end procedure
procedure ComputeGrad({s0}, πH , T , (πH)−1, T −1, T , f)
{τbackward} ← Rollout({s0}, (πH)−1, T −1, T ) . Simulate backwards from s0

fbackward ← AverageFeatureCounts(f, {τbackward}) . Compute backward feature counts
{s−T} ← FinalStates({τbackward})
{τforward} ← Rollout({s−T}, πH , T , T ) . Simulate forwards from s−T
fforward ← AverageFeatureCounts(f, {τforward}) . Compute forward feature counts
return fbackward − fforward

end procedure

backwards trajectory by the cosine similarity between the final state s−T , and a sample
ŝ−T ∼ PS .

Curriculum. Since the horizon T is no longer crucial, we can use it to provide a curriculum.
We initially calculate gradients with low values of T , to prevent compounding errors in our
learned models, and making it easier to enforce backwards-forwards consistency, and then
slowly grow T , making the problem harder. In practice, we found this crucial for performance:
intuitively, it is much easier to make short backwards and forwards trajectories consistent
than with longer trajectories; the latter would likely have much higher variance.

Multiple input states. If we get multiple independent s0 as input, we average their
gradients.
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Replay buffer. We also maintain a replay buffer that stores previously collected (s, a, s′)
transitions. This buffer persists across policy training steps. When training the policy π, we
sample transitions from both the replay buffer as well as from the simulator T .

Having now defined both the RLSP and Deep RLSP algorithms, we turn to demonstrating
and evaluating them on a variety of environments and tasks.
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Chapter 7

Evaluation: Correcting misspecified
rewards and imitating skills

To evaluate the importance of learning from the state of the world, we would like to check
whether the inferred preferences enable R to be more helpful to H in a variety of contexts.
However, it is not very clear how exactly to do so. The inferred reward is very likely to assign
state s0 maximal reward, since by assumption, when Alice optimized Rθ∗ she ended up at s0.
If the robot then starts in state s0, if a no-op action is available (as it often is), the inferred
reward is likely to incentivize no-ops, which is not very interesting or helpful.

Ultimately, our hope is that the information learned from the state of the world can be
combined with other sources of preference information in order for R to learn both what it
should do, and what it should not do. So, in Section 7.2, we create a suite of environments
with a true reward, Rθ∗ , a specified reward, Rθspec , the initial state of the environment, s−T ,
and the state observed by R, s0. Here, Rθspec is a stand-in for some information about what
R should do, and will ignore some aspect(s) of Rθ∗ .

To evaluate an algorithm in an environment, we use it to infer a reward θH from s0, which
is then combined with the specified reward to get a final reward θfinal = θH +λθspec. (We later
consider another heuristic method for combining these two rewards in Section 7.6, as well as
a more principled approach in Chapter 8.) We inspect the inferred reward qualitatively and
report the expected amount of true reward obtained when planning with θfinal, as a fraction
of the expected true reward from the optimal policy.

Section 7.3 identifies a set of environments in which inferred rewards can capture what R
should do: robot locomotion. Intuitively, if a quadrupedal robot is in mid-jump, a “no-op”
action is not available: the state of the environment will change no matter what the R does,
simply because of gravity. As a result, the inferred reward cannot simply lead to behavior
that stays in s0 forever, and so the inferred reward could be sufficient to learn good behavior.

Thus, in these environments we use each algorithm to infer a reward function from the
state of the world, given a state sampled from rollouts of a policy that is performing a
specific type of movement behavior. We then optimize a new policy using the inferred reward
function, and evaluate how well the new policy imitates the original skill.
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Having done these basic tests of algorithm functionality, we turn to investigating partic-
ular details of the algorithm implementations, including the importance of priors over s−T
(Section 7.4), the robustness to the planning horizon (Section 7.5), and alternative methods
for combining reward functions (Section 7.6).

7.1 Algorithm details

RLSP is almost entirely specified by Algorithm 2. In our experiments, we set the learning
rate to 0.1 and the temperature for soft value iteration to 1.0.

Deep RLSP on the other hand has several implementation details beyond what is specified
in Algorithm 3. In this section we describe the hyperparameters and architecture choices for
all models used in Deep RLSP in our experiments. All models are implemented using the
TensorFlow framework.

Feature function. We use a variational autoencoder (VAE) (Kingma and Welling, 2014) to
learn the feature function f . The encoder and decoder consist of 3 feed-forward layers of size
512. The latent space has dimension 30. The model is trained for 100 epochs on 100 rollouts
of a random policy in the environment. During training we use a batch size of 500 and a
learning rate of 10−5. We use the standard VAE loss function, but weight the KL-divergence
term with a factor c = 0.001, which reduces the regularization and empirically improved
the reconstruction of the model significantly in our experiments. We hypothesize that the
standard VAE regularizes too much in our setting, because the latent space has a higher
dimension than the input space, which is not the case in typical dimensionality reduction
settings.

Inverse dynamics model. Our inverse dynamics model T −1 is a feed-forward neural
network with 5 layers of size 1024 with ReLU activations. We train it on 1000 rollouts of a
random policy in the environment for 100 epochs, with a batch size of 500 and learning rate
of 10−5.

Note that the model predicts the previous observation given the current observation and
action; it does not use the feature representation. We found the model to perform better if it
predicts the residual ot−1 − ot given ot and at instead of directly predicting ot−1.

We normalize all inputs to the model to have zero mean and unit variance. To increase
robustness, we also add zero-mean Gaussian noise with standard deviation 0.001 to the inputs
and labels during training and clip the outputs of the model to the range of values observed
during training.

Policy. For learning the policy πH we use the stable-baselines implementation of Soft Actor-
Critic (SAC) with its default parameters for the MuJoCo environments (Haarnoja et al.,
2018; Hill et al., 2018). Each policy update during Deep RLSP uses 104 total timesteps
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(except Hopper, where we use 2× 104) and we evaluate the final reward function using 2× 106

timesteps (except Pendulum, where we use 64, which is the default of Hill et al. (2018)).

Inverse policy. Because the inverse policy (πH)−1 is not a deterministic function, we
represent it with a mixture density network, a feed-forward neural network that outputs a
mixture of Gaussian distributions (Bishop, 1994).

The network has 3 layers of size 512 with ReLU activations and outputs a mixture of 5
Gaussians with a fixed diagonal covariance matrix 0.05 · I.

During Deep RLSP, we maintain an experience replay that is initialized with random
rollouts. In every iteration all states encountered during the algorithm are added to the
experience replay.

To update the inverse policy we sample batches with batch size 500 from the experience
replay, apply the forward policy and the forward transition model on the states to label the
data. We then train the model with a learning rate of 10−4.

Feature learning dataset. By default, we use random rollouts to generate the initial
dataset D that is used to train the features φ and the inverse model T −1.

Additional hyperparameters. We run Deep RLSP with a learning rate of 0.01, and use
200 forward and backward trajectories to estimate the gradients. Starting with T = 1 we
increment the horizon when the gradient norm drops below 2.0 or after 10 steps, whichever
comes first. We run the algorithm until T = 10.

Computational cost. It is important to note that Deep RLSP can be significantly more
computationally costly than the baselines that we compare against. Imitation learning with
full demonstrations can already be quite computationally expensive. Deep RLSP takes
this much further by learning several distinct deep neural net models, simulating potential
demonstrations (which are likely much noisier than real demonstrations), and finally imitating
them.

7.2 Conceptual environments

In our first evaluation, we design a suite of environments to test whether algorithms that
learn from the state of the world can extract various different types of information from the
state of the environment at deployment. In each environment, a candidate algorithm must
infer a reward function given only the MDP without reward M\Rθ∗ , the observed state
s0, and (depending on the experiment) the initial state s−T . This is then combined with a
specified reward Rθspec , to give a final reward θfinal = θH + λθspec that we then evaluate. The
hyperparameter λ is tune for all algorithms (including baselines) to give the best results.

It should be noted that these environments were designed to illustrate properties of learning
from the state of the world, and thus should not be considered an outside independent check



CHAPTER 7. EVALUATION: CORRECTING MISSPECIFIED REWARDS AND
IMITATING SKILLS 54

on the value of learning from the state of the world. Nonetheless, we find the qualitative
behaviors displayed below to be good indications of the value of such an approach.

We first describe our baselines, and then explain our suite of environments along with the
results.

Baselines

To our knowledge, there are no existing algorithms for state of the world problems, and so
we design some simple algorithms ourselves to serve as baselines.

Specified reward policy πspec. This baseline corresponds to not doing any learning from
the state of the world. We don’t use s0 at all and just optimize the specified reward, that is,
θfinal = θspec.

Policy that penalizes deviations πdeviation. One of the core intuitions behind learning
from the state of the world is that the state s0 has already been optimized for human
preferences, and so random changes to s0 are likely to be bad. Thus, one possible baseline
is to simply minimize changes to the observed state. We accomplish this by penalizing
deviations from the observed features f(s0), giving Rfinal(s) = θTspecf(s) + λ||f(s)− f(s0)||.
Note that for this baseline, there is no θfinal; the algorithm directly specifies a final reward
Rfinal, rather than first specifying an inferred reward that is then added to Rθspec .

Relative reachability policy πreachability. Rather than just penalizing any deviations, we
could instead only penalize those deviations that are impactful. For this, we look to the
literature on low-impact AI systems for baselines. We use relative reachability (Krakovna
et al., 2018) as our baseline. This is an approach low-impact AI systems that considers a
change to be negative when it decreases coverage, relative to what would have happened had
the agent done nothing. Here, coverage is a measure of how easily states can be reached from
the current state.

We compare against the variant of relative reachability that uses undiscounted coverage
and a baseline policy where the agent takes no-op actions, as in the original paper. Relative
reachability requires known dynamics but not a handcoded featurization. A version of relative
reachability that does make use of handcoded features instead of operating directly on states
would behave similarly on our suite of environments. Like the deviation baseline, relative
reachability directly specifies a final reward Rfinal.

Average features policy πfeatures. One way to think about s0 is that it is a sample from
the rollout of an optimal (or at least good) policy for Rθ∗ . As a result, it is likely that the
features of s0 are generally good, and so should be incentivized. Since the reward takes on the
form Rθ(s) = θTf(s), this suggests that we should set θH = f(s0)

||f(s0)|| , where the normalization
is simply to put the reward on a common scale. We call this the AverageFeatures baseline.
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Analysis

We compare RLSP and Deep RLSP to our baselines with the assumption of known s−T ,
because it makes it easier to analyze their properties. We consider the case of unknown s−T
in Section 7.4.

For Deep RLSP, in these stylized gridworlds, self-supervised learning should not be
expected to learn the necessary features. For example, in the room with vase environment,
the two door features are just particular locations, with no distinguishing features in the
state that would allow self-supervised learning to identify these locations as important. So,
when evaluating Deep RLSP, we run Algorithm 3 without the feature learning and instead
use the pre-defined feature function f of the environments. We also use a Mixture Density
Network (MDN) (Bishop, 1994) for the inverse dynamics T −1, in order to allow the model
to output probability distributions. Once we do this, Deep RLSP has the same behavior as
RLSP, and so we only report results with RLSP below.

We summarize the results in Table 7.1, and show the environments and trajectories in
Figure 7.1.

Table 7.1: Performance of algorithms on environments designed to test particular properties.

Side effect Env effect Implicit reward Desirable act Unseen effect
Room Toy train Apple collection Batteries Far away vase

Easy Hard
πspec 7 7 7 3 7 7

πdeviation 3 7 7 ≈ 7 3

πreachability 3 3 7 ≈ 7 3

πfeatures ≈ ≈ 3 ≈ 7 ≈
πRLSP 3 3 3 3 3 7

Side effects: Room with vase (Figure 7.1a). The room tests whether the robot can avoid
breaking a vase as a side effect of going to the purple door. There are features for the number
of broken vases, standing on a carpet, and each door location. Rθspec has weight 1 for the
purple door feature, and 0 for all other weights. As a result, it causes the agent to walk over
the base, breaking it. Rθ∗ additionally has weight -1 for the broken vases feature.

Since Alice didn’t walk over the vase, RLSP infers a negative reward on broken vases,
and a small positive reward on carpets (since paths to the top door usually involve carpets).
So, πRLSP successfully avoids breaking the vase.

The penalties also achieve the desired behavior: πdeviation avoids breaking the vase since it
would change the “number of broken vases” feature, while relative reachability avoids breaking
the vase since doing so would result in all states with intact vases becoming unreachable.
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Figure 7.1: Evaluation of RLSP on our environments. Silhouettes indicate the initial position
of an object or agent, while filled in versions indicate their positions after an agent has acted.
The first row depicts the information given to RLSP. The second row shows the trajectory
taken by the robot when following the policy πspec that is optimal for Rθspec , where θH is
the reward inferred using RLSP. The third row shows the trajectory taken when following
the policy πRLSP that is optimal for θfinal = θH + λθspec. (a) Side effects: Room with vase
(b) Distinguishing environment effects: Toy train (c) Implicit reward: Apple collection (d)
Desirable side effect: Batteries (e) “Unseen” side effect: Room with far away vase.

πfeatures fails to infer that breaking vases is bad, though this is due to a quirk in the
feature encoding. In particular, the feature counts the number of broken vases, and so the
inferred reward θH has a value of zero for this feature, effectively ignoring it. If we change
the featurization to instead count the number of unbroken vases, then πfeatures would likely
get the right behavior.
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Distinguishing environment effects: Toy train (Figure 7.1b). To test whether al-
gorithms can distinguish between effects caused by the agent and effects caused by the
environment, as suggested in Krakovna et al. (2018), we add a toy train that moves along a
predefined track. The train breaks if the agent steps on it. We add a new feature indicating
whether the train is broken and new features for each possible train location. Once again,
Rθspec just has weight 1 on the purple door feature, and so the resulting policy ends up
breaking the train. Rθ∗ additionally has weight -1 on broken vases and trains.

RLSP infers a negative reward on broken vases and broken trains, for the same reason
as in the previous environment. It also infers not to put any weight on any particular train
location, even though it changes frequently, because it doesn’t help explain s0. As a result,
πRLSP walks over a carpet, but not a vase or a train.

For the penalty-based algorithms, πdeviation immediately breaks the train in order to
prevent the train location features from changing. πreachability on the other hand deduces that
breaking the train is irreversible, and so correctly follows the same trajectory as πRLSP.

πfeatures fails to infer that trains should not be broken, due to the same quirk in feature
encoding as in the previous environment, and as a result breaks the train.

Implicit reward: Apple collection (Figure 7.1d). This environment tests whether the
algorithms can learn tasks implicit in s0. There are three trees that grow apples, as well as a
basket for collecting apples, and the goal is for the robot to harvest apples. We have features
for the number of apples in baskets, the number of apples on trees, whether the robot is
carrying an apple, and each location that the agent could be in. s0 has two apples in the
basket, while s−T has none. The specified reward Rθspec is zero: the robot must infer the task
from the observed state. The true task is to collect apples, and so Rθ∗ has weight 1 on the
number of apples in the basket, and no weight on any other feature.

πspec is arbitrary since every policy is optimal for the zero reward. A penalty-based
algorithm can never get positive reward, because Rθspec is always zero and penalties can only
decrease reward. As a result, the optimal policy for both πdeviation and πreachability is to do
nothing, which achieves the maximum of zero reward.

RLSP infers a positive reward on apples in baskets, a negative reward for apples on
trees, and a small positive reward for carrying apples. Despite the spurious weights on other
features, πRLSP harvests apples as desired, achieving the maximum possible true reward.

πfeatures also correctly infers that it is good to place apples in the basket, but it also
rewards the agent for staying in the original location. As a result, it avoids picking apples
from the tree that is furthest away, and so it does not pick apples as effectively as πRLSP.

Desirable side effect: Batteries (Figure 7.1c). This environment tests whether the
algorithms can tell when a side effect is allowed. We take the toy train environment, remove
vases and carpets, and add batteries. The robot can pick up batteries and put them into the
(now unbreakable) toy train, but the batteries are never replenished. If the train runs for
10 timesteps without a new battery, it stops operating. There are features for the number
of batteries, whether the train is operational, each train location, and each door location.
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There are two batteries in s−T but only one in s0. The true reward Rθ∗ places weight 1 on
being at the purple door, as well as weight -1 on the train being out of power.

We consider two variants for the specifie reward Rθspec – an “easy” case, where is identical
to the true reward Rθ∗ , and a “hard” case, where it only has weight 1 on being at the purple
door (and no weight on keeping the train operational).

Unsurprisingly, πspec succeeds at the easy case (where Rθspec = Rθ∗), and fails on the hard
case by allowing the train to run out of power. Both πdeviation and πreachability see the action
of putting a battery in the train as a side effect to be penalized, and so neither can solve the
hard case. In the easy case, they still penalize picking up the batteries, and so only solve the
easy case if the penalty weight λ is small.

RLSP sees that one battery is gone and that the train is operational, and infers that
Alice wants the train to be operational and doesn’t want batteries (since a preference against
batteries and a preference for an operational train are nearly indistinguishable). So, it solves
both the easy and the hard case, with πRLSP picking up the battery, then staying at the
purple door except to deliver the battery to the train.

πfeatures incorrectly infers that batteries should not be used up, since the number of
batteries in the environment is positive and so we infer that batteries are good. It thus fails
to solve the hard case, and only solves the easy case if λ is sufficiently small. Part of the
issue here is that θfeatures is not invariant to the addition of a constant to any feature. We
could fix this by instead setting θfeatures = f(s0)− f(s−T ), treating f(s−T ) as a baseline to
which f(s0) should be compared, but this would make πfeatures reliant on knowledge of s−T
(which we will not have in future sections) and would cause it to always fail the vase and toy
train environments (whereas currently it depends on how the features are constructed).

“Unseen” side effect: Room with far away vase (Figure 7.1e). This environment
demonstrates a limitation of our algorithm: it cannot identify side effects that Alice would
never have triggered. In this room, the vase is nowhere close to the shortest path from the
Alice’s original position to her goal, but is on the path to the robot’s goal. The features,
specified reward and true reward are all the same as in the room with vase environment
(Figure 7.1a).

Since our baselines don’t care about the trajectory the human takes, they all perform as
before: πspec walks over the vase, πdeviation and πreachability both avoid it, and πfeatures fails to
avoid it but only due to a quirk of feature construction.

RLSP infers a near zero weight on the broken vase feature, since it is not present on any
reasonable trajectory to the goal, and so breaks it when moving to the goal. Note that this
only applies when Alice is known to be at the bottom left corner at s−T : if we have a uniform
prior over s−T (considered in Section 7.4) then we do consider trajectories where vases are
broken.
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7.3 Skill learning with Deep RLSP

The apples collection environment (Figure 7.1d) demonstrates that at least in some cases
it is possible to learn what to do from the state of the world, without needing a specified
reward Rθspec . In the case of that environment, given our choice of feature function, there was
no possible reward function that would view s0 as uniquely optimal, which forced RLSP to
infer a reward that would incentivize changes to the environment. In this section, we identify
another domain in which changes to the environment are necessary: robot locomotion. In
this domain, due to physical laws (particularly gravity), R usually does not have the ability
to preserve the state as it is. As a result, any reward inferred from the state of the world
must take into account that the state can and will change, suggesting that we may be able to
infer what R should do, rather than just what it should not do.

To test learning from the state of the world in this domain, we use the MuJoCo physics
simulator (Todorov et al., 2012). We consider the Inverted Pendulum, Half-Cheetah and
Hopper environments implemented in Open AI Gym (Brockman et al., 2016). Since these
environments are continuous and high-dimensional, only Deep RLSP can be evaluated in this
domain.

In the inverted pendulum environment, the pendulum falls very quickly in random rollouts,
and T −1 never learns what a balanced pendulum looks like. So, for this environment only,
when constructing the initial dataset of environment interactions D, we combine random
rollouts with rollouts from an expert policy that balances the pendulum.

Baselines

To our knowledge, this is the first work to train policies using a single state as input. Due to
lack of alternatives, we compare against GAIL (Ho and Ermon, 2016) using the implementation
from the imitation library (Wang et al., 2020). GAIL is an imitation learning algorithm,
and thus requires transitions as inputs, rather than single states. For each state we provide to
Deep RLSP, we provide a transition (s, a, s′) to GAIL. GAIL is thus given more information
than Deep RLSP.

Most of our previous baselines in Section 7.2 do not apply in this setting, either because
they do not scale to high-dimensional environments, or because they depend on the presence
of Rθspec . In particular, the penalty-based deviation and relative reachability methods do not
make sense as baselines, because the idea is to pursue some already specified behavior given
by Rθspec , but avoid having side effects via the use of a penalty.

The only baseline that can still be applied is the AverageFeatures baseline, in which we
set θH = f(s0)

||f(s0)|| . Here, the function f must still be learned through self-supervised learning,

but we can avoid learning (πH)−1 and T −1 entirely. This can be thought of as an ablation of
Deep RLSP, in which we ignore all temporal information.

In our experiments, we sometimes sample multiple states from rollouts of an expert policy,
instead of just a single state. In this case, for Deep RLSP, we simply average the gradients
for each of the states individually (which can be thought of as a lower-variance estimator of
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Environment SAC # states Deep RLSP AverageFeatures Waypoints GAIL

Inverted
Pendulum

1000
1 262 (246) 6 (2) N/A 1000 (0)
10 605 (242) 3 (1) 4 (1) 1000 (0)
50 258 (198) 6 (4) 3.7 (0.3) 1000 (0)

Cheetah
(forward)

13236
1 4833 (2975) 6466 (3343) N/A -288 (55)
10 6299 (559) 6245 (2352) -10 (23) -296 (172)
50 7657 (177) 4504 (2970) -126 (38) -54 (295)

Cheetah
(backward)

13361
1 5694 (2513) 12443 (645) N/A -335 (46)
10 8102 (624) 12829 (651) -80 (388) -283 (45)
50 7795 (551) 11616 (178) -509 (87) 2113 (1015)

Hopper
(terminate)

3274
1 80 (21) 99 (45) N/A 991 (9)
10 168 (58) 159 (126) 58 (7) 813 (200)
50 130 (12) 65 (36) 14 (4) 501 (227)

Hopper
(penalty)

3363
1 1964 (545) 2537 (363) N/A 990 (9)
10 564 (75) 3103 (64) 709 (133) 784 (229)
50 2130 (744) 2078 (581) 1612 (785) 508 (259)

Table 7.2: Average returns achieved by the policies learned through various methods, for
different numbers of input states. The states are sampled from a policy trained using SAC
on the true reward function; the return of that policy is given as a comparison. Besides the
SAC policy return, all values are averaged over 3 seeds and the standard error is given in
parentheses. We don’t report Waypoints on 1 state as it is identical to AverageFeatures on 1
state.

the gradient), and we similarly use an average for the AverageFeatures baseline (which is
why we call it the AverageFeatures baseline).

An alternative to averaging the features is to view each of the observed states si as a
potential waypoint of the expert policy, and reward R for being near any one of them. We

implement this Waypoints method as R(s) = maxi
f(si0)

||f(si0)|| · f(s). Note that when we only

have a single state as input, this is equivalent to AverageFeatures, and so we do not report
results for Waypoints with one state.

Solving the environments without access to the reward function

First we look at the typical target behavior in each environment: balancing the inverted
pendulum, and making the half-cheetah and the hopper move forwards. Additionally we
consider the goal of making the cheetah run backwards (that is, the negative of its usual
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reward function). We aim to use Deep RLSP to learn these behaviors without having access
to the reward function.

We train a policy using soft actor critic (SAC) (Haarnoja et al., 2018) to optimize for the
true reward function, and sample either 1, 10 or 50 states from rollouts of this policy to use
as input. We then use Deep RLSP to infer a reward and policy. Ideally we would evaluate
this learned policy rather than reoptimizing the learned reward, since learned reward models
can often be gamed (Stiennon et al., 2020), but it would be too computationally expensive to
run the required number of SAC steps during each policy learning step. As a result, we run
SAC for many more iterations on the inferred reward function, and evaluate the resulting
policy on the true reward function (which Deep RLSP does not have access to).

Results are shown in Table 7.2. In Hopper, we noticed that videos of the policies learned
by Deep RLSP looked okay, but the quantitative evaluation said otherwise. It turns out that
the policies learned by Deep RLSP do jump, as we might want, but they often fall down,
terminating the episode; in contrast GAIL policies stand still or fall over slowly, leading to
later termination and explaining their better quantitative performance. We wanted to also
evaluate the policies without this termination bias, and so we evaluate the same policies in an
environment that does not terminate the episode, but provides a negative reward instead; in
this evaluation both Deep RLSP and AverageFeatures perform much better. We also provide
videos of the learned policies at https://sites.google.com/view/deep-rlsp, which show
that the policies learned by Deep RLSP do exhibit hopping behavior (though with a strong
tendency to fall down).

GAIL is only able to learn a truly good policy for the (very simple) inverted pendulum,
even though it gets states and actions as input. Deep RLSP on the other hand achieves
reasonable behavior (though clearly not expert behavior) in all of the environments, using
only a few states as input. Surprisingly, the AverageFeatures method also performs quite
well, even beating the full algorithm on some tasks, though failing quite badly on Pendulum.
It seems that the task of running forward or backward is very well specified by a single state,
since it can be inferred even without any information about the dynamics (except that which
is encoded in the features learned from the initial dataset).

Learning skills from a single state

We investigate to what extent Deep RLSP can learn other skills where the reward is not
clear. Evaluation on these tasks is much harder, because there is no ground truth reward.
Therefore we evaluate qualitatively how similar the policies learned by Deep RLSP are to the
original skill. Unlike the previous case, we do not reoptimize the learned reward and only
look at the policies learned by Deep RLSP.

We consider skills learned by running Dynamics-Aware Unsupervised Discovery of Skills
(DADS; Sharma et al., 2020). Since we are not interested in navigation, we remove the “x-y
prior” used to get directional skills in DADS. We run DADS on the half-cheetah environment
and select all skills that are not some form of running. This resulted in two skills: one
in which the cheetah is moving forward making big leaps (“jumping”) and one in which

https://sites.google.com/view/deep-rlsp
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Figure 7.2: We sample a few states from a policy performing a specific skill to provide as
input. Here, Deep RLSP learns to balance the cheetah on the front leg from a single state.
We provide videos of the original skills and learned policies at: https://sites.google.com/
view/deep-rlsp.

it is slowly moving forward on one leg (“balancing”). As before we roll out these policies
and sample individual states from the trajectories to provide as an input for Deep RLSP.
We then evaluate the policy learned by Deep RLSP. Since the best evaluation here is to
simply watch what the learned policy does, we provide videos of the learned policies at
https://sites.google.com/view/deep-rlsp.

The first thing to notice is that relative to the ablations, only Deep RLSP is even close
to imitating the skill. None of the other policies resemble the original skills at all. While
AverageFeatures could perform well on simple tasks such as running, the full algorithm is
crucial to imitate more complex behavior.

Between Deep RLSP and GAIL the comparison is less clear. Deep RLSP can learn
the balancing skill fairly well from a single state, which we visualize in Figure 7.2 (though
we emphasize that the videos are much clearer). Like the original skill, the learned policy
balances on one leg and slowly moves forward by jumping, though with slightly more erratic
behavior. However, the learned policy sometimes drops back to its feet or falls over on its
back. We suspect this is an artifact of the short horizon (T ≤ 10) used for simulating the
past in our algorithm. A small horizon is necessary to avoid compounding errors in the
learned inverse dynamics model, but can cause the resulting behavior to be more unstable on
timescales greater than T . We see similar behavior when given 10 or 50 states. GAIL leads
to a good policy given a single transition, where the cheetah balances on its front leg and
head (rather than just the front leg), but does not move forward very much. However, with
10 or 50 transition, the policies learned by GAIL do not look at all like balancing.

However, the jumping behavior is harder to learn, especially from a single state. We
speculate that here a single state is less informative than the balancing state. In the balancing
state, the low joint velocities tell us that the cheetah is not performing a flip, suggesting that

https://sites.google.com/view/deep-rlsp
https://sites.google.com/view/deep-rlsp
https://sites.google.com/view/deep-rlsp


CHAPTER 7. EVALUATION: CORRECTING MISSPECIFIED REWARDS AND
IMITATING SKILLS 63

we had optimized for this specific balancing state. On the other hand, with the jumping
behavior, we only get a single state of the cheetah in the air with high velocity, which is likely
not sufficient to determine what the jump looked like exactly. In line with this hypothesis, at
1 state Deep RLSP learns to erratically hop, at 10 states it executes a jump too vigorously
and falls over, and at 50 states it makes larger hops (but still sometimes falls over).

The GAIL policies for jumping are also reasonable, though in a different way that makes
it hard to compare. Using 1 or 10 transitions, the policy doesn’t move very much, staying in
contact with the ground most of the time. However, at 50 transitions, it performs behaviors
that are noticeably forward hops, without falling over, leading to a policy that looks better
than that learned by Deep RLSP.

7.4 Investigating the prior distribution

In Section 7.2, we considered the setting where the robot knows s−T , since it is easier to
understand and analyze what happens. However, typically we will not know s−T , and will
instead have some prior over it. Here, we compare RLSP in two settings: perfect knowledge
of s−T (as in Section 7.2), and no knowledge of s−T , which we represent by using a uniform
prior distribution over all states.

Side effects: Room with vase (Figure 7.1a) and toy train (Figure 7.1b). In both room
with vase and toy train, RLSP learns a smaller negative reward on broken vases when using
a uniform prior. This is because RLSP considers many more feasible trajectories when using
a uniform prior, many of which do not give Alice a chance to break the vase, as in Room
with far away vase in Section 7.2. In room with vase, the small positive reward on carpets
changes to a near-zero negative reward on carpets. With known s−T , RLSP overfits to the
few consistent trajectories, which usually go over carpets, whereas with a uniform prior it
considers many more trajectories that often don’t go over carpets, and so it correctly infers a
near-zero weight. In toy train, the negative reward on broken trains becomes slightly more
negative, while other features remain approximately the same. This may be because when
Alice starts out closer to the toy train, she has more of an opportunity to break it, compared
to the case where s−T is known.

Implicit preference: Apple collection (Figure 7.1d). Here, a uniform prior leads to a
smaller positive weight on the number of apples in baskets compared to the case with known
s−T . Intuitively, this is because RLSP is considering cases where s−T already has one or two
apples in the basket, which implies that Alice has collected fewer apples and so must have
been less interested in them. States where the basket starts with three or more apples are
inconsistent with the observed s0 and so do not have an effect on the gradient. Following the
inferred reward still leads to good apple harvesting behavior.

Desirable side effects: Batteries (Figure 7.1c). With the uniform prior, we see the same
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Figure 7.3: Reward achieved by πRLSP, as a fraction of the expected reward of the optimal
policy, for different values of Alice’s planning horizon T .

behavior as in Apple collection, where RLSP with a uniform prior learns a slightly smaller
negative reward on the batteries, since it considers states s−T where the battery was already
gone. In addition, due to the particular setup the battery must have been given to the train
two timesteps prior, which means that in any state where the train started with very little
charge, it was allowed to die even though a battery could have been provided before, leading
to a near-zero positive weight on the train losing charge. Despite this, RLSP successfully
delivers the battery to the train in both easy and hard cases.

“Unseen” side effect: Room with far away vase (Figure 7.1e). With a uniform prior,
we “see” the side effect: if Alice started at the purple door, then the shortest trajectory to
the black door would break a vase. As a result, πRLSP successfully avoids the vase (whereas it
previously did not). Here, uncertainty over the initial state s−T can counterintuitively improve
the results, because it increases the diversity of trajectories considered, which prevents RLSP
from “overfitting” to the few trajectories consistent with a known s−T and s0.

Overall, RLSP appears to be quite robust to the use of a uniform prior over s−T , suggesting
that we do not need to be particularly careful in the design of that prior.

7.5 Robustness to H’s planning horizon

We investigate how RLSP performs when assuming the wrong value of H’s planning horizon
T . We vary the value of T assumed by RLSP, and report the true return achieved by
πRLSP obtained using the inferred reward and a fixed horizon for the robot to act. For this
experiment, we used a uniform prior over s−T , since with known s−T , RLSP often detects that
the given s−T and s0 are incompatible (when T is misspecified). The results are presented in
Figure 7.3.

The performance worsens when RLSP assumes that Alice had a smaller planning horizon
than she actually had. Intuitively, if we assume that Alice has only taken one or two actions
ever, then even if we know the actions, they could have been in service of many goals, and
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so we end up quite uncertain about Alice’s reward. For the Apple collection environment
the underestimated horizon prevents R from learning anything at all, since all very short
trajectories consistent with s0 do not involve any apple collection.

When the assumed T is larger than the true horizon, RLSP correctly infers things the robot
should not do. Knowing that the vase was not broken for longer than T timesteps is more
evidence to suspect that Alice cared about not breaking the vase. However, overestimated T
leads to worse performance at inferring implicit preferences, as in the Apples environment.
If we assume Alice has only collected two apples in 100 timesteps, she must not have cared
about them much, since she could have collected many more. The batteries environment is
unusual – assuming that Alice has been acting for 100 timesteps, the only explanation for
the observed s0 is that Alice waited until the 98th timestep to put the battery into the train.
This is not particularly consistent with any reward function, and performance degrades.

Overall, T is an important parameter and needs to be set appropriately. However, even
when T is misspecified, performance tends to degrade gracefully to what would have happened
if we optimized Rspec by itself, so RLSP does not hurt. In addition, if T is larger than it
should be, then RLSP still tends to accurately infer parts of the reward that specify what
not to do.

While this evaluation showed that RLSP is reasonably robust to the choice of planning
horizon T and prior over s−T , this may be specific to our gridworlds. In the real world, we
often make long term hierarchical plans, and if we don’t observe the entire plan (corresponding
to a choice of T that is too small) it seems possible that we infer bad rewards, especially if
we have an uninformative prior over s−T . We do not know whether this will be a problem,
and if so how bad it will be, and hope to investigate it in future work with more realistic
environments.

7.6 Conflicts between the inferred reward and H’s

desires

In Section 7.2, we evaluated RLSP by combining the reward it infers with a specified reward
to get a final reward θfinal = θH + λθspec. The problem of combining θH and θspec is difficult,
since the two rewards incentivize different behaviors and will conflict. The Additive method
above is a simple way of trading off between the two.

Both RLSP and the sampling algorithm of Appendix 5.1 can incorporate a prior over θ.
Another way to combine the two rewards is to condition the prior on θspec before running the
algorithms. In particular, we could replace our prior P (θH) with a new prior P (θH | θspec),
such as a Gaussian distribution centered at θspec. When we use this prior, the reward returned
by RLSP can be used as the final reward θfinal.

It might seem like this is a principled Bayesian method that allows us to combine the
two rewards. However, the conflict between the two reward functions still exists. In this
formulation, it arises in the new prior P (θH | θspec). Modeling this as a Gaussian centered at
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Comparison of the methods for combining θspec and θH
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Figure 7.4: Comparison of the Additive and Bayesian methods. We show how the percentage
of true reward obtained by πRLSP varies as we change the tradeoff between the inferred reward
RH and the specified reward Rspec. The zero temperature case corresponds to traditional
value iteration; this often leads to identical behavior and so the lines overlap. So, we also
show the results when planning with soft value iteration, varying the softmax temperature,
to introduce some noise into the policy. Overall, there is not much difference between the
two methods. We did not include the Apples environment because Rspec is uniformly zero
and the Additive and Bayesian methods do exactly the same thing.

θspec suggests that before knowing s0, it seems likely that θH is very similar to θspec. However,
this is not true – Alice is probably providing the reward θspec to the robot so that it causes
some change to the state that she has optimized, and so it will be predictably different from
θspec. On the other hand, we do need to put high probability on θspec, since otherwise θfinal

will not incentivize any of the behaviors that θspec did.
Nonetheless, this is another simple heuristic for how we might combine the two rewards,

that manages the tradeoff between Rθspec and RH . We compared the Additive and Bayesian
methods by evaluating their robustness. We vary the parameter that controls the tradeoff
and report the true reward obtained by πRLSP, as a fraction of the expected true reward
under the optimal policy. For the Bayesian method, we vary the standard deviation σ of the
Gaussian prior over RH that is centered at Rθspec . For the Additive method, the natural
choice would be to vary λ; however, in order to make the results more comparable, we instead
set λ = 1 and vary the standard deviation of the Gaussian prior used while inferring RH ,
which is centered at zero instead of at Rθspec . A larger standard deviation allows RH to
become larger in magnitude (since it is penalized less for deviating from the mean of zero
reward), which effectively corresponds to a smaller λ.

While we typically create πRLSP using value iteration, this leads to deterministic policies
with very sharp changes in behavior that make it hard to see differences between methods,
and so we also show results with soft value iteration, which creates stochastic policies that
vary more continuously. As demonstrated in Figure 7.4, our experiments show that overall
the two methods perform very similarly, with some evidence that the Additive method is
slightly more robust. The Additive method also has the benefit that it can be applied in
situations where the inferred reward and specified reward are over different feature spaces, by
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creating the final reward Rfinal(s) = θH
TfH(s) + λRθspec(s).

However, both of these methods are quite unprincipled, and do not resolve the conflict
between the two goals. The presence of this conflict is worrying: it should not be the
case that two different sources of information about the same underlying reward function
predictably conflict; the fact that this is happening suggests that we have a poorly specified
model somewhere. The problem is that we are implicitly treating Rθspec incorrectly: both the
Additive and Bayesian methods are implicitly suggesting that the true reward must be “near”
Rθspec , but this is not actually the case: we believe that Rθspec will capture some aspects of
good behavior, but completely neglect other aspects; this need not correspond to low L2
distance in parameter space.

We could try to improve upon our assumptions about what information Rθspec provides,
in order to resolve the conflict. For example, rather than interpreting θspec as the parameters
of a reward function, we could interpret it as a changelist : that is, it is a specification of how
the environment should be changed, relative to the current state of the environment. In this
case, in our vase environment, θspec would be interpreted as saying “all else equal, it is better
for R to be at the purple door then at its current location”, without making any claims about
what is preferred when all else is not equal (Boutilier et al., 2004). This information could
then be integrated with the inferred reward to provide a full reward function for R.

Taking a step back, we can see that in general, the inferred reward does not have enough
information about what R should do, and so it must be combined with some information
from H. In our evaluation so far, we have considered the additional information to come from
θspec, but this is not necessary – it could just as well come from preferences, demonstrations,
corrections, or natural language, for example. Thus, what we really want is a general
formalism that allows us to infer rewards from the state of the world, combine them with
information provided by H online, and then use the resulting information to act in the
environment. We tackle this problem in the next chapter.
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Chapter 8

Using assistance instead of reward
learning to integrate information

A central premise of this dissertation is that we cannot specify a perfect reward function
for powerful agents. A natural solution is to have agents be uncertain about the objective
and infer it from observations. While we have shown that some of this information can be
extracted from the state of the world, it also seems likely that some information will need to
come from human feedback.

So far we have implicitly been using the reward learning paradigm to combine reward
information from multiple sources, as in Chapter 7. In this chapter, we recast the entire
reward learning paradigm as a special, constrained case of the assistance paradigm, and
demonstrate that by removing these constraints we can gain significant qualitative benefits.
We then show how to recast learning from the state of the world in the assistance paradigm
to gain these benefits.

In the reward learning paradigm (Leike et al., 2018; Jeon et al., 2020; Christiano et al.,
2017; Ziebart et al., 2010), a reward model is learned from human feedback, and then used
by a control algorithm to select actions in the environment. Crucially, the control algorithm
and the reward learning process do not interact: they are separate processes that optimize
separate objectives. When learning the reward model, multiple forms of information can be
integrated into a single posterior over reward functions.

In contrast, in the assistance paradigm (Hadfield-Menell et al., 2016; Fern et al., 2014),
the human H is modeled as part of the environment and as having some latent goal that the
agent R (for robot) does not know. R’s goal is to maximize this (unknown) human goal. In
this formulation, R must balance between actions that help learn about the unknown goal,
and control actions that lead to high reward. There is a single policy is responsible for both
learning about the goal (to the extent necessary) as well as acting in pursuit of the goal.

We claim that the assistance paradigm has several qualitative advantages over the reward
learning paradigm. The goal of this chapter is to clarify and illustrate these advantages. We
then show how to formalize state of the world learning within the assistance paradigm in
Section 8.6.
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Making robust plans Preserving option value when possible

+

+

I won’t find out which pie is preferable before 

Alice gets very hungry, so I’ll make       . 

Guessing when feedback is unavailable

+

Figure 8.1: R must cook a pie for H, by placing flour to make the pie dough, filling it with
Apple, Blueberry, or Cherry filling, and finally baking it. However, R does not know which
filling H prefers, and H is not yet available for questions. What should R do in this situation?
On the right, we show what qualitative reasoning we might want R to use to handle the
situation.

Our key insight is that by integrating reward learning and control using the learned reward
into a single policy, the assistance formulation allows for reward learning to depend on how
the reward will be used, and vice versa. This integration enables new, desirable qualitative
behaviors:

1. Decision-making for “control” can take into account the fact that the agent can do
more “reward learning” in the future. This allows the agent to take actions that are
robustly instrumentally useful now, knowing that the intermediate results can be used
later once the reward is better understood (Section 8.4).

2. Decision-making for “reward learning” (e.g. which questions to ask the human) can take
into account how the resulting updates to the reward will be used for “control”. This
allows the agent to only ask questions whose answers are decision-relevant (Section 8.4).

Consider for example the kitchen environment illustrated in Figure 8.1, in which R must
bake a pie for H. R is uncertain about which type of pie H prefers to have, and currently H
is at work and cannot answer R’s questions. An assistive R can make the pie crust while
waiting for H to return, after which R can ask her about her preferences over the filling
(Section 8.4). R may never clarify all of H’s preferences: for example, R only needs to know
how to dispose of food if it turns out that the ingredients have gone bad (Section 8.4). If H
will help with making the pie, R can allow H to disambiguate her desired pie by watching
what filling she chooses (Section 8.4). These behaviors rely crucially on the integration of
reward learning and control into a single policy, and as such vanilla reward learning agents
do not show these behaviors.

To clarify and illustrate the advantages of the assistance paradigm, we first precisely
characterize the differences between reward learning and assistance, by showing that two
phase, communicative assistance is equivalent to reward learning (Section 8.3). We then give
qualitative examples of desirable behaviors that can only be expressed once these restrictions
are lifted, and thus are only exhibited by assistive agents (Section 8.4).
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We do not mean to suggest that work on reward learning should be replaced by research on
assistance. Amongst other limitations, assistive agents are very computationally complex. Our
goal is simply to clarify what qualitative benefits an assistive formulation could theoretically
provide. Further research is needed to develop efficient algorithms that can capture these
benefits. Such algorithms may look like algorithms designed to solve assistance problems
as we have formalized them here, but they may also look like modified variants of reward
learning, where the modifications are designed to provide the qualitative benefits we identify.

8.1 Reward learning

We consider two variants of reward learning: non-active reward learning, in which R must
infer the reward by observing H’s behavior, and active reward learning, in which R may
choose particular questions to ask H in order to get particular feedback.

A non-active reward learning problem P = 〈M\r, C, 〈Θ, rθ, PΘ〉, πH , k〉 contains a
POMDP without reward M\r = 〈S,AR,ΩR,OR, T , P0, γ〉, and instead R has access to a
parameterized reward space 〈Θ, rθ, PΘ〉. R is able to learn about θ∗ by observing H make
k different choices c, each chosen from a set of potential choices C. In order for R to learn
from the human’s choices, it also assumes access to the human decision function πH(c | θ)
that determines how the human makes choices for different possible reward functions rθ.
Common decision functions include perfect optimality (Ng and Russell, 2000) and Boltzmann
rationality (Ziebart et al., 2010). As discussed in Section 2.4, there are many types of
choices (Jeon et al., 2020), including demonstrations (Argall et al., 2009; Ng and Russell,
2000; Ziebart et al., 2010; Fu et al., 2017; Gao et al., 2012), comparisons (Zhang et al., 2017;
Wirth et al., 2017; Christiano et al., 2017; Sadigh et al., 2017), corrections (Bajcsy et al.,
2017), proxy rewards (Hadfield-Menell et al., 2017b), natural language (Fu et al., 2019), etc.

A policy decision function f(c0:k−1) produces a policy πR after observing H’s choices. f is
a solution if it maximizes expected reward Eθ∼PΘ,c0:k−1∼πH [ER(f(c0:k−1))]. Since H’s choices
c0:k−1 do not affect the state of the environment that R is acting in, this is equivalent to
choosing πR that maximizes expected reward given the posterior over reward functions, that
is Eθ∼P (θ|c0:k−1)

[
ER(πR)

]
.

An active reward learning problem P = 〈M\r,Q,C, 〈Θ, rθ, PΘ〉, πH , k〉 adds the
ability for R to ask H particular questions q ∈ Q in order to get more targeted feedback about
θ. The human decision function πH(c | q, θ) now depends on the question asked. A solution
consists of a question policy πRQ(qi | q0:i−1, c0:i−1) and a policy decision function f(q0:k−1, c0:k−1)
that maximize expected reward Eθ∼PΘ,q0:k−1∼πRQ,c0:k−1∼πH [ER(f(q0:k−1, c0:k−1))].

A typical algorithm (Eric et al., 2008; Daniel et al., 2014; Maystre and Grossglauser,
2017; Christiano et al., 2017; Sadigh et al., 2017; Zhang et al., 2017; Wilde et al., 2020) will
compute and ask q ∈ Q that maximizes an active learning criterion such as information
gain (Bıyık et al., 2019) or volume removal (Sadigh et al., 2017). Best results are achieved
by selecting questions with the highest value of information (Cohn, Robert W, 2016; Zhang
et al., 2017; Mindermann et al., 2018; Wilde et al., 2020), but these are usually much more
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computationally expensive. R then finds a policy that maximizes expected reward under the
inferred distribution over θ, in order to approximately solve the original POMDP.

Note that a non-active reward learning problem is equivalent to an active reward learning
problem with only one question, since having just a single question means that R has no
choice in what feedback to get:

Proposition 7. Every non-active reward learning problem 〈M\r, C, 〈Θ, rθ, PΘ〉, πH , k〉 can
be reduced to an active reward learning problem.

Proof. We construct the active reward learning problem as 〈M\r,Q′, C, 〈Θ, rθ, PΘ〉, πH
′
, k〉,

where Q′ , {qφ} where qφ is some dummy question, and πH
′
(c | q, θ) , πH(c | θ).

Suppose the solution to the new problem is 〈πR′Q , f ′〉. Since f ′ is a solution, we have:

f ′ = argmax
f̂

E
θ∼PΘ,q0:k−1∼πR

′
Q ,c0:k−1∼πH′ (·|qi,θ)

[
ER(f̂(q0:k−1, c0:k−1))

]
= argmax

f̂

E
θ∼PΘ,q0:k−1=qφ,c0:k−1∼πH′ (·|qφ,θ)

[
ER(f̂(q0:k−1 = qφ, c0:k−1))

]
all q are qφ

= argmax
f̂

E
θ∼PΘ,c0:k−1∼πH(·|θ)

[
ER(f̂(q0:k−1 = qφ, c0:k−1))

]
.

Thus f(c0:k−1) = f ′(q0:k−1 = qφ, c0:k−1) is a maximizer of Eθ∼PΘ,c0:k−1∼πH(·|θ)

[
ER(f̂(c0:k−1)

]
,

making it a solution to our original problem.

Proposition 8. Every active reward learning problem 〈M\r,Q,C, 〈Θ, rθ, PΘ〉, πH , k〉 with
|Q| = 1 can be reduced to a non-active reward learning problem.

Proof. Let the sole question in Q be qφ. We construct the non-active reward learning problem
as 〈M\r, C, 〈Θ, rθ, PΘ〉, πH

′
, k〉, with πH

′
(c | θ) = πH(c | qφ, θ).

Suppose the solution to the new problem is f ′. Then we can construct a solution to the
original problem as follows. First, note that πRQ must be πRQ(qi | q0:i−1, c0:i−1) = 1 [qi = qφ],
since there is only one possible question qφ. Then by inverting the steps in the proof of Propo-

sition 7, we can see that f ′ is a maximizer of Eθ∼PΘ,q0:k−1∼πRQ,c0:k−1∼πH(·|qi,θ)

[
ER(f̂(· | c0:k−1))

]
.

Thus, by defining f(q0:k−1, c0:k−1) = f ′(c0:k−1), we get a maximizer to our original problem,
making 〈πRQ, f〉 a solution to the original problem.

8.2 Assistance

The key idea of assistance is that helpful behaviors like reward learning are incentivized
when R does not know the true reward Rθ∗ and can only learn about it by observing human
behavior. So, we model the human H as part of the environment, leading to a two-agent
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POMDP, and assume there is some true reward Rθ∗ that only H has access to, while the
robot R only has access to a model relating Rθ∗ to H’s behavior. Intuitively, as R acts in
the environment, it will also observe H’s behavior, which it can use to make inferences about
the true reward.

Following Hadfield-Menell et al. (2016)1, we define an assistance gameM as a tuple

M = 〈S, {AH ,AR}, {ΩH ,ΩR}, {OH ,OR}, T , PS, γ, 〈Θ, rθ, PΘ〉〉.

Here S is a finite set of states, AH a finite set of actions for H, ΩH a finite set of observations
for H, and OH : S → ∆(ΩH) an observation function for H (respectively AR,ΩR,OR for
R). The transition function T : S ×AH ×AR → ∆(S) gives the probability over next states
given the current state and both actions. The initial state is sampled from PS ∈ ∆(S). Θ is
a set of possible reward function parameters θ which parameterize a class of reward functions
rθ : S ×AH ×AR × S → R, and Pθ is the distribution from which θ is sampled. γ ∈ (0, 1) is
a discount factor.

As with POMDPs, policies can depend on history. Both H and R are able to observe each
other’s actions, and on a given timestep, R acts before H. We use τRt : (ΩR ×AH ×AR)t to
denote R’s observations until time t, and τHt for H’s observations; thus R’s policy can be
written as πR(aR | oRt , τRt−1), while H’s can be written as πH(aH | oHt , aRt , τHt−1, θ). Note that
unlike H, R does not observe the reward parameter θ, and must infer θ much like it does the
hidden state.

A fully observable assistance game is one in which both H and R can observe the
full state. In such cases, we omit ΩH ,ΩR,OH and OR.

Since we have not yet specified how H behaves, it is not clear what the agent should
optimize for. Should it be playing a Nash strategy or optimal strategy pair of the game,
and if so, which one? Should it use a non-equilibrium policy, since humans likely do not use
equilibrium strategies? This is a key hyperparameter in assistance games, as it determines the
communication protocol for H and R. For maximum generality, we can equip the assistance
game with a policy-conditioned belief B : ΠR → ∆(ΠH) over πH , which specifies how the
human responds to the agent’s choice of policy (Halpern and Pass, 2018). The agent’s goal is
to maximize expected reward given this belief. We use policy-conditioned beliefs as opposed
to a simple unconditional distribution over human policies, because it allows us to model
a wide range of situations, including situations with prior coordination, or where humans
adapt to the robot’s policy as a result of prior interactions.

Prior work on assistance games (Hadfield-Menell et al., 2016; Malik et al., 2018; Woodward
et al., 2019) focuses on finding optimal strategy pairs. This corresponds to a belief that H
will know and perfectly adapt to R’s policy, as formalized below:

1Relative to Hadfield-Menell et al. (2016), our definition allows for partial observability and requires that
the initial distribution over S and Θ be independent. We also have H choose her action sequentially after R,
rather than simultaneously with R, in order to better parallel the reward learning setting.
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Proposition 9. Let M = 〈S, {AH ,AR}, {ΩH ,ΩR}, {OH ,OR}, T , PS, γ, 〈Θ, rθ, PΘ〉〉 be an

assistance game. Let B(πR)(πH) ∝ 1

[
EJR(πH , πR) = max

π̃H∈ΠH
EJR(π̃H , πR)

]
be an associated

policy-conditioned belief. Let πR be the solution to 〈M, B〉. Then 〈B(πR), πR〉 is an optimal
strategy pair.

Proof. Let 〈πH , πR〉 be an arbitrary strategy pair. Then EJR(πH , πR) ≤ EJR(B(πR), πR) by
the definition of B, and EJR(B(πR), πR) ≤ EJR(B(πR), πR) by the definition of πR. Thus
EJR(πH , πR) ≤ EJR(B(πR), πR). Since 〈πH , πR〉 was assumed to be arbitrary, 〈B(πR), πR〉
is an optimal strategy pair.

However, our goal is to compare assistance to reward learning. Typical reward learning
algorithms assume access to a model of human decision-making: for example, H might be
modeled as optimal (Ng and Russell, 2000) or Boltzmann-rational (Ziebart et al., 2010). As
a result, we also assume that we have access to a model of human decision-making πH . Note
that πH depends on θ: we are effectively assuming that we know how H chooses how to
behave given a particular reward rθ. This assumption corresponds to the policy-conditioned
belief B(πR)(π̃H) = 1

[
π̃H = πH

]
. We define an assistance problem P as a pair 〈M, πH〉

where πH is a human policy for the assistance game M.
Given an assistance problem, a robot policy πR induces a probability distribution over

trajectories: τ ∼ 〈s0, θ, π
H , πR〉, τ ∈ [S ×AH ×AR]∗ (where X∗ denotes a sequence of X).

We denote the support of this distribution by Traj(πR). The expected reward of a robot policy
for 〈M, πH〉 is given by

ER(πR) = E
s0∼PS ,θ∼Pθ,τ∼〈s0,θ,πH ,πR〉

[
∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]
.

A solution of 〈M, πH〉 is a robot policy that maximizes expected reward: πR = argmax
π̃R

ER(π̃R).

Solving assistance problems

Once the πH is given, H can be thought of as an aspect of the environment, and θ can be
thought of as a particularly useful piece of information for estimating how good actions are.
This suggests that we can reduce the assistance problem to an equivalent POMDP, and then
solve the POMDP. Following Desai (2017), the key idea is to embed πH in the transition
function T and embed θ in the state. It turns out we must also include the human’s previous
action aH in the state, so that the robot can observe it, and so that the reward can be
computed.

In theory, to embed potentially non-Markovian πH in T , we need to embed the entire
history of the trajectory in the state, but this leads to extremely large POMDPs. In our
experiments, we only consider Markovian human policies, for which we do not need to embed
the full history, keeping the state space manageable. Thus, the policy can be written as
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πH(aH | oH , aR, θ). To ensure that R must infer θ from human behavior, as in the original
assistance game, the observation function does not reveal θ, but does reveal the previous
human action aH .

Formally, suppose that we have an assistance problem 〈M, πH〉 with:

M = 〈S, {AH ,AR}, {ΩH ,ΩR}, {OH ,OR}, T , PS, γ, 〈Θ, rθ, PΘ〉〉.

Then, the transformation M 7→M′ is given as follows:

S ′ , S ×AH ×Θ State space

Ω′ , ΩR ×AH Observation space

O′(o′ | s′) = O′((oR, aH1 ) | (s, aH2 , θ)) Observation function

, 1
[
aH1 = aH2

]
· OR(oR | s)

T ′(s′2 | s′1, aR) = T ′((s2, a
H
1 , θ2) | (s1, a

H
0 , θ1), aR) Transition function

, T (s2 | s1, a
H
1 , a

R) · 1 [θ2 = θ1]

·
∑

oH∈ΩH

OH(oH | s1) · πH(aH1 | oH , aR, θ)

r′(s′1, a
R, s′2) = r′((s1, a

H
0 , θ), a

R, (s2, a
H
1 , θ)) Reward function

, rθ(s1, a
H
1 , a

R, s2)

P ′0(s′) = P ′0((s, aH , θ)) Initial state distribution

, PS(s) · PΘ(θ) · 1
[
aH = aHinit

]
where aHinit is arbitrary

In the case where the original assistance problem is fully observable, the resulting POMDP
is an instance of a Bayes-Adaptive MDP (Martin, 1967; Duff, 2002).

Any robot policy πR can be translated from the APOMDP M naturally into an identical
policy on M′. Note that in either case, policies are mappings from (ΩR,AH ,AR)∗ × ΩR to
∆(AR). This transformation preserves optimal agent policies:

Proposition 10. A policy πR is a solution of M if and only if it is a solution of M′.

Proof. Recall that an optimal policy π∗ in the POMDP M′ is one that maximizes the
expected value:

EV(π) = E
s′0∼P ′0,τ ′∼〈s′0,π〉

[
∞∑
t=0

γtr′(s′t, at, st+1)

]
= E

s′0∼P ′0,τ ′∼〈s′0,π〉

[
∞∑
t=0

γtrθ(st, a
H
t , at, st+1)

]

where the trajectories τ ′s are sequences of state, action pairs drawn from the distribution
induced by the policy, starting from state s0.
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Similarly, an optimal robot policy πR∗ in the APOMDP M is one that maximizes its
expected reward:

ER(πR) = E
s0∼PS ,θ∼PΘ,τ∼〈s0,θ,πR〉

[
∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]
.

To show that the optimal policies coincide, it suffices to show that for any π, ER(π) (in M)
is equal to EV(π) (in M′). To do this, we will show that π induces the “same” distributions
over the trajectories. For mathematical convenience, we will abuse notation and consider
trajectories of the form τ ; θ ∈ (S,AH ,AR)∗ × Θ; it is easy to translate trajectories of this
form to trajectories in either M′ or M.

We will show that the sequence τ ; θ has the same probability when the robot takes the
policy π in both M′ and M by induction on the lengths of the sequence.

First, consider the case of length 1 sequences. τ ; θ = [(s, aR, aH); θ]. Under both M′ and
M, s and θ are drawn from PS and PΘ respectively. Similarly, aR and aH are drawn from
πR(· | oR0 ) and πH(· | oH , aR, θ) respectively. So the distribution of length 1 sequences is the
same under both M′ and M.

Now, consider some longer sequence τ ; θ = [(s1, a
R
1 , a

H
1 ), ...., (st, a

R
t , a

H
t ); θ]. By the induc-

tive hypothesis, the distribution of (s1, a
H
1 , a

R
1 ), ...., (st−1, a

H
t−1, a

R
t−1) and θ are identical; it

suffices to show that (st, a
H
t , a

R
t ) has the same distribution, conditioned on the other parts of

τ ; θ, under M′ and under M. Yet by construction, st is drawn from the same distribution
T (·|st−1, a

H
t−1, a

R
t−1), aHt is drawn from the same distribution πH(· | oHt , aRt , θ), and aRt is drawn

from the same distribution πR(· | oRt , τRt−1)).

When M is fully observable, in the reduced POMDP θ is the only part of the state
not directly observable to the robot, making it an instance of a hidden-goal MDP (Fern
et al., 2014). For computational tractability, much of the work on hidden goals (Javdani
et al., 2015; Fern et al., 2014) selects actions assuming that all goal ambiguity is resolved in
one step. This effectively separates reward learning and control in the same way as typical
reward learning algorithms, thus negating many of the benefits we highlight in future sections.
Intention-aware motion planning (Bandyopadhyay et al., 2013) also embeds the human goal
in the state in order to avoid collisions with humans during motion planning, but does not
consider applications for assistance.

Macindoe et al. (2012) uses the formulation of a POMDP with a hidden goal to produce
an assistive agent in a cops and robbers gridworld environment. Nikolaidis et al. (2015)
assumes a dataset of joint human-robot demonstrations, which they leverage to learn “types”
of humans that can then be inferred online using a POMDP framework. This is similar to
solving an assistance problem, where we think of the different values of θ as different “types”
of humans. Chen et al. (2018) uses an assistance-style framework in which the unknown
parameter is the human’s trust in the robot (rather than the reward θ). Woodward et al.
(2019) uses deep reinforcement learning to solve an assistance game in which the team must
collect either plums or lemons. To our knowledge, these are the only prior works that use
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an assistive formulation in a way that does not ignore the information-gathering aspect of
actions. While these works typically focus on algorithms to solve assistance games, we instead
focus on the qualitative benefits of using an assistance formulation.

Since we can reduce an assistance problem to a regular POMDP, we can use any POMDP
solver to find the optimal πR. In our examples for this paper, we use an exact solver when
feasible, and point-based value iteration (PBVI) (Pineau et al., 2003) or deep reinforcement
learning (DRL) when not. When using DRL, we require recurrent models, since the optimal
policy can depend on history.

A common confusion is to ask how DRL can be used, given that it requires a reward
signal, whereas R does not know the reward function by assumption. This stems from a
misunderstanding of what it means for R “not to know” the reward function. When DRL is
run, at the beginning of each episode, a specific value of θ is sampled as part of the initial
state. The learned policy πR is not provided with θ: it can only see its observations oR and
human actions aH , and so it is accurate to say that πR “does not know” the reward function.
However, the reward is calculated by the DRL algorithm, not by πR, and the algorithm can
and does use the sampled value of θ for this computation. πR can then implicitly learn the
correlation between the actions aH chosen by πH , and the high reward values that the DRL
algorithm computes; this can be thought of as an implicit estimation of θ in order to choose
the right actions.

8.3 Reward learning as two-phase communicative

assistance

There are two key differences between reward learning and assistance. First, reward learning
algorithms split reward learning and control into two separate phases, while assistance merges
them into a single phase. Second, in reward learning, the human’s only role is to communicate
reward information to the robot, while in assistance the human can help with the task. These
two properties exactly characterize the difference between the two: reward learning problems
and communicative assistance problems with two phases can be reduced to each other, in a
very natural way.

A communicative assistance problem is one in which the transition function T and
the reward function rθ are independent of the choice of human action aH , and the human
policy πH(· | oH , aR, θ) is independent of the observation oH . Thus, in a communicative
assistance problem, H’s actions only serve to respond to R, and have no effects on the state
or the reward (other than by influencing R). Such problems can be cast as instances of
HOP-POMDPs (Rosenthal and Veloso, 2011).

For the notion of two phases, we will also need to classify robot actions as communicative
or not. We will assume that there is some distinguished action aRnoop that “does nothing”.
Then, a robot action âR is communicative if for any s, aH , s′ we have T (s′ | s, aH , âR) =
T (s′ | s, aH , aRnoop) and R(s, aH , âR, s′) = R(s, aH , aRnoop, s

′). A robot action is physical if it
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is not communicative.
Now consider a communicative assistance problem 〈M, πH〉 with noop action aRnoop and

let the optimal robot policy be πR∗. Intuitively, we would like to say that there is an initial
communication phase in which the only thing that happens is that H responds to questions
from R, and then a second action phase in which H does nothing and R acts. Formally, the
assistance problem is two phase with actions at tact if it satisfies the following property:

∃aHnoop ∈ AH , ∀τ ∈ Traj(πR∗),
[
∀t < tact : aRt is communicative ∧ ∀t ≥ tact : aHt = aHnoop

]
.

Thus, in a two phase assistance problem, every trajectory from an optimal policy can be split
into a “communication” phase where R cannot act and an “action” phase where H cannot
communicate.

Reducing reward learning to assistance

We can convert an active reward learning problem to a two-phase communicative assistance
problem in an intuitive way: we add Q to the set of robot actions, make C the set of human
actions, add a timestep counter to the state, and construct the reward such that an optimal
policy must switch between the two phases after k questions. A non-active reward learning
problem can first be converted to an active reward learning problem.

Proposition 11. Every active reward learning problem P = 〈M, Q, C, 〈Θ, rθ, PΘ〉, πH , k〉
can be reduced to an equivalent two phase communicative assistance problem P ′ = 〈M′, πH

′〉.

Proof. Let M = 〈S,A,Ω, O, T , P0, γ〉. Let q0 ∈ Q be some question and c0 ∈ C be some
(unrelated) choice. Let N be a set of fresh states {n0, . . . nk−1}: we will use these to count
the number of questions asked so far. Then, we construct the new assistance problem
P ′ = 〈M′, πH

′
, aR

′
noop〉 with M′ , 〈S ′, {C,AR′}, {ΩH′ ,ΩR′}, {OH′ , OR′}, T ′, P ′S, γ, 〈Θ, r′θ, PΘ〉〉
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as follows:

S ′ , S ∪N State space

P ′S(ŝ) , 1 [ŝ = n0] Initial state distribution

AR
′
, A ∪Q Robot actions

ΩH′ , S H’s observation space

ΩR′ , Ω ∪N R’s observation space

OH′(oH
′ | ŝ) , 1

[
oH
′
= ŝ
]

H’s observation function

OR′(oR
′ | ŝ) ,

{
1
[
oR
′
= ŝ
]
, ŝ ∈ N

O(oR
′ | ŝ), else

R’s observation function

T ′(ŝ′ | ŝ, aH , aR) ,


P0(ŝ′), ŝ = nk−1,

1 [ŝ′ = ni+1] , ŝ = ni with i < k − 1

T (ŝ′ | ŝ, aR), ŝ ∈ S and aR ∈ A,
1 [s′ = s] , else

Transition function

r′θ(ŝ, a
H , aR, ŝ′) ,


−∞, ŝ ∈ N and aR /∈ Q,
−∞, ŝ ∈ S and aR ∈ Q,
0, ŝ ∈ N and aR ∈ Q,
rθ(s, a

R, s′), else

Reward function

πH
′
(aH | oH , aR, θ) ,

{
πH(aH | aR, θ), aR ∈ Q
c0, else

Human policy

aR
′

noop , q0 Distinguished noop action

Technically r′θ should not be allowed to return −∞. However, since S and A are finite, rθ is
bounded, and so there exists some large finite negative number that is functionally equivalent
to −∞ that we could use instead.

Looking at the definitions, we can see T ′ and r′ are independent of aH , and πH
′

is
independent of oH , making this a communicative assistance problem. By inspection, we
can see that every q ∈ Q is a communicative robot action. Any aR /∈ Q must not be
a communicative action, because the reward r′θ differs between aR and q0. Thus, the
communicative robot actions are Q and the physical robot actions are A.

Note that by construction of P ′S and T , we must have si = ni for i ∈ {0, 1, . . . k− 1}, after
which sk is sampled from P0 and all st ∈ S for t ≥ k. Given this, by inspecting r′θ, we can see
that an optimal policy must have aR0:k−1 ∈ Q and aRk: /∈ Q to avoid the −∞ rewards. Since
aRk: /∈ Q, we have aHk: = c0. Thus, setting aHnoop = c0, we have that the assistance problem is
two phase with actions at tact = k, as required.
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Let a policy πR
′

for the assistance problem be reasonable if it never assigns positive
probability to aR ∈ A when t < k or to aR ∈ Q when t ≥ k. Then, for any reasonable policy
πR
′

we can construct an analogous pair 〈πRQ, f〉 to the original problem P as follows:

πRQ(qi | q0:i−1, c0:i−1) , πR
′
(qi | oR0:i−1 = n0:i−1, a

R
0:i−1 = q0:i−1, a

H
0:i−1 = c0:i−1),

f(q0:k−1, c0:k−1)(at | o0:t, a0:t−1) , πR
′
(at | oR0:t+k, a

R
0:t+k−1, a

H
0:t+k−1),

where for the second equation we have

oR0:k−1 = n0:k−1 aR0:k−1 = q0:k−1 aH0:k−1 = c0:k−1

oRk:t+k = o0:t aRk:t+k−1 = a0:t−1 aHk:t+k−1 = aHnoop

Note that this is a bijective mapping.
Consider some such policy πR

′
and its analogous pair 〈πRQ, f〉. By construction of T , we

have that the first k states in any trajectory are n0:k−1 and the next state is distributed as
P0(·). By our assumption on πR

′
we know that the first k robot actions must be selected

from Q and the remaining robot actions must be selected from A, which also implies (based
on πH) that after the the remaining human actions must be c0. Finally, looking at rθ we can
see that the first k timesteps get 0 reward. Thus:

ERP ′(π
R′) = E

s′0∼P ′S ,θ∼Pθ,τ∼〈s
′
0,θ,π

H′ ,π̃R〉

[
∞∑
t=0

γtrθ(s
′
t, a

H′

t , a
R′

t , s
′
t+1)

]

= E
θ∼Pθ,aR

′
0:k−1∼πR,a

H′
0:k−1∼πH ,s

′
k∼P0,τ ′k:∼〈sk,θ,πH

′ ,π̃R〉

[
∞∑
t=k

γtrθ(s
′
t, a

H′

t , a
R′

t , s
′
t+1)

]

= E
θ∼Pθ,q0:k−1∼πRQ,c0:k−1∼πH ,s0∼P0,τ∼〈s0,θ,f(q0:k−1,c0:k−1)〉

[
γk

∞∑
t=0

γtrθ(st, at, st+1)

]
= γk E

θ∼PΘ,q0:k−1∼πRQ,c0:k−1∼πH
[ER(f(q0:k−1, c0:k−1))] ,

which is the objective of the reward learning problem scaled by γk.
Since we have a bijection between reasonable policies in P ′ and tuples in P that preserves

the objectives (up to a constant), given a solution πR∗ to P ′ (which must be reasonable), its
analogous pair 〈πRQ, f〉 must be a solution to P .

Corollary 12. Every non-active reward learning problem 〈M, C, 〈Θ, rθ, PΘ〉, πH , k〉 can be
reduced to an equivalent two phase communicative assistance problem 〈M′, πH

′〉.

Proof. Apply Proposition 7 followed by Proposition 11.
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Reducing assistance to reward learning

The reduction from a two-phase communicative assistance problem to an active reward
learning problem is similarly straightforward: we interpret R’s communicative actions as
questions and H’s actions as answers. There is once again a simple generalization to non-active
reward learning.

Proposition 13. Every two-phase communicative assistance problem 〈M, πH , aRnoop〉 can be
reduced to an equivalent active reward learning problem.

Proof. Let M = 〈S, {AH ,AR}, {ΩH ,ΩR}, {OH ,OR}, T , PS, γ, 〈Θ, rθ, PΘ〉〉 be the assistance
game, and let the assistance problem’s action phase start at tact. Let aHφ ∈ AH be some
arbitrary human action and oHφ ∈ ΩH be some arbitrary human observation. We construct

the new active reward learning problem 〈M′, Q′, C ′, 〈Θ, r′θ, PΘ〉, πH
′
, k′〉 as follows:

Q′ , {aR ∈ AR : aR is communicative} Questions

C ′ , AH Answers

M′ , 〈S,A′,ΩR,OR, T ′, P ′0, γ〉 POMDP

A′ , AR\Q′ Physical actions

T ′(s′ | s, aR) , T (s′ | s, aHφ , aR) Transition function

k′ , tact Number of questions

P ′0(s) ,
∑
s0:k′∈S

PM(s0:k′ , sk′+1 = s | aR0:k′ = aRnoop, a
H
0:k′ = aHφ ) Initial state distribution

r′θ(s, a
R, s′) , rθ(s, a

H
φ , a

R, s′) Reward function

πH
′
(c | q, θ) , πH(c | oHφ , q, θ) Human decision function

Note that it is fine to use aHφ in T , rθ and to use oHφ in πH even though they were chosen
arbitrarily, because since the assistance problem is communicative, the result does not depend
on the choice. The PM term in the initial state distribution denotes the probability of a
trajectory under M and can be computed as

PM(s0:T+1 | aR0:T , a
H
0:T ) = PS(s0)

T∏
t=0

T (st+1 | st, aHt , aRt ).

Given some pair 〈πR′Q , f ′〉 to the active reward learning problem, we construct a policy for
the assistance problem as

πR(aRt | oRt , τRt−1) ,


πR
′

Q (aRt | aR0:t−1, a
H
0:t−1), t < k and aR0:t ∈ Q′

f ′(aR0:k−1, a
H
0:k−1)(aRt | oRk:t, a

R
k:t−1), t ≥ k and aR0:k−1 ∈ Q′ and aRk:t ∈ A′

0, else

.
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We show that there must exist a solution to P that is the analogous policy to some pair.
Assume towards contradiction that this is not the case, and that there is a solution πR∗ that
is not the analogous policy to some pair. Then we have a few cases:

1. πR∗ assigns positive probability to aRi = a /∈ Q′ for i < k. This contradicts the two-phase
assumption.

2. πR∗ assigns positive probability to aRi = q ∈ Q for i ≥ k. This contradicts the two-phase
assumption.

3. πR∗(aRt | oRt , τRt−1) depends on the value of oRi for some i < k. Since both aH0:k−1 and
aR0:k−1 cannot affect the state or reward (as they are communicative), the distribution
over oR0:k−1 is fixed and independent of πR, and so there must be some other πR that
is independent of oR0:k−1 that does at least as well. That πR would be the analogous
policy to some pair, giving a contradiction.

Now, suppose we have some pair 〈πR′Q , f ′〉, and let its analogous policy be πR. Then we
have:

E
θ∼PΘ

q0:k−1∼πR
′

Q

c0:k−1∼πH
′

[ER(f ′(q0:k−1, c0:k−1))]

= E
θ∼PΘ

 E
q0:k−1∼πR
c0:k−1∼πH

[ER(f ′(q0:k−1, c0:k−1))]



= E
θ∼PΘ

 E
q0:k−1∼πR
c0:k−1∼πH

 E
s0∼P ′0

aRt ∼f ′(q0:k−1,c0:k−1)

st+1∼T ′(·|st,aRt )

[
∞∑
t=0

γtr′θ(st, a
R
t , st+1)

]


= E
θ∼PΘ

 E
q0:k−1∼πR
c0:k−1∼πH

 E
sk∼P ′0

aRt ∼πR(·|〈c0:k−1,ok:t〉,〈q0:k−1,ak:t−1〉)
st+1∼T ′(·|st,aRt )

[
1

γk

∞∑
t=k

γtr′θ(st, a
R
t , st+1)

]


= E
θ∼PΘ

 E
q0:k−1∼πR
c0:k−1∼πH

 E
sk∼P ′0

aRt ∼πR(·|〈c0:k−1,ok:t〉,〈q0:k−1,ak:t−1〉)
st+1∼T ′(·|st,aRt )

[
1

γk

∞∑
t=k

γtrθ(st, a
H
φ , a

R
t , st+1)

]

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However, since all the actions in the first phase are communicative and thus don’t impact
state or reward, the first k timesteps in the two phase assistance game have constant reward

in expectation. Let C = Es0:k

[∑k−1
t=0 γ

trθ(st, a
H
φ , a

R
noop, st+1)

]
. This gives us:

E
θ∼PΘ,q0:k−1∼πR

′
Q ,c0:k−1∼πH

[ER(f ′(q0:k−1, c0:k−1))]

= E
θ∼PΘ

[
E

s0∼PS ,θ∼PΘ,τ∼〈s0,θ,πH ,πR〉

[
1

γk

∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]]
− 1

γk
C

=
1

γk
(
ER(πR)− C

)
.

Thus, if 〈πR′Q , f ′〉 is a solution to the active reward learning problem, then πR is a solution
of the two-phase communicative assistance problem.

Corollary 14. If a two-phase communicative assistance problem 〈M, πH , aRnoop〉 has exactly
one communicative robot action, it can be reduced to an equivalent non-active reward learning
problem.

Proof. Apply Proposition 13 followed by Proposition 8. (Note that the construction from
Proposition 13 does lead to an active reward learning problem with a single question, meeting
the precondition for Proposition 8.)

8.4 Qualitative improvements for general assistance

We have seen that reward learning is equivalent to two-phase communicative assistance
problems, where inferring the reward distribution can be separated from control using the
reward distribution. However, for general assistance games, it is necessary to merge estimation
and control, leading to several new qualitative behaviors. When the two phase restriction is
lifted, we observe plans conditional on future feedback and relevance aware active learning.
When the communicative restriction is lifted, we observe learning from physical actions.

We demonstrate these qualitative behaviors in simple environments using point-based
value iteration (PBVI) or deep reinforcement learning (DRL). For communicative assistance
problems, we also consider two baselines:

1. Active reward learning. This is the reward learning paradigm discussed so far.

2. Interactive reward learning. This is a variant of reward learning that aims to
recover some of the benefits of interactivity, by alternating reward learning and acting
phases. During an action phase, R chooses actions that maximize expected reward
under its current belief over θ (without “knowing” that its belief may change), while
during a reward learning phase, R chooses questions that maximizes information gain.
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Plans conditional on future feedback

Here, we show how an assistive agent can make plans that depend on obtaining information
about θ in the future. The agent can first take some “preparatory” actions whose results can
be used later once the agent has clarified details about θ. A reward learning agent would not
be able to do this, as it would require three phases (acting, then learning, then acting again).

We illustrate this with our original kitchen environment (Figure 8.1). R must bake a
pie for H, but doesn’t know what type of pie H wants: Apple, Blueberry, or Cherry. Each
type has a weight specifying the preference for that pie. Assuming people tend to like apple
pie the most and cherry pie the least, we have θA ∼ Uniform[2, 4], θB ∼ Uniform[1, 3], and
θC ∼ Uniform[0, 2]. We define the questions Q = {qA, qB, qC}, where qX means “What is the
value of θX?”, and thus, the answer set is C = R.

R can select ingredients to assemble the pie. Eventually, R must use “bake”, which bakes
the selected ingredients into a finished pie, resulting in reward that depends on what type of
pie has been created. H initially starts outside the room, but will return at some prespecified
time. rθ assigns a cost of asking a question of 0.1 if H is inside the room, and 3 otherwise.
The horizon is 6 timesteps.

In this environment, R needs to bake either apple or blueberry pie (cherry is never
preferred over apple) within 6 timesteps, and may query H about her preferences about the
pie. Making the pie takes 3 timesteps: first R must make flour into dough, then it must
add one of the fillings, and finally it must bake the pie. Baking the correct pie results in +2
reward, while baking the wrong one results in a penalty of -1. In addition, H might be away
for several timesteps at the start of the episode. Querying H costs 0.1 when she is present
and 3 when she is away.

We use PBVI to train an agent for this assistance problem with different settings for how
long H is initially away.

Assistance. Regardless of H’s preferences, R will need to use flour to make pie dough. So,
R always makes the pie dough first, before querying H about her preferences. Whether R
then queries H about her preferences depends on how late H returns. If H arrives home
before timestep 5, R will query her about her preferences and then make the appropriate pie
as expected. However, if H will arrive later, then there will not be enough time to query her
for her preferences and bake a pie. Instead, R bakes an apple pie, since its prior suggests
that that’s what H wants.

This behavior, where R takes actions (making dough) that are robustly good but waits
on actions (adding the filling) whose reward will be clarified in the future, is very related to
conservative agency (Turner et al., 2020).

Reward learning. The assistance solution requires R to act (to make dough), then to learn
preferences, and then to act again (to make pie). A reward learning agent can only have two
phases, and so we see one of two suboptimal behaviors. First, R could stay in the learning
phase until H returns home, then ask which pie she prefers, and then make the pie from
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scratch. Second, R could make an apple pie without asking H her preferences. (In this case
there would be no learning phase.) Which of these happens depends on the particular method
and hyperparameters used.

Interactive reward learning. Adding interactivity is not sufficient to get the correct
behavior. Suppose we start with an action phase. The highest reward plan under R’s current
belief over θ is to bake an apple pie, so that’s what it will do, as long as the phase lasts long
enough. Conversely, suppose we start with a learning phase. In this case, R does nothing
until H returns, and then asks about her preferences. Once we switch to an action phase, it
bakes the appropriate pie from scratch.

Why was integration of reward learning and control needed? The plan “make pie
dough and then wait” (a control behavior) is only a good plan because the agent has some
way of learning what filling to use in the future (a reward learning behavior). Thus, this plan
can only be selected because when selecting control behaviors the agent can reason about
future reward learning behaviors.

Relevance aware active learning

?

Figure 8.2: The wormy-apples kitchen en-
vironment. H wants an apple, but R
might discover worms in the apple, and
have to dispose of it in either of the trash
or compost bins.

Once we relax the two-phase restriction, R starts
to further optimize whether and when it asks
questions. In particular, since R may be uncertain
about whether a question’s answer will even be
necessary, R will only ask questions once they
become immediately relevant to the task at hand.
In contrast, a reward learning agent would have
to decide at the beginning of the episode (during
the learning phase) whether or not to ask these
questions, and so cannot evaluate how relevant
they are.

Consider for example a modification to the
kitchen environment: R knows that H wants an
apple pie, but when R picks up some apples, there
is a 20% chance that it finds worms in some of
the apples. R is unsure whether H wants her
compost bin to have worms, and so does not
know whether to dispose of the bad apples in the
trash or compost bin. The robot gets 2 reward
for making an apple pie (regardless of how it disposed of any wormy apples), and gets −2
reward if it disposes of the apples in the wrong container. Additionally, asking a question
incurs a cost of 0.1. Ideally R would only clarify H’s preferences around the disposal of
wormy apples when R happens to pick up wormy apples.
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We use PBVI to solve this environment, and report the results below.

Assistance. An assistive R only asks about wormy apples when it needs to dispose of one.
R always starts by picking up apples. If the apple does not have worms, R immediately uses
the apples to bake the pie. If some apples have worms and the cost of asking a question is
sufficiently low, R elicits H’s preferences and disposes of the apples appropriately. It then
bakes the pie with the remaining apples. This policy always gets the 2 reward from baking
the pie and never incurs the −2 reward from disposing of wormy apples in the wrong bin. It
only has to ask H a question 80% of the time, and so incurs the 0.1 cost of asking a question
20% of the time, leading to a total expected undiscounted reward of 1.98.

This behavior, in which questions are asked only if they are useful for constraining future
behavior, has been shown previously using probabilistic recipe trees (PRTs) (Kamar et al.,
2009), but to our knowledge has not been shown with optimization-based approaches.

Reward learning. A reward learning policy must have only two phases and so would show
one of two undesirable behaviors: either it would always ask H where to dispose of wormy
apples, or it never asks and instead guesses when it does encounter wormy apples.

With a lower discount rate (λ = 0.9), R’s policy never asks questions and instead simply
tries to make the apple pie, guessing which bin to dispose of wormy apples in if it encounters
any. Intuitively, since it would have to always ask the question at the beginning, it would
always incur a cost of 0.1 as well as delay the pie by a timestep resulting in 10% less value,
and this is only valuable when there turn out to be worms and its guess about which bin to
dispose of them in is incorrect, which only happens 10% of the time. This ultimately isn’t
worthwhile. This achieves an expected undiscounted reward of 1.8.

With a higher discount rate of λ = 0.99, the two-phase policy will always ask about which
bin to dispose of wormy apples in, achieving 1.9 expected undiscounted reward.

Interactive reward learning. If we start in the action phase and R picks up wormy apples,
it will dispose of them in an arbitrary bin without asking H about her preferences, because
it doesn’t “know” that it will get the opportunity to do so. Alternatively, if we start with a
learning phase, R will ask H where to dispose of wormy apples, even if R would never pick
up any wormy apples.

Why was integration of reward learning and control needed? The question “where
should I dispose of wormy apples” (a reward learning behavior) should only be asked when
the agent picks up apples and they happen to be wormy (a control behavior). This can only
happen when the question selection mechanism is able to reason about how the resulting
information will be used for control.

While this example might seem trite, complex settings usually have many more questions.
Should R ask if H prefers seedless apples, should scientists ever invent them? Perhaps
R should ask if H still prefers apple over cherry when angry? Asking about all possible
situations is not scalable.
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Learning from physical actions

So far we have considered communicative assistance problems, in which H only provides
feedback rather than acting to maximize reward herself. Allowing H to have physical actions
enables a greater variety of potential behaviors. Most clearly, when R knows the reward
(that is, PΘ puts support over a single θ), assistance games become equivalent to human-AI
collaboration (Nikolaidis and Shah, 2013; Carroll et al., 2019; Dimitrakakis et al., 2017).

With uncertain rewards, R can learn just by observing how H acts in an environment, and
then work with H to maximize reward, all within a single episode, as in shared autonomy with
intent inference (Javdani et al., 2015; Brooks and Szafir, 2019) and other works that interpret
human actions as communicative Whitney et al. (2017). This can significantly reduce the
burden on H in providing reward information to R. Some work has shown that in such
situations, humans tend to be pedagogic: they knowingly take individually suboptimal actions,
in order to more effectively convey the goal to the agent (Ho et al., 2016; Hadfield-Menell
et al., 2016). An assistive R who knows this can quickly learn what H wants, and help her
accomplish her goals.

+

+

+

+ + +

Figure 8.3: The CakeOrPie vari-
ant of the kitchen environment.
H is equally likely to prefer cake
or pie. Communication must
take place through physical ac-
tions alone.

We illustrate this with a variant of our kitchen environ-
ment, shown in Figure 8.3. There are no longer questions
and answers. Both H and R can move to an adjacent free
space, and pick up and place the various objects. Only R
may bake the dessert. R is uncertain whether H prefers
cake or cherry pie. Preparing the desired recipe provides a
base value of V = 10, while the other recipe provides a base
value of V = 1. Since H doesn’t want the preparation to
take too long, the actual reward when a dessert is made is
given by rt = V · f(t), with f(t) = 1− (t/N)4, and N = 20
as the episode horizon.

For both recipes, it is individually more efficient for
H to pick up the dough first. However, we assume H is
pedagogic and wants to quickly show R which recipe she
wants. So, if she wants cake, she will pick up the chocolate
first to signal to R that cake is the preferred dessert.

It is not clear how exactly to think about this from
a reward learning perspective: there aren’t any commu-
nicative human actions since every action alters the state
of the environment. In addition, there is no clear way
to separate out a given trajectory into two phases. This
situation cannot be easily coerced into the reward learning
paradigm, and so we only report the results in the assis-
tance paradigm. We solve the environment using Deep
Q-Networks (DQN; (Mnih et al., 2013)). We ran 6 seeds
for 5M timesteps and a learning rate of 10−4; results are shown in Figure 8.4.
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Figure 8.4: DQN smoothed learning curves on the CakeOrPie environment, with 6 seeds over
5M timesteps and learning rate of 10−4.

The assistive R handles this situation perfectly. It waits to see which ingredient H walks
towards, infers which recipe H wants, and then helps H by putting in the ingredients from
its side of the environment and baking the dessert. This is equivalent to pragmatic reasoning
(Goodman and Frank, 2016): “H would have gone towards the chocolate if she wanted cake,
so the fact that she picked up the dough implies that she wants cherry pie”. We emphasize
that R is not explicitly programmed to reason in this manner.

Note that R is not limited to learning from H’s physical actions: R can also use its own
physical actions to “query” the human for information (Woodward et al., 2019; Sadigh et al.,
2016).

8.5 Discussion

So far we have discussed the benefits of assistance over reward learning. Are there any
downsides?

The major limitation of assistance is that assistance problems are significantly more
computationally complex, since we treat the unknown reward θ as the hidden state of a
POMDP. We are hopeful that this can be solved through the application of deep reinforcement
learning, which has been demonstrated to scale to large state, action and observation
spaces (OpenAI, 2018; Vinyals et al., 2019). Another avenue for future work is to modify
active reward learning algorithms in order to gain the benefits outlined in Section 8.4, while
maintaining their computational efficiency.

In addition, assistive agents will typically extract more information from H than reward
learning agents. While this leads to benefits when correct inferences are made, it can also
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lead to significantly worse failures when πH is misspecified. We don’t see this as a major
limitation: to the extent this is a major worry, we can design πH so that the robot only
makes inferences about human behavior in specific situations. For example, by having πH be
independent of θ in a given state s, we ensure that the robot does not make any inferences
about θ in that state.

Limitations of assistance and reward learning

In addition to the downsides above, which are specific to assistance, there a number of
challenges that apply to both reward learning and assistance:

Human modeling. A major motivation for both paradigms is that reward specification
is very difficult. However, now we need to specify a prior over reward functions, and the
human model πH . Consequently, misspecification can still lead to bad results (Armstrong
et al., 2020; Carey, 2018). While it should certainly be easier to specify a prior over θ with a
“grain of truth” on the true reward θ∗ than to specify θ∗ directly, it is less clear that we can
specify πH well.

One possibility is to add uncertainty over the human policy πH . However, this can only
go so far: information about θ must come from somewhere. If R is sufficiently uncertain
about θ and πH , then it cannot learn about the reward (Armstrong and Mindermann, 2018).
Thus, for good performance we need to model πH . While imitation learning can lead to good
results (Carroll et al., 2019), the best results will likely require insights from a broad range of
fields that study human behavior.

Assumption that H knows θ. Both paradigms assume that H knows her reward exactly,
but in practice, human preferences change over time (Allais, 1979; Cyert and DeGroot, 1975;
Shogren et al., 2000). We could model this as the human changing their subgoals (Michini
and How, 2012; Park et al., 2020), adapting to the robot (Nikolaidis et al., 2017) or learning
from experience (Chan et al., 2019).

Dependence on uncertainty. All of the behaviors of Section 8.4, as well as previously
explored benefits such as off switch corrigibility (Hadfield-Menell et al., 2017a), depend on
R expecting to gain information about θ. However, R will eventually exhaust the available
information about θ. If everything is perfectly specified, this is not a problem: R will have
converged to the true θ∗. However, in the case of misspecification, after convergence R is
effectively certain in an incorrect θ, which has many troubling problems that we sought to
avoid in the first place (Yudkowsky, year unknown).
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8.6 Modeling the state of the world with assistance

Our original goal in this chapter was to find a more principled way of integrating the reward
inferred using RLSP with information learned from human feedback and then act on that
information. The assistance paradigm provides a natural way of doing so. We model the
environment as an assistance problem, but enforce the condition that for the first T timesteps,
R does not yet exist, and is only deployed after T timesteps. At the time of deployment, R
can update its prior PΘ based on the observed state of the environment, and subsequently it
may continue to ask H for more feedback about what to do.

Concretely, let us consider some state of the world problem 〈M, s0, π
H , T, 〈Θ,Rθ, PΘ〉〉. We

can view this as capturing the first T timesteps of a special assistance problem with a discrete
deployment event. We have 〈〈S, {AH ,AR}, {ΩH ,ΩR}, {OH ,OR}, T , PS, γ, 〈Θ, rθ, PΘ〉〉, πH〉
as a standard assistance problem, and add as a restriction that R must take a noop action
aRnoop for the first T timesteps, and additionally is not allowed to observe the environment
or H’s actions. After these T timesteps, R is deployed and can act as normal within the
assistance problem.

This is technically speaking not a standard assistance problem, because we are imposing
conditions on R’s policy πR, as well as what R gets to observe. We might consider it a
constrained assistance problem. Nonetheless, all of the discussion in the previous sections
still applies, and in particular, it can still be reduced to a POMDP, and solved using some
POMDP solver.

From this perspective, the point of the algorithms introduced in Chapters 5 and 6 that
solve the state of the world problem is that they are more efficient algorithms that can solve
a subpart of this constrained assistance problem. Specifically, they compute how R should
update its belief over θ upon its deployment when observing s0. However, in order to get an
optimal policy for the assistance problem, we need to have the full distribution over θ, which
only Algorithm 1 does; Algorithms 2 and 3 only compute a point estimate and thus should
be thought of as efficient approximations.

Consider for example the kitchen office environment in Figure 8.5. In this environment, H
wants to get work done on her laptop (which R cannot do on her behalf), and also eventually
wants to eat a pie as in our original kitchen environment in Figure 8.1. In addition, there is a
vase in the middle of the room, which H does not want to break, as in Figure 1.2. However,
R does not know any of this, and is uncertain about the rewards of all three of these features.
As before, R can ask H questions about her preferences in order to clarify what it should do.

At the beginning of a trajectory s−T , before R has been deployed, H has just entered the
room through a door, ready to begin acting in the environment. When R is deployed in state
s0, it observes that H is now working at her laptop, and the vase remains intact. Simply by
observing the state of the environment, R can infer that H probably cares about getting her
work done (since she is at the laptop), and that she doesn’t want to break the vase (since she
must have taken the long way around the vase in order to get to the laptop). However, this
doesn’t tell R what it should do: it can’t help with H’s work, and keeping the vase intact is
only an injunction of what not to do, rather than what to do.
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Figure 8.5: Kitchen office environment. In this environment, R is uncertain both about what
type of pie H would like, as well as whether it is acceptable to break vases. At the time of
deployment, R observes that H is working at her laptop, but the vase is still intact, and so
R can infer that vases should not be broken. However, R still does not know which pie H
would prefer, and so asks her for her preferences before finishing the pie.

R is aware that H might want a specific type of pie, and that is something that it can
help with. As a result, it asks H about her pie preferences, and then makes the appropriate
pie type for her to eat.
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Chapter 9

Conclusion

One major goal of artificial intelligence is to build artificial agents that capably perform
tasks that we want. In order to build such agents, we must have some way of transmitting
information about what we want to the agent. The current paradigm in reinforcement
learning is to accomplish this by specifying a reward function, that defines which states are
desirable and which are not. Unfortunately, it is very difficult for humans to correctly specify
such a reward function.

Instead, it is important that our agents treat all source of information as observations
that provide information about the intended goal, rather than definitions of it. Once we
make this distinction, it becomes evident that our agents should collect many different kinds
of information, and integrate them together, in order to make better inferences about the
intended goal.

This dissertation identified a potentially important source of such information: the state
of the world. Unlike other sources of information, such as human demonstrations and
comparisons, this source is free: it does not require humans to change their behavior at all.
The agent must simply look at the world, infer what humans have put effort into, and make
appropriate inferences about what it should and should not do. While this will likely not be
enough to uniquely identify the task that the agent should perform, it can reduce the amount
of information that the agent needs to collect from other, more expensive sources.

We have demonstrated both theoretically and empirically that learning from the state
of the world can enable agents to make meaningful inferences, at least within some simple
environments. However, there is still much work to be done to turn this into a practical
method that can be applied in realistic scenarios.

9.1 Avenues for improvement

There are multiple avenues for further research, both conceptually and practically.
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Conceptual changes

Handling multiple humans. In many realistic environments, there is not a single human H
who is influencing the environment: many people act simultaneously, and the state is a result
of joint optimization by all of them. One approach is to infer H’s goals by modeling other
people as part of the (very complex) environment. However, this seems like a particularly
challenging approach, and may require a fairly complex human model in order to account for
interpersonal interactions: a simple Boltzmann rational model may not be sufficient.

An alternative approach is to distinguish all of the humans as separate from the environ-
ment, and to instead use the state of the world to infer the norms by which they operate.
These norms are likely the most relevant aspect of the reward function for R to know, as
they determine how R should constrain its behavior within the group. They may also be
easier to infer, since by definition nearly all of the humans will agree on the norms and so
they will have an outsized impact on the state of the world.

Humans are optimized for the environment. Even when the state of the world is
optimized for human preferences, this may not be a result of human optimization, as assumed
in this dissertation. For example, we prefer that the atmosphere contain oxygen for us to
breathe. That the atmosphere has enough oxygen for us to breathe is not a result of human
optimization – indeed, it seems that the atmosphere meets this preference in spite of human
action. Rather, humans were optimized through the process of evolution to be able to breathe
the existing atmosphere.

The algorithms presented in this dissertation would not be able to infer such a preference,
except indirectly, for example by inferring that humans prefer not to die or get sick, and thus
instrumentally preferring that the atmosphere contain sufficient oxygen. The issue is that
these algorithms assume that humans are the source of all optimization, and thus neglect the
fact that humans have themselves be optimized. It is unclear how to modify the algorithms
to account for this issue.

Learning tasks to perform. The apple collection environment (Figure 7.1d) and MuJoCo
skill learning (Section 7.3) demonstrate that it is possible to learn aspects of what should be
done in an environment. However, it is not clear that this is desirable, since the robot may
perform a task that has been inferred, instead of the task that H explicitly sets for it. Just
because R has inferred that H wants the apples harvested doesn’t mean it should go do so,
especially if H has currently asked R to wash the dishes.

It is possible that this would not be a problem in a suitable formulation: as long as R
assigns sufficiently high probability to H asking R for the thing that H wants most, R will
follow H’s instructions, unless it has reason to think that H is incorrect (Milli et al., 2017).
(For example, R should probably disobey H if it knows that the house is on fire and knows
that H does not know this.)

Nevertheless, we may want to prevent R from learning to autonomously pursue tasks
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based solely on the state of the world. Ideally, we would be able to decompose the inferred
reward into the frame conditions θframe, which specify what R should not do, and the task
reward θtask, which specify things that could be good for R to do. Given such a decomposition,
R could ensure that it takes θframe into account in its decision-making process, while ignoring
the implications of θtask. One way to do this is to look across a variety of environments,
or a variety of humans, for commonalities in the reward: it seems likely that these would
correspond to frame conditions.

Practical improvements

Other sources of empirical knowledge. Learning from the state of the world can be
thought of as a solution to the “is-ought problem” (Hume, 2003) for artificial agents: it allows
an agent to learn what it ought to do, given only knowledge about what is true. (Readers
familiar with Hume may wonder what assumption allows us to bridge the gap from “is” facts
to “ought” facts. In this case, the bridging assumption is that R ought to do that which H
has put effort into (and what H has put effort into is an “is” fact.)

However, our algorithms so far either require us to have a full, complete understanding of
empirical facts as with RLSP (Algorithm 2), or they use the barest of empirical knowledge,
that which can be gleaned from random rollouts, as in Deep RLSP (Algorithm 3). It seems
clear that we can do better, by leveraging better algorithms and data sources for learning
empirical facts about the world, before trying to learn from the state of the world. For example,
how might we leverage the common-sense knowledge of large language models (Radford et al.,
2019; Brown et al., 2020)?

Human models. In this dissertation we used the simple model of Boltzmann rationality as
our model of H. While this worked well in our simple conceptual environments, it is not clear
that this will scale well to larger environments. Recent work in inverse reinforcement learning
has considered accounting for human biases (Evans et al., 2016; Majumdar et al., 2017; Shah
et al., 2019b); similar approaches may be needed for learning from the state of the world.

Handling partial observability. Our formalism for learning from the state of the world
(Chapter 3) assumes that H is acting in an MDP without reward M\R. However, most
realistic environments are partially observable; neither H nor R can observe the entire
world state at every timestep. While we have generalized to partial observability using the
assistance formulation, assistance problems are quite computationally challenging to solve.
Can we generalize our original formalism to handle partial observability, without requiring
the increase in computational complexity of assistance?

It is relatively easy to handle partial observability for H: the only difference is that our
human model πH must now work off of observations, rather than states. However, it is more
challenging to handle partial observability for R: what exactly does R get to observe? It
should no longer be able to observe the full state of the world s0, but it also is not sufficient
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to just observe o0, because this may only be a small part of the world. For example, if R
can’t see an unbroken vase in o0, but does see after two actions in o2, then it should still
learn from the state of the world that vases probably should not be broken. The crucial
difference is that when observing a full state s0, the posterior P (θ | s0) captures all of the
information we can gain from simulating the past, due to the Markov property of states. In
contrast, P (θ | o0) does not capture all of this information, and future observations o1, o2, . . .
can provide additional insights.

This is handled naturally by the assistance formulation, in which R’s optimal policy
will seek out new observations in future timesteps that can then be leveraged to learn from
the state of the world (as long as this information is sufficiently valuable). Are there good
heuristics that allow us to capture this behavior, without requiring us to solve a full assistance
problem?

Integrating RLSP with assistance. While we formalized learning from the state of the
world using the assistance framework, even with full observability, the optimal policy for an
assistance problem typically requires the full posterior P (θ | s0), whereas both RLSP and
Deep RLSP compute a point estimate of θ. How can we use these algorithms (or analogs
thereof) in order to more efficiently solve the assistance formulation of learning from the
state of the world?

Learned models. The gradient in Deep RLSP depends on having access to a good model
of πH , (πH)−1, and T −1, as well as a good learned feature function f . We used relatively
simple multilayer perceptrons (MLPs) and variational autoencoders (VAEs) to learn these
models, as we found them to be the most stable and easiest to tune. However, progress in
these areas is rapid, especially in self-supervised representation learning. It seems likely that
applying well-tuned state-of-the-art techniques will allow for significantly improved results,
and could be a good approach to few-shot imitation learning for robotics.

9.2 Applications

Our fundamental insight is that the state of the world can inform us about human preferences
by showing us what humans put effort into. While we formalized this in the paradigm of
sequential decision-making, and the ideas in the previous section continue to work within
this paradigm, the general idea is broader and can be applied in many domains. We provide
a few examples as illustration, but it seems likely that there are many more applications that
have not yet been thought of.

Satellite imagery. Satellite imagery is a rich source of data about the state of the literal
world. It is already being used for many purposes, such as predicting how wealthy various
regions are in order to better target policy and aid (Abelson et al., 2014; Yeh et al., 2020)
and predicting crop yields (Pantazi et al., 2016). An intelligent AI system with enough



CHAPTER 9. CONCLUSION 95

background knowledge of the world should be able to infer a lot from such a dataset. For
example, if the AI system already knows the wealth of a region, then the prevalence of schools
in that region may be informative of how much the people of that region value education.

Social media. A person’s social media feed can be a rich source of information about their
preferences. Social media companies can learn a lot about an individual user through their
pattern of clicks and views on a variety of posts. However, even without access to the internal
datasets, we can learn a lot about both individual people and various groups by looking at
social media feeds. We can model a social feed as joint optimization by the user and the
recommendation algorithm on the set of posts shown to the user. Thus, by observing the set
of posts that are currently being shown, we can infer what the user must care about reading.
(This does require having a sufficiently good model of the workings of the recommendation
algorithm, which may be challenging.)

Learning from prices. By using the formalism of sequential decision-making, we have
implicitly made the assumption that time is the unit of effort. At each timestep, H has a
variety of options available to her; the fact that she chooses one option over many others
thus provides significant information about what H cares about.

However, we could also view money as the unit of effort: everyone has a limited supply of
it, and can use it to pursue many different goals, and so the choice of what H does with her
money is very informative about her preferences.

We can even think of the market prices and trading volumes of various items as informative
about the “preferences” of humanity as whole. For example, despite being more expensive,
vegan meat substitutes are growing in popularity; from this an agent might deduce that the
preference against meat-eating is rising.

It should be noted that prices would be thought of as a lower bound on value, because
prices are a function both of how valuable an item is as well as how easy it is to produce it.
Just because clean water is cheap doesn’t mean it is not important to human preferences.

9.3 Closing thoughts

AI systems are poised to have a massive impact on human civilization within the next
century. Researchers today have a unique opportunity to shape this impact to ensure that
it is beneficial for humanity. By showing how an AI system can learn what it should do
by reasoning about the provenance of the state of the world, this dissertation takes a step
towards AI systems that do what we intend them to do. With further progress towards
such AI systems, we can create a world in which AI systems assist us in achieving our goals,
whether they be as mundane as washing laundry or as grand as colonizing the stars.
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