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Abstract
Secure Computation Systems for Confidential Data Analysis
by
Rishabh Poddar
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Raluca Ada Popa, Chair

A large number of services today are built around processing data that is collected from or shared by
customers. While such services are typically able to protect the data when it is in transit or in storage
using standard encryption protocols, they are unable to extend this protection to the data when it
is being processed, making it vulnerable to breaches. This not only threatens data confidentiality
in existing services, it also prevents customers from availing such services altogether for sensitive
workloads, in that they are unwilling / unable to share their data out of privacy concerns, regulatory
hurdles, or business competition.

Existing solutions to this problem are unable to meet the requirements of advanced data analysis
applications. Systems that are efficient do not provide strong enough security guarantees, and
approaches with stronger security are often not efficient.

To address this problem, the work in this dissertation develops new systems and protocols for
securely computing on encrypted data, that attempt to bridge the gap between security and efficiency.
We distill design principles based on the properties of the two primary approaches for secure
computation—advanced cryptographic protocols and trusted execution environments. Informed by
these principles, we design novel cryptographic protocols and algorithms with strong and provable
security guarantees, using which we show how to build systems that are both secure and efficient.
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Chapter 1

Introduction

This dissertation shows how to build secure and efficient systems for analyzing confidential data, by
developing novel cryptographic protocols and algorithms along with principles for system design.

1.1 Motivation

A large number of services and applications today are built around analyzing data that is collected
from or shared by customers. At the same time, data breaches are becoming commonplace [Bek20,
Beal8], and the public concern over data privacy is likely at one of its peaks today. To protect
the confidentiality of user data, the current mode of operation is to encrypt the data when it is at
rest (using a standard encryption scheme applied to the data storage) or when it is in transit (using
protocols for secure communication such as TLS). However, there are no common deployments
of solutions today that protect the data when in use—that is, in current deployments the data lies
exposed, unencrypted, when it is being processed.

This state of affairs can lead to a complete violation of confidentiality, especially when the
servers that process the data belong to entities that do not own the data. Specifically, there are two
related scenarios where this concern arises.

The first scenario is that of outsourced computation. For instance, cloud-based services allow
customers to avail the benefits of cloud computing by offloading their compute to the service.
Examples include services for data analytics that process customer data to draw business insights,
or services for network security that filter the network traffic of customer organizations. Beyond
customer organizations, several services cater to end users as well. For example, modern home
monitoring services (e.g., [Kun]) transmit videos from users’ homes to the service platform in the
cloud, where the video streams are analyzed for suspicious activities.

The second scenario is that of collaborative computation. The value of data has also led many
organizations to be increasingly interested in collaborating with each other towards a common aim.
That is, multiple parties jointly analyze their collective data in order to draw mutually beneficial
insights. For instance, such collaboration can lead to better medical studies [BEE™ 17, KBV13]; it
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can help in identification of criminal activities (e.g., fraud and money laundering) [SVHA " 19]; it
can also enable more robust financial services [SVHAT19,BFLV12, AKL12,PNH17].

In both the above computation scenarios, entities that process the data either do not own the data,
or own only a part of it. This is problematic because much of the collected / shared data is sensitive
in nature, and exposes the data owners to the risks of breaches in privacy. In many cases, privacy
concerns may preclude potential customers from using such services altogether, due to the fear of
hackers, or lack of trust in the service’s infrastructure and employees. Similarly, organizations may
be unwilling / unable to collaborate and share their data with each other due to privacy concerns,
regulations, or business competition.

This begets the question: how can we enable parties to analyze sensitive data in a way that does
not reveal the plaintext data?

While researchers have developed various approaches for this task, there continues to exist a
large gap between the capabilities of existing solutions and the demands of complex data analysis
workloads. Approaches that are efficient do not provide strong enough security guarantees, and
approaches with stronger security are often not efficient. A significant challenge lies in meeting
both requirements simultaneously. Navigating the security-efficiency tradeoff space thus requires
new design points. To address this problem, the work in this dissertation develops new systems and
protocols for securely analyzing encrypted data, bridging the gap between security and efficiency.

1.2 Approaches for Secure Computation

Broadly, there are two primary techniques for secure computation. One approach is to use general-
purpose cryptographic protocols that enable parties to directly process encrypted data without ever
decrypting it, such as homomorphic encryption [Gen09] or secure multi-party computation [Yao82,
GMWS87,BGWS88]. Cryptographic protocols offer precise and provable security guarantees against
attackers. However, they typically also come with high overhead. This is especially true for
protocols that are secure against malicious adversaries. Such protocols offer very strong security
guarantees in that even if the adversary misbehaves and deviate from the protocol arbitrarily, the
confidentiality of the data is not compromised. On the flipside, the performance overhead makes
them prohibitively expensive in many cases. At the other end of the spectrum are semi-honest
protocols. Usually, semi-honest protocols are significantly faster than maliciously secure protocols,
but they also provide much weaker security guarantees—they assume that the adversary continues
to follow the protocol faithfully, which may not be realistic in practice.

An alternate approach is to rely on the use of specialized hardware to create trusted execution
environments (or “enclaves”) within which sensitive data can be securely loaded and processed,
such as Intel SGX [MAB™13]. The root of trust for the enclaves is the hardware manufacturer.
Hardware enclaves are faster than purely cryptographic approaches, but they come with their
own set of challenges. First, fully exploiting the potential of enclaves requires careful system
design. While researchers have proposed solutions for executing arbitrary applications in enclaves
[BPH14,TPV17], these solutions come with security and performance downsides. Second, enclaves
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Cryptographic execution Trusted execution
Outsourced Arx Oblix SafeBricks
computation [PBP19] [MPC+18] [PLPR18]
____________________________________________________________________________________________ Visor ...
[PAS+20]
Collaborative Senate Secure XGBoost
computation [PKY+21] : [LLP+20]

Figure 1.1: Classification of the systems we built, by computation scenario and the secure computa-
tion approach used by the system.

also provide weaker security guarantees, in that they are known to be vulnerable to side-channel
attacks. General-purpose techniques for mitigating such attacks induce high overhead.

We provide a detailed discussion of both approaches in Chapter 2. Both approaches have
their own limitations, which in practice often makes them unsuitable for complex data analysis on
highly sensitive data if used “out of the box.” Overall, given the limitations of the general-purpose
approaches described above, building systems that are both secure and efficient is challenging and
requires care.

1.3 Building Systems using Secure Computation

Our approach is to co-design the systems and their underlying algorithms / protocols. The system’s
requirements govern the design of the protocols, and the protocols in turn impact the design of
the system. To guide the development of secure and efficient systems, we distill a design strategy
based on the properties of the different approaches for secure computation. Our strategy is effective,
improving performance by several orders of magnitude compared to alternate approaches while still
providing strong security guarantees.

We illustrate our design strategy by applying it towards system design for several complex
workloads. Chapter 2 describes our approach in detail; here, we provide an overview of the systems
we built by employing our strategy. Figure 1.1 summarizes these systems, and classifies them by
the secure computation approach we employed in designing the systems as well as the computation
scenario they enable.

Designing systems based on cryptographic protocols. We designed and implemented Arx
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[PBP19], a practical and functionally rich database system that always keeps the data encrypted
with semantically secure encryption schemes. Semantic security implies that no information about
the data is leaked other than its size. Arx introduces new database indices built atop novel and
efficient cryptographic protocols; these indices can be used to support a wide range of database
operations such as keyword search, range queries, aggregations, and joins. Arx develops and
carefully synthesizes a range of novel cryptographic protocols into a secure and efficient system.

While Arx supports general database operations, we also built Oblix [MPC 18] that optimizes
for the particular case of search operations. Specifically, Oblix enables a search index for encrypted
data that is dynamic (i.e., supports inserts and deletes), and has good efficiency. Oblix strengthens
the security guarantees offered by Arx by additionally hiding the memory access patterns of query
execution by building upon that is oblivious (provably hides access patterns), is dynamic (supports
inserts and deletes), and has good efficiency.

Both Arx and Oblix target outsourced computation. In contrast, Senate [PKY "21] is a platform
for secure collaborative analytics. At the heart of Senate is a new and efficient cryptographic
protocol for multi-party computation that provides the strong guarantee of malicious security. That
is, even if m — 1 out of m parties fully misbehave and collude, an honest party is guaranteed that
nothing leaks about their data other than the result of the agreed upon query. Senate employs
a synergy of new cryptographic design and insights in query rewriting and planning. Its query
planner efficiently plans the cryptographic execution, improving performance by over two orders of
magnitude compared to the state-of-the-art.

High-performance systems using trusted execution. Though the above systems help support
complex workloads in a secure and efficient manner, they still have relatively high overhead
compared to their plaintext counterparts. This overhead is hard to eradicate completely using
purely cryptographic approaches. To meet the demands of workloads with stricter performance
requirements, we turn to systems that offset the cost of cryptographic protocols with the help of
trusted execution environments (or enclaves). For instance, Oblix offloads a portion of its security-
critical computation to an enclave at the cloud server, allowing it to scale to large datasets with
millions of records.

However, architecting systems based on enclaves are accompanied by their own set of design
challenges, and require principled system design. We illustrate these design principles using several
systems that target workloads with high performance requirements. SafeBricks [PLPR18] shields
the analysis of network traffic from an untrusted cloud provider, by providing an enclave-based
framework for executing network functions.

We generalize our techniques to systems for machine learning (ML) as well. Visor [PAS™20]
provides a framework for ML workloads by unifying CPU and GPU enclaves into a single trust
domain (which we refer to as a hybrid enclave). Within this framework, we develop an application
for video analytics. We also extend enclaves to scenarios for collaborative computation in the
Secure XGBoost framework [LLP"20], that enables multiple parties to collaboratively train gradient
boosted decision tree ensembles on their collective data.

Mitigating side-channel leakage in trusted execution. Though enclaves go a long way towards
protecting the confidentiality of data, researchers have shown them to be vulnerable to side-channel
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attacks. In particular, memory access pattern leakage remains the fundamental reason behind
a large class of known attacks on enclaves—even though attackers cannot directly observe the
data protected by the enclave, they can still monitor the enclave’s memory access patterns during
execution, and infer sensitive information about the data.

To prevent this leakage, we design our systems in a way such that the memory access patterns
of the enclave code does not reveal any information about sensitive data, i.e., we make the enclave’s
execution data-oblivious. Naive approaches for achieving data-obliviousness can lead to slowdowns
of several orders of magnitude. Instead, we carefully craft new algorithms that do not leak access
patterns by design. In particular, we develop novel and efficient data-oblivious algorithms for video
analytics in Visor; and design an oblivious training algorithm in Secure XGBoost.

1.4 Impact and Adoption

To help disseminate the ideas and systems contained in this dissertation, we have also developed
the MC? platform which is available as open-source software [MC2]. MC? is a larger effort that
integrates privacy-preserving platforms for data analytics and machine learning into a unified
framework. MC? combines solutions based on hardware enclaves (with data-oblivious protocols for
side-channel attack protection) and advanced cryptographic protocols such as secure multi-party
computation, including systems developed as part of this dissertation.

MC? has already had impact, and we are collaborating with several teams in industry who have
adopted it for their own use cases. A few notable examples are as follows: Ericsson used MC?
as a proof-of-concept to securely train models on data belonging to several network operators for
applications in telecommunicataions [PJ20]; Scotiabank has been spearheading an effort with other
Canadian banks using MC? towards anti-money laundering; and, Ant Financial deployed MC?
internally in production for credit loan risk modeling.

1.5 Dissertation Roadmap

In Chapter 2 we provide an overview of the approaches for secure computation on encrypted data.
We discuss the design challenges that come with the different approaches, and develop a strategy
for building systems that overcome these challenges. In later sections, we employ and extend these
strategies to develop systems that are both secure and efficient.

The next two chapters focus on tackling query execution in databases via cryptographic ap-
proaches for secure computation. Chapter 3 presents the design of Arx, and Chapter 4 presents
Senate. Subsequently, we turn to designing systems that have stricter performance requirements,
with the help of trusted execution environments. In Chapter 5 we present SafeBricks, in Chapter 6
we present Visor, and in Chapter 7 we describe Secure XGBoost. Finally, we conclude in Chapter 8
and discuss future directions.



Chapter 2

Building Secure and Practical Data Systems

Broadly, there are two major techniques for secure computation. One approach is to rely on the
use of specialized hardware to create trusted execution environments (or “‘enclaves”) within which
sensitive data can be securely loaded and processed. The other approach is to use cryptographic
protocols that enable parties to directly process encrypted data, without ever decrypting it. In this
chapter, we provide an overview of both techniques and discuss the challenges that come with
building systems using the techniques. We then outline high-level strategies for designing systems
that are both secure and efficient.

2.1 Trusted Execution Environments

Trusted execution environments (TEEs), or enclaves,! are a recent advancement in computer

processor technology designed to protect an application’s code and data from all other software in
the system. This approach is based on the assumption that users are willing to trust some specialized
hardware that is deployed in an otherwise untrusted environment, such as a cloud datacenter. The
hardware in turn gives the users the ability to create a trusted execution environment (or secure
“enclave”) within which they can put their most sensitive pieces of code and data. The enclaves are
isolated from the rest of the platform, including privileged software such as the operating system
and the hypervisor. As a result, the enclave contents remain protected from server administrators as
well as attackers with privileged access.

To bootstrap the enclaves, the hardware provides a mechanism called remote attestation which
allows cloud tenants to verify that they are communicating with their own code hosted within a
secure enclave. In more detail, this procedure allows a remote client system to cryptographically
verify that specific software has been securely loaded into an enclave [AGJS13]. At a high level,
the processor computes a hash measurement of the enclave once it is initialized with the protected
software, and stores the measurement in a special register. When a client requests remote attestation,
the enclave generates a report signed by the processor that contains a hash measurement of the
enclave. It then returns the report to the client which can then verify the hash and the signature. As

'Tn this dissertation, we will use the terms TEEs and enclaves interchangeably.
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part of the attestation, the enclave can also bootstrap a secure channel with the client by generating
a public key and returning it with the signed report.

Attacks and vulnerabilities. Unfortunately, existing enclave implementations, such as Intel SGX,
are known to be vulnerable to a host of side-channel attacks. Such attacks commonly exploit
micro-architectural side-channels software-based channels, or application-specific leakage such as
network and memory accesses.

A large subset of known side-channel attacks on enclaves fundamentally rely on the exploitation
of data-dependent memory access patterns—i.e., the sequence of memory addresses accessed
during the application’s execution. Examples of such attacks include cache attacks [GESM17,
BMD"17,SWG™ 17, MIE17, HCP17], attacks based on branch prediction [LSG*17], paging-based
attacks [XCP15, BWK™"17], or memory bus snooping [LJF20]. The impact of access pattern
leakage can be dire; for instance, Xu et al. [XCP15] showed that by simply observing the page
access patterns of image decoders, an attacker can reconstruct entire images, even though the
image itself remains protected within the enclave for the duration of the application’s execution. In
Section 6.2.3, we also illustrate the impact of access pattern leakage on video analytics pipelines,
and show that by observing just the memory access patterns of commonly used video processing
modules, an attacker can infer the exact shapes and positions of all moving objects in the video.
Memory access pattern leakage is typically considered to be outside the threat model of existing
enclaves. For example, Intel considers its prevention to be a matter for the developer of the enclave
application, e.g., via side-channel resistant program development techniques [Intc, Intb].

Transient execution attacks form another large class of attacks on enclaves (e.g., [BMW 18,
SLM*19,CCX*19,VBMS™20,RMR"21,vSMO™ 19, vSMK20]). These attacks exploit microar-
chitectural optimizations in modern CPUs that predict and occasionally reorder the instruction
stream to boost performance (e.g., speculative execution of instructions). However, transient in-
structions can potentially leave behind secret-dependent traces in the microarchitectural state of the
CPU, allowing them to be recovered by an attacker. Unlike attacks based on access pattern leakage,
transient execution attacks typically rely solely on the behavior of the CPU, and do not exploit
software vulnerabilities or application behavior. In fact, researchers have demonstrated how these
attacks can be used to extract the enclave platform’s attestation keys. As such, these vulnerabilities
are usually patched promptly by enclave vendors via microcode updates when they come to light.

Enclaves are also vulnerable to attacks that exploit timing analysis or power consumption
[MOG™20,TSS17], DoS attacks [JLLK17, GLST17b], and rollback attacks [PLD11].

2.2 Cryptographic Approaches

We summarize cryptographic protocols that are relevant to the techniques and systems developed in
this dissertation.

Homomorphic encryption. Homomorphic encryption schemes [Gen09] allow a data owner to
encrypt their secret data d using a public key, and hand the encrypted data Enc(d) over to an
untrusted party for running computations on it. Using the public key, the untrusted party can
compute a function f directly on Enc(d) to obtain an encrypted output Enc(f(d)). The data owner
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can decrypt the output to get the final result f(d). The protocol ensures that the untrusted party
learns no information about the secret data or the result, other than their lengths.

Homomorphic encryption protocols can either be fully homomorphic, or partially homomorphic.
Fully homomorphic protocols can compute arbitrary functions f, while partially homomorphic proto-
cols are restricted in the choice of f; for example, the partially homomorphic Paillier scheme [Pai99]
can only compute additions of ciphertexts.

Secure multi-party computation. Secure multi-party computation [ Yao82, GMWS87, BGWS88]
(MPC) is a cryptographic technique that allows m parties, each having secret data d;, to jointly
compute a function f on their aggregate data, and to share the result f(dy,...,d,,) amongst them-
selves, without learning each other’s data beyond what the function’s result reveals. In essence,
MPC protocols enable the parties to cryptographically emulate a setting where all the secret data is
provided to a trusted third party that applies the function f on the data, and outputs the results.

General-purpose protocols for MPC typically fall into one of two categories: arithmetic
MPC [BGWS88, GMWS&7], and Boolean MPC [Ya082, BMR90]. In the former, the function f
is represented as a circuit of addition and multiplication gates over finite field elements, while in the
latter f is represented as a circuit of XOR and AND gates that process Boolean values.

Garbled circuits. Garbled circuits [Yao86, BHR12, BMR90, GMW&87] are a commonly used
cryptographic primitive in MPC constructions. Formally, an m-party garbling scheme is a set
of algorithms (Garble, Encode, Eval, Decode) that enables the secure evaluation of a (typically
Boolean) circuit C. Using the garbling scheme, the parties can invoke the algorithm Garble on
the circuit C to obtain a garbled version of the circuit G(C), along with some secret encoding
information e, and decoding information d. Given input x, the parties can run Encode(e,x) to
produce a garbled input X. Then, the parties run Eval(G(C),X) on the garbled input to obtain a
garbled output Y. Finally, the parties decode the garbled output Decode(d,Y) to obtain the actual
output y. The correctness of the scheme ensures that y = C(x). In addition, the security of garbled
circuits guarantees that the parties learn nothing about x other than the output C(x) (along with size
information).

2.3 Challenges and Design Strategy

The techniques described in the previous sections are valuable tools for designing end-to-end
systems that can compute on data securely, without revealing information to any untrusted parties.
However, a significant challenge lies in ensuring that the system is able to simultaneously meet the
security and performance requirements of the application. These requirements dictate the design
decisions and tradeoffs involved in building the system. For example, a video analytics application
must be able to keep up with the incoming frame rate of the video stream to a reasonable degree in
order to be useful. On the other hand, real-time performance may be less important for collaborative
query execution and analytics. In such cases, the security properties afforded by cryptographic
approaches might potentially outweigh performance concerns.

Cryptographic execution. While cryptographic protocols provide precise and provable security
guarantees, they typically incur high overhead on the order of several orders of magnitude compared
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to plaintext computation. The overhead impacts both performance as well as resource consumption
(e.g., memory and network bandwidth). This often makes the black-box usage of general-purpose
schemes such as MPC or homomorphic encryption infeasible for implementing an end-to-end
system, especially for complex and latency-sensitive workloads.

Instead, we improve performance by developing novel protocols that are informed by the nature
of the required computation. By tailoring the protocols to the application at hand, we are able to
significantly outperform their general-purpose counterparts, as illustrated by our systems Arx and
Senate (Chapter 3 and Chapter 4, respectively). In devising the protocols, we employ the following
high-level strategy:

* First, we break the computation down into smaller modules, and design a secure solution for
the modules by employing the most suitable cryptographic protocol for that task. For example,
in Arx, we modularize a database into indices for separate operations (e.g., keyword search,
range queries, joins, and aggregates), and devise efficient protocols for each index separately.
In Senate, we decompose queries into a tree of sub-operations, and cryptographically execute
each sub-operation separately.

» Second, we cryptographically stitch the individual modules together into the larger system.
This is challenging, because one needs to ensure that the overall security guarantees of the
system continue to be met. This requirement in turn dictates the suitability of the protocols
used for the different modules. As an example, both Arx and Senate devise protocols to solder
different garbled circuits together into a larger whole.

* Third, we develop protocols and strategies to reduce the computation that occurs on encrypted
data as much as possible (e.g., by strategically offloading lightweight but crucial pieces of
computation to the client). This needs to be done with care—we need to ensure that the
overall security guarantees remain unaffected, and that the client is not unduly burdened. This
strategy helps both Arx and Senate improve performance by up to an order of magnitude.

Trusted execution environments. For systems with stricter performance requirements, we turn
to the use of enclaves. Unlike cryptographic approaches, enclaves can harness the raw power of the
CPU on plaintext computation, as the encrypted data is decrypted by the hardware once it is loaded
into the processor package. However, designing systems based on enclaves are accompanied by
their own set of design challenges.

* First, minimizing the amount of code that runs within the enclave, i.e., the trusted computing
base (or TCB), requires careful partitioning of the target application, and choosing a boundary
that reduces the code without compromising security. At the same time, partitioning the
application is likely to result in transitions between enclave and non-enclave code. These
transitions are expensive, introducing a high run-time overhead due to the cost of saving and
restoring the state of the secure environment. Consequently, there is a tension between TCB
size and the overall performance of the application: the lesser code the enclave contains, the
more transitions it is likely to make to non-enclave code.
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» Second, enclaves can be limited by the amount of memory at their disposal. For example,
the current generation of Intel SGX enclaves currently only have 93.5 MB enclave memory
(though this is likely to increase in the future). System designers need to be cognizant of any
memory constraints to prevent them from becoming a performance bottleneck.

e Third, as discussed above, enclaves are vulnerable to side-channel attacks, such as those
based on access pattern leakage, the prevention of which is delegated to the application
developer. An effective strategy for removing access pattern leakage is to ensure that the
enclave application’s execution is data-oblivious, a property that guarantees that the access
patterns of the application remain independent of secret data. However, general-purpose
approaches for executing the application obliviously (e.g., [RLT15,AJX " 19]) can slow it down
by several orders of magnitude. Instead, as we show, implementing the enclave application to
be algorithmically free of access pattern leakage can significantly boost performance.

While researchers have proposed generic solutions for securely executing arbitrary applications
in enclaves [TPV17,BPH14], these solutions are unable to account for the above requirements as
a result of their generality, resulting in both security and performance downsides. We illustrate
how we overcome these challenges in the design of SafeBricks (Chapter 5), Visor (Chapter 6), and
Secure XGBoost (Chapter 7). We carefully partition the target applications to optimize the amount
of code that runs within the enclave, while simultaneously balancing the frequency of enclave
transitions. We ease the enclaves’ memory burden by streaming data through the enclaves to enable
memory reuse. Finally, we carefully devise new algorithms for the enclave code so as to make it
free of memory access pattern by design.
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Chapter 3

Database Queries on Encrypted Data

This chapter presents Arx, a practical and functionally rich database system that always keeps the
data encrypted with semantically secure encryption schemes, enabling clients to outsource database
management to untrusted servers. Arx combines novel cryptographic protocols with insights in
query planning and execution.

3.1 Introduction

In recent years, encrypted databases [PRZB11, AEK ' 13, TKMZ13,PBC*16] (EDBs) have emerged
as a promising direction towards achieving both confidentiality and functionality for processing
sensitive data—the database queries are run directly on encrypted data. CryptDB [PRZB11]
demonstrated that such an approach can be practical and can support a rich set of queries; it
then spurred a rich line of work including Cipherbase [AEK ™ 13] and Monomi [TKMZ13]. The
demand for such systems is demonstrated by the adoption in industry such as in Microsoft’s SQL
Server [Micf], Google’s Encrypted Big Query [Gooa], and SAP’s SEEED [GHH " 14] amongst
others [Sky, Cipa, KGM ™ 14,iQr]. Most of these services are NoSQL databases of various kinds
showing that a certain class of encrypted computation suffices for many applications.

Unfortunately, this area faces a challenging privacy-efficiency tradeoff, with no known practical
system that does not leak information. The leakage is of two types: leakage from data and leakage
from queries.

Leakage from data is leakage from an encrypted database, e.g., relations among data items.
In order to execute queries efficiently, the EDBs above use a set of encryption schemes some of
which are property-preserving by design (denoted PPE schemes), e.g., order-preserving encryption
(OPE) [BCLO09,BCO11,PLZ13] or deterministic encryption (DET). OPE and DET are designed to
reveal the order and the equality relation between data items, respectively, to enable fast order and
equality operations. However, while these PPE schemes confer protection in some specific settings,
a series of recent attacks [DDC16, GSB'16, NKW15] have shown that given certain auxiliary
information, an attacker can extract significant sensitive information from the order and equality
relations revealed by these schemes. These works demonstrate offfine attacks in which the attacker



CHAPTER 3. DATABASE QUERIES ON ENCRYPTED DATA 12

obtains a PPE-encrypted database and analyzes it offline. For example, such attackers include
hackers stealing a snapshot of the database, or government subpoenas.

Leakage from queries refers to what an (online) attacker can see during query execution. This
includes all observable state in memory, along with which parts of the database are touched (called
access patterns), including which (encrypted) rows are returned and how many, which could be
exploited in certain settings [KKNO16, CGPR15,LMP18, GLMP19]. Unfortunately, hiding the
leakage due to queries is very expensive as it requires oblivious protocols (e.g., ORAM [SvDS T 13])
to hide access patterns, along with aggressive padding [Nav15] to hide the result size. For instance,
Naveed [Nav15] shows that in some cases it is more efficient to stream the database to the client
and answer queries locally than to run such a system on a server.

A natural question is then: how can we protect a database from offline attackers as well as make
progress against online attackers, while still providing rich functionality and good performance?

This chapter presents Arx, a practical and functionally rich database system that takes an
important step in this direction by always keeping the data encrypted with semantically secure
encryption schemes. Semantic security implies that no information about the data is leaked (other
than its size and layout), preventing the aforementioned offline attacks on a stolen database. This
model is particularly suitable for protecting data against subpoenas, in which case there is only
leakage from data, and no leakage from queries.

For an online attacker, Arx incurs pay-as-you-go information leakage: the attacker no longer
learns the frequency count or order relations for every value in the database, but only for data involved
in the queries it can observe. In the worst case (e.g., if the attacker observes many queries over time),
this leakage could add up to the leakage of a PPE-based EDB, but in practice it may be significantly
more secure for short-lived online attackers. As prior work points out [LW 16, BLR"14,CLWWI16],
this model fits the “well-intentioned cloud provider” which uses effective intrusion-detection systems
to prevent attackers from observing and logging queries over time, but fears “steal-and-run” attacks.
For example, Microsoft’s Always Encrypted [Micf] advocates this model.

Unfortunately, there is little work on such EDBs, with most work focusing on PPE-based EDBs.
The closest to our goal is the line of work by Cash et al. [CJJ " 14,CJJ " 13] and Faber et al. [FJK15],
which builds on searchable encryption. As a result, these schemes are significantly limited in
functionality—they do not support common queries such as order-by-limit, aggregates over ranges,
or joins—and are also inefficient for write operations (e.g., updates, deletes). Furthermore, for
certain online attackers, these systems have some extra leakage not present in PPEs, as we elaborate
in Section 3.12. To replace PPE-based EDBs, we need a solution that is always at least as secure as
PPE-based EDBs.

Overall, by exclusively using semantically secure encryption, Arx prevents the offline attacks
above [DDC16,GSB™ 16, NKW15] from which PPE-based EDBs suffer. For online attackers, Arx
is always either more or as secure as PPE-based EDBs.

3.1.1 Techniques and contributions

A simple attempt to protect against offline attacks could be to keep the data encrypted at rest in the
database and only decrypt it when it is in use. However, such an approach directly leaks the secret
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key even to a short-lived attacker who succeeds in taking a well-timed snapshot of memory. Worse,
the key itself would be directly vulnerable to a subpoena, akin to not encrypting the database at all.
A better alternative might be to consider a hybrid design that uses a PPE-based EDB, but employs a
second layer of encryption for data at rest on the disk. However, an attacker who similarly obtains
the decryption key gets access to the PPE-encrypted data, rendering the second layer of encryption
useless and leaking more information than our goal in Arx.

Instead, Arx introduces two new database indices, ArxRange and ArxEq that encrypt the data
with semantic security; queries on these indices reveal only a limited per-query access pattern.
ArxRange is for range and order-by-limit queries, and ArxEq is for equality queries. While ArxRange
can be used for equality queries as well, ArxEq is substantially faster.

To enable range queries, ArxRange builds a tree over the relevant keywords, and stores at each
node in the tree a garbled circuit for comparing the query against the keyword in the node [ Yao86,
GMWS8T]. Our tree is history-independent [AS89] to reduce structural leakage. The main challenge
with ArxRange is to avoid interaction (e.g., as needed in BlindSeer [PKV ' 14]) at every node on a
tree path. To address this challenge, Arx draws inspiration from the theoretical literature on Garbled
RAM [GLO15]. Arx chains the garbled circuits on a tree in such a way that, when traversing the
tree, a garbled circuit produces input labels for the child circuit to be traversed next. Thereby, the
whole tree can be traversed in a single round of interaction. For security, each such index node may
only be used once, so ArxRange essentially destroys itself for the sake of security. Nevertheless,
only a logarithmic number of nodes are destroyed per query, and Arx provides an efficient repair
procedure.

ArxEq builds a regular database index over encrypted values by embedding a counter into
repeated values. This ensures that the encryption of two equal values is different and the server does
not learn frequency information. To search for a value v, the client provides a small token to the
server, which the server expands into many search tokens for all occurrences of v. ArxEq provides
forward privacy [Bos16], preventing old tokens from being used to search new data.

Building on top of ArxRange, Arx speeds up aggregations by transforming them into tree
lookups via ArxAgg.

Because of the new indices, index and query planning become challenging in Arx. The
application’s administrator specifies a set of regular indices, thereby expecting a certain asymptotic
performance. However, regular indices do not directly map to Arx’s indices because Arx’s indices
pose new constraints. The main constraints are: Arx cannot use the same index for both = and >
operations, an equality index on (a,b) cannot be used to compute equality on a alone, and range
queries requires an ArxRange index. With this in mind, we designed an index planning algorithm
that guarantees the expected asymptotic performance while building few additional indices.

Finally, we designed Arx’s architecture so that it is amenable to adoption. Two lessons [Pop14]
greatly facilitated the adoption of the CryptDB system: do not change the DB server and do not
change applications. Arx’s architecture, presented in Figure 3.1, accomplishes these goals. The
difference over the CryptDB architecture [PRZB11] is that it has a server-side proxy, a frontend
for the DB server. The server proxy converts encrypted processing into regular queries to the DB,
allowing the DB server to remain unchanged.

We implement and evaluate Arx on top of MongoDB, a popular NoSQL database. We show that
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Figure 3.1: Arx’s architecture: Shaded boxes depict components introduced by Arx. Locks indicate
that sensitive data at the component is encrypted.

Arx supports a wide range of real applications such as ShareLaTeX [Sha], the Chino health data
platform [Chi], NodeBB forum [Nod], and Leanote [Lea] amongst others. In particular, Chino is a
cloud-based platform that serves the European medical project UNCAP [UNC]. Chino provides a
MongoDB-like interface to medical web applications (running on hospital premises) but currently
operates on plaintext data. The project’s leaders confirmed that Arx’s model fits Chino’s setup
perfectly. Finally, we also show that Arx’s overheads are modest: it impacts the performance of
ShareLaTeX by 11% and the YCSB [CST " 11] benchmark by 3-9%.

3.2 Overview

In the rest of this chapter, we use MongoDB/NoSQL terminology such as collections (for RDBMS
tables), documents (for rows), and fields (for columns), but we use SQL format for queries because
we find MongoDB’s JS format harder to read. While we implement Arx for MongoDB, its design
applies to other databases as well.

3.2.1 Architecture

Arx considers the model of an application that stores sensitive data at a database (DB) server. The
DB server can be hosted on a private or public cloud. Figure 3.1 shows Arx’s architecture. The
application and the database system remain unmodified. Instead, Arx introduces two components
between the application and the DB server: a trusted client proxy and an untrusted server proxy.
The client proxy exports the same API as the DB server to the application so the application does
not need to be modified. The server proxy interacts with the DB server by invoking its unmodified
API (e.g., issuing queries); in other words, the server proxy behaves as a regular client of the DB
server. Unlike CryptDB, Arx cannot use user-defined functions instead of the server proxy because
the proxy must interact with the DB server multiple times per client query.

The client proxy stores the master key. It rewrites queries, encrypts data, and forwards the
rewritten queries to the server proxy for execution along with helper cryptographic tokens. It
forwards all queries without any sensitive fields directly to the DB server. The client proxy is
lightweight: it does not store the DB and does much less work than the server. The client proxy
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stores metadata (schema information), a small amount of state, and optionally a cache. The server
runs the expensive part of DB queries, filtering and aggregating many documents into a small result
set.

In most cases, the client proxy processes only the results of queries (e.g., to decrypt them).
However, in some corner cases, it performs some post-processing; as a result, our implementation
needs to duplicate some parts of the typesystem and expression evaluation logic of the server
database.

3.2.2 Threat Model

Arx targets attackers to the database server. Hence, our threat model assumes that the attacker does
not control or observe the data or execution on the client-side, including not issuing queries through
the client proxy, and may only access the server-side which consists of Arx’s server proxy and the
database servers.

Arx considers passive (honest-but-curious) server attackers: the attackers examine server-side
data to glean sensitive information, but follow the protocol as specified, and do not modify the
database or query results. The active attacker is interesting future work, that can potentially leverage
complementary techniques [ZKP15, KFPC16, Mer79, LHKR10]. Further, in the Arx model, an
attacker cannot inject any new queries as she does not have access to the client application or to the
secret keys at the client proxy, but only to the server.

We consider two types of passive attackers, offline and online attackers, and provide different
guarantees for each. The offline attacker manages to steal one copy of the database, consisting of
(encrypted) collections and indices. It does not contain in-memory data related to the execution
of current queries (which falls under the online attacker). The online attacker is a generic passive
attacker: it can log and observe any information available at the server (i.e., all changes to the
database, all in-memory state, and all queries) at any point in time for any amount of time.

3.2.3 Security guarantees

Arx has different guarantees for the two attackers.

Offline attacker. Arx’s most visible contribution over PPE-based EDBs is for the offline attacker.
Such an attacker corresponds to a wide range of real-world instances including hackers who extract
a dump of the database, or insiders who managed to steal a copy of the database.

For this attacker, Arx provides strong security guarantees revealing nothing about the data
beyond the schema and size information (the number of collections, documents, items per field,
size of items, which fields have indices and for what operations). Padding is a standard procedure
for hiding sizes at a performance cost. The contents of the database (collections and indices) are
protected with semantically secure encryption, and the decryption key is never sent to the server. In
particular, Arx prevents the offline attacks of [DDC16, GSB*16,NKW 15] from which PPE-based
EDBs suffer. In PPE-based EDBs, the attacker readily sees the order or the frequency of all the
values in the database for PPE-encrypted fields. This is significantly less secure than the semantic
secure schemes in Arx, in which the attacker does not see such relations.
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Online attacker. The online attacker additionally watches queries and their execution. Arx hides
the parameters in the queries, but not the operations performed. In particular, Arx does not hide
metadata (e.g., query identifiers and timestamps) or access patterns during execution (e.g., which
positions in the database or index are accessed/returned and how many). Prior work has shown
that, if an attacker can observe such information from many queries and if certain assumptions and
conditions hold, the attacker can reconstruct data [KKNO16, CGPR15,LMP18, GLMP19]. Since
each query in Arx reveals only a limited amount of metadata, the sooner an attacker is detected (e.g.,
the fewer queries they observe), the less information they are able to glean.

For this attacker, Arx aims to always be more or as secure as PPE-based EDBs. Indeed, for all
operations, Arx’s leakage is always upper-bounded by the leakage in PPE-based EDBs. This is non
trivial: for example, a prior EDB aiming for semantic security [FJK ™ 15] is not always more secure
than PPE-based EDBs, as we explain in Section 3.12.

Security definition. To quantify the leakage to online attackers, we provide a security definition
for Arx and its protocols that is parameterized by a leakage profile £, which is a function of the
database and the sequence of the queries issued by the client. Our security definition is fairly
standard, and similar to prior work [FJK"15,CJJ"13].

We say that a DB system (or a query execution protocol) is £-semantically secure if, for any
PPT adversary A, the entirety of A’s view of the execution of the queries is efficiently simulatable
given only £. A invokes the interface exposed by the client to submit any sequence of queries Q. A
then observes the execution of the queries from the perspective of the server, i.e., it can observe all
the state at the server, as well as the full transcript of communication between the client and server.
Formally, A’s task is to distinguish between a real world execution of the queries (Real) between
the client and server, and an ideal world execution (Ideal) where the transcript is generated by a
PPT simulator § that is only given access to the leakage function £.

Definition 1. Let £ be a leakage function. We say that a protocol 11 is L-semantically-secure if for
all adversaries A and for all sequences of queries Q, there exists a PPT simulator S such that:
Pr[Real);(A,Q) = 1] — PrIdeal); ; - (1,0) = 1] < negl(A)

where A is the security parameter and negl(A) a negligible function in A.

We formalize the leakage profile of Arx and its protocols in Section 3.9, and provide proofs of
security with respect to Definition 1 for non-adaptive adversaries (who select the query sequence
beforehand) in an extended report [PBP16]. Informally, the leakage for ArxEq includes the list
of queries that search for the same keyword; for ArxRange, the leakage includes the ranks of the
bounds in the range query.

3.2.4 Admin API

We describe the API exposed by Arx to application admins. The admin can take an existing
application and enhance it with Arx annotations. Arx’s planner, located at the client proxy, uses this
API to decide the data encryption plan, the list of Arx indices to build, and a query execution plan
for each query pattern.
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Following the example of Microsoft’s SQL Server [Micf] and Google’s Encrypted BigQuery
[Gooa], Arx requires the admin to declare what operations will run on the database fields. By
default, Arx considers all the fields in the database to be sensitive, unless specified otherwise. To
use Arx, the admin specifies the following information during system setup:

1. (Optional) Annotated schema: fields that are unique, fields that are nonsensitive (if any), and
field sizes;

2. The operations that run on sensitive fields;
3. The fields that should be indexed.

For the first, the admin uses the API: collection = { field,: infoy, ..., field,: info, }, to annotate the
fields in a collection. This annotation is optional, but it benefits the performance of Arx if provided.
info should specify “unique” if the values in the field are unique, e.g., SSN. Arx automatically infers
primary keys to be unique. info may also specify a maximum length for the field, which helps Arx
choose a more effective encryption scheme.

Arx encrypts all the fields in the DB by default. However, the admin may explicitly override
this behavior by specifying info as “nonsensitive” for a particular field. This option should only be
used if (1) the admin thinks this field is not sensitive and desires to reduce encryption overhead, or
(2) Arx does not support the computation on this field but the admin still wants to use Arx for the
rest of the fields. However, we caution that though some fields may not be sensitive themselves,
they may leak auxiliary information about other fields in the database. Hence, the admin should
select such fields with care.

Second, Arx needs to know the query patterns that will run on the database. Concretely, Arx
needs to know what operations run on which fields, though not the constants that will be queried—
e.g., for the query select * from T where age = 10, Arx needs to know there will be an equality
check on age. The admin can either specify these operations directly, or provide a trace from a run
of the application and Arx will automatically identify them.

Third, Arx needs to know the list of regular indices built by the application. Arx needs this
information in order to provide the same asymptotic performance guarantees as an unencrypted
database. Note that this requirement poses no extra work on the part of the admin, and is the same
as required by a regular database.

3.2.5 Functionality

We now describe the classes of read and write queries that Arx can execute over encrypted data. As
we show in Section 3.10, this functionality suffices for a wide range of applications.

Read queries. Arx supports queries of the form:

select [agg doc] fields from collection
where clause [orderby fields] [1imit /]
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doc denotes a document and [agg doc] aggregations over documents, which take the form Y Func(doc).
Y can be any associative operator and Func an arbitrary, efficiently-computable function. Examples
include sum, count, sum of squares, min, and max. More aggregations can be computed with
minimal postprocessing at the client proxy by combining a few aggregations, such as average
or standard deviation. The predicate clause is [ A;op(f;)] where op(f;) denotes equality/range
operations over a field f; such as =, > and <.

In addition to these queries, Arx supports a common form of joins—namely, foreign-key
joins—which we describe in Section 3.7.

Write queries. Arx supports standard write queries such as inserts, deletes, and updates.

Constraints. Not all range/order queries are supported by Arx. First, queries may not contain
range operations over more than one encrypted field—i.e., (5 > f; > 3) A (f> < 10) is not supported
unless f> is unencrypted. Second, if the query contains a limit along with range operations over an
encrypted field, then it may contain an order-by operation over the encrypted field alone.

3.3 Encryption Building Blocks

Besides its indices, Arx relies on three semantically-secure encryption schemes. These schemes
already exist in the literature, so we do not elaborate on them.

BASE is standard probabilistic encryption, e.g., AES-CTR.

EQ enables equality checks using a searchable encryption scheme similar to existing work [CJJ T 14,
SLPR15]. The EQ scheme we use is as follows. EQEncy(v) = (IV,AESkpF, (1) (1V)), where IV is
a random value and KDF is a key derivation algorithm based on AES. To search for a word
w, EQTokeng(w) computes the token as tok = KDFy(w). To identify if the token matches an
encryption, the server proxy combines tok with [V and checks to see if it equals the ciphertext:

EQMatch((1V,x),tok) = (AES;ok(1V) ;x). Note that one cannot build an index on this encryption
directly because it is randomized. Hence, Arx uses this scheme only for non-indexed fields (i.e., for
linear scans). When the developer desires an index on this field, Arx uses our new ArxEq index.

EQunique is a special case of EQ. In many applications, some fields have unique values, e.g.,
primary keys, SSN. In this case, Arx makes an optimization: instead of implementing EQ with the
scheme above, it uses deterministic encryption. Deterministic encryption does not leak frequency
when values are unique. Such a scheme is very fast: the server can simply use the equality operator
as if the data were unencrypted. Databases can also build indices on the field as before, so this case
is an optimization for ArxEq too.

AGG enables addition using the Paillier scheme [Pai99].

3.4 ArxRange & Order-based Queries

We now present our index enabling range queries and order-by-limit operations.
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ArxRange index on patients.age:

269

- 7 patients collection:
| >4 > 32 1D | age  |diagnosis
- Enc(23) | Enc(26)
Enc('ID:91") Enc('ID:23") Enc(91) | Enc(3)

Enc(Lyme)
Enc(flu)

Figure 3.2: ArxRange example. Enc is encryption with BASE.

3.4.1 Strawman

We begin by presenting a helpful but inefficient strawman, that corresponds to the protocols in
mOPE [PLZ13] and the startup ZeroDB [EW16]. For simplicity, consider the index to be a binary
tree (instead of a regular B+ tree). To obtain the desired security, each node in the tree is encrypted
using a standard encryption scheme. Because such encryption is not functional, the server needs the
help of the client to traverse the index. To locate a value a in the index, the server and the client
interact: the server provides the root node to the client, the client decrypts it into a value v, compares
v to a, and tells the server whether to go left or right. The server then provides the relevant child to
the client, and the procedure repeats until it reaches a leaf. As a result, each level in the tree requires
a roundtrip, making the process inefficient.

3.4.2 Non-interactive index traversal

ArxRange enables the server to traverse the tree by itself. Say the server receives BASE;(a) and
must locate the leaf node corresponding to a. To achieve this goal, the server must be able to
compare BASE (a) with the encrypted value at a node, say BASE(v). Inspired from the theoretical
literature on garbled RAM [GLO15, GMP15], we store a garbled circuit at each tree node that
performs the comparison, while hiding a and v from the attacker.

As described in Chapter 2, a garbling scheme is a set of algorithms (Garble, Encode, Eval) [Ya086,
GMW8&7]. Using a garbling scheme, the client can invoke the algorithm Garble on a boolean circuit
f to obtain a garbled version F of the circuit, along with some secret encoding information e. Given
an input a, the client can run Encode(e,a) to produce an encoding ¢, corresponding to the input.
Then, the server can run Eval(F,e,) and obtain the output y = f(a). The security of garbled circuits
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guarantees that the server learns nothing about a or the data hardcoded in f other than the output
f(a) (and the size of a and f). This guarantee holds as long as the garbled circuit is used only once.
That is, if the client provides two encodings e, and e; using the same encoding information e to
the server, the security guarantees no longer hold. Hence, our client provides at most one input
encoding for each garbled circuit.

To allow the server to traverse the index without interaction, each node in the index must
re-encode the input for the next node in the path, because the encoding e, of the input to a node
differs from the encoding for its children. We therefore chain the garbled circuits so that each
circuit outputs an encoding compatible with the relevant child node.

Let N be a node in the index with value v, and let L and R be the left and right nodes. Let eN,
el, and e® be the encoding information for these nodes. The garbled circuit at N is a garbling of
a boolean circuit that compares the input with the hardcoded value v and additionally outputs the
re-encoded input labels for the next circuit:

if a <v then

e/ + Encode(el,a); output €/, and ‘left’
else

e/ «+ Encode(e®, a); output ¢/, and ‘right’

Figure 3.2 shows how the server traverses the index without interaction. The number at
each node indicates the value v hardcoded in the relevant garbled circuit. Now consider the query:
select * from patients where age < 5. The client provides an encoding of 5, Encode(5)
encrypted with the key for the root garbled circuit. The server runs this garbled circuit on the
encoding and obtains “left” as well as an encoding of 5 for the left garbled circuit. The server then
runs the left circuit on the new encoding, and proceeds similarly until it reaches the desired leaf
node. Note that since each node encodes the < operation, in order to perform < operations the
client needs to first transform the query into an equivalent query with the < operation; e.g., age
< 5 is transformed to age < 6 instead.

Repairing the index. A part of our index gets destroyed during the traversal because each
garbled circuit may be used at most once. To repair the index, the client needs to supply new garbled
circuits to replace the circuits consumed. Fortunately, only a logarithmic number of garbled circuits
get consumed. Suppose a node N and its left child L get consumed. For each such node N, the
client needs two pieces of information from the server: the value v encoded in N, and the encoding
information for the right child R. The server therefore sends an encryption of v (i.e., BASE(v),
stored separated in the index), and the ID of the circuit at R. The ID of each circuit is a unique,
random value that is used by the client proxy (together with the secret key) to generate the encodings
for the circuit; i.e., the ID of the circuit at R was used to compute e®. Sending ID instead of e® saves
bandwidth because the encoding information is not small (1KB for a 32-bit comparison).

3.4.3 The database index

We need to take two more steps to obtain an index with the desired security.



CHAPTER 3. DATABASE QUERIES ON ENCRYPTED DATA 21

First, the shape of the index should not leak information about the order in which the data was
inserted. Hence, we use a history-independent treap [AS89,NTO1] instead of a regular search tree.
This data structure has the property that its shape is independent of the insertion or deletion order.

Second, we store at each node in the tree the encrypted primary key of the document containing
the value. This enables locating the documents of interest. Note that the index does not leak the
order of values in the database even though the leaves are ordered: the mapping between a leaf and
a document is encrypted, and the index can be simulated from size information. If the primary key
were not encrypted, the server would learn such an order.

Query execution. Consider the query select * from patients where 1 < age < 5. Each
node in the index has two garbled circuits to allow concurrent search for the lower and upper bounds.
The client proxy provides tokens for values 1 and 5 to the server, which then locates the leftmost
and rightmost leaves in the interval (1, 5] and fetches the encrypted primary keys from all nodes in
between. The server sends the encrypted keys to the client proxy which decrypts them, shuffles
them, and then selects the documents mapped to these primary keys from the server. The shuffling
hides from the server the order of the documents in the range.

For order-by-limit ¢ queries, the server simply returns the leftmost or rightmost ¢ nodes. Order-
by operations without a limit are not performed using ArxRange. Since they do not have a limit,
they do not do any filtering, so the client proxy can simply sort the result set itself.

Updating the index. For inserts and deletes, the server traverses the index to the appropriate
position, performs the operation, and rebalances the index if required. For updates, the server
first performs a delete followed by an insert. As a result of the rebalancing, all nodes that have at
least one different child node are also marked as consumed (in addition to those consumed during
traversal), and are sent for repair to the client proxy; however, the total number of consumed nodes
is always upper bounded by the height of the index.

Some update or delete queries may first perform a filter on a field using a different index, but
also requiring deletes from an ArxRange index as a result. To support this case, we maintain an
encrypted backward pointer from the document to the corresponding node in the tree. The backward
pointers enable the identification of these nodes without having to traverse the ArxRange index.
Decryption of these pointers requires a single round of interaction with the client proxy.

Additionally, for monotonic inserts—a common case where inserts are made in increasing or
decreasing order—a cheap optimization is for the client proxy to remember the position in the tree
of the last value, so that most values can be inserted directly without requiring traversal and repair.

Concurrency. ArxRange provides limited concurrency because each index node needs to be
repaired before it can be used again. To enable a degree of concurrency, the client proxy stores the
top few levels of the tree. As a result, the index at the server essentially becomes a forest of trees
and accesses across different trees can be performed in parallel. At the same time, the storage at the
client proxy is very small because trees grow exponentially in size with the number of levels. For
example, for less than 40KB of storage on the client proxy (which corresponds to about 12 levels of
the tree because the tree is not entirely full), there will be about 1024 nodes in the first level of the
tree, so up to 1024 queries can proceed in parallel. Queries to the same subtree, however, are still
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sequential. This technique improves performance without impacting the security guarantees of the
index.

3.4.4 Optimizations

We employ several techniques to further improve the performance of ArxRange: (1) we chain
garbled circuits together using transition tables instead of computing the encoding function inside
the circuit; (2) we incorporate recent advances in garbling in order to make our circuits short and
fast; and (3) we remove index repair from the critical path of a query, and return the query results to
the client before starting repair.

Optimizing garbled circuit chaining. For performance we do not compute the encoding function
inside the garbled circuit. Instead, we chain the garbled circuits together by augmenting each
garbled circuit with a transition table. The transition table aids in translating an input label I; for
the current circuit to an input label for the correct child circuit corresponding to the same bit value.
Note that the server should not be able to infer the underlying bit value that the label corresponds to
but nevertheless should be able to translate it to the correct label for the next circuit.

The garbled circuit at each node first performs the comparison a < v, and outputs a key K or
K based on the result of the comparison. This key is the label of the output wire in the instantiation
of the scheme.

For each bit i of the input, the transition table stores four ciphertexts. Let I°[i],1'[i] denote the
i-th input labels in the encoding e, for the current circuit; let OJ[i], O} [i] be the corresponding labels
for the left child, and OY[i], 0} [i] for the right child. The table stores the following four ciphertexts:

E(Ko,I°li],0 H)
E(Ko,1'[i],0 [z])
E(K;,1°[],0 [z])
E(Ky,1'[i],01]i]).

Here E denotes a double-key-cipher implemented as E(A,B,X)=H(A||B) ®X, where H is a

random oracle. Hence, without having both A and B, it is impossible to learn any information about
X. We note that there are many other instantiations of such double-key-ciphers in the literature,
with different security guarantees under different assumptions but for simplicity we just resort to a
random oracle in this construction.
The values in the transition table are not stored in a fixed order. Instead, we employ the point-and-
permute technique [BHR12], which means that if the least significant bit of I°[i] is 0, the table
entries are stored in the order as written and otherwise switched. This way the evaluator knows
which ciphertext is the correct one without learning what bit value corresponds to the label.

Garbled circuit design. One of the main drawbacks of garbled circuits is that converting even
a simple program to a circuit often results in large circuits, and hence bad performance. We
put considerable effort into making our garbled circuits short and fast. First, we used the short
circuit for comparison from [KSS09], which represents comparison of n-bit numbers in n gates.
Second, we employ transition tables between two garbled circuits, to avoid embedding the encoding
information for a child circuit inside the garbled circuit. Since the encoding information is large, this
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optimization reduces the size of the garbled circuit by a factor of 128. Third, we use the half-gates
technique [ZRE15] to further halve the size of the garbled circuit. Fourth, since all garbled circuits
have the same topology but different ciphertexts, we decouple the topology from the ciphertext it
contains. The server hardcodes the topology and the client transmits only ciphertexts.

3.5 ArxEq & Equality Queries

The ArxEq index enables equality queries and builds on insights from the searchable encryption
literature [BHJP14], as explained in Section 3.12. We aim for ArxEq to be forward private, a
property shown to increase security significantly in this context [Bos16]: the server cannot use an
old search token on newly inserted data. We begin by presenting a base protocol that we improve in
stages.

3.5.1 Base protocol

Consider an index on the field age. ArxEq will encrypt the value in age (as follows) and it will then
tell the DB server to build a regular index on age.

The case when the fields are unique (e.g., primary key, IDs, SSNs) is simple and fast: ArxEq
encrypts the fields with EQunique and the regular index suffices. The rest of the discussion applies
to non-unique fields.

The client proxy stores a map, called ctr, mapping each distinct value v of age that exists in the
database to a counter indicating the number of times v appears in the database. For age, this map
has about 100 entries.

Encrypt and insert. Suppose the application inserts a document where the field age has value v.
The client proxy first increments ctr[v]. Then, it encrypts v into:

Enc(v) = H(EQunique(v),ctr[v]) (3.1)
where H is a cryptographic hash (modeled as a random oracle). This encryption provides semantic
security because EQunique(v) is a deterministic encryption scheme which becomes randomized
when combined with a unique salt per value v: ctr[v]. This encryption is not decryptable, but as
discussed in Section 3.8.2, Arx encrypts v with BASE as well. The document is then inserted into
the database.

Search token. When the application sends the query select x where age = 89, the client proxy
computes a search token using which the server proxy can search for all occurrences of the value
80. The search token for a value v is the list of encryptions from Equation (3.1) for every counter
from 1 to ctr[v]: H(EQunique(v),1),...,H(EQunique(v),ctr[v]).

Search. The server proxy uses the search token to reconstruct the query’s where clause as: age
= H(EQunique(v),1) or ... or age = H(EQunique(v), ctr[v]) (with the clauses in a random
order). The DB server uses the regular index on age for each clause in this query and returns the
results. If the number of values exceeds the maximum query size allowed by the backend database,
then Arx’s server proxy split the disjunction into multiple queries (at the cost of additional index
lookups).
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Note that the scheme provides forward privacy: the server cannot use an old search token to
learn if newly inserted values are equal to v as they would have a higher counter.

3.5.2 Reducing the work of the client proxy

The protocol so far requires the client proxy to generate as many tokens as there are equality matches
on the field age. If a query filters on additional fields, the client proxy does more work than the size
of the query result, which we want to avoid whenever possible. We now show how the client proxy
can work in time (logctr[v]) instead of ctr[v].

Instead of encrypting a value v as in Equation (3.1), the client proxy hashes according to the
tree in Figure 3.3. It starts with EQunique,(v) at the root of a binary tree. A left child node contains
the hash of the parent concatenated with 0, and a right child contains the hash of the parent with 1.
The leaves of the tree correspond to counters 0,1,2,3, ..., ctr[v].

The client proxy does not materialize this entire tree. Given a counter value ct, the proxy can
compute the leaf corresponding to ct, simply by using the binary representation of ct to compute
the corresponding hashes.

T = EQuniquey(v)

~

To=H 11 0) Ty=HT 1)

~ <

Too = H(T()” 0) To1 = H(T0|| 1) T10 = H(T1|| 0)

Figure 3.3: Search token tree.

New search token. To search for a value v with counter ctr[v], the client proxy computes the
covering set for leaf nodes 0, ..., ctr[v] — 1. The covering set is the set of internal tree nodes whose
subtrees cover exactly the leaf nodes O, ..., ctr[v] — 1. E.g., in Figure 3.3, ctr[v| = 3 and the covering
set of the three leaves is {7, T1o }. The nodes in the covering set constitute the search token. The
covering set can be easily deduced from the binary representation of ctr[v] — 1.

Search. The server proxy expands the covering set into the leaf nodes, and proceeds as before.

3.5.3 Updates

We have already discussed inserts. For deletes, Arx simply deletes the document. An update is a
delete followed by an insert. As a result, encrypted values for some counters will not return matches
during search. This does not affect accuracy, but as more counters go missing, it affects throughput
because the DB server wastes cycles looking for values with no matches. It also provides a small
security leakage because a future search leaks how many items were deleted. As a result, ArxEq
runs a cleanup procedure after each deletion. As a performance optimization, one can run a cleanup
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procedure when a search query for a value v indicates more than a threshold of missing counters,
relaxing security slightly.

Cleanup. The server proxy tells the client proxy how many matches were found for a search, say
ct. The client proxy updates ctr[v] with ct, chooses a new key k' for v, and generates new tokens
as in Figure 3.3: T, ..., T/; using k’. It gives these tokens to the server, which replaces the fields
found matching with these.

3.5.4 Counter map

To alleviate the burden of storing the counter map at the client proxy, it is possible to store it
encrypted at the server instead while still providing strong guarantees against offline attackers.
However, we recommend storing it at the client proxy for increased security against the online
attacker. We now discuss both design points and accompanying tradeoffs.

Counter map at server. The counter map can be stored encrypted at the server. An entry of the
sort v — ct becomes EQuniquey: (v) — EQuniquey; (ct), where k7 and k3 are two keys derived from
the master key, used for the counter map. When encrypting a value in a document or searching
for a value v, the client proxy first fetches the encrypted counter from the server by providing
EQuniq uey: (v) to the server. Then, the algorithm proceeds the same as above.

To avoid leaking the number of distinct fields, Arx pads the counter map to the number of
documents in the relevant collection. This scheme satisfies Arx’s security goal in Section 3.2.3: a
stolen database remains encrypted with semantic security and leaks nothing except size information.

Counter map at client. However, we recommend keeping the counter map at the client proxy
for higher security against an online attacker. If the counter map is stored at the server, then with
every newly inserted value, an online attacker can see which entry of the counter map is accessed
and which document is inserted in the database. Storing the counter map at the client hides such
correlations entirely.

Though the size of the counter map grows with the number of different values a field can take, in
many cases, the storage overhead is small—e. g., for low-cardinality fields such as gender, age, and
letter grades. Moreover, in the extreme case when all values are unique (i.e., the maximum possible
size for a counter map), ArxEq defaults to the regular index built over EQunique encryptions, which
doesn’t need a counter map at all. The case when there are many distinct values with few repetitions
is less ideal, and we implement an optimization for this case: to decrease the size of the counter
map, Arx groups multiple entries into one entry by storing their prefixes. As a tradeoff, the client
proxy has to filter out some results.

3.6 ArxAgg & Aggregation Queries

We now explain Arx’s aggregation over the encrypted indices. It is based on AES and is faster
than homomorphic encryption schemes like Paillier [Pai99]. Many aggregations happen over a
range query, such as computing the average days in hospital for people in a certain age group. Arx
computes the average by computing sum and count at the server, and then dividing them at the client
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proxy. Hence, let’s focus on the query: select sum(daysAdmitted) from patients where
70 < age < 80.

The idea behind aggregations in Arx is inspired from literature on authenticated data struc-
tures [LHKR10]. This work targets integrity guarantees (not confidentiality), but interestingly, we
use it for computations on encrypted data. Consider the ArxRange index in Figure 3.2 built on age.
At every node N in the tree, we add the partial aggregate corresponding to the subtree of N. For the
query above, N contains a partial sum of daysAdmitted corresponding to the leaves under N. The
root node thus contains the sum of all values. This value is stored encrypted with BASE.

To compute the sum over an arbitrary range such as [70, 80], the server first locates the edges
of the range as before, and then identifies a perfect covering set. Note that the covering set is
logarithmic in the size of the index. For each node in this set, the server returns the encrypted
aggregates of all its children and the encrypted value of the node itself to the client proxy, which
decrypts them and sums them up.

In the case of (i) inserting/deleting a document, or (ii) modifying a field having an aggregate, the
partial sums on the path from N to the root need to be updated, where N is the node corresponding
to the changed document. In the second case, the client also needs to repair the path in the tree, so
the partial sum update happens essentially for free.

This strategy supports any aggregation function of the form Y F(doc) where F is an arbitrary
function whose input is a document, as explained in Section 3.2.5. For aggregates over fields with
an ArxEq index, we have a similar strategy to the aggregates over a range, but we do not describe it
here due to space constraints. For all other cases, we use AGG . However, the number of such cases
is reduced significantly.

3.7 ArxJoin & Join Queries

We now describe how Arx supports a common class of join operations, namely, foreign-key joins.
Arx extends ArxEq or ArxRange for this purpose. This assumes that the join contains:

select [...] from C1 join C2
on Cl1.fkey = C2.1ID
where clause(C1) [and eq(C2)]

where C1 and C2 are the two collections being joined, fkey is the foreign key in C1 pointing to the
primary key ID in C2, and clause is a predicate that can be evaluated using an ArxEq or ArxRange
index. The query may additionally filter the joined documents in C2 using equality operations,
denoted by eq(C2).

3.7.1 ArxEq-based joins

Consider an example with collection C2 having a primary key ID, and collection C1 having a field
age with ArxEq, and diagnosis which is a foreign key pointing to C2.ID.
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The primary key in the secondary collection C2.1ID is encrypted with EQunique as before.
Consider inserting a document with age 10 and diagnosis ‘flu’ in C1, and let’s discuss how the client
proxy encrypts this pair. Since foreign keys are not unique, C1.diagnosis is encrypted with BASE.
Additionally, to perform the join, the client proxy computes an encrypted pointer for C1.diagnosis.
When decrypted, this pointer will point to the appropriate encrypted C2. ID. Instead of using one
key for ArxEq, the client proxy now uses two keys k; and kj. It generates a token for each key as
before: | and #,. The client proxy includes #; in the document as before, and uses #, to encrypt the
diagnosis ‘flu’ as in: J = BASE,, (EQunique(‘flu’)). J will help with the join. Hence, upon insert,
the pair (10, ‘flu”) becomes (BASE(10), t;, BASE(‘flu’), J). Note that the client does not add 7, to
the document: this prevents an attacker from decrypting the join pointer and performing joins that
were not requested.

Now consider the join query: select [...] from C1 join C2 on C1.diagnosis = C2.ID
where C1.age = 10. To execute this query, the server proxy computes #; and #, for the age of 10,
as usual with ArxEq. It locates the documents of interest using #1, and then uses #, to decrypt J and
obtain EQunique(‘flu”). This value is a primary key in C2, and the server simply does a lookup in
C2.

The where clause of the query may additionally filter documents in C2 using an equality
predicate, e.g., where age = 10 and C2.symptom = 'fever'. To filter the joined documents by
symptom, Arx employs the EQ protocol for equality checks as described in Section 3.3. Note that
this additional filtering cannot make use of an index; hence, it is restricted to equality predicates
and may not contain range operations.

3.7.2 ArxRange-based joins

Arx employs a different strategy in case the where clause of the join query requires an ArxRange
index for execution, e.g., where C1.age > 10. In such a scenario, ArxJoin’s tokens for C1.age
cannot be computed as described above.

Instead, the foreign key values encrypted with BASE are directly added to the nodes of the
ArxRange index over C1.age, which already contain the encrypted primary keys of documents in
C1 (as described in Section 3.4.3). While traversing the index in order to resolve the where clause,
the server fetches the encrypted foreign keys as well from the nodes of interest, and sends them to
the client proxy for decryption as with regular ArxRange. The client decrypts the encrypted foreign
keys, re-encrypts them with EQunique, shuffles them, and returns them to the server. The server
then uses these values to locate the corresponding documents in C2, and performs the join. Note
that this strategy does not bring any extra round trips between the proxies.

Updates. The semantics of updates remain unchanged in the presence of ArxJoin. Updates to the
foreign key C1. fkey simply update the underlying index, ArxEq or ArxRange. Updates to C2.ID
are also straightforward, and do not affect the pointers in C1. This is because ID is a primary key in
C2 and its values are unique.
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3.8 Arx’s Planner

Arx’s planner takes as input a set of query patterns, Arx-specific annotations, and a list of regular
indices (per Section 3.2.4), and produces a data encryption plan, a list of Arx-style indices, and a
query plan for each pattern.

3.8.1 Index planning

Before deciding what index to build, note that ArxRange and ArxEq support compound indices,
which are indices on multiple fields. For example, an index on (diagnosis, age) enables a quick
search for diagnosis = 'flu' and age > 10. Arx enables these by simply treating the two fields
as one field alone. For example, when inserting a document with diagnosis= 'flu’', age = 10,
Arx merges the fields into one field 'flu' || 90010, prefixing each value appropriately to maintain
the equality and order relations, and then builds a regular Arx index.

When deciding what indices to build, we aim to provide the same asymptotic performance as
the application admin expects: if she specified an index over certain fields, then the time to execute
queries on those fields should be logarithmic and not require a linear scan. At the same time, we
would like to build few indices to avoid the overhead of maintaining and storing them. Deciding
what indices to build automatically is challenging because (1) there is no direct mapping from
regular indices to Arx’s indices, and (2) Arx’s indices introduce various constraints, such as:

* A regular index serves for both range and equality operations. This is not true in Arx, where
we have two different indices for each operation. We choose not to use an ArxRange index
for equality operations because of its higher cost and different security.

* Unlike a regular index, a compound ArxEq index on (a,b) cannot be used to compute equality
on a alone because ArxEq performs a complete match.

* A range or order-by-limit on a sensitive field can be computed only via an ArxRange index,
so it can no longer be computed after applying a separate index.

All these are further complicated by the fact that the application admin can explicitly specify cer-
tain fields to be nonsensitive (as described in Section 3.2.4), and simultaneously declare compound
indices on a mixture of fields, both sensitive and not. Similarly, queries can have both sensitive as
well as nonsensitive fields in a where clause.

As a consequence of our performance goal and these constraints, interestingly, there are cases
when Arx builds an ArxRange index on a composition of a nonsensitive and a sensitive field.
Consider, for example, that the admin built an index on a, a nonsensitive field, and wants to perform
a query containing where a = and s >, where s is sensitive. The admin expects the DB to filter
documents by a rapidly based on the index, and then, to filter the result by “s >”.

If we follow the straightforward solution of building an ArxRange index on s alone, the resulting
asymptotics are different. The DB will filter by s and then, it will scan the results and filter them by
a, rendering the index on a useless. The reason the admin specified an index on a might be that
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performance is better if the server filters on “a =" first; hence, the new query plan could significantly
affect the performance of this query especially if the ArxRange index returns a large number of
matches. To deliver the expected performance, Arx builds a composite ArxRange index on (a,s).

Note that this is beneficial for security too because the server will not learn which documents
match one filter but not the other filter: the server learns only which documents matched the entire
where clause in an all-or-nothing way.

Despite all these constraints, our index planning algorithm is quite simple. It runs in two
stages: per-query processing and global analysis. Only the where clauses (including order-by-limit
operations) matter here. The first stage of the planner treats sensitive and nonsensitive fields equally.
For clarity, we use two query patterns as examples. Their where clauses are: Wi: “a = and b =",
Wy: “x=andy > and z =". The indices specified by the admin are on x and (a,b).

Stage 1: Per-query processing. For each where clause W;, extract the set of filters S; that can use
the indices in a regular database. Example: For Wi, S| = {(a =,b =)} and for W,, S, = {(x =)}.

Then, if W; contains a sensitive field with a range or order-by-limit operation, append a “>”
filter on this field to each member of S;, if the member does not already contain this. Based on the
constraints in Section 3.2.5, a where clause cannot have more than one such field. Example: For W,
S1={(a=,b=)}, and for W, S, = {(x =,y >)}.
Stage 2: Global analysis. Union all sets S = U;S;. Remove any member A € § if there exists a
member B € S such that an index on B implies an index on A. The concrete conditions for this
implication depend on whether the fields involved are sensitive or not, as we now exemplify.
Example: If a and b are nonsensitive, and S contains both (¢ =,b =) and (a =,b >), then (a =,b =)
is removed. If all of @, b and ¢ are sensitive and S contains both (a =,b =,¢ >) and (a =,b >), then
(a =,b >) is removed. For W; and W, above, if b and y are sensitive (a,x,z can be either way), the
indices Arx builds are: ArxEq (a,b) and ArxRange (x,y).

One can see why our planner maintains the asymptotic performance of the admin’s index
specification: each expression that was sped up by an index remains sped up. In Section 3.10, we
show that the number of extra indices Arx builds is modest and does not blow up in practice.

3.8.2 Data layout

Next, laying out the encryption plan is straightforward:

» All values of a sensitive field are encrypted with the same key, but this key is different from
field to field.

» For every aggregation in a query, decide if the where clause in this query can be supported
entirely by using ArxRange or ArxEq. Concretely, the where clause should not filter by
additional fields not present in the index. If so, update the metadata of the respective index to
follow our aggregation strategy per Section 3.6. If not, encrypt the respective fields with AGG
if the aggregate requires the computation of a sum.
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Protocol (¢) Operation Leakage (L.(DB,q))
EQ where field=w sp(w), Hist(w)
(Section 3.3) insert sp(w)
delete -
ArxEq  where field =w sp(w), Hist(w)

(Section 3.5)  cleanup (Section 3.5.3) sp(w), Hist(w)
insert, delete -

ArxRange where a < field <b rk(a—1), rk(b)
(Section 3.4) orderby limit ¢ y4
insert, delete v rk(v)

ArxJoin the same information as ArxEq or ArxRange, depend-
(Section 3.7) ing on which ArxJoin was built on, as well as leakage
as in EQ for the foreign key, where each match iden-

tifies a primary key.

Table 3.1: Query leakage in Arx’s protocols.

* For every query pattern, if the where clause W; checks equality on a field f that is not part of
every element of S;, encrypt f with EQ (since at least one query plan will need to filter this
field by equality without an index).

* For every sensitive field projected by at least one query, additionally encrypt it with BASE.
The reason is that EQ and our indices are not decryptable.

3.9 Security Analysis

We now formalize the security guarantees of Arx. We first develop a formal model of a database
system, and then provide leakage definitions with respect to offline and online attackers. Proofs of
security follow in an extended report [PBP16].

Notation. We denote the set of all binary strings of length n as {0, 1}". We write [¢;]!_, to denote
the list of values [ay,...,a,]. If S is a list or a set, then |S| denotes its size.

3.9.1 Preliminaries

A database system is a pair of stateful random access machines (Client, Server). The server Server
stores a database DB, and the client Client can through interaction with Server compute gueries out
of a set of supported queries, which may modify the database.

Database. A database DB = {Ty,...,T,} is a set of collections. Each collection T; = (F;,Ind;,
[(idj,D;)];)) comprises a set of fields F; = {fi,...,fy} of size m;; a set of indices Ind;; and
a list of identifier-document pairs, where id; is the identifier for document D;. A document
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Dj = [wi,...,wp,] is a list of keywords where w; is indexed by field f; (denoted w; = D [f;]). Here,
wi € {0, 1Ml {9, where ||f;|| denotes the size of the keywords in the field’s domain. Also, we
write || T|| to denote the number of documents in collection T.

Given a collection T, we write T(w) to denote the set of identifiers of documents that contain w,
ie,T(w)={id|3(id,D) € T s.t. w € D}.
Indices. Given a collection T; and a field f, an index I € Ind; is a search tree built over the D j[f],
for all D; € T;. We represent the search tree as a tuple (V, E) of nodes and edges, where each node
contains a function f that enables tree traversal. We define the shape of an index shape(/) = E to
be the set of edges. Since a field may contain multiple indices (i.e., both ArxEq and ArxRange), we
write I(f) to refer to all the indices maintained on a field f.

Schema. LetE = {BASE, EQ,EQunique, ArxEq,ArxRange} denote the set of protocols supported
by Arx. We define the schema S of a collection T; to be its name, its set of fields, the size of each
field, protocols maintained per field, and the shapes of all indices:
S(Ti) = (i, {f;, If;ll, plan(f;), shape(I) VI € I(f;)}'1L ).

Here, plan(f;) = {e € E} is the set of protocols maintained on field f;. The schema of a database
DB is then given by S(DB) = |, S(T;).

Queries. A predicate pred = (f,op) is a tuple comprising a field f and an operation op over the
field, where op € {<,>,=,< and >,orderby limit}. A query q = (ts, T,qtype, pred, params)
is a 5-tuple that comprises a timestamp ts, the name of a collection T, a query type qtype €
{read,insert,delete}, a predicate pred, and query parameters params corresponding to the
predicate. We model updates as a delete followed by an insert.

Note that our definition of a query consists only of a single predicate for simplicity of exposition.
We model queries with multiple predicates as a list of single-predicate queries. To insert a document
D, we model the operations as a list of insert queries, one per field of the document; in these
insert queries, q.pred.op = L, q.pred.f is the corresponding field, and q.params is the value to be
inserted.

As an example, for the query select * from patients where 1 < age < 5, we have
T = patients, qtype = read, pred = (age, <), params = (1,5), and D = ¢.

We write DB(q) = ([id;];,e) to denote the set of identifiers of documents that satisfy q along
with the protocol e € E used to execute q. For inserts, deletes, and updates, [id;]; indicates the list of
documents inserted, deleted, or updated.

Admin APIL. During system setup, for each collection T;, the admin supplies a predicate set:

P(T:) = {[(fj,op;)]; | fj € Fi}
which is the set of query predicates that will be issued by Client over the collection (as described in
Section 3.2.4). The global predicate set is then given by P(DB) = |J,IP(T;).

3.9.2 Leakage definitions

We define the leakage profile of Arx, £ = { L, Lon}: first for the database itself (offline attacker),
then for the execution of each query (online attacker).
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Definition 2 (Offline leakage of a database). The leakage of a database DB is:
Loff(DB) = (S(DB),P(DB), {VT; || Ti[[}).
where S(DB) is the schema of the database, and P(DB) is the global predicate set of the database.

Before defining the leakage of queries, we define the rank of an element x in a list L = [ay, ..., a,]
as rk(L,x) = [{a; | a; < x}|, and we write rk(x) if L is clear from context.

Our online leakage function £, is stateful, and maintains the guery history of the database
Q(DB) = [q;]; as a list of every query issued by Client. We denote the query history of a collection
TasQ(T)={q|qeQ(DB) and q. T =T}.

Given collection T with a field f that has the EQ or ArxEq protocol maintained on it, we define
the search pattern of a keyword w (following Bost [Bos16]) as:
sp(w, T,f) ={q.ts| 3q € Q(T) s.t. q.pred is (f,=), and w € q.params},
and we write sp(w) if T and f are clear from context. Essentially, sp leaks which equality queries
relate to the same keyword. Similarly, for collection T with a field f containing the EQ or ArxEq
protocol, we define the write history of keyword w as:

WHist(w, T,f) = {(q.ts, q.qtype, id) | 3q € Q(T) s.t. id € DB(q), q.qtype € {insert,delete},
and D[f] = w},

where and D is the document corresponding to id. We write WHist(w) if T and f are clear from
context. Essentially, WHist leaks the list of all write operations on keyword w.

Finally, let TO be the state of collection T in the initial database, before any queries are issued.
Then, we define the history of keyword w as Hist(w, T) = (T%(w), WHist(w, T)), and we write
Hist(w) if T is clear from context.

Definition 3 (Online leakage of queries). Let ([id;];,[e;];) <~ DB(q). Then, the leakage of a query
q over database DB is:

Lon(DB,q) = ((q.ts,q.T,q.qtype, q.pred), [id;];, Le (DB, q))

where L(DB,q) is additional leakage due to the protocol e used to execute the query, as detailed

in Table 3.1.

We note that the leakage of ArxEq, as captured in Table 3.1, is similar to that of Sophos [Bos16]
and Diana [BMO17].

3.10 Evaluation

We now show that Arx supports real applications with a modest overhead.

Implementation. While the design of Arx is decoupled from any particular DBMS, we imple-
mented our prototype for MongoDB 3.0. Arx’s implementation consists of ~11.5K lines of Java,
and ~1800 lines of C/C++ code. We used the Netty I/O framework [Net17] to implement Arx’s
proxies. We also disable query logs and query caches to reduce the chance that an offline attacker
gets information an online attacker would see, as discussed in Grubbs et al. [GRS17].

Testbed. To evaluate the performance of Arx, we used the following setup. Arx’s server proxy was
collocated with MongoDB 3.0.11 on 4 cores of a machine with 2.3GHz Intel E5-2670 Haswell-EP
processors and 256GB of RAM. Arx’s client proxy was deployed on 4 cores of an identical machine.
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Application Examples of fields N/S e i Total indices

ArxEq ArxRange Vanilla Arx
ShareLaTeX [Sha] document lines, edits 1 12 4 12 16

Uncap (medical) [UNC] heart rate, tests - 0 2 2 2
NodeBB (forum) [Nod] posts, comments 2 13 4 12 17
Pencilblue (CMS) [Pen] articles, comments 3 46 27 70 73
Leanote (notes) [Lea] notes, books, tags 5 64 28 69 92
Budget manager [Bud]  expenditure, ledgers - 5 0 5 5
Redux (chat) [Red] messages, groups - 3 0 3 3

Table 3.2: Examples of applications supported by Arx: examples of fields in these applications;
the number of queries not supported by Arx (N/S); how many Arx-specific indices the application
requires; and the total number of indices the database builds in the vanilla application and with Arx.
Since ArxAgg is built on top of ArxEq and ArxRange, we do not count it separately.

A separate machine with 48 cores was used to run the clients. In throughput experiments, we ran
the clients on all 48 cores of the machine to measure the server at maximum capacity. All three
machines were connected over a 1 GbE network; to simulate real-world deployments, we added a
latency of 10ms (RTT) to each server using the tc utility.

3.10.1 Functionality

To understand if Arx supports real applications, we evaluate Arx on seven existing applications built
on top of MongoDB. We manually inspected the source code of each application to obtain the list
of unique queries issued by them, and cross-verified the list against query traces produced during an
exhaustive run of the application. All these applications contain sensitive user information, and Arx
encrypts all fields in these applications by default.

Table 3.2 summarizes our results. With regard to unsupported queries across the applications,
4 of the 11 were due to timestamps; Arx can support these queries in case the timestamps are
nonsensitive and explicitly specified as such by the application admin. The limitation was the
number of range/order operations Arx allows in the query, as explained in Section 3.2.5. For
NodeBB, the two unsupported queries performed text searches, and for Leanote, the five queries
were evaluating regular expressions, both of which Arx cannot support. Even so, these are only a
small fraction of the total queries issued, which are tens to hundreds in number. In general, the table
shows that Arx can support almost all the queries issued by real applications. In cases where an
application contains queries that are not supported by Arx, the application admin should consider
whether the application needs the query in that form and if she can adjust it (e.g., by removing a
filter that is not necessary or that can be executed in the application). The admin could also consider
if the unsupported data field is nonsensitive and mark it as such, but this should be done with care.
The table also shows that though Arx’s planner increases the number of indices by 20%, this number
does not blow up. The main reason is that the number of fields with order queries that are not
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Scheme Enc. Dec. Token Operation
BASE 0.327  0.13 - -
EQ 4.998 - 2.353  Match: 2.368
EQunique 0.012  0.047 - Equality: ~0
AGG 16,254 15,116 - Sum: 8

Table 3.3: Microbenchmarks of cryptographic schemes used by Arx in us

Height Token Cover Expansion

8 3.7 9.5 131.9
10 4.6 14.5 542.3
12 5.5 20.5 2164.9

Table 3.4: Microbenchmarks of ArxEq operations in ts.

indexed by the application is small.

3.10.2 Cryptographic schemes microbenchmarks

The cryptographic schemes used by Arx are efficient, as shown in Table 3.3. The reported results
are the median of a million iterations.

ArxEq microbenchmarks. The ArxEq protocol encrypts a value v as (BASE(v),?), where ¢ is a
token for the value computed using the search token tree as described in Section 3.5. The time to
compute ¢ is directly proportional to the height of the tree, involving a hash computation at each
level. We evaluate the time taken to compute ¢ for different tree heights, and report the results as the
median of a 100K iterations in Table 3.4. The results show that ArxEq encryption is efficient.

To search for v, the client proxy computes the covering set of all tokens and sends it to the server.
The computation depends on the number of existing tokens for v, which ranges from 1 to 2" where
h is the height of the tree. We compute the cover for a randomly selected number of tokens, and
report the median time over 100K iterations. The server proxy searches for v by expanding the
covering set into all possible tokens. Table 3.4 shows that the operations are efficient, and that the
client proxy does little work in comparison to the server.

ArxRange microbenchmarks. Our garbled circuits are implemented in AES, which takes
advantage of existing hardware implementations. For a 32-bit value, the garbled circuit is 3088
bytes long, the time to garble is 19.8K cycles and the time to evaluate is 7.8K cycles. For a 128-bit
value, the circuit is 12.3KB in size, the time to garble is 70.1K cycles (0.03ms) and the time to
evaluate is 29.1K cycles.

ArxJoin microbenchmarks. ArxJoin builds on top of ArxEq and ArxRange. As a result, the

performance of joins is closely tied to the performance of the underlying index. In this section, we
report only on the additional performance overhead ArxJoin brings.
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For joins based on ArxEq, the client proxy computes two sets of covers instead of one, thereby
incurring an additional latency of 14.5us for a token tree of height 10 (Table 3.4). The server proxy
expands the additional set, and uses it to decrypt the foreign key pointers. Therefore, the latency at
the server increases by (i) the cost of expanding the second covering set (Table 3.4), and (ii) the cost
of decrypting the foreign key pointers in the filtered documents (Table 3.3). As a result, a query that
joins 10,000 documents increases the latency of ArxEq by 542.3us +10,000 x 0.13us = 2.38ms
at the server.

Joins over ArxRange are executed by adding the encrypted foreign key pointers to the index
nodes, which are sent to the client proxy for decryption. Such joins increase the latency of ArxRange
by the time taken by the client proxy to decrypt the foreign key pointers. As a result, a join over
10,000 documents takes 10,000 x 0.13us = 1.3ms longer.

3.10.3 Performance of ArxEq

We evaluate the overall performance of ArxEq (without the optimization for unique values) using
relevant queries issued by ShareLaTeX. These queries filter documents by one field using ArxEq.
We loaded the database with 100K documents representative of a ShareLaTeX workload.
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Figure 3.4: ArxEq read throughput with in- Figure 3.5: ArxEq write throughput with in-
creasing no. of duplicates. creasing no. of duplicates.

Figure 3.4 compares the read throughput of ArxEq with a regular MongoDB index, when varying
the number of duplicates per value of the indexed field. The ArxEq scheme expands a query from a
single equality clause into a disjunction of equalities over all possible tokens. The number of tokens
corresponding to a value increases with the number of duplicates. The DB server essentially looks
up each token in the index. In contrast, a regular index maps duplicates to a single reference and can
fetch them all in a scan. Both indices need to fetch the documents for each primary key identified
as a matching, which constitutes a significant part of the execution time. Overall, ArxEq incurs a
penalty of 55% in the worst case, of which 8% is due to Arx’s proxy. When all fields are unique,
the added latency due to ArxEq is small—1.13ms versus 0.94ms for MongoDB. As the number of
duplicates increases, the latency of both MongoDB and Arx increase as well—at 100 duplicates,
Arx’s latency is 42.1ms, while that of MongoDB is 18.8ms.
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Figure 3.6: YCSB throughput for different workloads.

Read latency (ms) Write latency (ms)

Dup.
Mongo Proxy Arx  Mongo Proxy Arx

1 0.94 1.04 1.13 2.69 272 330
10 1.91 2.23 4.29 2.69 266 334
20 3.81 4.19 8.49 2.62 265 3.28
50 940 10.09 20.86 2.55 253 333
100 18.80 20.23 42.10 2.50 251 335

Table 3.5: ArxEq latency of reads and writes with increasing no. of duplicates.

Figure 3.5 compares the write throughput of ArxEq with increasing number of duplicates. The
write performance of a regular B+Tree index slowly improves with increased duplication, as a result
of a corresponding decrease in the height of the tree. In contrast, writes to an ArxEq index are
independent of the number of duplicates by virtue of security: each value looks different. Further,
since each individual insert requires the computation of a single token (a constant-time operation),
the write throughput of ArxEq remains stable in this experiment. As a result, the net overhead grows
from 18% (when fields are unique) to 25% when there are 100 duplicates per value. Latency follows
a similar trend, as shown in Table 3.5, and remains stable for ArxEq at ~3.3ms. For a regular
MongoDB index, the latency slowly improves from 2.7ms to 2.5ms as the number of duplicates
grows to 100.

YCSB Benchmark. Since Arx is a NoSQL database, we also evaluate its overhead using the
YCSB benchmark [CST"11]. YCSB conforms to ArxEq’s optimized case when fields are unique.
In this experiment, we loaded the database with 1M documents. Arx considers all fields to be
sensitive by default, including the primary key. Hence, the primary key has an ArxEq index and
the rest of the fields are encrypted with BASE. Figure 3.6 shows the average performance of Arx
versus vanilla MongoDB, across four different workloads with varying proportions of reads and
writes, as specified. “R” refers to proportion of reads, “U” to updates, “I” to inserts, and “RMW” to
read-modify-write. The reduction in throughput is higher for read-heavy workloads as a result of the
added latency due to sequential decryption of the result sets. Overall, the overhead of Arx is 3%-9%
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Figure 3.7: ArxRange latency of reads and Figure 3.8: ArxRange throughput, with and
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across workloads, showing that indexing primary keys is fast with Arx. Increase in latency due
to Arx is also unremarkable—for example, average read latency increases from 2.31ms to 2.43ms
under peak throughput, while average update latency increases from 2.36ms to 2.47ms in the 50%
read-50% update workload.

3.10.4 Performance of ArxRange

We now evaluate the latency introduced by ArxRange. We pre-inserted 1M values into the index,
and assumed a length of 128 bits for the index keys, which is sufficient for composite keys. We
cached the top 1000 nodes of the index at the client proxy, which amounted to a mere 88KB of
memory. We subsequently evaluated the performance of read and write operations on the index.
Figure 3.7 illustrates the latency of each operation, divided into three parts: (1) the time taken to
traverse the index, (2) the time taken to decrypt the retrieved document IDs (for reads)—this incurs
a network roundtrip as described in Section 3.4.3; (3) the time taken to retrieve the corresponding
results (for reads) or insert the document (for writes), and (4) the time taken to repair the index. The
generation of fresh garbled circuits in order to repair the index contributes the most towards latency.

Overall, range queries cost more than writes because the former require a network roundtrip
in order to decrypt the retrieved IDs before fetching the corresponding documents. The cost of
traversing a path in the index is ~3ms. We note that the strawman in Section 3.4.1 incurs a roundtrip
overhead for each node in the path, while our protocol incurs only a single roundtrip cost for
decrypting the IDs in the leaves of the index. Figure 3.7 also highlights the improvement when the
index can be optimized for monotonic inserts, which was common in the applications we evaluated.
We also note that though the overall latency of ArxRange is high, the results of a range query can be
returned to the client before performing the repair operation (see Section 3.4.4). Thus, in low load
scenarios, the effective latency of a range query drops to ~15ms.

We next measure the throughput of ArxRange in Figure 3.8. Without client-side caching of
nodes, the throughput of the index is very limited, since each operation requires the circuit at the
root of the index to be replenished, forcing the operations to be sequential. However, when the top
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few levels of the tree are cached at the client, multiple queries to different parts of the index can
proceed in parallel, and the throughput increases by more than an order of magnitude (at which
point the client proxy in our testbed gets saturated).

3.10.5 Performance of ArxAgg

The cost of computing an aggregate over a range in Arx is essentially equal to the cost of computing
the range query. This is because traversing the index for a range query automatically computes the
covering set. As a result, with 1M values in the index, aggregating over a range takes ~3 ms in Arx,
equal to the cost of traversing the index.

3.10.6 End-to-end evaluation on ShareLaTeX
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Figure 3.9: ShareLaTeX performance with Figure 3.10: ShareLaTeX performance with
Arx’s client proxy on varying cores increasing no. of client threads

We now evaluate the end-to-end overhead of Arx using ShareLaTeX [Sha], a popular web
application for real-time collaboration on LaTeX projects, that uses MongoDB for persistent storage.
We chose ShareLLaTeX because it uses both of Arx’s indices, it has sensitive data (documents,
chats) and is a popular application. ShareLLaTeX maintains multiple collections in MongoDB
corresponding to users, projects, documents, chat messages, etc. We considered all the fields in the
application to be sensitive, which is the default in Arx. The application was run on four cores of the
client server.

Before every experiment, we pre-loaded the database with 100K projects, 200K users, and
other collections with 100K records each. Subsequently, using Selenium (a tool for automating
browsers [Sel]), multiple users launch browsers in parallel and collaborate on projects in pairs—
(1) editing documents, and (ii) exchanging messages via chat. We ran the user processes on a separate
machine with 48 cores. Figure 3.9 shows the throughput of ShareLaTeX in a vanilla deployment
with regular MongoDB, compared to its performance with Arx in various configurations. The client
proxy is either collocated with the ShareLaTeX application sharing the same four cores, or deployed
on extra and separate cores. The application’s throughput declines by 29% when the client proxy
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and ShareLLaTeX are collocated; however, when two separate cores are allocated to Arx’s client
proxy, the reduction in throughput stabilizes at a reasonable 10%.

Figure 3.10 compares the performance of Arx with increasing load at the application server,
when four separate cores are allocated to Arx’s client proxy. It also shows the performance of
MongoDB with the Netty [Netl7] proxy without the Arx hooks. Note that each client thread issues
many requests as fast as it can, bringing a load equivalent to many real users. At peak throughput
with 40 clients and 100% CPU load at the application, the reduction in performance due to Arx is
11%; 8% is due to Arx’s proxy, and the remaining 3% due to its encryption and indexing schemes.

Finally, the latency introduced by Arx is modest compared to the latency of the application.
In conditions of low stress with 16 clients, performance remains bottlenecked at the application,
and the latency added by Arx is small in comparison, increasing from an average of 268ms per
operation to 280ms. At peak throughput, the latency of vanilla ShareLaTeX is 355ms, which grows
by 15% to 408ms with Arx, having marginal impact on user experience.

In sum, Arx brings a modest overhead to the overall web application. There are two main
reasons for this. First, web applications have a significant overhead themselves at the web server,
which masks the latency of Arx’s protocols. Second, even though ArxRange is not cheap, it’s one
out of a set of multiple operations Arx runs, with the others being faster and overall more common
in applications.

3.10.7 Storage

Arx increases the total amount of data stored in the database because: (1) ciphertexts are larger
than plaintexts for certain encryption schemes, and (2) additional fields are added to documents in
order to enable certain operations, e.g., equality checks using EQ, or tokens for ArxEq indexing.
Further, ArxRange indices are larger than regular B+Trees, because each node in the index tree
stores garbled circuits. Vanilla ShareLaTeX with 100K documents per collection occupied 0.56GB
in MongoDB, with an extra 48.7 MB for indices. With Arx, the data storage increased by 1.9x
to 1.05GB. The application required three compound ArxRange indices, which together occupied
8.4GB of memory at the server proxy while indices maintained by the database occupied 56.5MB.
This resulted in a net increase of 16x at the DB server. We note, however, there remains substantial
scope for optimizing index size in our implementation.

Finally, the application required two ArxEq indices for which counter maps were maintained at
the client proxy, which in turn occupied 8.6MB of memory, illustrating that ArxEq imposes modest
storage overhead at the application server. Moreover, the values inserted into the counter maps were
distinct; in case of duplicates, the memory requirements would be proportionately lower.

3.10.8 Comparison with CryptDB

Arx supports fewer queries than CryptDB, but we find their functionalities are nevertheless compa-
rable. For example, CryptDB supports all the queries in the TPC-C benchmark [TPCa], while Arx
supports 30 out of 31 queries. Arx also enables a rich class of applications as shown above, though
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it does not support group-by operations (for security issues), arbitrary conjunctions of range filters,
and more generic joins, supported by CryptDB.

As regards performance, on one hand, CryptDB’s order and equality queries via PPE schemes are
faster than Arx’s—with a reported overhead of ~1ms [PRZB11], as opposed to a few milliseconds
in Arx—but also significantly less secure. On the other hand, Arx’s aggregate over a range is an
order of magnitude faster for the same security, because CryptDB uses Paillier [Pai99] to compute
aggregates which requires a homomorphic multiplication per value in the range. For a range of
10,000 values, aggregates take 80ms in CryptDB compared to ~3ms in Arx. Overall, Arx is a
heavier solution due to the significant extra security, but remains at par with CryptDB in terms of
the overall impact on applications: both systems report an overhead on the order of 10%, and an
added latency on the order of milliseconds per operation.

3.11 Limitations and Future Work

ArxRange extensions. Our current ArxRange index is a binary tree. An interesting extension is
to implement the index for data structures with higher fanout such as B-trees, e.g., by (i) storing at
each node in the tree multiple garbled circuits; and (ii) using a history-independent B-treap data
structure [Gol09], instead of a binary treap.

History-independence. One needs to be careful that when logically implementing a history-
independent data structure (as in ArxRange), the physical implementation of it is history-independent
as well. For example, in our treap data structure, we ultimately require file system support for
implementing secure deletion [BS13,RBC13]. This is because, when a node is logically deleted,
the file system needs to ensure that instead of merely unlinking the data structure in memory, all
copies of the data (caches, in-memory and disk) are in fact physically removed so as to become
irrecoverable to an attacker. Implementing secure deletion is complementary to our work.

Transactions. Arx currently does not support transactional semantics. While our techniques can
be extended to transactional systems as well, it has significant practical challenges. For instance,
our ArxRange index requires updates to multiple nodes in the tree per query along with interaction
with the client, making support for transactions complicated. However, doing so is interesting future
work.

3.12 Related Work

We compare Arx with state-of-the-art EDBs, and discuss protocols related to its building blocks,
ArxEq and ArxRange. Early approaches [HILMO02] used heuristics instead of encryption schemes
with provable security. We do not discuss PPE-based EDBs [PRZB11,AEK 13, TKMZ13,PBC"16]
further as we have already compared Arx against them extensively in Section 3.1 and Section 3.2.3.
Seabed [PBC"16] hides frequency in some cases, but still uses PPE.

EDBs using semantically-secure encryption. This category is the most relevant to Arx, but
unfortunately, there is little work done in this space. First, the line of work in [CJJ 114, FJK " 15]
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is based on searchable encryption, but is too restricted in functionality. It does not support joins,
order-by-limit queries (commonly used for pagination, more common than range queries in TPC-
C [TPCa]), or aggregates over a range (because the range identifies a superset of the relevant
documents for security, yielding an incorrect aggregate). Regarding security, while being signif-
icantly more secure than PPE-based EDBs for offline attackers, for online attackers they could
leak more than PPE-based EDBs because their range queries leak the number of values matching
sub-ranges as well as some prefix matching information—Ieakage that is not implied by order.
Arx addresses all these aspects. Other recent works [KM 16, KLL"16] also support equality-based
queries but do not support range, order-by-limit, or aggregates over range queries; the former
doesn’t support inserts or updates either.

Second, BlindSeer [PKV " 14] is another EDB providing semantic security. BlindSeer provides
stronger security than Arx and even hides the client query from the server through two-party com-
putation. Its primary drawbacks with respect to Arx are performance and functionality. BlindSeer
requires a large number of interactions between the client and server. For example, for a range
query, the client and server need to interact for every data item in the range (and a few times more)
because tree traversal is interactive. If the range contains many values, this query is slow. In Arx,
there is no interaction in this case. BlindSeer also does not handle inserts easily, nor does it support
deletes, updates, aggregates over ranges or order-by-limit queries.

Finally, Obladi [CBC™ 18] targets much stronger guarantees than Arx by combining ACID
semantics with ORAM, but consequently, is also orders of magnitude slower.

Work related to ArxEq. ArxEq falls in the general category of searchable-encryption schemes
and builds on insights from this literature. While there are many schemes proposed in this
space [SWP00, CGKO06,KPR12,0KKM13,CJJ " 14,FJK"15,BHIP14,LCS™ 14, Kur14,NPG14,
SPS14,HAJ " 14,Bos16], none of them meets the following desired security and performance from a
database index. Besides semantic security, when inserting a value, the access pattern should not leak
what other values it equals, and an old search token should not allow searching on newly inserted
data (forward privacy), both crucial in reducing leakage [Bos16]. Second, inserts, updates and
deletes should be efficient and should not cause reads to become slow. ArxEq meets all these goals.
Perhaps the closest prior work to ArxEq is [CJJ*14]. This scheme uses revocation lists for delete
operations, which adds significant complexity and overhead, as well as leaks more than our goal in
Arx: it lacks forward privacy and the revocation lists leak various metadata. Sophos [Bos16] also
provides forward privacy, but uses expensive public key cryptography instead of symmetric key.
Diana [BMO17] is similar to ArxEq.

Work related to ArxRange. There has been a significant amount of work on OPE schemes
in both industry and research communities [OSCO03, AKSX04, YKK'11, AEAEMO09, LPL*09,
KAKI10,XYHI12,LW12,LW13,PLZ13,BCL0O09,BCO11,AWW12,Cipb,Ras11]. OPE schemes
are efficient but have significant leakage [NKW15]. Order-revealing encryption (ORE) provides
semantic security [BLR 14, CLWW16,L.W16]. The most relevant of these is the construction by
Lewi and Wu [LW16] which is more efficient than ArxRange because it does not need replenishment,
but also less secure because it leaks the position where two plaintexts differ. Thus, it is not strictly
more secure than OPE.
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3.13 Summary

In summary, Arx is a practical and functionally rich database system that encrypts data only with
semantically secure schemes. As a result, Arx provides significantly stronger security than PPE-
based EDBs, while ensuring that the performance of the system remains satisfactory. Our evaluation
shows that Arx supports real applications such as ShareLaTeX with a modest overhead.
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Chapter 4

Collaborative SQL Analytics on Encrypted
Data

This chapter presents Senate [PKY 721], a platform that enables multiple parties to jointly run
SQL analytics on their collective data, without sharing their unencrypted data with each other.
At the heart of Senate lies a new MPC protocol that decomposes the cryptographic computation
into smaller units, some of which can be executed by subsets of parties and in parallel, while still
providing strong security guarantees against malicious attackers.

4.1 Introduction

A large number of services today collect valuable sensitive user data. These services could benefit
from pooling their data together and jointly performing query analytics on the aggregate data. For
instance, such collaboration can enable better medical studies [BEE™ 17, KBV 13]; identification of
criminal activities (e.g., fraud) [SVHA ™ 19]; more robust financial services [SVHA 19, BFLV12,
AKL12,PNH17]; and more relevant online advertising [IKNT17]. However, many of these insti-
tutions cannot share their data with each other due to privacy concerns, regulations, or business
competition.

As described in Chapter 2, secure multi-party computation [ Yao82, GMWS87, BGW88] (MPC)
promises to enable such scenarios by allowing m parties, each having secret data d;, to compute a
function f on their aggregate data, and to share the result f(d,,...,d,) amongst themselves, without
learning each other’s data beyond what the function’s result reveals. To summarize at a high level,
MPC protocols work by having each party encrypt its data, and then perform joint computations on
encrypted data leading to the desired result.

Despite the pervasiveness of data analytics workloads, there are very few works that consider
secure collaborative analytics. While closely related works such as SMCQL [BEE ™ 17] and Con-
clave [VSG'19] make useful first steps in the direction of secure collaborative analytics, their main
limitation is their weak security guarantee: semi-honest security. Namely, these works assume that
each party, even if compromised, follows the protocol faithfully. If any party deviates from the
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protocol, it can, in principle, extract information about the sensitive data of other parties. This is an
unrealistic assumption in many scenarios for two reasons. First, each party running the protocol
at their site has full control over what they are actually running. For example, it requires a bank
to place the confidentiality of its sensitive business data in the hands of its competitors. If the
competitors secretly deviate from the protocol, they could learn information about the bank’s data
without its knowledge. Second, in many real-world attacks [Per14], attackers are able to install
software on the server or obtain control of a server [dir19], thus allowing them to alter the server’s
behavior.

4.1.1 Senate overview

We present Senate, a platform for secure collaborative analytics with the strong guarantee of
malicious security. In Senate, even if m — 1 out of m parties fully misbehave and collude, an honest
party is guaranteed that nothing leaks about their data other than the result of the agreed upon query.
Our techniques come from a synergy of new cryptographic design and insights in query rewriting
and planning. A high level overview of Senate’s workflow (as shown in Figure 4.1) is as follows:

Agreement stage. The m parties agree on a shared schema for their data, and on a query for which
they are willing to share the computation result. This happens before invoking Senate and may
involve humans.

Compilation and planning stage. Senate’s compiler takes the query and certain size information
(described in Section 4.2) as input and outputs a cryptographic execution plan. It runs at each party,
deterministically producing the same plan. In particular, the compiler employs our consistent and
verifiable query splitting technique in order to minimize the amount of joint computation performed
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Figure 4.2: Query execution in the baseline (monolithic MPC) vs. Senate (decomposed MPC). o
represent a filtering operation, and X is a join. Green boxes with locks denote MPC operations;
white boxes denote plaintext computation. v represents additional verification operations added by
Senate.

by the parties. Then, the compiler plans the execution of the joint computation using our circuit
decomposition technique, which can produce a significantly more efficient execution plan.

Execution stage. An execution engine at each party runs the cryptographic execution plan by
coordinating with the other parties and routing encrypted intermediate outputs based on the plan.
This is done using our efficient MPC decomposition protocol, which outputs the query result to all
the parties.

4.1.2 Senate’s techniques

Designing a maliciously-secure collaborative analytics system is challenging due to the significant
overheads of such strong security. Consider simply using a state-of-the-art m-party maliciously-
secure MPC tool such as AGMPC [EMP] which implements the protocol of Wang et al. [WRK17];
we refer to this as the baseline. When executing a SQL query with this baseline, the query gets
transformed into a single, large Boolean circuit (i.e., a circuit of AND, OR, XOR gates) taking as
input the data of the m parties. The challenge then is that the m parties need to execute a monolithic
cryptographic computation fogether to evaluate this circuit.

Minimizing joint computation. Prior work [BEE™17,VSG™'19] in the semi-honest setting shows
that one can significantly improve performance by splitting a query into local computation (the part
of the query that touches only one party’s data) and the rest of the computation. The former can be
executed locally at the party on plaintext, and the latter in MPC; e.g., if a query filters by “disease
= f1lu”, the parties need to input only the records matching the filter into MPC as opposed to the
entire dataset. In the semi-honest setting, the parties are trusted to perform such local computation
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faithfully. Unfortunately, this technique no longer works with malicious parties because a malicious
party M can perform the local computation:

* incorrectly. For example, M can input records with “disease = HIV” into MPC. This can
reveal information about another party’s “HIV” records, e.g., via a later join operation, when
this party might have expected the join to occur only over rows with the value “f1lu”.

* inconsistently. For example, if one part of a query selects patients with “age = 25 and
another with “age € [20,30]”, the first filter’s outputs should be included within the second’s.
However, M might provide inconsistent sets of records as the outputs of the two filters.

Senate’s verifiable and consistent query splitting technique allows Senate to take advantage
of local computation via a different criteria than in the semi-honest case. Given a query, Senate’s
compiler splits the query into a special type of local computation—one that does not introduce
inconsistencies—and a joint computation, which it annotates with verification of the local com-
putation, in such a way that the verification is faster to execute than the actual computation. For
example, Figure 4.2 shows a 4-party query in which party P;’s inputs are first filtered (denoted o).
Unlike the baseline execution, Senate enables P; to evaluate the filter locally on plaintext, and the
secure computation proceeds from there on the smaller filtered results; these results are then jointly
verified.

Decomposing MPC. In order to decompose the joint computation (instead of evaluating a single,
large circuit using MPC) one needs to open up the cryptographic black box. Consider a 4-way join
operation () among tables of 4 parties, as shown in Figure 4.2. With the baseline, all 4 parties have
to execute the whole circuit. However, if privacy were not a concern, P; and P> could join their tables
without involving the other parties, Pz and P4 do the same in parallel, and then everyone performs
the final join on the smaller intermediate results. This is not possible with existing state-of-the-art
protocols for MPC, which execute the computation in a monolithic fashion.

To enable such decomposition, we design a new cryptographic protocol we call secure MPC
decomposition (Section 4.4), which may be of broader interest beyond Senate. In the example above,
our protocol enables parties P; and P, to evaluate their join obtaining an encrypted intermediate
output, and then to securely reshare this output with parties P3 and P4 as they all complete the final
join. The decomposed circuits include verifications of prior steps needed for malicious security. We
also develop more efficient Boolean circuits for expressing common SQL operators such as joins,
aggregates and sorting (Section 4.6), using a small set of Boolean circuit primitives which we call
m-Sl, m-SU and m-Sort (Section 4.5).

Efficiently planning query execution. Finally, we develop a new query planner, which leverages
Senate’s MPC decomposition protocol (Section 4.7.1). Unsurprisingly, the circuit representation
of a complex query can be decomposed in many different ways. However, the rules governing the
cost of each execution plan differ significantly from regular computation. Hence, we develop a
cost model for our protocol which estimates the cost given a circuit configuration (Section 4.7.2).
Senate’s query planner selects the most efficient plan based on the cost model.
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4.1.3 Evaluation summary

We implemented Senate and evaluate it in Section 4.8. Our decomposition and planning mechanisms
result in a performance improvement of up to 10x compared to the monolithic circuit baseline, with
up to 11 x less resource consumption (memory / network communication), on a set of representative
queries. Senate’s query splitting technique for local computation can further increase performance
by as much as 10x, bringing the net improvement to up to 100x. Furthermore, to stress test
Senate on more complex query structures, we also evaluate its performance on the TPC-H analytics
benchmark [TPCb]; we find that Senate’s improvements range from 3 x to 145 x.

Though MPC protocols have improved steadily, they still have notable overhead. Given that
such collaborative analytics do not have to run in real time, we believe that Senate can already be
used for simpler workloads and / or relatively small databases, but is not yet ready for big data
analytics. However, we expect faster MPC protocols to continue to appear. The systems techniques
in Senate will apply independently of the protocol, and the cryptographic decomposition will likely
have a similar counterpart.

4.2 Senate’s API

Senate exposes a SQL interface to the parties. To reason about which party supplies which table in
a collaborative setting, we augment the query language with the simple notation R|P to indicate
that table R comes from party P. Hence, R|P; U R|P indicates that each party holds a horizontal
partition of table R. One can obtain a vertical partitioning, for example, by joining two tables from
different parties R |P; and R,|P-. Here, we use the U operator to denote a simple concatenation of
the tables, instead of a set union (which removes duplicates).

In principle, Senate can support arbitrary queries because it builds on a generic MPC tool. The
performance improvement of our techniques, though, is more relevant to joins, aggregates, and
filters. We now give three use cases and queries, each from a different domain, which we use as
running examples.

Query 1. Medical study [BEE"17]. Clostridium difficile (cdiff) is an infection that is often
antibiotic-resistant. As part of a clinical research study, medical institutions P;...P, wish to
collectively compute the most common diseases contracted by patients with cdiff. However, they
cannot share their databases with each other to run this query due to privacy regulations.
SELECT diag, COUNT(*) AS cnt
FROM diagnoses|P; U...U diagnoses|P,

WHERE has_cdiff = ‘True’

GROUP BY diag ORDER BY cnt LIMIT 10;
Query 2. Prevent password reuse [WR19]. Many users unfortunately reuse passwords across
different sites. If one of these sites is hacked, the attacker could compromise the account of these
users at other sites. As studied in [WR19], sites wish to identify which users reuse passwords
across the sites, and can arrange for the salted hashes of the passwords to match if the underlying
passwords are the same (and thus be compared to identify reuse using the query below). However,
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these sites do not wish to share what other users they have or the hashed passwords of these other
users (because they can be reversed).
SELECT user_id
FROM passwords|P; U...U passwords|P,

GROUP BY CONCAT(user_id, password)

HAVING COUNT(x) > 1;
Query 3. Credit scoring agencies do not want to share their databases with each other [VSG'19]
due to business competition, yet they want to identify records where they have a significant
discrepancy in a particular financial year. For example, an individual could have a low score with
one agency, but a higher score with another; the individual could take advantage of the higher score
to obtain a loan they are not entitled to.
SELECT c1.ssn
FROM credit_scores|P; AS c1

JOIN credit_scores|P, AS c¢cm ON c1.ssn = cm.ssn

WHERE GREATEST(c1.credit, ..., cm.credit) -
LEAST(c1.credit, ..., cm.credit) > threshold
AND cl.year = 2019 ... AND cm.year = 2019;

4.2.1 Sizing information

Given a query, Senate’s compiler first splits the query into local and joint computation. Each party
then specifies to the compiler an upper bound on the number of records it will provide as input to
the joint computation, following which the compiler maps the joint computation to circuits. These
upper bounds are useful because we do not want to leak the size of the parties’ inputs, but also want
to improve performance by not defaulting to the worst case, e.g., the maximum number of rows in
each table. For example, for Query 1, Senate transforms the query so that the parties group their
records locally by the column diag and compute local counts per group. In this case, Senate asks
for the upper bound on the number of diagnoses per party. In many cases, deducing such upper
bounds is not necessarily hard: e.g., it is simple for Query 1 because there is a fixed number of
known diseases [Cenl17]. Further, meaningful upper bounds significantly improve performance.

4.3 Threat Model and Security Guarantees

Senate adopts a strong threat model in which a malicious adversary can corrupt m — 1 out of m
parties. The corrupted parties may arbitrarily deviate from the protocol and collude with each other.
As long as one party is honest, the only information the compromised parties learn about the honest
party is the final global query result (in addition to the upper bounds on data size provided to the
compiler by the parties, and the query itself).

More formally, we define an ideal functionality Fypc.tree (Functionality 2, Section 4.4.3) for
securely executing functions represented as a tree of circuits, while placing some restrictions on
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the structure of the tree. We then develop a protocol that realizes this functionality and prove the
security of our protocol (per Theorem 2, Section 4.4.3) according to the definition of security for
(standalone) maliciously secure MPC [Gol04b], as captured formally by the following definition:

Definition 4. Let F be an m-party functionality, and let I1 be an m-party protocol that computes
F. Protocol I is said to securely compute F in the presence of static malicious adversaries if for
every non-uniform PPT adversary A for the real model, there exists a non-uniform PPT adversary
S for the ideal model, such that for every I C [m]

{IDEAL £ ; 5(1) (%) b2z = {REALpy/ 4()(¥) }x2
where X = (x1,...,%y) and x; € {0, 1}*.

Here, IDEAL 7 5(;) (%) denotes the joint output of the honest parties and S from the ideal world
execution of ; and REALpy; 4(;) (%) denotes the joint output of the honest parties and A from the
real world execution of IT [Gol04b].

As with malicious MPC, we cannot control what data a party chooses to input. The parties can,
if they wish, augment the query to run tests on the input data (e.g., interval checks). Senate also
does not intend to maintain consistency of the datasets input by a party across different queries as
the dataset could have changed in the meantime. If this is desired, Senate could in principle support
this by writing multiple queries as part of a single bigger query, at the expense of performance.

Note that the query result might leak information about the underlying datasets, and the parties
should choose carefully what query results they are willing to share with each other. Alternatively,
it may be possible to integrate techniques such as differential privacy [DR14,INS18] with Senate’s
MPC computation, to avoid leaking information about any underlying data sample; we discuss this
aspect in more detail in Section 4.9.

4.4 Senate’s MPC Decomposition Protocol

In this section we present Senate’s secure MPC decomposition protocol, the key enabler of our
compiler’s planning algorithm. Our protocol may be of independent interest, and we present the
cryptography in a self-contained way.

Suppose that m parties, Py,...,P,, wish to securely compute a function f, represented by a
circuit C, on their private inputs x;. This can be done easily given a state-of-the-art MPC protocol
by having all the parties collectively evaluate the entire circuit using the protocol. However, the key
idea in Senate is that if f can be “nicely” decomposed into multiple sub-circuits, we can achieve
a protocol with a significantly better concrete efficiency, by having only a subset of the parties
participate in the secure evaluation of each sub-circuit.

For example, consider a function f(xi,...,x,) that can be evaluated by separately computing
y1 = hi(x1,...,x;) on the inputs of parties Py ... P;, and yp = hy (x4 1,. .., %) on the inputs of parties
Py ...Py, followed by f(y1,y). That s,

f(xl, N ,xm) = f(hl(xl, .. ,x,-),hg(x,-+1, .. ,Xm)).
Such a decomposition of f allows parties Py,. .., P; to securely evaluate &; on their inputs (using
an MPC protocol) and obtain output y;. In parallel, parties P 1,...,P, securely evaluate /s, to
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get y,. Finally, all parties securely evaluate f on y;,y, and obtain the final output y. We observe
that such a decomposition may lead to a more efficient protocol for computing f, since the overall
communication and computation complexity of state-of-the-art concretely efficient MPC protocols
(e.g., [WRK17,KPR18]) is at least quadratic in the number of involved parties. Furthermore,
sub-circuits involving disjoint sets of parties can be evaluated in parallel.

Although appealing, this idea has some caveats:

1. In a usual (“monolithic”) secure evaluation of f, the intermediate values y;,y, remain secret,
whereas the decomposition above reveals them to the parties as a result of an intermediate
MPC protocol.

2. Suppose that & is a non-easily-invertible function (e.g., pre-image resistant hash function). If
all of Py, ..., P; collude, they can pick an arbitrary “output” y;, even without evaluating A,
and input it to f. Since h; is non-invertible, it is infeasible to find a pre-image of y;; thus,
such behavior is not equivalent to the adversary’s ability to provide an input of its choice
(as allowed in the malicious setting). In addition, such functions introduce problems in the
proof’s simulation as a PPT simulator cannot extract the corrupted parties’ inputs with high
probability. This attack, however, would not have been possible if f had been computed
entirely by all of Py, ..., P, in a monolithic MPC.

3. If one party is involved in multiple sub-circuits and is required to provide the same input to
all of them, then we have to make sure that its inputs are consistent.

In this section we show how to deal with the above problems, by building upon the MPC protocol
of Wang et al. [WRK17].

First, we show how to securely transfer the output of one garbled circuit as input to a subsequent
garbled circuit, an action called soldering (Section 4.4.2). Our soldering is inspired by previous
soldering techniques proposed in the MPC literature [NOQ9, FINT13,FINT15,KNR"17, AHMRI15,
GLOS15,HY16,GGMP16,L.O17,KY18,PBP19,BPP16]. Here, we make the following contributions.
To the best of our knowledge, Senate is the first work to design a soldering technique for the state-
of-the-art protocol of Wang et al. [WRK17]. More importantly, whereas previous uses of soldering
were limited to cases in which the same set of parties participate in both circuits, we show how to
solder circuits when the first set of parties is a subset of the set of parties involved in the second
circuit. This property is crucial for the performance of the individual sub-circuits in our overall
protocol, as most of them can now be evaluated by non-overlapping subsets of parties, in parallel.

Second, as observed above, the decomposition of a function for MPC cannot be arbitrary.
We therefore formalize the class of decompositions that are admissible for MPC (Section 4.4.3).
Informally, we require that every sub-computation evaluated by less than m parties must be efficiently
invertible. This fits the ability of a malicious party to choose its input before providing it to the
computation.

Furthermore, we define the admissible circuit structures to be trees rather than directed acyclic
graphs. That is, the function’s decomposition may only take the form of a tree of sub-computations,
and not an arbitrary graph. This is because if a node provides input to more than one parent node



CHAPTER 4. COLLABORATIVE SQL ANALYTICS ON ENCRYPTED DATA 51

and all the parties at the node are corrupted, they may collude to provide inconsistent inputs to
the different parents. We therefore circumvent this input consistency problem by restricting valid
decompositions to trees alone. Even so, as we show in later sections, this model fits SQL queries
particularly well, since many SQL queries can be naturally expressed as a tree of operations.

4.4.1 Background

We start by briefly introducing the cryptographic tools that our MPC protocol builds upon. In
particular, we build upon the maliciously-secure garbled circuit protocol of Wang et al. [WRK17]
(hereafter referred to as the WRK protocol).

Information-theoretic MACs (IT-MACs). IT-MACs [NNOB12] enable a party P; to authenticate
a bit held by another party P,.. Suppose P, holds a bit x € {0,1}, and P; holds akey A; € {0,1}*
(where K is the security parameter). A; is called a global key and P; can use it to authenticate
multiple bits across parties. Now, for P; to be able to authenticate x, P; is given a random local key
Kjlx] € {0,1}* and P; is given the corresponding MAC tag M (x| such that:
M;[x] = K;[x] ®xA;.

P; does not know the bit x or the MAC, and F; does not know the keys; thus, P; can later reveal x
and its MAC to P; to prove it did not tamper with x. In this manner, P;’s bit x can be authenticated
to more than one party—each party j holds a global key A; and local key for x, K;[x]. P; holds all
the corresponding MAC tags {M;[x]} ;.;. We write [x]' to denote such a bit where x is known to P,
and is authenticated to all other parties. Concretely, [x]' means that P; holds (x, {M;[x]};-;), and
every other party P; # P; holds K[x] and A;.

Note that [x]' is XOR-homomorphic: given two authenticated bits [x]* and [y]’, it is possible to
compute the authenticated bit [z)' where z = x @y by simply having each party compute the XOR of
the MAC / keys locally.

Authenticated secret shares. In the above construction, x is known to a single party and authenti-
cated to the rest. Now suppose that x is shared amongst all parties such that no subset of parties
knows x. In this case, each P, holds x’ such that x = @;x’. To authenticate x, we can use IT-MACs
on each share x' and distribute the authenticated shares [x']. We write (x), to denote the collection
of authenticated shares {[x']'}; under the global keys A = {A;};. We omit the subscript in (x), if the
global keys are clear from context. One can show that (x) is XOR-homomorphic, i.e., given (x) and
(y) the parties can locally compute (z) where z =x®y.

Garbled circuits and the WRK protocol. As described in Chapter 2, garbled circuits [ Yao86,
BHR12,BMR90] are a commonly used cryptographic primitive in MPC constructions. Formally,
an m-party garbling scheme is a pair of algorithms (Garble, Eval) that allows a secure evaluation of
a (typically Boolean) circuit C. To do so, the parties first invoke Garble with C, and obtain a garbled
circuit G(C) and some extra information (each party may obtain its own secret extra information).
Then, given the input x; to party P, the parties invoke Eval with {x;}; and obtain the evaluation
output y. (This is a simplification of a garbling scheme in many ways, but this abstraction suffices
to understand the WRK protocol below.) Typically, constructions utilizing a garbling scheme are in
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the offline-online model, in which they may invoke Garble offline when they agree on the circuit C,
and only later they learn their inputs {x;}; to the computation.

The WRK protocol [WRK17] is the state-of-the-art garbled circuit protocol that is maliciously-
secure even when m — 1 out of m parties are corrupted. WRK follows the same abstraction
described above, with its own format for a garbled circuit; thus, we denote its garbling scheme by
(WRK - Garble, WRK - Eval). Our construction does not modify the inner workings of the protocol;
therefore, we describe only its input and output layers, but elide internal details for simplicity.
WRK - Garble: Given a Boolean circuit C, the protocol outputs a garbled circuit G(C). The garbling

scheme authenticates the circuit by maintaining IT-MACs on all input/output wires,! as
follows. Each party P; obtains a global key A; for the circuit. In addition, each wire w in the
circuit is associated with a random “masking” bit A,, which is output to the parties as (A,,) .
WRK - Eval: The protocol is given a garbled circuit G(C). Then, for a party P; who wishes to input
b, to input wire w, we have the parties input EW = b,, ® A,, instead; in addition, instead of
receiving the real output bit b, the parties receive a masked bit Bv = b, ® A,. Note that A,, and
A, should be kept secret from the parties (except from the party who inputs b,, or receives
b,, respectively). The procedures by which parties privately translate masked values to real
values and vice versa are simple and not part of the core functionality, as we describe below.

Using the above abstractions, the overall WRK protocol is simple and can be described as

follows:

1. Offline. The parties invoke WRK - Garble on C and obtain G(C) and (A,,) for every input/output
wire w.

2. Online.

a) Input. If an input wire w is associated with party P;, who has the input bit b,,, then the
parties reconstruct A,, to P,. Then, P, broadcasts the bit b,, = b,, ® A,,.

b) Evaluation. The parties invoke WRK - Eval on G(C) and the bit b,, for every input wire
w. They obtain a bit b, = b, & A, for every output wire v.

¢) Output. To reveal bit b, of an output wire v, the parties publicly reconstruct A, and
compute b, = b, ® A,.

4.4.2 Soldering wires of WRK garbled circuits

The primary technique in Senate is to securely transfer the actual value that passes through an
output wire of one circuit, without revealing that value, to the input wire of another circuit. This
action is called soldering [NO09]. We observe that the WRK protocol enjoys the right properties
that enable soldering of its wires almost for free. In addition, we show how to extend the soldering
notion even to cases where the set of parties who are engaged in the ‘next’ circuit is a superset of the
set of parties engaged in the current one. This was not known until now. We believe this extension
is of independent interest and may have more applications beyond Senate.

n fact, it does so for all the wires in the circuit; we omit this detail as we focus on the input / output interface.
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Specifically, we wish to securely transfer the (hidden) output b, = b, & A, on output wire v of
G(C)) to the input wire u of G(C;). ‘Securely’ means that b, = b, should hold while keeping both
b, and b,, secret from the parties. To achieve this, the parties need to securely compute the masked
value of the input to the next circuit, as expected by the WRK protocol:

Z\7u = luEBbu = l1469[71/ = AuEBA’VGBZ;v
and input it to WRK - Eval for the next circuit.

Note that the parties already hold the three terms on the right hand side of the above equation—
WRK - Eval outputs b, to the parties as a masked output when evaluating G(C} ), and the parties hold
(Ay) and (A,) as output from WRK - Garble on Cj and C; respectively. Thus, one attempt to obtain
by might be to have the parties compute the shares of (4, ® A, Bv> using XOR-homomorphism,
and then publicly reconstruct it. However, this operation is not defined unless the global key that
each party uses in the constituent terms is the same. Since we do not modify the construction of
WRK - Garble and WRK - Eval, the global keys in the two circuits (and hence in (A,) and (A,)) are
different with high probability.

We overcome this limitation using the functionality Fse|der:

FUNCTIONALITY 1. Fsoier(v,u) — Soldering

Inputs. Parties in set P; agree on b, and have (Av)a authenticated under global keys {A;};cp,. Parties in
set P, (where Py C P,) have (A,)z authenticated under global keys {A,-} P, -
Outputs. Compute b, = A, & A, ®b,. Then,

* Output §; = A; @ A; for all P, € P; to parties in P;.

* Output A! @ A! for all P, € P; to parties in P;.

¢ Output A! for all P, € P, \ P to everyone.

* If (A,)a and (4,)5 are valid then output b, to parties in P,.

« Otherwise, output b, to the adversary and _L to the honest parties.

Before proceeding, note that Fgq4er Satisfies our needs: P; and P, are engaged in evaluating
garbled circuits G(Cy) and G(C,) respectively. v is an output wire of G(C), and u is an input wire
of G(C3). The parties in P, want to transfer the actual value that passes through v, namely b,, to
G(C,). That is, they want the actual value that would pass through u to be b, as well. However, they
do not know b,,, but only the masked value b,. Thus, by using Fsolder, they can obtain exactly what
they need in order to begin evaluating G(C,) with b, = b,,.

Along with the soldered result lA)u, functionality Fs\der also reveals additional information to
the parties—specifically, the values of &; (for all P, € Py); 1. @ Al (for all P, € Py); and A} (for all
P; € P\ P1). We model this extra leakage in the functionality as this information is revealed by
our protocol that instantiates Fgo4er- However, we will show that this does not affect the security of
our overall MPC protocol.

Instantiating Fgq 4. We start by defining a procedure for XOR-ing authenticated shares under
different global keys, which we denote H. That is, (x), H (y) 5 outputs (x®y)3.
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We observe that it is possible to implement H in a very simple manner: every party P; only needs
to broadcast the difference of the two global keys: §; = A; @ A;. Using this, the parties can switch
the underlying global keys of (x) from A; to A; by having each party P; compute new authentications
of x', denoted M/[x'], as follows. For every j # i, P; computes

M) = Mj[d) @25,
= Kj[xi] @xiAj @xi3j = Kj[xi] @x’ﬁj

So now, x is shared and authenticated under the new global keys {A;};. Given this procedure,
we can realize Fsoider as follows: the parties first compute (by)a = (A,)a @ b,; ? the parties then
compute (b,)z = (by)a B (A,) 3, and reconstruct b, by combining their shares.

Note that the description above (implicitly) assumes that P; = P;; however, if P; C P, then the
H protocol does not make sense because parties in P, that are not in P; do not have a global key
A; corresponding to (x)A. Forcing them to participate in the B protocol with A; = 0 would result
in a complete breach of security as it would reveal §; = A; ® A; = A;, which must remain secret!

We resolve this problem in the protocol Ilgg4er (Protocol 1) which extends H to the case where
Py C Ps.

Theorem 1. Protocol 1lggger Securely computes functionality Fseoder (per Definition 4) in the
presence of a static adversary that corrupts an arbitrary number of parties.

We defer the proof to an extended report [PKY 720].

4.4.3 Secure computation of circuit trees

Given a SQL query, Senate decomposes the query into a tree of circuits, where each non-root
node (circuit) in the tree involves only a subset of the parties. We now describe how the soldering
technique can be used to evaluate trees of circuits, while preserving the security of the overall com-
putation. To this end, we first formalize the class of circuit trees that represent valid decompositions
with respect to our protocol; then, we concretely describe our protocol for executing such trees.

We start with some preliminary definitions and notation. A circuit tree T is a tree whose internal
nodes are circuits, and the leaves are the tree’s input wires (which are also input wires to some
circuit in the tree). Each node that provides input to an internal node C in the tree is a child of C.
Since T is a tree, this implies that all of a child’s output wires may only be fed as input to a single
parent node in the tree.

We denote a circuit C’s and a tree T’s input wires by Z(C) and Z(T) respectively. Each wire
w € Z(T) is associated with one party P, in which case we write parties(w) = P.. Let Gy,...,Gy
be C’s children, we define parties(C) = UX_ parties(G;). Note that we assume, without loss of
generality, that the root circuit C € T has parties(C) = {Py,..., Py} (i.e., it involves inputs from all
parties). Our goal is to achieve secure computation for circuit trees; however, as discussed earlier,
our construction does not support arbitrary trees. We now describe formally what can be achieved.

2XOR homomorphism works also when one literal is a constant, rather than an authenticated sharing.
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PROTOCOL 1. IlIsyger — Soldering

Denote by (A71); the authenticated secret shares of A, held by parties in P; only. That is 4, =
@i:PlEpl A’th
1. The parties in P; reconstruct (b7 z = (b, @ (A,)a) B (A7);.

Specifically, each party P; € P; broadcasts: a) the bit b}, = Al ® A/, and b) the difference §; = A; DA;.
After receiving by, and §; from every P; € Py, it computes

P = bv@@meplb;,
Milb,] = M;AeA]
M;A) e M;[A] @2 - 8
(Kj[/l_é] A, Aj)® _(Kj[%ﬂ A, 5;) ® (A, - 8;)
KM @KjA)oA-(8;®8)@4,-A;
= KAJeK @R el,)-A; and
Kl[l;{,} = KA ]@KiA]

for every j € P and broadcasts M;[b},].
2. Parties P, € P, \ P; broadcast A and M;[A[] for all j € P;.
3. Parties P, € P, verify that Ki[b}] & b} - A; = M;[b}] for all j € P.
4. Parties P, € P, verify that Ki[AJ] ® A - A; = Mi[A]] for all j € P\ P;.
5. If verification fails, output L and abort. Otherwise, output

£u=<@x;;>@bu=<@x;;>@ P A|evu=ble| P A

PEP, PEeP PEP\P) PEP\P

Definition 5. A circuit C : D — R (where D C {0,1}* is C’s domain and R C {0,1}! is the range)
is invertible if there is a polynomial time algorithm A (in the size of the circuit |C|) such that given
ye{0,1}:

x such that x € D and C(x) =y ifyeR
Aly) = { )

L ify¢gR

Note that in the definition above, the circuit C need not be “full range”, i.e., its range may be a
subset of {0, 1}*. In such cases, we require that it is “easy” to verify that a given value y € {0, 1}
is also in R. By easy we mean that it can be verified by a polynomial-size circuit. We also denote
by verc(y) the circuit that checks whether a value y € {0,1}" is in R and returns 0 or 1 accordingly.
Note that given a tree of circuits, the range of an intermediate circuit depends not only on the
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circuit’s computation, but also on the ranges of its children because they limit the circuit’s domain.
Thus, these ranges need to be deduced topologically for the tree, using which the verc circuit is
manually crafted.

Definition 6. Fort < m, the class of t-admissible circuit trees, denoted T (t), contains all circuit
trees T, such that C is invertible for all C € T where |parties(C)| < t. In addition, each circuit C
that is parent to circuits Gy,...,Gy has verg,, ... ,verG, embedded within it as sub-circuits, and
parties(C) = UX_, parties(G;).

The above suggests that there may indeed be non-invertible circuits (e.g., a preimage resistant
hash) in the tree; the only restriction is that such a circuit should be evaluated by more than 7 parties.
The definition of MPC for circuit trees follows the general definition of MPC [Gol04b], as presented
below.

FUNCTIONALITY 2. Fumpc.tree — MPC for circuit trees

Parameters. A circuit tree 7 and parties Py, ..., P,.

Inputs. For each w € Z(T) where P; = parties(w), wait for an input bit b,, from P,.

Outputs. The bit b,, for every w in T’s output wires, given by evaluating 7 in a topological order from
leaves to root.

We realize Fpc.tree Using the protocol ITypc.tree (Protocol 2), which is our overall protocol
for securely executing circuit trees. The protocol works as follows. In the offline phase the parties

PROTOCOL 2. IIypc.tree - MPC for circuit trees

Parameters. The circuit tree 7'. Parties Py, ..., P,.
Inputs. For w € Z(T), P, = parties(w) has b,, € {0,1}.
Protocol.

1. Offline. For every circuit C € T, parties(C) run WRK - Garble(C) to obtain G(C) along with (A,,)
for all input and output wires w.

2. Online. For each circuit C in T (topologically) do:

a) Input. For every u € Z(C): If u € Z(T) and P; = parties(u) then parties(C) reconstruct A, to
P.. Else, if u is connected to an output wire v of a child circuit C’ then run Fsejger (v, ), by
which parties(C) obtain b,,.

b) Evaluate. Run WRK - Eval on G(C) and b, for every u € Z(C), by which parties(C) obtain
b, for every C’s output wire v. If Gy, ..., G, are C’s children then abort if an intermediate
value ver(G;) = 0 for some i € [c].

¢) Output. If C is the root of T, reconstruct (A,,) for every w € O(C), by which all parties
obtain b, = WP A,,.

simply garble all circuits using WRK - Garble; each circuit is garbled independently from the others.
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Then, beginning from the tree’s leaf nodes, the parties evaluate the circuits using WRK - Eval, such
that each circuit C is evaluated only by parties(C) (not all the parties). When a value on an output
wire of some circuit C’' should travel privately to the input wire of the next circuit C then parties(C)
run the soldering protocol. As discussed above, parties(C’) may be a subset of parties(C). Once all
the nodes have been evaluated, the parties operate exactly as in the WRK protocol in order to reveal
the actual value on the output wire.

We prove the security of protocol Ilppc.tree per the following theorem in an extended re-
port [PKY "20]. We remark that our protocol inherits the random oracle assumption from its use of
the WRK protocol.

Theorem 2. Let t < m be the number of parties corrupted by a static adversary. Then, protocol
I\pc.tree Securely computes Fypc.iree (Per Definition 4) for any T € T (t), in the random oracle
model and the Fsg\der-hybrid model.

We stress that intermediate values (output wires of internal nodes) are authenticated secret
shares, each using fresh randomness, and thus kept secret from the adversary. In particular, the
adversary’s input is independent of these values.

Note that by our construction, if there is a sub-tree rooted at a circuit C such that parties(C) are
all corrupted, then the adversary may skip the ‘secure computation’ of that sub-tree and simply
provide inputs directly to C’s parent. This, however, does not form a security issue because a
malicious adversary may change its input anyway, and the sub-tree is invertible—hence, whatever
input is given to C’s parent, it can be used to extract some possible adversary’s input to the tree’s
input wires (and hence to the functionality) that leads to the target output from the functionality.

In the following sections, we describe how Senate executes SQL queries by transforming them
into circuit trees that can be securely executed using our protocol.

4.5 Senate’s Circuit Primitives

Senate executes a query by first representing it as a tree of Boolean circuits, and then processing the
circuit tree using its efficient MPC protocol. To construct the circuits, Senate uses a small set of
circuit primitives which we describe in turn. In later sections, we describe how Senate composes
these primitives to represent SQL operations and queries.

4.5.1 Filtering

Our first building block is a simple circuit (Filter) that takes a list of elements as input, and passes
each element through a sub-circuit that compares it with a specified constant. If the check passes, it
outputs the element, else it outputs a zero.
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4.5.2 Multi-way set intersection

Next, we describe a circuit for computing a multi-way set intersection. Prior work has mainly
focused on designing Boolean circuits for two-way set intersections [HEK12,BA12]; here we design
optimized circuits for intersecting multiple sets. Our circuit extends the two-way SCS circuit of
Huang et al. [HEK12]. We start by providing a brief overview of the SCS circuit, and then describe
how we extend it to multiple sets.

The two-way set intersection circuit (2-Sl). The sort-compare-shuffle circuit of Huang et
al. [HEK12] takes as input two sorted lists of size n each with unique elements, and outputs
a list of size n containing the intersection of the lists interleaved with zeros (for elements that are
not in the intersection). (1) The circuit first merges the sorted lists. (2) Next, it filters intersecting
elements by comparing adjacent elements in the list, producing a list of size n that contains all
filtered elements interleaved with zeros. (3) Finally, it shuffles the filtered elements to hide positional
information about the matches.

In Senate’s use cases, set intersection results are often not the final output of an MPC computa-
tion, and are instead intermediate results upon which further computation is performed. In such
cases, the shuffle operation is not performed.

A multi-way set intersection circuit (/-Sl). Suppose we wish to compute the intersection over
three sets A, B and C. A straightforward approach is to compose two 2-Sl circuits together into a
larger circuit (e.g., as 2-SI1(2-SI(A, B),C)). However, such an approach doesn’t work out-of-the-box
because the intermediate output O = 2-SI(A, B) needs to be sorted before it can be intersected with
C, as expected by the next 2-Sl circuit. While one can accomplish this by sorting the output, it
comes at the cost of an extra O(nlog2 n) gates.

Instead of performing a full-fledged sort, we exploit the observation that, essentially, the output
O of 2-Sl is the sorted result of AN B interleaved with zeros. So, we transform O into a sorted
multiset via an intermediate monotonizer circuit Mono that replaces each zero in O with the nearest
preceding non-zero value. Concretely, given O = (ay .. .ay,) as input, Mono outputs M = (b ...b,),
such that b; = q; if a; # 0, else b; = b;_;. For example, if O = (1,0,2,3,0,4), then Mono converts
ittoM =(1,1,2,3,3,4).

Since M now also contains duplicates, for correctness of the overall computation, the next 2-SlI
that intersects M with C needs to be able to discard these duplicates. We therefore modify the next
2-Sl circuit: (i) the circuit tags a bit to each element in the input lists that identifies which list the
element belongs to, i.e., it appends 0 to every element in the first list, and 1 to every element in the
second; (i1) the comparison phase of the circuit additionally verifies that elements with equal values
have different tags. These modifications ensure that duplicates in the same intermediate list aren’t
added to the output. We refer to this modified 2-SI circuit as 2-Slx.

The described approach generalizes to multiple input sets in an identical manner. Note that in
general, there can be many ways of constructing the binary tree of 2-Sl circuits (e.g., a left-deep vs.
balanced tree). In Section 4.7 we describe how Senate’s compiler picks the optimal design when
executing queries.
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4.5.3 Multi-way sort

Given m sorted input lists of size n each, a multi-way sort circuit m-Sort merges the lists into a
single sorted list of size m X n, using a binary tree of bitonic merge operations (implemented as the
Merge circuit).

4.5.4 Multi-way set union

Our next building block is a circuit for multi-way set unions. In designing the circuit, we extend the
two-way set union circuit of Blanton and Aguiar [BA12].

The two-way set union circuit (2-SU). Given two sorted input lists of size n each with unique
elements, the 2-SU circuit produces a list of size 2n containing the set union of the inputs. Blanton
and Aguiar [BA12] proposed a 2-SU circuit similar to 2-Sl: (1) It first merges the input lists into a
single sorted list. (2) Next, it removes duplicate elements from the list: for every two consecutive
elements e; and e;, 1, if ¢; # e; 11 it outputs e;, else it outputs 0. (3) Finally, the circuit randomly
shuffles the filtered elements to hide positional information.

A multi-way set union circuit (-SU). It might be tempting to construct a multi-way set union
circuit by composing multiple 2-SU circuits together, similar to m-SIl. However, such an approach
is sub-optimal: unlike the intersection case where intermediate lists remain size 7, in unions the
intermediate result size grows as more input lists are added. This leads to an unnecessary duplication
of work in subsequent circuits. Instead, we construct a multi-way analogue of the 2-SU circuit, as
follows: (1) We first merge all m input lists together into a single sorted list using an m-Sort circuit.
(2) We then remove duplicate elements from the sorted list, in a manner identical to 2-SU. We
refer to the de-duplication sub-circuit in m-SU as Dedup. The m-SU circuit may thus alternately be
expressed as a composition of circuits: Dedup o m-Sort.

4.5.5 Input verification

Our description of the circuits thus far (m-SI, m-SU, and m-Sort) assumes that their inputs are sorted.
While this assumption is safe in the case of semi-honest adversaries, it fails in the presence of
malicious adversaries who may arbitrarily deviate from the MPC protocol. For malicious security,
we need to additionally verify within the circuits that the inputs to the circuit are indeed sorted sets.
To this end, we augment the circuits with input verifiers Ver, that scan each input set comparing
adjacent elements ¢; and e;;| in pairs to check if e;1| > ¢; for all i; if so, it outputs a 1, else 0.
When a given circuit is augmented with input verifiers, it additionally outputs a logical AND over the
outputs of all constituent Ver circuits. This enables all parties involved in the computation to verify
that the other parties did not cheat during the MPC protocol.
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4.6 Decomposable Circuits for SQL Operators

Given a SQL query, Senate decomposes it into a tree of SQL operations and maps individual
operations to Boolean circuits. For some operations—namely, joins, group-by, and order-by
operations—the Boolean circuits can be further decomposed into a tree of sub-circuits, which results
in greater efficiency. In this section, we show how Senate expresses individual SQL operations
as circuits using the primitives described in Section 4.5, decomposing the circuits further when
possible. Later in Section 4.7, we describe the overall algorithm for transforming queries into circuit
trees and executing them using our MPC protocol.

Notation. We express Senate’s transformation rules using traditional relational algebra [Cod70],
augmented with the notion of parties to capture the collaborative setting. Let {P},...,P,} be the set
of parties in the collaboration. Recall that we write R|F; to denote a relation R (i.e., a set of rows)
held by P.. We also repurpose U to denote a simple concatenation of the inputs, as opposed to the
set union operation. The notation for the remaining relational operators are as follows: o filters the
input; T performs a sort; X is an equijoin; and Y is group-by.

4.6.1 Joins

Consider a collaboration of m parties, where each party P; holds a relation R; and wishes to compute
an m-way join:
X (Rl |P1 guee aRm|Pm)

Senate converts equijoin operations—joins conditioned on an equality relation between two
columns—to set intersection circuits. Specifically, Senate maps an m-way equijoin operation
to an m-S| circuit. For all other types of join operations, such as joins based on column compar-
isons or compound logical expressions, Senate expresses the join using a simple Boolean circuit
that performs a series of operations per pairwise combination of the inputs. However, a recent
study [JNS18] notes that the vast majority of joins in real-world queries (76%) are equijoins. Thus,
a majority of join queries can benefit from our optimized design of set intersection circuits.

Decomposing joins across parties. If parties don’t care about privacy, the simplest way to execute
the join would be to perform a series of 2-way joins in the form of a tree. For example, one way
to evaluate a 4-way join is to order the constituent joins as ((RyXRy)X(R3XRy4)). To mimic this
decomposition, Senate starts by designing an m-S| Boolean circuit to compute the operation (with
m = 4). Senate then evaluates the m-S| circuit by decomposing it into its constituent sub-circuits as
follows:

1. First, each party locally sorts its input sets (as required by the m-SI circuit).

2. Next, parties P; and P jointly compute a 2-S| operation over R; and R;, followed by the
monotonizer Mono. In parallel, parties P; and P4 compute a similar circuit over R3 and Ry.
The 2-Sl circuits are augmented with Ver sub-circuits that verify that the input sets are sorted.
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3. Finally, all four parties evaluate a 2-Slx circuit over the outputs of the previous step; as before,
the circuit includes a Ver sub-circuit to check that the inputs are sorted. Note that though the
evaluated circuit takes two sets as input, the circuit computation involves all four parties.

In general, multiple tree structures are possible for decomposing an m-way join. Senate’s compiler
(which we describe in Section 4.7) derives the best plan for the query using a cost model.

Joins over multisets. Senate’s m-Sl circuit can be extended to support joins over multisets in a
straightforward manner. We defer the details to Appendix A.

4.6.2 Order-by limit

In the collaborative setting, the m parties may wish to perform an order-by operation (by some
column c) on the union of their results, optionally including a limit /:

Tc,l(UiRi‘Pi)
Senate maps order-by operations directly to the m-Sort circuit. If the operation includes a limit /,
then the circuit only outputs the wires corresponding to the first / results.

Recall from Section 4.5.3 that m-Sort is a composition of Merge sub-circuits (that perform
bitonic merge operations). If the operation includes a limit /, then we make an optimization that
reduces the size of the overall circuit. We note that since the circuit’s output only contains wires
corresponding to the first / elements of the sorted result, any gates that do not impact the first /
elements can be discarded from the circuit. Hence, if an element is outside the top / choices for any
intermediate Merge, then we discard the corresponding gates.

Decomposing order-by across parties. Since the m-Sort circuit is composed of a tree of
Merge sub-circuits, it can be straightforwardly decomposed across parties by distributing the
constituent Merge sub-circuits. For example, one way to construct a 4-party sort circuit is:
Merge(Merge(R;,R2),Merge(R3,R4)). To decompose this:

1. Each party first sorts their input locally (as expected by the m-Sort circuit).
2. Parties P; and P, compute a Merge sub-circuit; P3 and P4 do the same in parallel.
3. All 4 parties finally Merge the previous outputs.

Once again, multiple tree structures are possible for distributing the Merge circuits, and the Senate
compiler’s planning algorithm picks the best structure based on a cost model.

4.6.3 Group-by with aggregates

Suppose the parties wish to compute a group-by operation over the union of their relations (on some
column c), followed by an aggregate ¥ per group:

Yex(UiRi|P)
Senate starts by mapping the operator to a ¥ o m-SU circuit that computes the aggregate function
¥ = SUM. To do so, we extend the m-SU circuit with support for aggregates. Recall from Section 4.5.4
that the m-SU circuit is a composition of sub-circuits Dedup o m-Sort.
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Let the input to the group-by operation be a list of tuples of the form t; = (a;, b;), such that the
a; values represent the columns over which groups are made, and the b; values are then aggregated
per group.

1. Inthe m-Sort phase, Senate evaluates the m-Sort sub-circuit over the a; values per tuple, while
ignoring b;.

2. In the Dedup phase, for every two consecutive tuples (a;,b;) and (a;y1,b;+1), the circuit
outputs (a;,b;) if a; # a1, else it outputs (0,b;)

3. In addition, we augment the Dedup phase to compute aggregates over the b; values. The
circuit makes another pass over the tuples (a},b;) output by Dedup while maintaining a
running aggregate agg: if a} = 0 then it updates agg with b; and outputs (0,0); otherwise, it
outputs (a},agg).

Decomposing group-by across parties. Senate decomposes group-by operations in two ways.
First, group-by operations with aggregates can typically be split into two parts: local aggregates
per party, followed by a joint group-by aggregate over the union of the results. This is a standard
technique in database theory. For example, suppose ¥ = COUNT. In this case, the parties can first
compute local counts per group, and then evaluate a joint sum per group over the local results.
Rewriting the operation in this manner helps Senate reduce the amount of joint computation
performed using a circuit, and is thus beneficial for performance.

Second, we note that the joint group-by computation can be further decomposed across parties.
Specifically, the m-Sort phase of the overall m-SU circuit (as described above) can also be distributed
across the parties in a manner identical to order-by (as described in Section 4.6.2).

4.6.4 Filters and Projections

Filtering is a common operation in queries (i.e., the WHERE clause in SQL), and parties in a collabo-
ration may wish to compute a filter on the union of their input relations:
O r(UiRi|F)

where f is the condition for filtering. Senate maps the operation to a Filter circuit. Filtering
operations at the start of a query can be straightforwardly distributed by evaluating the filter locally
at each party, before performing the union.

As regards projections, typically, these operations simply exclude some columns from the
relation. Given a relation, Senate performs a projection by simply discarding the wires corresponding
to the non-projected columns.

4.7 Query Execution

We now describe how Senate executes a query by decomposing it into a tree of circuits. In doing so,
Senate’s compiler ensures that the resulting tree satisfies the requirements of our MPC protocol (per
Definition 6)—namely, that each circuit in the tree is invertible.
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4.7.1 Query decomposition and planning

We start by describing the Senate compiler’s query decomposition algorithm. Given a query, the
compiler transforms the query into a circuit tree in four steps, as illustrated in Figure 4.3. We use
the medical query from Section 4.1.1 as a running example.

Step €) : Construction of tree of operators. Senate first represents the query as a tree of
relational operations. The leaves of the tree are the input relations of individual parties, and the
root outputs the final query result. Each non-leaf node represents an operation that will be jointly
evaluated only by the parties whose data the node takes as input. Thus, the set of parties evaluating
a node is always a superset of its children.

While a query can naturally be represented as a directed acyclic graph (DAG) of relational
operators, Senate recasts the DAG into a tree to satisfy the input consistency requirements of our
MPC protocol. Specifically, Senate ensures that the outputs of no intermediate node (or the input
tables at the leaves) are fed to more than one parent node. This is because in such cases, if any two
parents are evaluated by disjoint sets of parties, then this leads to a potential input inconsistency—
that is, if all the parties at the current node collude, then there is no guarantee that they provide the
same input to both parents. A tree representation resolves this problem.

Figure 4.3 illustrates the query tree for the medical query and comprises the following sequence
of operator nodes—the input tables of the parties (in the leaves) are first concatenated into a single
relation which is then processed jointly using a filter, a group-by aggregate, and an order-by limit
operator.

Step @ : Query splitting. Next, Senate logically rewrites the query tree, splitting it such that the
parties perform as much computation as possible locally over their plaintext data, (i.e., filters and
aggregates), thereby reducing the amount of computation that need to be performed jointly using
MPC. To do so, it applies traditional relational equivalence rules that (i) push down selections past
joins and unions, and (ii) decomposes group-by aggregates into local aggregates followed by a joint
aggregate.

For example, as shown in Figure 4.3, Senate rewrites the medical query in both these ways.
Instead of performing the filtering jointly (after concatenating the parties’ inputs), Senate pushes
down the filter past the union and parties apply it locally. In addition, it further splits the group-by
aggregate—parties first compute local counts per group, and the local counts are jointly summed up
to get the overall counts.

Though such an approach has also been explored in prior work [BEE™17,VSG™ 19], an important
difference in Senate is that while prior approaches assume a semi-honest threat model, Senate targets
security against malicious adversaries who may arbitrarily deviate from the specified protocol. To
protect against malicious behavior, Senate’s split is different than the semi-honest split; Senate
performs two actions: (i) additionally verifies that all local computations are valid; and (ii) ensures
that the splitting does not introduce input consistency problems. We describe how Senate tackles
these issues next.

Step @ : Verifying intermediate operations. We need to take a couple of additional steps before

we can execute the tree of operations securely using our MPC protocol. As Section 4.4.3 points out,
to be maliciously secure, the tree of circuits needs to be “admissible” (per Definition 6), i.e., each
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intermediate operation in the tree must be invertible, and each intermediate node must also be able
to verify that the output produced by its children is possible given the query.

Thus, in transforming a query to a circuit tree, Senate’s compiler deduces the set of outputs each
intermediate operation can produce, while ensuring the operation is invertible. For example, a filter
of the type “WHERE 5 < age < 10” requires that in all output records, each value in column age
must be between 5 and 10. Note that the values of intermediate outputs also vary based on the set of
preceding operations. For more complex queries, the constraints imposed by individual operators
accumulate as the query tree is executed.

Senate’s compiler traverses the query tree upwards from the leaves to the root, and identifies the
constraints at every level of the tree. For simplicity, we limit ourselves to the following types of
constraints induced by relational operators: (i) each column in a relation can have range constraints
of the type n; < a < ny, where ny and n; are constants; (ii) the records are ordered by a single
column; or (iii) the values in a column are distinct. If the cumulative constraints at an intermediate
node in the tree are limited to the above, then Senate’s compiler marks the node as verifiable. If a
node produces outputs with different constraints, then the compiler marks it as unverifiable—for
such nodes, Senate merges the node with its parent into a single node and proceeds as before.

If a node / leaf feeds input to more than one parent (perhaps as a result of the query rewriting in
the previous step), then the compiler once again merges the node and all its parents into a single
node, in order to avoid input consistency problems.

At the end of the traversal, the root node is the only potentially unverifiable node in the tree, but
this does not impact security. Since all parties compute the root node jointly, the correctness of its
output is guaranteed.

As an example, in Figure 4.3, the local nodes at every party locally evaluate the filter Opas_cdiff=Trues
which constrains the column has_cdiff to the value ‘True’, and satisfies condition (i) above. The
subsequent group-by aggregate operation Yy; o count d0€s not impose any constraint on either diag
or count (since parties are free to provide inputs of their choice, assuming there are no constraints
on the input columns). The local nodes are thus marked verifiable. All remaining operations are
performed jointly by all parties at the root node, and thus do not need to be checked for verifiability.

In Appendix B, we work out in detail how Senate’s compiler deduces the range constraints
imposed by various relational operations (i.e., what needs to be verified). Then, we show the
invertibility of relational operations given these constraints. This ensures that the resulting tree is
admissible, and satisfies the requirements of Senate’s MPC protocol.

Step @ : Mapping operators to circuits. The final step is to map each jointly evaluated node in
the query tree to a circuit (per Section 4.6): ¢ maps to the Filter circuit, x maps to m-Sl, group-by
aggregate maps to X o m-SU, and order-by-limit maps to m-Sort. In doing so, Senate’s compiler
uses a planning algorithm that further decomposes each circuit into a tree of circuits based on a cost
model (described shortly).

For example, for the medical query in Figure 4.3, Senate maps the group-by aggregate operation
Ydiag, sum (0 @ Zom-SU circuit. Note that m-SU requires its inputs to be sorted; therefore, the
compiler augments the children nodes with sort operations Tgiag. It then further decomposes the
m-Sort phase of m-SU into a tree of Merge sub-circuits, per Section 4.6.3.
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This tree of circuits is finally evaluated securely using our MPC protocol. Note that at each
node, only the parties that provide the node input are involved in the MPC computation.

4.7.2 Cost model for circuit decomposition

The planning algorithm models the latency cost of evaluating a circuit tree in terms of the constituent
cryptographic operations. It then enumerates possible decomposition plans, assigns a cost to each
plan, and picks the optimal plan for decomposing the circuit.

Recall from Section 4.4 that the cost of executing a circuit via MPC can be divided into an
offline phase (for generating the circuits), and an online phase (for evaluating the circuits). Given a
circuit tree T, let the root circuit be C with children Cy and C;. Let Ty and T refer to the subtrees
rooted at nodes Cy and Cj respectively. Then, Senate’s compiler models the total latency cost C of
evaluating 7" as:

C(T) =max(C(Tp),C(T1)) + max(Csoider(70),Csolder(T1))

+ C'offline(c) +Conline(c)
Essentially, since subtrees can be computed in parallel, the cost model counts the maximum of these
two costs, followed by the cost of soldering the subtrees with the root node. It adds this to the cost
of the offline and online phases for 7"’s root circuit C, Cqffine and Copnjine respectively.

We break down each cost component in terms of two unit costs by examining the MPC protocol:
the unit computation cost L of performing a single symmetric key operation, and the unit com-
munication cost L; ; (pairwise) between parties P; and P;. Senate profiles these unit costs during
system setup. In addition, the costs also depend on the size of the circuit being computed |C| (i.e.,
the number of gates in the circuit), the size of each party’s input set |/|, and the number of parties m
computing the circuit. For simplicity, the analysis below assumes that each party has identical input
set size; however, the model can be extended in a straightforward manner to accommodate varying
input set sizes as well.

The soldering cost Ceolder can be expressed as (m — 1)|I| - max; j(L; ;) (since it involves a single
round of communication between all parties). Next, we analyze the WRK protocol to obtain the
following equations:

Coffiine(C) = (m—1)|C|-max(L; j) +4|C| - Ly + |C| - max(L ;)

In more detail, in the offline phase, each party (in parallel with the others) communicates with
the m — 1 other parties to create a garbled version of each gate in the circuit; each gate requires 4
symmetric key operations (one per row in the truth table representing the gate); they then send their
individual garbled gates (in parallel) to the evaluator. Our analysis here is a simplification in that we
ignore the cost of some function-independent preprocessing steps from the offline phase. This is
because these steps are independent of the input query, and thus do not lie in the critical path of
query execution.

Similarly, the cost of the online phase can be expressed as

Conline(C) = (m—1)|I| - max(L; ;)
+ (m—1)|I|-max(L; ;) + (m—1)|C| - Ly
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Figure 4.4: Performance of m-S| in LAN.

In this phase, the garblers communicate with all other parties to compute and send their encrypted
inputs to the evaluator; in addition, the evaluator communicates with each garbler to obtain encrypted
versions of its own inputs. The evaluator then evaluates the gates per party. The size of the circuit
|C| depends on the function that the circuit evaluates (per Section 4.5), the number of inputs, and
the bit length of each input.

4.8 Evaluation

In this section, we demonstrate Senate’s improvements over running queries as monolithic crypto-
graphic computations. We use vanilla AGMPC (with monolithic circuit execution) as the baseline.
The highlights are as follows. On the set of representative queries from Section 4.2, we observe
runtime improvements of up to 10x of Senate’s building blocks, with a reduction in resource
consumption of up to 11x. These results translate into runtime improvements of up to 10x for
the joint computation in the benchmarked queries. Senate’s query splitting technique provides a
further improvement of up to 10X, bringing the net improvement to over 100x. Furthermore, on
the TPC-H analytics benchmark [TPCb], Senate’s improvements range from 3x to 145x.

Implementation. We implemented Senate on top of the AGMPC framework [EMP], a state-of-
the-art implementation of the WRK protocol [WRK17] for m-party garbled circuits with malicious
security. Our compiler works with arbitrary bit lengths for inputs; in our evaluation, we set the data
field size to be integers of 32 bits, unless otherwise specified.

Experimental Setup. We perform our experiments using r5.12xlarge Amazon EC2 instances
in the Northern California region. Each instance offers 48 vCPUs and 384 GB of RAM, and was
additionally provisioned with 20 GB of swap space, to account for transient spikes in memory
requirements. We allocated similar instances in the Ohio, Northern Virginia and Oregon regions for
wide-area network experiments.
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Figure 4.5: Performance of m-Sort in LAN.
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Figure 4.6: Performance of m-SU in LAN.

4.8.1 Senate’s building blocks

We evaluate Senate’s building blocks described in Section 4.5—m-SI|, m-Sort, and m-SU. For each
building block, we compare the runtimes of each phase of the computation of Senate’s efficient
primitives to a similar implementation of the operator as a single circuit in both LAN and WAN
settings (Figures 4.4 to 4.6, and Figure 4.8). We observe substantial improvements for our operators
owing to reduced number of parties evaluating each sub-circuit and the evaluation of various such
circuits in parallel (per Section 4.6). We also measure the improvement in resource consumption
due to Senate in Figure 4.7.

Multi-way set intersection circuit (-SI). We compare the evaluation time of an m-SI circuit
across 16 parties with varying input sizes in Figure 4.4b and observe runtime improvements ranging
from 5.2x—6.2x. This is because our decomposition enables the input size to stay constant for each
sub-computation, allowing us to reduce the input set size to the final 16-party computation. Note
that, while Senate can compute a set intersection of 10K integers, AGMPC is unable to compute
it for 2K integers, and runs out of memory during the offline phase. Figures 4.4a and 4.8 plot the
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runtime of a circuit with varying number of parties in LAN and WAN settings respectively, and
observe an improvement of up to 10x. This can be similarly attributed to our decomposable circuits,
which reduce the data transferred across all the parties, leading to significant improvements in the
WAN setting.

Figures 4.7a and 4.7b plot the trend of the peak memory and total network consumption of
Senate compared to AGMPC with 1K integers across varying number of parties.

Multi-way Sort circuit (m-Sort). Figures 4.5a and 4.5b illustrate the runtimes of a sorting circuit
with varying number of parties and varying input sizes respectively. We observe that Senate’s
implementation is up to 4.3 x faster for 16 parties, and can scale to twice as many inputs as AGMPC.
This is also corroborated by the 3.3 x reduction in peak memory requirement for 600 integers and
~780 GB reduction in the amount of data transferred, as shown in Figures 4.7a and 4.7b.

Multi-way set union circuit (m-SU). Figure 4.6b plots the runtime of a set union circuit with
varying input sizes and 16 parties. As discussed in Section 4.5, an m-SU circuit can be expressed as
Dedup o m-Sort. Hence, we expect to trends similar to the m-Sort circuit. However, we observed
a stark increase in runtime for the single circuit evaluation of 600 integers across 16 parties due
to the exhaustion of the available memory in the system and subsequent use of swap space (see
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Figure 4.12: Effect of query splitting on runtime.

Figure 4.7a). We observe a similar trend in Figures 4.6a and 4.8.

4.8.2 End-to-end performance
4.8.2.1 Representative queries

We now evaluate the performance of Senate on the three representative queries discussed in
Section 4.2 with a varying number of parties (Figures 4.9 to 4.11). In addition, we quantify the
benefit of Senate’s query splitting for different filter factors, i.e., the fraction of inputs filtered as
a result of any local computation (Figure 4.12). We also measure the total network usage of the
queries in Figure 4.13; and Figure 4.14 plots the performance of the queries in a WAN setting.

Query 1 (Medical study). Figure 4.9 plots the runtime of Senate and AGMPC on the medical
example query with varying input sizes. Note that, the input to the circuit for a query consists
of all the values in the row required to compute the final result. We observe a performance
improvement of 1.3 x for an input size of 100 rows, and are also able to scale to higher input sizes.
Figure 4.12a illustrates the benefit of Senate’s consistent and verified query splitting for different
filter factors. We compare the single circuit implementation of the query for 100 inputs per party,
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and are able to achieve a runtime improvement of 22 for a filter factor of 0.1. The improvement in
network consumption follows a similar trend, reducing usage by ~23x with a filter factor of 0.1
(Figure 4.13).

Query 2 (Prevent password reuse). Figure 4.10 plots the runtime of Senate and AGMPC with
varying input sizes. Each row in this query consists of a 32 bit user identifier, and a 256 bit password
hash. Since the query involves a group-by with aggregates, which is mapped to an extended m-SU
(per Section 4.5), we observe a trend similar to Figure 4.6b. We remark that this query does not
benefit from Senate’s query splitting.

Query 3 (Credit scoring). We evaluate the third query with 16 parties and varying input sizes
in Figure 4.11, and observe that Senate is 10x faster than AGMPC for 600 input rows, and is able to
scale to almost 10 times the input size. The introduction of a local filter into the query, with a filter
factor of 0.1 reduces the runtime by 100x. We attribute this to our efficient m-SI implementation
which optimally splits the set intersection and parallelizes its execution across parties. The reduction
in network usage (Figure 4.13) is also similar.

In the WAN setting, the improvement in query performance with Senate largely mimics the LAN
setting; Figure 4.14 plots the results in the absence of query splitting (i.e., filter factor of 1). Overall,
we find that Senate MPC decomposition protocol alone improves performance by up to an order of
magnitude over the baseline. In addition, Senate’s query splitting technique can further improve
performance by another order of magnitude, depending on the filter factor.

4.8.2.2 TPC-H benchmark

To stress test Senate on more complex query structures, we repeat the performance experiment by
evaluating Senate on the TPC-H benchmark [TPCb], an industry-standard analytics benchmark.
The benchmark comprises a rich set of 22 queries on data split across 8 tables. The query structures
are complex: for example, query 5 involves 5 joins across 6 tables, several filters, cross-column
multiplications, aggregates over groups, and a sort. Existing benchmarks for analytical queries
(including TPC-H) have no notion of collaborations of parties, so we created a multi-party version
of TPC-H by assuming that each table is held by a different party.
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Figure 4.16: Accuracy of cost model. Figure 4.17: Semi-honest baselines

We measure Senate’s performance on 13 out of these 22 queries; the other queries are either
single-table queries, or perform operations that Senate currently does not support (namely, substring
matching, regular expressions, and UDFs). For parity, we assume 1K inputs per party across all
queries, and a filter factor of 0.1 for local computation that results from Senate’s query splitting.
Figure 4.15 plots the results. Overall, Senate improves performance by 3x to 145X over the
AGMPC baseline across 12 of the 13 queries; query 8 runs out of memory in the baseline.

4.8.3 Accuracy of Senate’s cost model

We evaluate our cost model (from Section 4.7.2) using Senate’s circuit primitives. We compute
the costs predicted by the cost model for the primitives, and compare them with the measured
cost of an actual execution. As detailed in Section 4.7.2, the cost model does not consider the
function independent computation in the offline phase of the MPC protocol as it does not lie in the
critical path of query evaluation; we therefore ignore the function independent components from
the measured cost. Figure 4.16 shows that our theoretical cost model approximates the actual costs
well, with an average error of ~20%.
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4.8.4 Senate versus other protocols

Custom PSI protocols. There is a rich literature on custom protocols for PSI operations. While
custom protocols are faster than general-purpose systems like Senate, their functionality naturally
remains limited. We quantify the tradeoff between generality and performance by comparing
Senate’s PSI cost to that of custom PSI protocols. We compare Senate with the protocol of Zhang et
al. [ZLL"19], a state-of-the-art protocol for multiparty PSI with malicious security.> The protocol
implementation is not available, so we compare it with Senate based on the performance numbers
reported by the authors, and replicate Senate’s experiments on similar capacity servers. Overall, we
find that a 4-party PSI of 2!2 elements per party takes ~3 s using the custom protocol in the online
phase, versus ~30 s in Senate, representing a 10x overhead.

Arithmetic MPC. Senate builds upon a Boolean MPC framework instead of arithmetic MPC.
We validate our design choice by comparing the performance of Senate with that of SCALE-
MAMBA [Sca], a state-of-the-art arithmetic MPC framework. We find that though arithmetic
MPC is 3 x faster than Senate for aggregation operations alone (as expected), this benefit doesn’t
generalize. In Senate’s target workloads, aggregations are typically performed on top of operations
such as joins and group by, as exemplified by our representative queries and the TPC-H query mix.
For these queries (which also represent the general case), Senate is over two orders of magnitude
faster. More specifically, we measure the latency of (i) a join with sum operation, and (ii) a group by
with sum operation, across 4 parties with 256 inputs per party; we find that Senate is faster by 550 x
and 350 x for the two operations, respectively. The reason for this disparity is that joins and group
by operations rely almost entirely on logical operations such as comparisons, for which Boolean
MPC is much more suitable than arithmetic MPC.

Semi-honest systems. We quantify the overhead of malicious security by comparing the per-
formance of Senate with semi-honest baselines. To the best of our knowledge, we do not know
of any modern m-party semi-honest garbled circuit frameworks faster than AGMPC (even though
it’s maliciously secure). Therefore, we implement and evaluate a semi-honest version of AGMPC
ourselves, and compare Senate against it in Figure 4.17. AGMPC-SH refers to the semi-honest
baseline with monolithic circuit execution. We additionally note that Senate’s techniques for de-
composing circuits translate naturally to the semi-honest setting, without the need for verifying
intermediate outputs. Hence, we also implement a semi-honest version of Senate atop AGMPC-SH
that decomposes queries across parties. We do not compare Senate to prior semi-honest multi-party
systems SMCQL and Conclave, as their current implementations only support 2 to 3 parties.
Figure 4.17 plots the runtime of m-SIl, m-SU and m-Sort across 16 parties, with 1K, 600 and
600 inputs per party respectively. We observe that Senate-SH yields performance benefits ranging
from 2.7-8.7x when compared to AGMPC-SH. Senate’s malicious security, however, comes with
an overhead of 4.4 x compared to Senate-SH. We also measure the end-to-end performance of the

3We note that the protocol of Zhang et al. provides malicious security only against adversaries that do not
simultaneously corrupt two parties, while Senate is secure against arbitrary corruptions. However, the only custom
protocols we’'re aware of that tolerate arbitrary corruptions (for more than two parties) either rely on expensive
public-key cryptography (and are slower than general-purpose MPC, which have improved tremendously since these
proposals) [DSMRY 11, CJS12], or do not provide an implementation [HV17].
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three sample queries, and find that Senate-SH yields performance benefits similar to Figures 4.9
to 4.11 when compared to AGMPC-SH. At the same time, we observe a maximum overhead of
3.6 x when running the queries in a maliciously-secure setting.

4.9 Limitations and Discussion

Applicability of Senate’s techniques. Senate works best for operations that can be naturally
decomposed into a tree. While many SQL queries fit this structure, not all of them do. A general
case is one where the same relation is fed as input to two different operations (or nodes in the query
tree). For example, consider a collaboration of 3 parties, where each party P; holds a relation R;,
who wish to compute the join (RjUR;)xR3. In the unencrypted setting, we can decompose the
operation by computing pairwise joins R; XR3 and Ry XR3, and then take the union of the results.
Unfortunately, this decomposition doesn’t work in Senate because it produces a DAG (a node
with two parents) and not a tree. Hence, a malicious P; may use different values for R3 across the
pairwise joins, leading to an input consistency issue. In such cases, Senate falls back to monolithic
MPC for the operation.

Overall, Senate’s techniques do not universally benefit all classes of computations, yet they
encompass important and common analytics queries, as our sample queries exemplify.

Verifiability of SQL operators. As described in Section 4.7, for simplicity, Senate’s compiler
requires that each node in the query tree outputs values that adhere to a well-defined set of constraints.
If a node constrains its outputs in any other way, the compiler marks it as unverifiable. The reason
is that additional constraints restrict the space of possible inputs for future nodes in the tree (and
thereby, their outputs), making it harder to deduce what needs to be verified.

For example, consider a group by operation over column a, with a sum over column b per group.
If the values in b also have a range constraint, then deducing the possible values for the sums per
group is non-trivial (though technically possible). Generalizing Senate’s compiler to accept a richer
(or possibly, arbitrary) set of constraints is interesting future work.

Additional SQL functionality. Senate does not support SQL operations such as UDFs, substring
matching, or regular expressions, as we discuss in our analysis of the TPC-H benchmark Sec-
tion 4.8.2.2. Adding support for missing operations requires augmenting Senate’s compiler to
(1) translate the operation into a Boolean circuit; and (ii) verify the invertibility of the operation
as required by the MPC decomposition protocol. While this is potentially straightforward for
operations such as substring matching and (some limited types of) regular expressions, verifying
the invertibility of arbitrary UDFs is computationally a hard problem. Overall, extending Senate to
support wider SQL functionality (including a well-defined class of UDFs) is an interesting direction
for future work.

Differential privacy. Senate reveals the query results to all the parties, which may leak information
about the underlying data samples. This leakage can potentially be mitigated by extending Senate
to support techniques such as differential privacy (DP) [DR14] (which prevents leakage by adding
noise to the query results), similar to prior work [NH12, BHE"18].
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In principle, one can use a general-purpose MPC protocol to implement a given DP mechanism
for computing noised queries in the standard model [DKM 06, EKM ' 14]—each party contributes
a share of the randomness, which is combined within MPC to generate noise and perturb the query
results, depending on the mechanism. However, an open question is how the MPC decomposition
protocol of Senate interacts with a given DP mechanism. The mechanism governs where and how
the noise is added to the computation, e.g., Chorus [JNHS18] rewrites SQL queries to transform
them into intrinsically private versions. On the other hand, Senate decomposes the computation
across parties, which suggests that existing mechanisms may not be directly transferable to Senate
in the presence of malicious adversaries while maintaining DP guarantees. As a result, designing
DP mechanisms that are compatible with Senate is a potentially interesting direction for future
work.

4.10 Related work

Secure multi-party computation (MPC) [Ya082,GMW87,BGWS88]. A variety of MPC protocols
have been proposed for malicious adversaries and dishonest majority, with SPDZ [KPR18,KOS16,
DKL"13] and WRK [WRK17] being the state-of-the-art for arithmetic and Boolean (and for
multi/constant rounds) settings, respectively. WRK is more suited to our setting than SPDZ
because relational queries map to Boolean circuits more efficiently. These protocols execute a
given computation as a monolithic circuit. In contrast, Senate decomposes a circuit into a tree, and
executes each sub-circuit only with a subset of parties.

MPC frameworks. There are several frameworks for compiling and executing programs using
MPC, in malicious [EMP, Sca, MGC™16] as well as semi-honest [LWNT 15, BDNP08, MNPS04,
ZSB13,BLWO08,RHH14,NWI*15] settings. Senate builds upon the AGMPC framework [EMP]
that implements the maliciously secure WRK protocol.

Private set operations. A rich body of work exists on custom protocols for set operations
(e.g., [KS05,FNO19, KRTW19,KMP*17,PSTY19,CGT12,CKT10]). Senate’s circuit primitives
build upon protocols that express the set operation as a Boolean circuit [HEK12, BA12] in order to
allow further MPC computation over the results, rather than using other primitives like oblivious
transfer, oblivious PRFs, etc.

Secure collaborative systems. Similar to Senate, recent systems such as SMCQL [BEE"17]
and Conclave [VSG™19] also target privacy for collaborative query execution using MPC. Other
proposals [ABG ™05, CLS09] support such computation by outsourcing it to two non-colluding
servers. However, all these systems assume the adversaries are semi-honest and optimize for this
use case, while Senate provides security against malicious adversaries. Prio [CGB17], Melis et
al. [MDC16], and Prochlo [BEM*17] collect aggregate statistics across many users, as opposed to
general-purpose SQL. Further, the first two target semi-honest security, while Prochlo uses hardware
enclaves [MAB™13].

Similar objectives have been explored for machine learning (e.g., [Gooc, BIK*17,ZPGS19,
GSB'17,NWI"13,MZ19,SS15]). Most of these proposals target semi-honest adversaries. Others
are limited to specific tasks such as linear regression, and are not applicable to Senate.
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Trusted hardware. An alternate to cryptography is to use systems based on trusted hardware
enclaves (e.g., [ZDB117,EZ20,PVCI18]). Such approaches can be generalized to multi-party
scenarios as well. However, enclaves require additional trust assumptions, and suffer from many
side-channel attacks [BMW ™18, WCP"17].

Systems with differential privacy. DJoin [NH12] and DStress [PNH17] use black-box MPC
protocols to compute operations over multi-party databases, and use differential privacy [DR14] to
mask the results. Shrinkwrap [BHE™ 18] improves the efficiency of SMCQL by using differential
privacy to hide the sizes of intermediate results (instead of padding them to an upper bound, as in
Senate). Flex [JNS18] enforces differential privacy on the results of SQL queries, though not in the
collaborative case. In general, differential privacy solutions are complementary to Senate and can
possibly be added atop Senate’s processing by encoding them into Senate’s circuits (as discussed in
Section 4.9).

4.11 Summary

We presented Senate, a system for securely computing SQL queries in federated databases. Unlike
prior work, Senate targets a powerful adversary who may arbitrarily deviate from the specified
protocol. Compared to traditional cryptographic solutions, Senate improves performance by being
able to decompose a big cryptographic computation into smaller and parallel computations, planning
an efficient decomposition, and by verifiably delegating a part of the query to local computation.
Our techniques can improve query runtime by up to 145x when compared to the state-of-the-art.
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Chapter 5

Analyzing Encrypted Network Traffic

To meet the demands of workloads with strict performance requirements, we turn to systems
that avoid the cost of cryptographic protocols with the help of trusted execution environments
(or enclaves). This chapter illustrates the design principles behind such systems, and presents
SafeBricks, a system that shields the analysis of network traffic from an untrusted cloud provider.

5.1 Introduction

Modern networks consist of a wide range of appliances that implement advanced network functions
beyond merely forwarding packets, such as scanning for security issues (e.g., firewalls, IDSes) or
improving performance (e.g., WAN optimizers, web caches). Traditionally, these network functions
(or NFs) have been deployed as dedicated hardware devices. In recent years, however, both
industry and academia have proposed the replacement of the devices with software implementations
running in virtual machines [SHS ™12, Eur], a model called Network Function Virtualization (NFV).
Inevitably, the advent of NFV has spurred the growth of a new industry wherein third-parties offer
traffic processing capabilities as a cloud service to customers [SHS 12, Ary, Zsc, Pala]. Such a
service model enables enterprises to outsource NFs from their networks entirely to the third-party
service, bringing the benefits of cloud computing and reducing costs.

However, outsourcing NFs to the cloud poses new challenges to enterprise networks—security.

Need to protect traffic from the cloud. By allowing the cloud provider to process enterprise
traffic, enterprises end up granting to the cloud the ability to see their sensitive traffic and tamper
with NF processing. While the cloud itself might be a benign entity, it is vulnerable to hackers [Pri],
subpoenas [Goob, Mica, Yah], and insider attacks [Beel0, Pou08,Zet10]. This is doubly worrisome
because not only does network traffic contain sensitive information, but some NFs are also designed
to protect enterprises against intrusions which an attacker could try to disrupt.

Need to protect traffic from NF. What complicates matters further is that often, an enterprise
must also trust another party with its traffic: NF vendors. This is the case when enterprises procure
proprietary NF implementations and rulesets from NF vendors [Pala, Bar, For] instead of using their
own, as shown in Figure 5.1. While such NFs typically need access only to specific portions of the
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Figure 5.1: Model for outsourced NFs.

traffic (e.g., IP firewalls only need read access to packet headers), the enterprise by default entrusts
the NFs with both read/write access over entire packets.

Need to protect NF source code. This model threatens the security of the NF vendors as well,
who have a business interest in maintaining the privacy of their code and rulesets (often baked into
the source code) from both the cloud and the enterprise. NFs have traditionally been shipped as
hardware devices, so being shipped as software now exposes them further to untrusted platforms
(e.g., it is possible to reverse binaries).

The question is: how can we design an NF processing framework that meets all these security
goals?

There has been little prior work in this space, consisting of mostly two approaches. Crypto-
graphic approaches such as BlindBox [SLPR15] and Embark [LSP*16] are significantly limited in
functionality, supporting only simple functions such as = and >. They are unable to support more
sophisticated operations such as regular expressions (needed in common NFs such as intrusion de-
tection systems) or process custom NF code. Least-privilege approaches such as mcTLS [NSV'15]
aim to give each NF access to only part of the packet and are designed for hardware middleboxes;
however, when used in the cloud setting, they provide weak guarantees because the cloud receives
the union of the permissions of all middleboxes, which often, is everything. Neither of these
approaches protects the NF source code, and both require significant changes to TLS, which is an
impediment to adoption.

We present SafeBricks, a system for outsourcing NFs that provides protection with respect
to the three security needs above. SafeBricks addresses the discussed limitations of prior work
by supporting generic NF functionality with significantly stronger security guarantees, without
requiring changes to TLS. It builds upon NetBricks [PHJ"16], a framework for building and
executing arbitrary NFs that uses a safe language and runtime, Rust.

To overcome the limited functionality of cryptographic approaches, SafeBricks shields [BPH14]
traffic processing from the cloud by executing the NFs within hardware enclaves such as Intel
SGX [MAB™13] (as described in Chapter 2). This approach promises that neither an administrator
with root privileges nor a compromised operating system can observe enclave-protected data in
unencrypted form, or tamper with the enclave’s execution. Enclaves have already been used to
shield general-purpose computation from the cloud provider [BPH14,SCF'15,HZX " 16, ATG"16].
Applying them to network processing is a natural next step, as recent proposals have pointed out
(see Section 5.11).

While this idea is simple, designing a system that provides protection with respect to the three



CHAPTER 5. ANALYZING ENCRYPTED NETWORK TRAFFIC 79

security goals above, and simultaneously maintains good performance, is far more challenging. We
now discuss a set of challenges overcome by SafeBricks, and give insights into the techniques for
addressing them.

First, general-purpose approaches result in a large trusted computing base (TCB) inside the
enclaves (up to millions of LoC), any vulnerability in which can result in information leakage. In
SafeBricks, we investigate how fo partition the code stack of NF applications (from packet capture
to processing) and choose a boundary that reduces the code within the trusted domain without
compromising security.

Second, partitioning an application is likely to result in transitions between enclave and non-
enclave code. These transitions are expensive, introducing a high run-time overhead due to the cost
of saving/restoring the state of the secure environment. Consequently, there is a tension between
TCB size and the overall performance of the application: the lesser code the enclave contains,
the more transitions it is likely to make to non-enclave code. In SafeBricks, we address these
challenges simultaneously by developing an architecture that leverages shared memory and splits
computation across enclave and non-enclave threads (while verifying the work of the non-enclave
threads) without performing transitions.

Third, NFV deployments typically comprise multiple NFs running in a chain, isolated via VMs
or containers for safety. In our setting, the straightforward way of achieving this isolation would be
to deploy each NF in a separate enclave. However, as we discuss in Section 5.6, such an architecture
can result in a system that is ~2—16x slower than the baseline. Instead, SafeBricks supports chains
of NFs within the same enclave. To isolate them, SafeBricks leverages the semantics of the Rust
language.

Nevertheless, this strategy introduces a new difficulty: all NFs must be assembled using a trusted
compiler. Though the client enterprise is the natural site for building the NFs safely, doing so would
leak the source code of the NFs to the client, which is undesirable for the NF vendors. To address
this challenge, SafeBricks runs in an enclave at the cloud a meta-functionality: a compiler that
creates an encrypted binary, and a loader that runs this binary in a separate enclave. Using the
remote attestation feature of hardware enclaves, both the NF vendors and the client can verify that
the agreed-upon compiler and loader are running in an enclave, before the vendors share the NF
code and the client shares data and traffic.

Finally, none of the above satisfies our requirement for enforcing least privilege across NFs:
each NF still has access to entire packets. SafeBricks enforces least privilege by (i) exposing an API
to the client for specifying the privileges of each NF, and (ii) ensuring that the SafeBricks framework
mediates all NF accesses to packets, both reads and writes. To enforce the latter, SafeBricks
leverages the safety guarantees of Rust.

We note that SafeBricks’s least privilege enforcement does not rely on hardware enclaves; it
is a contribution of independent interest, for settings where the client enterprise trusts the cloud
provider, but wants to reduce its trust in the NF implementations.

We evaluate SafeBricks across four different NF applications using both synthetic and real
traffic. Our evaluation shows that the performance impact of SafeBricks is reasonable, ranging
between ~0-15% across NFs.
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5.2 Model and Threat Model

As shown in Figure 5.1, there are four types of parties in our setting: (1) a cloud provider that hosts
the outsourced NFs; (2) a client enterprise outsourcing its traffic processing to the cloud; (3) two
endpoints that communicate over the network, at least one of which is within the enterprise; and (4)
NF vendors that supply the code and rulesets for network functions.

The client enterprise contains a gateway (as shown in Figure 5.2) which is trusted. The endpoints
are trusted only with their communication.

The core of SafeBricks’s design builds on the abstract notion of a hardware enclave. Our
implementation uses Intel SGX [MAB™13], a popular hardware enclave, but few design decisions
are tailored to SGX. We provide some relevant background on hardware enclaves, and then define
the threat models for the cloud and the NF vendors.

5.2.1 Threat model for the cloud and enclaves

SafeBricks leverages hardware enclaves running on the cloud provider. Our threat model for the
cloud provider is similar to prior works [BPH14,ATG"16,SCF ' 15] that build on hardware enclaves.
Enclaves strive to provide an abstract security guarantee so that systems like SafeBricks can build
on them in a black-box manner; however, current implementations do not yet fully achieve this
guarantee because they are vulnerable to side-channel attacks (as described in Chapter 2 and as we
discuss below).

Abstract enclave assumption. The attacker cannot observe any information about the protected
code and data in the enclave, and the remote attestation procedure establishes a secure connection
between the correct parties and loads the desired code into the enclave.

Attacker capabilities. Except the out-of-scope attacks described below, we consider an attacker
that can compromise the software stack of the cloud provider outside the enclave, which includes
privileged software such as the hypervisor and kernel. In particular, whenever the enclave exits
or invokes code outside the enclave, the attacker can instead run arbitrary code and/or respond
with arbitrary data to the enclave. For example, the OS can mount an lago attack [CS13] and
respond incorrectly to system calls. Note that this threat model implies that the attacker can observe
communication between hardware enclaves as well as communication on the network.

Out-of-scope attacks. In short, all attacks that violate the abstract enclave assumption above are
out of scope for SafeBricks. For example, we consider as out of scope all hardware and side-channel
attacks, as well as assume that the enclave manufacturer (e.g., Intel) is trusted. Intel SGX’s current
implementation does not fully achieve the enclave assumption above because it suffers from side-
channel attacks as detailed in Chapter 2. While these are important issues with SGX, we treat them
as out of scope for SafeBricks because solutions to these are orthogonal and complementary to our
contribution here. Recently, a number of solutions have been proposed for solving or mitigating
many of these attacks [CLD16,SCNS16,SLKP17,GLS"17a,CZRZ17].
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Figure 5.2: End-to-end system architecture

5.2.2 Threat model for network functions

Each NF is trusted only with the permissions given to it by the enterprise for specific packet fields.
That is, if the enterprise gives a NAT read/write permissions for the IP header, the NF is trusted to
not leak the header to unauthorized entities and to modify it correctly. At the same time, if the NAT
attempts to access the packet payload, then SafeBricks must prevent it from doing so.

5.3 SafeBricks: End-to-end Architecture

APLOMB [SHS"12] discusses in detail the architecture for outsourcing NF processing to the
cloud by redirecting client traffic, as well as the merits of this architecture. Here, we focus on how
SafeBricks enhances this architecture with protection against cloud attackers and TLS compatibility,
while maintaining performance.

SafeBricks supports three typical architectures considered in the cloud outsourcing model [SHS 12,
LSP"16], as shown in Figure 5.2. These architectures have different merits or constraints, and are
useful for different cases.

Let S be the source endpoint, G the client gateway, CP the cloud provider running NFs using
SafeBricks (SB), and D the destination endpoint. Let G| be the gateway near the source, and G,
be the gateway near the destination. Note that in the Direct architecture, an enclave in the cloud
plays the role of G;, and in the Bounce architecture, a single gateway plays both G| and G,. CP
runs hardware enclaves; code and data are decrypted inside enclaves, but remain encrypted outside.
D could either be an external site or an endpoint in another enterprise.

1. Bounce: In the bounce architecture, SB tunnels processed traffic to G over the secure channel.
G then forwards the processed traffic to the destination. The response from D is similarly
redirected by G to SB before forwarding it to S. The bounce setup is the simplest in that it
does not place any added burden on SB or D from a functionality and security perspective.
However, it inflates the latency between S and D as a result of bouncing the processed traffic
to G.

2. Direct: The direct architecture alleviates the latency added by the bounce setup. SB directly
forwards the enterprise traffic to D after processing it without bouncing it off the gateway.
However, this setup comes at the cost of security: since there is no secure channel between SB
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and D over which traffic can be tunneled, SB must necessarily send the processed packets to
D in the clear, revealing the headers to CP. If S and D use TLS, CP will not see the payload.

3. Enterprise-to-enterprise: If S and D belong to the same enterprise or to enterprises that trust
each other, it is possible to have the combined benefits of the bounce and direct architecture.
SB tunnels the processed traffic to G, so CP does not see any headers at any time. At the
same time, this approach does not suffer from the bounce setup’s latency.

Though not the focus of this work, it is worth mentioning that SafeBricks can also be used
in a local cloud deployment in which the NFs run within the client enterprise. This benefits the
client by providing SafeBricks’s isolation and least privilege for NFs, as well as protection against
administrators of the local cloud (although the gateway administrators need to remain trusted).

Compared to the architecture of cryptographic solutions like Embark [LSP™16], Embark does not
support the direct architecture because the special encryption needs to be stripped off before reaching
the final destination. It also requires the gateway to do much more work than for SafeBricks—i.e.,
to compute a part of the NF functions as part of the encryption scheme.

5.3.1 Overview of the communication protocol

Our protocol for handling connections is the same for all architectures, as we now explain in terms
of Gy and G».

System bootstrap. The client enterprise first sets up and verifies the enclaves in the cloud as
explained in Section 5.7. As part of this process, the gateways are able to set up a set of IPSec
tunnels with the cloud in a secure way (such as installing certificates to avoid the risk of a man-in-
the-middle attack). To load-balance flows at the cloud server via receive-side scaling (RSS), the
number of IPSec tunnels depends on the number of ports at the server.

As with all such interception systems, the source endpoints need to be configured to allow
interception. There are at least two approaches and SafeBricks supports both of them. The most
common is the interception proxy [Jar12], in which the sources’ browsers accept certificates from
the proxy which can now terminate the TLS connection. Another approach [HKHH17] is to insert a
browser plugin at the clients in the enterprise, which sends session keys to the gateway over a secure
channel. In both cases, note that the interception proxy and the receiver of these session keys will
be the gateways, and not the cloud provider. This is unlike the current cloud deployment where the
cloud intercepts and can see all traffic. Of course, SafeBricks supports non-TLS encrypted traffic
too, which is a simplified version of the protocol for TLS-encrypted traffic.

Upon a new TLS connection from a source.

1. Gy terminates the connection using the interception mechanism of choice above and informs
G», and

2. Gy starts the TLS connection to the destination.

Packet processing.
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1. § sends packets over TLS to D.

2. G intercepts the traffic, decrypts it from TLS, and tunnels it over an IPSec connection. G
sends all packets that belong to the same flow on the same IPSec connection. Multiple flows
might be mapped to the same IPSec connection. As part of this process, the entire packet
is encrypted and encapsulated in a new header. The payload and the actual header are thus
encrypted. The encryption algorithm used in IPSec is AES in GCM mode, which includes
packet authentication.

3. The enclave at CP receives each packet, decapsulates it by stripping off the extra header,
checks its integrity tag, decrypts it and executes the NFs (as discussed in Section 5.5). It then
tunnels the packets over IPSec to G».

4. G, terminates the IPSec tunnel, and forwards the traffic over TLS to the destination server.

5.4 Background

Before delving into the design of SafeBricks, we provide a brief overview of NetBricks and some
additional details on Intel SGX relevant to our system.

5.4.1 Intel SGX

Illegal enclave instructions. SGX does not allow instructions within an enclave that result in a
change of privilege levels (e.g., system calls) or cause a VMEXIT. Applications that need to perform
such instructions must exit the enclave and transfer control to host software.

Memory architecture. Enclave pages reside in a protected memory region called the enclave
page cache (EPC), whose size is limited to ~94MB in current hardware. EPC pages are decrypted
when loaded into cache lines, and integrity-protected when swapped to DRAM.

5.4.2 NetBricks

The NetBricks framework [PHJ"16] enables the development of arbitrary NFs by exposing a
small set of customizable programming abstractions (or operators) to developers. In this respect,
NetBricks is similar to Click [KMC™00], which also enables developers to write NFs by composing
various packet processing elements. However, we choose to build our system atop NetBricks instead
of Click for the following reasons:

» Unlike Click, the behavior of NetBricks’ operators can be heavily customized via user-defined
functions (UDFs). This allows us to protect a small number of operators within the enclave
(with NetBricks), which are then composed into NFs, as opposed to routinely adding new
Click modules.
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* More importantly, NetBricks builds upon a safe language and runtime, Rust, to provide
isolation between NFs chained together in the same process. In Section 5.6, we describe how
SafeBricks extends these guarantees to provide least privilege across NFs inexpensively.

* NetBricks’ zero-copy semantics also improve performance substantially [PHJ " 16].

We now briefly describe some features of NetBricks relevant to the design of our system.

Programming abstractions. To construct an NF, the developer specifies a directed graph consist-
ing of NetBricks’ operators as nodes. For example, the parse operator casts packet buffers into
protocol structures; transform modifies packet buffers; and filter drops packets based on a UDE.
All nodes in the NF graph process packets in batches.

Execution environment. The NetBricks scheduler implements policies to decide the order in
which different nodes process their packets. Chains of NFs are run in a single process by composing
their directed graphs together as function calls, instead of running each NF separately in a container
or VM. For isolation between NFs, NetBricks relies on a safe language and runtime, Rust.

Packet I/0. NetBricks builds on top of DPDK [Inta], a fast packet I/O library. DPDK polls packets
from the network devices, buffers them in pools of memory, and maintains a queue of pointers to
the packet buffers. NF instances query DPDK via an I/O interface to retrieve pointers to the next
batch of packet buffers, and process them in-place without performing any copies.

5.5 SafeBricks: Framework Design

We now describe how we build our system on top of NetBricks (while redesigning some parts of it).
We carefully partition the components of NetBricks into modules that run within the enclave in the
trusted environment, and modules that run outside the enclave in the untrusted environment.The
former constitutes our TCB decoupled from the original framework and protected within an enclave,
while the latter remains resident in memory outside the enclave and is subject to attacks. Figure 5.3
shows the overall design of the framework, highlighting the components modified or introduced by
SafeBricks. Our goal in this section is to reduce the size of the TCB while minimizing the overhead
of transitions between the enclave and the host. However, these two goals are often at odds with
each other—the lesser code the enclave contains, the more transitions it makes to outside code. We
now describe how our design balances both these aims.

5.5.1 Partitioning NetBricks

We carefully split NetBricks into two components—enclave code and host code.

SafeBricks enclave. At a bare minimum, the enclave should include the programming and state
abstractions of NetBricks. However, during execution, the NetBricks scheduler takes decisions
regarding which node to process next in the directed graph representing the NF (as described in
Section 5.4.2). These decisions are frequent—every time a node is done processing a batch of
packets, it surrenders control to the scheduler. As a result, excluding the scheduler from the TCB
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Figure 5.3: SafeBricks framework: White boxes denote existing NetBricks components, light grey
boxes denote modified components, and dark grey boxes denote new components.

would result in a large number of enclave transitions per packet batch. Hence, we include the
scheduler in our TCB as well.

SafeBricks host. The remaining components of NetBricks (mostly pertaining to packet I/0)
together form the SafeBricks host. As described in Section 5.4.2, NFs in NetBricks directly access
the packet buffers allocated by the packet capture library (DPDK) without copying them. Simply
excluding DPDK from the enclave without other modifications is not a viable option because it
would gain access to the packets once they are decrypted. On the other hand, including DPDK
within the enclave would drastically inflate the size of the TCB by ~516K LoC.

We circumvent this issue by introducing two new operators in NetBricks: toEnclave and
toHost. The toEnclave operator polls the I/O interface for pointers to packet buffers, reads the
encrypted buffers from DPDK-allocated memory and decrypts them inside the enclave. Once the
processing is complete, the toHost operator re-encrypts the packet buffers and returns them outside
the enclave into DPDK’s memory pool.

More concretely, toEnclave and toHost implement endpoints of the [PSec tunnel. As a result,
even if the host attacker attempts lago attacks [CS13] such as modifying packet buffers or queues
outside the enclave, these will be detected by the authenticity provided by IPSec.

Excluding DPDK from the TCB enables us to remove NetBricks” I/O module from the TCB as
well. The module interfaces with the packet capture library and is used by the NFs to poll DPDK
for packets (Figure 5.3).
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Figure 5.4: Packet I/O via shared memory.

5.5.2 Packet I/0O avoiding enclave transitions

Every receive or send operation for a batch of packets results in an invocation of the I/O interface.
Since we exclude the packet capture library from the TCB, every such invocation necessarily results
in an enclave transition. Batch processing of packets alleviates the overhead of these transitions to
some extent, but as we show in Section 5.9.2.1, it is far from being a perfect solution.

Prior works [ATG " 16, 0LMS17] have also explored the reduction of enclave transitions, albeit
in a different context—they allow enclave threads to delegate system calls to the host with the help
of shared queues. In a similar spirit, we propose an alternative design point that allows enclave code
to receive and send packet batches from the host via shared memory, without the need for enclave
transitions. To do so, we (i) introduce an additional trusted I/O module within the enclave (called
EnclavelIO) that exposes the I/O APIs transparently to the rest of enclave code, and (ii) modify the
NetBricks I/0 interface outside the enclave (HostIO) to appropriately interface with the EnclavelIO
module.

SafeBricks allocates two lockless circular queues (recvqg and sendq) on heap memory outside
the enclave during the application’s initialization, one for receiving pointers to packet buffers and
the other for sending. HostIO busy polls DPDK for incoming packets and populates recvq with the
buffer addresses. Enclave code queries the EnclaveIO module which in turn reads the packet buffer
addresses directly from recvq without having to exit the enclave. To send packets, EnclaveIO
pushes the packet buffer addresses into sendq. HostIO consumes the buffers asynchronously from
this queue, and finally invokes the I/O interface to emit the packets to the network. Figure 5.4
illustrates the approach.

This mechanism doesn’t result in any enclave transitions because (i) enclave code can readily
access memory outside the enclave, and (ii) the queue management is asynchronous—the HostIO
module and the SafeBricks enclave (containing EnclavelIO) run in separate threads.

5.5.3 System calls and other illegal instructions

As described in Section 5.4.1, SGX allows neither system calls within enclaves nor instructions
that could lead to a VMEXIT (such as rdtsc, used for reading the timestamp counter). There exist a
set of general-purpose systems [BPH14,HZX 16, ATG"16,STTS17,0LMS17, TPV17] that add
support for such system calls to enclave applications, at the expense of added complexity and/or a
significant increase in TCB.
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We note that many NFs simply do not make system calls or execute instructions that require
VM exits, and those made are typically only of a few types: such as I/O for maintaining logs,
or timestamp measurements using rdtsc. For example, no application in the NetBricks or Bess
source trees [Ber, Net] implements system calls. This is due to the high-performance goal of NFs,
aiming to run exclusively in user-space [Inta, Riz12, JMK 17, The, Palb]. The same extends to
user-space implementations of networking stacks as well, which are gaining in popularity [JWJ T 14,
LKL,EYC™16,1lwl, Mir]. Therefore, instead of exposing an exhaustive API within the enclave
for these instructions, SafeBricks focuses only on the operations essential for NFs and executes
them without the need for enclave transitions. SafeBricks does not expose any other system calls or
illegal instructions that would require enclave exits to NFs within the enclave.

Logging. Instead of allowing NFs to write to files, we expose a new state abstraction in SafeBricks
that enables them to directly push logs to queues allocated in heap memory outside the enclave
(similar to how we perform packet I/0O). During system initialization, the Logger module allocates a
queue in non-enclave heap per NF that logs information. NFs can push log entries to the respective
queue by invoking the Logger module. Host code asynchronously reads the logs off these queues
and writes them to files.

However, since this heap memory is untrusted and visible outside the enclave, we need to take
additional steps to ensure the security of the logs (as they contain sensitive packet information). We
encrypt and chain together log entries via authentication tags, a fairly standard technique. Suppose
an NF submits a request to the Logger module for appending line L; to its log. The Logger module
first encrypts the line after prefixing it with an id associated with the NF, to obtain the ciphertext
C; = Enc(id||L;). It then computes an authentication tag 7; over this ciphertext in conjunction with
the tag for the previous line: 7; = Auth(C;||T;—1). The Logger then pushes (C;, T;) to the log queue.
By including the previous tag in the computation for the current tag, we ensure that host code cannot
arbitrarily drop log items or reorder them without getting detected.

Our approach optimizes for writing to the log, instead of verification (which happens offline). A
more efficient logging mechanism is beyond the scope of this paper and other existing protocols
for efficient logging and verification [MT09, Mer79] can be easily integrated with SafeBricks. The
Logger module maintains the root authentication tag within the enclave. Verifiers can later validate
the log by obtaining the latest tag from the enclave over a secure channel and replaying the log. We
note that by itself, the approach doesn’t prevent rollback attacks on the logs; however, techniques
for avoiding such attacks exist and can be deployed in a complementary fashion [SP16].

Timestamps. SafeBricks relies on the HostI0 module to capture the timestamp per incoming
packet batch and write it to a slot in the packet buffer reserved for external metadata. NFs that
need timestamps for their functionality simply read it off the packets. This approach also reduces
latency when chains of NFs are deployed together, as the cost of measuring the timestamp is borne
only once. Though it is possible to ensure the monotonicity of timestamps, SafeBricks does not
guarantee that the timestamps are correct—this is unavoidable in the current SGX implementation
as the reporting module is not trusted hardware.
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5.5.4 Execution model

As described in Section 5.4.2, a single NetBricks process runs several NF instances in parallel, and
the execution environment is responsible for dividing the instances across cores. SafeBricks mirrors
this model and runs the NFs in a multi-threaded enclave, each enclave thread running a separate NF
instance.

In the case an NF instance performs packet I/O via transitioning to host code, SafeBricks adds
no extra overhead on system resources compared to NetBricks, and enclave threads are mapped
to cores as in NetBricks. On the other hand, the shared memory mechanism for packet I/O (via
the HostIO module) adds extra burden on the system resources, as they require an extra thread
for running the HostIO module. This cost, however, gets amortized by mapping a single HostI0
instance to multiple NF instances.

In Section 5.9.2 we compare in greater detail the overhead incurred by the two approaches—
packet I/O via enclave transitions, and packet I/O via shared memory.

5.6 SafeBricks: NF Isolation, Least Privilege

SafeBricks gives enterprises the flexibility to source NFs from different vendors and deploy them
together on the same platform, while isolating them from each other and controlling which parts of
a packet each NF is able to read or write. For example, consider a chained NF configuration wherein
traffic is first passed through a firewall, then a DPI, and finally a NAT. The firewall application
only needs read access to packet headers; the DPI needs read access to headers and payload; while
the NAT needs read and write access to packet headers. SafeBricks ensures that each NF is given
only the minimum level of access to each packet as required for their functions, e.g., the firewall is
unable to write to packet headers, or read/write to the payload. In other words, SafeBricks isolates
NFs from one another while enforcing the principle of least privilege amongst them.

5.6.1 Strawman scheme

The importance of least privilege access to traffic has been recognized before in mcTLS [NSV*15],
which relies on physical isolation of NFs and enforces least privilege by encrypting and authenticat-
ing each field of the packet separately using different keys. Each NF is given the keys only for fields
that it needs access to. To allow read access, the NF is given the encryption keys; for writes, the
NF is given the authentication keys as well. Packets are re-encrypted before being transferred from
one NF to the other. In the mcTLS model, NFs are isolated by virtue of being deployed on separate
systems (hardware or VMs). Correspondingly in our setting, it suffices to run each NF concurrently
in a separate enclave isolating their address spaces, as shown on the left of Figure 5.5.

Such an approach, however, eliminates much of the performance benefits of the underlying
NetBricks framework. In addition to adding significant overheads due to repeated re-encryption of
packets, it requires packets to cross core boundaries between NF enclaves (for enclaves affinitized
to separate cores). Together, this can result in a system that is up to ~2—16x slower (as we show in
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Figure 5.5: Strawman approach for enforcing least privilege versus SafeBricks. Solid arrows
indicates packet transfers. Dotted arrows indicate interaction between NFs and the Controller.

Section 5.9.2.3). Instead, it would be ideal to keep all NFs in the same enclave and isolate them
efficiently within.

5.6.2 NF isolation in NetBricks

Before describing how SafeBricks enforces least privilege across NFs, we revisit crucial properties
of the Rust language that form the basis of our design.

The NetBricks framework provides isolation between NFs running in the same address space
by building on a safe language, Rust [BBB'17,PHJ " 16]. Rust’s type system and runtime provide
four properties crucial for memory isolation: (i) they check bounds on array accesses, (i1) prohibit
pointer arithmetic, (iii) prohibit accesses to null objects, and (iv) disallow unsafe type casts.

In addition to memory isolation, NFs also require packet isolation; i.e., NFs should not be able
to access packets once they’ve been forwarded. NetBricks relies on Rust’s unique types [BBB 17,
GPP"12] to isolate packets. Rust enforces an ownership model in which only a unique reference
exists for each object in memory. Variables acquire sole ownership of the objects they are bound to.
When an object is transferred to a new variable, the original binding is destroyed. Rust also allows
variables to temporarily borrow objects without destroying the original binding. By harnessing
Rust’s ownership model, NetBricks ensures that once an NF is done processing a packet, its
ownership is transferred to the next NF and the previous NF can no longer access the packet.

Taken together, the properties of NetBricks suffice for the purpose of running NFs safely within
the same address space. However, they do not provide the desired security, as we explain next.

5.6.3 Isolating NFs within the same enclave

The properties of NetBricks do not satisfy the requirements of our threat model for the following
reasons:

* The isolation guarantees only hold if NFs are built using a compiler that enforces the safety
properties above. In our model, however, enterprises may source NFs from various vendors
that compiled them in their own way and lack incentive to enforce these properties.
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pub fn chain<T:'static + Node>(input:T, pmap:HashMap) -> Node {
let input = input.toEnclave()
.wList(pmap.get(’firewall’));
let mut chain = firewall (input)
.wList(pmap.get(’dpi’));
chain = dpi(chain)
.wList(pmap.get(’nat’));
return nat(chain)
.toHost();

Figure 5.6: Code for chaining NFs together (firewall, DPI, and NAT), generated automatically by
SafeBricks from a configuration file. Lines in magenta represent code added by SafeBricks over
and above NetBricks to enforce least privilege across NFs.

* Each NF still receives ownership of entire packets, instead of limited read / write access to
specific fields.

We now describe how SafeBricks addresses both issues.

5.6.3.1 Ensuring memory safety

SafeBricks needs to ensure that NFs are built using a compiler that prohibits unsafe operations
inside NFs. Instead of trusting NF providers, SafeBricks ensures that a trusted compiler gets access
to the raw source code of all the NFs which it can then build in a trusted environment.

This strategy is seemingly in conflict with the confidentiality of NF rules. In Section 5.7 we
show how SafeBricks performs this compilation such that neither the enterprise nor the cloud learns
the source code of the NFs.

5.6.3.2 Enforcing least privilege

SafeBricks extends NetBricks’ memory safety guarantees by interposing on its packet ownership
model. Instead of transferring packets across NFs, SafeBricks introduces a Controller module that
mediates NF access to packets as depicted in Figure 5.5 (right).

Controlling access to packets. The Controller holds ownership of packet buffers, and NFs can
only borrow packet fields (or different fragments of the data buffers) by submitting requests to
the Controller. To provide least privilege, each packet in SafeBricks encapsulates a bit vector of
permissions. Each function in the packet API exposed by the Controller is associated with a bit
in the permissions vector. Before lending the NF a reference to the requested field, the Controller
checks the corresponding bit in the vector and answers the request only if the bit is set. Otherwise,
the call returns an error. Furthermore, by controlling whether an API call returns a mutable or an
immutable reference, the framework also disambiguates read access from writes. Rust’s type system
ensures that once the NF processing completes, the binding between the reference and the field is
destroyed, and any later attempt by the NF to access the field will result in a compilation error.
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Setting packet permissions. SafeBricks updates the permissions vector in packets with the help of
a new packet processing operator: wList (whitelist). Chained NFs are interleaved with invocations
of the wList operator that applies a given vector of permissions to each packet batch before it’s
processed by the next NF. Figure 5.6 illustrates the code for chaining NFs together while enforcing
least privilege. In Section 5.7, we describe how SafeBricks generates this code automatically using
a configuration file supplied by the client enterprise.

We need to fulfill two more requirements for the guarantees to hold: (i) NFs should not be able
to alter the permissions vector during execution, and (ii) NFs should not be able to parse packet
buffers arbitrarily—for example, an NF that has permissions only for IP headers should not be able
to incorrectly parse TCP headers as IP, thereby circumventing the policy. SafeBricks therefore
does not expose these operations to NFs. NFs in NetBricks invoke the parse operator to cast
packet buffers into protocol structures before processing them. In contrast, SafeBricks mandates
that packets be parsed as required before being processed by NFs (not shown in Figure 5.6 for
simplicity). In Section 5.7, we describe how the SafeBricks loader interleaves NFs with parse
nodes and stitches them together into a directed graph based on enterprise-supplied configuration
data.

Runtime overhead. The permissions vector leverages portions of the packet buffers reserved
for metadata, and hence does not lead to any memory allocation overhead. Setting and verifying
permissions, however, lead to a small overhead at runtime: setting the permissions vector before
each NF via the wList operator increases the depth of the NF graph, and verifying the permission
adds an extra check as all requests are mediated by the Controller. As we see in Section 5.9.2.3, the
impact on performance is small for real applications.

5.7 SafeBricks: System Bootstrap Protocol

We now describe the protocol for bootstrapping the overall system. Instead of compiled binaries,
SafeBricks needs access to the raw source code of the NFs from the providers so it can pass them
through a trusted compiler, which ensures that NFs do not perform unsafe operations and are
confined to least privilege access. The natural strategy is to have the client enterprise compile these
binaries and upload them to the cloud, as in prior enclave-based systems such as Haven [BPH14].
However, this approach is problematic in our case because NF code is proprietary and the client
enterprise may not see it.

To address this problem, the idea in SafeBricks is to run inside the enclave a meta-functionality:
the enclave assembles the NFs and compiles them using a trusted compiler, and only then starts
running the resulting code. The key to why this works is that both the client enterprise and the NF
vendors can invoke the remote attestation procedure to check that the enclave is running an agreed
upon SafeBricks loader and compiler (both being public code). In this way, (i) each NF vendor can
ensure that the enclave does not run some bad code that exfiltrates the source code to an attacker,
and (i1) the client enterprise makes sure the NF vendor cannot change what processing happens in
the enclave.
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The bootstrap process consists of two phases. In the assembly phase, SafeBricks stitches
together NFs obtained from various NF providers and compiles them into a single binary in the
assembly enclave. In the deployment phase, the compiled binary is loaded into the deployment
enclave, and the client establishes a secure channel of communication with the NFs.

5.7.1 Phase 1: NF assembly

For assembly, SafeBricks uses a special enclave provisioned with two trusted modules—a loader
and a compiler—that combine the NFs into a single binary.

Loader. The loader exposes a simple API that allows the client enterprise to specify (i) encrypted
NF source codes, (ii) optionally, unencrypted NF source codes that might be interspersed with
the proprietary encrypted NFs, (iii) a configuration file outlining the placement of each NF in the
directed graph (when chained together), and (iv) a whitelist of permissions per NF indicating the
fields each NF is allowed to access.

For the first two, the loader exposes the following API to the client: load(name, code,
is_encrypted). For the third, the client specifies the NF graph as a set of edges: (name; — name;).
For the fourth, the client supplies a configuration file with a list of items of type: (name, op,
proto:field) where op € [read, write] and proto:field indicates a field within a protocol
that access is given to. For example, for a firewall, one such entry is (firewall, read, IP:src),
in addition to entries for other fields of the IP header.

The loader decrypts the NFs and stitches them together based on the specified graph, before
invoking the compiler. (In Section 5.7.2, we discuss how the enclave obtains the keys to decrypt this
code.) In doing so, it adds the following additional nodes to the composite graph: (i) a toEnclave
node at the root of the graph, (ii) a toHost node at the end of the graph, and (iii) parse nodes
followed by a wList node before each NF. The loader infers the arguments to the parse and wList
nodes automatically from the configuration file. Thus, parse is run by the trusted SafeBricks
framework and not by an NF or the client enterprise, ensuring that the packets are not parsed in an
unintended way.

Compiler. The compiler is a standard Rust compiler that implements a lint prohibiting unsafe code
inside the enclave, as discussed in Section 5.6.3. Since launching the compiled binary requires OS
support, the binary must be placed into main memory where the OS can access it post compilation.
However, giving the OS access to the binary unencrypted would violate NF confidentiality.

In order to maintain the privacy of NF code while still allowing its execution by the OS, we
take inspiration from VC3 [SCF' 15]. Similarly to VC3, our compiler links the compiled NF code
to a small amount of public code NF1,,4, and then encrypts the NF code because it will be placed
in main memory for the OS to load in the deployment enclave. We refer to the encrypted code as
NFpriv. Post compilation, NF1454 + NFpriy are loaded and run in a separate deployment enclave by
the OS. NF15aq Will be responsible for decrypting and interfacing with NFy-;, within the deployment
enclave once it’s initialized.

The loader and compiler are generic modules independent of the NFs. Hence, the NF providers
need to audit them only once, across all customer deployments.
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Figure 5.7: SafeBricks’s NF assembly and deployment phases during bootstrap. Locks indicate that
the data is encrypted.

Assembly protocol. Figure 5.7 illustrates the assembly and deployment protocol. @) The cloud
provisions an enclave with the SafeBricks loader and compiler modules. @ Next, the client as
well as the NF providers verify that the loader and compiler have been securely provisioned into
the enclave using the remote attestation feature of SGX, as described in Chapter 2. During the
attestation, the enclave also returns a securely generated public key to each NF provider. € Each
provider then encrypts the NF source code and rulesets with the received public key and submits
it to the client enterprise. @ The enterprise loads the encrypted source codes and rulesets along
with configuration files into the enclave via APIs exposed by the loader module. € The loader
decrypts the source codes, stitches them together, and builds and encrypts the assembled code using
the compiler, producing NF1oag + NFpriy. It then returns to the client a hash measurement of the
compiled code so that the client can later verify it once it’s deployed in a separate enclave.

5.7.2 Phase 2: NF deployment

Q The loader finally requests the OS to deploy NF15aq +NFpriy in a separate enclave on the cloud
platform. It attests the deployed enclave, establishes a secure channel with NF1,,4, and transfers to
it the decryption key for NF,iy. NF1054 decrypts the private code and starts execution. Note that
since the assembly enclave attests the deployment enclave and the NF vendors attested the assembly
enclave, the NF vendors are assured that the deployment enclave will not send the decrypted
binary anywhere but merely run it. @) The client then attests the deployed enclave using the
measurement it received at the end of the assembly phase, after which it establishes a secure channel
of communication with the enclave.
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5.8 Security Guarantees

We describe SafeBricks’s guarantees assuming the threat model and assumptions in Section 5.2,
including the enclave assumption.

SafeBricks’s main benefit to confidentiality is that it exposes only encrypted traffic (encrypted
with standard encryption) to a cloud attacker, so the attacker does not see the contents of the packets
and is limited to observing only packet sizes, timing, and NF access patterns to packets and data.
SafeBricks protects in this manner the packet payload and, except in the direct architecture, the
header as well.

As with any system with complex processing, encryption does not mean perfect confidentiality
because of the existence of side-channels. In Section 5.2.1 we mentioned some categories of side-
channels that SafeBricks, and SGX in general, does not protect against. In addition, there are a few
other SafeBricks-specific side channels. First, an attacker in SafeBricks knows which (encrypted)
packets belong to which flow because each flow is affinitized to an IPSec tunnel for scalability. If this
issue is of concern, it can be fixed by using a single tunnel for all flows at the expense of performance.
Second, an attacker can measure the time taken by NFs to process a batch of packets. This could
leak information in some cases, e.g., whether an expensive regular expression was triggered or
not. This is a classical problem, already investigated by prior work [AZM10, BIB15,ZAM11]
with common solutions involving padding, i.e., bounding the running time of NFs by executing
dummy cycles. Third, an attacker can learn the action taken by an NF, e.g., whether a connection
was dropped simply by noticing that fewer packets were sent out. Like many other side-channels,
this leakage can also be removed via padding—for example, the gateways could continue sending
dummy traffic.

SafeBricks also protects the integrity of the traffic and of the NF processing. A cloud attacker
cannot drop, insert, or modify packets, nor can it tamper with NF execution. Integrity of the NFs is
guaranteed by SGX, while the integrity of the traffic is guaranteed by the IPSec tunnels between the
enclave and the client.

Via the isolation and least privilege design, SafeBricks further ensures that each NF is confined to
accessing only parts of the packet the enterprise desires. For the NF vendors, SafeBricks guarantees
that NF source codes are hidden from all untrusted parties, including the client enterprise, a cloud
attacker or other NF vendors.

5.8.1 Comparison to prior approaches

Prior approaches leak significantly more information about the traffic to the cloud provider than
SafeBricks.

Cryptographic approaches. BlindBox [SLPR15] and Embark [LSP16] encrypt the traffic in a
special way that allows the cloud to match encrypted tokens against the traffic and detect if a match
occurs. In these schemes, the cloud learns the offset at which any string from any rule in an NF
occurs in the packet, regardless of whether or not the rule as a whole matched (rules often contain
several such strings). If the rule is known (as in public rulesets), the attacker learns the exact string at
that offset in the packet. Even if the rule string is not known, the attacker learns its frequency, which



CHAPTER 5. ANALYZING ENCRYPTED NETWORK TRAFFIC 95

could lead to decryption via frequency analysis. Assuming an enclave employing side-channel
protections as in Section 5.2.1, SafeBricks does not reveal this information. The attacker does not
know which rule or part of a rule triggered on a packet. Moreover, BlindBox and Embark do not
protect against active attackers who modify the traffic flow and, for example, drop packets.

We remark, however, that these prior approaches rely on cryptography alone, and not on trusted
hardware as SafeBricks, which makes it much more challenging for them to achieve the properties
SafeBricks achieves.

mcTLS [NSV115] aims to provide least privilege in a setting where each NF is a separate hardware
middlebox and belongs to a different trust perimeter. Running mcTLS in the cloud in software,
however, removes essentially all its security guarantees: the cloud receives the union of the
permissions of all NFs, which often, is everything.

5.9 Evaluation

We now measure the impact of SafeBricks on NF performance versus an insecure baseline. We also
measure the reduction in TCB size as a result of our design. We do not discuss the performance of
SafeBricks’s gateway as the protocols it implements are well understood.

5.9.1 Setup

We evaluate the performance of SafeBricks using SGX hardware on a single-socket server pro-
visioned with an Intel Xeon E3-1280 v5 CPU with 4 cores running at 3.7GHz. We disable
hyperthreading for our experiments. The server has 64GB of memory, and runs Ubuntu 14.04.1
LTS with Linux kernel version 4.4. The hardware supports the SGX v1 instruction set which does
not allow dynamic page allocation. Further, the total enclave page cache memory (EPC) available
to all enclaves is limited to ~94MB. For test traffic, we use another server that runs a DPDK-based
traffic generator and is directly connected to the SGX machine via Intel XL710 40Gb NICs. The
SGX machine acts as the cloud, and the traffic generator is both source and sink for the client traffic.

5.9.2 Performance

We evaluate the performance of SafeBricks using (i) synthetic traces of different packet sizes, from
64B to 1KB, and (ii) the ICTF 2010 trace [ICT], captured during a wide-area security competition
and commonly used in academic research. We report throughput in millions of packets per second
(Mpps). In all experiments, we exchange traffic between the traffic generator and the SGX machine
over an encrypted tunnel (per Section 5.3). As a result, the size of each packet exchanged between
the enterprise and the cloud increases by a fixed amount, equal to the headers added by the IPSec
protocol.

We compare SafeBricks against an insecure baseline comprising vanilla NetBricks augmented
with support for the encrypted tunnel. The baseline represents a setup in which traffic is sent to the
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Figure 5.8: (Left) SafeBricks framework performance on 1 core compared to the baseline across
different packet sizes, and with increasing NF complexity (i.e., processing time in CPU cycles).
(Right) Performance with 64B packets and NFs on 2 cores.

cloud over an encrypted channel (hence safe from network attackers), but lacks the protection of
SafeBricks at the cloud. Finally, we report the median of 10 iterations for each experiment.

5.9.2.1 Framework overheads

We first measure the overhead introduced by SafeBricks as a result of redesigning the core NetBricks
framework. To illustrate the benefits of our architecture, we also compare the overheads of the
strawman approach that performs packet I/O via enclave transitions (per Section 5.5).

The net overhead of both approaches varies with the complexity of NFs and the latency the NF
introduces as a result of packet processing. In this experiment, we use CPU cycles as a proxy for
NF complexity, and evaluate a simple NF that first modifies each batch of packets by interchanging
the source and destination IP addresses, and then loops for a given number of cycles. We use packet
batches of size 32 for both NetBricks and SafeBricks.

Figure 5.8 (left) presents the results with varying packet sizes when the NF is deployed on a
single core, and Figure 5.8 (right) shows the performance for 64B packets when the deployment
is scaled to two cores. In the worst case with 64B packets and a delay of 1 cycle, the overhead
introduced by SafeBricks is < 5%. As the processing time begins to dominate (with increasing NF
complexity), the overhead of SafeBricks becomes negligible.

The results also confirm that the design of SafeBricks outperforms the strawman approach, the
overhead of which is ~40% in the worst case. It’s worth noting, however, that the relative overhead
of the strawman approach decreases with larger packet sizes, as the rate of 1/0 falls.

5.9.2.2 Impact on real NFs

Unlike the simple NF in the previous experiment, real NFs have varying state requirements. Since
the sizes of both the processor caches and enclave memory are limited, the overheads of SafeBricks
are also governed by the memory access patterns of the NFs in addition to their complexity. In
particular, L3 cache misses are more expensive for enclave applications because cache lines need to
be encrypted/decrypted before being evicted/loaded. In this experiment, we characterize the effect
of state on the performance of SafeBricks by evaluating the following sample applications:
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Figure 5.11: Cost of least privilege with increasing no. of NFs.

* Firewall: We use a stateful firewall application that linearly scans a list of access control rules
and drops connections if it finds a match. Otherwise, it caches the connection. We evaluate it
using a ruleset we obtained from our department (643 rules).

* DPI: We use a simple deep packet inspection (DPI) application that implements the Aho-
Corasick pattern matching algorithm [AC75] on incoming packets, similar to the core sig-
nature matching component of the Snort IDS [Roe99]. We evaluate the DPI using patterns
extracted from the Snort Community ruleset [Sno].

* NAT: Our implementation is based on MazuNAT [Maz] and maps incoming IP addresses to a
single public IP address.

 Load balancer: We use a partial implementation of Google’s Maglev [EYC™16], that spreads
traffic between backends using a consistent hashing lookup table.

Figure 5.9 shows the normalized overhead of SafeBricks on application performance across different
packet sizes with synthetic traffic. Table 5.1 summarizes the worst-case results corresponding to 64B
packets. Table 5.1 also presents the performance results with the ICTF trace. Across applications,
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Synthetic (64B packets) ICTF trace

NF Baseline SB Baseline SB
Firewall 3.86 3.58 1.96 1.93
DPI 1.10 0.96 0.29 0.25
NAT 3.80 3.21 1.97 1.80
Maglev 3.59 3.04 1.92 1.73

Table 5.1: Performance of sample NFs (Mpps)
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Figure 5.12: Cost of least privilege across NF chains (2 cores)

the overhead ranges between an acceptable ~0-15% for both synthetic and real traffic, and is a
result of page faults triggered by L3 cache misses.

Impact of larger memory footprint. In the previous experiment, the working sets of the appli-
cations exceeded the L3 cache but remained less than the size of the EPC (~94MB). However,
accessing memory beyond the EPC is doubly expensive because evicted EPC pages need to be
encrypted and integrity-protected. We now assess the impact of a large memory footprint using the
DPI application. The application builds a finite state machine over all the patterns in the ruleset, and
as such has a significantly larger memory footprint than other NFs.

Figure 5.10 shows the results of our experiment using an increasing number of rules from the
Emerging Threats ruleset [Eme] and the ICTF trace. At 18K rules, the working set of the DPI
breached the ~94MB EPC boundary causing its performance to sharply deteriorate thereafter.

This experiment indicates the limits of SafeBricks with regard to the nature of applications it
can efficiently support. That is, the cost of securing applications with a memory footprint larger
than the EPC size is high. However, we note that the ~94MB limit is only an artifact of existing
hardware and isn’t fundamental to SGX enclaves. The next generation of SGX machines is likely to
support larger EPC sizes.
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5.9.2.3 Cost of NF isolation

We now evaluate the overhead as a result of our mechanisms for enforcing least privilege. Given
a chain of NFs, SafeBricks increases the overall depth of the NF graph by one node per NF
(Section 5.6.3). In this experiment, we first measure this extra cost as a function of the length of the
NF chain. We then compare our approach against an mcTLS-like strawman that relies on encryption
for selectively exposing packet fields to NFs (Section 5.6.1).

Effect of chain length. For this part of the experiment, we use a simple NF that decrements the
time-to-live (TTL) field in the IP header of each packet, composed together into chains of varying
length. Before executing subsequent NFs in the chain, SafeBricks whitelists access to the TTL field
in the permissions vector per packet.

Figure 5.11 compares the performance of SafeBricks with and without least privilege. Since the
NF is stateless, in the absence of isolation SafeBricks does not introduce any discernible overhead
against the baseline. With least privilege enforcement, the latency added by the additional nodes
increases as the length of the chain increases. Consequently, the overhead climbs from ~14-40% as
the chain grows to a size of seven NFs. We note that these numbers represent an upper bound on the
overhead of SafeBricks. As we show in the next part of this experiment, the percentage overhead is
much smaller for real, more complex NFs.

Comparison with encryption-based strawman. We now measure the performance of SafeBricks
using a chain of real NFs each of which accesses different parts of packets—a firewall (given read
permissions on packet headers), a DPI (with read permissions on both headers and payload), and a
NAT (with read and write permissions on packet headers). The NF implementations are identical to
the ones described in Section 5.9.2.2.

To quantify the benefit of our approach for enforcing least privilege, we also compare SafeBricks
to an mcTLS-like strawman in which each NF in the chain is run in a separate enclave (as described
in Section 5.6.1). In all setups (including the baseline), we allocate two cores for running the NFs,
and reserve one core for 1/0.

Figure 5.12 shows the results with two different chains: (i) a DPI followed by a NAT, and (ii) a
firewall chained to a DPI and then a NAT. In the former scenario, SafeBricks results in an overhead
of 15% in the absence of least privilege enforcement. With least privilege, the throughput declines
by a further 3%, confirming that the cost of enforcing least privilege across real NFs is minimal. In
contrast, an mcTLS-like approach (with each NF running in a separate enclave, affinitized to distinct
cores) results in a sharper decline of 2.2 x the performance being bottlenecked at the DPI along
with the added encryption and copying of packets as they move across NFs in different enclaves.
In the latter scenario with three NFs in a chain, the performance of the strawman approach falls
further, by 16x. In this scenario, however, the NFs (and hence enclaves) outnumbered the available
cores in our setup, leading to resource contention.

5.9.3 Comparison with BlindBox and Embark

Both SafeBricks and Embark tunnel packets to a third-party service in the cloud. For the ICTF trace,
IPSec tunneling inflates the bandwidth by 16% due to both encryption and encapsulation. Embark
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introduces a further 20-byte overhead per IPv4 packet because it converts them to IPv6, resulting in
a net overhead of 21%. BlindBox, in contrast, does not pay the cost of tunneling as it is targeted at
in-network DPI applications. However, the BlindBox encryption protocol (also used by Embark for
DPI processing) inflates bandwidth consumption by up to 5x in the worst case, unlike SafeBricks
which only uses standard encryption schemes.

As regards throughput, both Embark and BlindBox are competitive with unencrypted baseline
NFs and incur negligible overhead, whereas SafeBricks impacts performance by ~0-15% across
NFs due to its use of SGX enclaves (Section 5.9.2.2). At the same time, both BlindBox and Embark
impact performance at the client considerably—with BlindBox, client endpoints need to implement
its special encryption protocols over and above TLS and take 30x longer to encrypt a packet;
Embark centralizes this overhead at the enterprise’s gateway instead. Clients do not need to pay
these costs with SafeBricks.

5.9.4 TCB size

SafeBricks involves the use of two types of enclaves: one for assembling the NFs during system
bootstrap (per Section 5.7), and another for deploying the NFs. The assembly enclave primarily
contains the Rust compiler, which is necessarily part of the TCB of applications with or without
SafeBricks. The deployment enclave, on the other hand, represents the TCB which we aim to reduce
in redesigning the NetBricks framework.

To evaluate the reduction in TCB, we thus compare the size of the deployment enclave com-
ponents in SafeBricks with that of NetBricks. The size of the enclave binary in SafeBricks is
~1MB. In comparison, the aggregate size of NetBricks components is 21.3MB, representing a TCB
reduction of over 20x. The reduction can largely be attributed to the exclusion of DPDK from the
TCB as a result of partitioning NetBricks, which itself comprises ~516K LoC. Furthermore, by
designing for our specific use case, we avoid including a library OS within our trust perimeter, the
size of which can be as large as 209MB (as in Haven [BPH14]).

5.10 Limitations and Future Work

SafeBricks inherits three primary limitations owing to its use of Intel SGX.

First, enclave memory is limited to ~94MB in existing hardware, making SafeBricks imprac-
tical for applications with larger working sets. Exploring alternate architectures that combine
cryptographic approaches and SGX, thereby reducing the memory burden on the enclaves, is an
interesting open problem in this context.

Second, SafeBricks is unsuitable for NFs relying on operations that are illegal within SGX
enclaves, such as system calls and timestamps. Though SafeBricks supports timestamps, it can only
ensure their monotonicity and not correctness.

Third, SGX enclaves, and consequently SafeBricks, are vulnerable to side-channel attacks (per
Chapter 2). Though a number of potential solutions have been proposed in recent work [CLD16,
SCNS16,SLKP17,GLS " 17a,CZRZ17], their impact on application performance is often non-trivial.
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Investigating the viability of these proposals in the NFV context, or developing targeted solutions
for NFs is potential future work.

5.11 Related Work

We divide related work largely into two categories: (i) cryptographic approaches for securing NFs,
and (ii) proposals based on trusted hardware. We do not discuss the mcTLS protocol [NSVT15]
further as we have already compared SafeBricks with mcTLS in Section 5.6 and Section 5.8.

Cryptographic approaches. Recent systems propose the use of cryptographic schemes that
enable NFs to operate directly over encrypted traffic [MADCK16, SLPR15,LSP*16, AMS™ 16,
YWLW16]. When compared to SafeBricks, these approaches have the advantage that they do not
rely on trusted hardware. However, this comes with two significant limitations. (1) Regarding
functionality, they only support simple operations such as “="and “>”, and are unable to support
more sophisticated computations such as regular expressions, scripts, or application-level logic.
As aresult, they are not applicable to a wide range of NFs (e.g., modern IDSes, application-level
firewalls, etc.). To provide full functionality with cryptography, one needs schemes such as fully-
homomorphic encryption [Gen(09], which is orders of magnitude too slow. (2) Regarding security,
we explained in Section 5.8 how these systems leak more information to the cloud than SafeBricks.

Trusted hardware proposals for legacy applications. Other work has shown how to use hard-
ware enclaves to run applications in the cloud without having to trust the cloud provider [BPH14,
HZX*16,ATG"16,STTS17,0LMS17, TPV17]. The mandate of these systems is to support ar-
bitrary, legacy applications instead of optimizing for any in particular. As a result, some of these
systems inflate the size of the TCB by introducing a library OS within the enclave (to support illegal
enclave instructions), or impact performance because of enclave transitions.

Trusted hardware proposals for network applications. Recent work has proposed the use of
hardware enclaves for securing network applications. Kim ez al. use SGX to enhance the security
of Tor [KHH"17], and also identify NFs as a potential use case [KSH'15]. Other proposals
develop prototypes for specific functions: Coughlin ef al. [CKW17] present a proof-of-concept
Click element for pattern matching within enclaves; and Shih et al. [SKKG16] propose SGX for
isolating the state of NFs, applying it to a subset of the Snort IDS. In contrast, SafeBricks is a
general-purpose framework that additionally enforces least privilege across NFs. At the same time,
SafeBricks balances the interests of NF vendors by maintaining the confidentiality of NF code and
rulesets.

Concurrent to our work, SGX-Box [HKHH17] and ShieldBox [TKG™ 18] also propose frame-
works for executing NFs within enclaves. SGX-Box [HKHH17] does not explicitly handle NF
isolation or chaining; ShieldBox integrates SGX with Click and isolates each NF in a separate
enclave. In such cases, ShieldBox reports a throughput decline of up to 3x. SafeBricks, in contrast,
avoids this overhead by isolating NFs within the same enclave with the help of language-based
enforcement. However, unlike SafeBricks, ShieldBox also supports NFs with system calls by
leveraging the Scone framework [ATG"16]. Both SGX-Box and ShieldBox also allow NFs to
access entire packets, while SafeBricks enforces least privilege.
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5.12 Summary

In summary, SafeBricks leverages a combination of hardware enclaves and language-based enforce-
ment to shield network functions in the cloud. SafeBricks is suitable for a wide range of commonly
used NFs, and our evaluation demonstrates that it is practical, adding an overhead of ~0%—15%
across applications.
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Chapter 6

Encrypted Video Analytics and Machine
Learning

This chapter presents Visor, a system that extends trusted execution to workloads that require
hardware accelerators (such as machine learning and video analytics). In addition, the design of
Visor illustrates how to efficiently mitigate side-channel leakage in enclave-based systems.

6.1 Introduction

Cameras are being deployed pervasively for the many applications they enable, such as traffic
planning, retail experience, and enterprise security [Vis, Tel, Ver]. Videos from the cameras are
streamed to the cloud, where they are processed using video analytics pipelines [ZAB*17,JAB*18,
KEA™17] composed of computer vision techniques (e.g., OpenCV [Ope]) and convolutional neural
networks (e.g., object detector CNNs [RDGF16]); as illustrated in Figure 6.1. Indeed, “video-
analytics-as-a-service” is becoming an important offering for cloud providers [Micc, Ama].

Privacy of the video contents is of paramount concern in the “video analytics-as-a-service’
offerings. Videos often contain sensitive information, such as users’ home interiors, people in
workspaces, or license plates of cars. For example, the Kuna home monitoring service [Kun]
transmits videos from users’ homes to the cloud, analyzes the videos, and notifies users when it
detects movement in areas of interest. For user privacy, video streams must remain confidential and
not be revealed to the cloud provider or other co-tenants in the cloud.

Trusted execution environments (TEEs) [MAB*13, VVBI18] are a natural fit for privacy-
preserving video analytics in the cloud. In contrast to cryptographic approaches, such as ho-
momorphic encryption, TEEs rely on the assumption that cloud tenants also trust the hardware.
The hardware provides the ability to create secure “enclaves” that are protected against privileged
attackers. TEEs are more compelling than cryptographic techniques since they are orders of magni-
tude faster. In fact, CPU TEEs (e.g., Intel SGX [MAB™13]) lie at the heart of confidential cloud
computing [IBM, Micb]. Meanwhile, recent advancements in GPU TEEs [VVB18,JTK"19] enable
the execution of ML models (e.g., neural networks) with strong privacy guarantees as well. CPU and

b
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GPU TEEs, thus, present an opportunity for building privacy-preserving video analytics systems.

Unfortunately, TEEs (e.g., Intel SGX) are vulnerable to a host of side-channel attacks (e.g.,
[WCP™17,BMD™*17,BMW 18, XCP15]). For instance, in Section 6.2.3 we show that by observing
just the memory access patterns of a widely used bounding box detection OpenCV module, an
attacker can infer the exact shapes and positions of all moving objects in the video. In general, an
attacker can infer crucial information about the video being processed, such as the times when there
1s activity, objects that appear in the video frame, all of which when combined with knowledge about
the physical space being covered by the camera, can lead to serious violations of confidentiality.

We present Visor, a system for privacy-preserving video analytics services. Visor protects the
confidentiality of the videos being analyzed from the service provider and other co-tenants. When
tenants host their own CNN models in the cloud, it also protects the model parameters and weights.
Visor protects against a powerful enclave attacker who can compromise the software stack outside
the enclave, as well as observe any data-dependent accesses to network, disk, or memory via
side-channels (similar to prior work [OSF*16,RLT15]).

Visor makes two primary contributions, combining insights from ML systems, security, computer
vision, and algorithm design. First, we present a privacy-preserving framework for machine-learning-
as-a-service (MLaaS), which supports CNN-based ML applications spanning both CPU and GPU
resources. Our framework can potentially power applications beyond video analytics, such as
medical imaging, recommendation systems, and financial forecasting. Second, we develop novel
data-oblivious algorithms with provable privacy guarantees within our MLaaS framework, for
commonly used vision modules. The modules are efficient and can be composed to construct
many different video analytics pipelines. In designing our algorithms, we formulate a set of design
principles that can be broadly applied to other vision modules as well.

1) Privacy-Preserving MLaaS Framework. Visor leverages a hybrid TEE that spans CPU and
GPU resources available in the cloud. Recent work has shown that scaling video analytics pipelines
requires judicious use of both CPUs and GPUs [PCHF18, HAB " 18]. Some pipeline modules can
run on CPUs at the required frame rates (e.g., video decoding or vision algorithms) while others
(e.g., CNNs) require GPUs, as shown in Figure 6.1. Thus, our solution spans both CPU and GPU
TEESs, and combines them into a unified trust domain.

Visor systematically addresses access-pattern-based leakage across the components of the hybrid
TEE, from video ingestion to CPU-GPU communication to CNN processing. In particular, we take
the following steps:

a) Visor leverages a suite of data-oblivious primitives to remove access pattern leakage from
the CPU TEE. The primitives enable the development of oblivious modules with provable
privacy guarantees, the access patterns of which are always independent of private data.

b) Visor relies on a novel oblivious communication protocol to remove leakage from the CPU-
GPU channel. As the CPU modules serve as filters, the data flow in the CPU-GPU channel
(on which objects of each frame are passed to the GPU) leaks information about the contents
of each frame, enabling attackers to infer the number of moving objects in a frame. At a
high level, Visor pads the channel with dummy objects, leveraging the observation that our
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application is not constrained by the CPU-GPU bandwidth. To reduce GPU wastage, Visor
intelligently minimizes running the CNN on the dummy objects.

¢) Visor makes CNNs running in a GPU TEE oblivious by leveraging branchless CUDA
instructions to implement conditional operations (e.g., ReLU and max pooling) in a data-
oblivious way.

2) Efficient Oblivious Vision Pipelines. Next, we design novel data-oblivious algorithms for
vision modules that are foundational for video analytics, and implement them using the oblivious
primitives provided by the framework described above. Vision algorithms are used in video analytics
pipelines to extract the moving foreground objects. These algorithms (e.g., background subtraction,
bounding box detection, object cropping, and tracking) run on CPUs and serve as cheap filters to
discard frames instead of invoking expensive CNNs on the GPU for each frame’s objects (more in
Section 6.2.1). The modules can be composed to construct various vision pipelines, such as medical
imaging and motion tracking.

As we demonstrate in Section 6.8, naive approaches for making these algorithms data-oblivious,
such that their operations are independent of each pixel’s value, can slow down video pipelines
by several orders of magnitude. Instead, we carefully craft oblivious vision algorithms for each
module in the video analytics pipeline, including the popular VP8 video decoder [BWX11]. Our
overarching goal is to transform each algorithm into a pattern that processes each pixel identically.
To apply this design pattern efficiently, we devise a set of algorithmic and systemic optimization
strategies based on the properties of vision modules, as follows. First, we employ a divide-and
conquer approach—i.e., we break down each algorithm into independent subroutines based on their
functionality, and tailor each subroutine individually. Second, we cast sequential algorithms into a
form that scans input images while performing identical operations on each pixel. Third, identical
pixel operations allow us to systemically amortize the processing cost across groups of pixels in
each algorithm. For each vision module, we derive the operations applied per pixel in conjunction
with these design strategies. Collectively, these strategies improve performance by up to 1000 x
over naive oblivious solutions. We discuss our approach in more detail in Section 6.5; nevertheless,
we note that it can potentially help inform the design of other oblivious vision modules as well,
beyond the ones we consider in Visor.

In addition, as shown by prior work, bitrate variations in encrypted network traffic can also
leak information about the underlying video streams [SST17], beyond access pattern leakage at
the cloud. To prevent this leakage, we modify the video encoder to carefully pad video streams at
the source in a way that optimizes the video decoder’s latency. Visor thus provides an end-to-end
solution for private video analytics.

Evaluation Highlights. We have implemented Visor on Intel SGX CPU enclaves [MAB " 13] and
Graviton GPU enclaves [VVB18]. We evaluate Visor on commercial video streams of cities and
datacenter premises containing sensitive data. Our evaluation shows that Visor’s vision components
perform up to 1000 better than naive oblivious solutions, and over 6 to 7 orders of magnitude
better than a state-of-the-art general-purpose system for oblivious program execution. Against a
non-oblivious baseline, Visor’s overheads are limited to 2x—6x which still enables us to analyze
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Figure 6.1: Video analytics pipelines. Pipeline (a) extracts the objects using vision algorithms and
classifies the cropped objects using a CNN classifier on the GPU. Pipeline (b) also uses the vision
algorithms as a filter, but sends the entire frame to the CNN detector. Both pipelines may optionally
use object tracking.

multiple streams simultaneously in real-time on our testbed. Visor is versatile and can accommodate
different combinations of vision components used in real-world applications. Thus, Visor provides
an efficient solution for private video analytics.

6.2 Background and Motivation

6.2.1 Video Analytics as a Service

Figure 6.1 depicts the canonical pipelines for video analytics [HAB 18, KEAT17,ZAB"17,ZJR"18,
Micd]. The client (e.g., a source camera) feeds the video stream to the service hosted in the cloud,
which (a) decodes the video into frames, (b) extracts objects from the frames using vision algorithms,
and (c) classifies the objects using a pre-trained convolutional neural network (CNN). Cameras
typically offer the ability to control the resolution and frame rate at which the video streams are
encoded.

Recent work demonstrates that scaling video analytics pipelines requires judicious use of both
CPUs and GPUs [PCHF18, HAB"18]. In Visor, we follow the example of Microsoft’s Rocket
platform for video analytics [Micd, Mice]—we split the pipelines by running video decoding and
vision modules on the CPU, while offloading the CNN to the GPU (as shown in Figure 6.1). The
vision modules process each frame to detect the moving “foreground” objects in the video using
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background subtraction [BBV08], compute each object’s bounding box [SA85], and crop them from
the frame for the CNN classifier. These vision modules can sustain the typical frame rates of videos
even on CPUs, thereby serving as vital “filters” to reduce the expensive CNN operations on the
GPU [HAB" 18, KEA"17], and are thus widely used in practical deployments. For example, CNN
classification in Figure 6.1a is invoked only if moving objects are detected in a region of interest
in the frame. Optionally, the moving objects are also tracked to infer directions (say, cars turning
left). The CNNs can either be object classifiers (e.g., ResNet [HZRS16]) as in Figure 6.1a; or object
detectors (e.g., Yolo [RDGF16]) as in Figure 6.1b, which take whole frames as input. The choice of
pipeline modules is application dependent [JAB™* 18, HAB™ 18] and Visor targets confidentiality for
all pipeline modules, their different combinations, and vision CNNss.

While our description focuses on a multi-tenant cloud service, our ideas equally apply to multi-
tenant edge compute systems, say, at cellular base stations [ETS]. Techniques for lightweight
programmability on the cameras to reduce network traffic (e.g., using smart encoders [Viv] or
dynamically adapting frame rates [ABB ™ 17]) are orthogonal to Visor’s techniques.

6.2.2 Trusted Execution Environments

As described in Chapter 2, trusted execution environments, or enclaves, protect application’s code
and data from all other software in a system. Code and data loaded in an enclave—CPU and GPU
TEEs—can be verified by clients using the remote attestation feature. Here, we briefly introduce
the enclave implementations that Visor builds upon.

Intel SGX. [MAB™13] enables TEEs on CPUs and enforces isolation by storing enclave code and
data in a protected memory region called the Enclave Page Cache (EPC). The hardware ensures that
no software outside the enclave can access EPC contents.

Graviton. [VVBI18] enables TEEs on GPUs in tandem with trusted applications hosted in CPU
TEEs. Graviton prevents an adversary from observing or tampering with traffic (data and commands)
transferred to/from the GPU. A trusted GPU runtime (e.g., CUDA runtime) hosted in a CPU TEE
attests that all code/data have been securely loaded onto the GPU.

6.2.3 Attacks based on Access Pattern Leakage

In Chapter 2 we described in detail how existing TEEs are vulnerable to a host of side-channel
attacks. A large subset of these attacks exploit data-dependent memory access patterns (e.g., branch-
prediction, cache-timing, or controlled page fault attacks). We now demonstrate how devastating
this leakage can be for video analytics pipelines. In particular, we analyzed the impact of access
pattern leakage at cache-line granularity [GESM17,BMD™*17, SWG™ 17, MIE17] on the bounding
box detection algorithm [SA85] (see Figure 6.1a; Section 6.2.1). We simulated existing attacks by
capturing the memory access trace during an execution of the algorithm, and then examined the
trace to reverse-engineer the contents of the input frame. Since images are laid out predictably in
memory, we found that the attacker is able to infer the locations of all the pixels touched during
execution, and thus, the shapes and positions of all objects (as shown in Figure 6.2). Shapes and
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Figure 6.2: Attacker obtains all the frame’s objects (right) using access pattern leakage in the
bounding box detection module.

positions of objects are the core content of any video, and allow the attacker to infer sensitive
information like times when patients are visiting private medical centers or when residents are inside
a house, and even infer if the individuals are babies or on wheelchairs based on their size and shapes.
In fact, conversations with customers of one of the largest public cloud providers indeed confirm
that privacy of the videos is among their top-two concerns in signing up for the video analytics
cloud service.

6.3 Threat Model and Security Guarantees

We describe the attacker’s capabilities and lay out the attacks that are in scope and out of scope for
our work.

6.3.1 Hardware Enclaves and Side-Channels

Our trusted computing base includes: (i) the GPU package and its enclave implementation, (ii) the
CPU package and its enclave implementation, and (iii) the video analytics pipeline implementation
and GPU runtime hosted in the CPU enclave.

The design of Visor is not tied to any specific hardware enclave; instead, Visor builds on top of an
abstract model of hardware enclaves where the attacker controls the server’s software stack outside
the enclave (including the OS), but cannot perform any attacks to glean information from inside
the processor including processor keys (similar to our abstract enclave assumption in the previous
chapter). However, unlike our assumption in the previous chapter, we assume that the attacker can
additionally observe the contents and access patterns of all (encrypted) pages in memory, for both
data and code. In particular, we assume that the attacker can observe the enclave’s memory access
patterns at cache line granularity [OSF' 16]. Note that our attacker model includes the cloud service
provider as well as other co-tenants.

We instantiate Visor with the widely-deployed Intel SGX enclave. However, recent attacks show
that SGX does not quite satisfy the abstract enclave model that Visor requires. For example, attackers
may be able to distinguish intra cache line memory accesses [YGH16, MWES18]. In Visor, we
mitigate these attacks by disabling hyperthreading in the underlying system, disallowing attackers
from observing intra-core side-channels; clients can verify that hyperthreading is disabled during
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remote attestation [Att]. One may also employ complementary solutions for closing hyperthreading-
based attacks [OTK ™18, CWC"18].

Other attacks that violate our abstract enclave model are out of scope: such as attacks based on
timing analysis or power consumption [MOG™20,TSS17], DoS attacks [JLLK17,GLS™17b], or roll-
back attacks [PLD " 11] (which have complementary solutions [BCLK 17, MAK™*17]). Transient ex-
ecution attacks (e.g., [BMW 18, SLM*19,CCX*19,VBMS"20,RMR"21,vSMO™ 19, vSMK"20])
are also out of scope; these attacks violate the threat model of SGX and are typically patched
promptly by the vendor via microcode updates (see Chapter 2 for a detailed discussion). In the
future, one could swap out Intel SGX in our implementation for upcoming enclaves such as
MI6 [BLW ' 19] and Keystone [LKS™19] that address many of the above drawbacks of SGX.

Visor provides protection against any channel of attack that exploits data-dependent access pat-
terns within our abstract enclave model, which represent a large class of known attacks on enclaves
(e.g., cache attacks [GESM17,BMD*17,SWG™ 17, MIE17,HCP17], branch prediction [LSG'17],
paging-based attacks [XCP15,BWK™17], or memory bus snooping [LJF*20]). We note that even if
co-tenancy is disabled (which comes at considerable expense), privileged software such as the OS
and hypervisor can still infer access patterns (e.g., by monitoring page faults), thus still requiring
data-oblivious solutions.

Recent work has shown side-channel leakage on GPUs [NKAG17,NNQAGI18,JFK17,JFK16]
including the exploitation of data access patterns out of the GPU. We expect similar attacks to be
mounted on GPU enclaves as video and ML workloads gain in popularity, and our threat model
applies to GPU enclaves as well.

6.3.2 Video Streams and CNN Model

Each client owns its video streams, and it expects to protect its video from the cloud and co-tenants
of the video analytics service. The vision algorithms are assumed to be public.

We assume that the CNN model’s architecture is public, but its weights are private and may be
proprietary to either the client or the cloud service. Visor protects the weights in both scenarios
within enclaves, in accordance with the threat model and guarantees from Section 6.3.1; however,
when the weights are proprietary to the cloud service, the client may be able to learn some
information about the weights by analyzing the results of the pipeline [TZJ 16, FIR15,FLI"14].
Such attacks are out of scope for Visor.

Finally, recent work has shown that the camera’s encrypted network traffic leaks the video’s
bitrate variation to an attacker observing the network [SST17], which may consequently leak
information about the video contents. Visor eliminates this leakage by padding the video segments
at the camera, in such a way that optimizes the latency of decoding the padded stream at the
cloud (Section 6.6.1).

6.3.3 Provable Guarantees for Data-Obliviousness

Visor provides data-obliviousness within our abstract enclave model from Section 6.3.1, which
guarantees that the memory access patterns of enclave code does not reveal any information about
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sensitive data. We rely on the enclaves themselves to provide integrity, along with authenticated
encryption.

We formulate the guarantees of data-obliviousness using the “simulation paradigm” [GolO4a].
First, we define a trace of observations that the attacker sees in our threat model. Then, we define
the public information, i.e., information we do not attempt to hide and is known to the attacker.
Using these, we argue that there exists a simulator, such that for all videos V, when given only the
public information (about V and the video algorithms), the simulator can produce a trace that is
indistinguishable from the real trace visible to an attacker who observes the access patterns during
Visor’s processing of V. By “indistinguishable”, we mean that no polynomial-time attacker can
distinguish between the simulated trace and the real trace observed by the attacker. The fact that
a simulator can produce the same observations as seen by the attacker even without knowing the
private data in the video stream implies that the attacker does not learn sensitive data about the
video.

In our attacker model, the trace of observations is the sequence of the addresses of memory
references to code as well as data, along with the accessed data (which is encrypted). The public
information is all of Visor’s algorithms, formatting and sizing information, but not the video data.
For efficiency, Visor also takes as input some public parameters that represent various upper bounds
on the properties of the video streams, e.g., the maximum number of objects per frame, or upper
bounds on object dimensions.

In Appendix C, we provide a formal definition of data-obliviousness (Definition 7); a summary
of public information for each algorithm; and proofs of security along with detailed pseudocode for
each algorithm. Since Visor’s data-oblivious algorithms (Section 6.6 and Section 6.7) follow an
identical sequence of memory accesses that depend only on public information and are independent
of data content, our proofs are easy to verify.

6.4 A Privacy-Preserving MLaaS Framework

In this section, we present a privacy-preserving framework for machine-learning-as-a-service
(MLaaS), that supports CNN-based ML applications spanning both CPU and GPU resources.
Though Visor focuses on protecting video analytics pipelines, our framework can more broadly be
used for a range of MLaaS applications such as medical imaging, recommendation systems, and
financial forecasting.

Our framework comprises three key features that collectively enable data-oblivious execution
of ML services. First, it protects the computation in ML pipelines using a hybrid TEE that spans
both the CPU and GPU. Second, it provides a secure CPU-GPU communication channel that
additionally prevents the leakage of information via traffic patterns in the channel. Third, it prevents
access-pattern-based leakage on the CPU and GPU by facilitating the development of data-oblivious
modules using a suite of optimized primitives.
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Figure 6.3: Visor’s hybrid TEE architecture. Locks indicate encrypted data channels, and keys
indicate decryption points.

6.4.1 Hybrid TEE Architecture

Figure 6.3 shows Visor’s architecture. Visor receives encrypted video streams from the client’s
camera, which are then fed to the video processing pipeline. We refer to the architecture as a
hybrid TEE as it spans both the CPU and GPU TEEs, with different modules of the video pipeline
(Section 6.2.1) being placed across these TEEs. We follow the example of prior work that has
shown that running the non-CNN modules of the pipeline on the CPU, and the CNNs on the
GPU [HAB ™" 18,PCHF18,Micd], results in efficient use of the expensive GPU resources while still
keeping up with the incoming frame rate of videos.

Regardless of the placement of modules across the CPU and GPU, we note that attacks based
on data access patterns can be mounted on both CPU and GPU TEEs, as explained in Section 6.3.1.
As such, our data-oblivious algorithms and techniques are broadly applicable irrespective of the
placement, though our description is based on non-CNN modules running on the CPU and the
CNNs on the GPU.

CPU and GPU TEEs. We implement the CPU TEE using Intel SGX enclaves, and the GPU TEE
using Graviton secure contexts [VVB18]. The CPU TEE also runs Graviton’s trusted GPU runtime,
which enables Visor to securely bootstrap the GPU TEE and establish a single trust domain across
the TEEs. The GPU runtime talks to the untrusted GPU driver (running on the host outside the CPU
TEE) to manage resources on the GPU via ioctl calls. In Graviton, each ioctl call is translated to
a sequence of commands submitted to the command processor. Graviton ensures secure command
submission (and subsequently ioctl delivery) as follows: (i) for task submission, the runtime uses
authenticated encryption to protect commands from being dropped, replayed, or reordered, and
(if) for resource management, the runtime validates signed summaries returned by the GPU upon
completion. The GPU runtime encrypts all inter-TEE communication.

We port the non-CNN video modules (Figure 6.1) to SGX enclaves using the Graphene Li-
bOS [TPV17]. In doing so, we instrument Graphene to support the ioctl calls that are used by the
runtime to communicate with the GPU driver.

Pipeline execution. The hybrid architecture requires us to protect against attacks on the CPU
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TEE, GPU TEE, and the CPU-GPU channel. As Figure 6.3 illustrates, Visor decrypts the video
stream inside the CPU TEE, and obliviously decodes out each frame (in Section 6.6). Visor then
processes the decoded frames using oblivious vision algorithms to extract objects from each frame
(in Section 6.7). Visor extracts the same number of objects of identical dimensions from each frame
(some of which are dummies, up to an upper-bound) and feeds them into a circular buffer. This
avoids leaking the actual number of objects in each frame and their sizes; the attacker can observe
accesses to the buffer, even though objects are encrypted. Objects are dequeued from the buffer and
sent to the GPU (Section 6.4.2) where they are decrypted and processed obliviously by the CNN in
the GPU TEE (Section 6.4.3).

6.4.2 CPU-GPU Communication

Although the CPU-GPU channel in Figure 6.3 transfers encrypted objects, Visor needs to ensure
that its traffic patterns are independent of the video content. Otherwise, an attacker observing the
channel can infer the processing rate of objects, and hence the number (and size) of the detected
objects in each frame. To address this leakage, Visor ensures that (i) the CPU TEE transfers the
same number of objects to the GPU per frame, and (ii) CNN inference runs at a fixed rate (or batch
size) in the GPU TEE. Crucially, Visor ensures that the CNN processes as few dummy objects as
possible. While our description focuses on Figure 6.1a to hide the processing rate of objects of a
frame on the GPU, our techniques directly apply to the pipeline of Figure 6.1b to hide the processing
rate of complete frames using dummy frames.

Since the CPU TEE already extracts a fixed number of objects per frame (say kpax) for obliv-
iousness, we enforce an inference rate of kp,x for the CNN as well, regardless of the number of
actual objects in each frame (say k). The upper bound kpy is easy to learn for each video stream in
practice. However, this leads to a wastage of GPU resources, which must now also run inference on
(kmax — k) dummy objects per frame. To limit this wastage, we develop an oblivious protocol that
leads to processing as few dummy objects as possible.

Oblivious protocol. Visor runs CNN inference on k' (<< kpax) Objects per frame. Visor’s CPU
pipeline extracts kpax objects from each frame (extracting dummy objects if needed) and pushes
them into the head of the circular buffer (Figure 6.3). At a fixed rate (e.g., once per frame, or every
33ms for a 30fps video), kK’ objects are dequeued from the zail of the buffer and sent to the GPU that
runs inference on all k’ objects.

We reduce the number of dummy objects processed by the GPU as follows. We sort the buffer
using osort in ascending order of “priority” values (dummy objects are assigned lower priority),
thus moving dummy objects to the head of the buffer and actual objects to the fail. Dequeuing from
the tail of the buffer ensures that actual objects are processed first, and that dummy objects at the
head of the buffer are likely overwritten before being sent to the GPU. The circular buffer’s size is
set large enough to avoid overwriting actual objects.

The consumption (or inference) rate k’ should be set relative to the actual number of objects
that occur in the frames of the video stream. Too high a value of k" results in GPU wastage due to
dummy inferences, while too low a value leads to delay in the processing of the objects in the frame
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(and potentially overwriting them in the circular buffer). In our experiments, we use a value of
k' =2 X kayg (kavg is the average number of objects in a frame) that leads to little delay and wastage.

Bandwidth consumption. The increase in traffic on the CPU-GPU PCle bus (Figure 6.3) due
to additional dummy objects for obliviousness is not an issue because the bus is not bandwidth-
constrained. Even with Visor’s oblivious video pipelines, we measure the data rate to be <70 MB/s,
in contrast to the several GB/s available in PCle interconnects.

6.4.3 CNN Classification on the GPU

The CNN processes identically-sized objects at a fixed rate on the GPU. The vast majority of
CNN operations, such as matrix multiplications, have inherently input-independent access pat-
terns [OSF16, TGS™18]. The operations that are not oblivious can be categorized as conditional
assignments. For instance, the ReLU function, when given an input x, replaces x with max(0,x);
likewise, the max-pooling layer replaces each value within a square input array with its maximum
value.

Oblivious implementation of the max operator may use CUDA max/fmax intrinsics for integers/
floats, which get compiled to IMNMX/FMNMX instructions [NVI] that execute the max operation
branchlessly. This ensures that the code is free of data-dependent accesses, making CNN inference
oblivious.

6.4.4 Oblivious Modules on the CPU

After providing a data-oblivious CPU-GPU channel and CNN execution on the GPU, we address
the video modules (in Figure 6.1) that execute on the CPU. We carefully craft oblivious versions of
the video modules using novel efficient algorithms (which we describe in the subsequent sections).
To implement our algorithms, we use a set of oblivious primitives which we summarize below.

Oblivious primitives. ~ We use three basic primitives, similar to prior work [RLT15, OSF' 16,
SGF18]. Fundamental to these primitives is the x86 CMOV instruction, which takes as input two
registers—a source and a destination—and moves the source to the destination if a condition is true.
Once the operands have been loaded into registers, the instructions are immune to memory-access-
based pattern leakage because registers are private to the processor, making any register-to-register
operations oblivious by default.

1) Oblivious assignment (oassign). The oassign primitive is a wrapper around the CMOV
instruction that conditionally assigns a value to the destination operand. This primitive can be
used for performing dummy write operations by simply setting the input condition to false. We
implement multiple versions of this primitive for different integer sizes. We also implement a
vectorized version using SIMD instructions.

2) Oblivious sort (osort). The osort primitive obliviously sorts an array with the help of
a bitonic sorting network [Bat68]. Given an input array of size n, the network sorts the array
by performing O(nlog?(n)) compare-and-swap operations, which can be implemented using the
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oassign primitive. As the network layout is fixed given the input size n, execution of each network
has identical memory access patterns.

3) Oblivious array access (oaccess). The oaccess primitive accesses the i-th element in an
array, without leaking the value of i. The simplest way of implementing oaccess is to scan the
entire array. However, as discussed in our threat model (Section 6.3.1), hyperthreading is disabled,
preventing any sharing of intra-core resources (e.g., L1 cache) with an adversary, and consequently
mitigating known attacks [MWES18, YGH16] that can leak access patterns at sub-cache-line
granularity using shared intra-core resources. Therefore, we assume access pattern leakage at the
granularity of cache lines, and it suffices for oaccess to scan the array at cache-line granularity for
obliviousness, instead of per element or byte.

6.5 Designing Oblivious Vision Modules

Naive approaches and generic tools for oblivious execution of vision modules can lead to prohibitive
performance overheads. For instance, a naive approach for implementing oblivious versions of CPU
video analytics modules (as in Figure 6.1) is to simply rewrite them using the oblivious primitives
outlined in Section 6.4.4. Such an approach: (i) eliminates all branches and replaces conditional
statements with oassign operations to prevent control flow leakage via access patterns to code,
(i1) implements all array accesses via oaccess to prevent leakage via memory accesses to data,
and (ii1) performs all iterations for a fixed number of times while executing dummy operations
when needed. The simplicity of this approach, however, comes at the cost of high overheads:
two to three orders of magnitude. Furthermore, as we show in Section 6.8.3, generic tools for
executing programs obliviously such as Raccoon [RLT15] and Obfuscuro [AJX19] also have
massive overheads—six to seven orders of magnitude.

Instead, we demonstrate that by carefully crafting oblivious vision modules using the primitives
outlined in Section 6.4.4, Visor improves performance over naive approaches by several orders of
magnitude. In the remainder of this section, we present an overview of our design strategy, before
diving into the detailed design of our algorithms in Section 6.6 and Section 6.7.

6.5.1 Design Strategy

Our overarching goal is to transform each algorithm into a pattern that processes each pixel
identically, regardless of the pixel’s value. To apply this design pattern efficiently, we devise a set of
algorithmic and systemic optimization strategies. These strategies are informed by the properties of
vision modules, as follows.

1) Divide-and-conquer for improving performance. We break down each vision algorithm
into independent subroutines based on their functionality and make each subroutine oblivious
individually. Intuitively, this strategy improves performance by (i) allowing us to tailor each
subroutine separately, and (ii) preventing the overheads of obliviousness from getting compounded.

2) Scan-based sequential processing. Data-oblivious processing of images demands that each
pixel in the image be indistinguishable from the others. This requirement presents an opportunity
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Component Input parameters
Video decoding (Section 6.6) Number of bits used to encode each (padded) row of
blocks;

Background subtraction (Section 6.7.1) —

Bounding box detection (Section 6.7.2) (i) Maximum number of objects per image; (ii) Max-
imum number of different labels that can be assigned
to pixels (an object consists of all labels that are adja-
cent to each other).

Object cropping (Section 6.7.3) Upper bounds on object dimensions.

Object tracking (Section 6.7.4) () An upper bound on the intermediate number of
features; (ii) An upper bound on the total number of
features.

CNN Inference (Section 6.4.3) -

Table 6.1: Public input parameters in Visor’s oblivious modules.

to revisit the design of sequential image processing algorithms. Instead of simply rewriting exist-
ing algorithms using the data-oblivious primitives from Section 6.4.4, we find that recasting the
algorithm into a form that scans the image, while applying the same functionality to each pixel,
yields superior performance. Intuitively, this is because any non-sequential pixel access implicitly
requires a scan of the image for obliviousness (e.g., using oaccess); therefore, by transforming the
algorithm into a scan-based algorithm, we get rid of such non-sequential accesses.

3) Amortize cost across groups of pixels. Processing each pixel in an identical manner lends
itself naturally to optimization strategies that enable batched computation over pixels—e.g., the use
of data-parallel (SIMD) instructions.

In Visor, we follow the general strategy above to design oblivious versions of popular vision modules
that can be composed and reused across diverse pipelines. However, our strategy can potentially
help inform the design of other oblivious vision modules as well, beyond the ones we consider.

6.5.2 Input Parameters for Oblivious Algorithms

Our oblivious algorithms rely on a set of public input parameters that need to be provided to Visor
before the deployment of the video pipelines. These parameters represent various upper bounds
on the properties of the video stream, such as the maximum number of objects per frame, or the
maximum size of each object. Table 6.1 summarizes the list of input parameters across all the
modules of the vision pipeline.

There are multiple ways by which these parameters may be determined. (i) The model owner
may obtain these parameters simultaneously while training the model on a public dataset. (ii) The
client may perform offline empirical analysis of their video streams and choose a reasonable set
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Figure 6.4: Flowchart of the encoding process.

of parameters. (iii) Visor may also be augmented to compute these parameters dynamically, based
on historical data (though we do not implement this). We note that providing these parameters is
not strictly necessary, but meaningful parameters can significantly improve the performance of our
algorithms.

6.6 Oblivious Video Decoding

Video encoding converts a sequence of raw images, called frames, into a compressed bitstream.
Frames are of two types: keyframes and interframes. Keyframes are encoded to only exploit
redundancy across pixels within the same frame. Interframes, on the other hand, use the prior frame
as reference (or the most recent keyframe), and thus can exploit temporal redundancy in pixels
across frames.

Encoding overview. We ground our discussion using the VP8 encoder [BWX11], but our tech-
niques are broadly applicable. A frame is decomposed into square arrays of pixels called blocks,
and then compressed using the following steps (see Figure 6.4). @) An estimate of the block is first
predicted using reference pixels (in a previous frame if interframe or the current frame if keyframe).
The prediction is then subtracted from the actual block to obtain a residue. @) Each block in the
residue is transformed into the frequency domain (e.g., using a discrete cosine transform), and its
coefficients are quantized thus improving compression. At the end of this step, each block comprises
a sequence of 16 data values, the last several of which are typically zeros as the quantization factors
for the later coefficients are larger than those of the initial ones. @ Each (quantized) block is
compressed into a variable-sized bitstream using a binary prefix tree and arithmetic encoding. The
last few coefficients that are zeros are not encoded, and an end-of-block symbol (EOB) is encoded
instead. Block prediction modes, cosine transformation, and arithmetic encoding are core to all
video encoders (e.g., H264 [H26], VP9 [VP9]) and thus our oblivious techniques carry over to all
popular codecs.

The decoder reverses the steps of the encoder: (i) the incoming video bitstream is entropy
decoded (Section 6.6.2); (ii) the resulting coefficients are dequantized and inverse transformed to
obtain the residual block (Section 6.6.3); and (iii) previously decoded pixels are used as reference
to obtain a prediction block, which are then added to the residue (Section 6.6.4).
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6.6.1 Video Encoder Padding

While the video stream is in transit, the bitrate variation of each frame is visible to an attacker
observing the network even if the traffic is TLS-encrypted. This variability can be exploited for
fingerprinting video streams [SST17] and understanding its content. Overcoming this leakage
requires changes to the video encoder to “pad” each frame with dummy bits to an upper bound
before sending the stream to Visor.

We modify the video encoder to pad the encoded video streams. However, instead of applying
padding at the level of frames, we pad each individual row of blocks within the frames. Compared to
frame-level padding, padding individual rows of blocks significantly improves latency of oblivious
decoding, but at the cost of an increase in network bandwidth.

Padding the frames of the video stream, however, negates the benefit of using interframes
during encoding of the raw video stream, which are typically much smaller than keyframes. We
therefore configure the encoder to encode all raw video frames into keyframes, which eliminates the
added complexity of dealing with interframes, and consequently simplifies the oblivious decoding
procedure.

We note that it may not always be possible to modify legacy cameras to incorporate padding. In
such cases, potential solutions include the deployment of a lightweight edge-compute device that
pads input camera feeds before streaming them to the cloud. For completeness, we also discuss the
impact of the lack of padding in Appendix D, along with the accompanying security-performance
tradeoff.

6.6.2 Bitstream Decoding

The bitstream decoder reconstructs blocks with the help of a prefix tree. At each node in the tree it
decodes a single bit from the compressed bitstream via arithmetic decoding, and traverses the tree
based on the value of the bit. While decoding the bit, the decoder first checks whether any more
bits can be decoded at the current bitstream position, and if not, it advances the bitstream pointer
by two bytes. Once it reaches a leaf node, it outputs a coefficient based on the position of the leaf,
and assigns the coefficient to the current pixel in the block. If an EOB symbol is decoded, then
all the coefficients remaining in the block are assigned a value of zero. This continues for all the
coefficients in the frame.

Requirements for obliviousness. The above algorithm leaks information about the compressed
bitstream. First, the traversal of the tree leaks the value of the parsed coefficient. For obliviousness,
we need to ensure that during traversal, the identity of the current node being processed remains
secret. Second, not every position in the bitstream encodes the same number of coefficients, and the
bitstream pointer advances variably during decoding. Hence, this leaks the number of coefficients
that are encoded per two-byte chunk (which may convey their values). Finally, the presence of EOB
coefficients, coupled with the assignment of decoded coefficients to pixels, leaks the number of
zero coefficients per block of the frame—prior work has demonstrated attacks that exploit similar
leakage to infer the outlines of all objects in the frame [XCP15]. We design a solution that decouples
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the parsing of coefficients, i.e., prefix tree traversal (Section 6.6.2.1), from the assignment of the
parsed coefficients to pixels (Section 6.6.2.2).

6.6.2.1 Oblivious prefix tree traversal

A simple way to make tree traversal oblivious is to represent the prefix tree as an array. We can then
obliviously fetch any node in the tree using oaccess (Section 6.4.4). Though this hides the identity
of the fetched node, we need to also ensure that processing of the nodes does not leak their identity.

In particular, we need to ensure that nodes are indistinguishable from each other by performing
an identical set of operations at each node. Unfortunately, this requirement is complicated by the
following facts. (1) Only leaf nodes in the tree produce outputs (i.e., the parsed coefficients) and
not the intermediate nodes. (2) We do not know beforehand which nodes in the tree will cause the
bitstream pointer to be advanced; at the same time, we need to ensure that the pointer is advanced
predictably and independent of the bitstream. To solve these problems, we take the following steps.

1. We modify each node to output a coefficient regardless of whether it is a leaf state or not.
Leaves output the parsed coefficient, while other states output a dummy value.

2. We introduce a dummy node into the prefix tree. While traversing the tree, if no more bits can
be decoded at the current bitstream position, we transition to the dummy node and perform a
bounded number of dummy decodes.

These modifications ensure that while traversing the prefix tree, all that an attacker sees is that at
some node in the tree, a single bit was decoded and a single value was outputted.

Note that in this phase, we do not assign coefficients to pixels, and instead collect them in a list.
If we were to assign coefficients to pixels in this phase, then the decoder would need to obliviously
scan the entire frame (using oaccess) at every node in the tree, in order to hide the pixel’s identity.
Instead, by decoupling parsing from assignment, we are able to perform the assignment obliviously
using a super-linear number of accesses (instead of quadratic), as we explain next.

6.6.2.2 Oblivious coefficient assignment

At the end of Section 6.6.2.1, we have a list of actual and dummy coefficients. The key idea is
that if we can obliviously sort this set of values using osort such that all the actual coefficients
are contiguously ordered while all dummies are pushed to the front, then we can simply read the
coefficients off the end of the list sequentially and assign them to pixels one by one.

However, recall that in lieu of the trailing zeros within each block, the encoder encodes an EOB
symbol instead. Therefore, we need to append the requisite zeros to the set and move them to the
appropriate indices before we can carry out the assignment. To achieve this, our algorithm makes a
single forward pass over the set to add the zeros, while updating all index values per tuple in a way
that ensures the zeros will be sorted to the correct positions, as illustrated in Figure 6.5.

To enable such a sort, we modify the prefix tree traversal to additionally output a tuple
(flag,index) per coefficient; flag is O for dummies and 1 otherwise; index is an increasing
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Figure 6.5: Steps for obliviously sorting the coefficients into place after populating it with zero
coefficients. For simplicity, this illustration assumes that there are two subblocks, with three
coefficients per subblock.

counter as per the pixel’s index. Then, the desired sort can be achieved by sorting the list based on
the value of the tuple.

As the complexity of oblivious sort is super-linear in the number of elements being sorted, an
important optimization is to decode and assign coefficients to pixels at the granularity of rows
of blocks rather than frames. While the number of bits per row of blocks may be observed, the
algorithm’s obliviousness is not affected as each row of blocks in the video stream is padded to an
upper bound (Section 6.6.1); had we applied frame-level padding, this optimization would have
revealed the number of bits per row of blocks. In Section 6.8.1.1, we show that this technique
improves oblivious decoding latency by ~6x.

6.6.3 Dequantization and Inverse Transformation

The next step in the decoding process is to (i) dequantize the coefficients decoded from the bitstream,
followed by (ii) inverse transformation to obtain the residual blocks. Dequantization just multiplies
each coefficient by a quantization factor. The inverse transformation also performs a set of identical
arithmetic operations irrespective of the coefficient values.

6.6.4 Block Prediction

Prediction is the final stage in decoding. The residual block obtained after Section 6.6.3 is added
to a predicted block, obtained using a previously constructed block as reference, to obtain the raw
pixel values. In keyframes, each block is intra-predicted—i.e., it uses a block in the same frame as
referenced. In the presence of video encoder padding, the padded input video stream only contains
keyframes as described in Section 6.6.1.
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Intra-predicted blocks are computed using one of several modes. A mode to encode a block
refers to a combination of pixels on its top row and left column used as reference. Obliviousness
requires that the prediction mode remains private. Otherwise, an attacker can identify the pixels that
are most similar to each other, thus revealing details about the frame.

We investigate two different ideas for making intra-prediction oblivious. First, we note that
in each prediction mode, the value of a pixel in the predicted block can be expressed as a linear
combination Xa;p; of all the pixels that lie above and to the left of the block. Here p; represents the
adjoining pixels and a; are weights. Thus, to compute the value of the predicted pixel obliviously,
we can simply evaluate the expression after using the oassign primitive to obliviously assign each
a; a value based on the mode and the location of the current pixel.

A second approach is to simply evaluate all possible predictions for the pixel and store them
in an array, indexing each prediction by its mode. Then, use the oaccess primitive to obliviously
select the correct prediction from the array.

We implemented both approaches, and found that the second offers better performance in
practice. This is because in the second approach, we can compute the predicted values for several
pixels simultaneously at the level of individual rows, which amortizes the cost of our operations.

6.7 Oblivious Image Processing

After obliviously decoding frames in Section 6.6, the next step as shown in Figure 6.1 is to develop
data-oblivious techniques for background subtraction (Section 6.7.1), bounding box detection
(Section 6.7.2), object cropping (Section 6.7.3), and tracking (Section 6.7.4). We present the key
ideas here; detailed pseudocode and proofs of obliviousness are available in Appendix C.2. Note
that Section 6.7.1 and Section 6.7.4 modify popular algorithms to make them oblivious, while
Section 6.7.2 and Section 6.7.3 propose new oblivious algorithms.

6.7.1 Background Subtraction

The goal of background subtraction is to detect moving objects in a video. Specifically, it dynami-
cally learns stationary pixels that belong to the video’s background, and then subtracts them from
each frame, thus producing a binary image with black background pixels and white foreground
pixels.

Zivkovic et al. proposed a mechanism [Ziv04, ZvdHO06] that is widely used in practical de-
ployments, that models each pixel as a mixture of Gaussians [BBVO08]. The number of Gaussian
components M differs across pixels depending on their value (but is no more than My, a pre-
defined constant). As more data arrives (with new frames), the algorithm updates each Gaussian
component along with their weights (), and adds new components if necessary.

To determine if a pixel X belongs to the background or not, the algorithm uses the B Gaussian
components with the largest weights and outputs true if p(X) is larger than a threshold:

B
p¥) = Z TN (X | Hons Zm)
m=1
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Figure 6.6: Oblivious bounding box detection

where i, and ¥, are parameters of the Gaussian components, and 7, is the weight of the m-th
Gaussian component.

This algorithm is not oblivious because it maintains a different number of Gaussian components
per pixel, and thus performs different steps while updating the mixture model per pixel. These
differences are visible via access patterns, and these leakages reveal to an attacker how complex
a pixel is in relation to others—i.e., whether a pixel’s value stays stable over time or changes
frequently. This enables the attacker to identify the positions of moving objects in the video.

For obliviousness, we need to perform an identical set of operations per pixel (regardless of their
value); we thus always maintain Mp,x Gaussian components for each pixel, of which (Mpax — M)
are dummy components and assigned a weight 7 = 0. When newer frames arrive, we use oassign
operations to make all the updates to the mixture model, making dummy operations for the dummy
components. Similarly, to select the B largest components by weight, we use the osort primitive.

6.7.2 Bounding Box Detection

The output from Section 6.7.1 is a binary image with black background pixels where the foreground
objects are white blobs (Figure 6.6a). To find these objects, it suffices to find the edge contours
of all blobs. These are used to compute the bounding rectangular box of each object. A standard
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approach for finding the contours in a binary image is the border following algorithm of Suzuki and
Abe [SA85]. As the name suggests, the algorithm works by scanning the image until it locates an
edge pixel, and then follows the edge around a blob. As Figure 6.2 in Section 6.2.3 illustrated, the
memory access patterns of this algorithm leak the details of all the objects in the frame.

A naive way to make this algorithm oblivious is to implement each pixel access using the
oaccess primitive (along with other minor modifications). However, we measure that this approach
slows down the algorithm by over ~1200x.

We devise a two-pass oblivious algorithm for computing bounding boxes by adapting the
classical technique of connected component labeling (CCL) [RP66]. The algorithm’s main steps
are illustrated in Figure 6.6a (whose original binary image contains two blobs). In the first pass,
it scans the image and assigns each pixel a temporary label if it is “‘connected” to other pixels. In
the second pass, it merges labels that are part of a single object. Even though CCL on its own is
less efficient for detecting blobs than border following, it is far more amenable to being adapted for
obliviousness.

We make this algorithm oblivious as follows. First, we perform identical operations regardless
of whether the current pixel is connected to other pixels. Second, for efficiency, we restrict the
maximum number of temporary labels (in the first pass) to a parameter N provided as input to Visor
(per Section 6.5.2, Table 6.1). Note that the value of the parameter may be much lower than the
worst case upper bound (which is the total number of pixels), and thus is more efficient.

Enhancement via parallelization. We observe that the oblivious algorithm can be parallelized
using a divide-and-conquer approach. We divide the frame into horizontal stripes () in Figure 6.6b)
and process each stripe in parallel (@) ). For objects that span stripe boundaries, each stripe outputs
only a partial bounding box containing the pixels within the stripe. We combine the partial boxes
by re-applying the oblivious CCL algorithm to the boundaries of adjacent stripes (@) ). Given two
adjacent stripes S; and S;;1 one below the other, we compare each pixel in the top row of S;; 1 with
its neighbors in the bottom row of S;, and merge their labels as required.

6.7.3 Object Cropping

The next step after detecting bounding boxes of objects is to crop them out of the frame to be sent
for CNN classification (Figure 6.1a). Visor needs to ensure that the cropping of objects does not
leak (7) their positions, or (ii) their dimensions.

6.7.3.1 Hiding object positions

A naive way of obliviously cropping an object of size p X ¢ is to slide a window (of size p X q)
horizontally in raster order, and copy the window’s pixels if it aligns with the object’s bounding box.
Otherwise, perform a dummy copy. This, however, leads to a slow down of 4000 %, with the major
reason being redundant copies: while sliding the window forward by one pixel results in a new
position in the frame, a majority of the pixels copied are the same as in the previous position. For a
m x n frame, and an object of size p x ¢, the technique results in pg(m — p)(n — q) pixel copies, as
compared to pq pixel copies when directly cropping the object.
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Figure 6.7: Oblivious object cropping

We get rid of this redundancy by decoupling the algorithm into multiple passes—one pass
along each dimension of the image—such that each pass performs only a subset of the work. As
Figure 6.7a shows, the first phase extracts the horizontal strip containing the object; the second
phase extracts the object from the horizontal strip.

c Instead of sliding a window (of size p X g) across the frame (of size m X n), we use a
horizontal strip of m x g that has width m equal to that of the frame, and height ¢ equal to that of the
object. We slide the strip vertically down the frame row by row. If the top and bottom edges of the
strip are aligned with the object, we copy all pixels covered by the strip into the buffer; otherwise,
we perform dummy copies. This phase results in mq(n — q) pixel copies.

@ We allocate a window of size p x g equal to the object’s size and then slide it column by
column across the extracted strip in @) . If the left and right edges of the window are aligned with
the object’s bounding box, we copy the window’s pixels into the buffer; if not, we perform dummy
copies. This phase performs pg(m — p) pixel copies.

Algorithm 4 in Appendix C.2 provides the detailed steps.

6.7.3.2 Hiding object dimensions

The algorithm in Section 6.7.3.1 leaks the dimensions p X g of the objects. To hide object dimensions,
Visor takes as input parameters P and Q representing upper bounds on object dimensions (as
described in Section 6.5.2, Table 6.1), and instead of cropping out the exact p X g object, we
obliviously crop out a larger image of size P x Q that subsumes the object. While the object sizes
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vary depending on their position in the frame (e.g., near or far from the camera), the maximum
values (P and Q) can be learned from profiling just a few sample minutes of the video, and they
tend to remain unchanged in our datasets.

This larger image now contains extraneous pixels surrounding the object, which might lead to
errors during the CNN’s object classification. We remove the extraneous pixels surrounding the
p X q object by obliviously scaling it up to fill the P x Q buffer. Note that all objects we send to the
CNN across the CPU-GPU channel are of size P x Q (Section 6.4.2), and recall from Section 6.4.1
that we extract the same number of objects from each frame (by padding dummy objects, if needed).

We develop an oblivious routine for scaling up using bilinear interpolation [Jai89]. Bilinear
interpolation computes the value of a pixel in the scaled up image using a linear combination of
a 2 x 2 array of pixels from the original image (see Figure 6.7b). The simplest way to implement
this routine obliviously is to fetch the 4 pixel values obliviously using oaccess for each pixel in the
scaled up image. This would entail PQ scans of the entire image,yielding a total of O(P?Q?) pixel
accesses. We once again use decoupling of the algorithm into two passes to improve its efficiency
(Figure 6.7¢c) by scaling up along a single dimension per pass. The two passes perform a total of
O(P?Q + PQ?) pixel accesses, improving asymptotic performance over the O(P>Q?) algorithm.

Cache locality. Since the second pass of our (decoupled bilinear interpolation) algorithm performs
column-wise interpolations, each pixel access during the interpolation touches a different cache
line. To exploit cache locality, we transpose the image before the second pass, and make the second
pass to also perform row-wise interpolations (as in the first pass). This results in another order of
magnitude speedup (Section 6.8.1.4).

6.7.4 Object Tracking

Object tracking consists of two main steps: feature detection in each frame and feature matching
across frames.

Feature detection. SIFT [Low99, Low04] is a popular algorithm for extracting features for
keypoints, i.e., pixels that are the most “valuable” in the frame. In a nutshell, it generates candidate
keypoints, where each candidate is a local maxima/minima; the candidates are then filtered to get
the legitimate keypoints.

Based on the access patterns of the SIFT algorithm, an attacker can infer the locations of all the
keypoints in the image, which in turn, can reveal the location of all object “corners” in the image. A
naive way of making the algorithm oblivious is to treat each pixel as a keypoint, performing all the
above operations for each. However, the SIFT algorithm’s performance depends critically on its
ability to filter out a small set of good keypoints from the frame.

To be oblivious and efficient, Visor takes as input two parameters Ntemp and N (per Table 6.1).
The parameter Nienp represents an upper bound on the number of candidate keypoints, and N on
the number of legitimate keypoints. These parameters, coupled with oassign and osort, allow
for efficient and oblivious identification of keypoints. Finally, computing the feature descriptors
for each keypoint requires accessing the pixels around it. For this, we use oblivious extraction
(Section 6.7.3). Appendix C.2’s Algorithm 6 has the pseudocode.
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Feature matching. The next step after detecting features is to match them across images. Feature
matching computes a distance metric between two sets of features, and identifies features that are
“nearest” to each other in the two sets. In Visor, we simply perform brute-force matching of the two
sets, using oassign operations to select the closest features.

6.8 Evaluation

Implementation. We implement our oblivious video decoder atop FFmpeg’s VP8 decoder [FFm]
and oblivious vision algorithms atop OpenCV 3.2.0 [Ope]. We use Caffe [JSD ™ 14] for running
CNNs. We encrypt data channels using AES-GCM. We implement the oblivious primitives of
Section 6.4.4 using inline assembly code (as in [OSF*16,RLT15,SGF18]), and manually verified
the binary to ensure that compiler optimizations do not undo our intent; one can also use tools such
as Vale [BHK ™ 17] to do the same.

Testbed. We evaluate Visor on Intel 17-8700K with 6 cores running at 3.7 GHz, and an NVIDIA
GTX 780 GPU with 2304 CUDA cores running at 863 MHz. We disable hyperthreading for experi-
ments with Visor (per Section 6.3), but retain hyperthreading in the insecure baseline. Disabling
hyperthreading for security does not sacrifice the performance of Visor (due to its heavy utilization
of vector units) unlike the baseline system that favors hyperthreading.! The server runs Linux v4.11;
supports AVX?2 and SGX-v1 instruction sets; and has 32 GB of memory, with 93.5 MB of enclave
memory. The GPU has 3 GB of memory.

Datasets. We use four real-world video streams (obtained with permission) in our experiments:
streams 1 and 4 are from traffic cameras in the city of Bellevue (resolution 1280 x 720) while streams
2 and 3 are sourced from cameras surveilling commercial datacenters (resolution 1024 x 768). All
these videos are privacy-sensitive as they involve government regulations or business sensitivity.
For experiments that evaluate the cost of obliviousness across different resolutions and bitrates,
we re-encode the videos accordingly. A recent body of work [KEAT17,JAB*18,ZAB " 17] has
found that the accuracy of object detection in video streams is not affected if the resolution is
decreased (while consuming significantly lesser resources), and 720p videos suffice. We therefore
chose to use streams closer to 720p in resolution because we believe they would be a more accurate
representation of real performance.

Evaluation highlights. We summarize the key takeaways of our evaluation.

1. Visor’s optimized oblivious algorithms (Section 6.6, Section 6.7) are up to 1000 x faster than
naive competing solutions. (Section 6.8.1)

'We measured the impact of disabling hyperthreading on Visor’s performance to be 5%. Visor heavily utilizes
vector units due to the increased data-level parallelism of oblivious algorithms, leaving little space for performance
improvement when hyperthreading is enabled [KOV18]. As such, the increased security comes with negligible
performance overhead. We also note that disabling hyperthreading in cloud VMs is considered to be good practice due
to the reduced impact of microarchitectural data-sampling vulnerabilities that affect commodity Intel CPUs (not just
Intel SGX) [vSMO*19,CGG™19,SLM™ 19,vSMK™20]. Our experiments demonstrate that disabling hyperthreading in
the baseline system reduces its performance by 30%; which bridges considerably the performance gap between Visor
and insecure baseline systems in hyperthreading-disabled cloud deployments.
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Figure 6.10: Background subtraction.

2. End-to-end overhead of obliviousness for real-world video pipelines with state-of-the-art
CNNs are limited to 2x—6x over a non-oblivious baseline. (Section 6.8.2)

3. Visor is generic and can accommodate multiple pipelines (Section 6.2.1; Figure 6.1) that
combine the different vision processing algorithms and CNNs. (Section 6.8.2)

4. Visor’s performance is over 6 to 7 orders of magnitude better than a state-of-the-art general-
purpose system for oblivious program execution. (Section 6.8.3)

Overall, Visor’s use of properties of the video streams has no impact on the accuracy of the analytics
outputs.

6.8.1 Performance of Oblivious Components

We begin by studying the performance of Visor’s oblivious modules: we quantify the raw overhead of
our algorithms (without enclaves) over non-oblivious baselines; we also measure the improvements
over naive oblivious solutions.
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6.8.1.1 Oblivious video decoding

Decoding of the compressed bitstream dominates decoding latency, consuming up to ~90% of the
total latency. Further, this stage is dominated by the oblivious assignment subroutine which sorts
coefficients into the correct pixel positions using osort, consuming up to ~83% of the decoding
latency. Since the complexity of oblivious sort is super-linear in the number of elements being sorted,
our technique for decoding at the granularity of rows of blocks rather than frames significantly
improves the latency of oblivious decoding.

Overheads. Figure 6.8 shows the bandwidth usage and decoding latency for different oblivious
decoding strategies (i.e., decoding at the level of frames, or at the level of row of blocks) for a video
stream of resolution 1280 x 720. We also include two reference points: non-encoded frames and
VP8 encoding. The baseline latency of decoding VP8 encoded frames is 4-5 ms. Non-encoded raw
frames incur no decoding latency but result in frames that are three orders of magnitude larger than
the VP8 average frame size (10s of kB) at a bitrate of 4 Mb/s.

Frame-level oblivious decoding introduces high latency (~850 ms), which is two orders of
magnitude higher than non-oblivious counterparts. Furthermore, padding each frame to prevent
leakage of the frame’s bitrate increases the average frame size to ~95 kB. On the contrary, oblivious
decoding at the level of rows of blocks delivers ~140 ms, which is ~6x lower than frame-level
decoding. However, this comes with a modest increase in network bandwidth as the encoder needs
to pad each row of blocks individually, rather than a frame. In particular, the frame size increases
from ~95 kB to ~140kB.

Apart from the granularity of decoding, the latency of the oblivious sort is also governed
by: (i) the frame’s resolution, and (ii) the bitrate. The higher the frame’s resolution / bitrate,
the more coefficients there are to be sorted. Figure 6.9 plots oblivious decoding latency at the
granularity of rows of blocks across video streams with different resolutions and bitrates. The figure
shows that lower resolution/bitrates introduce lower decoding overheads. In many cases, lower
image qualities are adequate for video analytics as it does not impact the accuracy of the object
classification [JABT18].

6.8.1.2 Background subtraction

We set the maximum number of Gaussian components per pixel My,x = 4, following prior
work [Ziv04,ZvdHO06]. Our changes for obliviousness enable us to make use of SIMD instructions
for updating the Gaussian components in parallel. This is because we now maintain the same
number of components per pixel, and update operations for each component are identical.

Figure 6.10 plots the overhead of obliviousness on background subtraction across different
resolutions. The SIMD implementation increases the latency of the routine only by 1.8x over the
baseline non-oblivious routine. As the routine processes each pixel in the frame independent of the
rest, its latency increases linearly with the total number of pixels.
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bounding box detection. bounding box detection.

6.8.1.3 Bounding box detection

For non-oblivious bounding box detection, we use the border-following algorithm of Suzuki and
Abe [SA85] (per Section 6.7.2); this algorithm is efficient, running in sub-millisecond latencies.

The performance of our oblivious bounding box detection algorithm is governed by two parame-
ters: (i) the number of stripes used in the divide-and-conquer approach, which controls the degree
of parallelism, and (ii) an upper bound L on the maximum number of labels possible per stripe,
which determines the size of the algorithm’s data structures.

Figure 6.11 plots L for streams of different frame resolutions while varying the number of stripes
into which each frame is divided. As expected, as the number of stripes increases, the value of L
required per stripe decreases. Similarly, lower resolution frames require smaller values of L.

Figure 6.12 plots the latency of detecting all bounding boxes in a frame based on the value of the
parameter L, ranging from a few milliseconds to hundreds of milliseconds. For a given resolution,
the latency decreases as the number of stripes increase, due to two reasons: (i) increased parallelism,
and (i7) smaller sizes of L required per stripe. Overall, the divide-and-conquer approach reduces
latency by an order of magnitude down to a handful of milliseconds.

6.8.1.4 Object cropping

We first evaluate oblivious object cropping while leaking object sizes. We include three variants:
the naive approach; the two-phase approach; and a further optimization that advances the sliding
window forward multiple rows/columns at a time. Figure 6.13 plots the cost of cropping variable-
sized objects from a 1280 x 720 frame, showing that the proposed refinements reduce latency by
three orders of magnitude .

Figure 6.14 plots the latency of obliviously resizing the target ROI within a cropped image to
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Figure 6.15: Oblivious object tracking.

hide the object’s size. While the latency of naive bilinear interpolation is high (10s of milliseconds)
for large objects, the optimized two-pass approach (that exploits cache locality by transposing the
image before the second pass; Section 6.7.3.2) reduces latency by two orders of magnitude down to
one millisecond for large objects.

6.8.1.5 Object tracking

Figure 6.15 plots the latency of object tracking with and without obliviousness. We examine our
sample streams at various resolutions to determine upper bounds on the maximum number of
features in frames. As the resolution increases, the overhead of obliviousness increases as well
because our algorithm involves an oblivious sort of the intermediate set of detected features, the
cost of which is superlinear in the size of the set. Overall, the overhead is < 2x.

6.8.1.6 CNN classification on GPU

Buffer. Figure 6.16 benchmarks the sorting cost as a function of the object size and the buffer size.
For buffer sizes smaller than 50, the sorting cost remains under 5 ms.
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CNN Batches/s Max no. of models

AlexNet 40.3 7
ResNet-18 18.4
ResNet-50 8.2

VGG-16 54

VGG-19 4.4

Yolo 3.9

— e N

Table 6.2: CNN throughput (batch size 10).

Inference. We measure the performance of CNN object classification on the GPU. As discussed
in Section 6.4.3, oblivious inference comes free of cost. Table 6.2 lists the throughput of different
CNN models using the proprietary NVIDIA driver, with CUDA version 9.2. Each model takes as
input a batch of 10 objects of size 224 x 224. Further, since GPU memory is limited to 3 GB, we
also list the maximum number of concurrent models that can run on our testbed. As we show in
Section 6.8.2, the latter has a direct bearing on the number of video analytics pipelines that can be
concurrently served.

6.8.2 System Performance

We now evaluate the end-to-end performance of the video analytics pipeline using four real video
streams. We present the overheads of running Visor’s data-oblivious techniques and hosting the
pipeline in a hybrid enclave. We evaluate the two example pipelines in Figure 6.1: pipeline 1 uses an
object classifier CNN; pipeline 2 uses an object detector CNN (Yolo), and performs object tracking
on the CPU.

Pipeline 1 configuration. We run inference on objects that are larger than 1% of the frame size
as smaller detected objects do not represent any meaningful value. Across our videos, the number
of such objects per frame is small—no frame has more than 5 objects, and 97-99% of frames have
less than 2 to 3 objects. Therefore, we configure: (i) Visor’s object detection stage to conservatively
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Figure 6.17: CPU throughput (pipeline 1). Figure 6.18: CPU throughput (pipeline 2).

output 5 objects per frame (including dummies) into the buffer, (i7) the consumption rate of Visor’s
CNN module to 2 or 3 objects per frame (depending on the stream), and (iii) the buffer size to 50,
which suffices to prevent non-dummy objects from being overwritten.

Pipeline 2 configuration. The Yolo object detection CNN ingests entire frames, instead of
individual objects. In the baseline, we filter frames that don’t contain any objects using background
subtraction. However, we forego this filtering in the oblivious version since most frames contain
foreground objects in our sample streams. Additionally, Yolo expects the frames to be of resolution
448 x 448. So we resize the input video streams to be of the same resolution.

Cost of obliviousness. Figures 6.17 and 6.18 plot the overhead of Visor on the CPU-side compo-
nents of pipelines 1 and 2, while varying the number of concurrent pipelines. Visor reduces peak
CPU throughput by ~2.6x—6x across the two pipelines, compared to the non-oblivious baseline.
However, the throughput of the system ultimately depends on the number of models that can fit in
GPU memory.

Figure 6.19 plots Visor’s end-to-end performance for both pipelines, across all four sample video
streams. In the presence of CNN inference, Visor’s overheads depend on the model complexity.
Pipelines that utilize light models, such as AlexNet and ResNet-18, are bottlenecked by the CPU. In
such cases, the overhead is determined by the cost of obliviousness incurred by the CPU components.
With heavier models such as ResNet-50 and VGG, the performance bottleneck shifts to the GPU.
In this case, the overhead of Visor is governed by the amount of dummy objects processed by the
GPU (as described in Section 6.4.2). Overall, the cost of obliviousness remains in the range of
2.2x-5.9x across video streams for the first pipeline. In the second pipeline, the overhead is ~2x.
The GPU can fit only a single Yolo model. The overall performance, however, is bottlenecked at the
CPU because the object tracking routine is relatively expensive.

Cost of enclaves. We measure the cost of running the pipelines in CPU/GPU enclaves by
replacing the NVIDIA stack with Graviton’s stack, which comprises open-source CUDA runtime
(Gdev [KMMB12]) and GPU driver (Nouveau [Nou]).

Figure 6.20 compares Visor against a non-oblivious baseline when both systems are hosted
in CPU/GPU enclaves. As SGX’s EPC size is limited to 93.5 MB, workloads with large memory
footprints incur high overhead. For pipeline 1, and for large frame resolutions, the latency of
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background subtraction increases from ~6 ms to 225 ms due to its working set size being 132 MB.
In Visor, the pipeline’s net latency increases by 2.4x (as SGX overheads mask some of Visor’s
overheads) while increasing the memory footprint to 190 MB. When the pipeline operates on
lower frame resolutions, such that its memory footprint fits within current EPC, the latency of
the non-oblivious baseline tracks the latency of the insecure baseline (a few milliseconds); the
additional overhead of obliviousness is 2.3 X.

For pipeline 2, the limited EPC increases the latency of object tracking from ~90 ms to ~240 ms.
With Visor’s obliviousness, the net latency increases by 1.7 x.

6.8.3 Comparison against Prior Work

We conclude our evaluation by comparing Visor against Obfuscuro [AJX 1 19], a state-of-the-art
general-purpose system for oblivious program execution.

The current implementation of Obfuscuro supports a limited set of instructions, and hence cannot
run the entire video analytics pipeline. On this note, we ported the OpenCV object cropping module
to Obfuscuro, which requires only simple assignment operations. Cropping objects of size 128 x 128
and 16 x 16 (from a 1280 x 720 image) takes 8.5 hours and 8 minutes in Obfuscuro respectively,
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versus 800 us and 200 ps in Visor; making Visor faster by over 6 to 7 orders of magnitude. We
note, however, that Obfuscuro targets stronger guarantees than Visor as it also aims to obfuscate
the programs; hence, it is not a strictly apples-to-apples comparison. Nonetheless, the large gap in
performance is hard to bridge, and our experiments demonstrate the benefit of Visor’s customized
solutions.

Other tools for automatically synthesizing or executing oblivious programs are either closed-
source [RLT15, WGSW 18], require special hardware [NFR" 17, LHM*15, MLS™13], or require
custom language support [CSJ™19]. However, we note that the authors of Raccoon [RLT15] (which
provides similar levels of security as Visor) report up to 1000x overhead on toy programs; the
overhead would arguably be higher for complex programs like video analytics.

6.9 Discussion

Attacks on upper bounds. For efficiency, Visor extracts a fixed number of objects per frame
based on a user-specified upper bound. However, this leaves Visor open to adversarial inputs: an
attacker who knows this upper bound can attempt to confuse the analytics pipeline by operating
many objects in the frame at the same time.

To mitigate such attacks, we suggest two potential strategies: (1) For frames containing >= N
objects (as detected in Section 6.7.2), process those frames off the critical path using worst-case
bounds (e.g., total number of pixels). While this approach leaks which specific frames contain
>= N objects, the leakage may be acceptable considering these frames are suspicious. (ii) Filter
objects based on their properties like object size or object location: e.g., for a traffic feed, only select
objects at the center of the traffic intersection. This limits the number of valid objects possible per
frame, raising the bar for mounting such attacks. One can also apply richer filters on the pipeline
results and reprocess frames with suspicious content.

Oblivious-by-design encoding. Instead of designing oblivious versions of existing codecs, it may
be possible to construct an oblivious-by-design coding scheme that is (i) potentially simpler, and
(i1) performs better than Visor’s oblivious decoding. This alternate design point is an interesting
direction for future work. We note, however, that any such codec would need to produce a perfectly
constant bitrate (CBR) per frame to prevent bitrate leakage over the network. While CBR codecs
have been explored in the video literature, they are inferior to variable bitrate schemes (VBR) such
as VP8 because they are lossier. In other words, an oblivious CBR scheme would consume greater
bandwidth than VP8 to match its video quality (and therefore, VP8 with padding), though it may
indeed be simpler. In Visor, we optimize for quality.

6.10 Related Work

To the best of our knowledge, Visor is the first system for the secure execution of vision pipelines.
We discuss prior work related to various aspects of Visor.
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Video processing systems. A wide range of optimizations have been proposed to improve the
efficiency of video analytic pipelines [HAB 18, KEA™17,JAB*18,ZAB" 17]. These systems offer
different design points for enabling trade-offs between performance and accuracy. Their techniques
are complementary to Visor which can benefit from their performance efficiency.

Data-oblivious techniques. Eppstein ef al. [EGT10] develop data-oblivious algorithms for ge-
ometric computations. Ohrimenko et al. [OSF"16] propose data-oblivious machine learning
algorithms running inside CPU TEEs. These works are similar in spirit to Visor, but are not
applicable to our setting.

Oblivious RAM [GO96] is a general-purpose cryptographic solution for eliminating access-
pattern leakage. While recent advancements have reduced its computational overhead [SvDS™13], it
still remains several orders of magnitude more expensive than customized solutions. Oblix [MPC ' 18]
and Zerotrace [SGF18] enable ORAM support for applications running within hardware enclaves,
but have similar limitations.

Various systems [RLT15,LHM*15,AJX*19,SRS17,NFR"17, MLS " 13, WGSW18,CSJ"19]
also offer generic solutions for hiding access patterns at different levels, with the help of ORAM,
specialized hardware, or compiler-based techniques. Generic solutions, however, are less efficient
than customized solutions (such as Visor) which can exploit algorithmic patterns for greater
efficiency.

Side-channel defenses for TEEs. Visor provides systemic protection against attacks that ex-
ploit access pattern leakage in enclaves. Systems for data-oblivious execution (such as Obfus-
curo [AJX"19] and Raccoon [RLT15]) provide similar levels of security for general-purpose
workloads, while Visor is tailored to vision pipelines.

In contrast, a variety of defenses have also been proposed to detect [CZRZ17] or mitigate
specific classes of access-pattern leakage. For example, Cloak [GLS*17a], Varys [OTK 18],
and Hyperrace [CWC™ 18] target cache-based attacks; while T-SGX [SLKP17] and Shinde et
al. [SCNS16] propose defenses for paging-based attacks. DR.SGX [BCD ™" 19] mitigates access
pattern leakage by frequently re-randomizing data locations, but can leak information if the enclave
program makes predictable memory accesses.

Telekine [HIM " 20] mitigates side-channels in GPU TEEs induced by CPU-GPU communication
patterns, similar to Visor’s oblivious CPU-GPU communication protocol (though the latter is specific
to Visor’s use case).

Secure inference. Several recent works propose cryptographic solutions for CNN inference [JVC18,
LJLA17,DGBL*16,RRK18, RWT™ 18] relying on homomorphic encryption and/or secure multi-
party computation [ Yao86]. While cryptographic approaches avoid the pitfalls of TEE-based CNN
inference, the latter remains faster by orders of magnitude [TB19, HSS™18].

6.11 Summary

We presented Visor, a system that enables privacy-preserving video analytics services. Visor uses
a hybrid TEE architecture that spans both the CPU and the GPU, as well as novel data-oblivious
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vision algorithms. Visor provides strong confidentiality and integrity guarantees, for video streams
and models, in the presence of privileged attackers and malicious co-tenants. Our implementation
of Visor shows limited performance overhead for the provided level of security.
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Chapter 7

Collaborative Machine Learning on
Encrypted Data

This chapter presents Secure XGBoost, a system that enables collaborative machine learning training
and inference using trusted execution environments with side-channel mitigation.

7.1 Introduction

Secure XGBoost is a platform for secure collaborative gradient-boosted decision tree learning, based
on the popular XGBoost library. In a nutshell, multiple clients (or data owners) can collaboratively
use Secure XGBoost to train an XGBoost model on their collective data in a cloud environment while
preserving the privacy of their individual data. Even though training is done on the cloud, Secure
XGBoost ensures that the data of individual clients is revealed to neither the cloud environment nor
other clients. Clients collaboratively orchestrate the training pipeline remotely, and Secure XGBoost
guarantees that each client retains control of the computation that runs on its individual data.

At its core, Secure XGBoost leverages the protection offered by secure hardware enclaves
to preserve the privacy of the data and the integrity of the computation even in the presence of a
hostile cloud environment. On top of enclaves, Secure XGBoost adds a second layer of security that
additionally protects the enclaves against a large class of side-channel attacks—namely, attacks
induced by access pattern leakage (see Chapter 2). Even though the attacker cannot directly observe
the data protected by the enclave, it can still infer sensitive information about the data by monitoring
the enclave’s memory access patterns during execution. To prevent such leakage, we redesign the
training and inference algorithms in XGBoost to be data-oblivious, guaranteeing that the memory
access patterns of enclave code does not reveal any information about sensitive data. In particular,
our algorithms produce an identical sequence of disk, network and memory accesses that depend
only on the public information, and are independent of the input data. Hence, they provably prevent
all side-channels induced by access pattern leakage.

In implementing Secure XGBoost, we strived to preserve the XGBoost API as much as possible
so that our system remains easy to use for data scientists. Our implementation has been adopted by
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Figure 7.1: Parties invoke an orchestrator service at the cloud, which waits for calls from all
parties before relaying the commands to the enclave cluster. Enclave inputs and outputs are always
encrypted, and are decrypted only within the enclave or at client premises.

multiple industry partners, and is available as open-source software [Sec].

7.2 OQOverview

7.2.1 System model

In this section, we describe the different entities in a Secure XGBoost deployment. The entities
consist of: (i) multiple data owners (or clients) who wish to collaboratively train a model on their
individual data; and (ii) an untrusted cloud service that hosts the Secure XGBoost platform within a
cluster of machines. The general architecture of Secure XGBoost is depicted in Figure 7.1.

Clients. A client refers to a party who wants to jointly train a model with other clients. The
clients collectively execute the computation pipeline on the Secure XGBoost platform by remotely
invoking its APIs.

Cloud service with enclaves. The cloud service consists of a cluster of virtual machines, each
with hardware enclave support. Secure XGBoost distributes the computation across the cluster
of hardware enclaves, which communicate with each other over TLS channels that begin and end
inside the enclaves.

Additionally, an orchestrator service at the cloud mediates communication between clients and
the Secure XGBoost platform deployed within enclaves.
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7.2.2 Workflow

The following describes an end-to-end example workflow for using Secure XGBoost. We use the
term ‘command’ to refer to a client’s desired execution of a step in the computation process, i.e., the
APIs exposed by Secure XGBoost for data loading, training, etc.

1. The clients agree on a pre-determined sequence of commands that will be executed on Secure
XGBoost (Section 7.4.1).

2. Clients attest the enclaves on the cloud (via the remote attestation procedure) to verify that the
expected Secure XGBoost code has been securely loaded within each enclave (Section 7.4.2).

3. Each client C; encrypts its data with a symmetric key k; and uploads it to cloud storage
(Section 7.4.3).

4. The clients submit signed commands to the orchestrator. The orchestrator aggregates all the
client signatures and relays each command to Secure XGBoost. Secure XGBoost authenticates
the signatures, ensuring that every client indeed issued the same command, and executes the
command (Section 7.4.4).

5. Secure XGBoost returns the results of the command (e.g., an encrypted trained model, or
encrypted prediction results) to the orchestrator, who relays it to the clients. The process
continues until all commands have been executed.

7.3 Threat Model and Security Guarantees

We describe the aims and capabilities of the attackers that Secure XGBoost protects against.

7.3.1 Threat model for the cloud and hardware enclaves

The threat model for the cloud and hardware enclaves is similar to our threat model for Visor,
described in Chapter 6. In summary, the cloud service provider and the orchestrator service
are untrusted. The trusted computing base includes the CPU package and its hardware enclave
implementation, as well as our implementation of Secure XGBoost.

Similar to Visor, the design of Secure XGBoost is not tied to any specific hardware enclave;
instead, Secure XGBoost builds on top of an abstract model of hardware enclaves where the attacker
controls the server’s software stack outside the enclave (including the OS), but cannot perform any
attacks to glean information from inside the processor (including processor keys). The attacker can
additionally observe the contents and access patterns of all (encrypted) pages in memory, for both
data and code. We assume that the attacker can observe the enclave’s memory access patterns at
cache line granularity.

Secure XGBoost provides protection against all channels of attack that exploit data-dependent
access patterns at cache-line granularity, which represent a large class of known attacks on enclaves
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(e.g., [GESM17,BMD*17,SWG™'17,MIE17,HCP17,LSG*17,XCP15,BWK ™" 17,LJF20]). Other
attacks that violate our abstract enclave model, as discussed in Chapter 6, are out of scope.

7.3.2 Threat model for the clients

Each client expects to protect its data from the cloud service hosting the enclaves, as well as the
other clients in the collaboration. Malicious clients may collude with each other and/or the cloud
service to try and learn a victim client’s data. They may also attempt to subvert the integrity of the
computation by tampering with the computation steps (i.e., the commands submitted for execution).
Secure XGBoost protects the client data and computation in accordance with the threat model and
guarantees from Section 7.3.1.

7.4 System Design

7.4.1 System setup

Secure XGBoost is launched at the cloud service within enclaves. It contains an embedded list
of client names, along with the public key of a trusted certificate authority (CA), which it uses to
verify a client’s identity before establishing a connection with the client (described in Section 7.4.2).
A single “master” enclave generates a 2048-bit RSA key pair (pk, sk) and a nonce N. The public
key will be used to establish a secure channel of communication with the clients, and the nonce to
ensure freshness of communicated messages.

Each client C; generates a 256-bit symmetric key k;. Each client also has its own 2048-bit RSA
key pair (pk;, sk;), along with a certificate signed by a certificate authority (CA); the CA’s public
key is embedded in Secure XGBoost. The clients will use the certificate to authenticate themselves
to Secure XGBoost.

7.4.2 Client-server attestation

Clients authenticate the Secure XGBoost deployment within the enclave cluster via remote attesta-
tion. More precisely, we logically arrange the enclaves in a tree topology; the enclave at the root of
the tree is the “master” enclave. During attestation, each client attests only the “master” enclave to
verify that the expected Secure XGBoost code has been securely loaded; in turn, each enclave in
the tree (including the master) attests its children enclaves. As part of the attestation process, the
enclaves establish TLS sessions with their neighboring enclaves. In addition, the master enclave
sends the generated public key pk and a nonce N to the clients along with the signed attestation
report.

Each client encrypts its key k; using the enclave’s public key pk, and signs the message. It
then sends the signed message to the master enclave along with its certificate. The master enclave
verifies each client’s signed message, decrypts the symmetric key k;, and percolates k; to all attested
enclaves in the cluster, giving each enclave the ability to decrypt data belonging to the client.
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7.4.3 Data preparation and transfer

Each client uploads its encrypted data to cloud storage; enclaves retrieve the encrypted data from
storage before training. To enable distributed data processing, each enclave must retrieve only a
partition of the encrypted training data. This requirement precludes each client from encrypting
its data as a single blob. Instead, to facilitate distributed processing of the encrypted data, clients
encrypt each row in their data separately, which enables each enclave to retrieve, decrypt, and
process only a subset of the rows.

Specifically, client C; encrypts each row in its data (using its symmetric key k;) as follows:

J» ni, Enc(row;), MAC(j||n;||Enc(row;))

Here, j is the index number of the row being encrypted; n; is the total number of rows in C;’s data;
Enc(row,) is an AES-GCM ciphertext over the j-th row; and MAC( j||n;||[Enc(row;)) is an AES-GCM
authentication tag computed over the ciphertext, the index number j and the total number of rows n;.
Including j and n; within the authentication tag prevents the untrusted cloud service from tampering
with the data (e.g., by deleting or duplicating rows).

While processing a client’s data, each enclave retrieves a subset of the encrypted rows. The
enclaves then communicate to ensure that they together loaded n; rows, and that all row indices
from j = 1...n; were present in the retrieved data.

7.4.4 Collaborative API execution

Once all clients have uploaded their data to the cloud, they collectively invoke the APIs exposed by
Secure XGBoost. Each API invocation requires consensus—Secure XGBoost executes an API call
only if it receives the command from every client. This ensures that no processing can be performed
on a particular client’s data without that client’s consent.

To make an API call, each client submits a signed command to the orchestrator:

cmd = <seqn, func, params >, Sign(cmd)

A command contains three fields: (i) a sequence number seqn = (N||ctr) that consists of the nonce
N (obtained from the enclaves during attestation) concatenated with an incrementing counter; (i1) the
API function func being invoked; and (iii) the function parameters params. Including the sequence
number ensures the freshness of the command, and prevents replay attacks on the system. The
orchestrator aggregates the signed commands and relays them to the enclave cluster. Each enclave
verifies that an identical command was submitted by every client before executing the corresponding
function.

Once the function completes, Secure XGBoost produces a signed response and returns it to the
clients via the orchestrator:

resp = <seqn, result >, Sign(resp)
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void max(int x, int vy, void max(int x, int vy,
intx z) { intx z) {
if (x > y)
*zZ = X; bool cond = ogreater(x, y);
else oassign(cond, x, vy, z);
*Z = y!
} 3
Figure 7.2: Regular code Figure 7.3: Oblivious code

The response contains the sequence number of the request (to cryptographically bind the response
to the request), along with the results of the function (which are potentially encrypted with the
clients’ keys, depending on the function that was invoked).

7.5 Data-oblivious training and inference

To prevent side-channel leakage via access patterns, we design data-oblivious algorithms for training
and inference. To implement the algorithms, we use a small set of data-oblivious primitives, similar
to our implementation of Visor in Chapter 6. In this section, we first describe the primitives for
completeness, and then show their usage in our algorithms.

7.5.1 Oblivious primitives

Our oblivious primitives operate solely on registers whose contents are loaded from and stored
into memory using deterministic memory accesses. Since registers are private to the processor, any
register-to-register operations cannot be observed by the attacker.

1) Oblivious comparisons (oless, ogreater, oequal). These primitives can be used to oblivi-
ously compare variables, and are wrappers around the x86 cmp instruction.

2) Oblivious assignment (oassign). The oassign primitive performs conditional assignments,
moving a source to a destination register if a condition is true.

3) Oblivious sort (osort). The osort primitive obliviously sorts a size n array by passing
its inputs through a bitonic sorting network [Bat68], which performs an identical sequence of
0(nlog2 (n)) carefully arranged compare-and-swap operations regardless of the input array values.

4) Oblivious array access (oaccess). The oaccess primitive accesses the i-th element in an array
without leaking i itself by scanning the array at cache-line granularity while performing oassign
operations, setting the condition to true only at index i.

Example. As an example, consider the code in Figure 7.2 that determines the maximum of two
integers using a non-oblivious if-else statement. An attacker observing the memory addresses of
accessed program instructions can identify whether x >y, depending on whether the code within the
if-block or the else-block gets executed. To show how the oblivious primitives above can be used to
implement higher-level data-oblivious code, Figure 7.3 depicts the data-oblivious version of the max
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Figure 7.4: Illustration of oblivious training in Secure XGBoost. Numbers indicate the order in
which nodes are added. Non-oblivious training adds nodes sequentially to the tree, while our
algorithm constructs a full binary tree while adding nodes level-wise.

program from Figure 7.2. In this version, all instructions are executed sequentially, without any
secret-dependent branches, causing the program to have identical memory access patterns regardless
of the inputs values.

7.5.2 Oblivious training

Each enclave in the cluster loads a subset of the collected data, and then uses a distributed algorithm
to train the model. In particular, we use XGBoost’s histogram-based distributed algorithm (hist)
for training an approximate model [CG16, His20], but redesign the algorithm in order to make it
data-oblivious. In this algorithm, the data samples always remain distributed across all the enclave
machines in the cluster, and the machines only exchange data summaries with each other. The
summaries are used to construct a single tree globally and add it to the model’s ensemble.

At a high level, the hist algorithm builds a tree in rounds, adding a node to the tree per round.
Given a data sample x € R?, at each node the algorithm chooses a feature j and a threshold ¢
according to which the data samples are partitioned (i.e., if x(j) < t, the sample is partitioned into
the left subtree, otherwise the right). To add a node to the tree, each enclave in the cluster builds
a histogram over its data for each feature; the boundaries of the bins in the histogram serve as
potential splitting points for the corresponding feature. The algorithm combines the histograms
across enclaves, and uses the aggregate statistics to find the best feature and splitting point. Note
that in the absence of data-obliviousness the algorithm reveals a large amount of information via
access-pattern leakage: e.g., it leaks which feature was chosen at each node in the tree, as well the
complete ordering of the data samples. We now describe the oblivious algorithm in more detail.

Oblivious histogram initialization. Before a tree can be constructed, all the enclaves in the
cluster first align on the boundaries of the histograms per feature. These boundaries are computed
once and re-used for adding all the nodes in the tree, instead of computing new histogram boundaries
per node.
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1. Each enclave first obliviously creates a summary § of its data (one summary per feature):
each element in the summary is a tuple (y,w), where y; are the unique feature values in the
list of data samples, and w; are the sum of the weights of the corresponding samples. To
create the summary, the enclave sorts its samples using osort. Then, it initializes an empty
array S of size equal to the number of samples. Next, it scans the samples to identify unique
values while maintaining a running aggregate of the weights: for each sample {x;} it updates
S|i] using oselect, either setting it to O (if x;_; = x;), or to the aggregated weight. At the end,
it sorts S using osort to push all O values to the end of the list.

2. Each enclave then obliviously prunes its summary to a size b+ 1 (where b is a user-defined
parameter for the maximum number of bins in the histogram). The aim of the pruning
operation is to select b+ 1 elements from the list with ranks 0, %', % ...|S|, where |S| is the
size of the summary. We do this obliviously as follows. First, the enclave sorts the summary
using osort. Next, it scans the sorted summary, and for each element in the summary, it
selects the element (using oassign) if its rank matches the next rank to be selected, otherwise
it selects a dummy. Finally, it sorts the selected elements (which includes dummies), pushing

the dummy elements to the end, and truncates the list.

3. Next, each enclave broadcasts its summary S. The summaries are pairwise combined into a
“global” summary (one summary per feature) as follows: (i) Each pair of summaries is first
merged into a single list using osort. The tuples in the merged summary are then scanned
to identify adjacent values that are duplicates; the duplicates are zeroed out using oaccess
while aggregating the weights. The merged summary is then sorted using osort to push all 0
values to the end of the list, and then truncated. (ii) Next, the merged summary is pruned as
before into a summary of size b.

The global summary per feature computed in this manner represents the bins of a histogram, with
the constituent values in the summary as the boundaries of different bins.

Oblivious node addition. The algorithm uses the feature histograms to construct a tree, adding
nodes to the tree starting with the root. As nodes get added to the tree, the data gets partitioned at
each node across its children. Here, we describe an oblivious subroutine for obliviously adding a
node by finding the optimal split for the node, using the data samples that belong to the node.

1. Each enclave computes a histogram for each feature by scanning its data samples to compute
a gradient per sample, followed by updating a single bin in each histogram using oaccess
combined with oassign. The enclaves then broadcast their histograms.

2. The enclaves collectively sum up the histograms. Each enclave then computes a score function
over the aggregated histogram, deterministically identifying the best feature to split by, as
well as the split value.

3. Finally, each enclave partitions its data based on the split value: it simply updates a marker
per sample (using oassign) that identifies which child node the sample belongs to.
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Level-wise oblivious tree construction. A simple way to construct a tree is to sequentially
add nodes to the tree as described above, until the entire tree is constructed. To prevent leaking
information about the data or the tree: (i) the order in which nodes are added needs to be independent
of the data; and (ii) a fixed number of nodes need to be added to the tree. At the same time, adding
nodes sequentially by repeatedly invoking the node addition subroutine above is sub-optimal for
performance. This is because oblivious node addition only uses the data that belongs to the node;
however, concealing which data samples belong to the node either requires accessing each sample
using oaccess, or scanning all the samples while performing dummy operations for those that do
not belong to the node. Both these options impact performance adversely.

We simultaneously solve all the problems above by sequentially adding entire levels to the tree,
instead of individual nodes. That is, we obliviously add all the nodes at a particular level of a tree
in a single scan of all the data samples, as follows. For each data sample, we first use oaccess
to obliviously fetch the histograms of the node that the sample belongs to. We then update the
histograms as described in the subroutine above, and then obliviously write back the histogram to
the node using oaccess.

Note that as a result of level-wise tree construction, we always build a full binary tree (unlike the
non-oblivious algorithm) and some nodes in the tree are “dummy” nodes. These nodes are ignored
during inference. Figure 7.4 illustrates how nodes are added to the tree during our oblivious training
routine.

7.5.3 Oblivious inference

Inference normally occurs by traversing a tree from root to leaf and comparing the feature value of
each interior node with the corresponding feature in the test data instance. To obliviously evaluate
an XGBoost model on a data instance, we follow [OSF' 16]. In summary, we store each layer in the
tree as an array, use the oaccess primitive to obliviously select the proper node at that layer, and
use the oless primitive for comparison.

7.6 Implementation

Our Implementation of Secure XGBoost is open source [Sec]. Following XGBoost’s implementation
model, we provide a Python API on top of a core C++ library, imitating the XGBoost API as much
as possible. An example of the Secure XGBoost API is shown in Figure 7.5. We used the Open
Enclave SDK [Ope20] to interface between the untrusted host and the enclave and to enable Secure
XGBoost to run agnostic of a specific hardware enclave; Mbed TLS [Mbe20] for cryptography and
for secure communication between enclaves; and gRPC [gRP20] for client-server communication.

7.7 Evaluation

We ran experiments on Secure XGBoost using a synthetic dataset obtained from Ant Financial, con-
sisting of 100,000 data samples with 126 features. Our experiments compare three systems: vanilla
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import securexgboost as xgb

# Initialize client and connect to enclave cluster

xgb.init_client (user_name="user1",
sym_key_file="key.txt",
priv_key_file="user1.pem",
cert_file="userl.crt")

# Client side remote attestation to authenticate enclaves
xgb.attest ()

# Load the encrypted data and associate it with a user

dtrain = xgb.DMatrix({"user1"”: "train.enc"})
dtest = xgb.DMatrix ({"user1": "test.enc"})
params = {
"objective"”: "binary:logistic”,
"gamma": "@.1",
"max_depth": "3"
}
# Train a model
num_rounds = 5
booster = xgb.train(params, dtrain, num_rounds)

# Get encrypted predictions and decrypt them
predictions, num_preds = booster.predict(dtest)

Figure 7.5: Example client code in Secure XGBoost. Functions highlighted in red are additions to
the existing XGBoost library. Functions highlighted in blue exist in XGBoost but were modified for
Secure XGBoost.

XGBoost; encrypted Secure XGBoost (a version of Secure XGBoost without obliviousness); and
oblivious Secure XGBoost (Secure XGBoost with obliviousness enabled). We ran our experiments
on Microsoft’s Azure Confidential Computing service. We used DC4s_V2 machines, which have
support for Intel SGX enclaves, and are equipped with 4 vCPUs, 16 GiB of memory, and a 112 MiB
enclave page cache.

Figure 7.6 shows our training results. In general, encrypted Secure XGBoost incurs 4.5 x —5.1 %
overhead compared to vanilla XGBoost, which provides no security. Oblivious Secure XGBoost
incurs 16.7 x —178.2x overhead over encrypted Secure XGBoost. The main takeaway is that one
has to be careful in tuning the hyperparameters by adjusting the number of bins, the number of
levels per tree and the number of trees. For example, decreasing the number of bins while increasing
the number of trees could improve performance while maintaining the same accuracy.

7.8 Conclusion

In this chapter we described Secure XGBoost, a privacy-preserving system that enables multiparty
training and inference of XGBoost models. Secure XGBoost protects the privacy of each party’s
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Figure 7.6: Evaluation comparison among the insecure baseline, and encrypted as well as oblivious
Secure XGBoost

data as well as the integrity of the computation with the help of hardware enclaves. Crucially, Secure
XGBoost augments the security of the enclaves using novel data-oblivious algorithms that prevent

access side-channel attacks on enclaves induced via access pattern leakage. Our implementation is
available as open-source software.



147

Chapter 8

Conclusion

How should we design systems that can analyze confidential data, while simultaneously meeting
the goals of security and efficiency? Existing approaches for secure computation often fall short on
one or both of these counts—cryptographic approaches are often not efficient, and solutions based
on trusted hardware suffer from side-channel vulnerabilities. To support complex workloads, it is
important for systems to satisfy both requirements in order to be meaningfully useful.

This dissertation shows that it is possible to design secure and efficient systems that can meet
the demands of modern applications. To guide the design of such systems, we distill a set of design
principles based on the properties of the different approaches for secure computation. We illustrate
these principles by applying them in the design of a range of applications, across various scenarios
where confidential computing is necessary. Specifically, in Chapters 3 and 4 we design cryptographic
systems for query execution and analytics, Arx and Senate, that respectively target outsourced
computing and collaborative computing scenarios. We then turn to the design of applications with
stricter performance requirements. In Chapters 5 to 7 we design SafeBricks, Visor, and Secure
XGBoost respectively with the help of trusted execution environments, for applications such as
network functions, machine learning, and video analytics, in the outsourced as well as collaborative
settings. We have also combined the ideas in this dissertation into the MC? platform which is
available as open-source software [MC2]. Several teams in industry have adopted MC? for their
own use cases, from applications in telecommunications to financial services.

We expect that the demand for confidential computing platforms will only increase in the future.
The growing threat of data breaches has been mirrored by a swell in public concern around the
privacy of data. In response to this concern, governments around the world are enacting stricter
privacy laws governing how confidential data might be used and processed [Karl9]. Privacy-
preserving platforms, like the ones designed in this dissertation, offer a promising solution for
protecting data while still being able to use it. Undoubtedly, such platforms will continue to evolve
and improve. We hope that the approach we take in this dissertation will, at the very least, help
inform the design of future systems and serve as a useful point of reference.
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8.1 Future Directions

Looking ahead, there are several avenues for improving and building upon this work.

Synthesizing complex data analysis pipelines. From a cryptographic perspective, the work in
this dissertation focused mainly on database query execution and analytics. Efficiently synthesizing
cryptographic protocols for machine learning pipelines is a timely direction for future work. Ex-
isting efforts in privacy-preserving machine learning focus on narrower problems—they develop
specialized protocols for individual tasks such as linear regression, ridge regression, or neural
network inference. However, real-world machine learning workflows are complex and typically
consist of a pipeline of stages: from data preparation to feature engineering to model training,
followed by model deployment. A privacy-preserving system that can support such pipelines would
be a valuable contribution.

Augmenting security with complementary approaches. In the case of collaborative computa-
tion, our secure computation-based approach reveals the results to the parties, which may also leak
information about the underlying data. This leakage can potentially be mitigated by techniques such
as differential privacy which prevents leakage by adding noise to the results, and is complementary
to secure computation. Given a differentially private mechanism for noising the computation results,
it is fairly straightforward to integrate it within trusted execution. However, reconciling differentially
privacy with cryptographic protocols is challenging and requires care, especially in the presence of
malicious behavior.

Combining cryptographic schemes with trusted execution. An alternate design point ripe for
exploration would be to combine the guarantees of cryptographic schemes with trusted execution
into a “hybrid” architecture. This can potentially benefit system performance for several reasons.
It can help offset the overhead of cryptographic protocols by offloading some compute (with side-
channel mitigation) to enclaves, and simplify the design of the overall scheme. It can help alleviate
the memory burden on enclaves by moving some computation outside the enclaves and executing it
cryptographically instead. It also allows system designers to limit the security properties required
of either approach, which may overall lead to a more efficient system—e.g., using enclaves only for
integrity protection, and cryptographic protocols only for privacy. At the same time, the success of
such a hybrid design depends on whether it is also able to circumvent the shortcomings of the two
approaches, which is challenging.
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Appendix A

Joins over Multisets in Senate

We now describe an extension to the set intersection circuit that enables the evaluation of joins on
multisets. Our extension requires Senate to know the multiplicity c of values in the joined columns.
That is, each value in the column can have no more than ¢ occurrences.

Consider an example where parties P; and P, wish to compute a join over their respective
columns 77 and 75 each of size n. Let ¢; and ¢, be the multiplicity of values in the two columns.
Then, one way to express the join as a set intersection is to encode the values in a columns based
on the other column’s multiplicity, as proposed by prior work [KS05,NH12]. Suppose an element
a occurs k; < c¢; times in 77, and kp < ¢, times in 75. Then, each instance a; of the element a (for
1 <i<k)isreplaced with the set of elements {a||i||j} for I < j < ¢,. Similarly, each instance a;
of an element a in 75 is replaced with the set of elements {a||j||i} for 1 < j < ¢;. The intersection
thus contains k| X k, instances of a, as required by the join operation. As a consequence, however,
the size of P;’s input set increases from n to ¢> X n, and the size of P»’s input set increases to ¢y X n.
In Senate, this affects the size of the 2-SI circuit, which increases as a result. .

Senate therefore employs an alternate approach. We note that broadly, there are two possible
query types: (i) those in which to the input to the join operation is the joined column alone; or
(i) the input contains additional columns. To handle the former, for every distinct element a each
party replaces its instances a; with a single tuple (a, k), where k is the number of occurrences of a.
The 2-Sl circuit is then computed over the lists of tuples instead of singleton elements, outputting
values of the type (a,k;,k;) for elements in the intersection.

For the latter case where there are additional columns along with the joined column, the inputs
can be represented as tuples of the form (a,b), where the first element corresponds to the column to
be joined. In such situations, for every distinct element a, each party replaces its instances with a
single tuple (a,by,...,b.) instead, where c is the maximum multiplicity of the column. If a party
only has k < ¢ instances of a, then the values by ...b. are zeros. The 2-SI circuit then outputs
values of the type (a,b!, ... ,bé,b%, e ,bg), which can be demultiplexed to obtain the result of the
join.
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Appendix B

Invertibility of SQL Operators in Senate

To verify the results of intermediate operations in the query tree, Senate’s compiler needs to deduce
the range of values that the output of a node must satisfy. As the query tree is executed, constraints
implied by operations lower in the tree accumulate upwards and may impact the outputs of later
operations. We now show how Senate’s compiler deduces the constraints imposed by various
relational operations (i.e., what needs to be verified). Then, we show the invertibility of relational
operations given these constraints. This ensures that the resulting tree is admissible, and satisfies
the requirements of Senate’s MPC protocol.

For simplicity, Senate considers operations that constrain the output in one of three ways: (i) for
a column, each element g; in the output can be constrained to belong to one or more ranges of the
type: n; < a; < np, where ny and nj are constants; (ii) the records in the output are ordered by a
single column (e.g., due to a sort); or (ii1) the elements in the column are distinct (e.g., primary
keys). If an operation in the tree results in an output that violates these constraints, then it is marked
as unverifiable. Note that equality is a special case of the range constraint. Further, we can check
whether or not a column has distinct elements by sorting them first and then checking that adjacent
elements are different (i.e., by reducing it to an ordering constraint).

Filters. For filtering operators o s that filter a column a based on the predicate f, we need to verify
that each record in the output relation satisfies the applied function f (which can be of type =, <,
>). All original constraints on the input columns are preserved and propagated to the output; in
addition, an extra range constraint is added in accordance with f.

The invertibility of filtering operations is straightforward. Let C be the set of constraints on the
input; then, the set of constraints induced by o ¢ is C' = CU f(a). Given an output R’ that satisfies
all constraints in C’, one can generate an input R O R’ that forms a valid pre-image and satisfy all
constraints in C. In particular, the relation R’ is itself a valid pre-image.

Joins. We consider equijoin operations X over columns that are sets. In this case, all range
constraints on the input columns are preserved in the output, and the operation only requires that
the joined column in the output is also a set. If some column in the input contains an ordering
constraint, then the constraint is discarded (i.e., it doesn’t propagate upwards to the next node)
because join operations make no guarantees towards preserving order. Joins that are not based
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on equality testing are marked as unverifiable; this is because such joins constrain the values of a
column to be dependent on the values in other columns, violating our requirements above.

As regards invertibility, let C’ be the constraints after the join operation, as described above.
Given an output relation R’ that satisfies C’' and the constraint sets C;,C, on relations Ry,R;
respectively, one can craft relations R/, R}, that satisfy constraints sets C;,C; as follows: A row in
R3 can be separated to two parts, one with columns of relation R; are added to relation R/ and the
other with columns of relation R, are added to relation R),. The values under the joined column are
duplicated to these two parts. The relations R/, R} clearly satisfy constraints sets Cy,Cs, respectively.

Order-by. For order-by operations 7 over the column a, if the input contains ordering constraints
on any other column, then the operation is marked as unverifiable. Otherwise, we need to verify
that the column a in the output relation is sorted. All range / distinctness constraints on the input
columns are preserved and propagated upwards.

It is easy to see the invertibility of order-by operations. In particular, the output itself is a valid
input.
Group-by aggregates. For group-by operations Y that group by a column ¢ while performing a
single aggregate X on the column a, suppose the output columns are (¢’,a’), where ¢’ represents
the groups and a’ the aggregates per group. Then, all range constrains on ¢ are preserved in ¢’;
additionally, ¢’ now includes a distinctness constraint. As regards ', if £ is max or min, then the
range constraints on a apply to @’ as well. If ¥ is count, then &’ is unconstrained. If X is sum, then
no constraints apply on a’ only if a is also unconstrained; however, if a has a range constraint, then
the operation is marked as unverifiable. This is because in the presence of range constraints, it may
be hard to deduce the possible values the sum can take, requiring a constraint solver in many cases.

Given a relation R’ output from a group-by node which satisfies the above constraints, one can
find a pre-image relation R as follows. Since columns other than a are not constraints, ignore them
(we could set any value for them). Then, for every row (¢’,@’) in R, add rows to R such that the
values in a are at most a’ if the aggregate is a max, or the values in a are at least ' if the aggregate is
amin. If the aggregate is a count, then the node can be easily inverted by generating the requisite
number of rows for every value of c.
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Appendix C

Security Proofs and Pseudocode for Visor

We now provide detailed pseudocode along with proofs of security for our algorithms. We start by
providing a formal definition of data-obliviousness.

Let trace 4(x) be the trace of observations that the adversary can make during an execution of
an algorithm .4, when given some input x, i.e., the sequence of accessed memory addresses, along
with the (encrypted) data that is read or written to the addresses. To prove that the algorithm is data-
oblivious, we show that there exists a simulator program that can produce a trace 7" indistinguishable
from trace 4(x), when given only the public parameters for the algorithm, and regardless of the
value of x. Since T does not depend on any private data, the indistinguishability of T and trace 4
implies that the latter leaks no information about the private data to the adversary, and only depends
on the public parameters. The following definition captures the definition formally.

Definition 7 (Data-obliviousness). We say than an algorithm A is data-oblivious if there exists a
polynomial-time simulator Sim such that for any input x

trace 4(x) = Sim(L(A))
where L(A) is the leakage function and represents the public parameters of A.

We now prove the security of each of our algorithms with respect to Definition 7 in the following
subsections. Figure C.1 summarizes the public parameters across Visor oblivious vision modules
that are leaked to the attacker.

C.1 Oblivious video decoding

Algorithm 1 provides detailed pseudocode for oblivious decoding the bitstream into pixel coefficients
during video decoding, as described in Section 6.6.2. We first explain the pseudocode in more detail,
following the high-level description of Section 6.6.2.

In our implementation, we model the prefix tree as a finite state machine (FSM). While traversing
the tree, we decode a single bit at each state (i.e., each node in the tree) using the ENTROPYDECODE
subroutine. This subroutine takes in a pointer ptr to the bitstream, and decodes a single bit from
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Component Public parameters

Video decoding (i) Metadata of video stream (format, frame rate, resolution);
(if) Number of bits used to encode each (padded) row of blocks;
(iif) Maximum number of bits encoded per 2-byte chunk.

Background sub. -

Bounding box det. () Maximum number of objects per image; (i) Maximum number
of different labels that can be assigned to pixels (an object consists
of all labels that are adjacent to each other).

Object cropping Upper bounds on object dimensions.

Object tracking (7) An upper bound on the intermediate number of features; (ii) An
upper bound on the total number of features.

CNN Inference CNN architecture.

Overall Modules and algorithms used in the pipeline.

Figure C.1: Summary of public parameters in Visor’s oblivious vision modules observable by the
attacker. These consist of the input parameters provided to Visor, along with information leaked by
Visor (such as frame rate and resolution).

the bitstream via arithmetic operations. If no more bits can be decoded at the current position, it
outputs null; otherwise, it outputs the decoded bit O or 1.

To enable decoding and traversal, each state S (i.e., each node in the tree) is a structure containing
four fields: (prob,nextg,nexty,type). Here, prob is the probability that the bit to be decoded
at S is O (as defined in the VP8 specifications [BKQ™ 11]); and next( and next; are the indices
of the next state based on whether the decoded bit is a 0 or 1. Some states in the FSM are end
states, i.e., states that complete reconstructing a data value; for these states, type is set to ‘end’.
States that are not end states (i.e., decode intermediate bits) have type set to ‘mid’. The FSM also
contains a dummy state Sqummy that performs dummy bit decodes by invoking the entropy decoder
with isDummy set to true; for the dummy state, type is set to ‘dummy’.

Next, we represent the FSM as an array—Nodes in Algorithm 1. We set Nodes[0] to be Sqummy.
and Nodes|[1] to be the starting state. This enables us to implement transitions to any state S; by
simply fetching the state at index j from the array using the oaccess primitive. As a result, the
current state of the FSM remains hidden across transitions. Each transition passes four items of
information to the next state: (i) the state that made the transition Sparent; (i1) an integer pos that
denotes the position in the bitstream of the current bit being decoded; (iii) the (partially) constructed
data value data, and (iv) a counter ctr that counts the number of bits decoded at each position.
Note that the structure of the prefix tree (and hence the array Nodes) is public information since it is
constructed per the VP8 specifications [BKQ™11].

Theorem 3. The bitstream decoding algorithm in Algorithm 1 is data-oblivious per Definition 7,
with public parameters Npits, Nchunk, and the size of the prefix tree array Nodes (which is a known
constant).
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Algorithm 1 Bitstream decoding

1: Constants: Upper bound on number of encoded bits per 2-byte chunk in bitstream Nchynk; total number
of bits in bitstream Nyi¢s; array representation of the prefix tree for decoding Nodes

2: Globals: The data value being decoded data; counter ctr that counts the number of bits decoded per
chunk in the bitstream

3: Input: Bitstream B

4: procedure DECODEBITSTREAM(B)

5: ptr = B.start

6: S = Nodes|1]

7: Sparent = null, data=0, ctr =0, pos =0

8: O0=]]

9: while ptr < B.start + Npits do

10: isDummy = (S.type == ‘dummy’)

11: b = ENTROPYDECODE(isDummy, ptr,S.prob)
12: isDummy = (b == null)

13: data = UPDATEDATA (isDummy,data,b)

14: pos+ =1

15: ctr = oassign(ctr == Nchunk,0,ctr+1)
16: isend = (S.type == ‘end’)

17: 01 = oassign(isEnd,pos,0)

18: 0y = oassign(isEnd,data,null)

19: parent = oassign(—isDummy,S.index, Sparent.-index)
20: next = oassign(b ==0,S.nexty,S.index)
21: next = oassign(b == 1,S.next,next)
22: next = oassign(isDummy,0,next)
23: next = oassign(isDummyA

ctr == Nchunk, Parent, next)

24: O.APPEND((01,02))
25: Sparent = 0access(Nodes, parent)
26: S = oaccess(Nodes,next)
27: ptr =oassign(ctr == Nchunk, Ptr+2,ptr)

28: end while
29: osort(0)
30: return O
31: end procedure

Proof. The simulator starts be generating a random bitstream B of length Nyits, and then simply
executes Algorithm 1. It outputs the trace produced by the algorithm.

Lines 5-8 have fixed access patterns.

The loop in line 9 runs a fixed number of times: ctr increments by 1 in each run of the loop on
line 15 until it becomes equal to Ncpynk, at which point the loop variable ptr is incremented by 2 in
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line 27. Thus, the loop makes exactly Nyits X Nchunk /2 iterations.

Within the loop, line 10 has fixed access patterns. In line 11, the function ENTROPYDECODE
dereferences ptr and decodes a single bit from the dereferenced value using simple arithmetic
operations; if isDummy is true it performs dummy operations instead, using oassign. Its access
patterns thus only depend on the location pointed to by ptr within the bitstream B, and not the
contents of the bitstream. Further, the value of the loop variable ptr is incremented per a fixed
schedule (as described above), and thus only depends on the value of Ny;¢s.

Line 12 has fixed access patterns. In line 13, the function UPDATEDATA updates the value of
data with b using arithmetic operations implemented using oassign. Its access patterns are thus
independent of the data or b.

Lines 14-24 have fixed access patterns. The access patterns of lines 25-26 only depend on the
length of Nodes, which is fixed and public. Line 27 also has fixed access patterns.

Finally, line 29 uses the osort primitive to sort the array O; its access patterns thus depend on
the length of O. Since a single tuple is appended to O per iteration of the loop, the length of O is
equal to the number of iterations, which only depends on Npits and Nchunk as described above.

Thus, the trace produced by the algorithm can be simulated only using the values of My;ts and
Nchunk- O

C.2 Oblivious image processing

In this section, we provide pseudocode along with proofs of security for the image processing
algorithms described in Section 6.7. For each algorithm, we first briefly describe its pseudocode,
and then prove its security with respect to Definition 7.

C.2.1 Background subtraction

As described in Section 6.7.1, the background subtraction algorithm (Algorithm 2) maintains a
mixture of M Gaussian components per pixel.

Let ) denote the value of a pixel in RGB at time ¢. The algorithm uses the value of the pixel to
update each Gaussian component via a set of arithmetic operations (lines 5-8 in the pseudocode)
along with their weights 7, such that, over time, components that represent background values
for the pixel come to have larger weights, while foreground values are represented by components
having smaller weights.

Then, it compute the distance of the sample from each of the M components. If no component
is sufficiently close, it adds a new component, increments M, and if the new M > M., discards the
component with the smallest weight 7, (lines 9-21).

Finally, it uses the B largest components by weight to determine whether the pixel is part of the
background (lines 22-30). Note that My, and B are algorithmic constants, independent of the input
video streams.

Theorem 4. The background subtraction algorithm in Algorithm 2 is data-oblivious per Definition 7,
with public parameters Myayx and B (which are known constants).
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Algorithm 2 Background subtraction

1: Constants: Maximum number of Gaussian components M.y, number of components to count towards
background decision B; threshold measures Otp-, ¢y, and Cnr
Globals: Actual number of Gaussian components M, array of Gaussian components GMM of size M.y
Input: Pixel x
procedure BACKGROUNDSUBTRACTION(x)
for m =1 to M.« do
isDummy = (m > M)
UPDATEGAUSSIAN(isDummy, GMM[m], x)
end for

9: SORTBYWEIGHT(GMM)

10: isClose = false

11: for m = 1 to M.« do

12: 0 = GETDISTANCE(GMM[m], x)

13: isClose = isCloseV (6 > Othr)

14: end for

15: M = oassign(isClose A (M < Mpax),M+1,M)
16: G = GENERATEGAUSSIAN()

17: GMM[Mpax — 1] = oassign(isClose,GMM[Myax — 1], G)
18: for m = M54-1 to 1 do

19: toSwap = (GMM[m].7w < GMM[m + 1].7)

20: GMM[m| = oassign(toSwap,GMM[m + 1],GMM[m])
21: end for

22: c=0

23: p=0

24: toInclude = true
25: for m =1to Bdo

26: c=c+GMM[m|.m

27: p = oassign(toInclude,p+c,p)

28: toInclude = oassign(c > ¢y, false, toInclude)
29: end for

30: return p > Cihr

31: end procedure

Proof. The simulator chooses a random pixel value x and simply runs the algorithm. It outputs the
trace produced by the algorithm.

Lines 67 are executed exactly Mpax times. Here, the loop variable m is public information.
Line 6 has fixed access patterns. The function UPDATEGAUSSIAN performs a set of arithmetic
operations independent of the value of x, via oassign operations using the condition value isDummy.
The function updates The access patterns of line 7 therefore only depend on m.

SORTBYWEIGHT in line 9 sorts the GMM array using the oblivious sorting primitive osort.
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Hence, the access patterns of this step only depend on the length of GMM, which is M.

Lines 12—-13 are executed exactly Mpax times. The function GETDISTANCE computes the
distance of x from GMM[m| via arithmetic operations, independent of the value of x. Thus, the access
patterns of line 12 thus depends only on the loop variable m. Line 13 has fixed access patterns.
Lines 15-16 have fixed access patterns, and the access patterns of line 17 depends only on Mp,y.
Lines 19-20 are executed exactly Mpax — 1 times. The access patterns of both lines depend only on
the loop variable m.

Lines 22-24 have fixed access patterns. Lines 2628 are executed exactly Mp,x times. The
access patterns of line 26 depend only on the loop variable m; lines 27 and 28 have fixed access
patterns.

Thus, the trace produced by the simulator is indistinguishable from the trace produced by a real
run. 0

C.2.2 Object detection

Algorithm 3 describes our algorithm for detecting bounding boxes of objects in an input image. The
algorithm maintains a list L of tuples of the form (parent,bbox), where each tuple corresponds
to a distinct “label” that will eventually be mapped to each blob. Initially, the list L is empty. The
parent field identifies other labels that are connected to the tuple’s label (explained shortly), and
the bbox field maintains the coordinates of the bounding box of the label (or blob).

The algorithm first scans the image row-wise (lines 6-22). Whenever a white pixel is detected,
the algorithm checks if any of its neighbors scanned thus far were also white (i.e., pixel to the left
and the three pixels above). In case at least one neighbor is white, the pixel is assigned the label of
the neighbor with the smallest numerical value, /y;. The algorithm records that all white neighbors
are connected, by setting the parent fields for each neighboring label to /y;, and updating the bbox
field for /yin. In case no neighbor is white, the pixel is assigned a new label, and a new entry is
added to the list L, with its parent set to the label itself and bbox as the coordinates of the current
pixel.

Next, the algorithm merges the bounding boxes of all connected labels into a single bounding
box (lines 23-35). Specifically, for every label [ in L, the algorithm first obtains the parent label
of [ (say lpar), and then updates the bbox of /p,r to include the bbox of /. It repeats the process
recursively with [p,r, until it reaches a root label /-0t Whose parent value is the label itself.
The process repeats for all labels in L, until only the root labels are left behind. Each root label
corresponds to a distinct object in the frame.

Theorem 5. The bounding box detection algorithm in Algorithm 3 is data-oblivious, with public
parameters N, and the height and width of the input frame.

Proof. The simulator generates a random frame F of the given height and width and runs the
algorithm. It outputs the trace produced by the algorithm.

The access patterns of line 4 depends only on N. Line 5 has fixed access patterns.

The loops (lines 6-22) are executed a fixed number of times, equal to the height and width of
the frame. The access patterns of line 8 depend only on the loop variables i and j, which are public
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Algorithm 3 Bounding box detection

1: Constants: Maximum number of labels N

2: Input: Frame F

3: procedure BOUNDINGBOXDETECTION(F)

4: Initialize list L of N tuples of type (parent,bbox),
with L[i].parent =i

5 ctr=1

6 for i =1 to F.height do

7. for j =1 to F.width do

8: p=Flij

9: isWhite = (p #0)

10: (p1,p2,P3,ps) = GETNEIGHBORS(F, 1, j)

11: (l1,0p,13,14) = GETNEIGHBORLABELS(F, 1, j)
12: isNew = (p; == py == p3 == ps == 0) AisWhite
13: Inin = GETMINLABEL(!y,12,13,14)

14: Inin = 0assign(isNew,ctr,lpin)

15: ctr = oassign(—isNew,ctr+1,ctr)

16: for each label [ in {l,,15,15,14} do

17: UPDATEPARENT(L, ~isNew,, lyin)

18: end for

19: UPDATEBBOX(L,isWhite,lyin,i, j)
20: SETLABEL(F,i, j,Inin)
21: end for

22: end for

23: fori=1toN do

24: par = Lli].parent

25: toMerge = (par < i)

26: for j=ito1do

27: L[i].parent = oassign(toMerge A (par == j),
L[j].parent,L[i].parent)

28: end for

29: end for

30: fori=1to N do

31: for j=1toN do

32: toMerge = (L[j].parent ==1)

33: MERGEBBOX(toMerge, L[i].bbox, L[j].bbox)

34: end for

35: end for
36: return L
37: end procedure

information. Line 9 has fixed access patterns. In line 10, the function GETNEIGHBORS returns
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Algorithm 4 Object cropping

1: Constants: Upper bounds on object dimensions height, width

2: Input: Frame F, bounding box coordinates bbox

3: procedure CROPOBJECT(F, bbox)

4: Initialize an empty buffer buf with width = F.width and height = height

5 for i =1 to F.height do

6: cond = (i == bbox. top)

7: CopYROWS(cond, i, F,buf)
8 end for

9: Initialize an empty buffer obj with width = width and height = height
10: for i =1 to F.width do
11: cond = (i == bbox. left)
12: CopryCoLs(cond,i,buf,obj)
13: end for
14: end procedure

the four pixels neighboring the input coordinates (i and j), and its access patterns thus depend
only on i and j. Similarly in line 11, GETNEIGHBORLABELS looks up the labels assigned to the
neighboring pixels, and thus has access patterns that only depend on i and j. Line 12 has fixed
access patterns. In line 13, GETMINLABEL selects the minimum of the input values using oassign
operations, and thus has fixed access patterns. Lines 14—15 have fixed access patterns. In line 17,
UPDATEPARENT uses oaccess combined with oassign to update L[l].parent to lyip; it thus has
access patterns that only depend on the length N of the array L. In line 18, UPDATEBBOX similarly
uses oaccess combined with oassign to update L[lyin].bbox with the current coordinates i and j;
its access patterns therefore only depend on L’s length N. In line 19, SETLABEL sets the label of
the pixel at F[i][/] to Inin; its access patterns depend only on the loop variables i and ;.

Lines 24-28 are run N times. The access patterns of line 24 depend only on the loop variable i.
Line 25 has fixed access patterns. Line 27 is executed i times, which is public information; also, the
access patterns of this line only depend on the loop variables i and j.

Lines 32-33 are run N2 times. The access patterns of line 32 only depend on the loop variable ;.
In line 33, the function MERGEBBOX uses oassign operations to update L[i].bbox with L[j].bbox;
it therefore has fixed access patterns.

Thus, the trace produced by the simulator is indistinguishable from the trace produced by a real
run of the algorithm. [

C.2.3 Object cropping

Algorithms 4 and 5 together describe Visor’s oblivious cropping algorithm. Visor crops out images
of a fixed upper bounded size using Algorithm 4, and then scales up the ROI within the cropped
image using Algorithm 5 (as described in Section 6.7.3). The pseudocode is self-explanatory.
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Algorithm 5 Object resizing

1: Input: Object buffer O, bounding box coordinates bbox
2: procedure RESIZEOBIECT(O, bbox)

3 RESIZEHORIZONTALLY(O, bbox, false)

4: TRANSPOSE(O)

5 RESIZEHORIZONTALLY(O, bbox, true)

6 TRANSPOSE(O)

7: end procedure

8: procedure RESIZEHORIZONTALLY (O, bbox)

9: for i =1 to O.height do
10: for j =1 to O.width do
11: p = PIXELOFINTEREST(j, bbox)
12: a = oaccess(O[i], p)
13: b = oaccess(Oli]l,p+1)
14: Oli][j] = LINEARINTERPOLATE(a, b)
15: end for
16: end for

17: end procedure

Theorem 6. The object cropping algorithm in Algorithm 4 is data-oblivious, with public parameters
equal to the dimensions of the input frame, and the upper bounds on the object dimensions height
and width.

Proof. The simulator generates a random frame of the given dimensions, along with a bounding
box bbox with random coordinates. It then runs the algorithm, and outputs the produced trace.

The access patterns of line 4 depend only the frame’s width, and the parameter width, both of
which are known to the simulator. Lines 67 run a fixed number of times, equal to the height of the
frame. Line 6 has fixed access patterns. In line 7, COPYROWS uses oassign to copy pixels from F
into buf; its access patterns thus only depend on the loop variable i, the width of the frame, and the
parameter height.

The access patterns of line 9 depend only the parameters width and height. Lines 11-12 run a
fixed number of times, equal to the width of the frame. Line 11 has fixed access patterns. In line 12,
CoprYCOLS uses oassign to copy pixels from buf into obj; its access patterns thus only depend
on the loop variable i, and the parameters height and width.

Thus, the trace produced by the simulator is indistinguishable from the trace produced by a real
run of the algorithm. O

Theorem 7. The object resizing algorithm in Algorithm 5 is data-oblivious, with public parameters
equal to the dimensions of the input object O.
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Proof. The simulator generates a random object buffer with the given dimensions, along with a
bounding box bbox with random coordinates. It then runs the algorithm, and outputs the produced
trace.

The function Transpose transposes the object buffer, and thus its access patterns only depend
on the dimensions of O. The function ResizeHorizontally works as follows. The loops (lines
9-15) are executed a fixed number of times, equal to the dimensions of O. Line 11 computes the
location of the pixels to be used for linearly interpolating the current pixel, using a set of arithmetic
operations; it thus has fixed access patterns. Lines 12 and 13 have access patterns that only depend
on the width of O. In line 14, LINEARINTERPOLATE linearly interpolates the current pixel’s value
using a set of arithmetic operations; the access patterns of this line thus depend only on the loop
variables.

Thus, the trace produced by the simulator is indistinguishable from the trace produced by a real
run of the algorithm. [

C.2.4 Object tracking

Algorithm 6 describes the feature detection phase of the object tracking. We omit a description of
feature matching since it is oblivious by default.

The algorithm first creates a set of increasingly blurred versions of the input image (line 5).
Then, it identifies a set of candidate keypoints in these blurred images, i.e., pixels that are the
maximum and minimum of all their neighbors (lines 6-14). This set of keypoints is further refined
to identify those that are robust to changes in illumination (i.e., have high intensity), or represent
a “corner” (lines 15-18). Mathematically, these tests involve the computation of derivatives at the
candidate point, and then a comparison of the results against a threshold. Candidates that fail these
tests are discarded.

Finally, for each keypoint, the algorithm constructs a feature descriptor. It calculates the
“orientation” of the pixels around the keypoint (within a 16 x 16 neighborhood) based on pixel
differences, and then constructs a histogram over the computed values (lines 20-14). The histogram
acts as the keypoint’s descriptor.

Theorem 8. The feature detection algorithm in Algorithm 6 is data-oblivious, with public parame-
ters equal to the dimensions of the input image O, and upper bounds Ntemp and N.

Proof. The simulator generates a random image buffer with the given dimensions, and then runs
the algorithm. It outputs the trace produced by the algorithm.

Line 5 performs Gaussian blurring operations on the input image O, which perform a convolution
of the input image with a specified kernel (i.e., a small matrix). The access patterns of these matrix
multiplications are fixed, and independent of the values of the matrices.

The loop (lines 6—14) runs a fixed number of times, the value of which depends on the resolution
of the input image, which is public. Line 7 fetches the neighbors of the current pixel; its access
patterns are therefore dependent only on coordinates of the loop variable, which is public. Line 8
checks the value of the current pixel with the obtained nbrs using oassign operations, and thus
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Algorithm 6 Feature detection

1: Input: Object buffer O, maximum number of candidate keypoints Ntenp, maximum number of actual
keypoints N

2: procedure DETECTFEATURES(O, Ntemp, V)

3: Initialize an empty list L of size Ntepp for candidate keypoints, and a list H of size N for features of
final keypoints

4 ctr=20

5 images = GETDIFFERENCEOFGAUSSIANS(O)

6: for each pixel p in images do

7 nbrs = GETNEIGHBORS(p)

8 isExtrema = CHECKEXTREMA (p,nbrs)

9

: k= (p,nbrs)
10: for i =1 to Niep do
11: L[i] = oassign(isExtrema Ai == ctr,k,L[i])
12: end for
13: ctr = oassign(isExtremaActr < Niemp,Ctr+1,ctr)
14: end for

15: for i =1 to Niemp do

16: isRobust = CHECKROBUSTNESS(L[i])

17: L[i] = oassign(isRobust,L[i],null)

18: end for

19: osort(L) such that non-null values move to the head of L

20: fori=1toN do

21: bbox = CALCNEIGHBORHOODBBOX(L[i])
22: roi = CROPOBJECT(images,bbox)
23: H{[i] = CALCORIENTATIONHIST(L][i],roi)

24: end for
25: return H
26: end procedure

has fixed access patterns, independent of the values. Line 9 has fixed access patterns. The loop in
lines 10-12 executes a fixed Ntemp number of times. The access patterns of line 11 depend only on
the public loop variable. Line 13 has fixed access patterns.

The loop in lines 15-18 executes a fixed Ntemp number of times. Line 16 has fixed access
patterns. The access patterns of line 17 depend only on the public loop variable. Line 19 has fixed
access patterns that depend only on the size Nienp of the array L.

The loop in lines 15-18 executes a fixed N number of times. The function CALCNEIGHBOR-
HOODBBOX in Line 21 computes the bounding box of the 16 x 16 neighborhood of the current
keypoint using arithmetic operations, and has fixed access patterns. The access patterns of the
function CROPOBJECT depend only on the dimensions of the input image O (which is public) and
the resolution of the bounding box, which is fixed (from Theorem 6). The function CALCORIENTA-
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TIONHIST performs arithmetic operations, and the access patterns of line 23 depend only on the
public loop variable.

Thus, the trace produced by the simulator is indistinguishable from the trace produced by a real
run of the algorithm. O
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Appendix D

Impact of Video Encoder Padding on Visor

In Visor, the source video streams are padded at the camera to prevent information leakage due to
variations in bitrate of the encrypted network traffic. However, it may not always be possible to
modify legacy cameras to incorporate padding. This security guarantee also comes at the cost of
performance and increased network bandwidth.

While we recommend padding the video streams for security, we studied the impact of disabling
video encoder padding on Visor so as to aid practitioners in taking an informed decision between
security and performance. Disabling padding has two implications on Visor.

First, the encoded stream may also contain interframes in addition to keyframes (see Sec-
tion 6.6.1). Thus, we have devised an oblivious routine for interframe prediction, which is described
in Appendix D.1. Second, the performance overhead of Visor (~2x—6x) reduces to a range of
~1.6x-2.9x. This is due to lower interframe decoding latency and smaller number of decoded bits
per row of blocks (which are obliviously sorted).

D.1 Inter-prediction for interframes

Inter-predicted blocks use previously decoded frames as reference (either the previous frame, or the
most recent keyframe). Obliviousness of inter-prediction requires that the reference block (which
frame, and block’s coordinates therein) remains private during decoding. Otherwise, an attacker
observing access patterns during inter-prediction can discern the motion of objects across frames.
Furthermore, some blocks even in interframes can be intra-predicted for coding efficiency, and
oblivious approaches need to conceal whether an interframe block is inter- or intra-predicted. A
naive, but inefficient, approach to achieve obliviousness is to access all blocks in possible reference
frames at least once—if any block is left untouched, its location its leaked to the attacker.

We leverage properties of video streams to make our oblivious solution efficient: (i) Most
blocks in interframes are inter-predicted (~99% blocks in our streams); and (ii) Coordinates of
reference blocks are close to the coordinates of inter-predicted blocks (in a previous frame), e.g.,
90% of blocks are radially within 1 to 3 blocks. These properties enable two optimizations. First,
we assume every block in an interframe is inter-predicted. Any error due to this assumption on
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intra-predicted blocks is minor in practice. Second, instead of scanning all blocks in prior frames,
we only access blocks within a small distance of the current block. If the reference block is indeed
within this distance, we fetch it obliviously using oaccess; else, (in the rare cases) we use the block
at the same coordinates in the previous frame as reference.
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