
Contrastive Learning for Context-Based Off-Policy Actor-
Critic Reinforcement Learning

Bernie Wang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-219
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-219.html

December 18, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would like to thank Professor Kurt Keutzer for being my research advisor
and for the opportunity to work in Adept Lab. He has provided valuable
insights into my research projects and guidance throughout my time in his
group. I would also like to thank Professor Joseph Gonzalez for being the
second reader and providing valuable feedback on my thesis. I especially
would like to thank Doctor Bichen Wu, who has been a mentor to me and
guided me through several research projects. Finally, I would like to thank
my family for their unwavering support and encouragement.



 

 
 

Contrastive Learning for Context-Based Off-Policy Actor-Critic 
Reinforcement Learning 

 
by Bernie Wang 

 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 

 
 

Professor Kurt Keutzer 
Research Advisor 

 
December 17, 2020 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Joseph Gonzalez 
Second Reader 



 

 
 

(Date) 



1

Abstract

Contrastive Learning for Context-Based Off-Policy Actor-Critic Reinforcement Learning

by

Bernie Wang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Chair

Conventional reinforcement learning focuses on learning an optimal policy for a single task.
Learning a large repertoire of tasks with this paradigm is inefficient in terms of the number of
environment interactions. Meta-reinforcement learning aims to solve this problem by learning
the underlying structure shared within a family of tasks. Recent work reformulates meta-
reinforcement learning as contextual reinforcement learning where the contextual latent space
is learned end-to-end. Representation of context is important and determines the ability of a
policy to generalize. End-to-end reinforcement learning often struggle to generalize to unseen
tasks because of the challenge of end-to-end policy optimization and representation learning.
We introduce CoCOA: contrastive learning for context-based off-policy actor critic, which
builds a contrastive learning framework on top of existing off-policy meta-RL. We evaluate
CoCOA on a variety of continuous control and robotic manipulation tasks and show that
adding a contrastive auxiliary task improves upon the policy returns and sample efficiency
of end-to-end reinforcement learning.
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Chapter 1

Introduction

Reinforcement learning (RL) algorithms have shown great advances in single-task perfor-
mance on simulated environments. In practice however, policies learned by single-task RL
methods are in general not transferable to agents in the real world for the following reasons:
(1) the dynamics of the real-world environment and agent may change over time or be dif-
ferent from their simulated counterparts, and (2) agents are often times required to perform
multiple tasks.

Conventional RL approaches are limited to one policy per task, often requiring millions
of interactions in the environment to learn an optimal policy. Learning a large repertoire
of tasks by learning a policy per task quickly becomes unfeasible. Furthermore, single-task
policies are sensitive to changes in the environment or within the agent, so a bag-of-policies
approach cannot solve this problem.

Fortunately, tasks share common underlying structure that can be exploited. For ex-
ample, placing a ball on a shelf and opening a door both involve grasping an object. A
conventional RL algorithm would most likely fail to learn both tasks because the policy can-
not differentiate these tasks. From an RL perspective, these two tasks differ solely in reward
functions. If the agent can discern this difference, is it possible to learn a single policy for
both tasks?

These shared structures among tasks have motivated research in meta-reinforcement
learning (meta-RL), which focuses on learning to generalize to new tasks after interacting
with the environment on a set of example tasks. Current meta-RL methods rely on encoding
past experience into latent task representations with which they use to adapt their policies
[6, 9, 24]. The standard approach to context-based meta-RL, shown in Figure 1.1, is to
jointly train an encoder, which maps a history of state observations to a task embedding,
and a policy, which maps observations to actions.

Although these methods have shown incredible improvements in sample efficiency com-
pared to gradient-based meta-RL [10, 26], they struggle to generalize in environments with
complex reward functions. Generalization is a challenge for end-to-end RL which attempts
to learn an optimal encoder and an optimal policy at the same time [23]. As RL training
procedures become increasingly more complex, policies that are trained end-to-end tend to
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Figure 1.1: Standard Meta-RL Approach: In the standard meta-RL formulation, the
agent interacts with an environment whose reward function or dynamics change based on
the task T at hand. The encoder qψ maps context cT1:N to task embedding z, on which the
policy πθ(a|s, z) is conditioned. The arrows represent end-to-end gradients. In meta-RL,
and encoder and policy are trained end-to-end.

generalize poorly to new unseen tasks.
In this work, we show that meta-training sample efficiency and meta-testing policy returns

can be improved by adding an auxiliary contrastive prediction task to the meta-training
procedure. Contrastive learning has been successful in learning differences and similarities
among visual representations, and we argue that contrastive learning fits in well with the
contextual meta-RL framework which aims to learn differences between past experience.

Our main contributions is CoCOA, contrastive learning for context-based actor-critic
RL. Specifically, we define a contrastive framework by a discriminative objective, data aug-
mentation for generating similar and dissimilar pairs, and similarity metric. Our method
minimally modifies an existing context-based RL algorithm PEARL by adding an auxiliary
loss during the batch update. We extensively evaluation our method against current meta-
RL methods on a wide variety of continuous controls and robotic object manipulation tasks.
We find that joint meta-learning and contrastive optimization improves upon end-to-end RL
and outperforms existing methods.
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Chapter 2

Related Works

Meta-learning was originally based on the idea of learning a parameter initialization that
can quickly be optimized for a particular task. Early work proposed deploying base learners
to fit to a particular task and having a meta-learner learn from the base learners to produce
a better base learner [3, 28, 34]. [2], [14], and [17] applied this idea to learning to optimize
deep neural networks. Meta-learning includes few-shot learning. Few-shot learning methods
have been used for tasks like image classification [10, 33, 36] and generative modeling [8, 25].
Meta-learning in the context of reinforcement learning aims to learn policies [6, 10, 19] and
dynamics models [20, 27] that can quickly adapt to unseen tasks.

Meta-RL algorithms that are based on the idea of learning an optimal parameter initial-
ization [10, 26] learn a policy initialization that can attain single-task-level performance on a
new task after one or few policy gradient steps. However, they suffer from poor meta-training
and meta-testing sample efficiency because they are on-policy and leveraged gradient-based
adaptations. Studies have shown that long-range temporal dependencies make learning a
base learner difficult [21] while hyper-parameter sensitivity inhibits meta-learning from base
learners [13].

Recent meta-RL methods learn from past experience by leveraging context, which is
formulated as a collection of past agent-environment interactions. Recurrent and recursive
meta-RL methods [6, 37] first demonstrated context-based meta-RL by aggregating experi-
ence into a latent representation on which their policy is conditioned. A policy neural network
is trained to take experience in the form of context as an input by either augmenting the
observation space with context or embedding context as the hidden state. Non-recurrent
methods like [24] learn separate encoder networks that produce latent context variables.
Adaptation for context-based meta-RL involves a single forward pass which is significantly
faster than gradient-based optimization. More recent context-based meta-RL methods like
[9] and [24] significantly improve sample efficiency by building context on top of off-policy
RL algorithms.

Context has shown to be a key component to fast and sample-efficient meta-RL. In a study
of context-based meta-RL, [9] found that a conventional RL algorithm trained with context
to optimize the multi-task objective can rival state-of-the-art meta-RL algorithms. Although
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context is powerful, it is only a meta-training technique. Context does not involve updating
the policy but instead only augments its input space. The trade-off for fast adaptation
via context inference is the lack of policy optimization on new tasks. Context-based meta-
RL methods generally struggle to extrapolate to out-of-distribution tasks at meta-test time
[18]. Policies conditioned on context suffer from generalization because they heavily rely on
predicting the right task representation at test-time to adapt to new tasks.

We believe that learning a richer task representation by jointly optimizing an unsuper-
vised objective with the meta-learning objective can improve the performance of context-
based meta-RL. Prior work that used auxiliary self-supervised tasks include predicting the
future given past experience [15, 22] or reconstruction tasks [32] to improve sample efficiency
and performance of end-to-end RL. Contrastive learning has been used in RL to extract re-
ward functions [31] and learn representations of visual inputs [7, 16]. In our work, we use
contrastive learning to learn representations of context.

The importance of learning low-dimensional task embeddings from a sequence of past
experience in meta-RL makes it well-formed for contrastive learning. Contrastive learning
can be interpreted as a dictionary lookup task: given a query, find a positive key from a
set of negatives [12]. The form of contrastive learning that our method uses is instance
discrimination [4, 5, 38], where a set of queries and keys are generated from instances. A
query and key are a positive pair if they are data augmentations of the same instance and
negative otherwise. Our method applies contrastive learning on meta-RL by learning task
representations that obey similarity constraints.
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Chapter 3

Preliminaries

3.1 Meta-RL Problem Statement

We assume a distribution of tasks ρ(T ), where each task is a partially-observable Markov
decision process (MDP), defined by the tuple

T = (p(s0), p(st+1|st, at), r(st, at), γ, T ), (3.1)

where γ ∈ [0, 1], at ∈ A ⊂ Rd, st ∈ S ⊂ Rp. Here, A is the action space, S is the state space,
p(s0) is the initial state distribution, p(st+1|st, at) is the transition distribution, r(st, at) is
the reward function, γ is the discount factor, and T is the time horizon. The transition and
reward functions are unknown, but can be sampled by taking actions in the environment.
At timestep t, the agent takes an action at sampled from policy distribution πθ(at|st), and
transitions to the next state st+1 sampled from p(st+1|st, at), collecting scalar reward r(st, at).
We define a trajectory as a sequence of transition tuples

τ = {(st, at, rt, s′t)}t∈[0,T−1], (3.2)

where s′t = st+1.
We assume that all tasks in ρ(T ) share the same S, A, γ, T . Tasks within a distribu-

tion can vary in reward functions (e.g., moving objects to different target locations) and in
transition functions (e.g., robots with different dynamics). The objective of an agent is to
maximize the sum of discounted rewards for all tasks,

ET ∈ρ(T )[Eτ∼πθ(T )
[
∑T−1

t=0 γ
tr(st, at)]], (3.3)

where the inner expectation is taken on the trajectories sampled with a policy πθ(T ) adapted
to task T . The meta-training procedure optimizes the policy on a set of training tasks Dtrain

such that
θmeta = arg max

θ
ET ∈Dtrain [lTmeta(θ)], (3.4)

where lTmeta(θ) is the algorithm-dependent meta-training loss for task T .
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Figure 3.1: Meta-RL evaluation protocol: Meta-RL algorithms are train on a set of
training tasks Dtrain and evaluated on a held out set of test tasks Dtest. Each task is
sampled from ρ(T ) and uniquely corresponds to a specific goal state or system dynamics.
The tasks are initialized before meta-training and remain constant throughout the meta-
training and testing procedure. During meta-testing, the agent can explore the environment
before adapting. The adapted policy is then evaluated on the same task.

The meta-testing performance is evaluated on a set of held out test tasks Dtest. Figure
3.1 shows how task sets are sampled for meta-RL. The agent can explore the environment
for each task before adapting its policy to the task at hand. Typically, the sum of rewards
averaged over all tasks evaluated on the adapted policy is reported as the meta-testing
performance. Sample efficiency is essential in meta-RL, both in terms of the number of
environment interactions during meta-training, and in the amount of experience required to
adapt to a new task.

3.2 Context-based Meta-RL

The meta-training process learns a policy that adapts to the task at hand by conditioning
on the history of past transitions, which we refer to as context c. We define context as a
sequence of transition tuples sampled from task T :

cT1:N = {(s, a, r, s′)n}n∈[1,N ] (3.5)

We denote the transition tuples by the subscript n because they are not necessarily ordered
by time-step.
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An encoder fφ(c) maps context cT1:N to context embedding (or task embedding) z, on
which the policy is conditioned as πθ(a|s, z). Meta-training procedure jointly trains the
policy and encoder on a variety of training tasks to infer the value of z from a recent history
of experience in the new task.

3.3 Probabilistic Embeddings for Actor-Critic RL

(PEARL)

PEARL is a context-based meta-RL algorithm built on top of the state-of-the-art off-policy
Soft Actor-Critic [11] and jointly trains a probabilistic context encoder. The context embed-
dings are represented as normal distributionsN (fµφ (c1:N), fσφ (c1:N)) and captures uncertainty
about a task. The encoder is trained by back-propagating the gradient from the critic loss:

Lcritic = E(s,a,r,s′)∼B
z∼qφ(z|c)

[Qθ(s, a, z)− (r + V (s′, z))]2 (3.6)

where B is the replay buffer, Qθ is the critic Q network, V is the target value network, qφ is
the encoder network, and z indicates no gradient is computed through it.

Modeling the context as probabilistic enables posterior sampling to explore the embedding
space for less certain tasks. A key component for generalization in meta-RL methods is that
meta-training inputs should match meta-testing inputs. That is, the embedding space on
which posterior sampling is operated should match between meta-training and meta-testing.
To accomplish this, in addition to the critic loss, the encoder also receives gradient from an
information bottleneck:

ET [Ez∼qφ(z|cT )[βDKL(qφ(z|cT ) ‖ p(z))]] (3.7)

where p(z) is a unit Gaussian prior over z. The KL divergence term can be understood as
an approximate bottleneck [1] that reduces overfitting to training tasks by constraining z to
contain only the most essential information from the context to adapt to the task at hand.

The policy is trained to optimize the actor loss, which minimally modifies SAC’s actor
loss by conditioning the policy on z:

Lactor = Es∼B,a∼πθ
z∼qφ(z|c)

[α log πθ(a|s)−Qθ(s, a, z)] (3.8)

where α is the temperature.

3.4 Contrastive Unsupervised Representation

Learning

Given a query q and set of keys K = {k0, k1, ...} where every q matches with a positive key
k+, the goal of contrastive learning is to maximize the similarity between q and k+ relative
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to any other pairing between q and k ∈ K \ {k+}. Intuitively, representations are learned
by optimizing an objective that pulls similar pairs together while pushing dissimilar pairs
apart in a latent space. The query-key pairs can be understood as different views of the
same instance.
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Chapter 4

Methodology

CoCOA minimally modifies an existing context-based actor-critic algorithm by training the
contrastive objective as an auxiliary loss during meta-training. To specify a contrastive
learning objective, we need to define (1) discrimination object, (2) the data augmentation
for generating query-key pairs, and (3) the similarity measure used between the query-key
embeddings in the contrastive loss.

In our experiments, we build our framework on top of PEARL, which leverages prob-
abilistic task embeddings for exploration via posterior sampling. The similarity measure
between query-key embeddings is tailored to probabilistic embeddings. Although we demon-
strate our framework on PEARL, it can be adapted to any other context-based meta-RL
algorithm by modifying the similarity measure.

4.1 Architectural Overview

CoCOA uses instance discrimination as the unsupervised auxiliary task. Instance discrimi-
nation is performed on transformed trajectories, where positive query-key context pairs are
augmentations of the same trajectory. We use the negative Bhattacharyya distance to mea-
sure the similarity between two normal distributions. Lastly, we use a momentum encoding
procedure proposed in MoCo [12], which [16] found to be better for RL. An overview of the
CoCOA architecture is shown in Figure 4.1.

4.2 Discrimination Objective

Designing an appropriate prediction task is essential for contrastive learning. Instance dis-
crimination on trajectories is the simplest approach because a trajectory is the largest unit
of transition tuples known to belong to a task. Using more than one trajectory as an in-
stance for our discrimination objective is not always feasible in off-policy RL because task
identity is often times unknown. Our discrimination objective can be understood as a tra-
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Figure 4.1: Method Architecture: (1) We generate a key τk and query τq pair by sampling
a random temporal crop of size w from a trajectory τ . (2) The individual transition tuples
in the key and query contexts are encoded by the key and query encoders fφk and fφq as
Gaussian factors. The Gaussian factors are pooled (product) to obtain the key and query
task embeddings k and q. During the gradient update step, only the query encoder is
updated. The key encoder weights are the moving average of the query weights. (3) The
query encoder is optimized from the contrastive loss as well as an information bottleneck on
the queries.

jectory identification task, where we maximize the agreement between two augmentations of
a trajectory.

4.3 Query-Key Pair Generation

A significant difference between context-based meta-RL and conventional RL is that meta-
RL operates on a trajectory of data instead of a single transition. A key factor of successful
generalization is learning a rich task representation from a limited amount of experience.

We apply random temporal cropping on trajectories. That is, we sample a window of
transition tuples from a trajectory. A positive query-key pair consists of two windows of the
same trajectory while negative key-query pairs are windows of different trajectories. The size
of the window must be sufficiently large in order for the keys and query to contain enough
information to describe a task.

Since CoCOA is build on top of PEARL, our method encodes individual transition tu-
ples as Gaussian factors. Subsequently, an encoded windowed trajectory is the product of
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independent factors

fφ(z|c1:N) ∝
N∏
t=1

Ψφ(z|ct), (4.1)

where Ψφ(z|ct) = N(µφ(ct), σφ(ct)) is a Gaussian factor.
For a batch of N trajectories, we generate N keys and N queries. We do not sample

negative examples explicitly. Instead, given a positive key k+ for query q, we treat the other
N − 1 keys within a batch as negative examples.

4.4 Similarity Measure

Another determining factor in the discrimination objective is the similarity function used
to measure agreement between query-key pairs. Since task representations are modelled
as probabilistic embeddings, we consider metrics that express similarities between normal
distributions. Consider a query-key pair represented as normal distributions k = N (µ1,Σ1)
and q = N (µ2,Σ2). We employ the similarity function:

sim(q, k) = −(µ1 − µ2)TΣ−1(µ1 − µ2)T , (4.2)

where Σ = Σ1+Σ2

2
. This function is based on the negative Bhattacharyya distance which

measures the similarity between two normal distributions. Intuitively, the similarity between
two normal distributions is high when their means are close together or when they have a
large overlap, as shown by the inverse relationship between similarity and Σ, the average
covariance matrix.

4.5 Contrastive Loss

We use the InfoNCE score function introduced by [22] coupled with our similarity measure
to compute the contrastive loss:

Lcontrastive = − 1

N

N−1∑
i=0

log
exp(sim(qi, k+)∑N−1
j=0 exp(sim(qi, kj))

(4.3)

where k+ is the positive key for a given query q. Given a query and batch of N keys, we
treat the InfoNCE loss as an N-way cross-entropy loss where k+ the label.

We found empirically that the contrastive loss pushes task embeddings further apart
without bounds, causing the mean and variance of the embeddings to explode. This causes
poor performance because of the distribution mismatch between the learned task embeddings
and exploration embedding space. Recall that exploration is modelled by posterior sampling.
It is crucial that our learned embeddings matches the latent exploration space, so we add a
KL term DKL(q ‖ N (0, I)) to regularize the embeddings.
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4.6 Implementation

CoCOA is built on top of PEARL, which trains encoder fφ and policy πθ end-to-end. To
adapt the PEARL architecture to CoCOA, we jointly optimize the critic loss (Equation 3.6)
and information bottleneck (Equation 3.7) with our contrastive loss (Equation 4.3) during
the batch update.

We use a query encoder fq for encoding queries and a key encoder fk for encoding keys.
The query encoder is the same encoder as fφ, which is updated by back-propagating the
joint critic-contrastive loss. The key encoder is an exponentially moving average version of
the query encoder, a method proposed by [12]. Given the query encoder parameterized by
θq, key encoder parameterized by θk, and momentum m, the update equation for the key
encoder is

θk ← mθk + (1−m)θq (4.4)
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Chapter 5

Experiments

In our experiments, we evaluate how CoCOA compares to current meta-RL methods, in terms
of the test-time average return, on two meta-RL benchmarks that are both simulated via the
MuJoCo simulator [35]: (1) MuJoCo Controls benchmark: a set of six continuous control
environments focused around robotic locomotion, and (2) Metaworld [39]: a family of robotic
manipulation tasks with everyday objects that all share the same table-top environment with
a simulated Sawyer arm.

5.1 Baselines

For both benchmarks, we evaluate the performance and sample efficiency of CoCOA to
PEARL as well as existing policy gradient meta-RL methods MAML with TRPO [10, 30]
and RL2 with PPO [6, 29] using publicly available code. RL2 is an recurrence-based policy
gradient method that implements its task embedding as the hidden state of its recurrent
policy network.

To demonstrate the difficulty of the tasks, we also implement a goal-conditioned SAC
trained on an oracle task encoder. Instead of learning task embeddings, the policy is con-

Figure 5.1: Simulation of MuJoCo Controls agents
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ditioned on hand-designed features pertaining to the task at hand. For example, the task
embedding for a 2D navigation task would be the Cartesian coordinates of the target loca-
tion. This oracle-SAC serves as an empirical upper bound for context-based actor-critic RL.
The results of each algorithm are averaged across three random seeds.

5.2 Setup and Results - MuJoCo Controls

Environment Setup

The MuJoCo Controls benchmark consists of six continuous control environments focused
on robotic locomotion. It was first introduced by [10] and [26] and has since been the de
facto standard in meta-RL benchmarks [9, 24]. Each environment is characterized by a
robotic agent and a family of locomotion tasks. Tasks within a family may differ in reward
functions (walking direction for Half-Cheetah-Forward-Backward, Ant-Forward-Backward,
Humanoid-Dir-2D; target velocity for Half-Cheetah-Vel; goal location for Ant-Goal-2D) or
agent dynamics (random agent system parameters for Walker-2D-Rand-Params). Figure 5.1
depicts the agents involved in the MuJoCo Controls benchmark. All tasks have horizon
length 200.

Evaluation

Meta-RL algorithms are evaluated on how well the agent can distinguish and adapt to
unseen test tasks. To evaluate on meta-testing tasks, we allow all methods two exploration
trajectories to adapt their policy to the task at hand. The meta-testing performance is the
average returns of trajectories collected after each method has adapted. In order to evaluate
both meta-testing performance and sample efficiency, we report meta-testing average returns
as a function of the number of environment samples collected during meta-training.

Results

The meta-testing results for MuJoCo Controls are shown in Figure 5.2. We note that the
Ant-Goal performance for PEARL is referenced from [24], as we were not able to reproduce
their results with their implementation. We suspect that is the reason why CoCOA, which
is build on top of PEARL, would also under-perform on Ant-Goal. For all environments
except Ant-Goal, our method achieves similar or better meta-testing performance than the
baselines. The significant performance gap between the SAC-based methods and the on-
policy MAML and RL2 highlights the importance of off-policy RL for sample efficiency.

We are surprised by the performance of our oracle-SAC baseline. In 4 out of 6 environ-
ments, oracle-SAC performs similarly or worse than PEARL and CoCOA. We hypothesize
that the poor Walker-2D-Rand-Params performance of oracle-SAC relative to PEARL and
CoCOA is attributed to the high dimensionality of the hand-crafted task embedding (67 di-
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Figure 5.2: MuJoCo Controls benchmark: Meta-test average returns vs. environment
samples collected during meta-training. Our method performs comparably or better than
previous meta-RL methods on 5 of the 6 environments. The performance of PEARL on
Ant-Goal was reported by [24], but we are not able to reproduce the results.

mensions vs. 5 dimensions for a learned embedding), where each dimension corresponds to a
random system parameter. This highlights the importance of constraining task embeddings
with an information bottleneck such that the policy receives only the most important task
information.

The underwhelming performance of oracle-SAC suggests that there is not much room
for improvement in representation learning in meta-RL. Two out of the six environments
are binary walking tasks which are relatively trivial. Walker and humanoid are particular
difficult agents to control, even for single-task benchmarks. We hypothesize that policy
optimization is the performance bottleneck for these environments,
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Figure 5.3: Examples of Metaworld environments simulated in MuJoCo. All environments
share the same table-top setting and Sawyer robotic arm.

5.3 Setup and Results - Metaworld

Environment Setup

Metaworld consists of a family of object manipulation tasks that all share the same robot
arm on a table-top setup, shown in Figure 5.3. The robot arm is a 7-DOF Sawyer robot
that is simulated via MuJoCo, with the action space corresponding to the velocity of the 3D
end-effector and the control of the gripper.

We report results on 30 environments from this benchmark, ranging from opening a door
at random positions to placing a puck onto randomly located shelves. A task for a particular
environment corresponds to a random initial object and goal positions.

Evaluation

We follow the same evaluation procedures used for MuJoCo Control. Methods are allowed
10 exploration trajectories per task for adaptation. All of the tasks have horizon 200. Each
environment has 50 meta-training tasks and 10 held out meta-testing tasks. We limit the
number of meta-training environment samples to 2.5 million timesteps, as we saw marginal
performance gains after this threshold.

Results

We evaluate our method against the baselines on 30 tasks and report it in Table 5.1. CoCOA
achieves the highest average test-time return in 15 out of 30 environments. When comparing
against PEARL, the base algorithm, our method outperforms it in 20 out of 30. We found
RL2’s performance to be surprising in that unlike in MuJoCo Controls, RL2 outperforms
the other methods on a substantial amount of environments. On-policy methods typically
suffer from sample efficiency but benefit from stability.

Training curves for Reach, Push, and Pick-Place environments are shown in Figure 5.4.
We also include the learning curves for the oracle baseline. We found CoCOA to be some-
where between PEARL and oracle-SAC and note that the gap between oracle-SAC and
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Figure 5.4: Metaworld Reach, Push, Pick-place environments: These environments
are the standard robot manipulation tasks that have been modified for the Metaworld bench-
mark. Plotted are meta-test average returns vs. environment samples collected during
meta-training. CoCOA performs better than previous meta-RL methods on all three of the
environments.

PEARL is significantly larger in Metaworld than in MuJoCo Controls. We argue that the
joint controls in MuJoCo Controls are harder to learn than the end effector controls in Meta-
world benchmark. On the other hand, the reward functions in MetaWorld are more complex
than those in MuJoCo Controls. Since our method focuses on learning task representations,
we see more improvements on Metaworld than on MuJoCo Control.

These findings seem to support the hypothesis that meta-learning task can be attributed
to two challenges: (1) the actual dynamics of task at hand (policy optimization) and (2)
learning to distinguish tasks (representation learning).

Ablations

We include an ablation on the importance of similarity measure for probabilistic task em-
beddings. Table 5.2 compares the meta-test time performance betweeen versions of Co-
COA trained with the Bhattacharyya-based similarity measure against bilinear inner prod-
uct sim(q, k) = qTWk, which [12, 16, 22] found to outperform normalized cosine similarity.
The projection matrix W is a learned parameter.
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Environment MAML RL2 PEARL CoCOA (ours)
Sweep 2391.0 19596.5 3948.6 7896.7
Sweep-into 8564.3 33741.4 26129.5 5025.0
Push-back -30.8 47883.2 69111.3 73401.0
Dial-turn 12408.9 27538.7 4661.1 53383.6
Coffee-button 11096.7 122752.1 2504.1 -87.1
Assembly 3238.0 -13.8 -40.8 122.4
Pick-out-of-hole -40.2 -31.0 -18.3 -17.8
Shelf-place -31.9 -20.4 14010.4 456.6
Handle-press-side 6870.8 71913.6 11824.3 -83.0
Plate-slide 5007.6 37721.4 38278.6 71191.4
Button-press-wall 22614.0 181956.3 -83.3 235.8
Handle-pull 6109.3 169778.4 2496.2 -76.0
Plate-slide-back-side 573.9 30637.0 13665.2 3019.6
Drawer-close 680.1 23054.6 48095.5 66591.6
Reach 43680.4 84190.4 90500.4 142177.1
Reach-wall 45484.4 108727.8 164820.7 196282.0
Push 6810.2 21780.1 45466.1 118123.4
Pick-place-wall -34.7 699.4 11483.9 54632.4
Pick-place 2418.4 -23.1 1881.9 30804.1
Peg-unplug-side 10368.6 111051.1 230571.66 202572.6
Window-open 5464.3 15353.5 -98.6 -11499.7
Door-close 962.3 46638.2 6643.0 1824.5
Hand-insert 64530.1 208022.1 325252.1 333845.5
Door-lock 688.2 58862.6 152948.8 217496.0
Bin-picking -47.4 -46.2 44.9 248809.9
Soccer 5636.3 31799.6 38138.9 153006.8
Push-wall 3262.0 7537.0 66786.9 112551.1
Coffee-pull -117.0 5389.7 64322.8 58043.2
Button-press-topdown-wall -74.6 280400.5 -92.3 -75.4
Faucet-close -124.4 36485.7 4180.0 8600.5

Table 5.1: Metaworld Benchmark: Meta-test average returns achieved at 2.5 million
time-steps. CoCOA performs better than previous meta-RL methods on all 15 out of 30
environments. Compared to its base algorithm PEARL, our method achieves higher meta-
test returns on 20 out of 30 environments.
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Environment Bhattacharyya Bilinear
Button-press-topdown-wall -75.4 2149.5
Coffee-pull 58043.2 56147.6
Dial-turn 38541.5 23214.1
Door-close 6059.8 5266.7
Faucet-close 8600.5 7183.0
Pick-out-of-hole -18.1 -18.6
Plate-slide-back-side 16557.1 10898.8
Push-wall 112551.1 64173.2
Soccer 153006.8 108311.7
Window-open 1434.7 4996.7

Table 5.2: Similarity measure ablation experiment. Meta-test average returns achieved
at 2.5 million time-steps on 10 Metaworld environments. Our method with Bhattacharyya
distance outperforms another version with bilinear product on 8 out of 10 environments.
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Chapter 6

Conclusion

In this work, we presented CoCOA, contrastive learning for context-based off-policy actor
critic. Our method involves building a framework for contrastive learning of task repre-
sentations in meta-RL, which when built on top of an existing context-based method can
significantly improve meta-testing performance and sample efficiency. We formulate the con-
trastive auxiliary task as a trajectory identification task, where positive query-key pairs are
data augmentations of the same trajectory. The similarity between keys and queries are
based on the overlap between the normal distributions that they represent. Although we
demonstrate through our experiments that CoCOA can outperform existing methods on a
diverse set of benchmark environments, methods like RL2 show better generalization on some
environments due to the relative stability of on-policy algorithms. A promising direction for
future work is to adapt the contrastive learning framework to on-policy methods.
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