Neural Scene Representations for View Synthesis

Benjamin Mildenhall

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-223
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-223.html

December 18, 2020




Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Neural Scene Representations for View Synthesis

by

Benjamin Joseph Mildenhall

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Assistant Professor Ren Ng, Chair

Professor Alexei Efros
Professor Martin Banks

Fall 2020



Neural Scene Representations for View Synthesis

Copyright 2020
by
Benjamin Joseph Mildenhall



Abstract
Neural Scene Representations for View Synthesis
by
Benjamin Joseph Mildenhall
Doctor of Philosophy in Computer Science
University of California, Berkeley

Assistant Professor Ren Ng, Chair

View synthesis is the problem of using a given set of input images to render a scene from
new points of view. Recent approaches have combined deep learning and volume rendering
to achieve photorealistic image quality. However, these methods rely on a dense 3D grid
representation that only allows for a small amount of local camera movement and scales
poorly to higher resolutions.

In this dissertation, we present a new approach to view synthesis based on neural radiance
fields, an efficient way to represent a scene as a continuous function parameterized by the
weights of a neural network. In contrast to using a feed-forward neural network to predict
scene properties from a small number of inputs, a neural radiance field can be directly
optimized to globally reconstruct a scene from tens or hundreds of input images and thus
achieve high quality novel view synthesis over a large camera baseline.

The key to enabling high fidelity reconstruction of a low-dimensional signal using a neural
network is a high frequency mapping of the input coordinates into a higher-dimensional
space. We explain the connection between this mapping and the neural tangent kernel, and
show how manipulating the frequency spectrum of the mapping provides control over the
network’s interpolation behavior between supervision points.
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Chapter 1

Introduction

Modern computer graphics techniques can be used to render images that are virtually in-
distinguishable from reality, given a sufficiently detailed 3D scene model. People typically
imagine computer graphics and visual effects being used to conjure up dramatic explosions
or futuristic worlds, but these technologies are more often deployed to imperceptibly add or
modify objects, actors, backdrops, or even entire 3D environments in order to simplify the
process of creating films, TV shows, advertisements, and so on.

Though the rendering process mapping from a virtual scene to an output image is entirely
automated, creating these underlying 3D assets requires an immense amount of human
labor; even a highly skilled digital artist would take hundreds of hours using sophisticated
3D modeling software to design, for example, a single realistic scene of a busy city street
populated with a variety of buildings, cars, and people.

On the other hand, anyone with a camera can walk out onto a city street and capture
a detailed, photorealistic image in the blink of an eye. Thanks to the ubiquity of modern
smartphone cameras, humanity now produces an overwhelming deluge of photographs—over
45,000 per second in the year 2020 [43]. How can we exploit the ease of taking high quality 2D
images to automate the capture of realistic real-world scenes, bypassing the labor-intensive
process of designing detailed 3D models by hand?

1.1 The problem of view synthesis

In this dissertation, we address this question through the lens of view synthesis: given a set
of photographs of a scene, how can we generate new images of that scene from previously
unobserved viewpoints? This would be equivalent to recreating a digital version of the scene
and moving the camera while leaving the lighting, objects, materials, etc. unchanged. A
perfect view synthesis algorithm could transport a user wearing a virtual reality headset into
another place entirely, allowing them to move their head freely within a fixed region of space,
as well as enabling many other artistic, scientific, and commercial applications.

This problem setting is quite specific; it does not guarantee accurate recovery of 3D
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geometry, disentangle material and lighting properties, or allow for moving objects. However,

we posit that view synthesis is a “least common denominator” for these broader problems in

inverse graphics: none of them can be tackled without a functioning view synthesis algorithm.
Any system for view synthesis must address the following questions:

e Representation: How will the underlying scene be represented?
e Renderer: How will new views of the scene be rendered from this representation?
e Reconstruction: How will this representation be recovered from the given input images?

Decades of computer graphics research have been spent investigating different represen-
tations and renderers for many varied use cases and computational budgets. View synthesis
adds the additional constraint that it must be possible to devise an algorithm that recovers
the underlying scene representation from images alone.

1.2 Considerations when designing an algorithm

When examining different view synthesis methods, certain design choices arise again and
again. The first tradeoff we describe concerns local interpolation between input images
versus global reconstruction of a full scene model, which is largely a matter of runtime
requirements, available computational resources, and input data quality and may potentially
never be fully resolved. The issues regarding surface versus volume rendering and feed-
forward versus optimization-based pipelines are most relevant in the context of the recent
rise of deep learning methods relying on fully differentiable rendering pipelines, which have
made great strides toward photorealistic results on complex real-world scenes over the past
five years.

1.2.1 Local interpolation vs. global reconstruction

This question represents a tension between two ideas: rendering an output view by blending
patches of pixels taken directly from nearby input images can yield highly realistic results
for a single frame, but rendering outputs using a global scene model reconstructed from
all input images produces more temporally coherent results when smoothly changing the
output viewpoint. Local interpolation relies on having a high sampling rate of input views
(tightly packed cameras), while global reconstruction may require fewer views but rely on a
representation that implies stronger priors on the scene content. Figure 1.1 illustrates where
many existing view synthesis methods fall along this continuum.

Standard light field interpolation [35, 64] is the most basic view synthesis algorithm,
making very few assumptions about the captured scene’s appearance. This method treats
the input views as discrete samples from the four-dimensional light field of all rays viewing
the scene, thus allowing for a standard signal processing approach to reconstruction. When
the input image positions lie on a regular 2D grid, it is possible to derive a Nyquist sampling
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Figure 1.1: Spectrum of view synthesis methods from local interpolation between input
images to global reconstruction of a full scene model.
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bound that guarantees perfect reconstruction when the input cameras are spaced sufficiently
close together [12]. This bound can be relaxed if additional depth information is provided or
estimated. Some recent methods use deep learning to predict a depth value for every pixel in
the rendered output and interpolate between the corresponding rays from neighboring input
views [29, 48]; other methods generate a locally-valid scene representation corresponding to
each input image that can be used to render nearby views, then interpolate between different
local reconstructions as the novel view pose changes [83, 95].

A common compromise between local and global approaches is to reconstruct an inter-
mediate global “proxy” (usually a triangle mesh) that is used to select pixels from the input
images, which are then blended to create the final rendered output. The blending step can
be performed using hand-designed heuristics for speed and simplicity [11, 24, 91] or by deep
networks for better image quality [39]. Most of these methods use a traditional structure-
from-motion and dense multivew stereo reconstruction pipeline (such as COLMAP [103]) to
generate the global proxy geometry, which can limit their usefulness in challenging scenes
with complex geometry or reflective surfaces.

On the other end of the spectrum lie methods that create a single global representation of
the scene and do not rely on the input images at all to render new views. In order to achieve
photorealism, these methods typically use a custom representation and renderer, rather than
generating a reconstruction that works directly with a typical graphics pipeline (such as a
triangle mesh with corresponding texture and material maps). One historical example is the
surface light field method, which computes a compressed representation of the viewpoint-
varying color for each vertex in a triangle mesh [128]. This global approach has become
much more popular in the era of deep learning, with scene representations designed to be
optimized via gradient descent through differentiable rendering pipelines. In this context,
deep networks may be used to help reconstruct [73] or render [109] the scene, or even directly
serve as the underlying scene representation [82, 86, 110].

1.2.2 Surface vs. volume rendering in differentiable pipelines

Within the last five years, automatic differentiation frameworks such as Tensorflow [76] and
PyTorch [94] have enabled an explosion of work on differentiable rendering systems in which
it is possible to take the gradient of the rendered output image with respect to various scene
representation parameters, such as geometry or surface colors. Differentiability is important
because it allows these rendering methods to be directly integrated into end-to-end deep
learning pipelines that are supervised via gradient descent on a rendered image loss.

In the context of differentiable rendering, we can make a distinction between surface and
volume rendering methods (Figure 1.2). A surface rendering method assumes that 3D space
is empty except for an enumerated set of opaque primitives (triangles, points, depth maps,
etc.). A ray either does or does not intersect any given primitive; the notion of “visibility”
is discrete. In order to produce a differentiable surface renderer, one must appeal to the
fact that each camera pixel actually represents an integral over a bundle of rays, weighted
by a filtering function [59], or approximate the gradients by softening the ray-primitive
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primitive it intersects. the scene.

Figure 1.2: Surface vs. volume rendering.

intersection term to be continuous rather than binary [18, 71]. Additionally, optimizing a
surface-based representation using gradients requires “physically” moving primitive objects
between their initial and final locations—imagine squeezing and stretching a mesh of points
connected by springs to contort it into a desired shape. It is also not possible to differentiably
modify the number or connective topology of surface primitives in the scene.

In contrast, a volume rendering method assumes that 3D space is densely occupied by a
“participating medium” which has some statistical chance of interacting with a traced ray
at any point, yielding a continuous, probabilistic notion of visibility. Volume rendering is
naturally differentiable and simple to implement in any array-based deep learning frame-
work [73, 121, 140]. Each point in space can modify its own visibility independently of
all other points—imagine smoke clouds appearing and disappearing to form object shapes.
However, encoding a scene made up of hard surfaces by using a discrete 3D voxel grid is
extremely inefficient, since most storage will be devoted to representing empty space. In
traditional computer graphics this is not an issue, since an acceleration structure such as an
octree can make storing and tracing rays through a mostly-empty volume just as efficient as
using a surface representation like a triangle mesh [20]. However, adding such an acceleration
structure on top of a 3D volume grid requires making binary decisions about which regions
are empty and thus cannot be used in the context of differentiable rendering.

1.2.3 Feed-forward prediction vs. direct optimization

Typical deep learning approaches follow a template of feed-forward prediction. For each
new problem instance, some input data is fed into a deep network, which produces an
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(a) Feed-forward prediction. A small (b) Direct optimization. The scene represen-
number of input images are fed into a deep  tation parameters are directly optimized using all
network that predicts a corresponding scene  input images of a single scene (again, by taking
representation. The network must be trained — gradient steps on a differentiable rendering loss).
over many example input images of different  No external dataset is needed; however, the opti-
scenes (typically supervised by a loss com-  mization process is likely to be much slower than
paring a rendered output to another held-out  a feed-forward prediction.

image of the same scene).

Figure 1.3: Feed-forward prediction vs. direct optimization.

output prediction. Given a training dataset consisting of example pairs of input data and
corresponding labels, the network is optimized by gradient descent over a loss that encourages
its output to match these ground truth labels. In the context of view synthesis, the input data
is a set of images of a scene and their camera poses, and the label is usually another held-out
image of the same scene. The network outputs parameters for some scene representation,
which is used to render an image that is compared to the held-out ground truth by some loss
function. If the rendering process is differentiable, the chain rule can be used to propagate
gradients back through the whole pipeline, from the loss to the network’s parameters.

Feed-forward view synthesis methods derives their power from training over a large
dataset of examples, extracting priors that allow them to generalize to arbitrary new scenes.
Though the training phase may take multiple days, at inference time the network can usually
be applied in a matter of seconds or minutes. However, memory and algorithmic constraints
restrict the number of input images these networks can process (typically 2-5 input im-
ages [83, 140], or up to 12 in a carefully engineered implementation [28]). Additionally,
generating training data requires either creating and rendering images of a large library of
high quality synthetic 3D scenes or taking thousands of real-world images by hand.

Directly optimizing scene representation parameters requires no external training data
and can result in the highest quality global reconstruction when many input images are
available for each scene (tens to hundreds). In this context, we use gradient descent to op-
timize the scene representation parameters for a single scene such that it best reproduces
all provided input images according to a differentiable rendering loss. This dissertation will
present neural radiance fields, the first scene representation capable of producing photoreal-
istic results at high resolutions using direct optimization.
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1.3 Dissertation overview

In this dissertation, we describe two contrasting view synthesis algorithms. The first builds
directly on prior learning-based methods, working in a local interpolation framework and
using a discrete voxel grid scene representation. The second approaches the problem in a new
way, demonstrating for the first time that it is possible to achieve photorealistic results using
a memory-efficient neural scene representation and without requiring any external training
dataset. Developing this scene representation requires a specific insight into the workings of
fully-connected neural networks, which is presented between the two view synthesis methods.

e Chapter 2 describes Local Light Field Fusion (LLFF), a prototypical feed-forward
deep learning method trained over a large dataset.! Given a new scene at test time,
LLFF builds a locally valid reconstruction for each input image, then interpolates
between nearby reconstructions to generate views from new camera poses. We show
empirically that this method effectively lowers the required view sampling rate for light
field interpolation by a factor of 642. The local reconstructions can be generated within
minutes for each new scene, and novel views can be rendered at real-time framerates.

However, each local reconstruction must be predicted and stored as a dense 3D voxel
grid, resulting in poor memory scaling as the number of inputs or image resolution
increases. Additionally, even a 642x reduction in sampling is not sufficient to make
very wide baseline captures tractable (e.g., a 360° capture of one object from all direc-
tions would still require thousands of views). These limitations motivate us to seek a
memory-efficient global scene representation that can be directly optimized via gradient
descent to reproduce many input views captured over a wide baseline.

e Chapter 3 explains how neural networks can act as this memory-efficient representa-
tion.? We can use a fully-connected neural network as a substitute for a multidimen-
sional array by training the network to map from array coordinate inputs to array value
outputs. However, standard networks have an inherent spectral bias toward learning
low-frequency components of a signal exponentially faster than higher-frequency com-
ponents, making it infeasible for them to represent complex natural signals such as 2D
images or 3D shapes.

We find that it is possible to overcome this spectral bias passing the input coordinates
through many randomly sampled Fourier basis functions before putting them into
the network, leveraging recent theoretical work connecting neural networks and kernel
regression [45, 5] to show that certain parameters of this Fourier feature mapping allow
users to directly control the rate at which the network learns different frequency bands
of a signal. This insight transforms fully-connected networks into a highly efficient
alternative to discrete arrays for representing complicated signals in three dimensions
and above.

!Based on work originally published in SIGGRAPH 2019 [83].
2Based on work originally published in NeurIPS 2020 [119)].
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e Chapter 4 presents neural radiance fields (NeRF), a continuous 5D scene representa-
tion encoded in a fully-connected neural network that can be directly optimized (using
images of a single input scene) to render high-quality novel views.?> This neural scene
representation is trivially differentiable, simple to implement, and over one hundred
times more compact than an equivalent dense grid, enabling the first view synthesis
algorithm capable of using a globally reconstructed model to produce photorealistic
high resolution results over a wide camera baseline.

e Chapter 5 concludes and discusses potential avenues for future work.

3Based on work originally published in ECCV 2020 [82].



Chapter 2

View Synthesis as Local Interpolation:
Local Light Field Fusion

This chapter presents a view synthesis algorithm based on light field interpolation in a
plenoptic sampling framework. We use a feed-forward neural network to promote each input
image into a “local light field” representation capable of rendering nearby views (moving
up to a certain pixel disparity away from the image’s camera position). This allows us to
reduce the required input view sampling rate well below the Nyquist limit for standard light
field interpolation. This reudction is critical since Nyquist rate sampling is intractable for
scenes with content at nearby distances, as the Nyquist limit increases linearly with the
reciprocal of the closest scene depth. For example, for a scene with a subject at a depth of
0.5 meters captured by a mobile phone camera with a typical 64° field of view and rendered
at 1 megapixel resolution, the required sampling rate is an intractable 2.5 million images per
square meter. Hence, we must move towards view synthesis algorithms that leverage scene
priors to effectively predict the missing views.

Our view synthesis approach is grounded within a plenoptic sampling framework and
can precisely prescribe how densely a user must capture a given scene for reliable rendering
performance. Our method is conceptually simple and consists of two main stages. We first
use a deep network to promote each source view to a layered representation of the scene that
can render a limited range of views, advancing recent work on the multiplane image (MPI)
representation [140]. We then synthesize novel views by blending renderings from adjacent
layered representations.

Our theoretical analysis shows that the number of input views required by our method
decreases quadratically with the number of planes we predict for each layered scene repre-
sentation, up to limits set by the camera field of view. We empirically validate our analysis
and apply it in practice to render novel views with the same perceptual quality as Nyquist
view sampling while using up to 642 ~ 4000x fewer images.

It is impossible to break the Nyquist limit with full generality, but we show that it
is possible to achieve Nyquist level performance with greatly reduced view sampling by
specializing to the subset of natural scenes. This capability is primarily due to our deep
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Figure 2.1: We present a simple and reliable method for view synthesis from a set of input
images captured by a handheld camera in an irregular grid pattern. We theoretically and
empirically demonstrate that our method enjoys a prescriptive sampling rate that requires
4000x fewer input views than Nyquist for high-fidelity view synthesis of natural scenes.
Specifically, we show that this rate can be interpreted as a requirement on the pixel-space
disparity of the closest object to the camera between captured views (Section 2.2). After
capture, we expand all sampled views into layered representations that can render high-
quality local light fields. We then blend together renderings from adjacent local light fields
to synthesize dense paths of new views (Section 2.3). Our rendering consists of simple
and fast computations (homography warping and alpha compositing) that can generate new
views in real-time.

learning pipeline, which is trained on renderings of natural scenes to estimate high quality
layered scene representations that produce locally consistent light fields.
In summary, our key contributions are:

1. An extension of plenoptic sampling theory that directly specifies how users should
sample input images for reliable high quality view synthesis with our method.

2. A practical and robust solution for capturing and rendering complex real world scenes
for virtual exploration.

3. A demonstration that carefully crafted deep learning pipelines using local layered scene
representations achieve state-of-the-art view synthesis results.

We extensively validate our derived prescriptive view sampling requirements and demon-
strate that our algorithm quantitatively outperforms traditional light field reconstruction
methods as well as state-of-the-art view interpolation algorithms across a range of sub-
Nyquist view sampling rates. We highlight the practicality of our method by developing an
augmented reality app that implements our derived sampling guidelines to help users capture
input images that produce reliably high-quality renderings with our algorithm. Additionally,
we develop mobile and desktop viewer apps that render novel views from our predicted lay-
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ered representations in real-time. Finally, we qualitatively demonstrate that our algorithm
reliably produces state-of-the-art results across a diverse set of complex real-world scenes.

2.1 Related Work

Image-based rendering (IBR) is the fundamental computer graphics problem of rendering
novel views of objects and scenes from sampled views. We find that it is useful to categorize
IBR algorithms by the extent to which they use explicit scene geometry, as done by Shum
and Kang [107].

2.1.1 Plenoptic Sampling and Reconstruction

Light field rendering [64] eschews any geometric reasoning and simply samples images on a
regular grid so that new views can be rendered as slices of the sampled light field. Lumigraph
rendering [35] showed that using approximate scene geometry can ameliorate artifacts due
to undersampled or irregularly sampled views.

The plenoptic sampling framework [12] analyzes light field rendering using signal pro-
cessing techniques and shows that the Nyquist view sampling rate for light fields depends on
the minimum and maximum scene depths. Furthermore, they discuss how the Nyquist view
sampling rate can be lowered with more knowledge of scene geometry. Zhang and Chen [136]
extend this analysis to show how non-Lambertian and occlusion effects increase the spectral
support of a light field, and also propose more general view sampling lattice patterns.

Rendering algorithms based on plenoptic sampling enjoy the significant benefit of pre-
scriptive sampling; given a new scene, it is easy to compute the required view sampling
density to enable high-quality renderings. Many modern light field acquisition systems have
been designed based on these principles, including large-scale camera systems [127, 91] and
a mobile phone app [22].

We posit that prescriptive sampling is necessary for practical and useful IBR algorithms,
and we extend prior theory on plenoptic sampling to show that our deep-learning-based view
synthesis strategy can significantly decrease the dense sampling requirements of traditional
light field rendering. Our novel view synthesis pipeline can also be used in future light field
acquisition hardware systems to reduce the number of required cameras.

2.1.2 Geometry-Based View Synthesis

Many IBR algorithms attempt to leverage explicit scene geometry to synthesize new views
from arbitrary unstructured sets of input views. These approaches can be meaningfully
categorized as either using global or local geometry.

Techniques that use global geometry generally compute a single global mesh from a set
of unstructured input images. Simply texture mapping this global mesh can be effective for
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constrained situations such as panoramic viewing with mostly rotational and little transla-
tional viewer movement [37, 38|, but this strategy can only simulate Lambertian materials.
Surface light fields [128] are able to render convincing view-dependent effects, but they re-
quire accurate geometry from dense range scans and hundreds of captured images to sample
the outgoing radiance at points on an object’s surface.

Many free-viewpoint IBR algorithms are based upon a strategy of locally texture map-
ping a global mesh. The influential view-dependent texture mapping algorithm [23] proposed
an approach to render novel views by blending nearby captured views that have been re-
projected using a global mesh. Work on Unstructured Lumigraph Rendering [11] focused
on computing per-pixel blending weights for reprojected images and proposed a heuristic
algorithm that satisfied key properties for high-quality rendering. Unfortunately, it is very
difficult to estimate high-quality meshes whose geometric boundaries align well with edges
in images, and IBR algorithms based on global geometry typically suffer from significant
artifacts. State-of-the-art algorithms [40, 39] attempt to remedy this shortcoming with com-
plicated pipelines that involve both global mesh and local depth map estimation. However, it
is difficult to precisely define view sampling requirements for robust mesh estimation, and the
mesh estimation procedure typically takes multiple hours, making this strategy impractical
for casual content capture scenarios.

IBR algorithms that use local geometry [15, 17, 55, 79, 90] avoid difficult and expen-
sive global mesh estimation. Instead, they typically compute detailed local geometry for
each input image and render novel views by reprojecting and blending nearby input images.
This strategy has also been extended to simulate non-Lambertian reflectance by using a
second depth layer [108]. The state-of-the-art Soft3D algorithm [95] blends between repro-
jected local layered representations to render novel views, which is conceptually similar to
our strategy. However, Soft3D computes each local layered representation by aggregating
heuristic measures of depth uncertainty over a large neighborhood of views. We instead train
a deep learning pipeline end-to-end to optimize novel view quality by predicting each of our
local layered representations from a much smaller neighborhood of views. Furthermore, we
directly pose our algorithm within a plenoptic sampling framework, and our analysis directly
applies to the Soft3D algorithm as well. We demonstrate that the high quality of our deep
learning predicted local scene representations allows us to synthesize superior renderings
without requiring the aggregation of geometry estimates over large view neighborhoods, as
done in Soft3D. This is especially advantageous for rendering non-Lambertian effects be-
cause the apparent depth of specularities generally varies with the observation viewpoint,
so smoothing the estimated geometry over large viewpoint neighborhoods prevents accurate
rendering of these effects.

Other IBR algorithms [2] have attempted to be more robust to incorrect camera poses
or scene motion by interpolating views using more general 2D optical flow instead of 1D
depth. Local pixel shifts are also encoded in the phase information, and algorithms have
exploited this to extrapolate views from micro-baseline stereo pairs [26, 52, 138] without
explicit flow computation. However, these methods require extremely close input views and
are not suited for large baseline view interpolation.



CHAPTER 2. LOCAL LIGHT FIELD FUSION 13

Promote to MPI
——

N
NN\

Figure 2.2: We promote each input view sample to an MPI scene representation [140],
consisting of D RGBa planes at regularly sampled disparities within the input view’s camera
frustum. Each MPI can render continuously-valued novel views within a local neighborhood
by alpha compositing color along rays into the novel view’s camera.

2.1.3 Deep Learning for View Synthesis

Other recent methods have trained deep learning pipelines end-to-end for view synthesis.
This includes recent angular superresolution methods [129, 134] that interpolate dense views
within a light field camera’s aperture but cannot handle sparser input view sampling since
they do not model scene geometry. The DeepStereo algorithm [29], deep learning based light
field camera view interpolation [48], and single view local light field synthesis [114] each use
a deep network to predict depth separately for every novel view. However, predicting local
geometry separately for each view results in inconsistent renderings across smoothly-varying
viewpoints.

Finally, Zhou et al. [140] introduce a deep learning pipeline to predict an MPI from
a narrow baseline stereo pair for the task of stereo magnification. As opposed to previous
deep learning strategies for view synthesis, this approach enforces consistency by using the
same predicted scene representation to render all novel views. We adopt MPIs as our lo-
cal light field representation (Figure 2.2) and introduce specific technical improvements to
enable larger-baseline view interpolation from many input views, in contrast to local view
extrapolation from a stereo pair using a single MPI. We predict multiple MPIs, one for each
input view, and train our system end-to-end through a blending procedure to optimize the
resulting MPIs to be used in concert for rendering output views. We propose a 3D convo-
lutional neural network (CNN) architecture that dynamically adjusts the number of depth
planes based on the input view sampling rate, rather than a 2D CNN with a fixed number
of output planes. Additionally, we show that state-of-the-art performance requires only an
easily-generated synthetic dataset and a small real fine-tuning dataset, rather than a large
real dataset. This allows us to generate training data captured on 2D irregular grids similar
to handheld view sampling patterns, while the YouTube dataset in Zhou et al. [140] is
restricted to 1D camera paths.
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Table 2.1: Reference for symbols used in Section 2.2.

Symbol | Definition

Number of depth planes
Camera image width (pixels)
Camera focal length (meters)

D
W
f
A, Pixel size (meters)
AU
KZE
BIE

Baseline between cameras (meters)

Highest spatial frequency in sampled light field
Highest spatial frequency in continuous light field
Zmin Closest scene depth (meters)

Zmax | Farthest scene depth (meters)

dmax | Maximum disparity between views (pixels)

2.2 Theoretical Plenoptic Sampling Analysis

The overall strategy of our method is to use a deep learning pipeline to promote each sampled
view to a layered scene representation with D depth layers, and render novel views by
blending between renderings from neighboring scene representations. In this section, we show
that the full set of scene representations predicted by our deep network can be interpreted as
a specific form of light field sampling. We extend prior work on plenoptic sampling to show
that our strategy can theoretically reduce the number of required sampled views by a factor
of D? compared to the number required by traditional Nyquist view sampling. Section 2.5.1
empirically shows that we are able to take advantage of this bound to reduce the number of
required views by up to 64% ~ 4000 x.

In the following analysis, we consider a “flatland” light field with a single spatial dimen-
sion x and view dimension u for notational clarity, but note that all findings apply to general
light fields with two spatial and two view dimensions.

2.2.1 Nyquist Rate View Sampling

Initial work on plenoptic sampling [12] derived that the Fourier support of a light field, ignor-
ing occlusion and non-Lambertian effects, lies within a double-wedge shape whose bounds are
set by the minimum and maximum scene depths zyi, and 2.y, as visualized in Figure 2.3.
Zhang and Chen [136] showed that occlusions expand the light field’s Fourier support be-
cause an occluder convolves the spectrum of the light field due to farther scene content with
a kernel that lies on the line corresponding to the occluder’s depth. The light field’s Fourier
support considering occlusions is limited by the effect of the closest occluder convolving the
line corresponding to the furthest scene content, resulting in the parallelogram shape illus-
trated in Figure 2.4a, which can only be packed half as densely as the double-wedge. The
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Figure 2.3: Traditional plenoptic sampling without occlusions, as derived in [12]. (a) The
Fourier support of a light field without occlusions lies within a double-wedge, shown in blue.
Nyquist rate view sampling is set by the double-wedge width, which is determined by the
minimum and maximum scene depths [zyin, Zmax] and the maximum spatial frequency K.
The ideal reconstruction filter is shown in orange. (b) Splitting the light field into D non-
overlapping layers with equal disparity width decreases the Nyquist rate by a factor of D.
(¢) Without occlusions, the full light field spectrum is the sum of the spectra from each layer.

required maximum camera sampling interval A, for a light field with occlusions is:

1

A, <
v QKIf (1/Zmin - 1/Zmax) ’

(2.1)

1
) A,

field, as determined by the highest spatial frequency in the continuous light field B, and the
camera’s spatial resolution A,.

where K, = min (B ) is the highest spatial frequency represented in the sampled light

2.2.2 MPI Scene Representation and Rendering

The MPI scene representation [140] consists of a set of fronto-parallel RGBa planes, evenly
sampled in disparity within a reference camera’s view frustum (see Figure 2.2). We can render
novel views from an MPI at continuously-valued camera poses within a local neighborhood
by alpha compositing the color along rays into the novel view camera using the “over”
operator [96]. This rendering procedure is equivalent to reprojecting each MPI plane onto
the sensor plane of the novel view camera and alpha compositing the MPI planes from back
to front, as observed in early work on volume rendering [58]. An MPI can be considered as
an encoding of a local light field, similar to layered light field displays [125, 126].

2.2.3 View Sampling Rate Reduction

Plenoptic sampling theory [12] additionally shows that decomposing a scene into D depth
ranges and separately sampling the light field within each range allows the camera sampling
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Figure 2.4: We extend traditional plenoptic sampling to consider occlusions when recon-
structing a continuous light field from MPIs. (a) Considering occlusions expands the Fourier
support to a parallelogram (the Fourier support without occlusions is shown in blue and oc-
clusions expand the Fourier support to additionally include the purple region) and doubles
the Nyquist view sampling rate. (b) As in the no-occlusions case, separately reconstructing
the light field for D layers decreases the Nyquist rate by a factor of D. (¢) With occlusions,
the full light field spectrum cannot be reconstructed by summing the individual layer spectra
because the union of their supports is smaller than the support of the full light field spectrum
(a). Instead, we compute the full light field by alpha compositing the individual light field
layers from back to front in the primal domain.

interval to be increased by a factor of D. This is because the spectrum of the light field
emitted by scene content within each depth range lies within a tighter double-wedge that
can be packed D times more tightly than the full scene’s double-wedge spectrum. Therefore,
a tighter reconstruction filter with a different shear can be used for each depth range, as
illustrated in Figure 2.3b. The reconstructed light field, ignoring occlusion effects, is simply
the sum of the reconstructions of all layers, as shown in Figure 2.3c.

However, it is not straightforward to extend this analysis to handle occlusions, because the
union of the Fourier spectra for all depth ranges has a smaller support than the original light
field with occlusions, as visualized in Figure 2.4c. Instead, we observe that reconstructing a
full scene light field from these depth range light fields while respecting occlusions would be
much easier given corresponding per-view opacities, or shield fields [60], for each layer. We
could then easily alpha composite the depth range light fields from back to front to compute
the full scene light field.

Each alpha compositing step increases the Fourier support by convolving the previously-
accumulated light field’s spectrum with the spectrum of the occluding depth layer. As is well
known in signal processing, the convolution of two spectra has a Fourier bandwidth equal to
the sum of the original spectra’s bandwidths. Figure 2.4b illustrates that the width of the
Fourier support parallelogram for each depth range light field, considering occlusions, is:

2K, f (1) 2min — 1/2max) / D, (2.2)

so the resulting reconstructed light field of the full scene will enjoy the full Fourier support
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width.

We apply this analysis to our algorithm by interpreting the predicted MPI layers at each
camera sampling location as view samples of scene content within non-overlapping depth
ranges, and noting that applying the optimal reconstruction filter [12] for each depth range is
equivalent to reprojecting and then blending pre-multiplied RGBa planes from neighboring
MPIs. Our MPI layers differ from layered renderings considered in traditional plenoptic
sampling because we predict opacities in addition to color for each layer, which allows us to
correctly respect occlusions while compositing the depth layer light fields.

In summary, we extend the layered plenoptic sampling framework to correctly handle
occlusions by taking advantage of our predicted opacities, and show that this still allows us
to increase the required camera sampling interval by a factor of D:

< D
‘- ZKxf (1/Zmin - 1/Zmax> ‘

Our framework further differs from classic layered plenoptic sampling in that each MPI
is sampled within a reference camera view frustum with a finite field of view, instead of the
infinite field of view assumed in prior analyses [12, 136]. In order for the MPI prediction
procedure to succeed, every point within the scene’s bounding volume should fall within the
frustums of at least two neighboring sampled views. The required camera sampling interval
A, is then additionally bounded by:

A

(2.3)

Au < WAmein

= T (2.4)

where W is the image width in pixels of each sampled view. The overall camera sampling
interval must satisfy both constraints:

D Ay 2
A, < min ( w mem) )

2K, f (1/2min — 1/ 2max) 2f (2:5)

2.2.4 Image Space Interpretation of View Sampling

It is useful to interpret the required camera sampling rate in terms of the maximum pixel
disparity d., of any scene point between adjacent input views. If we set z,., = 00 to allow
scenes with content up to an infinite depth and additionally set K, = 1/2A, to allow spatial
frequencies up to the maximum representable frequency:

Auf w
— Ay < min (D, — ) . 2.6
szmin = T ( 2 > ( )

Simply put, the maximum disparity of the closest scene point between adjacent views
must be less than min(D, W/2) pixels. When D = 1, this inequality reduces to the Nyquist
bound: a maximum of 1 pixel of disparity between views.
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Figure 2.5: We render novel views as a weighted combination of renderings from neighboring
MPIs, modulated by the corresponding accumulated alphas.

In summary, promoting each view sample to an MPI scene representation with D depth
layers allows us to decrease the required view sampling rate by a factor of D, up to the
required field of view overlap for stereo geometry estimation. Light fields for real 3D scenes
must be sampled in two viewing directions, so this benefit is compounded into a sampling re-
duction of D?. Section 2.5.1 empirically validates that our algorithm’s performance matches
this theoretical analysis. Section 2.6.1 describes how we apply the above theory along with
the empirical performance of our deep learning pipeline to prescribe practical sampling guide-
lines for users.

2.3 Practical View Synthesis by Blending Local Light
Fields

We present a practical and robust method for synthesizing new views from a set of input
images and their camera poses. Our method first uses a CNN to promote each captured
input image to an MPI, then reconstructs novel views by blending renderings from nearby
MPIs. Figures 2.1 and 2.5 visualize this pipeline. We discuss the practical image capture
process enabled by our method in Section 2.6.

2.3.1 MPI Prediction for Local Light Field Expansion

The first step in our pipeline is expanding each sampled view to a local light field using
an MPI scene representation. Our MPI prediction pipeline takes five views as input: the
reference view to be expanded and its four nearest neighbors in 3D space. Each image
is reprojected to D depth planes, sampled linearly in disparity within the reference view
frustum, to form 5 plane sweep volumes (PSVs) of size H x W x D x 3.
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Table 2.2: Our network architecture. k is the kernel size, s the stride, d the kernel dilation,
chns the number of input and output channels for each layer, in and out are the accumu-
lated stride for the input and output of each layer, input denotes the input of each layer
with + meaning concatenation, and layers starting with “nnup” perform 2x nearest neigh-
bor upsampling. All layers except the last are followed by a ReLU nonlinearity and layer
normalization [62]. The final layer outputs 5 channels. One channel is passed through a
sigmoid to generate the output MPI’s alpha channel. The other four (along with an all-zero
channel) are passed through a softmax to get five blending weights for each voxel which are
used to generate the output MPI’s color channels, as described in Section 2.3.1. Restrict-
ing one of the softmax inputs to always be zero makes the function one-to-one rather than
many-to-one.

Layer k s d «chns in out input
convlll 3 1 1 15/8 1 1 PSVs
convli2 3 2 1 8/16 1 2 convl_1
conv21 3 1 1 16/16 2 2 convl 2
conv22 3 2 1 16/32 2 4 conv2_1
conv3.1 3 1 1 32/32 4 4 conv2_2
conv32 3 1 1 32/32 4 4 conv3_1
convd3 3 2 1 32/64 4 8 conv3_2
convd.1 3 1 2 64/64 8 8 conv3_3
convd2 3 1 2 64/64 8 8 conv4_1
convd3 3 1 2 64/64 8 8 conv4 2
nnupb 128/128 8 4 conv4_3 + conv3_3
convb.l 3 1 1 128/32 4 4 nnupd
convb2 3 1 1 32/32 4 4 convH_1
convb3 3 1 1 32/32 4 4 convd_2
nnup6 64/64 4 2 convh3 + conv2.2
conv6.l 3 1 1 64/16 2 2 nnup6
conv62 3 1 1 16/16 2 2 conv6_1
nnup? 32/32 2 1 conv6_2 + convl_2
conv7.l 3 1 1  32/8 1 1 nnup?
conv72 3 1 1 8/8 1 1 conv7_1
conv73 3 1 1 8/6 1 1 conv7_2

Our 3D CNN takes these 5 PSVs as input, concatenated along the channel dimension.
This CNN outputs an opacity « for each MPI coordinate (z,y,d) as well as a set of 5 color
selection weights that sum to 1 at each MPI coordinate. These weights parameterize the RGB
values in the output MPI as a weighted combination of the input PSVs. Intuitively, each
predicted MPI softly “selects” its color values at each MPI coordinate from the pixel colors at
that coordinate in each of the input PSVs. We specifically use this RGB parameterization
instead of the foreground+background parameterization proposed by Zhou et al.  [140]
because their method does not allow an MPI to directly incorporate content occluded from
the reference view but visible in other input views.

Furthermore, we enhance the MPI prediction CNN architecture from the original version
to use 3D convolutional layers instead of the original 2D convolutional layers so that our
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Figure 2.6: An example illustrating the benefits of using accumulated alpha to blend MPI
renderings. We render two MPIs at the same new camera pose. In the top row, we display
the RGB outputs C;; from each MPI as well as the accumulated alphas oy ;, normalized so
that they sum to one at each pixel. In the bottom row, we see that a simple average of
the RGB images C; retains the stretching artifacts from both MPI renderings, whereas the
alpha weighted blending combines only the non-occluded pixels from each input to produce
a clean output C;.

architecture is fully convolutional along the height, width, and depth dimensions. This
enables us to predict MPIs with a variable number of planes D so that we can jointly choose
the view and disparity sampling densities to satisfy Equation 2.6. Table 2.3 validates the
benefit of being able to change the number of MPI planes to correctly match our derived

sampling requirements, enabled by our use of 3D convolutions. Our full network architecture
can be found in Table 2.2.
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2.3.2 Continuous View Reconstruction by Blending

As discussed in Section 2.2, we reconstruct interpolated views as a weighted combination
of renderings from multiple nearby MPIs. This effectively combines our local light field
approximations into a light field with a near plane spanning the extent of the captured input
views and a far plane determined by the field-of-view of the input views. As in standard
light field rendering, this allows for a new view path with unconstrained 3D translation and
rotation within the range of views made up of rays in the light field.

One important detail in our rendering process is that we consider the accumulated alpha
values from each MPI rendering when blending. This allows each MPI rendering to “fill in”
content that is occluded from other camera views.

Our MPI prediction network uses a set of RGB images C; along with their camera poses
pi to produce a set of MPIs M), (one corresponding to each input image). To render a novel
view with pose p; using the predicted MPI My, we homography warp each RGBa MPI plane
into the frame of reference of the target pose p; then alpha composite the warped planes
together from back to front. This produces an RGB image and an alpha image, which we
denote Cy  and oy i, respectively (subscript ¢, k indicating that the output is rendered at pose
pi using the MPI at pose pg).

Since a single MPI alone will not necessarily contain all the content visible from the new
camera pose due to occlusions and field of view issues, we generate the final RGB output C}
by blending rendered RGB images C;j, from multiple MPIs, as depicted in Figure 2.5. We
use scalar blending weights wy, each modulated by the corresponding accumulated alpha
images ay; and normalized so that the resulting rendered image is fully opaque (o = 1):

C, = Zk wt,kat,kot,k' (2'7)

Zk Wt Ol |
For an example where modulating the blending weights by the accumulated alpha values
prevents artifacts in C;, see Figure 2.6. Table 2.3 demonstrates that blending with alpha
gives quantitatively superior results over both using a single MPI and blending multiple MPI
renderings without using the accumulated alpha.

The blending weights w;; can be any sufficiently smooth filter. In the case of data
sampled on a regular grid, we use bilinear interpolation from the four nearest MPIs rather
than the ideal sinc function interpolation for effiency and due to the limited number of
sampled views. For irregularly sampled data, we use the five nearest MPIs and take wy o<
exp (—vL(ps, pr)). Here £(ps, pr) is the L? distance between the translation vectors of poses
p: and pg, and the constant 7 is defined as given focal length f, minimum distance to

Dzmin
the scene zy;,, and number of planes D. (Note that the quantity Zﬂ represents ¢ converted

into units of pixel disparity.) "

Our strategy of blending between neighboring MPIs is particularly effective for render-
ing non-Lambertian effects. For general curved surfaces, the virtual apparent depth of a
specularity changes with the viewpoint [116]. As a result, specularities appear as curves in
epipolar slices of the light field, while diffuse points appear as lines. Each of our predicted



CHAPTER 2. LOCAL LIGHT FIELD FUSION 22

Single MPI

Blended MPIs

) Ground truth
Central image (ground truth)

Figure 2.7: We demonstrate that a collection of MPIs can approximate a highly non-
Lambertian light field. In this synthetic scene, the curved plate reflects the paintings on
the wall, leading to quickly-varying specularities as the camera moves horizontally. This
effect can be observed in the ground truth epipolar plot (bottom right). A single MPI (top
right) can only place a specular reflection at a single virtual depth, but blending render-
ings from multiple MPIs (middle right) provides a much better approximation to the true
light field. In this example, we blend between MPIs evenly distributed at every 32 pixels of
disparity along a horizontal path, indicated by the dashed lines in the epipolar plot.
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MPIs can represent a specularity for a local range of views by placing the specularity at a
single virtual depth. Figure 2.7 illustrates how our rendering procedure effectively models
a specularity’s curve in the light field by blending locally linear approximations, as opposed
to the limited extrapolation provided by a single MPI.

2.4 Training Our View Synthesis Pipeline

2.4.1 Training Dataset

We train our view synthesis pipeline using both renderings and real images of natural scenes.
Using synthetic training data crucially enables us to easily generate a large dataset with input
view and scene depth distributions similar to those we expect at test time, while using real
data helps us generalize to real-world lighting and reflectance effects as well as small errors
in pose estimation.

Our synthetic training set consists of images rendered from the SUNCG [111] and Unre-
alCV [98] datasets. SUNCG contains 45,000 simplistic house and room environments with
texture mapped surfaces and low geometric complexity. UnrealCV contains only a few large
scale environments, but they are modeled and rendered with extreme detail, providing ge-
ometric complexity, texture variety, and non-Lambertian reflectance effects. We generate
views for each synthetic training instance by first randomly sampling a target baseline for
the inputs (up to 128 pixels of disparity), then randomly perturbing the camera pose in 3D
to approximately match this baseline.

Our real training dataset consists of 24 scenes from our handheld cellphone captures,
with 20-30 images each. We use the COLMAP structure from motion [103] implementation
to compute poses for our real images.

2.4.2 Training Procedure

For each training step, we sample two sets of 5 views each to use as inputs, and a single
held-out target view for supervision. We first use the MPI prediction network to predict two
MPIs, one from each set of 5 inputs. Next, we render the target novel view from both MPIs
and blend these renderings using the accumulated alpha values, as described in Equation 2.7.

The training loss is simply the image reconstruction loss for the rendered novel view.
We follow the original work on MPI prediction [140] and use a VGG network activation
perceptual loss as implemented by Chen and Koltun [16], which has been consistently shown
to outperform standard image reconstruction losses [44, 137]. We are able to supervise only
the final blended rendering because both our fixed rendering and blending functions are
differentiable. Learning through this blending step trains our MPI prediction network to
leave alpha “holes” in uncertain regions for each MPI, in the expectation that this content
will be correctly rendered by another neighboring MPI, as illustrated by Figure 2.6.
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Figure 2.8: We plot the performance of our method (with varying number of planes D =
8,16, 32,64, and 128) compared to light field interpolation for different input view sampling
rates (denoted by maximum scene disparity dy,., between adjacent input views). Our method
can achieve the same perceptual quality as LFI with Nyquist rate sampling (black dotted
line) as long as the number of predicted planes matches or exceeds the undersampling rate,
up to an undersampling rate of 128. At D = 64, this means we achieve the same quality as
LFI with 64 ~ 4000x fewer views. We use the LPIPS [137] metric (lower is better) because
we primarily value perceptual quality. The colored dots indicate the point on each line where
the number of planes equals the maximum scene disparity, where equality is achieved in our
sampling bound (Equation 2.6). The shaded region indicates +1 standard deviation over all
8 test scenes.

In practice, training through blending is slower than training a single MPI, so we first
train the network to render a new view from only one MPI for 500k iterations, then train
the full pipeline (blending views from two different MPIs) for 100k iterations. To fine tune
the network to process real data, we train on our small real dataset for an additional 10k
iterations. We use 320 x 240 resolution and up to 128 planes for SUNCG training data,
and 640 x 480 resolution and up to 32 planes for UnrealCV training data, due to GPU
memory limitations. We implement our full pipeline in Tensorflow [76] and optimize the
MPI prediction network parameters using Adam [54] with a learning rate of 2 x 107! and a
batch size of one. We split the training pipeline across two Nvidia RTX 2080Ti GPUs, using
one GPU to generate each MPI.
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2.5 Experimental Evaluation

We quantitatively and qualitatively validate our method’s prescriptive sampling benefits and
ability to render high fidelity novel views of light fields that have been undersampled by up
to 4000x, as well as demonstrate that our algorithm outperforms state-of-the-art methods
for regular view interpolation. Figure 2.9 showcases these qualitative comparisons on scenes
with complex geometry (Fern and T-Rex) and highly non-Lambertian scenes (Air Plants
and Pond) that are not handled well by most view synthesis algorithms.

For all quantitative comparisons (Table 2.3), we use a synthetic test set rendered from
an UnrealCV [98] environment that was not used to generate any training data. Our test
set contains 8 scenes, each rendered at 640 x 480 resolution and at 8 different view sampling
densities such that the maximum disparity between adjacent input views ranges from 1 to
256 pixels (a maximum disparity of 1 pixel between input views corresponds to Nyquist
rate view sampling). We restrict our quantitative comparisons to rendered images because
a Nyquist rate grid-sampled light field would require at least 384 camera views to generate
a similar test set, and no such densely-sampled real light field dataset exists to the best of
our knowledge. We report quantitative performance using the standard PSNR and SSIM
metrics, as well as the state-of-the-art LPIPS [137] perceptual metric, which is based on a
weighted combination of neural network activations tuned to match human judgements of
image similarity.

Finally, our accompanying video shows results on over 60 additional real-world scenes.
These renderings were created completely automatically by a script that takes only the set
of captured images and desired output view path as inputs, highlighting the practicality and
robustness of our method.

2.5.1 Sampling Theory Validation

Our method is able to render high-quality novel views while significantly decreasing the re-
quired input view sampling density compared to standard light field interpolation. Figure 2.8
shows that our method is able to render novel views with Nyquist level perceptual quality
with up to dn.x = 64 pixels of disparity between input view samples, as long as we match
the number of planes in each MPI to the maximum pixel disparity between input views. We
postulate that our inability to match Nyquist quality from input images with a maximum
of 128 pixels of disparity is due to the effect of occlusions. It becomes increasingly likely
that any non-foreground scene point will be sampled by fewer input views as the maximum
disparity between adjacent views increases. This increases the difficulty of depth estimation
and requires the CNN to hallucinate the appearance and depth of occluded points in extreme
cases where they are sampled by none of the input views.

Figure 2.8 also shows that once our sampling bound is satisfied, adding additional planes
does not increase performance. For example, at 32 pixels of disparity, increasing from 8 to
16 to 32 planes decreases the LPIPS error, but performance stays constant from 32 to 128
planes. This verifies that for scenes up to 64 pixels of disparity, adding additional planes
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Table 2.3: We quantitatively show that our method outperforms state-of-the-art baselines
and specific ablations of our method, across a wide range of input sampling rates (measured
by the maximum pixel disparity dy.x between adjacent input views), on a synthetic test set.
We display results using the standard PSNR and SSIM metrics (higher is better) as well as
the LPIPS perceptual metric [137] (lower is better). The best measurement in each column
is bolded. See Sections 2.5.2 and 2.5.3 for details on each comparison.

Maximum disparity dmax (pixels)

16 32 64 128
Algorithm | PSNR 4+ SSIM 1 LPIPS | | PSNR+ SSIM+ LPIPS | | PSNR{ SSIM 1 LPIPS | | PSNR+ SSIM {1 LPIPS |
LFI 2621 0.7776 02541 | 23.35  0.6982  0.3198 | 20.60  0.6243 03971 | 18.32  0.5560  0.4665
Baselines | VLR 2817  0.8320 0.1510 | 2643 07987  0.1820 | 24.34 07679 02311 | 21.24 07062  0.3215
Soft3D 3448 0.9430  0.1345 | 32.33  0.9216  0.1795 | 27.97  0.8588  0.2652 | 23.11  0.7382  0.3979

BW Deep 34.18 0.9433  0.1074 34.00 0.9476  0.1128 31.88 0.9192  0.1573 27.59 0.8363  0.2591
Single MPT | 31.11 0.9482  0.1007 29.38 0.9424  0.1111 26.88 0.9250  0.1363 24.20 0.8734  0.1980
Avg. MPIs | 32.67 0.9560  0.1140 31.34 0.9532  0.1248 29.31 0.9400  0.1423 27.02 0.8999  0.1961
Ours 34.57 09568 0.0942 34.48 0.9569 0.0954 33.58 0.9530 0.1012 3196 09323 0.1374

Ablations

past the maximum pixel disparity between input views is of limited value, in accordance
with our theoretical claim that partitioning a scene with disparity variation of D pixels into
D depth ranges is sufficient for continuous reconstruction.

2.5.2 Comparisons to Baseline Methods

We quantitatively (Table 2.3) and qualitatively (Figure 2.9) demonstrate that our algorithm
produces superior renderings, particularly for non-Lambertian effects, without the artifacts
seen in renderings from competing methods.

We compare our method to state-of-the-art view synthesis techniques as well as view-
dependent texture mapping using a global mesh as proxy geometry.

Light Field Interpolation (LFI) [12] This baseline is representative of continuous view
reconstruction based on classic signal processing. Following the method of plenoptic sam-
pling [12], we render novel views using a bilinear interpolation reconstruction filter sheared
to the mean scene disparity. Figure 2.9 demonstrates that increasing the camera spacing
beyond the Nyquist rate results in aliasing and ghosting artifacts when using this method.

Unstructured Lumigraph Rendering (ULR) [11] This baseline is representative of
view dependent texture mapping with an estimated global mesh as a geometry proxy. We
reconstruct a global mesh from all inputs using the screened Poisson surface reconstruction
algorithm [51], and use the heuristic Unstructured Lumigraph blending weights [11] to blend
input images after reprojecting them into the novel viewpoint using the global mesh. We
use a plane at the mean scene disparity as a proxy geometry to fill in holes in the mesh.
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It is particularly difficult to reconstruct a global mesh with geometry edges that are well-
aligned with image edges, which causes perceptually jarring artifacts. Furthermore, mesh
reconstruction often fails to fill in large portions of the scene, resulting in ghosting artifacts
similar to those seen in light field interpolation.

Soft3D [95] Soft3D is a state-of-the-art view synthesis algorithm that is similar to our ap-
proach in that it also computes a local layered scene representation for each input view and
projects and blends these volumes to render each novel view. However, it uses a hand-crafted
pipeline based on classic local stereo and guided filtering to compute each layered represen-
tation. Furthermore, since classic stereo methods are unreliable for smooth or repetitive
image textures and non-Lambertian materials, Soft3D relies on smoothing their geometry
estimation across many (up to 25) input views.

Table 2.3 quantitatively demonstrates that our approach outperforms Soft3D overall. In
particular, Soft3D’s performance degrades much more rapidly as the input view sampling
rate decreases since their aggregation is less effective when fewer input images view the
same scene content. Our method is able to predict high-quality geometry in scenarios where
Soft3D suffers from noisy and erroneous results of local stereo because we leverage deep
learning to learn implicit priors on natural scene geometry. This is in line with recent work
that has shown the benefits of deep learning over traditional stereo for depth estimation [53,
44).

Figure 2.9 qualitatively demonstrates that Soft3D generally contains blurred geometry ar-
tifacts due to errors in local depth estimation, and that Soft3D’s approach fails for rendering
non-Lambertian effects because their aggregation procedure blurs the specularity geometry,
which changes with the input image viewpoint.

Backwards warping deep network (BW Deep) This baseline subsumes recent deep
learning view synthesis techniques [48, 29|, which use a CNN to estimate geometry for each
novel view and then backwards warp and blend nearby input images to render the target
view. We train a network that uses the same 3D CNN architecture as our MPI prediction
network but instead outputs a single depth map at the pose of the new target view. We
then backwards warp the five input images into the new view using this depth map and use
a second 2D CNN to composite these warped input images into a single rendered output
view. As shown in Table 2.3, performance for this method degrades quickly as the maximum
disparity increases. Although this approach produces comparable images to our method for
scenes with small disparities (dmax = 16, 32), the renderings suffer from extreme inconsistency
when rendering video sequences.

BW Deep methods use a CNN to estimate depth separately for each output viewpoint,
so artifacts appear and disappear over only a few frames, resulting in rapid flickers and pops
in the rendered camera path. This inconsistency is visible as corruption in the epipolar
plots in Figure 2.9 and can be clearly seen in rendered output sequences with a moving
camera. Furthermore, backwards warping incentivizes incorrect depth predictions to fill in
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disocclusions, so BW Deep methods also produce errors around thin structures and occlusion
edges.

2.5.3 Ablation Studies

We validate our overall strategy of blending between multiple MPIs as well as our specific
blending procedure using accumulated alphas with the following ablation studies:

Single MPI The fifth row of Table 2.3 shows that using only one MPI to produce new views
results in significantly decreased performance due to the limited field of view represented in a
single MPI as well as depth discretization artifacts as the target view moves far from the MPI
reference viewpoint. Additionally, Figure 2.7 shows an example of complex non-Lambertian
reflectance that cannot be represented by a single MPI. This ablation can be considered an
upper bound on the performance of Zhou et al. [140], since we use one MPI generated by
a higher capacity 3D CNN.

Average MPIs The sixth row of Table 2.3 shows that blending multiple MPI outputs for
each novel view without using the accumulated alpha channels results in decreased perfor-
mance. Figure 2.6 visualizes that this simple blending leads to ghosting in regions that are
occluded from the poses of any of the MPIs used for rendering, because they will contain
incorrect content in disoccluded regions.

2.6 Practical Usage and Scaling Properties

We present guidelines to assist users in sampling views that enable high-quality view interpo-
lation with our algorithm, and showcase our method’s practicality with a smartphone camera
app that guides users to easily capture such input images. Furthermore, we implement a
mobile viewer that renders novel views from our predicted MPIs in real-time. Figure 2.9
showcases examples of rendered results from handheld smartphone captures.

2.6.1 Prescriptive Scene Sampling Guidelines

In a typical capture scenario, a user will have a camera with a field of view 6 and a world
space plane with side length S that bounds the viewpoints they wish to render. Based on
this, we prescribe the design space of image resolution W and number of images to sample N
that users can select from to reliably render novel views at Nyquist-level perceptual quality.

Section 2.5.1 shows that the empirical limit on the maximum disparity dp., between
adjacent input views for our deep learning pipeline is 64 pixels. Substituting Equation 2.6:

< 64. 2.8
Aachin - ( )
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Figure 2.9: Results on real cellphone datasets. We render a sequence of new views and show
both a crop from a single rendered output and an epipolar slice of the sequence. We show
2D projections of the input camera poses (blue dots) and new view path (red line) along the
z and y axes of the new view camera in the lower left of each row. LFT fails to represent
objects at different depths because it only uses a single depth plane for reprojection, leading
to ghosting (leaves in Fern, lily pads in Pond) and depth inconsistency visible in all epipolar
images. Mesh reconstruction failures cause artifacts visible in both the crops and epipolar
images for ULR. Soft3D’s depth uncertainty leads to blur, and geometry aggregation across
large view neighborhoods results in incorrect specularity geometry (reflections in Pond).
BW Deep’s use of a CNN to render every novel view causes depth inconsistency, visible as
choppiness across the rows of the epipolar images in all examples.
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We translate this into user-friendly quantities by noting that A, = S/ VN and that the
ratio of sensor width to focal length WA, /f = 2tan6/2:

w < 1282 tan(6/2)

2.9
VNS s (29)

Using a smartphone camera with a 64° field of view, this is simply:
W 30w, (2.10)

vN = S
Intuitively, once a user has determined the extent of viewpoints they wish to render and

the depth of the closest scene point, they can choose any target rendering resolution W and
number of images to capture N such that the ratio W/+/N satisfies the above expression.

2.6.2 Asymptotic Rendering Time and Space Complexity

Within the possible choices of rendering resolution W and number of sampled views N
that satisfy the above guideline, different users may value capture time, rendering time, and
storage costs differently. We derive the asymptotic complexities of these quantities to further
assist users in choosing correct parameters for their application.

First, the capture time is simply O(N). The render time of each MPI generated is
proportional to the number of planes times the pixels per plane:

B W3S
2V'N Znin tan(0/2)
Note that the rendering time for each MPI decreases as the number of sampled images N

increases, because this allows us to use fewer planes per MPI. The total MPI storage cost is
proportional to:

W2D = O(W3N~V%), (2.11)

W3Sv/N
W?D-N=—""—__ —O(W3N?), 2.12
22 min tan(0/2) ( ) (2.12)
Practically, this means that users should determine their specific rendering time and
storage constraints, and then maximize the image resolution and number of sampled views
that satisfy their constraints as well as the guideline in Equation 2.9. Figure 2.10 visualizes

these constraints for an example user.

2.6.3 Smartphone Capture App

We develop an app for iOS smartphones, based on the ARKit framework, that guides users
to capture input views for our view synthesis algorithm. The user first taps the screen to
mark the closest object, and the app uses the corresponding scene depth computed by ARKit
as Zmin- Next, the user selects the size of the view plane S within which our algorithm will
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Figure 2.10: Time and storage cost tradeoff within the space of rendering resolution and
number of sampled views that result in Nyquist level perceptual quality (space above the
thick blue curve signifying D = dp.x < 64, as in Equation 2.10). We plot isocontours of
rendering time and storage space for an example scene with close depth z.,;, = 1.0m and
target view plane with side length 0.5m, captured with a camera with a 64° field of view. We
use the average rendering speed from our desktop viewer and the storage requirement from
uncompressed 8-bit MPIs. Users can select the point where their desired rendering speed
and storage space isocontours intersect to determine the minimum required number of views
and maximum affordable rendering resolution.

render novel views. We fix the rendering resolution for the smartphone app to W = 500 which
therefore fixes the prescribed number and spacing of required images based on Equation 2.10
and the definition A, = S/v/N. Our app then guides the user to capture these views using
the intuitive augmented reality overlay shown in Figure 2.11. When the phone detects that
the camera has been moved to a new sample location, it automatically records an image and
highlights the next sampling point.

2.6.4 Preprocessing

After capturing the required input images, the only preprocessing required before being able
to render novel views is estimating the input camera poses and using our trained network to
predict an MPI for each input view. Unfortunately, camera poses from ARKit are currently
not accurate enough for acceptable results, so we use the open source COLMAP software
package [103], which takes about 2-6 minutes for sets of 20-30 input images.

We use the deep learning pipeline described in Section 2.3.1 to predict an MPI for each
input sampled view. On an Nvidia GTX 1080Ti GPU, This takes approximately 0.5 seconds



CHAPTER 2. LOCAL LIGHT FIELD FUSION 32

(a) Grid of guides shows user (b) Image automatically captured when
where to move phone phone aligns with guide

Figure 2.11: Equation 2.6 prescribes a simple sampling bound related only to the maximum
scene disparity. We take advantage of the augmented reality toolkits available in modern
smartphones to create an app that helps the user sample a real scene for rendering with our
method. (a) We use built-in software to track the phone’s position and orientation, providing
sampling guides that allow the user to space photos evenly at the target disparity. (b) Once
the user has centered the phone so that the RGB axes align with one of the guides, the app
automatically captures a photo.

for a small MPI (500 x 350 x 32 ~ 6 megavoxels) or 12 seconds for a larger MPI that must
be output in overlapping patches (1000 x 700 x 64 ~ 45 megavoxels). In total, our method
only requires about 10 minutes of preprocessing to estimate poses and predict MPIs before
being able to render novel views at a 1 megapixel image resolution.

With the increasing investment in smartphone AR and on-device deep learning accelera-
tors, we expect that smartphone pose estimation will soon be accurate enough and on-device
network inference will be powerful enough for users to go from capturing images to rendering
novel views within a few seconds.

2.6.5 Real-Time Viewers

We implement novel view rendering from a single MPI by rasterizing each plane from back
to front using texture mapped rectangles in 3D space, invoking a standard shader API to
correctly handle the alpha compositing, perspective projection, and texture resampling. For
each new view, we determine the MPIs to be blended, as discussed in Section 2.3.2, and
render them into separate framebuffers. We then use a simple fragment shader to perform
the alpha-weighted blending described in Section 2.3.2. We implement this rendering pipeline
as desktop viewer using OpenGL which renders views with 1000 x 700 resolution at 60 frames
per second, as well as an i0S mobile viewer using the Metal API which renders views with
500 x 350 resolution at 30 frames per second.
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2.7 Discussion

This chapter presents a simple and practical method for view synthesis that works reliably
for complex real-world scenes, including objects with non-Lambertian materials. This algo-
rithm uses a feed-forward neural network to generate a local light field representation from
each input image, then renders novel views in real time by interpolating between outputs
computed from nearby representations. We provide an empirically determined plenoptic
sampling guideline for the maximum allowable pixel disparity between input views.

A main limitation is that the MPI network sometimes assigns high opacity to incorrect
layers in regions of ambiguous or repetitive texture and regions where scene content moves
between input images. This can cause floating or blurred patches in the rendered output
sequence, which is a common failure mode in methods that rely on texture matching cues
to infer depth. In addition, these ambiguity errors may result in different geometry in MPIs
corresponding to different input images, leading to temporal inconsistency as a rendered
camera path moves from one input’s neighborhood to another. It is difficult to completely
avoid these ambiguity and inconsistency errors when using a feed-forward method, since the
number of views that can be processed by the network is limited.

Another issue is the difficulty of scaling to higher image resolutions. As evident in
Equations 2.11 and 2.12, discrete 3D grid-based approaches such as our method are limited
by complexities that scale cubically with the image width or height in pixels. Furthermore,
increasing the image resolution requires a convolutional network with a larger receptive field.

These problems motivate our search for a global scene representation that we can directly
optimize to reproduce all input images of a scene, rather than only five nearby inputs at
a time. A discrete 3D voxel grid is too memory-inefficient to serve as such a global scene
representation that can be rendered from any viewpoint, since this would require isotropic
sampling in space (as opposed to the MPI’s heavily warped sampling pattern), leading to
intractable scaling properties. In Chapter 3, we explore how neural networks can serve as
a highly efficient representation for low-dimensional signals, and in Chapter 4, we present a
view synthesis algorithm based on this concept that requires hundreds to thousands of times
less storage, generates more temporally stable renderings, and can be directly optimized over
all input images, in contrast to LLFF.



34

Chapter 3

An Efficient Global Representation:
Coordinate-Based Networks with
Fourier Feature Mappings

The previous chapter describes a view synthesis method based on generating many locally-
valid scene representations, each stored as a large discretized 3D array. Dense voxel grids
are frequently used to represent scenes in other view synthesis works [28, 73, 140] and
for 3D shape reconstruction tasks [49, 121], largely because most deep learning research
(across all areas of computer vision) has focused on solving problems using convolutional
neural networks, which must be applied to data on a regularly-sampled grid. However, in
three dimensions and higher, these dense arrays become highly impractical due to their
O(N?) scaling in dimension d and linear resolution N. Typical 3D objects and scenes are
particularly ill-suited for this representation, given that their surfaces only occupy a roughly
two-dimensional subset of space, with the rest consisting of free space or object interiors.
Given a known 3D shape, acceleration structures such as octrees [20] can be used to create an
efficient sparse grid representation. However, this strategy does not work when our problem
is to recover the underlying 3D shape from a set of 2D images or other inputs. When using
machine learning methods to solve such an inverse problem, we need a signal representation
that is memory-efficient but still fully differentiable.

A recent line of research in computer vision and graphics proposes replacing traditional
discrete representations of objects and scenes using continuous functions parameterized by
deep fully-connected networks (also called multilayer perceptrons or MLPs). These MLPs,
which we will call “coordinate-based” MLPs, take low-dimensional coordinates as inputs
(typically points in R?) and are trained to output a representation of shape, density, and /or
color at each input location (see Figure 3.1). This strategy is compelling since coordinate-
based MLPs are amenable to gradient-based optimization and machine learning, and can
be orders of magnitude more compact than grid-sampled representations. Coordinate-based
MLPs have been used to represent images [84, 115] (referred to as “compositional pattern
producing networks”), occupancy [80], and signed distance [92], and have achieved state-
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Figure 3.1: Fourier features improve the results of coordinate-based MLPs for a variety of
high-frequency low-dimensional regression tasks, both with direct (b, ¢) and indirect (d)
supervision. We visualize an example MLP (a) for an image regression task (b), where the
input to the network is a pixel coordinate and the output is that pixel’s color. Passing
coordinates directly into the network (top) produces blurry images, whereas preprocessing
the input with a Fourier feature mapping (bottom) enables the MLP to represent higher
frequency details.

of-the-art results across a variety of tasks such as shape representation [19, 25, 32, 34, 46,
81, 92], texture synthesis [41, 89], shape inference from images [70, 72|, and novel view
synthesis [86, 102, 110].

Recent progress in modeling the behavior of deep networks using kernel regression with a
neural tangent kernel (NTK) [45] can be leveraged to theoretically and experimentally show
that standard MLPs are poorly suited for these low-dimensional coordinate-based vision
and graphics tasks. In particular, MLPs have difficulty learning high frequency functions,
a phenomenon referred to in the literature as “spectral bias” [4, 99]. NTK theory suggests
that this is because standard coordinate-based MLPs correspond to kernels with a rapid
frequency falloff, which effectively prevents them from being able to represent the high-
frequency content present in natural images and scenes.

In this chapter, we demonstrate how a Fourier feature mapping [100] can fix this problem,
making coordinate-based networks a tractable alternative to discrete grids for representing
high-frequency natural signals. A Fourier feature mapping lifts input coordinates v into a
higher-dimensional space before passing them into the MLP:

v(v) = [a; cos(2mby V), a1 sin(27b{ V), .. ., ay, cos(27b,, V), an, sin(27rbTTnv)}T (3.1)
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We show that this mapping transforms the NTK into a stationary (shift-invariant) kernel
and enables tuning the NTK’s spectrum by modifying the frequency vectors b;, thereby con-
trolling the range of frequencies that can be learned by the corresponding MLP (Sections 3.3,
3.4). We show that the simple strategy of setting a; = 1 and randomly sampling b; from an
isotropic distribution achieves good performance, and that the scale (standard deviation) of
this distribution matters much more than its specific shape (Figure 3.4). Figure 3.1 high-
lights how this mapping dramatically improves the performance of coordinate-based MLPs
across a range of tasks relevant to the computer vision and graphics communities.

3.1 Related Work

Our work is motivated by the widespread use of coordinate-based MLPs to represent a
variety of visual signals, including images [115] and 3D scenes [80, 92]. In particular, our
analysis explains experimental results demonstrating that an input mapping of coordinates
(often referred to as a “positional encoding”) using sinusoids with logarithmically-spaced
axis-aligned frequencies improves the performance of coordinate-based MLPs [139]. We
show that positional encoding is a special case of a Fourier feature mapping, which modifies
the MLP’s NTK to allow it to learn higher frequency functions more quickly.

Prior works in natural language processing and time series analysis [50, 122, 131] have
used a similar positional encoding to represent time or 1D position. In particular, Xu et
al. [131] use random Fourier features (RFF) [100] to approximate stationary kernels with
a sinusoidal input mapping and propose techniques to tune the mapping parameters. Our
work extends this by directly explaining such mappings as a modification of the resulting
network’s NTK. Additionally, we address the embedding of multidimensional coordinates,
which is necessary for vision and graphics tasks.

To analyze the effects of applying a Fourier feature mapping to input coordinates before
passing them through an MLP, we rely on recent theoretical work that models neural net-
works in the limits of infinite width and infinitesimal learning rate as kernel regression using
the NTK [3, 7, 27, 45, 61]. In particular, we use the analyses from Lee et al. [61] and Arora et
al. [3], which show that the outputs of a network throughout gradient descent remain close
to those of a linear dynamical system whose convergence rate is governed by the eigenvalues
of the NTK matrix [3, 4, 7, 61, 132]. Analysis of the NTK’s eigendecomposition shows that
its eigenvalue spectrum decays rapidly as a function of frequency, which explains the widely-
observed “spectral bias” of deep networks towards learning low-frequency functions [4, 5,
99].

We leverage this analysis to consider the implications of adding a Fourier feature mapping
before the network, and we show that this mapping has a significant effect on the NTK’s
eigenvalue spectrum and on the corresponding network’s convergence properties in practice.
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3.2 Kernel Regression and the Spectral Bias of Deep
Networks

To lay the foundation for our theoretical analysis, we first review classic kernel regression
and its connection to recent results that analyze the training dynamics and generalization
behavior of deep fully-connected networks. In later sections, we use these tools to analyze
the effects of training coordinate-based MLPs with Fourier feature mappings.

Kernel regression. Kernel regression is a classic nonlinear regression algorithm [124].
Given a training dataset (X,y) = {(x;, )}, where x; are input points and y; = f(x;)
are the corresponding scalar output labels, kernel regression constructs an estimate f of the
underlying function at any point x as:

n

fx) =>" (K y), k(xi %), (3.2)

i=1

where K is an n x n kernel (Gram) matrix with entries K;; = k(x;,x;) and k is a symmetric
positive semidefinite (PSD) kernel function which represents the “similarity” between two
input vectors. Intuitively, the kernel regression estimate at any point x can be thought of as
a weighted sum of training labels y; using the similarity between the corresponding x; and
X.

Approximating deep networks with kernel regression. Let f be a fully-connected
deep network with weights 6 initialized from a Gaussian distribution A/. Theory proposed by
Jacot et al. [45] and extended by others [3, 4, 61] shows that when the width of the layers in
f tends to infinity and the learning rate for SGD tends to zero, the function f(x; ) converges
over the course of training to the kernel regression solution using the neural tangent kernel
(NTK), defined as:

a0 00 (3:3)

v (31, %) = Egx <8f(xz, 0) 8f(X]79)> |
When the inputs are restricted to a hypersphere, the NTK for an MLP can be written as a
dot product kernel (a kernel in the form hntk(x;x;) for a scalar function hntk : R — R).
Prior work [3, 4, 45, 61] shows that an NTK linear system model can be used to approx-
imate the dynamics of a deep network during training. We consider a network trained with
an L2 loss and a learning rate 7, where the network’s weights are initialized such that the
output of the network at initialization is close to zero. Under asymptotic conditions stated
in Lee et al. [61], the network’s output for any data Xy after ¢ training iterations can be

approximated as:
¥ ~ KoK (T— e ™)y, (34)
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where y® = f (Xtest; @) are the network’s predictions on input points Xies; at training
iteration ¢, K is the NTK matrix between all pairs of training points in X, and K. is the
NTK matrix between all points in X and all points in the training dataset X.

Spectral bias when training neural networks. Let us consider the training error
ytf;m —y, where ygim are the network’s predictions on the training dataset at iteration
t. Since the NTK matrix K must be PSD, we can take its eigendecomposition K = QAQT,
where Q is orthogonal and A is a diagonal matrix whose entries are the eigenvalues \; > 0
of K. Then, since e ™! = Qe " QT:

Q' F —¥) = Q" (I—e ™)y —y) = —e"™Qy. (3.5)

This means that if we consider training convergence in the eigenbasis of the NTK, the ‘"
component of the absolute error \QT(ytgin —y)|; will decay approximately exponentially at
the rate nA;. In other words, components of the target function that correspond to kernel
eigenvectors with larger eigenvalues will be learned faster. For a conventional MLP, the
eigenvalues of the NTK decay rapidly [5, 7, 36]. This results in extremely slow convergence
to the high frequency components of the target function, to the point where standard MLPs
are effectively unable to learn these components, as visualized in Figure 3.1. Next, we
describe a technique to address this slow convergence by using a Fourier feature mapping of

input coordinates before passing them to the MLP.

3.3 Fourier Features create a Tunable Stationary
Neural Tangent Kernel

Machine learning analysis typically addresses the case in which inputs are high dimensional
points (e.g. the pixels of an image reshaped into a vector) and training examples are sparsely
distributed. In contrast, in this work we consider low-dimensional regression tasks, wherein
inputs are assumed to be dense coordinates in a subset of R? for small values of d (e.g. pixel
coordinates). This setting has two significant implications when viewing deep networks
through the lens of kernel regression:

1. We would like the composed NTK to be shift-invariant over the input domain, since
the training points are distributed with uniform density. In problems where the inputs
are normalized to the surface of a hypersphere (common in machine learning), a dot
product kernel (such as the regular NTK) corresponds to spherical convolution. How-
ever, inputs in our setting are dense in FEuclidean space. A Fourier feature mapping
of input coordinates makes the composed NTK stationary (shift-invariant), acting as
a convolution kernel over the input domain.

2. We would like to control the bandwidth of the NTK to improve training speed and
generalization. As we see from Eqn. 3.5, a “wider” kernel with a slower spectral falloff
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achieves faster training convergence for high frequency components. However, we know
from signal processing that reconstructing a signal using a kernel whose spectrum
is too wide causes high frequency aliasing artifacts. We show in Section 3.4 that a
Fourier feature input mapping can be tuned to lie between these “underfitting’ and
“overfitting” extremes, enabling both fast convergence and low test error.

Fourier features and the composed neural tangent kernel. Fourier feature mappings
have been used in many applications since their introduction in the seminal work of Rahimi
and Recht [100], which used random Fourier features to approximate an arbitrary stationary
kernel function by applying Bochner’s theorem. Extending this technique, we use a Fourier
feature mapping ~ to featurize input coordinates before passing them through a coordinate-
based MLP, and investigate the theoretical and practical effect this has on convergence speed
and generalization. The function v maps input points v € [0,1)? to the surface of a higher
dimensional hypersphere with a set of sinusoids:

v(v) = [a1 cos(2mb} V), as sin(27b} V), ..., ay, cos(2ab;, V), ap, SiIl(QT(’b;FnVﬂT : (3.6)

Because cos(a — ) = cosacos  + sin asin 3, the kernel function induced by this mapping
is:

ky(vi,va) = y(v1)Ty(ve) = Z aj cos (2rb; (vi —v2)) = hy(vi —va), (3.7)
j=1
where h,(va) £ Z a? cos(2mbjva) . (3.8)
j=1

Note that this kernel is stationary (a function of only the difference between points). We
can think of the mapping as a Fourier approximation of a kernel function: b; are the Fourier
basis frequencies used to approximate the kernel, and a? are the corresponding Fourier series
coefficients.

After computing the Fourier features for our input points, we pass them through an
MLP to get f(vy(v);0). As discussed previously, the result of training a network can be
approximated by kernel regression using the kernel hxri(x;x;). In our case, x; = y(v;) so
the composed kernel becomes:

hntk (%] X;) = hnrk <7 (vi) v (Vj)> = hnti (hy (Vi — ;) - (3.9)

Thus, training a network on these embedded input points corresponds to kernel regression
with the stationary composed NTK function Axtk o by . The MLP function approximates a
convolution of the composed NTK with a weighted Dirac delta at each input training point
V.

f hNTK e} h Z wz Vi (310)
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Figure 3.2: Adding a Fourier feature mapping can improve the poor conditioning of a
coordinate-based MLP’s neural tangent kernel (NTK). (a) We visualize the NTK function
kxti (25, 2;) (Eqn. 3.3) for a 4-layer ReLU MLP with one scalar input. This kernel is not
shift-invariant and does not have a strong diagonal, making it poorly suited for kernel re-
gression in low-dimensional problems. (b) A basic input mapping v(v) = [cos 27v, sin 27v] "
makes the composed NTK kxr (7(vi), v(v;)) shift-invariant (stationary). (c¢) A Fourier fea-
ture input mapping (Eqn. 3.6) can be used to tune the composed kernel’s width, where we
set a; = 1/j7 and b; = j for j =1,...,n/2. (d) Higher frequency mappings (lower p) result
in composed kernels with wider spectra, which enables faster convergence for high-frequency
components (see Figure 3.3).

where w = K™'y (from Eqn. 3.2). This allows us to draw analogies to signal processing,
where the composed NTK acts similarly to a reconstruction filter. In the next section,
we show that the frequency decay of the composed NTK determines the behavior of the
reconstructed signal.

3.4 Manipulating Network Behavior using a Fourier
Feature Mapping

Preprocessing the inputs to a coordinate-based MLP with a Fourier feature mapping creates
a composed NTK that is not only stationary but also tunable. By manipulating the settings
of the a; and b; parameters in Eqn. 3.6, it is possible to dramatically change both the rate
of convergence and the generalization behavior of the resulting network. In this section, we
investigate the effects of the Fourier feature mapping in the setting of 1D function regression.

We train MLPs to learn signals f defined on the interval [0,1). We sample cn linearly
spaced points on the interval, using every ¢! point as the training set and the remaining
points as the test set. Since our composed kernel function is stationary, evaluating it at
linearly spaced points on a periodic domain makes the resulting kernel matrix circulant:
it represents a convolution and is diagonalizable by the Fourier transform. Thus, we can
compute the eigenvalues of the composed NTK matrix by simply taking the Fourier transform
of a single row. All experiments are implemented in JAX [9] and the NTK functions are
calculated automatically using the Neural Tangents library [88].
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Figure 3.3: Combining a network with a Fourier feature mapping has dramatic effects on
convergence and generalization. Here we train a network on 32 sampled points from a 1D
function (a) using mappings shown in Fig. 3.2. A mapping with a smaller p value yields a
composed NTK with more power in higher frequencies, enabling the corresponding network
to learn a higher frequency function. The theoretical and experimental training loss improves
monotonically with higher frequency kernels (d), but the test-set loss is lowest at p = 1 and
falls as the network starts to overfit (b). As predicted by Eqn. 3.5, we see roughly log-linear
convergence of the training loss frequency components (c¢). Higher frequency kernels result
in faster convergence for high frequency loss components, thereby overcoming the “spectral
bias” observed when training networks with no input mapping.

Visualizing the composed NTK. We first visualize how modifying the Fourier feature
mapping changes the composed NTK. We set b; = j (full Fourier basis in 1D) and a; = 1/4?
for j =1,...,n/2. We use p = oo to denote the mapping v(v) = [cos 27v, sin 27v]" that
simply wraps [0,1) around the unit circle (this is referred to as the “basic” mapping in
later experiments). Figure 3.2 demonstrates the effect of varying p on the composed NTK.
By construction, lower p values result in a slower falloff in the frequency domain and a
correspondingly narrower kernel in the spatial domain.

Effects of Fourier features on network convergence. We generate ground truth 1D
functions by sampling cn values from a family with parameter « as follows: we sample a
standard i.i.d. Gaussian vector of length cn, scale its i*" entry by 1/i%, then return the real
component of its inverse Fourier transform. We will refer to this as a “1/f noise” signal.
In Figure 3.3, we train MLPs (4 layers, 1024 channels, ReLLU activations) to fit a ban-
dlimited 1/f! noise signal (¢ = 8,n = 32) using Fourier feature mappings with different p
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Figure 3.4: We find that a sparse random sampling of Fourier features can perform as
well as a dense set of features and that the width of the distribution matters more than
the shape. Here, we generate random 1D signals from 1/f“ noise and report the test-
set accuracy of different trained models that use a sparse set (16 out of 1024) of random
Fourier features sampled from different distributions. Each subplot represents a different
family of 1D signals. Each dot represents a trained network, where the color indicates
which Fourier feature sampling distribution is used. We plot the test error of each model
versus the empirical standard deviation of its sampled frequencies. The best models using
sparsely sampled features are able to match the performance of a model trained with dense
Fourier features (dashed lines with error bars). All sampling distributions trace out the same
curve, exhibiting underfitting (slow convergence) when the standard deviation of sampled
frequencies is too low and overfitting when it is too high. This implies that the precise
shape of the distribution used to sample frequencies does not have a significant impact on
performance.

values. Figures 3.3b and 3.3d show that the NTK linear dynamics model accurately predict
the effects of modifying the Fourier feature mapping parameters. Separating different fre-
quency components of the training error in Figure 3.3c reveals that networks with narrower
NTK spectra converge faster for low frequency components but essentially never converge
for high frequency components, whereas networks with wider NTK spectra successfully con-
verge across all components. The Fourier feature mapping p = 1 has adequate power across
frequencies present in the target signal (so the network converges rapidly during training)
but limited power in higher frequencies (preventing overfitting or aliasing).

Tuning Fourier features in practice. Eqn. 3.4 allows us to estimate a trained network’s
theoretical loss on a validation set using the composed kernel. For small 1D problems, we can
minimize this loss with gradient-based optimization to choose mapping parameters a; (given
a dense sampling of b;). In this carefully controlled setting (1D signals, small training dataset,
gradient descent with small learning rate, very wide networks), we find that this optimized
mapping does achieve the best performance when training networks. However, in real-world
problems, especially in multiple dimensions, it is not feasible to use a feature mapping that
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densely samples Fourier basis functions; the number of Fourier basis functions scales with
the number of training data points, which grows exponentially with dimension. Instead, we
sample a set of random Fourier features [100] from a parametric distribution. We find that
the exact sampling distribution family is much less important than the distribution’s scale
(standard deviation).

Figure 3.4 demonstrates this point using hyperparameter sweeps for a variety of sampling
distributions. In each subfigure, we draw 1D target signals (¢ = 2,n = 1024) from a fixed
1/f* distribution and train networks to learn them. We use random Fourier feature map-
pings (of length 16) sampled from different distribution families (Gaussian, uniform, uniform
in log space, and Laplacian) and sweep over each distribution’s scale. Perhaps surprisingly,
the standard deviation of the sampled frequencies alone is enough to predict test set per-
formance, regardless of the underlying distribution’s shape. We show that this holds for
higher-dimensional tasks in Section 3.5.3. We also observe that passing this sparse sampling
of Fourier features through an MLP matches the performance of using a dense set of Fourier
features with the same MLP, suggesting a strategy for scaling to higher dimensions. We
proceed with a Gaussian distribution for our higher-dimensional experiments in Section 3.5
and treat the scale as a hyperparameter to tune on a validation dataset.

3.5 Experiments on 2D and 3D Tasks

We validate the benefits of using Fourier feature mappings for coordinate-based MLPs with
experiments on a variety of regression tasks relevant to the computer vision and graphics
communities.

3.5.1 Compared mappings

In Table 3.1, we compare the performance of coordinate-based MLPs with no input mapping
and with the following Fourier feature mappings (cos, sin are applied elementwise):

Basic: (V) = [cos(2nvv), sin(27v)]". Simply wraps input coordinates around the circle.

Positional encoding: ~y(v) = [...,cos(2r0?/™v),sin(2rc?/™v), .. .}T forj=0,...,m—1.
Uses log-linear spaced frequencies for each dimension, where the scale ¢ is chosen for each
task and dataset by a hyperparameter sweep. This is a generalization of the “positional
encoding” used by prior work [122; 139]. Note that this mapping is deterministic and only
contains on-axis frequencies, making it naturally biased towards data that has more frequency
content along the axes.

Gaussian: ~(v) = [cos(2rBv), sin(27Bv)]", where each entry in B € R™* is sampled
from N(0,0?), and o is chosen for each task and dataset with a hyperparameter sweep. In
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Direct supervision Indirect supervision
2D image 3D shape [80] 2D CT 3D MRI
Natural Text Shepp ATLAS | ATLAS
No mapping 19.32  18.40 0.864 16.75  15.44 26.14
Basic 21.71  20.48 0.892 23.31  16.95 28.58
Positional enc. 24.95  27.57 0.960 26.89  19.55 32.23
Gaussian 25.57 30.47 0.973 28.33 19.88 34.51

Table 3.1: We compare four different input mappings on a variety of low-dimensional re-
gression tasks. All results are reported in PSNR except 3D shape, which uses IoU (higher is
better for all). No mapping represents using a standard MLP with no feature mapping. Ba-
sic, Positional encoding, and Gaussian are different variants of Fourier feature maps. For the
Direct supervision tasks, the network is supervised using ground truth labels for each input
coordinate. For the Indirect supervision tasks, the network outputs are passed through a for-
ward model before the loss is applied (integral projection for CT and the Fourier transform
for MRI). Fourier feature mappings improve results across all tasks, with random Gaussian
features performing best.

the absence of any strong prior on the frequency spectrum of the signal, we use an isotropic
Gaussian distribution.

Our experiments show that all of the Fourier feature mappings improve the performance
of coordinate-based MLPs over using no mapping and that the Gaussian RFF mapping
performs best.

3.5.2 Tasks

We conduct experiments with direct regression, where supervision labels are in the same
space as the network outputs, as well as indirect regression, where the network outputs are
passed through a forward model to produce observations in the same space as the supervision
labels. For each task and dataset, we tune Fourier feature scales on a held-out set of signals.
For each target signal, we train an MLP on a training subset of the signal and compute error
over the remaining test subset. All tasks (except 3D shape regression) use L2 loss and a
ReLLU MLP with 4 layers and 256 channels. The 3D shape regression task uses cross-entropy
loss and a ReLU MLP with 8 layers and 256 channels. We apply a sigmoid activation to the
output for each task (except the view synthesis density prediction). We use 256 frequencies
for the feature mapping in all experiments.

2D image regression. In this task, we train an MLP to regress from a 2D input pixel
coordinate to the corresponding RGB value of an image. For each test image, we train
an MLP on a regularly-spaced grid containing /1 of the pixels and report test error on the
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remaining pixels. We compare input mappings over a dataset of natural images and a dataset
of text images (Figure 3.5).

3D shape regression. Occupancy Networks [80] implicitly represent a 3D shape as the
“decision boundary” of an MLP, which is trained to output 0 for points outside the shape
and 1 for points inside the shape. Each batch of training data is generated by sampling
points uniformly at random from the bounding box of the shape and calculating their labels
using the ground truth mesh. Test error is calculated using intersection-over-union versus
ground truth on a set of points randomly sampled near the mesh surface to better highlight
the different mappings’ abilities to resolve fine details. Figure 3.6 shows comparisons for four
complex shapes.

2D computed tomography (CT). In CT, we observe integral projections of a density
field instead of direct measurements. In our 2D CT experiments, we train an MLP that
takes in a 2D pixel coordinate and predicts the corresponding volume density at that loca-
tion. The network is indirectly supervised by the loss between a sparse set of ground-truth
integral projections and integral projections computed from the network’s output. We con-
duct experiments using two datasets: procedurally-generated Shepp-Logan phantoms [106]
and 2D brain images from the ATLAS dataset [67] (Figure 3.7).

3D magnetic resonance imaging (MRI). In MRI, we observe Fourier transform coeffi-
cients of atomic response to radio waves under a magnetic field. In our 3D MRI experiments,
we train an MLP that takes in a 3D voxel coordinate and predicts the corresponding response
at that location. The network is indirectly supervised by the loss between a sparse set of
ground-truth Fourier transform coefficients and Fourier transform coefficients computed from
discretely querying the MLP on a voxel grid. We conduct experiments using the ATLAS
dataset [67] (Figure 3.8).

3.5.3 Visualizing underfitting and overfitting in 2D

Figure 3.4 shows (in a 1D setting) that as the scale of the Fourier feature sampling distribu-
tion increases, the trained network’s error traces out a curve that starts in an underfitting
regime (only low frequencies are learned) and ends in an overfitting regime (the learned
function includes high-frequency detail not present in the training data). In Figure 3.9, we
show analogous behavior for 2D image regression, demonstrating that the same phenomenon
holds in a multidimensional problem. In Figure 3.10, we show how changing the scale for
Gaussian Fourier features qualitatively affects the final result in the 2D image regression
task.
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3.6 Discussion

We leverage NTK theory to show that a Fourier feature mapping can make coordinate-based
MLPs better suited for modeling functions in low dimensions, thereby overcoming their
inherent spectral bias. We experimentally show that tuning the Fourier feature parameters
offers control over the frequency falloff of the combined NTK and significantly improves
performance across a range of graphics and imaging tasks. These findings shed light on the
burgeoning technique of using coordinate-based MLPs to represent 3D shapes in computer
vision and graphics pipelines and provide a simple strategy for practitioners to improve
results in these domains. In the next chapter, we will demonstrate how these coordinate-
based networks can be used to develop a view synthesis algorithm that is able to render
high-resolution outputs over a wide camera baseline.
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(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.5: Results for the 2D image regression task, for three images from our Natu-
ral dataset (top) and two images from our Text dataset (bottom). Standard ReLU MLP
networks (b) learn low-frequency components of the image exponentially faster than high-
frequency details. Even a basic mapping (c) of each input pixel coordinate onto the 2D unit
circle dramatically improves the network’s representational power. A higher-dimensional
Fourier feature mapping (d, e) essentially allows the network to perfectly fit the training
points (every other pixel) while retaining reasonable interpolation behavior.
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(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.6: Results for the 3D shape occupancy task [80]. A standard network (b) can
represent the rough outline of the shape, but a high-frequency Fourier feature mapping (d,
e) is required to reproduce fine surface details.
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(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.7: Results for the 2D CT task.

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.8: Results for the 3D MRI task.
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Figure 3.9: An alternate version of Figure 3.4 from the main text where the underlying signal
is a 2D image (see 2D image task details in Section 3.5.2) instead of 1D signal. This multi-
dimensional case exhibits the same behavior as was seen in the 1D case: we see the same
underfitting/overfitting pattern for four different isotropic Fourier feature distributions, and
the distribution shape matters less than the scale of sampled b; values.

c=1 o=2 =10 oc=32 o=64

Figure 3.10: A visualization of the 2D image regression task with different Gaussian scales
(corresponding to points along the curve shown in Figure 3.9). Low values of ¢ underfit,

resulting in oversmoothed interpolation, and large values of ¢ overfit, resulting in noisy
interpolation. We find that ¢ = 10 performs best for our Natural image dataset.
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Chapter 4

View Synthesis as (Global

Reconstruction: Neural Radiance
Fields

In this chapter, we address the problem of view synthesis in a new way, using the coordinate-
based network representation explored in the previous chapter to reconstruct a scene as a
neural radiance field in a direct optimization framework. In contrast to the local interpolation
method presented in Chapter 2, this approach does not require an external training dataset
beyond images of the scene to be reconstructed, and its neural representation is over one
hundred times more compact than a densely sampled array with equivalent resolution.

We represent a scene as a continuous 5D function that outputs the radiance emitted in
each direction (6, ¢) at each point (z,y, z) in space, and a density at each point which acts
like a differential opacity controlling how much radiance is accumulated by a ray passing
through (z,y, z). Our method optimizes a coordinate-based neural network to represent this
function by regressing from a single 5D coordinate (z,y, 2,0, ¢) to a single volume density
and view-dependent RGB color.

To render this neural radiance field (NeRF) from a particular viewpoint we: 1) march
camera rays through the scene to generate a sampled set of 3D points, 2) use those points
and their corresponding 2D viewing directions as input to the neural network to produce
an output set of colors and densities, and 3) use classical volume rendering techniques to
accumulate those colors and densities into a 2D image. Because this process is naturally
differentiable, we can use gradient descent to directly optimize this model to represent a
complex scene by minimizing the error between each observed image and the corresponding
views rendered from our representation. Minimizing this error across multiple views encour-
ages the network to predict a coherent model of the scene by assigning high volume densities
and accurate colors to the locations that contain the true underlying scene content. Fig-
ure 4.2 visualizes this overall pipeline. We find that the basic implementation of optimizing
a neural radiance field representation for a complex scene does not converge to a sufficiently
high-resolution representation and is inefficient in the required number of samples per cam-
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Figure 4.1: We present a method that optimizes a continuous 5D neural radiance field
representation (volume density and view-dependent color at any continuous location) of a
scene from a set of input images. We use techniques from volume rendering to accumulate
samples of this scene representation along rays to render the scene from any viewpoint. Here,
we visualize the set of 100 input views of the synthetic Drums scene randomly captured on
a surrounding hemisphere, and we show two novel views rendered from our optimized NeRF
representation.

era ray. We address these issues by transforming input 5D coordinates with a positional

encoding that enables the MLP to represent higher frequency functions (as described in the

previous chapter), and we propose a hierarchical sampling procedure to reduce the number
of queries required to adequately sample this high-frequency scene representation.

Our approach inherits the benefits of volumetric representations: it can represent complex
real-world geometry and appearance and is well suited for gradient-based optimization using
projected images. Crucially, our method is designed to overcome the prohibitive storage
costs of discretized voxel grids when modeling complex scenes at high-resolutions.

In summary, our key technical contributions are:

— An approach for representing continuous scenes with complex geometry and materials as
5D neural radiance fields, parameterized as basic MLP networks.

— A differentiable rendering procedure based on classical volume rendering techniques, which
we use to optimize these representations from standard RGB images. This includes a
hierarchical sampling strategy to allocate the MLP’s capacity towards space with visible
scene content.

— A positional encoding to map each input 5D coordinate into a higher dimensional space,
which enables us to successfully optimize neural radiance fields to represent high-frequency
scene content.

We demonstrate that our resulting neural radiance field method quantitatively and qualita-
tively outperforms state-of-the-art view synthesis methods, including works that fit neural
3D representations to scenes as well as works that train deep convolutional networks to pre-
dict sampled volumetric representations. As far as we know, NeRF is the first continuous
neural scene representation that is able to render high-resolution photorealistic novel views
of real objects and scenes from RGB images captured in natural settings.
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4.1 Related Work

A promising recent direction in computer vision is encoding objects and scenes in the weights
of an MLP that directly maps from a 3D spatial location to an implicit representation of
the shape, such as the signed distance [21] at that location. However, these methods have so
far been unable to reproduce realistic scenes with complex geometry with the same fidelity
as techniques that represent scenes using discrete representations such as triangle meshes
or voxel grids. In this section, we review these two lines of work and contrast them with
our approach, which enhances the capabilities of neural scene representations to produce
state-of-the-art results for rendering complex realistic scenes.

Neural 3D shape representations Recent work has investigated the implicit represen-
tation of continuous 3D shapes as level sets by optimizing deep networks that map xyz
coordinates to a signed distance function [92] or to an occupancy field [80]. However, these
models are limited by their requirement of access to ground truth 3D geometry, typically
obtained from synthetic 3D shape datasets such as ShapeNet [14]. Subsequent work has
relaxed this requirement of ground truth 3D shapes by formulating differentiable rendering
functions that allow neural implicit shape representations to be optimized using only 2D
images. Niemeyer et al. [86] represent surfaces as 3D occupancy fields and use a numerical
method to find the surface intersection for each ray, then calculate an exact derivative using
implicit differentiation. Each ray intersection location is then provided as the input to a
neural 3D texture field that predicts a diffuse color for that point. Sitzmann et al. [110] use
a less direct neural 3D representation that simply outputs a feature vector and RGB color
at each continuous 3D coordinate, and propose a differentiable rendering function consist-
ing of a recurrent neural network that marches along each ray to decide where the surface
is located. Though these techniques can potentially represent arbitrarily complicated and
high-resolution scene geometries, they have so far been limited to simple shapes with low
geometric complexity resulting and produce oversmoothed rendered views. We show that
an alternate strategy of optimizing networks to encode 5D radiance fields (3D volumes with
2D view-dependent appearance) can represent higher-resolution geometry and appearance
to render photorealistic novel views of complex scenes.

View synthesis and image-based rendering The computer graphics community has
made significant progress in photorealistic novel view synthesis by predicting traditional
geometry and appearance representations from observed images. One popular class of
approaches uses mesh-based representations of scenes with either diffuse [123] or view-
dependent [11, 23, 128] appearance. Differentiable rasterizers [18, 33, 71, 74] or pathtrac-
ers [65, 87| can directly optimize mesh representations to reproduce a set of input images
using gradient descent. However, gradient-based mesh optimization based on image reprojec-
tion is often difficult, likely because of local minima or poor conditioning of the loss landscape.
Furthermore, this strategy requires a template mesh with fixed topology to be provided as
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Figure 4.2: An overview of our neural radiance field scene representation and differentiable
rendering procedure. We synthesize images by sampling 5D coordinates (location and view-
ing direction) along camera rays (a), feeding those locations into an MLP to produce a color
and volume density (b), and using volume rendering techniques to composite these values
into an image (c). This rendering function is differentiable, so we can optimize our scene
representation by minimizing the residual between synthesized and ground truth observed
images (d).

an initialization before optimization [65], which is typically unavailable for unconstrained
real-world scenes.

Another class of methods use volumetric representations to specifically address the task
of high-quality photorealistic view synthesis from a set of input RGB images. Volumetric
approaches are able to realistically represent complex shapes and materials, are well-suited
for gradient-based optimization, and tend to produce less visually distracting artifacts than
mesh-based methods. Early volumetric approaches used observed images to directly color
voxel grids [57, 105, 117]. More recently, several methods [28, 83, 95, 113, 140] have used
large datasets of multiple scenes to train deep networks that predict a sampled volumetric
representation from a set of input images, and then use alpha-compositing [96] along rays
to render novel views at test time. Other works have optimized a combination of convolu-
tional networks (CNNs) and sampled voxel grids for each specific scene, such that the CNN
can compensate for discretization artifacts from low resolution voxel grids [109] or allow the
predicted voxel grids to vary based on input time or animation controls [73]. While these
volumetric techniques have achieved impressive results for novel view synthesis, their ability
to scale to higher resolution imagery is fundamentally limited by poor time and space com-
plexity due to their discrete sampling — rendering higher resolution images requires a finer
sampling of 3D space. We circumvent this problem by instead encoding a continuous volume
within the parameters of a deep fully-connected neural network, which not only produces
significantly higher quality renderings than prior volumetric approaches, but also requires
just a fraction of the storage cost of those sampled volumetric representations.
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4.2 Neural Radiance Field Scene Representation

We represent a continuous scene as a 5D vector-valued function whose input is a 3D location
x = (z,y,z) and 2D viewing direction (#,¢), and whose output is an emitted color ¢ =
(r,g,b) and volume density o. In practice, we express direction as a 3D Cartesian unit
vector d. We approximate this continuous 5D scene representation with an MLP network
Fo : (x,d) — (c,0) and optimize its weights © to map each input 5D coordinate to its
corresponding volume density and directional emitted color.

We encourage the representation to be multiview consistent by restricting the network
to predict the volume density o as a function of only the location x, while allowing the RGB
color ¢ to be predicted as a function of both location and viewing direction. To accomplish
this, the MLP Fg first processes the input 3D coordinate x with 8 fully-connected layers
(using ReLLU activations and 256 channels per layer), and outputs o and a 256-dimensional
feature vector. This feature vector is then concatenated with the camera ray’s viewing
direction and passed to 4 additional fully-connected layers (using ReL.U activations and 128
channels per layer) that output the view-dependent RGB color.

See Fig. 4.3 for an example of how our method uses the input viewing direction to
represent non-Lambertian effects. As shown in Fig. 4.4, a model trained without view
dependence (only x as input) has difficulty representing specularities.

4.3 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and directional emitted
radiance at any point in space. We render the color of any ray passing through the scene using
principles from classical volume rendering [47]. The volume density o(x) can be interpreted
as the differential probability of a ray terminating at an infinitesimal particle at location x.
The expected color C(r) of camera ray r(t) = o+ td with near and far bounds ¢,, and t; is:

Clr) = /ttf T(t)o(x(t)c(x(t), d)dt, where T(t) :exp<— /t:(r(r(s))ds>. (A1)

The function 7'(t) denotes the accumulated transmittance along the ray from ¢, to t, i.e., the
probability that the ray travels from ¢, to ¢ without hitting any other particle. Rendering
a view from our continuous neural radiance field requires estimating this integral C'(r) for a
camera ray traced through each pixel of the desired virtual camera.

We numerically estimate this continuous integral using quadrature. Deterministic quadra-
ture, which is typically used for rendering discretized voxel grids, would effectively limit our
representation’s resolution because the MLP would only be queried at a fixed discrete set of
locations. Instead, we use a stratified sampling approach where we partition [t,,t] into N
evenly-spaced bins and then draw one sample uniformly at random from within each bin:

1 —1 i
ti~U tn+T(tf_tn)7 an—FN(tf—tn) . (4.2)
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(a) View 1 (b) View 2 (c¢) Radiance Distributions

Figure 4.3: A visualization of view-dependent emitted radiance. Our neural radiance field
representation outputs RGB color as a 5D function of both spatial position x and viewing di-
rection d. Here, we visualize example directional color distributions for two spatial locations
in our neural representation of the Ship scene. In (a) and (b), we show the appearance of
two fixed 3D points from two different camera positions: one on the side of the ship (orange
insets) and one on the surface of the water (blue insets). Our method predicts the changing
specular appearance of these two 3D points, and in (c) we show how this behavior generalizes
continuously across the whole hemisphere of viewing directions.

Although we use a discrete set of samples to estimate the integral, stratified sampling en-
ables us to represent a continuous scene representation because it results in the MLP being
evaluated at continuous positions over the course of optimization. We use these samples to
estimate C'(r) with the quadrature rule discussed in the volume rendering review by Max [78]:

N i—1
Clr) = ZTZ(l — exp(—0;0;))¢; , where T; = exp (— Zaj5j> , (4.3)
i=1 j=1

where §; = t; .1 — t; is the distance between adjacent samples. This function for calculating

C(r) from the set of (¢;, 0;) values is trivially differentiable and reduces to traditional alpha
compositing with alpha values o; = 1 — exp(—0;0;).

4.4 Optimizing a Neural Radiance Field

In the previous section we have described the core components necessary for modeling a
scene as a neural radiance field and rendering novel views from this representation. However,
we observe that these components are not sufficient for achieving state-of-the-art quality, as
demonstrated in Section 4.5.3). We introduce two improvements to enable representing high-
resolution complex scenes. The first is a positional encoding of the input coordinates that
assists the MLP in representing high-frequency functions, and the second is a hierarchical
sampling procedure that allows us to efficiently sample this high-frequency representation.
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Ground Truth Complete Model No View Dependence No Positional Encoding

Figure 4.4: Here we visualize how our full model benefits from representing view-dependent
emitted radiance and from passing our input coordinates through a high-frequency positional
encoding. Removing view dependence prevents the model from recreating the specular re-
flection on the bulldozer tread. Removing the positional encoding drastically decreases
the model’s ability to represent high frequency geometry and texture, resulting in an over-
smoothed appearance.

4.4.1 Positional encoding

Despite the fact that neural networks are universal function approximators [42], having the
network Fg directly operate on zyzf0¢ input coordinates results in renderings that perform
poorly at representing high-frequency variation in color and geometry, as described in the
previous chapter.

We reformulate Fg as a composition of two functions Fg = F o, a standard MLP
and a Fourier feature mapping, in order to significantly improve performance (see Fig. 4.4
and Table 4.2). Here ~ is specifically the “positional encoding” variant of Fourier feature
mapping, lifting the input component-wise from R into a higher dimensional space R?L.
Formally, the encoding function we use is:

v(p) = ( sin(2%7p), cos(2%7p), ---, sin(QL_lwp), cos(QL_lwp) ) (4.4)

This function ~y(+) is applied separately to each of the three coordinate values in x (which are
normalized to lie in [—1,1]) and to the three components of the Cartesian viewing direction
unit vector d (which by construction lie in [—1,1]). In our experiments, we set L = 10 for

v(x) and L = 4 for y(d).

4.4.2 Hierarchical volume sampling

Our rendering strategy of densely evaluating the neural radiance field network at N query
points along each camera ray is inefficient: free space and occluded regions that do not
contribute to the rendered image are still sampled repeatedly. We draw inspiration from
early work in volume rendering [63] and propose a hierarchical representation that increases
rendering efficiency by allocating samples proportionally to their expected effect on the final
rendering.
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Instead of just using a single network to represent the scene, we simultaneously optimize
two networks: one “coarse” and one “fine”. We first sample a set of N, locations using
stratified sampling, and evaluate the “coarse” network at these locations as described in
Eqns. 4.2 and 4.3. Given the output of this “coarse” network, we then produce a more
informed sampling of points along each ray where samples are biased towards the relevant
parts of the volume. To do this, we first rewrite the alpha composited color from the coarse
network C’c(r) in Eqn. 4.3 as a weighted sum of all sampled colors ¢; along the ray:

Ne
éc(r) = Zwicia w; = Ti(1 — exp(—0:d;)) . (4.5)
i=1

Normalizing these weights as w; = wi/s°Ne, w; produces a piecewise-constant PDF along the
ray. We sample a second set of Ny locations from this distribution using inverse transform
sampling, evaluate our “fine” network at the union of the first and second set of samples,
and compute the final rendered color of the ray C' ¢(r) using Eqn. 4.3 but using all N. + N;
samples. This procedure allocates more samples to regions we expect to contain visible
content. This addresses a similar goal as importance sampling, but we use the sampled
values as a nonuniform discretization of the whole integration domain rather than treating
each sample as an independent probabilistic estimate of the entire integral.

4.4.3 Implementation details

We optimize a separate neural continuous volume representation network for each scene (see
Figure 4.5 for architecture details). This requires only a dataset of captured RGB images
of the scene, the corresponding camera poses and intrinsic parameters, and scene bounds
(we use ground truth camera poses, intrinsics, and bounds for synthetic data, and use the
COLMAP structure-from-motion package [103] to estimate these parameters for real data).
At each optimization iteration, we randomly sample a batch of camera rays from the set of
all pixels in the dataset, and then follow the hierarchical sampling described in Sec. 4.4.2 to
query N, samples from the coarse network and N, 4+ Ny samples from the fine network. We
then use the volume rendering procedure described in Sec. 4.3 to render the color of each ray
from both sets of samples. Our loss is simply the total squared error between the rendered
and true pixel colors for both the coarse and fine renderings:

2

=% U)éc(r) - C’(r)H2 +

Cstr) -~ ot (16)

where R is the set of rays in each batch, and C(r), C.(r), and C(r) are the ground truth,
coarse volume predicted, and fine volume predicted RGB colors for ray r respectively. Note
that even though the final rendering comes from Of(r), we also minimize the loss of C,(r)
so that the weight distribution from the coarse network can be used to allocate samples in
the fine network.
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Figure 4.5: A visualization of our fully-connected network architecture. Input vectors are
shown in green, intermediate hidden layers are shown in blue, output vectors are shown in red,
and the number inside each block signifies the vector’s dimension. All layers are standard
fully-connected layers, black arrows indicate ReLLU activation, orange arrows indicate no
activation, dashed black arrows indicate sigmoid activation, and “4” denotes concatenation.
The positional encoding of the input location (vy(x)) is passed through 8 fully-connected
ReLU layers, each with 256 channels. We follow the DeepSDF [92] architecture and include
a skip connection that concatenates this input to the fifth layer’s activation. The penultimate
layer outputs the volume density o (passed through a ReLLU to ensure it is nonnegative) and
a 256-dimensional feature vector. This feature vector is concatenated with the positional
encoding of the input viewing direction (vy(d)), which is processed by a final layer with 128
channels. A sigmoid activation produces the emitted RGB radiance at position x, as viewed
by a ray with direction d.

In our experiments, we use a batch size of 4096 rays, each sampled at N, = 64 coordinates
in the coarse volume and Ny = 128 additional coordinates in the fine volume. We use the
Adam optimizer [54] with a learning rate that begins at 5 x 10™* and decays exponentially
to 5 x 1075 over the course of optimization (other Adam hyperparameters are left at default
values of 31 = 0.9, B> = 0.999, and € = 10~7). The optimization for a single scene typically
take around 100-300k iterations to converge on a single NVIDIA V100 GPU (about 1-2
days).

To render new views at test time, we sample 64 points per ray through the coarse network
and 64+ 128 = 192 points per ray through the fine network, for a total of 256 network queries
per ray. Our realistic synthetic dataset requires 640k rays per image, and our real scenes
require 762k rays per image, resulting in between 150 and 200 million network queries per
rendered image. On an NVIDIA V100, this takes approximately 30 seconds per frame.
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Diffuse Synthetic 360° [109] | Realistic Synthetic 360° | Real Forward-Facing [83]
Method | PSNRt SSIMt LPIPS| |PSNRY SSIM4 LPIPS)|PSNRY SSIM4 LPIPS|
SRN [110] | 33.20 0.963 0.073 22.26  0.846  0.170 22.84 0.668  0.378

NV [73] 29.62  0.929 0.099 26.05 0.893  0.160 - -
LLFF [83]| 34.38 0.985 0.048 24.88 0.911 0.114 24.13  0.798 0.212
Ours 40.15 0.991 0.023 31.01 0.947 0.081 | 26.50 0.811 0.250

Table 4.1: Our method quantitatively outperforms prior work on datasets of both synthetic
and real images. We report PSNR/SSIM (higher is better) and LPIPS [137] (lower is better).
The DeepVoxels [109] dataset consists of 4 diffuse objects with simple geometry. Our realistic
synthetic dataset consists of pathtraced renderings of 8 geometrically complex objects with
complex non-Lambertian materials. The real dataset consists of handheld forward-facing
captures of 8 real-world scenes (NV cannot be evaluated on this data because it only recon-
structs objects inside a bounded volume). Though LLFF achieves slightly better LPIPS, we
urge readers to view our supplementary video where our method achieves better multiview
consistency and produces fewer artifacts than all baselines.

4.5 Results

We quantitatively (Table 4.1) and qualitatively (Figs. 4.6 and 4.7) show that our method
outperforms prior work, and provide extensive ablation studies to validate our design choices
(Table 4.2). Our video results more clearly demonstrate our method’s significant improve-
ment over baseline methods when rendering smooth paths of novel views.

4.5.1 Datasets

Synthetic renderings of objects We first show experimental results on two datasets of
synthetic renderings of objects (Table 4.1, “Diffuse Synthetic 360°” and “Realistic Synthetic
360°”). The DeepVoxels [109] dataset contains four Lambertian objects with relatively simple
geometry. Each object is rendered at 512 x 512 pixels from viewpoints sampled on the
upper hemisphere (479 as input and 1000 for testing). We additionally generate our own
dataset containing pathtraced images of eight objects that exhibit complicated geometry and
realistic non-Lambertian materials. Six are rendered from viewpoints sampled on the upper
hemisphere, and two are rendered from viewpoints sampled on a full sphere. We render 100
views of each scene as input and 200 for testing, all at 800 x 800 pixels.

Real images of complex scenes We show results on complex real-world scenes captured
with roughly forward-facing images (Table 4.1, “Real Forward-Facing”). This dataset con-
sists of 8 scenes captured with a handheld cellphone (5 taken from the LLFF paper and 3
that we capture), captured with 20 to 62 images, and hold out 1/s of these for the test set.
All images are 1008 x 756 pixels.
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4.5.2 Comparisons

To evaluate our model we compare against current top-performing techniques for view syn-
thesis, detailed below. All methods use the same set of input views to train a separate
network for each scene except Local Light Field Fusion [83], which trains a single 3D con-
volutional network on a large dataset, then uses the same trained network to process input
images of new scenes at test time.

Neural Volumes (NV) [73] synthesizes novel views of objects that lie entirely within
a bounded volume in front of a distinct background (which must be separately captured
without the object of interest). It optimizes a deep 3D convolutional network to predict a
discretized RGBa voxel grid with 1283 samples as well as a 3D warp grid with 322 samples.
The algorithm renders novel views by marching camera rays through the warped voxel grid.

Scene Representation Networks (SRIN) [110] represent a continuous scene as an
opaque surface, implicitly defined by a MLP that maps each (x,y, z) coordinate to a feature
vector. They train a recurrent neural network to march along a ray through the scene
representation by using the feature vector at any 3D coordinate to predict the next step size
along the ray. The feature vector from the final step is decoded into a single color for that
point on the surface. Note that SRN is a better-performing followup to DeepVoxels [109] by
the same authors, which is why we do not include comparisons to DeepVoxels.

Local Light Field Fusion (LLFF) [83] LLFF (described in Chapter 2) is designed
for producing photorealistic novel views for well-sampled forward facing scenes. It uses a
trained 3D convolutional network to directly predict a discretized frustum-sampled RGBa«
grid (multiplane image or MPI [140]) for each input view, then renders novel views by alpha
compositing and blending nearby MPIs into the novel viewpoint.

4.5.3 Ablation studies

We validate our algorithm’s design choices and parameters with an extensive ablation study
in Table 4.2. We present results on one of our synthetic scenes with complex geometry
and non-Lambertian materials (Lego). Row 9 shows our complete model as a point of
reference. Row 1 shows a minimalist version of our model without positional encoding
(PE), view-dependence (VD), or hierarchical sampling (H). In rows 2-4 we remove these
three components one at a time from the full model, observing that positional encoding
provides the largest quantitative benefit of these three contributions (row 2), followed by
view-dependence (row 3), and then hierarchical sampling (row 4). Rows 56 show how our
performance decreases as the number of input images is reduced. Note that our method’s
performance using only 25 input images still exceeds NV, SRN, and LLFF across all metrics
when they are provided with 100 images. In rows 7-8 we validate our choice of the maximum
frequency L used in our positional encoding for x (the maximum frequency used for d is
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Input #Im. L (N,, N;)|PSNRT SSIMt LPIPS|
1) No PE, VD, H xyz 100 - (256, -) | 26.67 0.906 0.136
2) No Pos. Encoding xyzh¢p 100 - (64, 128) | 28.77 0.924 0.108
3) No View Dependence | xyz 100 10 (64, 128) | 27.66 0.925 0.117
4) No Hierarchical xyzf¢p 100 10 (256, - ) | 30.06 0.938  0.109
5) Far Fewer Images xyzfp 25 10 (64,128) | 27.78 0.925  0.107
6) Fewer Images zyzf¢ 50 10 (64, 128) | 29.79  0.940  0.096
7) Fewer Frequencies xyzf¢p 100 5 (64, 128) | 30.59 0.944  0.088
8) More Frequencies zyz0¢ 100 15 (64 128) 30.81 0.946  0.096
9) Complete Model xyzf¢p 100 10 (64, 128) | 31.01 0.947 0.081

Table 4.2: An ablation study of our model. Metrics are averaged over the 8 scenes from our
realistic synthetic dataset. See Sec. 4.5.3 for detailed descriptions.

scaled proportionally). Only using 5 frequencies reduces performance, but increasing the
number of frequencies from 10 to 15 does not improve performance. We believe the benefit
of increasing L is limited once 2% exceeds the maximum frequency present in the sampled
input images (roughly 1024 in our data).

4.6 Discussion

NeRF outperforms both compared methods that use direct optimization to also train one
network per scene (NV [73] and SRN [110]). It also produces superior renderings to the feed-
forward prediction method LLFF (Chapter 2 and [83]) without requiring a large external
training dataset.

The SRN method also represents each scene using an MLP but can only generate blurry,
low-frequency reconstructions, likely due to the fact that it does not use a Fourier feature
mapping to encode the input coordinates. Its representational power for view synthesis is
also limited by its surface rendering model that only calculates color at a single point on
each camera ray. The NV baseline is able to capture reasonably detailed volumetric geom-
etry and appearance, but its use of an underlying discrete 1283 voxel grid prevents it from
scaling to represent fine details at high resolutions. LLFF specifically provides a “sampling
guideline” to not exceed 64 pixels of disparity between input views (see Section 2.5.1), so it
frequently fails to estimate correct geometry in the synthetic datasets, which contain up to
400-500 pixels of disparity between views. Additionally, LLFF interpolates between different
local scene representations for rendering different views, resulting in perceptually distracting
inconsistency when rendering smooth camera paths.

The biggest practical tradeoffs between these methods are time versus space. All com-
pared direct optimization methods that optimize a global representation per-scene take at
least 12 hours to train. In contrast, as a feed-forward method, LLFF can process a small
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input dataset in under 10 minutes. However, the large 3D voxel grid generated for every
input image by LLFF result in enormous storage requirements (over 15GB for one “Realistic
Synthetic” scene). NeRF requires only 5 MB for the network weights (a relative compression
of 3000x compared to LLFF), which is even less memory than the input images alone for a
single scene from any of our datasets.

In summary, NeRF directly addresses deficiencies of prior work that uses MLPs as a global
representation for objects and scenes as continuous functions by incorporating a Fourier
feature mapping and adopting a volume rendering forward model. We demonstrate that
representing scenes as 5D neural radiance fields (an MLP that outputs volume density and
view-dependent emitted radiance as a function of 3D location and 2D viewing direction)
produces better renderings than the previously-dominant approach of training deep convo-
lutional networks to output discretized voxel representations.
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Materials

Ground Truth NeRF (ours) LLFF [83] SRN [110] NV [73]

Figure 4.6: Comparisons on test-set views for scenes from our new synthetic dataset gen-
erated with a physically-based renderer. Our method is able to recover fine details in both
geometry and appearance, such as Ship’s rigging, Lego’s gear and treads, Microphone’s shiny
stand and mesh grille, and Material’s non-Lambertian reflectance. LLFF exhibits banding
artifacts on the Microphone stand and Material’s object edges and ghosting artifacts in
Ship’s mast and inside the Lego object. SRN produces blurry and distorted renderings in
every case. Neural Volumes cannot capture the details on the Microphone’s grille or Lego’s
gears, and it completely fails to recover the geometry of Ship’s rigging.



CHAPTER 4. NEURAL RADIANCE FIELDS 65

Fern
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Ground Truth NeRF (ours) LLFF [83] SRN [110]

Figure 4.7: Comparisons on test-set views of real world scenes. LLFF is specifically designed
for this use case (forward-facing captures of real scenes). Our method is able to represent
fine geometry more consistently across rendered views than LLFF, as shown in Fern’s leaves
and the skeleton ribs and railing in 7-rex. Our method also correctly reconstructs partially
occluded regions that LLFF struggles to render cleanly, such as the yellow shelves behind
the leaves in the bottom Fern crop and green leaves in the background of the bottom Orchid
crop. Blending between multiples renderings can also cause repeated edges in LLFF, as seen
in the top Orchid crop. SRN captures the low-frequency geometry and color variation in
each scene but is unable to reproduce any fine detail.
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Chapter 5

Conclusion

Even in the short time since the work in this dissertation was originally published, various
groups have made large strides toward productionizing practical and robust view synthesis
systems based on feed-forward machine learning. Broxton et al. [10] at Google have de-
veloped a system (building on their earlier work in Overbeck et al. [91] and Flynn et al.
[28]) that can capture, reconstruct, compress, and render high quality light field video using
input data captured by a spherical array of 46 cameras, releasing reconstructed scenes that
can be viewed in a virtual reality headset or even directly in a web browser. Kopf et al.
[56] recently incorporated a “3D photography” feature directly into the Facebook app that
is optimized to run in a few seconds on a mobile device, using monocular depth estimation
to add a 3D viewing effect to any user-uploaded photo.

The simple global scene representation, volumetric rendering method, and optimization
algorithm described in NeRF have served as a basis for a number of followup papers that
improve and build upon the original in various ways, such as

e Extending the representation to include material properties, allowing the recovered
scene to be rendered under new lighting conditions [6, 8, 112],

e Speeding up the rendering process via spatial decomposition [69, 101] or directly learn-
ing volume rendering integrals [68],

e Allowing recovery and rendering of deformable [93, 97] or dynamic [30, 66, 130] scenes,

e Recovering a radiance field from one or few images by training over many example
scenes [31, 118, 120, 135],

e Creating purely generative models for 3D shapes from a particular class (such as human
faces, chairs, or cars) [13, 85, 104],

e Generalizing to scenes where the input images are taken under many different lighting
and appearance conditions [77, 118].
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Seeing such rapid progress less than a year after NeRF'’s release has been incredibly excit-
ing, and I am certain that the future has many more developments in store. One of the
most intriguing directions is investigating the inner workings of these coordinate-based neu-
ral representations. As a community, we have largely borrowed the same conventions used
when training large feed-forward convolutional neural networks despite applying them to a
radically different use case. I am optimistic that further work will uncover different optimiz-
ers, architectures, and training schemes that can further improve the performance of these
networks, making them even more appealing as differentiable compressed representation to
use in-the-loop for inverse rendering tasks and other applications.

The questions raised in the introduction are far from settled. Local interpolation meth-
ods based on warping and blending pixels from the input images can achieve convincing
results in many scenarios and will likely continue to be used where a limited compute budget
makes generating a global reconstruction infeasible. Volume rendering is straightforward to
implement in array-based deep learning frameworks, but recent work on using implicit differ-
entiation to calculate gradients for surface-based neural representations has shown promising
results on recovering 3D shape from images [86], particularly when combined with positional
encoding [133]. Even in cases where volume rendering is used during optimization, convert-
ing the reconstructed scene into a surface-based representation would likely make rendering
new views much more efficient. Permutation-invariant [1] and attention-based network lay-
ers [122] may provide a solution to the problem of passing arbitrary numbers of input views
through a feed-forward network, allowing them to feasibly be used for global reconstruction
and thus sidestepping the time-consuming process of directly optimizing a new network for
every scene; this idea has already begun to be explored by followup work to NeRF [120,
135]. Hybrid approaches may combine the best of both worlds, such as passing gradient
information into a feed-forward network to allow it to refine its output iteratively [28], or
fine-tuning a feed-forward network’s initial output using direct optimization on a specific
scene to achieve higher quality [75]. As the purview of deep learning continues to expand
into a more general realm of differentiable computing, I expect to see many further innova-
tions in how we represent, render, and reconstruct scenes for view synthesis.

The most important takeaway from NeRF is that a simple approach works: given enough
input images, directly optimizing a sufficiently expressive scene representation to reproduce
those inputs using basic gradient descent produces a high-quality reconstruction. By no
means is NeRF the end of the line for view synthesis—rather, its simplicity makes it an
optimal starting point for a wide variety of exciting extensions and new applications (as we
have already seen!). I eagerly anticipate further progress that continues to make it easier
for anyone to generate, modify, and share 3D content freely, and I believe that making 3D
data as ubiquitous as 2D imagery is today will spur people to develop creative tools and
applications that greatly exceed the current limits of our imagination.
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