
Learning to Detect Geometric Structures from Images for
3D Parsing

Yichao Zhou

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-227
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-227.html

December 18, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Learning to Detect Geometric Structures from Images for 3D Parsing

by

Yichao Zhou

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Yi Ma, Chair
Professor Jitendra Malik

Professor Yasutaka Furukawa
Professor Sara Mcmains

Fall 2020

Learning to Detect Geometric Structures from Images for 3D Parsing

Copyright 2020
by

Yichao Zhou

1

Abstract

Learning to Detect Geometric Structures from Images for 3D Parsing

by

Yichao Zhou

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yi Ma, Chair

Recovering 3D geometries of scenes from 2D images is one of the most fundamental and
challenging problems in computer vision. On one hand, traditional geometry-based algo-
rithms such as SfM and SLAM are fragile in certain environments, and the resulting noisy
point-clouds are hard to process and interpret. On the other hand, recent learning-based 3D-
understanding neural networks parse scenes by extrapolating patterns seen in the training
data, which often have limited generalizability and accuracy.

In my dissertation, I try to address these shortcomings and combine the advantage of
geometric-based and data-driven approaches into an integrated framework. More specifi-
cally, I have applied learning-based methods to extract high-level geometric structures from
images and use them for 3D parsing. To this end, I have designed specialized neural networks
that understand geometric structures such as lines, junctions, planes, vanishing points, and
symmetry, and detect them from images accurately; I have created large-scale 3D datasets
with structural annotations to support data-driven approaches; and I have demonstrated how
to use these high-level abstractions to parse and reconstruct scenes. By combining the power
of data-driven approaches and geometric principles, future 3D systems are becoming more
accurate, reliable, and easier to implement, resulting in clean, compact, and interpretable
scene representations.

i

To my parents for their love and support

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

2 Detecting Geometric Structures from Images 5
2.1 Learning to Detect Wireframes . 5
2.2 Learning to Detect Vanishing Points . 19
2.3 Learning to Detect Reflection Symmetry . 30

3 Datasets for Scene Abstraction 45
3.1 SU3: The SceneCity Urban 3D Synthetic Dataset 45
3.2 L3W: The Landmark 3D Wireframe Dataset 47
3.3 HoliCity: The Holistic City-Scale Data Platform 48

4 Structure-Based 3D Parsing 62
4.1 Learning to Reconstruct 3D Manhattan Wireframes from a Single Image . . 62
4.2 Learning to Estimate Depth from Reflection Symmetry 74

5 Conclusion 80
5.1 Future Work . 80

Bibliography 82

iii

List of Figures

1.1 Examples of structures in man-made environments 2
1.2 The structure diagram of the thesis . 3

2.1 An overview of the network architecture of L-CNN 7
2.2 Illustration of the sampling methods in L-CNN 10
2.3 Demonstration of the problems in heat map-based metrics for wireframe parsing 13
2.4 Precision recall curves on wireframe parsing (L-CNN) 16
2.5 Qualitative comparison on wireframe parsing (L-CNN) 18
2.6 Illustration of 3× 3 conic convolution . 22
2.7 Illustration of the network structure of NeurVPS 22
2.8 Illustration of the Gaussian sphere representation and coarse-to-fine inference . . 24
2.9 Illustration of the variables used in uniform spherical cap sampling 24
2.10 Angle accuracy curves for different methods on the SU3 wireframe dataset [182]. 28
2.11 Angle accuracy curves for different methods on the Natural Scene dataset [184]. 28
2.12 Angle accuracy curves for different methods on the ScanNet dataset [27]. 28
2.13 Consistency measure on the Nature Scene dataset [184]. 29
2.14 Illustration of 2D and 3D reflection symmetry reconstruction 32
2.15 Illustration of reflection symmetry with two points 34
2.16 Pipeline of NeRD . 36
2.17 Symmetry detection process and coarse-to-fine inference of NeRD 37
2.18 Performance curves of symmetry detection algorithms. 40
2.19 Qualitative results of symmetry detection on Pix3D 41
2.20 Qualitative results of symmetry detection on ShapeNet 42
2.21 Illustration of the coarse-to-fine inference on sampled images from ShapeNet . . 43
2.22 Sampled failure cases of NeRD on ShapeNet . 43

3.1 Sampled images in the SU3 dataset . 46
3.2 Sampled images in the L3W datasets . 47
3.3 Overview of HoliCity . 49
3.4 Images and generated 3D information of HoliCity 50
3.5 Statistics of HoliCity . 53
3.6 User interface of the HoliCity annotation tool 56
3.7 Qualitative results of models evaluated on HoliCity 57

iv

3.8 Qualitative results of models evaluated on MegaDepth 58
3.9 Qualitative results of models evaluated on SYNTHIA 58

4.1 Results of our method tested on a synthetic image and a real image 63
4.2 Overall pipeline of the proposed method . 64
4.3 Comparison with [63] on 2D wireframe detection 73
4.4 Depth refinement with vanishing points. 74
4.5 Results on the synthetic SceneCity image dataset 75
4.6 Results of 3D wireframe on real images from MegaDepth. 75
4.7 Qualitative results on the task of of depth estimation 78

v

List of Tables

2.1 Ablation study of L-CNN . 15
2.2 Performance comparison on wireframe parsing 16
2.3 Ablation study of NeurVPS . 27
2.4 Performance of vanishing point detection algorithms on the Natural Scene dataset 30
2.5 Performance of vanishing point detection algorithms on ScanNet 30
2.6 Ablation study of NeRD on ShapeNet. 39
2.7 Performance of symmetry detection on ShapeNet 40
2.8 Performance of symmetry detection algorithms on Pix3D 40

3.1 Comparing HoliCity with existing 3D datasets 51
3.2 Results of surface segmentation and normal estimation on HoliCity 61
3.3 Results of surface segmentation on HoliCity and SYNTHIA 61

4.1 Ablation study of multi-task learning on 3D wireframe parsing 72
4.2 Performance comparison for vanishing point detection (3D Wireframe) 73
4.3 Quantitative results on the task of depth estimation on ShapeNet 78

vi

Acknowledgments

First, I would like to express my sincere gratitude and thanks to my advisor, Professor Yi Ma.
Unlike most Ph.D. students, I joined Yi’s group at the end of the third year of my journey
and became his first Ph.D. student at UC Berkeley. In this short period of time, Professor
Yi provides me not only with academic advice, but also numerous life suggestions. From
Professor Yi, I learned how to think from a high-level and long-term perspective, instead of
getting stuck on the nitty-gritty. I will not be in this stage without his support and guidance.

Second, I want to thank Professor Leonidas J. Guibas from Stanford University, who
is a member of my qualification exam committee. He drove all the way from Stanford
to UC Berkeley to attend my qualification exam, which I feel really grateful for. He also
provided me with helpful suggestions and we collaborated on several projects. Besides, I
also want to thank all the other members of my dissertation committee: Professor Yasutaka
Furukawa, Professor Jitendra Malik, and Professor Sara Mcmains, for their time of providing
me guidance and attending my dissertation talk.

During the pursuit of my Ph.D. degree, I have met many smart and friendly collabora-
tors. There is one person who I want to specifically thank, Dr. Jingwei Huang from Stanford
University. He is not only a reliable collaborator, but also a close friend of mine. He in-
troduced me into the world of 3D reconstruction, and we collaborated on multiple projects
related to traditional geometry processing techniques and more recently learning-based al-
gorithms. I also want to thank Shichen Liu from UCSD. He always responses to my random
research ideas promptly and is a good Starcraft II player. Moreover, I want to thank Haozhi
Qi from Yi Ma’s group, who is truly an expert in instance segmentation. He inspires me to
use techniques from object detection into the problem of wireframe detection. In addition,
I want to thank all the other students in Berkeley that I have worked with: Xili Dai, Simon
Zhai, Chong You, and Yaodong Yu, Cecilia Zhang, Biye Jiang, just to name a few, for the
insightful discussions and smooth collaboration.

Furthermore, I would like to thank all the mentors I met during my summer internship.
Many of my research ideas will not come true without their kind help. Qi Sun and Li-Yi
Wei were my mentors in Adobe Research, who provided me detailed guidance in the initial
stage of the research covered in this dissertation. Linjie Luo is my mentor from Bytedance.
I appreciate his help in the project of HoliCity. I had a great time working with Wei Chu
from Snap Inc. and Sam Young at UCLA on the Beatles-style music composition project.
I also want to thank Jing Liu, James Davis, and Eric Chen from Bellus3D, who supervised
me on my first 3D project since being a Ph.D. student.

Last but not least, I feel grateful for the unconditional love from my parents all the time.
My dad always encourages me to explore the outside world and step out of my comfort
zone to be stronger, while my mom teaches me how to become a more mature person, and
she always provides help to me whenever I need it. Finally, I sincerely want to thank my
girlfriend for being so supportive of my Ph.D. career. You make me a better person.

1

Chapter 1

Introduction

1.1 Motivation

In the past decades, we have witnessed an increasing demand for 3D vision technologies.
Traditional geometry-based reconstruction algorithms such as structure-from-motion (SfM)
and simultaneous localization and mapping (SLAM) have been successfully applied to tasks
such as autonomous driving, robotics, mapping, and augmented reality. Leading 3D vision
products, such as Hololens and Apple ARkit, have been able to localize themselves and
reconstruct the environment. The underlying localization and reconstruction algorithms
might differ slightly depending on the configuration of input sensors, but they all rely on
these three components: (1). Feature extraction & matching; (2). Camera pose estimation;
and (3). Triangulation. From a stereo pair of images or videos, they first extract local
point features such as SIFT [3], ORB [126], or Shi–Tomasi [130], and track them to build
the inter-frame correspondence. Next, they apply multi-view geometry algorithms such as
the 5-point algorithm [113] and P3P [43] along with RANSAC [21] and bundle adjustment
[142] to estimate the relative camera poses. Finally, they triangulate detected feature points
with the camera poses to determine the depth of each feature point and reconstruct sparse
point-clouds.

Although the robustness of SfM has been improved over the last decades, it is known that
these traditional geometric reconstruction systems are fragile under certain environments.
Specifically, they are unreliable when scenes are textureless, reflective, repetitive, far away
(small baseline), or contain moving objects. Furthermore, the scene representation remains
quasi-dense point-clouds, which are typically incomplete, noisy, hard to parse, and cumber-
some to share. Intricate failure handling and post-processing procedures such as plane fitting
[60] and Poisson surface reconstruction [74] are often necessary for downstream applications.
Increasingly have people found that such a long pipeline of 3D reconstruction is difficult to
implement correctly and efficiently, and results in a low-level representation (point-clouds)
are also unfriendly for parsing, editing, and sharing.

The recent success of deep convolutional neural networks (CNNs) in image classification

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Examples of structures in man-made environments, including lines, smoothed
curves, flat surfaces, parallelism, orthogonality, and symmetry.

[52] and object detection [53] have shown the potentials of data-driven approaches, which
inspires researchers that it is possible to directly predict the 3D information from images
by interpolation from data with machine learning methods instead of relying on geometry
principles. With an encoder-decoder structures [93], neural network is able to predict a
variety of 3D representations from single images, such as camera poses [158], 3D bounding
boxes [109], depth maps [33], point-clouds [117], meshes [92], voxels [133], and implicit
surfaces [106]. On some tasks, 3D deep learning-based neural networks have shown the
state-of-the-art performance, such as shape reconstruction [92], multiview stereopsis [16],
and single-view depth estimation [32].

However, unlike SfM and SLAM algorithms that use geometry cues to reconstruct 3D
scenes, learning-based approaches predict 3D representations by extrapolating patterns seen
during the training time. Therefore, the generalizability of these neural networks is severely
limited, which leads to poor real-world performance. In fact, recent research indicates that
all these existing single-view 3D inference networks with encoder-decoder structures do not
perform better than a simple baseline which does image classification followed by 3D model
retrieval [139]. This indicates that most 3D reconstruction neural networks can only “clas-
sify” rather than “reconstruct”. Therefore, for tasks such as SfM and visual odometry that
require high precision and good generalizability, neural network-based approaches still largely
fall behind traditional geometry-based methods [149].

CHAPTER 1. INTRODUCTION 3

3D PARSING

STRUCTURES
NeRD: Neural

3D Reflection

Symmetry

Detector

DATASETS

Learning to Reconstruct

3D Wireframes from

Single Images

NeurVPS:

Neural Vanishing

Point Scanner via

Conic Convolution

L-CNN:

End-to-end

Wireframe

Parsing

HoliCity: A City-Scale

Data Platform for Learning

Holistic 3D Structures

SceneCity Urban 3D

Dataset & Landmark 3D

Wireframe Dataset

Learning to Detect

3D Reflection Symmetry

for Single-View

Depth Reconstruction

Figure 1.2: The structural diagram of the dissertation.

1.2 Contributions

One may wonder that under the setting of single-image 3D understanding, whether it is
possible to do better than the data-driven neural networks in principle. After all, the problem
itself seems to be fairly ill-posed from the geometric perspective, because there are no obvious
constraints between the input RGB image and underlying 3D shapes from a single view. One
way to tackle this problem is to take a look at the type of images that we normally deal
with, as shown in Figure 1.1. In practice, most of the scenes that we interact with, indoor
or outdoor, are man-made environments, which are rich in structural regularities, including
straight lines, smooth curves, flat surfaces, parallelism, orthogonality, and different kinds
of symmetries (reflectional, translational, and rotational). These structural regularities are
prominent from a single image, which provides us strong priors for inferring 3D shapes.

Looking back at the origin of computer vision from the ’70s, early vision scientists have
already found that human beings abstract scenes with structural primitives, such as corners,
line segments, and planes, to form our sense of 3D, navigate in cities and interact with envi-
ronments [23]. This hints that instead of using low-level representation such as point-clouds,
we can also use high-level geometric structures to represent scenes, which in many cases
are more global, compact, intuitive, and easy to process. Early vision research does focus
on understanding scenes with high-level abstractions, such as lines/wireframes [35], van-
ishing points [7], contours/boundaries [135], planes/surfaces [71], and cuboids/polyhedrons
[123]. These high-level abstractions are often called holistic structures, as they tend to rep-
resent scenes globally, comparing to the SIFT-like local features. However, the recognition
of holistic structures from images seems too challenging to be practical at that time. 3D
reconstruction with high-level structures does not get enough attention despite its potentials,
until recently.

With the rise of deep convolutional neural networks [83], detecting high-level structures

CHAPTER 1. INTRODUCTION 4

is becoming practical. Researchers have proposed a variety of neural networks to extract
high-level structures, such as wireframes [63], planes [90], cuboids [109], room layouts [185],
and building layouts [171]. This hints that we may use learning-based approaches to detect
geometric structures from images for 3D parsing, in which the high-level geometric structures
serves as a bridge between the methods of “3D-from-geometry” and “3D-from-data”.

The goal of my research is to develop principled algorithms that can accurately and
robustly understand the 3D and reconstruct scenes with high-quality CAD-like models. To
achieve that, I use geometric structures as pivots to integrate geometric-based methods and
data-driven approaches into a unified framework. More specifically, I apply learning-based
methods to extract high-level geometric structures from images and use them for 3D parsing.
To this end, I have designed specialized neural networks that understand geometric structures
such as lines, junctions, planes, vanishing points, and bilateral symmetry, and accurately
detect them from images (Chapter 2); I have created several 3D datasets with structural
annotations to support data-driven approaches (Chapter 3); and I have demonstrated how
to use these high-level abstractions to parse and reconstruct scenes (Chapter 4). With the
advancement in these tracks, future 3D systems will have better generalization capability
and become more efficient, robust, and accurate. The output 3D representations will also be
compact, semantically meaningful, and friendly for human perception, interpretation, and
interaction, as well as easily and efficiently shared among autonomous agents.

5

Chapter 2

Detecting Geometric Structures from
Images

In this chapter, we will introduce our data-driven approaches to extract high-level geometric
structures from images, including wireframes (Section 2.1), vanishing points (Section 2.2),
and reflectional symmetry (Section 2.3). The methods described in this chapter have been
published in [180, 183, 179].

2.1 Learning to Detect Wireframes

2.1.1 Introduction

Recent progress in image classification [52] and large-scale datasets [83] has made it possible
to recognize, extract, and utilize high-level geometric features or global structures of a scene
for image-based 3D reconstruction. Unlike local features such as SIFT [95] and ORB [126]
used in conventional 3D reconstruction systems such as structure from motion (SfM) and
visual SLAM, high-level geometric features provide more salient and robust information
about the global geometry of the scene. This line of research has drawn interests on the
exploration of extracting structures such as lines and junctions (wireframes) [63], planes
[164, 90], surfaces [48], and room layouts [185].

Among all the high-level geometric features, straight lines and their junctions (together
called a wireframe [63]) are probably the most fundamental elements that can be used to
assemble the 3D structures of a scene. Recently, works such as [63] encourages the research
of wireframe parsing by providing a well-annotated dataset, a learning-based framework, as
well as a set of evaluation metrics. Nevertheless, existing wireframe parsing systems are
intricate and still inadequate for complex scenes with complicated line connectivity. The
goal of this paper is to explore a clean and effective solution to this challenging problem.

Existing researches [63, 162] address the wireframe parsing problem with two stages.
First, an input image is passed through a deep convolutional neural network to generate pixel-

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 6

wise junction and line heat maps (or their variants [162]). After that, a heuristic algorithm
is used to search through the generated heat map to find junction positions, vectorized
line segments, and their connectivity. While these methods are intuitive and widely used
in the current literature, their vectorization algorithms are often complex and rely on a
set of heuristics, and thus sometimes lead to inferior solutions. Inspired by [28, 53, 45] in
which the end-to-end pipelines outperform their stage-wise counterparts, we hypothesis that
making wireframe parsing systems end-to-end trainable could also push the state-of-the-arts.
Therefore, in this paper we address the following problem:

How to learn a vectorized representation of wireframes in an end-to-end trainable
fashion?

To this end, we propose a new network called L-CNN, an algorithm that performs end-
to-end wireframe parsing using a single and unified neural network. Our network can be
split into four parts: a feature extraction backbone, a junction proposal module, and a line
verification module bridged by a line sampling module. Taken an RGB image as the input,
the neural network directly generates a vectorized representation without using heuristics.
Our system is fully differentiable and can be trained end-to-end through back-propagation,
enabling us to fully exploit the power of the state-of-the-art neural network architectures to
parse the scenes.

Besides, current wireframe evaluation metrics treat a line as a collection of independent
pixels, so it cannot take the correctness of line connectivity into consideration, as discussed
in Section 2.1.4.3. To evaluate such structural correctness of a wireframe, we introduce a new
evaluation metric. Our new proposed metric uses line matching to calculate the precision
and recall curves on vectorized wireframes. We perform extensive experiments on wireframe
datasets [63] and carefully do the ablation study on the effects of different system design
choices.

2.1.2 Related Work

Line Detection: Line detection is a widely studied problem in computer vision. It aims to
produce vectorized line representation from images. Traditional methods such as [134, 146]
detect lines based on local edge features. Recently, [162] combines the deep learning-based
features with the line vectorization algorithm from [146]. Unlike the wireframe representa-
tion, traditional line detection algorithms do not provide the information about junctions
and how lines and junctions are connected to each other, which limits its application in scene
parsing and understanding.

Wireframe Parsing: [63] proposes the wireframe parsing task. The authors train two
separate neural networks to predict junction and line heat maps from an input image. Af-
ter that, the two predictions are combined using a heuristic wireframe fusion algorithm to
produce the final vectorized output. Although it is intuitive and can produce reasonable

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 7

L
in

e S
am

p
ler

LoI Pooling

Conv

C
o
n
v
N
e
t

✓

✓

✗

junction

heatmap
line

proposal

line featurebackbone

Line verification network

Figure 2.1: An overview of the network architecture of L-CNN.

results, such two-stage process prevents the benefits of end-to-end training. In contrast, our
framework is based on a single end-to-end trainable neural network, which directly delivers
a vectorized wireframe representation as the output.

Instance-level Recognition: At the technical level, our method is inspired by instance-
level recognition frameworks such as Fast R-CNN [45], Faster R-CNN [121], and Corner-
Net [84]. Our pipeline and LoI pooling (Section 2.1.3.6) are conceptually similar to the RoI
pooling in Faster R-CNN and Fast R-CNN. Both methods first generate a set of proposals
and extract features to classify these proposes. The difference is that in [121, 45], the candi-
date proposals are generated by a sliding window fashion while our proposals are generated
by connecting salient junctions (line sampler module in Section 2.1.3.5). In this sense, the
proposal generation procedure is also similar to what is used in point-based object detection
[84, 177]. The difference lies in how to discriminate between true lines and false positives.
They use either similarity between points feature embedding [84] or the classification score
in the geometric center of several salient points [177] while ours extracts features to feed into
a small neural network (line verification network in Section 2.1.3.6).

2.1.3 Methods

2.1.3.1 Data Representation

Our representation of wireframes is based on the notation from graph theory. It can also
be seen as a simplified version of the wireframe definition in [63]. Let W = (V,E) be the
wireframe of an image, in which the V is the set of junction indices and E ⊆ V×V is the set

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 8

of lines represented by the pair of junction endpoints in V. For each i ∈ V, we use pi ∈ R
2

to represent the (ground truth) coordinate of the junction i in the image space.

2.1.3.2 Overall Network Architecture

Figure 2.1 illustrates the L-CNN architecture. It contains four modules: 1) a feature ex-
traction backbone (Section 2.1.3.3) that takes a single image as the input and provides
shared intermediate feature maps for the successive modules; 2) a junction proposal module
(Section 2.1.3.4) which outputs the candidate junctions; 3) a line sampling module (Sec-
tion 2.1.3.5) that outputs line proposals based on the output junctions from the junction
proposal module; 4) a line verification module (in Section 2.1.3.6) which classifies the pro-
posed lines. The output of L-CNN are the positions of junctions and the connectivity matrix
among those junctions. Our system is fully end-to-end trainable with stochastic gradient
descent.

2.1.3.3 Backbone Network

The function of the backbone network is to extract semantically meaningful features for the
successive modules of L-CNN. We choose stacked hourglass network [112] as our backbone for
its efficiency and effectiveness. Input images are resized into squares. The stacked hourglass
network first downsamples the input images twice in the spatial resolution via two 2-strided
convolution layers. After that, learned feature maps are gradually refined by multiple U-
Net-like modules [124] (the hourglass modules) with intermediate supervision imposed on
the output of each module. The total loss of the network is the sum of the loss on those
modules.

2.1.3.4 Junction Proposal Module

Junction Prediction. We use a simplified version of [63] to estimate the candidate junc-
tion locations in the wireframe. An input image with resolution W ×H is first divided into
Wb × Hb bins. For each bin, the neural network predicts whether there exists a junction
inside it, and if yes, it also predicts the its relative location inside this bin. Mathematically,
the neural network outputs a junction likelihood map J and an offset map O. For each bin
b, we have

J(b) =

{

1 ∃i ∈ V : pi ∈ b,

0 otherwise

and

O(b) =

{

(b− pi)/Wb ∃i ∈ V : pi ∈ b,

0 otherwise.

where b represents the location of bin b’s center and p represents the location of a vertex in
V.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 9

To predict J and O, we design a network head that consists of two 1 × 1 convolution
layers to transform the feature maps into J and O. We treat the problem of prediction J as a
classification problem and use the average binary cross entropy loss. We use ℓ2 regression to
predict the offset mapO. As the range of offsetO(b) is bounded by [−1/2, 1/2)×[−1/2, 1/2),
we append a sigmoid activation with offset −0.5 after the head to normalize the output. The
loss on O is averaged over the bins that contain ground-truth junctions for each input image.

Non-Maximum Suppression. We apply non-maximum suppression (NMS) to remove
duplicates around correct predictions. We use the same mechanism for remove blurred score
map around correct predictions and get J ′(b) as:

J ′(b) =

{

J(b) J(b) = maxb′∈N (b) J(b
′)

0 otherwise,

where N (b) represents the 8 nearby bins around b. Here, we suppress the pixel values
that are not the local maxima on the junction map. Such non-maximum suppression can
be implemented with a max-pooling operator. The final output of the junction proposal
network is the top K junction positions {p̂i}Ki=1 with the highest probabilities in J ′.

2.1.3.5 Line Sampling Module

Given a list of K best candidate junctions {p̂i}Ki=1 from the junction proposal module, the
purpose of the line sampling module is to generate a list of line candidates {Lj}Mj=1 =
{(p̃1

j , p̃
2
j)}Mj=1 during the training stage so that the line verification network can learn to

predict the existence of a line. Here p̃1
j and p̃2

j represents the coordinates of two endpoints of
the jth candidate line segment. In this task, the amount of positive samples and negatives
samples are extremely unbalanced, we address this issue by carefully design the sampling
mechanism as stated below.

Static Line Sampler. For each image, the static line sampler returnsNS+ positive samples
and NS− negative samples that are directly derived from the ground truth labels. We call
them static samples since they are irrelevant to the predicted candidate junction positions.
Positive line samples are uniformly sampled from all the ground truth lines, denoted by
S
+, with the ground truth coordinate of the corresponding junctions. The number of total

negative line samples is O(|V|2), which is huge compared to the number of positive samples
O(|E|). To alleviate the problem, we sample the negative lines from S

−, a set of negative
lines that are potentially hard to classify. We use the following heuristic to compute the S−:
we first rasterize all the ground truth lines onto a 64× 64 low-resolution bitmap. Then, for
each possible connections formed by a pair of ground truth junctions that is not a ground
truth line, we define its hardness score to be the average pixel density on the bitmap along
this line. For each image, S− is set to be the top 2000 lines with the highest hardness scores.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 10

(a) Ground truth (b) Example of S+ (c) Example of S−

(d) Example of D∗ (e) Example of D+ (f) Example of D−

Figure 2.2: Illustration of our sampling methods. Red circles represent the ground truth
junctions, red lines represent the ground truth lines, green squares represent the predicted
junctions, and blue lines represent the candidate lines in the static and dynamic samplers.

Dynamic Line Sampler. In contrast to the static line sampler, the dynamic line sampler
samples the lines using the predicted junctions from the junction proposal module. The
sampler first matches all the predicted junctions to the ground truth junction. Let mi :=
argminj ‖p̂i − pj‖2 be the index of the best matching ground truth junction for the ith
junction candidates. If the ℓ2-distance between p̂i and pmi

is less than the threshold η, we
say that the junction candidate p̂i is matched. For each line candidate line (p̂i1 , p̂i2) in which
i1, i2 ∈ {1, 2, . . . , K} and i1 6= i2, we put it into line sets D+, D−, and D

∗ according to the
following criteria:

• if both p̂i1 and p̂i2 are matched, and (mi1 ,mi2) ∈ E, we add this line to the positive
sample set D+;

• if both p̂i1 and p̂i2 are matched, and (mi1 ,mi2) ∈ S
−, we add this line to the hard

negative sample set D−;
• the random sample set D∗ includes all the line candidates from the predicted junctions,
regardless of their matching results.

Finally, we randomly choose ND+ lines from the positive sample set, ND− lines from the hard
negative sample set, ND∗ lines from the random line sample set, and return their union as
the dynamic line samples.

On one hand, the static line sampler helps cold-start the training at the beginning when
there are few accurate positive samples from the dynamic sampler. It also complements
the dynamic sampler by adding ground truth positive samples and hard negative samples

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 11

to help the joint training process. On the other hand, the dynamic line sampler improves
the performance of line detection by adapting the line endpoints to the predicted junction
locations.

2.1.3.6 Line Verification Network

The line verification network takes a list of candidate lines {Lj}Mj=1 = {(p̃1
j , p̃

2
j)}Mj=1 along

with the feature maps of the image from the backbone network as the input and predicts
whether or not each line is in the wireframe of the scene. During training, L is computed
by the line sampling modules, while during the evaluation, L is set to be every pair of the
predicted junctions {p̂i}Ki=1.

For each candidate line segment Lj = (p̃1
j , p̃

2
j), we feed the coordinates of its two end-

points into a line of interest (LoI) pooling layer (introduced below), which returns a fixed-
length feature vector. Then, we pass the concatenated feature vector into a network head
composed of two fully connected layers and get a logit. The loss of the line is the sigmoid
binary cross entropy loss between the logit and the label of this line, i.e., a positive sample
or a negative sample. To keep the loss balanced between positive and negative samples, the
loss on each image for the line verification network is the sum of two separated loss, averaged
over the positive lines and the negative lines, respectively.

LoI Pooling. To check whether a line segment exists in an image, we first turn the line
into a feature vector. Inspired by the RoIPool and RoIAlign layers from the object detection
community [46, 45, 121, 53], we propose the LoI pooling layer to extract line features while
it can back-propagate the gradient to the backbone network.

Each LoI is defined by the coordinates of its two endpoints, i.e., p̃1
j and p̃2

j . The LoI
pooling layer first computes the coordinates of Np uniform spaced middle points along the
line with linear interpretation

qk =
k

Np − 1
p̃1
j +

Np − k

Np − 1
p̃2
j , ∀k ∈ {0, 1, . . . , Np − 1}.

Then, it calculates the feature values at those Np points in the backbone’s feature map using
bilinear interpretation to avoid quantization artifacts [28, 66, 29, 53]. The resulting feature
vector has a spatial extent of C×Np, in which C is the channel dimension of the feature map
from the backbone network. After that, the LoI Pooling layer reduces the size of the feature
vector with a 1D max pooling layer. The result feature vector has shape C × ⌈Np

s
⌉, where s

is the size of stride of the max pooling layer. This vector is then flattened and returned as
the output of LoI pooling layer.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 12

2.1.4 Experiments

2.1.4.1 Implementation Details

We use a stacked hourglass network [112] as our backbone. Given an input image, we first
apply a 7 × 7 stride-2 convolution, three residual blocks with channel dimension 64, and
append a stride-2 max pooling on it. Then this intermediate feature representation is fed
into two stacked hourglass modules. In each hourglass, the feature maps are down-sampled
with 4 stride-2 residual blocks and then up-sampled with nearest neighbour interpolation.
The dimensions of both the input channel and the output channel of each residual block are
256. The network heads for J and O contain a 3 × 3 convolutional layer that reduces the
number of channels to 128 with the ReLU non-linearity, followed by a 1 × 1 convolutional
layer to match the output dimension.

We reduce the feature dimension from 256 to 128 using a 1×1 convolution kernels before
feeding the feature map into the line verification network. For the LoIPool layer, we pick
Np = 32 points along each line as the features of the line, resulting a 128 × 32 feature for
each line. After that, we apply a one-dimensional stride-4 max pooling to reduce the spatial
dimension of line features from 32 to 8. Our final line feature has dimension 128 × 8. The
head of the line verification network then takes the flattened feature vector and feeds it
into two fully connected layers with ReLU non-linearity, in which the middle layer has 1024
neurons.

All the experiments are conducted on a single NVIDIA GTX 1080Ti GPU for neural
network training. We use the ADAM optimizer [76]. The learning rate and weight decay
are set to 4× 10−4 and 1× 10−4, respectively. The batch size is set to 6 for maximizing the
GPU memory occupancy. We train the network for 10 epochs and then decay the learning
rate by 10. We stop the training at 16 epochs as the validation loss no longer decreases. The
total training time is about 8 hours. All the input images are resized to (H,W) = (512, 512)
and we use Hb×Wb = 128× 128 bins for J and O. The junction proposal proposal network
outputs the best K = 300 junctions. For the line sampling module, we use NS+ = 300,
NS− = 40, ND+ = 300, ND− = 80, and ND∗ = 600. The loss weights of multi-task learning
for J , O, and line verification network are set to 8, 0.25, and 1, respectively. Those weights
are adjusted so that the magnitudes of the losses are in a similar scale.

2.1.4.2 Datasets

We conduct most of our experiments on the ShanghaiTech dataset [63]. It contains 5,462
images of man-made environments, in which 5000 images are used as the training set and
462 images are used as the testing set. The wireframe annotation of this dataset includes
the positions of the salient junctions V and lines E. We also test the models trained with
the ShanghaiTech dataset on the York Urban dataset [31] to evaluate the generalizability of
all the methods.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 13

(a) Overlapped lines (b) Incorrect connectivity

Figure 2.3: Demonstration of the problems in heat map-based metrics for wireframe quality
evaluation. The upper part shows the detected lines and their heat maps, and the lower part
shows the ground truth lines and their heat maps.

2.1.4.3 Evaluation Metric

Previously, researchers use two metrics to evaluate the quality of detected wireframes: the
heat map-based APH to evaluate lines and junction AP to evaluate junctions. In this section,
we first give a brief introduction to these metrics and discuss the reason why they are not
proper for the wireframe parsing tasks. Then we give a new metric, named structural AP, a
more reasonable way to evaluate the structural quality of wireframes.

Junction Accuracy. Junction mean average precision mAPJ evaluates the quality of junc-
tions of a wireframe detection algorithm. For a given ranked list of predicted junction posi-
tions, a junction is considered to be correct if the ℓ2 distance between this junction and its
nearest ground-truth is within a threshold. Using this criteria, we can draw the precision
recall curve by counting the number of true positive and false position. The AP is defined to
be the area under this curve. The mean AP is defined to be the average of AP over difference
distance thresholds. In our implementation, we choose the threshold to be 0.5, 1.0, and 2.0
threshold on 128× 128 resolution.

Precision and Recall of Line Heat Maps. The precision and recall curve over line heap
maps is often used to evaluate the performance of wireframe and line detection [63, 162].
Given a vectorized representation (lines or wireframes), it first generates a confidence heat
map by rasterizing the lines. To compare it with the ground truth heat map, a bipartite
matching that treats each pixel independently as a graph node is ran to match between two
heat maps. Then precision and recall curve is computed according to the matching and

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 14

confidence of each pixel. In our experiment, we provide analysis of different methods using
this metric. We show both the F-score (as in [162]) and the area under the PR curve (similar
to [34]) as the quantitative measure, and write the them as FH and APH, respectively.

These metrics were originally designed for evaluating boundary detection [101] and they
work well for that purpose. However they are problematic in wireframe detection since

1. they do not penalize for overlapped lines (Figure 2.3a);
2. they do not properly evaluate the connectivity of the wireframe (Figure 2.3b).

For example, if a long line is broken into several short line segments, the resulted heat map is
almost the same as the ground truth heat map, as shown in Figure 2.3. A good performance
on the above two properties is vital for downstream tasks that rely on the correctness of line
connectivity, such as inferring the 3D geometry through lines [120, 182].

Structural AP. To overcome those drawbacks, we propose a new evaluation metric defined
on vectorized wireframes rather than on a heat map. We call our metric structural average
precision (sAP). This metric is inspired by the mean average precision commonly used in
object detection [34]. Structural AP is defined to be the area under the precision recall curve
computed from a scored list of the detected line segments on all test images. Recall is the
proportion of the correctly detected line segments (up to a cutoff score) to all the ground
truth line segments, while precision is the proportion of the correctly detected line segments
above that cutoff to all the detected line segments.

A detected line segment Lj = (p̃1
j , p̃

2
j) is considered to be a true positive (correct) if and

only if
min

(u,v)∈E
‖p̃1

j − pu‖22 + ‖p̃2
j − pv‖22 ≤ ϑ,

where ϑ is a user-defined number represents the strictness of the metric. In this experiment
section, we evaluate the structural AP at ϑ = 5, ϑ = 10, and ϑ = 15 under the resolution of
128× 128. We abbreviate them as sAP5, sAP10, and sAP15, respectively. In addition, each
ground truth line segment is not allowed to be matched more than once in order to penalize
double-predicted lines. That is to say if there exists a line Li that is ranked above the line
Lj and

argmin
(u,v)∈E

‖p̃1
i − pu‖22 + ‖p̃2

i − pv‖22 = argmin
(u,v)∈E

‖p̃1
j − pu‖22 + ‖p̃2

j − pv‖22,

then the line Lj will always be marked as a false positive.

Junction Mean AP (mAP). The major difference between line detection and wireframe
detection is that the wireframe representation encodes junction positions. Junctions have
physical meaning in 3D (corners or occlusional points) and encodes the line connectivity
information. Our junction mean AP (mAPJ) evaluates the quality of vectorized junctions
of a wireframe detection algorithm without relying on heat maps as in [63]. To better
understand the advantage of explicitly modeling junctions, we also evaluate our method
using the junction mAP as described below: for a given ranked list of predicted junction

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 15

sampler head metric

D
∗

S
+

S
−

D
+

D
− fc+fc conv+fc sAP5 sAP10 sAP15

(a) X X 43.7 48.2 50.2

(b) X X X 38.5 41.9 43.8

(c) X X X X 47.8 51.7 53.6

(d) X X X X X X 55.7 59.8 61.7

(e) X X X X 57.4 61.4 63.2

(f) X X X X X X 58.9 62.9 64.7

Table 2.1: Ablation study of L-CNN. The columns labeled with “sampler” represent whether
a specific sampler is used during the training stage, as introduced in Section 2.1.3.5. The
columns labeled with “head” represent the network head structured used in the line verifi-
cation network. “fc + fc” is the network structure introduced in Section 2.1.3.6, while in
“conv + fc” we replace the middle fully connected layer with a 1D Bottleneck layer [52].

positions, a junction is considered to be correct if the ℓ2 distance between this junction and
its nearest ground-truth is within a threshold. Each ground truth junction is only allowed
to be matched once to penalize double-predicted junctions. Using this criteria, we can draw
the precision recall curve by counting the number of true and false positives. The junction
AP is defined to be the area under this curve. The mean junction AP is defined to be the
average of junction AP over difference distance thresholds. In our implementation, we choose
to average over 0.5, 1.0, and 2.0 thresholds under 128× 128 resolution.

2.1.4.4 Ablation Study

In this section, we run a series of ablation experiments on the ShanghaiTech dataset [63] to
study our proposed method. We use our structural average precision (sAP) as the evaluation
metrics. The results are shown in Table 2.1.

Line Sampling Modules: We compare different design choices for line sampling modules,
as shown in Table 2.1. (a) uses just the random pairs from the dynamic sampler. The sAP5

is 43.7, which serves as the baseline. (b) only uses the sampled pairs from ground-truth
junctions and get much worse performance. The performance gap is even larger when the
evaluation criterion is loose. This is because (b) does not consider the imperfect of junction
prediction map and cannot tackle when junction is slightly misaligned with the ground
truth. After that, we combine the random dynamic sampling and the static sampling,
which significantly improves the performance, as shown in Table 2.1 (c). Then we add
dynamic sampler candidate D+ and D

−, which leads to the best sAP5 score 58.9 in (f). This
experiment indicates that the carefully selected dynamic line candidates are vital to a good
performance. Lastly, by comparing (e) and (f), we find that including hard examples S− and
D

− is indeed helpful compared to just doing the random sampling in D
∗.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

f=0.2
f=0.3
f=0.4
f=0.5
f=0.5
f=0.6

f=0.7

f=0.8

PR Curve for APH

LSD
Wireframe
AFM
L-CNN

(a) Heat map PR curves
on ShanghaiTech [63].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

f=0.2
f=0.3
f=0.4
f=0.5
f=0.5
f=0.6

f=0.7

f=0.8

PR Curve for sAP10

Wireframe
AFM
L-CNN

(b) Structural PR curves
on ShanghaiTech [63].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

f=0.2
f=0.3
f=0.4
f=0.5
f=0.5
f=0.6

f=0.7

f=0.8

PR Curve for APH

LSD
Wireframe
AFM
L-CNN

(c) Heat map PR curves
on York Urban [31].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

f=0.2
f=0.3
f=0.4
f=0.5
f=0.5
f=0.6

f=0.7

f=0.8

PR Curve for sAP10

Wireframe
AFM
L-CNN

(d) Structural PR curves
on York Urban [31].

Figure 2.4: Precision recall curves on wireframe parsing. Methods are trained on the Shang-
haiTech dataset.

ShanghaiTech [63] York Urban [31]

sAP10 mAPJ APH FH sAP10 mAPJ APH FH

LSD / / 52.0 61.0 / / 51.0 60.0

Wireframe 5.1 40.9 67.8 72.6 2.6 13.4 53.4 63.7

AFM 24.4 23.3 69.5 77.2 3.5 6.9 48.4 63.1

L-CNN 62.9 59.3 82.8 81.2 26.4 30.4 59.8 65.4

Table 2.2: Performance comparison on wireframe parsing. All the models are trained on
the ShanghaiTech dataset and evaluate on both datasets. The columns labelled with “sAP”
show the line accuracy with respect to our structural metrics; the columns labelled with
“mAPJ” shows the mean average precision of the predicted junctions; the columns labelled
with “FH” and “APH” shows the performance metrics related to heat map-based PR curves.
Our method L-CNN has the state-of-the-art performance on all of the evaluation metrics.

Line Verification Networks: Table 2.1 also shows our ablation on how to design the
line verification network. We tried two different designs: In Table 2.1 (e), we apply two
fully-connected layers after the LoI Pooling feature to get the classification results, while
in Table 2.1 (d) we firstly apply a 1D convolution on the features and then use the fully-
connected layer on the flattened feature vector to get the final line classification. Experiments
show that using convolution largely deteriorates the performance. We hypothesis that this
is because line classification requires location sensitivity, which the translation-invariant
convolution cannot provide [30, 88].

2.1.4.5 Comparison with Other Methods

Following the practice of [63, 162], we compare our method with LSD [146], deep learning-
based line detectors [162], as well as wireframe parser from the ShanghaiTech dataset paper
[63]. FH, APH, and sAP with different thresholds are used to evaluate those methods quan-

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 17

titatively. All the models are trained on the ShanghaiTech dataset and evaluate on both of
the ShanghaiTech [63] and York Urban datasets [31]. The results are shown in Table 2.2
and Figure 2.4. We note that the difference of the numbers and curves for APH from [63,
162] is due to our more proper implementation of APH: 1) In the code provided by [63],
they evaluate the precision and recall per image and average them together, while we first
sum the number of true positives and false positives over the dataset and then compute the
precision and recall. 2) Due to the insufficient number of thresholds, the PR curves in [63,
162] do not cover all the recall that an algorithm can achieve. We evaluate all the methods
on more thresholds to extend the curves as long as possible.

Figure 2.4a shows that our algorithm is better than the state-of-the-art line detector
methods under the PR curve of heat map-based line metrics, especially in the high-recall re-
gion. This indicates that our method can find more correct lines compared to other methods.
We also quantitatively calculate the F-score and the average AP. Table 2.2 shows that our
algorithm performs significantly better than previous state-of-the-art line detectors by 13.3
points in APH and 4.0 points in FH [162]. We also want to emphasize that compared to line
detection, it is conceptually harder for the wireframe detection methods to reach the same
performance as the line detection methods in term of the heat map-based metrics. This is
because a wireframe detection algorithm requires the positions of junctions, the endpoints
of lines, to be correct, while a line detector can start and end a line arbitrarily to “fill” the
line heat map. Before evaluating the heat map-based metrics, we post process the lines from
L-CNN to remove the overlap.

We then evaluate all the methods with our proposed structural AP. The precision recall
curve is shown in Figure 2.4b (LSD is missing here as its scores are too low to be drawn).
The gap between our method and previous methods is even larger. Our method achieves
40-point sAP improvement over the previous state-of-the-art method. This is because our
line verification network penalizes incorrect structures, while methods such as AFM and
wireframe parser use a hand-craft algorithm to extract lines from heat maps, in which the
information of junction connectivity gets lost. Furthermore, the authors of [63] mention that
their vectorization algorithm will break lines and add junctions to better fit the predicted
heat map. Such behaviors can worsen the structure correctness, which might explain its low
sAP score.

The mAPJ results are shown in Table 2.2. For AFM, we treat the endpoints of each
line as junctions and use the line NFA score as the score of its endpoints. We note that the
inferior junction quality of AFM is not because their method is not well-designed but the
end task is different. This shows that one cannot directly apply a line detection algorithm
on the wireframe parsing task. In addition, our L-CNN outperforms the previous wireframe
parser [63] by a large margin due to the joint training process of the pipeline.

Table 2.2 and Figures 2.4c and 2.4d show that L-CNN also performs the best among all
the wireframe and line detection methods when testing on a different dataset [31] without
finetune. This indicates that our method is able to generalize to novel scenes and data. We
note that the relatively low sAP scores are due to the duplicated lines, texture lines, while
missing many long lines in the annotation of the dataset.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 18

(a) LSD (b) AFM (c) Wireframe (d) L-CNN (e) GT

Figure 2.5: Qualitative comparison of wireframe and line detection methods. From left to
right, the columns shows the results from LSD [146], AFM [162], Wireframe [63], L-CNN
(ours), and the ground truth. We also draw the detected junctions from Wireframe and
L-CNN and the line endpoints from LSD and AFM.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 19

2.1.4.6 Visualization

We visualize our algorithm’s output in Figure 2.5. The junctions are marked cyan blue and
lines are marked orange. Wireframes from L-CNN are post processed using the method
from Appendix A.1. Since LSD and AFM do not explicitly output junctions, we treat the
endpoints of lines as junctions. As shown in Figure 2.5, LSD detects some high-frequency
textures without semantic meaning. This is expected as LSD is not a data-driven method. By
training a CNN to predict line heat maps, AFM [162] is able to suppress some noise. However,
both LSD and AFM still produce a lot of short lines because they do not have an explicit
notion of junctions. The wireframe parser [63] utilizes junctions to provide a relatively cleaner
result, but their heuristic vectorization algorithm is sub-optimal and leads to crossing lines
and incorrectly connected junctions. In contrast, our L-CNN uses powerful neural networks
to classify whether a line indeed exists and thus provides the best performance.

2.2 Learning to Detect Vanishing Points

2.2.1 Introduction

Vanishing point detection is a classic and important problem in 3D vision. Given the camera
calibration, vanishing points give us the direction of 3D lines, and thus let us infer 3D
information of the scene from a single 2D image. A robust and accurate vanishing point
detection algorithm enables and enhances applications such as camera calibration [22], 3D
reconstruction [49], photo forensics [114], object detection [55], wireframe parsing [180, 182],
and autonomous driving [85].

Although there has been a lot of work on this seemingly basic vision problem, no solu-
tion seems to be quite satisfactory yet. Traditional methods [138] usually first use edge/line
detectors to extract straight lines and then cluster them into multiple groups. Many recent
methods have proposed to improve the detection by training deep neural networks with la-
beled data. However, such neural networks often offer only a coarse estimate for the position
of vanishing points [78] or horizontal lines [172]. The output is usually a component of
a multi-stage system and used as an initialization to remove outliers from line clustering.
Arguably the main reason for neural networks’ poor precision in vanishing point detection
(compared to line clustering-based methods) is likely because existing neural network archi-
tectures are not designed to represent or learn the special geometric properties of vanishing
points and their relations to structural lines.

To address this issue, we propose a new convolutional neural network, called Neural
Vanishing Point Scanner (NeurVPS), that explicitly encodes and hence exploits the global
geometric information of vanishing points and can be trained in an end-to-end manner to
both robustly and accurately predict vanishing points. Our method samples a sufficient
number of point candidates and the network then determines which of them are valid. A
common criterion of a valid vanishing point is whether it lies on the intersection of a sufficient
number of structural lines. Therefore, the role of our network is to measure the intensity of

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 20

the signals of the structural lines passing through the candidate point. Although this notion
is simple and clear, it is a challenging task for neural networks to learn such geometric
concept since the relationship between the candidate point and structural lines not only
depend on global line orientations but also their pixel locations. In this work, we identify a
canonical conic space in which this relationship only depends on local line orientations. For
each pixel, we define this space as a local coordinate system in which the x-axis is chosen to
be the direction from the pixel to the candidate point, so the associated structural lines in
this space are always horizontal.

We propose a conic convolution operator, which applies regular convolution for each pixel
in this conic space. This is similar to apply regular convolutions on a rectified image where
the related structural lines are transformed into horizontal lines. Therefore the network can
determine how to use the signals based on local orientations. In addition, feature aggregation
in this rectified image also becomes geometrically meaningful, since horizontal aggregation
in the rectified image is identical to feature aggregation along the structural lines.

Based on the canonical space and the conic convolution operator, we are able to design
the convolutional neural network that accurately predicts the vanishing points. We conduct
extensive experiments and show the improvement on both synthetic and real-world datasets.
With the ablation studies, we verify the importance of the proposed conic convolution oper-
ator.

2.2.2 Related Work

Vanishing Point Detection. Vanishing point detection is a fundamental and yet surpris-
ingly challenging problem in computer vision. Since initially proposed by [7], researchers
have been trying to tackle this problem from different perspectives. Early researches esti-
mate vanishing points using sphere geometry [7, 99, 136], hierarchical Hough transformation
[118], or the EM algorithms [81, 82]. Researches such as [151, 107, 8, 2] use the Manhat-
tan world assumptions [25] to improve the accuracy and the reliability of the detection. [6]
extends the mutual orthogonality assumption to a set of mutual orthogonal vanishing point
assumption (Atlanta world [127]).

The dominant approach is line-based vanishing point detection algorithms, which are
often divided into several stages. Firstly, a set of lines are detected [12, 146]. Then a
line clustering algorithm [104] are used to propose several guesses of target vanishing point
position based on geometric cues. The clustering methods include RANSAC [9], J-linkage
[138], Hough transform [58], or EM [81, 82]. [184] uses contour detection and J-linkage in
natural scenes but only one dominate vanishing point can be detected. Our method does
not rely on existing line detectors, and it can automatically learn the line features in the
conic space to predict any number of vanishing points from an image.

Recently, with the help of convolutional neural networks, the vision community has tried
to tackle the problem from a data-driven and supervised learning approach. [15, 10, 174] for-
mulate the vanishing point detection as a patch classification problem. They can only detect
vanishing points within the image frame. Our method does not have such limitation. [172]

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 21

detects vanishing points by first estimating horizontal vanishing line candidates and score
them by the vanishing points they go through. They use an ImageNet pre-trained neural
network that is fine-tuned on Google street images. [78] uses inverse gnomonic image and
regresses the sphere image representation of vanishing point. Both work rely on traditional
line detection algorithms while our method learns it implicitly in the conic space.

Structured Convolution Operators. Recently more and more operators are pro-
posed to model spatial and geometric properties in images. For instance the wavelets based
scattering networks (ScatNet) [131, 11] are introduced to ensure certain transform (say trans-
lational) invariance of the network. [66] first explores geometric deformation with modern
neural networks. [29, 67] modify the parameterization of the global deformable transfor-
mation into local convolution operators to improve the performance on image classification,
object detection, and semantic segmentation. While these methods allow the network to
learn about the space where the convolution operates on, we here explicitly define the space
from first principle and exploit its geometric information. Our method is similar to [66] in
the sense that we both want to rectify input to a canonical space. The difference is that they
learn a global rectification transformation while our transformation is local. Different from
[29, 67], our convolutional kernel shape is not learned but designed according to the desired
geometric property.

Guided design of convolution kernels in canonical space is well practiced for irregular data.
For spherical images, [24] designs operators for rotation-invariant features, while [69] operates
in the space defined by longitude and latitude, which is more meaningful for climate data.
In 3D vision, geodesic CNN [102] adopts mesh convolution with the spherical coordinate,
while TextureNet [62] operates in a canonical space defined by globally smoothed principal
directions. Although we are dealing with regular images, we observe a strong correlation
between the vanishing point and the conic space, where the conic operator is more effective
than regular 2D convolution.

2.2.3 Methods

Figure 2.7 illustrates the overall structure of our NeurVPS network. Taken an image and
a vanishing point as input, our network predicts the probability of a candidate being near
a ground-truth vanishing point. Our network has two parts: a backbone feature extraction
network and a conic convolution sub-network. The backbone is a conventional CNN that
extracts semantic features from images. We use a single-stack hourglass network [112] for
its ability to possess a large receptive field while maintaining fine spatial details. The conic
convolutional network (Section 2.2.3.3) takes feature maps from the backbone as input and
determines the existence of vanishing points around candidate positions (as a classification
problem). The conic convolution operators (Section 2.2.3.2) exploit the geometric priors
of vanishing points, and thus allow our algorithm to achieve superior performance without
resorting to line detectors. Our system is end-to-end trainable.

Due to the classification nature of our model, we need to sample enough number of
candidate points during inference. It is computationally infeasible to directly sample suffi-

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 22

9

8

7
6

5

4
2

1

3

9

8

7

6

5

4

2

1

3

9

8

7

6

5

4

2

3

1

9

8

7
6

5

4
2

3

1

987

654

21 3

9

8

7

6

5

4
2

1

3

9
8

7

6
5

4

2
1

3

9

8

7

6

5

4

2

1

3

9

8

7 6

5

4
2

1

3

V

V

Figure 2.6: Illustration of sampled loca-
tions of 3 × 3 conic convolution. The
bright yellow region is the output pixel
and v stands for the vanishing point. Up-
per and lower figures illustrate the cases
when the vanishing point is outside and
inside the image, respectively.

3x3, 64/128/256/256, Conic Conv

(BN, ReLU)

3x3, stride 2

Max Pooling

x4

1x1, 32, Conv

(BN, ReLU)

1024, FC

(ReLU)

Hourglass Backbone

Image

R, FC

(Sigmoid)

1024, FC

(ReLU)

Vanishing Points

Output

Figure 2.7: Illustration of the network
structure of NeurVPS. The number of
each convolutional block is the kernel size
and output dimension respectively. The
number of fully connected layer block is
the output dimension. The kernel size of
Max Pooling layer is 3 and stride is 2.
Batch normalization and ReLU activation
are appended after each conv and fc layer.

ciently dense candidates. Therefore, we use a coarse-to-fine approach (Section 2.2.3.4). We
first sample Nd points on the unit sphere and calculate their likelihoods of being the line
direction (Section 2.2.3.1) of a vanishing point using the trained neural network classifier.
We then pick the top K candidates and sample another Nd points around each of their
neighbours. This step is repeated until we reach the desired resolution.

2.2.3.1 Basic Geometry and Representations of Vanishing Points

The position of a vanishing point encodes the line 3D direction. For a 3D ray described by
o + λd in which o is its origin and d is its unit direction vector, its 2D projection on the
image is

z

px
py
1

 =

f 0 cx
f cy

1

︸ ︷︷ ︸

K

·(o+ λd), (2.1)

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 23

where px and py are the coordinates in the image space, z is the depth in the camera space,
K is the calibration matrix, f is the focal length, and [cx, cy]

T ∈ R
2 is the optical center

of the camera. The vanishing point is the point with λ → ∞, whose image coordinate is
v = [vx, vy]

T := limλ→∞[px, py]
T ∈ R

2. We can then derive the 3D direction of a line in term
of its vanishing point:

d =
[
vx − cx vy − cy f

]T ∈ R
3. (2.2)

In the literature, a normalized line direction vector d is also called the Gaussian sphere
representation [7] of the vanishing point v. The usage of d instead of v avoids the degenerated
cases when d is parallel to the image plane. It also gives a natural metric that defines the
distance between two vanishing points, the angle between their normalized line direction
vectors: arccos |dT

i dj| for two unit line directions di,dj ∈ S
2. Finally, sampling vanishing

points with the Gaussian sphere representation is easy, as it is equivalent to sampling on
a unit sphere, while it remains ambiguous how to sample vanishing points directly in the
image plane.

2.2.3.2 Conic Convolution Operators in Conic Space

In order for the network to effectively learn vanishing point related line features, we want to
apply convolutions in the space where related lines can be determined locally. We define the
conic space for each pixel in the image domain as a rotated regular local coordinate system
where the x-axis is the direction from the pixel to the vanishing point. In this space, related
lines can be identified locally by checking whether its orientation is horizontal. Accordingly,
we propose a new convolution operator, named conic convolution, which applies the regular
convolution in this conic space. This operator effectively encodes global geometric cues for
classifying whether a candidate point (Section 2.2.3.5) is a valid vanishing point. Figure 2.6
illustrates how this operator works.

A 3×3 conic convolution takes the input feature map x and the coordinate of convolution
center v (the position candidates of vanishing points) and outputs the feature map y with
the same resolution. The output feature map y can be computed with

y(p) =
1∑

δx=−1

1∑

δy=−1

w(δx, δy) · x(p+ δx · t+ δy ·Rπ
2
t), where t :=

v − p

‖v − p‖2
∈ R

2. (2.3)

Here p ∈ R
2 is the coordinates of the output pixel, w is a 3× 3 trainable convolution filter,

Rπ
2
∈ R

2×2 is the rotational matrix that rotates a 2D vector by 90◦ counterclockwise, and
t is the normalized direction vector that points from the output pixel p to the convolution
center v. We use bilinear interpolation to access values of x at non-integer coordinates.

Intuitively, conic convolution makes edge detection easier and more accurate. An ordi-
nary convolution may need hundreds of filters to recognize edge with different orientations,
while conic convolution requires much less filters to recognize edges aligning with the can-
didate vanishing point because filters are firstly rotated towards the vanishing point. The

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 24

Figure 2.8: Illustration of vanishing points’ Gaussian sphere representation of an image from
the SU3 wireframe dataset [182] and our multi-resolution sampling procedure in the coarse-
to-fine inference. In the right three figures, the red triangles represent the ground truth
vanishing points and the dots represent the sampled locations.

strong/weak response (depends on the candidate is positive/negative) will then be aggre-
gated by subsequent fully-connected layers.

2.2.3.3 Conic Convolutional Network

The conic convolutional network is a classifier that takes the image feature map x and a
candidate vanishing point position v̂ as input. For each angle threshold γ ∈ Γ, the network
predicts whether there exists a real vanishing point v in the image so that the angle between
the 3D line directions v and v̂ is less than the threshold γ. The choice of Γ will be discussed
in Section 2.2.3.4.

Figure 2.7 shows the structure diagram of the proposed conic convolutional network. We
first reduce the dimension for the feature map from the backbone to save the GPU memory
footprint with an 1 × 1 convolution layer. Then 4 consecutive conic convolution (with
ReLU activation) and max-pooling layers are applied to capture the geometric information
at different spatial resolutions. The channel dimension is increased by a factor of two in each
layer to compensate the reduced spatial resolution. After that, we flatten the feature map
and use two fully connected layers to aggregate the features. Finally, a sigmoid classifier
with binary cross entropy loss is applied on top of the feature to discriminate positive and
negative samples with respect to different thresholds from Γ.

2.2.3.4 Coarse-to-fine Inference

o

φr
n

nr

n⊥
r,2

n⊥
r,1dr

n

−θrn

Figure 2.9: Illustration of the
variables used in uniform spher-
ical cap sampling.

With the backbone and the conic convolutional network,
we can compute the probability of vanishing point over
the hemisphere of the unit line direction vector d̂ ∈ S

2,
as shown in Figure 2.8. We utilize a multi-resolution
strategy to quickly pinpoint the location of the vanishing
points. We use R rounds to search for the vanishing
points. In the r-th round, we uniformly sample Nd line
direction vectors on the surface of the unit spherical cap

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 25

with direction nr and polar angle γr using the Fibonacci
lattice [47]. Mathematically, the n-th sampled line direction vector can be written as

dr
n = cosφr

nnr + sinφr
n(cos θ

r
nn

⊥
r,1 + sin θrnn

⊥
r,2),

φr
n := arccos

(
1 + (cosαr − 1) ∗ n/Nd

)
,

θrn := (1 +
√
5)πn,

in which n⊥
r,1 and n⊥

r,2 are two arbitrary orthogonal unit vectors that are perpendicular to
nr, as shown in Figure 2.9. We initialize n1 ← (0, 0, 1) and γ1 ← π. For the round r + 1,
we set the threshold γr+1 ← ρmaxw∈S2 minn arccos | 〈w,dr

n〉 | and nr+1 to the dr
n whose

vanishing point obtains the best score from the conic convolutional network classifier with
angle threshold γ = γr+1. Here, ρ is a hyperparameter controlling the distance between
two nearby spherical caps. Therefore, we set the threshold set Γ in Section 2.2.3.2 to be
{γr+1 | r ∈ {1, 2, . . . , R}} accordingly.

The above process detects a single dominant vanishing point in a given image. To search
for more than one vanishing point, one can modify the first round to find the best K line
directions and use the same process for each line direction in the remaining rounds.

2.2.3.5 Vanishing Point Sampling for Training

During training, we need to generate positive samples and negative samples. For each
ground-truth vanishing point with line direction d and threshold γ, we sample N+ positive
vanishing points and N− negative vanishing points. The positive vanishing points are uni-
formly sampled from S+ = {w | w ∈ S

2 : arccos | 〈w,d〉 | < γ} and the negative vanishing
points are uniformly sampled from S− = {w | w ∈ S

2 : γ < arccos | 〈w,d〉 | < 2γ}. In addi-
tion, we sample N∗ random vanishing points for each image to reduce the sampling bias. The
line directions of those vanishing points are uniformly sampled from the unit hemisphere.

2.2.4 Experiments

2.2.4.1 Datasets and Metrics

We conduct experiments on both synthetic [182] and real-world [184, 27] datasets.

Natural Scene [184]. This dataset contains images of natural scenes from AVA and
Flickr. The authors pick the images that contain only one dominating vanishing point and
label their locations. There are 2,275 images in the dataset. We divide them into 2,000
training images and 275 test images randomly. Because this dataset does not contain the
camera calibration information, we set the focal length to the half of the sensor width for
vanishing point sampling and evaluation. Such focal length simulates the wide-angle lens
used in landscape photography.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 26

ScanNet [27]. ScanNet is a 3D indoor environment dataset with reconstructed meshes
and RGB images captured by mobile devices. For each scene, we find the three orthogonal
principal directions for each scene which align with most of the surface normals and use them
to compute the vanishing points for each RGB image. We split the dataset as suggested by
ScanNet v2 tasks, and train the network to predict the three vanishing points given the
RGB image. There are 266,844 training images. We randomly sample 500 images from the
validation set as our test set.

SU3 Wireframe [182]. The “ground-truth” vanishing point positions in real world datasets
are often inaccurate. To systematically evaluate the performance of our algorithm, we test
our method on the recent synthetic SceneCity Urban 3D (SU3) wireframe dataset [182].
This photo-realistic dataset is created with a procedural building generator, in which the
vanishing points are directly computed from the CAD models of the buildings. It contains
22,500 training images and 500 validation images.

Evaluation Metrics. Previous methods usually use horizon detection accuracy [6, 87,
172] or pixel consistency [184] to evaluate their method. These metrics are indirect for this
task. To better understand the performance of our algorithm, we propose a new metric,
called angle accuracy (AA). For each vanishing point from the predictions, we calculate the
angle between the ground-truth and the predicted one. Then we count the percentage of
predictions whose angle difference is within a pre-defined threshold. By varying different
thresholds, we can plot the angle accuracy curves. AAθ is defined as the area under the
curve between [0, θ] divided by θ. In our experiments, the upper bound θ is set to be 0.2◦,
0.5◦, and 1.0◦ on the synthetic dataset and 1◦, 2◦, and 10◦ on the real world dataset. Two
angle accuracy curves (coarse and fine level) are plotted for each dataset. Our metric is
able to show the algorithm performance under different precision requirements. For a fair
comparison, we also report the performance in pixel consistency as in the dataset paper
[184].

2.2.4.2 Implementation Details

We implement the conic convolution operator in PyTorch by modifying the “im2col +
GEMM” function according to Equation (2.3), similar to the method used in [29]. Input
images are resized to 512× 512. During training, the Adam optimizer [76] is used. Learning
rate and weight decay are set to be 4 × 10−4 and 1 × 10−5, respectively. All experiments
are conducted on two NVIDIA RTX 2080Ti GPUs, with each GPU holding 6 mini-batches.
For synthetic data [182], we train 30 epochs and reduce the learning rate by 10 at the 24-th
epoch. We use ρ = 1.2, N+ = N− = 1 and N∗ = 3. For the Natural Scene dataset, we train
the model for 100 epochs and decay the learning rate at 60-th epoch. For ScanNet [27], we
train the model for 3 epochs. We augment the data with horizontal flip. We set Nd = 64
and use RSU3 = 5, RNS = 4, and RSN = 3 in the coarse-to-fine inference for the SU3 dataset,
the Natural Scene dataset, and the ScanNet dataset, respectively. During inference, the

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 27

AA0.2◦ AA0.5◦ AA1.0◦ mean median

LSD [37] 27.9 47.9 61.5 3.89◦ 0.21◦

REG 2.2 6.5 15.0 2.07◦ 1.48◦

CLS 2.2 9.1 23.7 1.77◦ 0.99◦

Conic×2 10.5 28.9 50.3 0.78◦ 0.43◦

Conic×4 47.5 74.2 86.3 0.15◦ 0.09◦

Conic×6 49.1 74.0 86.2 0.14◦ 0.09◦

Table 2.3: Ablation study of NeurVPS. “REG” denotes the baseline that directly regress
line direction in the camera space. “CLS” denotes the baseline that do vanishing point
classification using image feature and its coordinate. Conic×K denotes our methods with
varying number of conic convolution layers.

results from the backbone network can be shared so only the conic convolution layers need
to be forwarded multiple times. Using the Nature Scene dataset as an example, we conduct
4 rounds of coarse-to-fine inference, in each of which we sample 64 vanishing points. So we
forward the conic convolution part 256 times for each image during testing. The evaluation
speed is about 1.5 vanishing points per second on a single GPU.

2.2.4.3 Ablation Studies on Synthetic Datasets

Comparison with Baseline Methods. We compare our method with both traditional
line detection based methods and neural network based methods. The sample images and
results can be found in Figure 2.8 and supplementary materials. For line-based algorithms,
the LSD with J-linkage clustering [146, 138, 37] probably is the most widely used method
for vanishing point detection. Note that LSD is a strong competitor on the synthetic SU3
dataset as the images contain many sharp edges and long lines.

We aim to compare pure neural network methods that only rely on raw pixels. Existing
methods such as [15, 31, 10] can only detect vanishing points inside images. [172, 78] rely
on an external line map as initial inputs. To the best of our knowledge, there is no existing
pure neural network methods that are general enough to handle our case. Therefore, we
propose two intuitive baselines. The first baseline, called REG, is a neural network that
direct regresses value of d using chamfer-ℓ2 loss, similar to [182]. We change all the conic
convolutions to traditional 2D convolutions to make the numbers of parameters be the same.
The second baseline, called CLS, uses our fine-to-coarse classification approach. We change
all the conic convolutions to their traditional counterparts, and concatenate d to the feature
map right before feeding it to the NeurVPS head to make the neural network aware of the
position of vanishing points.

The results are shown in Table 2.3 and Figure 2.10. By utilizing the geometric priors and
large-scale training data, our method significantly outperforms other baselines across all the
metrics. We note that, compared to LSD, neural network baselines perform better in terms

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 28

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Angle Difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge

AA Curve @ 1 for SU3 Wireframe

LSD + J-Linkage [16]
CNN Regression
CNN Classification
Conic x 2
Conic x 4
Conic x 6

(a) Angle difference ranges from 0◦ to 1◦.

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4
Angle Difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge

AA Curve @ 6 for SU3 Wireframe

LSD + J-Linkage [16]
CNN Regression
CNN Classification
Conic x 2
Conic x 4
Conic x 6

(b) Angle difference ranges from 0◦ to 6◦.

Figure 2.10: Angle accuracy curves for different methods on the SU3 wireframe dataset [182].

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Angle Difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge

AA Curve @ 2 for the Natural Scene Dataset

Conic x 4
vpdet [50]
CNN Classification
CNN Regression

(a) Angle difference ranges from 0◦ to 2◦.

0 2 4 6 8 10 12 14 16 18
Angle Difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pe

rc
en

ta
ge

AA Curve @ 20 for the Natural Scene Dataset

Conic x 4
vpdet [50]
CNN Classification
CNN Regression

(b) Angle difference ranges from 0◦ to 20◦.

Figure 2.11: Angle accuracy curves for different methods on the Natural Scene dataset [184].

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Angle Difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge

AA Curve @ 2 for the ScanNet Dataset

LSD + J-Linkage [16]
CNN Regression
CNN Classification
Conic x 6

(a) Angle difference ranges from 0◦ to 2◦.

0 2 4 6 8 10 12 14 16 18
Angle Difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge

AA Curve @ 20 for the ScanNet Dataset

LSD + J-Linkage [16]
CNN Regression
CNN Classification
Conic x 6

(b) Angle difference ranges from 0◦ to 20◦.

Figure 2.12: Angle accuracy curves for different methods on the ScanNet dataset [27].

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 29

of mean error but much worse for AA. This is because line-based methods are generally
more accurate, while data-driven approaches are more unlikely to produce outliers. This
phenomenon is also observed in Figure 2.10b, where neural network baselines achieve higher
percentage when the angle error is larger than 4.5◦.

Effect of Conic Convolution. We now examine the effect of different numbers of conic
convolution layers. We test with 2/4/6 conic convolution layers, denoted as Conic×2/4/6,
respectively. For Conic×2, we only keep the last two conic convolutions and replace others as
their plain counterparts. For Conic×6, we add two more conic convolution layers at the finest
level, without max pooling appended. The results are shown in Table 2.3 and Figure 2.10.
We observe that the performance keeps increasing when adding more conic convolutions. We
hypothesize that this is because stacking multiple conic convolutions enables our model to
capture higher order edge information and thus significantly increase the performance. The
performance improvement saturates at Conic×6.

2.2.4.4 NeurVPS on Real World Datasets

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conic x 4

vpdet [50]

Figure 2.13: Consistency mea-
sure on the Nature Scene dataset
[184].

Natural Scene [184]. We validate our method on real
world datasets to test its effectiveness and generalizabil-
ity. The results of angle accuracy on the Natural Scene
dataset [184] are shown in Table Table 2.4 and Figure
2.11. We also compare the performance in the consis-
tency measure, a metric used by the baseline method (a
contour-based clustering algorithm, labeled as vpdet) in
the dataset paper [184] in Figure 2.13. Our method out-
performs this strong baseline algorithm vpdet by a fairly
large margin in term of all metrics. Our experiment also
shows that the naive CNN baselines under-perform vpdet
until the angle tolerance is around 4◦. This is consistent
with the results from [184], in which vpdet is better than
the previous deep learning method [172] in the region that requires high precision. Such
phenomena indicates that our geometry-aware network is able to accurately locate vanishing
points in images, while naive CNNs can only roughly determine vanishing points’ position.

ScanNet [27]. The results on the ScanNet dataset [27] are shown in Table 2.5 and Figure
2.12. For baseline of traditional methods, we only compare our method with LSD + J-
linkage because other methods such as [184] are not directly applicable when there are three
vanishing points in a scene. Our results reduced the mean and median error by 6 and 4 times,
respectively. The angle accuracy also improves by a large margin. The ScanNet [27] is a large
dataset, so both CLS and REG works reasonable good. However, because the traditional
convolution cannot fully exploit the geometry structure of vanishing points, the performance
of those baseline algorithms is worse than the performance of our conic convolutional neural

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 30

AA1◦ AA2◦ AA10◦ mean median

REG 2.4 9.9 58.8 5.09◦ 3.20◦

CLS 4.4 14.5 62.4 5.80◦ 2.79◦

vpdet [184] 18.5 33.0 60.0 12.6◦ 1.56◦

Ours 29.1 50.3 85.5 1.83◦ 0.87◦

Table 2.4: Performance of vanishing point detection algorithms on the Natural Scene dataset
[184]. vpdet is the method from the dataset paper.

AA1◦ AA2◦ AA10◦ mean median

LSD [37] 1.7 5.4 24.8 12.6◦ 11.8◦

REG 1.5 5.1 45.1 6.9◦ 5.0◦

CLS 2.0 8.1 55.9 5.3◦ 3.6◦

Ours 3.4 11.5 61.7 4.5◦ 3.0◦

Table 2.5: Performance of vanishing point detection algorithms on ScanNet [27].

network. It is also worth mentioning that errors of ground truth vanishing points of the
ScanNet dataset are quite large due to the inaccurate 3D reconstruction and budget capture
devices, which probably is the reason why the performance gap between conic convolutional
networks and traditional 2D convolutional networks is not so significant.

One drawback of our data-driven method is the need of a large amount of training data.
We do not evaluate our method on datasets such as YUD [31], ECD [6], and HLW [152]
because there is no suitable public dataset for training. In the future, we will study how
to exploit geometric information under unsupervised or semi-supervised settings hence to
alleviate the data scarcity problem.

2.3 Learning to Detect Reflection Symmetry

2.3.1 Introduction

Recovering the 3D orientation of objects in an image is a fundamental problem in 3D vision,
which plays a role in tasks such as robotics, autonomous driving, virtual reality (VR), aug-
mented reality (AR), and 3D scene understanding. Traditionally, such problem is extremely
hard to solve. Researchers often resort to RGB-D input captured with time-of-flight cameras
or structured light [18, 132, 116]. Unfortunately, depth cameras often have limited range
and can be interfered by other light sources. More importantly, the requirement of owning
a depth camera is inconvenient for average users, which severely restricts its applications.

Recent advances in convolutional neural networks in object detection and instance seg-
mentation have shown good potential in inferring object-level information from RGB images

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 31

by leveraging supervised learning. Nowadays, single-view neural network-based methods are
able to predict the object pose under different settings. Some work explores the instance-
level 3D pose estimation problem [140, 119, 92] in which the CAD models of the objects are
known beforehand. However, these settings are rather limited because in practice objects
are different and we do not have CAD models for most objects. Therefore, other work tries
to tackle the category-level 3D pose estimation problem [157, 17, 109] without using the
exact CAD models of objects. Unlike the cases where either depth maps or CAD models
are available, previous single-view category-level 3D pose estimation methods hardly exploit
the geometric constraints between the input RGB image and the 3D shape, and predict the
pose solely by interpolating the training data. Hence, such formulation is ill-posed, which
leads to inaccurate pose recovery [139].

We observe that the canonical space of objects is often determined by aligning the Y-Z
plane to the symmetry planes of objects [14, 137], so the normal direction of the symmetry
plane encodes most of the geometric information regarding the pose of the object. To this
end, we propose the NeRD network to detect the reflection symmetry from RGB images.
NeRD combines the strength of learning-based recognition and geometry-based reconstruc-
tion methods. Specifically, NeRD first detects the parameters of the mirror plane from the
image with a coarse-to-fine strategy and then recovers the depth from a reflective stereopsis.
We incorporate reflection symmetry as a prior into deep networks through plane-sweep cost
volumes built from features of corresponding pixels, as shown in Figure 2.17a.

The network (see Figure 2.16) consists of a backbone feature extractor, a differentiable
warping module for building the 3D cost volumes, and a cost volume network. This frame-
work naturally enables neural networks to utilize the information from corresponding pixels
of reflection symmetry inside a single image. We evaluate our method on the ShapeNet
dataset [14] and Pix3D dataset [137]. Extensive comparisons and analysis show that by de-
tecting and utilizing intra-image pixel correspondence from reflection symmetry, our method
has better accuracy for recovering normal direction of symmetry plane and hence the object
pose, even when the object is not perfectly symmetric.

Our main contributions are summarized as below:
• we identify the problem of learning neural 3D reflection symmetry detector, in which
the intra-image pixel correspondence of symmetry can be utilized for accurate plane
normal estimation;

• we propose a novel framework that leverages single-view dense feature matching to
estimate symmetry planes, significantly outperforming previous methods;

• we show that the learned symmetry planes benefit tremendously a variety of down-
stream tasks, including single-view pose recovery and depth estimation.

2.3.2 Related Work

For many years, scientists from vision science and psychology have found that symmetry plays
an important role in human vision system [143, 145]. People have exploited different kinds
of symmetry for tasks such as texture impainting [80], unsupervised shape recovering [155],

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 32

(a) 2D reflection symmetry (b) 3D reflection symmetry

Camera

Image plane

Symmetry plane{
{

w
T
x+ 1 = 0

w
0T
x+ 1 = 0

1/kwk2

1/kw0k2

Symmetric object

(c) 3D reflection symmetry

Figure 2.14: Examples of 2D and 3D reflection symmetry reconstruction, and demonstration
of scale ambiguity in 3D reflection symmetries from 2D images. 2D symmetries are not
helpful for 3D reconstruction due to lack of perspective distortion. Illustration of scale
ambiguity. We display two scenes that only differ by a scale c. The images of the two scenes
are exactly the same, but the distances between the origin and two symmetry planes are
different, i.e., ‖w‖2 = c‖w′‖2.

and image manipulation [175]. Researchers have utilized the correspondences of symmetry
to reconstruct shapes in different representations, such as points [56], curves [57], and recent
deep implicit fields [161]. However, these methods either assume that the input camera
pose or the symmetry plane is given, or require its correspondence points. This is because
detecting 3D symmetry from a single view is challenging.

Symmetry Detection. On one hand, most of geometry-based symmetry detection meth-
ods use handcrafted features and only work for 2D planar and front-facing objects [96, 169,
77], as shown in Figure 2.14a. The extracted 2D symmetry axes and correspondences can-
not provide enough geometric cues for depth reconstruction. In order to make reflection
symmetry useful for depth reconstruction, it is necessary to detect the 3D mirror plane and
corresponding points of symmetric objects (Figure 2.14b) from perspective images. On the
other hand, recent single-image processing neural networks [14, 64, 147, 178, 166] can ap-
proximately recover the camera orientation with respect to the canonical pose, which gives
mirror plane of symmetry. However, the camera poses from those data-driven networks are
not accurate enough, because they do not exploit the geometric constraints of symmetry. To
remedy the above issues, our NeRD tries to takes the best of both worlds. The proposed
method first detects the 3D mirror plane of a symmetric object from an image and then re-
covers the depth map by finding the pixel-wise correspondence with respect to the symmetry
plane, all of which are supported with geometric principles. Our experiment (Section 2.3.4)
shows that NeRD is indeed much more accurate for 3D symmetry plane detection, compared
to previous learning-based methods [178, 160].

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 33

Learning-Based Single-Image 3D Understanding. Inspired by the success of CNNs
in image classification and object detection, multiple single-view learning-based 3D under-
standing tasks have been explored, including depth estimation [38, 16], camera pose recovery,
etc. Although these methods demonstrate promising results on benchmark datasets, the in-
ferred results are not accurate enough for most subsequent 3D reconstruction purposes. To
alleviate this issue, our method leverages the symmetry prior by matching pixel-level features
for accurate single-view 3D understanding.

2.3.3 Methods

2.3.3.1 Camera Model and 3D Symmetry

Let O ⊂ R
4 be the set of points in the homogeneous coordinate that are on the surface of an

object. If we say O admits the symmetry1 with respect to a rigid transformation M ∈ R
4×4,

it means that
∀X ∈ O : MX ∈ O, and F(X) = F(MX), (2.4)

where X is homogeneous coordinates of a point on the surface of the object, MX is the
corresponding point of X with respect to the symmetry, and F(·) represents the surface
properties at a given point, such as the surface material and texture. For example, if an
object has reflection symmetry with respect to the Y-Z plane in the world coordinate, then
we have its transformation Mx = diag(−1, 1, 1, 1). Figure 2.14 shows an example of 3D
reflection symmetry.

Given two 3D points X,X′ ∈ O in the homogeneous coordinate that are associated by
the symmetry transform X′ = MX, their 2D projections x and x′ must satisfy the following
conditions:

x = KRtX/d, and x′ = KRtX
′/d′. (2.5)

Here, we keep all vectors in R
4. x = [x, y, 1, 1/d]T and x′ = [x′, y′, 1, 1/d′]T represent the

2D coordinates of the points in the pixel space, d and d′ are the depth in the camera space,
K ∈ R

4×4 is the camera intrinsic matrix, and Rt = [R t
0 1] is the camera extrinsic matrix that

rotates and translates the coordinate from the object space to the camera space.
From Equation (2.5), we can derive the following constraint for their 2D projections x

and x′:
x′ ∝ KRtMRt

−1K−1

︸ ︷︷ ︸

C

x
.
= Cx. (2.6)

We use the proportional symbol here as the 3rd dimension of x′ can always be normalized
to one so the scale factor does not matter. The constraint in Equation (2.6) is valuable to
us because the neural network now has a geometrically meaningful way to check whether
the estimated depth d is reasonable at (x, y) by comparing the image appearance at (x, y)
and (x′, y′), where (x′, y′) is computed from Equation (2.6) given x, y, and d. If d is a good

1An object might admit multiple symmetries. For example, a rectangle has two reflective symmetries
and one rotational symmetry. We here describe one at a time.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 34

estimation, the two corresponding image patches should be similar due to F(X) = F(X′)
from the symmetry constraint in Equation (2.4). This is often called photo-consistency in
the literature of multi-view steropsis [40].

An alternative way to understand Equation (2.6) is to substituteX′ = MX into Equation
(2.5) and treat the later equation as the projection from another view. By doing that, we
reduce the problem of shape-from-symmetry to two-view steropsis, only that the stereo pair
is in special positions.

Reflection Symmetry in 3D. Equation (2.6) gives us a generalized way to represent
any types of symmetry with matrix C = KRtMRt

−1K−1. For reflection symmetry, a more
intuitive parametrization is to use the equation of the symmetry plane in the camera space.
Let x̃ ∈ R

3 be the coordinate of a point on the symmetry plane in the camera space. The
equation of the symmetry plane can be written as

wT x̃+ 1 = 0, (2.7)

where we use w ∈ R
3 as the parameterization of symmetry. The goal of reflection symmetry

detection is to recover w from images.
On the first impression, one may wonder why Rt (i.e., camera poses) in Equation (2.6)

has 6 degrees of freedoms (DoFs) while w only has 3. This is due to the specialty of reflection
symmetry. Rotating the camera with respect to the normal of the symmetry plane (1 DoF)
and translating the camera along the symmetry plane (2 DoFs) cannot change the relative
pose of the camera with respect to the symmetry plane. Therefore the number of DoFs in
reflection symmetry is indeed 6− 1− 2 = 3.

x

y wT x̃+ 1 = 0

d̃ = −ñwT x̃0+1
‖w‖2

x̃0

x̃1

Figure 2.15: Illustration of reflection
symmetry with two points.

To derive the relationship between C and w, let
x̃0 ∈ R

3 be a point in the camera space and x̃1 be
its mirror point with respect to the symmetry plane
wT x̃ + 1 = 0. Figure 2.15 illustrates the process of
miring a point in 2D, where the red dots are the pair
of points x̃0 and x̃1 the line in the middle is the sym-
metry plane whose normal ñ = w

‖w‖2
. The distance

between x̃0 and the symmetry plane is wT x̃0+1
‖w‖2

, ac-
cording to the formula of distance from a point to a
plane. Therefore, we have

x̃1 = x̃0 − 2
wT x̃0 + 1

‖w‖22
w.

We could also write it in matrix form:

[
x̃1

1

]

=

[
x̃0

1

] [

I− 2wwT

‖w‖2
2

− 2w
‖w‖2

2

0 1

]

.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 35

Because the transformation between the camera space and the pixel space is given by

x = K

[
x̃
1

]

,

we finally have

C(w) = K

[

I− 2wwT

‖w‖2
2

− 2w
‖w‖2

2

0 1

]

K−1

= K

(

I− 2

‖w‖22

[
w
0

]
[
wT 1

]
)

K−1. (2.8)

Scale Ambiguity. Similar to structure-from-motion in which it is impossible to determine
the absolute size of scenes [97], shape-from-symmetry also has a scale ambiguity. This is
demonstrated in Figure 2.14c. In the case of reflection symmetry, we cannot determine the
value of ‖w‖2, i.e., the symmetry plane’s distance from origin, from a single image without
relying on size priors, as it is always possible to scale the scene by a constant (and thus
scale ‖w‖2) without affecting images. Therefore, we fix ‖w‖2 to be a constant and leave the
ambiguity as it is. In other words, NeRD is designed only to recover the normal direction of
the symmetry plane. For real-world applications, this scale ambiguity can be resolved when
the object size or the distance between the object and the camera is known.

2.3.3.2 Overall Pipeline of NeRD

Motivation. Section 2.3.3.1 provides us a geometric way to verify whether a given w is
valid: For each pixel (x, y), we check if there exists a d so that the image feature at (x, y)
and its mirror point (x′, y′) are similar, where (x′, y′) are computed with Equation (2.6).
If w is correct, then for pixels whose mirror parts are not occluded, we should be able to
find their corresponding points that are similar to themselves. To utilize such idea, we turn
the problem of regressing w into a classification problem: We first enumerate possible plane
normal directions and use a neural network to verify whether these directions are closed to
the real symmetry planes or not. Figure 2.17a illustrates such process.

Methods. Figure 2.16 illustrates the overall pipeline of NeRD during inference. For each
input image, we compute its 2D feature map (Section 2.3.3.3) and generate a list of candidate
normal directions of its symmetry plane. For each candidate normal w, we use it to warp the
2D feature map and construct a initial 3D cost volume (Section 2.3.3.4) for photo-consistency
matching. After that, the cost volume network (Section 2.3.3.5) converts the cost volume
tensor into a confidence value. We pick w with the highest confidence as the resulting normal
direction of symmetry plane.

A brute-force enumeration of w is slow, especially when high precision is required. To
accelerate it, NeRD uses a coarse-to-fine strategy, which we will describe in detail in Sec-
tion 2.3.3.6. Figure 2.17b illustrates our method. In ith round of inference, the coarse-to-fine

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 36

Input image

{{

concat

Symmetry planeFeature extraction Feature warping

·· ·

{

concat

{

concat

di = dmin, . . . , dmax

Transform matrix Symmetry confidence

 Coarse-to-fine symmetry sampler: Wi =
{

w | arccos(| hw,w
∗

i−1
i |) < ∆i

}

Homography warping

Cost volume regularization

Symmetry
softmax(l̂i) ∈ (0, 1) w

∗

Nx
0
∝ C(wi)[x, y, 1, 1/di]

T
C(wi)

∀
w

i
∈
W

i

i < N

i = N

Figure 2.16: Pipeline of NeRD. During inference, the coarse-to-fine symmetry sampler gives
a list of candidate normal directions of the symmetry plane. For each candidate symmetry
plane, a warping transformation matrix C is computed according to Equation (2.8). Input
images first go through the feature extraction (backbone) network. Features are then warped
by a warping module based on the symmetry transformationC and depth di. A cost volume is
constructed by fusing the warped features and feeding into a 3D convolutional neural network
for refinement. The final confidence of each symmetry plane is predicted by aggregating the
resulting depth probability tensor.

sampler samples N candidates symmetry plane {wk
i }Kk=1 uniformly and evaluate their confi-

dence with our neural network. Then, we find the pose w∗
i with the highest confidence score

and limit the symmetry sampler to the nearby region around it. This process is repeated
until an accurate symmetry plane is pinpointed.

2.3.3.3 Backbone Network

The goal of the backbone network is to extract 2D features from images. We use a modified
ResNet-like network as our backbone. To reduce the memory footprint, we first down-sample
the image with a stride-2 5× 5 convolution. After that, the network has 8 basic blocks [52]
with ReLU activation. The 5th basic block uses stride-2 convolution to further downsample
the feature maps. The number of channels is 64. The output feature map F has dimension
⌊H

4
⌋ × ⌊W

4
⌋ × 64. The network structure diagram is shown in the supplementary materials.

2.3.3.4 Feature Warping Module

The function of the feature warping module is to construct the initial 3D cost volume ten-
sor V(x, y, d) for photo-consistency matching. We discretize d so that d ∈ D = {dmin +

i
D−1

(dmax − dmin) | i = 0, 1, . . . , D − 1} to make the 3D cost volume homogeneous to 3D
convolution, in which dmin and dmax is the minimal and maximal depth we want to predict
and D is the number of sampling points for depth. As mentioned in Section 2.3.3.1, the cor-
rectness of d at (x, y) correlates with the appearance similarity of the image patch at pixels

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 37

Input image Cost Volume

Input image Cost volume

Correspondence

signal

Depth

Depth

No signal

Incorrect

symmetry normal

Correct

symmetry normal

(a) Symmetry detection process of NeRD.

Coarse-to-fine Inference Round 1 Coarse-to-fine Inference Round 2

Coarse-to-fine Inference Round 3 Coarse-to-fine Inference Round 4

(b) Coarse-to-fine inference of NeRD

.

Figure 2.17: Symmetry detection process and coarse-to-fine inference of NeRD. Left: for each
pixel, we enumerate its depth and warp features along the line according to the symmetry
plane hypothesis. If the hypothesis is correct, there should be matched features for most
of the pixels. Right: We show the sampled normal direction in a 4-round coarse-to-fine
inference. The color of points represents the scores from symmetry confidence network.

represented by x and Cx. Therefore, we set V by concatenating the backbone features at
these two locations, i.e.,

V(x, y, d) =
[

F(x, y), F(x′, y′)
]

, (2.9)

where [x′, y′, 1, 1/d′]T ∝ C[x, y, 1, 1/d]T , i.e., (x′, y′) being the projection of the mirror point
of the pixel (x, y) assuming its depth is d. Here F is the backbone feature, and C is computed
from the sampled symmetry plane ŵ. We apply bilinear interpolation to access the features
at non-integer coordinates. The dimension of the cost volume tensor is ⌊H

4
⌋×⌊W

4
⌋×D×32.

2.3.3.5 Cost Volume Network

The goal of the cost volume network is to turn the initial 3D cost volume tensor V from
the feature warping module into a depth probability tensor P(x, y, d) := Pr[D(x, y) = d].
This is possible as the matrix multiplication on the channel dimension can be used to check
for the photo-consistency on V. However, the initial cost volume aggregated from image
features can be noisy. Thus, we use a network consists of multiple 3D convolution layers
that is capable of efficiently regularize the cost volume information. We aggregate the multi-
resolution encoder features with max-pool operators and then apply the sigmoid function to
normalize the confidence values into [0, 1].

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 38

2.3.3.6 Symmetry Sampler

Inference. As shown in Figure 2.17b, the symmetry sampler uniformly samples {wk
i }Kk=1

from Wi ⊂ R
3 using Fibonacci lattice [183, 47], where Wi is the sampling space of the ith

round of inference. In the first round, candidates are sampled from the surface of a unit
hemisphere. For the following rounds, we set Wi = {w ∈ S

2 | arccos(|〈w,w∗
i−1〉|) < ∆i}

to be a spherical cap, where w∗
i−1 is the optimal w from the previous round and ∆i is a

hyper-parameter.

Training. During training, we sample symmetry planes for each image according to the
hyper-parameter ∆i. For the ith level, symmetry candidates are sampled from {ŵ ∈
S
2 | arccos(|〈w, ŵ〉|) ≤ ∆i}, where w is the ground truth symmetry pose. We also add

a random sample ŵ ∈ S
2 to reduce the sampling bias. For each sampled ŵ, its confidence

labels is li = 1[arccos(|〈w, ŵ〉|) < ∆i] for the ith level. The training error could be written
as

Lcls =
∑

i

BCE(l̂i, li),

where BCE represents the binary cross entropy error, and l̂i is predicted confidence of ŵ for
the ith level in the coarse-to-fine inference.

2.3.4 Experiments

2.3.4.1 Datasets

We conduct experiments on the synthetic ShapeNet dataset [14] and real-world Pix3D
dataset [137], in which models have already been processed so that in their canonical poses
the Y-Z plane is the plane of the reflection symmetry.

ShapeNet. We use the same camera pose, intrinsic, and train/validation/test split from a
13-category subset of the dataset as in R2N2 and others [73, 148, 20] to make the comparison
easy and fair. We exclude the lamp category as it contains many asymmetric objects. We
use Blender to render the images with resolution 256× 256.

Pix3D. Pix3D [137] is a real-world dataset containing image-shape pairs with accurate
2D-3D registrations. To demonstrate the versatility of NeRD, we train and test NeRD on
the Pix3D dataset. We assume that the bounding boxes of objects have been detected, and
we use them to crop the images for removing the background while maintaining the aspect
ratio. Then, we rescale the resulting images to 256 × 256 and adjust the camera intrinsic
matrix K accordingly. Next, we reject images extraordinary with focal lengths and depth
values. Finally, we randomly split the remaining data into train and test sets, which contains
5285 and 588 images, respectively.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 39

backbone

(sec 2.3.3.3)

cost volume

(sec 2.3.3.5)

feature warping error metrics

var avg cat avg med <1◦ <2◦

a X X 7.12◦ 0.54◦ 66.8% 77.2%

b X X 6.82◦ 0.99◦ 50.1% 70.1%

c X X X 6.33◦ 0.57◦ 68.1% 81.5%

d X X X 6.41◦ 0.66◦ 63.7% 77.7%

e X X X 5.41◦ 0.56◦ 68.2% 81.5%

Table 2.6: Ablation study of 3D reflection symmetry detection on ShapeNet.

2.3.4.2 Implementation Details

We implement NeRD in PyTorch. We use the plane x = 0 in the object space as the ground
truth symmetry plane because it is explicitly aligned for each model by authors of ShapeNet.
We set dmin and dmax according to the depth distribution of the dataset, and use D = 64 for
the depth of the cost volume. We use N = 4 rounds in the coarse-to-fine inference, in each
of which K = 32 normal directions are sampled. We choice ∆ = [20.7◦, 6.44◦, 1.99◦, 0.61◦]
according to the gap between nearly directions. Our experiments are conducted on two
NVIDIA RTX 2080Ti GPUs. We use the Adam optimizer [76] for training. Learning rate is
set to 3× 10−4 and batch size is set to 16 per GPU. We train the NeRD for 40 epochs and
decay the learning rate by a factor of 10 at the 30th epoch. The overall inference speed is
about 1 image per second per GPU.

Metrics. To better understand the performance of symmetry detection, we show two forms
of metrics. We plot a performance curve for each detector-dataset pair, in which the x-axis
represents the angle accuracy and the y-axis represents the proportion of the data whose
error is less than that. We also report quantative metrics, including the median and mean of
the angle difference, and the percentages of testing images whose error is smaller than 0.5◦,
1.0◦, 2.0◦, and 4.0◦, for ease of comparision.

2.3.4.3 Ablation Studies

We conduct ablation studies to justify each component in NeRD. In Table 2.6, we analyize
the function of three main components of NeRD: the 2D backbone network (Section 2.3.3.3),
feature warping module (Section 2.3.3.4), and the cost volume network (Section 2.3.3.5). The
second column of Table 2.6 represents whether we use the feature from the 2D backbone or
just RGB values to construct the cost volume. Comparing (a) and (e), we find that removing
2d backbone degrades the performance, especially at the region > 2◦. We think this is
because the 2D backbone network increases the receptive field, which make the network
more robust. The third column represents whether we want to replace the cost volume
network with a simple max-pool layer. Results in (b) and (e) show that the cost volume

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 40

0 1 2 3 4
Symmetry Plane Error (degree)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 (×
 1

00
%

)

NeRD
ResNet
RotationContinuity
DISN
Front2Back
NOCS

(a) Curves on ShapeNet (synthetic)

0 2 4 6 8
Symmetry Plane Error (degree)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (×

 1
00

%
)

NeRD
ResNet
RotationContinuity

(b) Curves on Pix3D (real-world)

Figure 2.18: Performance curves of symmetry detection algorithms.

avg med <0.5◦ <1.0◦ <2.0◦

DISN [160] 2.80◦ 1.65◦ 7.96% 24.9% 61.0%

ResNet [52] 2.08◦ 1.06◦ 19.7% 47.3% 76.6%

RotationContinuity [178] 1.94◦ 1.14◦ 17.6% 43.9% 76.2%

Front2Back [166] 9.41◦ 1.76◦ 16.8% 34.0% 53.2%

NOCS [147] 9.95◦ 6.18◦ 0.39% 2.83% 11.9%

NeRD 1.58◦ 0.36◦ 64.5% 80.6% 87.8%

Table 2.7: Performance of symmetry detection and object pose recovery algorithms on
ShapeNet. We report the normal direction error of the predicted symmetry planes. We
note that NOCS [147] requires ground truth object shapes as input.

avg med <1.0◦ <2.0◦ <4.0◦

ResNet [52] 8.01◦ 5.06◦ 5.78% 18.5% 42.3%

RotationContinuity [178] 7.91◦ 4.67◦ 6.12% 20.4% 44.3%

NeRD 3.37◦ 0.73◦ 56.3% 71.9% 80.4%

Table 2.8: Performance of symmetry detection algorithms on the real-world Pix3D [137]
dataset. We report the normal direction error of the predicted symmetry planes.

network is the key component for an accurate symmetry detector. Finally, we study the
different pooling schemes in the feature warping module. From (c), (d), and (e), we find
that the feature concatenation and variance pooling gives the best results, while the average
pooling performs poorly in the high-precision region (< 1◦). This matches our intuition in
Section 2.3.3.1 that NeRD compares the feature to check photo-consistency.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 41

(a) ResNet (b) NeRD (a) ResNet (b) NeRD (a) ResNet (b) NeRD (a) ResNet (b) NeRD

Figure 2.19: Qualitative results of symmetry detection on Pix3D. We show the detected
symmetry planes from ResNet and our NeRD. Errors of symmetry planes (pixels between
the predicted and ground truth planes) are highlighted.

2.3.4.4 Symmetry Detection on Synthetic Datasets

Baselines. We briefly introduce some state-of-the-art single-view symmetry detection and
pose estimation baseline that we will compare against. Probably the plainest way to estimate
the 3D symmetry planew is direct regression. We implement it with ResNet-50 [52] and train
it with L1 loss. RotationContinuity [178] identifies a 6D representation of rotation which
they claim is more suitable for learning. We implement it and train with L1 loss. DISN [160]
also implements its 6D representation for ShapeNet but is trained with L2 loss. We report
the performance of their pre-trained model. Front2Back [166] is a recent work that detects
the 3D symmetry plane, which first predicts a depth map and then fit the symmetry plane
with a traditional method [108]. We report the performance of their results. NOCS [147]
predicts a coordinate of normalized object coordinate space for each pixel and recovers the
pose with Umeyama algorithm [144]. Following their paper, we train the NOCS estimator
on ShapeNet and use their code to recover the orientation of objects from prediction.

Results. Table 2.7 and Figure 2.18a show the comparison on the ShapeNet dataset. By
utilizing geometric cues from symmetry, our approach significantly outperforms previous
state-of-the-art camera pose detection networks. The performance gap is much larger in
the region of higher precision (< 1◦). For example, NeRD can achieve an accuracy of 0.5◦

on about 70% of testing cases, while direct regression with ResNet and other baselines can
only reach that on less than 20% of data. Such phenomena indicate that the intra-image

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 42

(a) Front2Back (b) ResNet (c) NeRD (a) Front2Back (b) ResNet (c) NeRD (a) Front2Back (b) ResNet (c) NeRD

Figure 2.20: Qualitative results of symmetry detection on ShapeNet. Errors of symmetry
planes (pixels between the predicted and ground truth planes) are highlighted.

correspondence does help algorithms recover symmetry planes more accurately, while naive
CNNs can only roughly predict the plane normal by interpolating from training data. We also
find that end-to-end approaches that directly predict the symmetry plane (ResNet, DISN,
NeRD, etc) performs better than the methods which require heavier post-processing (NOCS
and Front2Back). This hints us that using a loss function that is more directly related to
the goal has an advantage.

2.3.4.5 Symmetry Detection on Real-World Datasets

Table 2.8 and Figure 2.18b show the comparison on the real-world Pix3D dataset. NeRD
outperforms the naive CNNs regression, and the margin is even bigger compared to the results
on ShapeNet. We hypothesize that this is because images in Pix3D uses a larger number of
camera configurations, including different focal lengths and object positions with respect to
the focal center, while the dataset has fewer images. This requires more generalizability from
the algorithms. Our geometry-based approach shines here because it can rely on the cues
from correspondence to find the symmetry planes. Also, it is hard for naive convolutional
neural networks to make use of the camera intrinsics, which varies from images to images,
unlike ShapeNet. In contrast, NeRD uses camera intrinsic matrices in the feature warping
module (Section 2.3.3.4) and thus generalizes better when dealing with different camera
configurations.

2.3.4.6 Visualization

Qualitative Results. We visualize the detected symmetry in Figure 2.19 and Figure 2.20
on the Pix3D and ShapeNet datasets. We have the following observations: 1) our method
outperforms previous methods on unusual objects, e.g. chairs in atypical shapes. This
indicates that learning-based methods need to extrapolate from seen patterns and cannot
generalize to unusual images well, while our method relies more on geometry cues from

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 43

(a) Round
i = 1

(b) Round
i = 2

(c) Round
i = 3

(d) Round
i = 4

(a) Round
i = 1

(b) Round
i = 2

(c) Round
i = 3

(d) Round
i = 4

Figure 2.21: Illustration of the coarse-to-fine inference on sampled images from ShapeNet.
The symmetry plane with the highest confidence score in each round of coarse-to-fine in-
ference is drawn. In the ith round, we determine the normal of symmetry plane to the
accuracy of ∆i, where ∆ = [20.7◦, 6.44◦, 1.99◦, 0.61◦] are set according to the gap between
nearly directions from the number of direction samples per round K = 32.

(b) Multiple symmetry planes (c) Asymmetric object(a) Lack of correpondence

Figure 2.22: Sampled failure cases of NeRD on ShapeNet.

symmetry, a more reliable source of information for 3D understanding. 2) NeRD gives
accurate symmetry planes even on challenging camera poses such as the orientation from
the back of chairs. We believe that this is because although visual cues along may not
be remarkable enough in these cases, geometric information from correspondence helps to
pinpoint the normal of symmetry planes.

Coarse-to-Fine Inference. Figure 2.21 shows the process of coarse-to-fine inference on
sampled images from ShapeNet. We display the symmetry plane with the highest confidence
score in each round of coarse-to-fine inference. In the ith round, we determine the normal of
symmetry plane to the accuracy of ∆i, where ∆ = [20.7◦, 6.44◦, 1.99◦, 0.61◦] are set according
to the gap between nearly directions from the number of direction samples per roundK = 32.
The coarse-to-fine inference dramatically reduces number of samples required to achieve a
certain level of accuracy. As shown in the figure, the precision of the predicted plane increases
with the number of rounds in the coarse-to-fine inference.

CHAPTER 2. DETECTING GEOMETRIC STRUCTURES FROM IMAGES 44

Failure Cases. Figure 2.22 shows sampled failure cases on ShapeNet. We categorize those
cases into three classes: lack of correspondence, existence of multiple symmetry planes,
and asymetric objects. For the first category, e.g., the firearm shown in Figure 2.22(a), it
is hard to accurately find the symmetry plane from the geometry cues because for most
pixels, their corresponding points are occluded and invisible in the picture. For the second
category, objects in shapes such as squares and cylinders admit multiple reflection symmetry,
and NeRD may return the reflection plane that differs from the symmetry plane of the
ground truth. For the third category, some objects in ShapeNet are not symmetric. Thus,
the detected symmetry plane might be different from the “ground truth symmetry plane”
computed by applying Rt to the Y-Z plane in the world space.

45

Chapter 3

Datasets for Scene Abstraction

In this chapter, we will introduce three datasets that we have developed during my Ph.D.
studies to support data-driven approaches for structure-based 3D parsing tasks: the SceneCity
Urban 3D Synthetic dataset (SU3), the Landmark 3D Wireframe dataset (L3W), and the
Holistic City-Scale data platform (HoliCity). The SU3 is a large-scale synthetic dataset and
L3D is a small real-world dataset. Both of them have 3D wireframe annotation and they are
developed along with the 3D wireframe projects and have been published in [182]. HoliCity
is a larger full-featured data platform for research of learning abstracted high-level holistic
3D structures that can be derived from city CAD models, e.g., corners, lines, wireframes,
planes, and cuboids, with the ultimate goal of supporting real-world applications including
city-scale reconstruction, localization, mapping, and augmented reality. The accurate align-
ment of the 3D CAD models and panoramas also benefits low-level 3D vision tasks such
as surface normal estimation, as the surface normal extracted from previous LiDAR-based
datasets is often noisy. HoliCity has been published in [181].

3.1 SU3: The SceneCity Urban 3D Synthetic Dataset

3.1.1 Introduction

One of the bottlenecks of supervised learning methods from Chapter 2 is inadequate amount
of data for training and testing. In the task of 2D wireframe detection (Section 2.1), [63]
have developed a dataset. However, their dataset does not contain the 3D depth or the type
of junctions, which is not sufficient for tasks of 3D parsing. To the best of our knowledge,
there is no public image dataset that has both wireframe annotation and 3D information. To
help the development of novel structure-based learning approaches and verify the concepts,
we create a synthetic dataset with a larger number of images of city scenes. The benefit of
using a has accurate 3D geometry and automatically annotated ground truth 3D wireframes
from mesh edges, while the latter is manually labeled with less accurate 3D information.

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 46

Figure 3.1: Sampled images in the SU3 dataset. Images are overlaid with the groundtruth
wireframes, in which the red and blue dots represent the C- and T-type junctions, respec-
tively.

3.1.2 Datasets

Overview. To obtain a large number of images with accurate geometrical wireframes an-
notated, we use a procedural 3D building mesh repository, SceneCity1. The renderings are
shown in Figure 3.1. The 3D assets are made up of simple polygons with artist-tuned mate-
rials and textures. For each junction in the wireframe, we can group the junctions into two
categories: C-junction or T-junction. Corner C-junctions are actual intersections of physical
planes or edges, while T-junctions are generated by occlusion. We extract the C-junctions
from the vertices of the mesh and compute T-junctions using computational geometry meth-
ods and OpenGL. Our dataset includes 230 cities, each containing 8 × 8 city blocks. Each
city has different building arrangements and lighting conditions by varying the sky maps.
We randomly generate 100 viewpoints for each city based on criteria such as the number of
captured buildings to simulate both hand-held and drone cameras. The synthetic outdoor
images are then rendered through global illumination by Blender, which provides 23, 000
images in total. The images are rendered with a resolution 512 × 512 and 20 ray samples
per pixel. We enabled Blender’s geometry-based de-noise procedure, which significantly im-
proves the quality of images and reduces the rendering time. We use the images of the first
227 cities for training and the rest 3 cities for validation.

Camera Placement. In order to get a high-quality meaningful synthetic dataset, it is
important to have a proper camera placement. For each view, we require that there are at
least three visible building; all the objects are in front of the camera; the boundary of the
city is in front of the camera; and the boundary of the photo is enclosed by the boundary of
the city. If any of these conditions are not satisfied, we reject this placement and regenerate
one.

1https://www.cgchan.com/

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 47

Figure 3.2: Sampled images in the L3W dataset. Images are overlaid with the groundtruth
wireframes, in which the red and blue dots represent the C- and T-type junctions, respec-
tively.

3.2 L3W: The Landmark 3D Wireframe Dataset

3.2.1 Introduction

The SU3 dataset in Section 3.1 provides us a large number of images with ground truth
annotation. However, there might be a large domain gap between the virtual renderings of
synthetic datasets (SU3) and our real-world images. Therefore, we collect the L3W landmark
3D wireframe dataset, which is smaller datasets with manual 3D wireframe annotation. This
dataset, along with SU3, can support the learning-based 3D wireframe reconstruction with
transfer-learning techniques, which first trains the models on a large-scale synthetic dataset
and then fine-tune on a smaller real-world dataset with manual annotations.

3.2.2 Datasets

Overview. Manual annotating 3D wireframe on RGB images can be hard. Therefore, we
resort to an existing dataset that provides depth annotation. The MegaDepth dataset [89]
contains real images of 196 landmarks in the world with the depth maps reconstructed using
structure-from-motion [128]. Due to the limitation of resources, we select about 200 images
from it that approximately meet the Manhattan assumptions and can be represented by 3D
wireframe, manually label their wireframes on images, and register them with the provided
3D depth maps. We assign 2/3 of the images for training and the remaining 1/3 for testing.
The intended way to use this dataset is to first pre-train the neural network on a large
synthetic dataset (e.g., SU3), and then use the real images from L3W to finetune the model.
Sampled images from L3W are shown in Figure 3.2.

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 48

Annotation. We provide an annotation software so that labelers could annotate the wire-
frame efficiently. The UI of the software shows the image that requires annotation. Labelers
could use the following keys to draw the wireframes on images and register the junctions
with the provided 3D depth maps:

• Press 1 for plotting C-junctions (red dots) on following clicks;
• Press 2 for plotting T-junctions (blue dots) on following clicks(restricted to a line);
• Press 3 for selecting dots on following clicks;
• Press 4 for selecting lines on following clicks;
• Press z for rescaling the image to a full window size;
• Press x to delete a dot/line, after selecting them;
• Press c to move a dot, after selecting them;
• Press d to mark the current image as invalid;
• Press e to switch between depth maps and RGB images.

3.3 HoliCity: The Holistic City-Scale Data Platform

3.3.1 Introduction

With the development of point features such as ORB [126] and SIFT [3], structure-from-
motion (SfM) and simultaneous localization and mapping (SLAM) have been successfully
applied to tasks such as autonomous driving, robotics, and augmented reality. Although
the robustness of SfM has been improved over the last decades, the resulting point clouds
are still noisy, incomplete, and thus can hardly be directly used. Intricate post-processing
procedures, such as plane fitting [60], Poisson surface reconstruction [74], and TSDF fusion
[26] are necessary for downstream applications. Increasingly have people found that the long
pipeline of 3D reconstruction is difficult to implement correctly and efficiently, and results
in low-level representations such as point clouds are also unfriendly for parsing, editing, and
sharing.

Looking back at the origin of computer vision from the ’70s, scientists have found that
human beings do not perceive the world with point-clouds. Instead, we abstract scenes with
high-level geometry primitives, such as corners, line segments, and planes, to form our sense
of 3D, navigate in cities and interact with environments [23]. This hints us that instead of
point clouds, we can also use high-level structures as a representation for 3D reconstruction,
which in many cases are more compact, intuitive, and easy to process. In fact, early vision
research does focus on reconstructing with high-level abstractions, such as lines/wireframes
[35], contours/boundaries [135], planes/surfaces [71], and cuboids/polyhedrons [123]. We
name these high-level abstractions holistic structures in this paper, as they tend to represent
scenes globally, comparing to the SIFT-like local features. However, recognition of holistic
structures from images seems too challenging to be practical at that time. 3D reconstruc-
tion with high-level abstractions does not get enough attention despite its potentials, until
recently.

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 49

(a) Bird’s-eye view of the HoliCity CAD model

Oxford RobotCar Dataset

(under same scale)

(b) Viewpoint coverage

(c) Panorama (d) RGB (e) Renderings (surface segments, depth, normal)

Figure 3.3: Our HoliCity dataset consists of accurate city-scale CAD models and spatially-
registered street view panoramas. HoliCity covers an area of more than 20 km2 in London
from 6,300 viewpoints, which dwarfs previous datasets such as Oxford RobotCar [98] (3.3b).
From the CAD models (3.3a) and the panoramas (3.3c), it is possible to generate clean
structured ground-truths for 3D understanding tasks, including perspective RGB images
(3.3d), surface segments, and normal maps (3.3e).

Inspired by the recent success of deep convolutional neural networks, researchers have
proposed a variety of neural networks to extract high-level structures from images, such
as wireframes [182, 180], planes [90], cuboids [109], vanishing points [183], room layouts
[185], and building layouts [171]. Most of them are supervised learning algorithms, which
rely on annotated datasets for training. However, making a properly outdoor 3D dataset
for a particular high-level representation is complex. The building process usually has 2
stages: (1) 3D data collection and (2) structure labeling. Collecting 3D data such as depth
images is a cost- and labor-intensive process. This is especially true for outdoor scenes
due to the lack of dense depth sensors. Even with expensive LiDAR systems, the point
clouds from scans are still noisy and have lower spatial resolution compared to RGB images.
Derived features such as surface normal are unsmooth, which might be the reason why
previous normal estimation research [32, 5, 150, 61] only demonstrates their results on indoor
scenes. These characteristics are unfavourable for extracting holistic structures. In addition,
labeling high-level abstractions on the collected 3D data is also challenging. On one hand,
manually annotating high-level structures is time-consuming, as it requires researchers to
design complicated 3D labeling software. On the other hand, the quality of automatically
extracted structures from algorithms such as J-Linkage[141] might not be adequate. The
results can be inaccurate, incomplete, and erroneous, especially when the quality of 3D
data is not that good. To make the problem worse, frequently a dataset that is labeled
for one particular structure cannot be easily reused for other structures. As a result, data

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 50

Figure 3.4: Images and generated 3D information from sampled viewpoints of HoliCity
dataset. From top to bottom: perspective images rendered from panoramas, surface seg-
ments overlaid with images, CAD model renderings, and semantic segmentation.

preparation has become one of the major road blockers for structural 3D vision research.
To provide a high-quality multi-purpose dataset for the vision community, we develop

“HoliCity,” a data platform for learning holistic 3D structures in urban environments. Fig-
ure 3.3 shows an overview. HoliCity is composed of 6,300 high-resolution real-world panora-
mas that are accurately aligned with the 3D CADmodel of downtown London with more than
20 km2 of area (see Figures 3.3a to 3.3c). Instead of relying on expensive vehicle-mounted
LiDAR scanners, HoliCity takes the advantage of existing high-quality 3D CAD city mod-
els from the GIS community. This way, we can collect a large area of 3D data with fine
details, structure-level annotation, and semantic labels at relatively low cost, in which the
CAD models are parametrized by corners, lines, and smooth surfaces so that it is friendly for
researchers to extract holistic structures. In comparison, traditional LiDAR-based datasets
such as KITTI [44] and RobotCar [98] cover a much smaller area (see Figure 3.3b for com-
parison), are more expensive to collect, and use noisy point clouds as their representation.
The panorama photographs in HoliCity are sharp, professionally captured, and with resolu-
tion as high as 13312 × 6656. In contrast, images of LiDAR-based datasets are often from

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 51

NYUv2 ScanNet Stanford-2D-3D SYNTHIA MegaDepth KITTI RobotCar HoliCity

type real real real synthetic real real real real
scene indoor indoor indoor driving landmark driving driving city
depth RGBD RGBD RGBD CAD SfM LIDAR LIDAR CAD
style dense dense © dense dense quasi quasi dense

normal © X X © © © © X

plane © X © X © © © X

coverage / 0.034 km2 0.006 km2 / / / / 20 km2

path length / / / / / 39.2 km 10 km /
time span 1 scan 1 scan 1 scan / unknown 5 scans 2014-2015 2008-2019
diversity 464 rooms 707 rooms 4 buildings / 200 scenes path path city

of images 1.4k 2.5m 1.4k 50k 100k 93k 20m 6.3k
source image video video / image video video image
FoVs 71◦ × 60◦ 45◦ × 34◦ panorama 100◦ × 84◦ random 90◦ × 35◦ multi-cam panorama

sementics 2D 3D 3D 3D N.A. N.A. N.A. 3D
max depth (indoor) (indoor) (indoor) ∞ (relative) 80m 50m ∞

Table 3.1: Comparing HoliCity with existing 3D datasets. We list the features of NYUv2
[111], ScanNet[27], Stanford-2D-3D-Semantics [4], SYNTHIA [125], MegaDepth [89], KITTI
[44], and RobotCar [98]. The © in the normal and plane rows represents that they are not
available but possible to use fitting algorithms such as J-Linkage [141] to get the annotations,
but the quality might vary.

video recordings, so they can be blurry, low-resolution, and repetitive. Application-wise,
traditional LiDAR-based datasets focus on tasks related to low-level representations, such
as depth map prediction, reconstruction with point clouds, and camera relocalization, while
HoliCity is designed to additionally support the research of 3D reconstruction with high-level
holistic structures, such as junctions, lines, wireframes, planes, parameterized surfaces, and
other geometry primitives that they can be derived from CAD models.

In summary, the main contributions of this work include:
1. we propose a novel pipeline for creating a city-scale 3D dataset by utilizing existing

CAD models and street-view imagery at a relatively low cost;
2. we develop HoliCity as a data platform for learning holistic 3D structures in urban

environments;
3. we accurately align the panorama images with the CAD models, in which the median

reprojection error is less than half a degree for an average image;
4. we conduct experiments to justify the necessity of a CAD model-based data platform

for 3D vision research, including demonstrating potential applications and testing its
generalizability from/to other datasets.

3.3.2 Related Work

Synthetic 3D Datasets. Recently, object-level synthetic datasets such as ShapeNet [14]
are popular for computer vision research, as people are free to convert 3D CAD models to any
representations that their learning-based algorithms like, such as depth maps [16], meshes
[105], voxels [163], point clouds [36], and signed distance fields [115]. With the availability

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 52

of CAD models, not only HoliCity shares similar freedom as these synthetic object-level
datasets, but it also offers scene-level real-world images in urban environments. Additionally,
synthetic approaches have also been used to create structured 3D scenes, as seen in SceneNet
[103], SUNCG [133], SYNTHIA [125] and GTA5 [122] datasets. They provide perfect labels
for depth information and semantic segmentation, and it is also possible to extract high-
level structural information from them. Nevertheless, their images are still fake. In our
experiments, we find that there exists a large domain gap between the virtual renderings of
synthetic datasets and our real-world images.

Outdoor Datasets. Due to the high cost and the limitation of LiDAR systems, acquiring
3D measurements for outdoor scenes is difficult. Publicly available datasets created with
LiDAR technology, such as KITTI [44] and RobotCar [98], are relatively small-scale and low-
resolution, and mainly focus on the driving scenarios. Recently, outdoor datasets emerge
by leveraging structure-from-motion (SfM) and multi-view stereo (MVS) on web imagery
in-the-wild [89]. These datasets provide depth information at a low cost with the expense
of quality, because visual 3D reconstruction is not really accurate or robust for random
Internet images. In addition, previous 3D outdoor datasets mainly use point clouds as their
representation, which are usually noisy. Hardly any of them provide structured annotations
such as lines, wireframes, segmented 3D planes, and buildings instance. In comparison,
HoliCity offers high-quality CAD models and ground truth of holistic 3D structures that
cover an unprecedented range of areas and viewpoints at the scale of a city (Figures 3.3
and 3.4).

Indoor Datasets. Thanks to increasingly affordable indoor dense depth sensors such as
Kinect and RealSense, high-quality real-world indoor 3D data can be produced on a massive
scale. Datasets like NYUv2 [111] provide RGBD images for a variety of indoor scenes.
Recent datasets such as SUN3D [159], ScanNet [27], Stanford-2D-3D-Semantics [4], and
Matterport3D [13] provide surface reconstruction results and 3D sementics annotation in
addition to depth maps. The quality of indoor datasets often varies from scenes to scenes,
depending on how well the scene is scanned. Compared to HoliCity that provides accurate
CAD models designed for learning holistic structures, the noises, holes, and misalignments
in the point clouds of these indoor datasets make them not ideal for extracting high-level
3D abstractions. More importantly, our experiment shows that it is hard for a network to
generalize from indoor training data to outdoor 3D tasks, due to the significant domain gaps.

3.3.3 Exploring HoliCity

Our goal is to develop a large-scale outdoor 3D dataset that is rich of holistic structural
information. To this end, HoliCity uses commercially available CAD models provided by
AccuCities, which are reconstructed and built using photogrammetry from high-resolution
aerial imagery, each with accurately-recorded GPS position, height, tilt, pitch, and roll.

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 53

5 10 15 20 25 30 35 40
Number of annotated pairs

0

200

400

600

800

1000

Nu
m

be
r o

f p
an

or
am

as

Number of annotated pairs per image

(a) Annotations per Image

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Reprojection error on panorama images (in degree)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Im
ag

e
de

ns
ity

Reprojection Error

50th percentile
75th percentile
95th percentile

(b) Reprojection Error

1 2 3 4 5 6 7 8 9
Number of panoramas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r o

f p
la

ne
s

1e4 Plane Occurance

(c) Plane Occurrence

Figure 3.5: Statistics of HoliCity. We show the number of annotations per panorama for
registration (3.5a); the reprojection errors of annotated 3D points on panoramas (3.5b) and
the occurrence of planes on different panoramas (3.5c).

Aerial photogrammetry is a mature technique and it has been widely used to build models
with different levels of details for city planning in the field of geographic information systems
(GIS). As a result, we are able to get the CAD models that cover a wide range of city areas.
The CAD models we use contain details of building features with up to 15 cm accuracy,
according to the provider.

To make the CAD models useful for image-based tasks, we need to precisely align the
CAD models with images taken from the ground. To do that, we collect the panorama images
from Google Street View that cover the same area, along with their geotags. To increase
the alignment accuracy between the panoramas and the CAD models, we implement an
annotation software for precise localization (See Section 3.3.4 for details).

Table 3.1 summarizes the difference between our dataset and the existing ones. Compared
to the previous 3D outdoor datasets, HoliCity has its advantage on the following aspects:

Holistic Structures. With CAD models, it is straightforward to extract high-quality
holistic structures such as corners, lines, planes, and even curved surfaces from HoliCity
compared to the point clouds, as shown in the second row of Figure 3.4. HoliCity also
supports traditional low-level representations such as depth maps and normal maps (Fig-
ure 3.3e), as well as rendering the maps of semantics annotations of roads, buildings, curbs,
sky, water, and others, which have already been annotated in the CAD model. In contrast,
most existing outdoor datasets use point clouds as the representation. Due to the limitation
of LiDAR technology and costs, point clouds are often too sparse and noisy for an algorithm
to extract such high-level structures reliably. Hardly any of existing outdoor datasets provide
high-level structure annotations such as lines, wireframes, segmented surfaces, and identified
buildings. Ground truth semantic segmentation also needs to be labeled manually afterward
[27, 13].

Coverage. Compared to other datasets, HoliCity is able to cover a much larger area of
more than 20 km2 in downtown London with more diverse urban scenes and viewpoints,

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 54

thanks to the existing CAD models and street-view panoramas. Figure 3.3b shows the
coverage map that is aligned with Google Maps and compares it against the Oxford RobotCar
dataset. HoliCity contains 6,300 panorama images from diverse viewpoints. We note that
it might look like that our dataset has fewer images than other datasets, it is actually fairly
large among panorama-based ones, such as Stanfold-2D-3D [4] (1,413 images), and SUN3D
[159] (6,161 images). For the datasets in Table 3.1 with much higher image counts, their
images are mostly extracted from videos, which are highly repetitive and blurry. Therefore,
we think “coverage” is a more fair metric for evaluating the size and variety of a dataset,
especially considering that our dataset already have had a reasonable density of viewpoints
as seen in Figure 3.3b.

Accuracy. We carefully align the panoramas with the CAD model using a reasonable
number of annotated correspondence points between them, as shown in Figure 3.5a. Because
the original geolocation of Google Street View images is not precise, we re-estimate the
camera pose by minimizing the reprojection error of our annotations. Figure 3.5b shows
the reprojection error of annotated points between the images and the CAD model. We
find that for an average image, the median reprojection error is less than half a degree and
the 95th percentile does not exceed 1.2 degrees. Besides accurate camera registration, our
CAD model-based dataset does not have constraints on maximum depth, unlike the depth
obtained from LiDAR. Hence it is more suitable for evaluating image-based 3D reconstruction
algorithms.

Panorama. HoliCity uses panorama images from Google Street View with resolution
13312 × 6656. This way, our dataset can capture the full view from each viewpoint and
it is not biased towards any directions or landmarks. It also gives us extra flexibility to
render many times more perspective images and emulate cameras of different types. In
contrast, images from previous outdoor datasets are mainly captured by the front-facing
cameras mainly towards roads. The field of views (FoVs) is limited and the area of interest
is biased.

Multi-View. The number of occurrences of each 3D plane in our panorama database is
shown in Figure 3.5c. More than half of the planes occur in more than one image and
about a third of planes occur in more than two images. This means that our dataset can
support the 3D vision research that requires multi-view correspondence between images, e.g.,
structure-from-motion, multi-view stereopsis, and neural renderings.

Time Span. Most of existing 3D outdoor datasets are collected in short periods of time,
as shown in the row “time span” of Table 3.1. In contrast, HoliCity utilizes the panorama
images from Google Street View, which are captured during a span of over 10 years. This
greatly increases the variety of data, which can benefit learning-based methods and bring
additional challenges to tasks.

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 55

3.3.4 Building HoliCity

3.3.4.1 City Data Collection

3D Models. Although there exist many public city CAD models from the GIS community
[79] and municipality governments, determining their quality is hard as these datasets are
built for different purposes. In this project, we use the commercially available CAD model
from AccuCities. Their CAD model covers the area of downtown London and comes with
two levels of details. The low-resolution version (cover 20 km2) has details accurate to 2m,
while the high-resolution version (covers 4 km2) are accurate to 15cm in all three axes. The
CAD model is stored in the mesh format and each surface is tagged with semantic types
such as BUILDING, TERRAIN, BRIDGE, TREE, etc.

Street-View Images. We collect street-view panorama images from Google Street View.
At each viewpoint, we have a 360◦ panorama image along with the geographic data of the
camera from GPS and IMUs: 1) latitude and longitude in WGS84 coordinate; 2) azimuth,
the angle between the forward-up plane of the camera and geographic north; 3) accelerating
direction, which normally is the direction of gravity. The geographic information along from
Google Street View is not sufficient for accurately registering the camera pose between the
CAD model and the panorama images. First, we do not have the elevation of the camera.
We estimate the initial z of the camera by adding 2.5m (the height of the camera) to the
ground elevation, as terrains are provided in the CAD model. Second, the provided GPS
and IMU data along are not accurate enough for an accurate alignment between the images
and the CAD model. Therefore, we resort to human annotation for registration.

3.3.4.2 Annotation Pipeline

Geo-tagging the CAD Models. In the first step, we register the CAD model with the
WGS84 coordinate used by Google Street View. To do that, we annotate 44 corresponding
2D locations on both Google Maps and our CAD model. We label most of the points on the
inner corners of roof ridges to maximize the registration accuracy. We employ a nonlinear
mesh deformation model for registration. Let XWGS and XCAD be the 2D coordinates of the
points on Google Maps and our CAD models and Γ be the mapping from XCAD to XWGS

parameterized by Ω. Mathematically, we have

Γ(XCAD,Ω) = XWGS (3.1)

Here, we use Ω[x, y] ∈ R
2 is a 2D lookup table and Γ simply bilinear interpolates Ω and

returns Ω[XCAD]. We can find the optimal Ω̂ by optimizing

min ‖Γ(XCAD,Ω)−XWGS‖22 + λ‖∆Ω‖2F , (3.2)

where ∆Ω is the Laplacian of Ω. The Laplacian term serves as a regularization to keep
the transformation smooth. The objective function is convex, so we can find the global

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 56

(a) UI when annotating the 3D model. (b) UI when annotating panorama images.

Figure 3.6: User interface of the HoliCity annotation tool.

optimal solution. We do a 44-fold cross-validation to determine the best λ. The final
average and maximum errors are 39cm and 1.5m in the cross-validation, respectively. For
reverse mapping from the WGS84 coordinate to the CAD model, we simply use the Newton-
Gaussian algorithm .

Per-Image Fine-Tuning. In the second step, we fine-tune the camera pose. For each
image, we first ask annotators whether it is indoor or outdoor. We discard all the indoor
images. Next, we let annotators label pairs of corresponding points on the CAD model and
the panoramas We provide a labeling software so that an annotator can switch between
the 3D model and the images, click to add points, and optimize camera poses to minimize
reprojection errors (user interface is shown in the supplementary material). We instruct the
annotator to only put points on roof corners if possible, as our CAD model is made from
aerial images so that the geometry of roofs are more reliable. We ask annotators to label at
least 8 pairs of points for each view if possible.

Because we have a good initialization of the camera pose from IMU data, we apply
Levenberg–Marquardt algorithm to compute the camera pose that minimizes the reprojection
error of the corresponding points. Mathematically, let xi ∈ S

3 be the unit vector of the ray
direction of the ith labeled point on the panorama image and Xi ∈ R

3 be the coordinate of

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 57

(a) RGB
image

of HoliCity
(input)

(b) Ground
truth

of HoliCity
(segment)

(c) [53]
trained

on HoliCity
(segment)

(d) [53]
trained

on ScanNet
(segment)

(e) [168]
trained

on HoliCity
(segment)

(f) [168]
trained

on ScanNet
(segment)

(g) [164]
trained

on
SYNTHIA
(segment)

(h) Ground
truth

of HoliCity
(normal)

(i) [124]
trained

on HoliCity
(normal)

(j) [124]
trained

on ScanNet
(normal)

Figure 3.7: Qualitative results of models evaluated on HoliCity. We test models of MaskR-
CNN [53], Associative Embedding [168], PlaneRecover [164], and UNet [124] that are trained
on HoliCity, ScanNet [27], and SYNTHIA [125] on HoliCity.

the corresponding labeled vertex in the CAD world space. The problem can be formulated
as finding the best 6-DoF camera pose Θ (parameterized by its location, azimuth, and up
direction) that minimizes the reprojection error:

min
Θ

n∑

i=1

arccos2 (〈xi,PΘ(Xi)〉) , (3.3)

where PΘ projects the world-space coordinate to the panorama space S3 with respect to the
camera pose Θ.

3.3.5 Experiments

In this section, we will justify the necessity of data platforms based on CAD models, e.g.,
HoliCity, for 3D vision research. We conduct experiments on the tasks of surface segmenta-
tion (high-level representation) and surface normal estimation (low-level representation) to
demonstrate the use of HoliCity and study of its generalizability from and to other datasets.
The reason we choose surface segmentation and normal estimation is because previously
researchers hardly test their methods on outdoor environments for these tasks. For example,
existing works on surface normal estimation [32, 5, 150, 61] only demonstrate their results on
indoor scenes. We hypothesize that this is because the quasi-dense and noisy points clouds
from outdoor datasets cannot reliably provide the direction of surface normal.

For surface segmentation, algorithms take RGB images as input and predict regions that
are considered as a continuous smooth surface, as shown in the second row of Figure 3.4.
Surface segmentation is useful for applications in AR/VR such as object placement. It can
be viewed as generalized plane detection [90], in which curved surfaces are also included in

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 58

(a) RGB
image of

MegaDepth
(input)

(b) [53]
trained on
HoliCity
(segment)

(c) [53]
trained on
ScanNet
(segment)

(d) [168]
trained on
HoliCity
(normal)

(d) [168]
trained on
ScanNet
(normal)

(e) [164]
trained on
SYNTHIA
(segment)

(f) [124]
trained on
HoliCity
(normal)

(g) [124]
trained on
ScanNet
(normal)

Figure 3.8: Qualitative results of models evaluated on images from the MegaDepth dataset
[89]. We test models of MaskRCNN [53], Associative Embedding [168] and UNet [124]
trained on HoliCity, ScanNet, and SYNTHIA. Models are not fine-tuned on the targeting
dataset (MegaDepth).

(a) RGB
image of
SYNTHIA
(input)

(a) Ground
truth of

SYNTHIA
(segment)

(b) [53]
trained on
HoliCity
(segment)

(c) [164]
trained on
SYNTHIA
(segment)

(a) RGB
image of
SYNTHIA
(input)

(a) Ground
truth of

SYNTHIA
(segment)

(b) [53]
trained on
HoliCity
(segment)

(c) [164]
trained on
SYNTHIA
(segment)

Figure 3.9: Qualitative results of models evaluated on the SYNTHIA dataset. We test our
MaskRCNN model and PlaneRecover [164] trained on HoliCity and SYNTHIA, respectively.

addition to flat planes. Prior to HoliCity, methods of plane detection are designed for indoor
datasets [90, 91, 168] or synthetic urban scenes [164] only, probably because it is too hard
to extract high-quality ground truth planes from noisy point clouds in real-world outdoor
datasets (Section 3.3.2).

We note that the uses of HoliCity are not limited to the aforementioned tasks. With its
CAD models, researchers have the freedom to process and convert our data into a wide range
of representations and extract the structures they need. In the supplementary material, we
demonstrate other potential applications such as visual relocalization, depth estimation, and
vanishing point detection with HoliCity.

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 59

3.3.5.1 Data Processing

Splits. We provide two different splits of viewpoints as training, validation, and testing
sets:

1. data are split randomly for tasks such as relocalization;
2. data are split according to x and y coordinates so that there is no spatial overlap

between each set. We use it to study the generalizability on tasks such as normal
estimation and surface segmentation.

Rendering. As most existing algorithms take perspective images as input, we provide the
perspective renderings for all the viewpoints. For each panorama, we sample 8 views with
evenly-spaced (45 degrees apart) yaw angles and randomly sampled pitch angles between 0
and 45 degrees. We use the camera with a 90-degree field of view and render the images
with resolution 512×512. We render depth maps, normal maps, and semantic segmentation
(Figures 3.3e and 3.4) from the CAD model with the same specifications using OpenGL.

Surface Segmentation. One advantage of HoliCity over traditional LiDAR-based out-
door datasets such as KITTI [44] and RobotCar [98] is that the CAD model from HoliCity
could provide a structured and accurate representation of surfaces, which makes extracting
high-level representations more reliable. Here, we briefly describe our algorithm of extracting
the surface segmentation from HoliCity. The sampled results are shown in the second row
of Figure 3.4.

The CAD model in our dataset is represented as a set of polygons of surfaces. We do a
breadth-first-search (BFS) compute the surface segment of each polygon. For each nearby
polygon visited during BFS, we add it into the current segments if the (approximated)
curvature at the intersection line between the adjacent polygons is less than a threshold. This
threshold controls the minimal curvature required for splitting a surface segment. Because
the provided CAD model is not a perfect manifold, we treat two polygons as neighbors if
there exists a vertex on each of them whose distance is smaller than a threshold distance.
This distance also controls the granularity of the resulting segments. Increasing its value
removes small segments.

3.3.5.2 Settings and Baselines

Although it is hard to directly extract high-quality surface segments and normal maps from
traditional outdoor datasets, it is still possible to train models on an indoor or synthetic
outdoor dataset and then apply them to a real-world outdoor dataset. Therefore, we design
experiments to evaluate the feasibility of such an approach and justify the necessity of
HoliCity. Besides, we test how well the model trained on HoliCity can generalize to other
street-view datasets such as MegaDepth [89].

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 60

Datasets. We use HoliCity (ours), ScanNet [27] (indoor), SYNTHIA (synthetic outdoor)
as the training datasets. We evaluate the trained models on images from HoliCity, MegaDepth
[89], and SYNTHIA. We perform both qualitative and quantitative comparison on HoliCity
and SYNTHIA, while we only perform the qualitative comparison on street-view images
of MegaDepth because the ground truth surface segmentation and surface normal are not
provided.

Surface Segmentation. We include three baseline methods: MaskRCNN [53], Associative
Embedding [168], and PlaneRecover [164]. MaskRCNN is the most popular method for
instance segmentation. We use the implementation from Detectron2 [156] and train the
models by ourselves. Associative Embedding is a method for indoor plane detection. We
use its official pre-trained model on ScanNet and retrain the Associative Embedding model
on HoliCity from scratches. PlaneRecover is an approach designed for SYNTHIA [125]. We
evaluate its official pre-trained model.

Normal Estimation. We report the performance of UNet [124]. We train the models on
all datasets by ourselves.

3.3.5.3 Results and Discussions

We show the qualitative results evaluated on the HoliCity dataset of multiple methods in
Figure 3.7, in which we trained the models of MaskRCNN [53], Associative Embedding [168],
PlaneRecover [164], and UNet [124] on HoliCity (ours) ScanNet [27] (indoor dataset), and
SYNTHIA [125] (synthetic outdoor dataset) on the task of surface segmentation and normal
estimation. We find that for both tasks methods trained on ScanNet and SYNTHIA do not
generalize well to HoliCity, which is probably due to the domain gap between training sets
and testing sets. This can also be verified by the quantitative metrics in Table 3.2. We
can see that the methods trained on indoor or synthetic outdoor datasets perform much
worse on real-world outdoor scenes than the methods trained on HoliCity. We conclude that
for existing methods such as MaskRCNN and Associative Embedding, a dataset such as
HoliCity is necessary for the tasks of surface segmentation and normal estimation in outdoor
environments.

We also conduct the cross-dataset experiment on HoliCity and synthetic SYNTHIA
datasets for surface segmentation. In this experiment, we use the official plane detection
model trained on SYNTHIA from [164] and train the MaskRCNN [53] model on HoliCity.
Then, we evaluate both models on HoliCity and SYNTHIA. We show the quantitative results
in Table 3.3. We find that the model trained on HoliCity can generalize to a synthetic out-
door dataset such as SYNTHIA well, while the model trained on SYNTHIA completely fails
on HoliCity. Such observations also apply to the qualitative results in Figures 3.7 and 3.9,
where the HoliCity-trained model recovers most of the building surfaces in SYNTHIA de-
spite the differences between the definitions of surface segments in HoliCity and planes in

CHAPTER 3. DATASETS FOR SCENE ABSTRACTION 61

Methods
Training

Datasets

Surface Segmentation Normal Est.

AP50 AP75 mAP Mean Error

MaskRCNN [53]
HoliCity 42.0 19.8 21.9

ScanNet 5.0 0.6 1.7

Associative

Embedding [168]

HoliCity 20.2 8.5 9.9

ScanNet 3.3 0.6 1.1

UNet [124]
HoliCity 22.6◦

ScanNet 46.3◦

Table 3.2: Results of surface segmentation and normal estimation evaluated on the validation
split of HoliCity. Methods are trained on HoliCity (our dataset), ScanNet (indoor dataset)
[27], and SYNTHIA [125] (synthetic outdoor dataset) and tested on HoliCity without fine-
tuning. We report the AP metrics for surface segmentation and mean angular error for
normal estimation.

Training Datasets (Methods)
Testing Datasets (AP50)

HoliCity SYNTHIA

HoliCity (MaskRCNN [53]) 42.0 36.1

SYNTHIA (PlaneRecover [164]) 1.90 40.6

Table 3.3: Results of surface segmentation cross-trained and evaluated on the validation split
of HoliCity and SYNTHIA [125]. We test our MaskRCNN model [53] trained on HoliCity and
the official PlaneRecover model trained on SYNTHIA from [164]. Models are not fine-tuned
on testing datasets.

[164]. We hypothesize that the causes of these phenomena are due to the wider variety of
scenes covered by HoliCity, compared to the scenes from SYNTHIA.

In fact, methods trained on ScanNet and SYNTHIA do not generalize well to HoliCity,
nor to other outdoor datasets such as MegaDepth [89], as shown in Figure 3.8. In comparison,
methods trained on HoliCity produce much better surface segmentation and normal maps,
which shows HoliCity’s potential generalizability to general outdoor imagery. Finally, we
summarize our observations as followings:

1. previous research of plane detection and normal estimation hardly experiments on
outdoor datasets;

2. HoliCity can provide both high-quality holistic structures (e.g., surface segments) and
low-level representations (e.g., normal maps) of urban environments;

3. models trained on indoor or synthetic outdoor datasets cannot generalize well to real-
world outdoor datasets;

4. models trained on HoliCity can generalize to both synthetic outdoor scenes and real-
world street-view imagery from different datasets.

62

Chapter 4

Structure-Based 3D Parsing

In this chapter, we will describe two works on applying detected geometric structures to 3D
parsing. In the first work (Section 4.1), we train a convolutional neural network to detect
junctions, straight lines, and vanishing points, and reconstruct the scene in a 3D CAD-
quality wireframe representation. This method has been published in [182]. In the second
work (Section 4.2), we apply the detected reflection symmetry (Section 2.3) to dense depth
reconstruction, most of which has been published in [179].

4.1 Learning to Reconstruct 3D Manhattan

Wireframes from a Single Image

4.1.1 Introduction

Recovering 3D geometry of a scene from RGB images is one of the most fundamental and yet
challenging problems in computer vision. Most existing off-the-shelf commercial solutions to
obtain 3D geometry still requires active depth sensors such as structured lights (e.g., Apple
ARKit and Microsoft Mixed Realty Toolkit) or LIDARs (popular in autonomous driving).
Although these systems can meet the needs of specific purposes, they are limited by the cost,
range, and working conditions (indoor or outdoor) of the sensors. The representations of
final outputs are typically dense point clouds, which are not only memory and computation
intense, but also may contain noises and errors due to transparency, occlusions, reflections,
etc.

On the other hand, traditional image-based 3D reconstruction methods, such as Structure
from Motion (SfM) and visual SLAM, often rely on local features. Although the efficiency
and reliability have been improving (e.g., Microsoft Hololens, Magic Leap), they often need
multiple cameras with depth sensors [65] for better accuracy. The final scene representation
remains quasi-dense point clouds, which are typically incomplete, noisy, and cumbersome to
store and share. Consequently, complex post-processing techniques such as plane-fitting [60]
and mesh refinement [74, 94] are required. Such traditional representations can hardly meet

CHAPTER 4. STRUCTURE-BASED 3D PARSING 63

(a) Input image (b) 3D wireframe (c) Novel view

Figure 4.1: Results of our method tested on a synthetic image (top row) and a real image
(bottom row). Column a shows the input images overlaid with the groundtruth wireframes,
in which the red and blue dots represent the C- and T-type junctions, respectively. Column
b shows the predicted 3D wireframe from our system, with grayscale visualizing depth.
Column c shows alternative views of b. Note that our system recovers geometrically salient
wireframes, without being affected by the textural lines, e.g., the vertical textural patterns
on the Big Ben facade.

the increasing demand for high-level 3D modeling, content editing, and model sharing from
hand-held cameras, mobile phones, and even drones.

Unlike conventional 3D geometry capturing systems, the human visual system does not
perceive the world as uniformly distributed points. Instead, humans are remarkably effective,
efficient, and robust in utilizing geometrically salient global structures such as lines, contours,
planes, and smooth surfaces to perceive 3D scenes [23]. However, it remains challenging for
vision algorithms to detect and utilize such global structures from local image features,
until recent advances in deep learning which makes learning high-level features possible from
labeled data. The examples include detecting planes [90], 2D wireframes [63], room layouts
[63], and key points [173, 154].

CHAPTER 4. STRUCTURE-BASED 3D PARSING 64

Feature Extraction

& Hourglass x 4

CONVs

Depth Maps

Junction Heatmaps

Edge Maps

Vanishing Points

Wireframe

Vectorization

3D LiftingNeural Network

2.5D Inference

CONVs

CONVs

CONVs

Input Image

Figure 4.2: Overall pipeline of the proposed method.

In this work, we infer global 3D scene layouts from learned line and junction features, as
opposed to local corner-like features such as SIFT [41], ORB [110], or line segments [54, 120]
used in conventional SfM or visual SLAM systems. Our algorithm learns to detect a special
type of wireframes that consist of junctions and lines representing the corners and edges of
buildings. We call our representation the geometric wireframe and demonstrate that together
with global priors, the wireframe representation allows effective and accurate recovery of the
scene’s 3D geometry, even from a single input image. Our method trains a neural network
to estimate global lines and two types of junctions with depths, and constructs full 3D
wireframes using the estimated depths and geometric constraints.

Previously, there have been efforts trying to understand the indoor scenes with the help
of the 3D synthetic datasets such as the SUNCG [133]. Our work aims at natural urban
environments with a variety of geometries and textures. To this end, we build two new
datasets containing both synthetic and natural urban scenes. Figure 4.1 shows the sampled
results of the reconstruction and Figure 4.2 shows the full pipeline of our system.

Contributions. Comparing to existing wireframe detection algorithms such as [63], our
method

• jointly detects junctions, lines, depth, and vanishing points with a single neural net-
work, exploiting the tight relationship among those geometric structures;

• learns to differentiate two types of junctions: the physical intersections of lines and
planes “C-junctions”, and the occluding “T-junctions”;

• recovers a full 3D wireframe of the scene from the lines and junctions detected in a
single RGB image.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 65

4.1.2 Methods

As depicted in Figure 4.2, our system starts with a neural network that takes a single image as
input and jointly predicts multiple 2D heatmaps, from which we vectorize lines and junctions
as well as estimate their initial depth values and vanishing points. We call this intermediate
result a 2.5D wireframe. Using both the depth values and vanishing points estimated from
the same network as the prior, we then lift the wireframe from the 2.5D image-space into
the full 3D world-space.

4.1.2.1 Geometric Representation

In a geometric wireframeW = (V,E) of the scene, V and E ⊆ V×V are the junctions and lines.
Specifically, E represents lines from physical intersections of two planes while V represents
(physical or projective) intersections of lines among E. Unlike [63], our E totally excludes
planar textural lines, such as the vertical textures of Big Ben in Figure 4.1. The so-defined
W aims to capture global scene geometry instead of local textural details.1 By ruling out
planar textural lines, we can group the junctions into two categories. Let Ji ∈ {C, T} be the
junction type of i, in which each junction can either be a C-junction (Ji = C) or a T-junction
(Ji = T). Corner C-junctions are actual intersections of physical planes or edges, while T-
junctions are generated by occlusion. Examples of T-junctions (in blue) and C-junctions
(in red) can be found in Figure 4.1. We denote them as two disjoint sets V = VC ∪ VT , in
which VC = {i ∈ V | Ji = C} and VT = {i ∈ V | Ji = T}. We note that the number of
lines incident to a T-junction in E is always 1 rather than 3 because a T-junction do not
connect to the two foreground vertices in 3D. Junction types are important for inferring 3D
wireframe geometry, as different 3D priors will be applied to each type.2 For each C-junction
ic ∈ VC , define zic as the depth of vertex ic, i.e., the z coordinate of ic in the camera space.
For each occlusional T-junction it ∈ VT , we define zit as the depth on the occluded line in the
background because the foreground line depth can always be recovered from other junctions.
With depth information, 3D wireframes that are made of C-junctions, T-junctions, and lines
give a compact representation of the scene geometry. Reconstructing such 3D wireframes
from a single image is our goal.

4.1.2.2 From a Single Image to 2.5D Representation

Our first step is to train a neural network that learns the desired junctions, lines, depth, and
vanishing points from our labeled datasets. We first briefly describe the desired outputs from
the network and the architecture of the network. The associated loss functions for training
the network will be specified in detail in the next sections.

1In urban scenes, lines from regular textures (such as windows on a facade) do encode accurate scene
geometry [176]. The neural network can still use them for inferring the wireframe but only not to keep them
in the final output, which is designed to give a compact representation of the geometry only.

2There is another type of junctions which are caused by lines intersecting with the image boundary. We
treat them as C-junctions for simplicity.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 66

Given the image I of a scene, the pixel-wise outputs of our neural network consist of five
outputs − junction probability J , junction offset O, edge probability E, junction depth D,
and vanishing points V:

Y
.
= (J,O, E,D,V), Ŷ

.
= (Ĵ , Ô, Ê, D̂, V̂), (4.1)

where symbols with and without hats represent the ground truth and the prediction from
the neural network, respectively.

Network Design. Our network structure is based on the stacked hourglass network [112].
The input images are cropped and re-scaled to 512× 512 before entering the network. The
feature-extracting module, the first part of the network, includes strided convolution layers
and one max pooling layer to downsample the feature map to 128× 128. The following part
consists of S hourglass modules. Each module will gradually downsample then upsample the
feature map. The stacked hourglass network will gradually refine the output map to match
the supervision from the training data. Let the output of the jth hourglass module given
the ith image be Fj(Ii). During the training stage, the total loss to minimize is:

Ltotal .
=

N∑

i=1

S∑

j=1

L(Y
(j)
i , Ŷi) =

N∑

i=1

S∑

j=1

L(Fj(Ii), Ŷi),

where i represents the index of images in the training dataset; j represents the index of the
hourglass modules; N represents the number of training images in a batch; S represents
the number of stacks used in the neural network; L(·, ·) represents the loss of an individual

image; Y
(j)
i represents the predicted intermediate representation of image Ii from the jth

hourglass module, and Ŷi represents the ground truth intermediate representation of image
Ii.

The loss of an individual image is a superposition of the loss functions Lk specified in the
next section:

L
.
=

∑

k

λkLk, k ∈ {J,O, E,D,V}.

The hyper-parameters λk represents the weight of each sub-loss. During experiments, we set
λ so that λkLk are of similar scales.

Junction Map J and Loss LJ . The ground truth junction map Ĵ is a down-sampled
heatmap for the input image, whose value represents whether there exists a junction in that
pixel. For each junction type t ∈ {C, T}, we estimate its junction heatmap

Ĵt(b) =

{

1 ∃i ∈ Vt : b = ⌊ i
4
⌋

0 otherwise
, t ∈ {C, T}.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 67

where b is the integer coordinate on the heatmap and i is the coordinate of a junction with
type t in the image space. Following [112], the resolution of the junction heatmap is 4 times
less than the resolution of the input image.

Because some pixels may contain two types of junctions, we treat the junction prediction
as two per-pixel binary classification problems. We use the classic softmax cross entropy loss
to predict the junction maps:

LJ(J, Ĵ)
.
=

1

n

∑

t∈{C,T}

∑

b

CrossEntropy
(

Jt(b), Ĵt(b)
)

,

where n is the number of pixels of the heatmap. The resulting Jt(x,y) ∈ (0, 1) represents
the probability whether there exists a junction with type t at [4x, 4x + 4)× [4y, 4y + 4) in
the input image.

Offset Map O and Loss LO. Comparing to the input image, the lower resolution of J
might affect the precision of junction positions. We use an offset map to store the difference
vector from Ĵ to its original position with sub-pixel accuracy:

Ôt(b) =

{
i
4
− b ∃i ∈ Vt : b = ⌊ i

4
⌋

0 otherwise
, t ∈ {C, T}.

We use the ℓ2-loss for the offset map and use the heatmap as a mask to compute the loss
only near the actual junctions. Mathematically, the loss function is written as

LO(O, Ô)
.
=

∑

t∈{C,T}

∑

b
Ĵt(b)

∣
∣
∣

∣
∣
∣Ot(b)− Ôt(b)

∣
∣
∣

∣
∣
∣

2

2
∑

b
Ĵt(b)

,

where Ot(b) is computed by applying a sigmoid and constant translation function to the
last layer of the offset branch in the neural network to enforce Ot(b) ∈ [0, 1)2. We normalize
LO by the number of junctions of each type.

Edge Map E and Loss LE. To estimate line positions, we represent them in an edge
heatmap. For the ground truth lines, we draw them on the edge map with anti-aliasing. Let
dist(b, e) be the shortest distance between a pixel b and the nearest line segment e. We
define the edge map to be

Ê(b) =

{

maxe 1− dist(b, e) ∃e ∈ E : dist(b, e) < 1,

0 otherwise.

Intuitively, E(b) ∈ [0, 1] represents the probability of a line close to point b. Because the
range of the edge map is always between 0 and 1, we can treat it as a probability distribution
and use the sigmoid cross entropy loss on the E and Ê:

LE(E, Ê)
.
=

1

n

∑

b

CrossEntropy
(

E(b), Ê(b)
)

.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 68

Junction Depth Maps D and Loss LD. To estimate the depth zi for each junction i,
we define the junction-wise depth map as

D̂t(b) =

{

zi ∃i ∈ Vt : b = ⌊ i
4
⌋

0 otherwise
, t ∈ {C, T}.

In many datasets with unknown depth units and camera intrinsic matrix K, zi remains a
relative scale instead of absolute depth. To remove the ambiguity from global scaling, we use
scale-invariant loss (SILog) which has been introduced in the single image depth estimation
literature [33]. It removes the influence of the global scale by summing the log difference
between each pixel pair.

LD(D, D̂) .
=

∑

t

1

nt

∑

b∈Vt

(
logDt(b)− log D̂t(b)

)2

−
∑

t

1

n2
t

(∑

b∈Vt

logDt(b)− log D̂t(b)
)2
.

Vanishing Point Map V and Loss LV. Lines in man-made outdoor scenes often cluster
around the three mutually orthogonal directions. Let i ∈ {1, 2, 3} represent these three
directions. In perspective geometry, parallel lines in direction i will intersect at the same
vanishing point (Vi,x, Vi,y) in the image space, possibly at infinity. To prevent Vi,x or Vi,y

from becoming too large, we normalize the vector so that

Vi =
1

V 2
i,x + V 2

i,y + 1

[
Vi,x, Vi,y, 1

]T
. (4.2)

Because the two horizontal vanishing points V1 and V2 are order agnostic from a single
RGB image, we use the Chamfer ℓ2-loss for V1 and V2, and the ℓ2-loss for V3 (the vertical
vanishing point):

LV(V, V̂)
.
= min(‖V1 − V̂1‖, ‖V2 − V̂1‖) + min(‖V1 − V̂2‖, ‖V2 − V̂2‖) + ‖V3 − V̂3‖22.

4.1.2.3 Heatmap Vectorization

As seen from Figure 4.2, the outputs of the neural network are essentially image-space 2.5D
heatmaps of the desired wireframe. Vecterization is needed to obtain a compact wireframe
representation.

Junction Vectorization. Recovering the junctions V from the junction heatmaps J is
straightforward. Let γC and γT be the thresholds for JC and JT . The junction candidate
sets can be estimated as

Vt ← {b+Ot(b) | Jt(b) ≥ γt}, t ∈ {C, T}. (4.3)

CHAPTER 4. STRUCTURE-BASED 3D PARSING 69

Line Vectorization. Line vectorization has two stages. In the first stage, we detect
and construct the line candidates from all the corner C-junctions. This can be done by
enumerating all the pairs of junctions j, k ∈ VC , connecting them, and testing if their line
confidence score is greater than a threshold c(j, k) ≥ γE. The confidence score of a line with
two endpoints j and k is given as c(j, k) = 1

|jk|

∑

b∈P (j,k) E(b) where P (j, k) represents the

set of pixels in the rasterized line ~jk, and | ~jk| represents the number of pixels in that line.
In the second stage, we construct all the lines between “T-T” and “T-C” junction pairs.

We repeatedly add a T-junction to the wireframe if it is tested to be close to a detected line.
Unlike corner C-junctions, the degree of a T-junction is always one. So for each T-junction,
we find the best edge associated with it. This process is repeated until no more lines could
be added. Finally, we run a post-processing procedure to remove lines that are too close or
cross each other. By handling C-junctions and T-junctions separately, our line vectorization
algorithm is both efficient and robust for scenes with hundreds of lines. A more detailed
description is discussed in the supplementary material.

4.1.2.4 Image-Space 2.5D to World-Space 3D

So far, we have obtained vectorized junctions and lines in 2.5D image space with depth in a
relative scale. However, in scenarios such as AR and 3D design, absolute depth values are
necessary for 6DoF manipulation of the 3D wireframe. In this section, we present the steps
to estimate them with our network predicted vanishing points.

Calibration from Vanishing Points. In datasets such as MegaDepth [89], the camera
calibration matrix K ∈ R

3×3 of each image is unknown, although it is critical for a full
3D wireframe reconstruction. Fortunately, calibration matrices can be inferred from three
mutually orthogonal vanishing points if the scenes are mostly Manhattan. According to
[97], if we transform the orthogonal vanishing points Vi to the calibrated coordinates V̄i

.
=

K−1Vi, then V̄i should be mutually orthogonal, i.e.,

ViK
−TK−1Vj = 0, ∀i, j ∈ {1, 2, 3}, i 6= j.

These equations impose three linearly independent constraints onK−TK−1 and would enable
solving up to three unknown parameters in the calibration matrix, such as the optical center
and the focal length.

Depth Refinement with Vanishing Points. Due to the estimation error, the predicted
depth map may not be consistent with the detected vanishing points Vi. In practice, we find
the neural network performs better on estimating the vanishing points than predicting the
2.5D depth map. This is probably because there are more geometric cues for the vanishing
points, while estimating depth requires priors from data. Furthermore, the unit of the depth
map might be unknown due to the dataset (e.g., MegaDepth) and the usage of SILog loss.
Therefore, we use the vanishing points to refine the junction depth and determine its absolute

CHAPTER 4. STRUCTURE-BASED 3D PARSING 70

value. Let z̃i
.
= DJi(i) be the predicted depth for junction i from our neural network. We

design the following convex objective function:

min
z,α

3∑

i=1

∑

(j,i)∈Ai

∥
∥(zj j̄ − ziī)× V̄i

∥
∥
2

+ λR

∑

i∈V

‖zi − αz̃i‖22 (4.4)

subject to zi ≥ 1, ∀i ∈ V, (4.5)

λzj + (1− λ)zi ≤ zk, (4.6)

∀k ∈ VT , (j, i) ∈ E : k = λj + (1− λ)i,

where Ai represents the set of lines corresponding to vanishing point i; α resolves the scale
ambiguity in the depth dimension; j̄

.
= K−1[ux uy 1]

T is the vertex position in the calibrated
coordinate. The goal of the first term in Equation (4.4) is to encourage the line (zj j̄, zkk̄)
parallel to vanishing point V̄i by penalizing over the parallelogram area spanned by those
two vectors. The second term regularizes zi so that it is close to the network’s estimation z̃i
up to a scale. Equation (4.5) prevents the degenerating solution z = 0. Equation (4.6) is a
convex relaxation of λ

zj
+ 1−λ

zk
≥ 1

zi
, the depth constraint for T-junctions.

4.1.3 Experiments

We conduct extensive experiments to evaluate our method and validate the design of our
pipeline with ablation studies. In addition, we compare our method with the state-of-the-art
2D wireframe extraction approaches. We then evaluate the performance of our vanishing
point estimation and depth refinement steps. Finally, we demonstrate the examples of our
3D wireframe reconstruction.

4.1.3.1 Implementation Details

Our backbone is a two-stack hourglass network [112]. Each stack consists of 6 stride-2
residual blocks and 6 nearest neighbour upsamplers. After the stacked hourglass feature
extractor, we insert different “head” modules for each map. Each head contains a 3 × 3
convolutional layer to reduce the number of channels followed by a 1× 1 convolutional layer
to compute the corresponding map. For vanishing point regression, we use a different head
with two consecutive stride-2 convolution layers followed by a global average pooling layer
and a fully-connected layer to regress the position of the vanishing points.

During the training, the ADAM [76] optimizer is used. The learning rate and weight
decay are set to 8× 10−4 and 1× 10−5. All the experiments are conducted on four NVIDIA
GTX 1080Ti GPUs, with each GPU holding 12 mini-batches. For the SceneCity Urban
3D dataset, we train our network for 25 epochs. The loss weights are set as λJ = 2.0,
λO = 0.25 λE = 3.0, and λD = 0.1 so that all the loss terms are roughly equal. For the

CHAPTER 4. STRUCTURE-BASED 3D PARSING 71

real-world dataset, we initialize the network with the one trained on the SU3 dataset and
use a 10−4 learning rate to train for 5 epochs. We horizontally flip the input image as data-
augmentation. Unless otherwise stated, the input images are cropped to 512 × 512. The
final output is of stride 4, i.e., with size 128 × 128. During heatmap vectorization, we use
the hyper-parameter γC = 0.2, γT = 0.3, and γE = 0.65.

4.1.3.2 Evaluation Metrics

We use the standard AP (average precision) from object detection [34] to evaluate our
junction prediction results. Our algorithm produces a set of junctions and their associated
scores. The prediction is considered correct if its ℓ2 distance to the nearest ground truth is
within a threshold. By this criterion, we can draw the precision-recall curve and compute
the mean AP (mAP) as the area under this curve averaging over several different thresholds
of junction distance.

In our implementation, mAP is averaged over thresholds 0.5, 1.0, and 2.0. In practical
applications, long edges between junctions are typically preferred over short ones. Therefore,
we weight the mAP metric by the sum of the length of the lines connected to that junction.
We use APC and APT to represent such weighted mAP metric for C-junctions and T-
junctions, respectively. We use the intersection over union (IoU) metric to evaluate the
quality of line heatmaps. For junction depth map, we evaluate it on the positions of the
ground truth junctions with the scale invariant logarithmic error (SILog) [33, 44].

4.1.3.3 Ablation on Joint Training and Loss Functions

We run a series of experiments to investigate how different feature designs and multi-task
learning strategies affect the wireframe detection accuracy. Table 4.1 presents our ablation
studies with different combinations of tasks to research the effects of joint training. We also
evaluate the choice of ℓ1- and ℓ2-losses for offset regression and the ordinary loss [89] for
depth estimation. We conclude that:

1. Regressing offset is significantly important for localizing junctions (7.4 points for APC

and 3 points for APT), by comparing rows (a-c). In addition, ℓ2 loss is better than ℓ1
loss, probably due to its smoothness.

2. Joint training junctions and lines improve in both tasks. Rows (c-e) show improvements
with about 1.5 points in APC , and 0.9 point in APT and line IoU. This indicates the
tight relation between junctions and lines.

3. For depth estimation, we test the ordinal loss from [89]. To our surprise, it does
not improve the performance on our dataset (rows (f-g)). We hypothesis that this is
because the relative orders of sparsely annotated junctions are harder to predict than
the foreground/background relationship in [89].

4. According to rows (f) and (h), joint training with junctions and lines slightly improves
the performance of depth estimation by 0.55 SILOG point.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 72

supervisions metrics

J O E D J E D
CE ℓ1 ℓ2 CE SILog Ord APC APT IoUE SILog

(a) X 65.4 57.1 / /

(b) X X 69.3 55.8 / /

(c) X X 72.8 60.1 / /

(d) X / / 73.3 /

(e) X X X 74.3 61.0 74.2 /

(f) X / / / 3.59

(g) X X / / / 4.14

(h) X X X X 74.4 61.2 74.3 3.04

Table 4.1: Ablation study of multi-task learning on 3D wireframe parsing. The columns
under “supervisions” indicate what losses and supervisions are used during training; the
columns under “metrics“ indicate the performance given such supervision during evaluation.
The second row shows the symbols of the feature maps; the third row shows the loss function
names of the corresponding maps. “CE” stands for the cross entropy loss, “SILog” loss is
proposed by [33], and “Ord” represents the ordinary loss in [89]. “/” indicates that the maps
are not generated and thus not evaluable.

4.1.3.4 Comparison with 2D Wireframe Extraction

One recent work related to our system is [63], which extracts 2D wireframes from single
RGB images. However, it has several fundamental differences from ours: 1) It does not
differentiate between corner C-junctions and occluding T-junctions. 2) Its outputs are only
2D wireframes while ours are 3D. 3) It trains two separated networks for detecting junctions
and lines. 4) It detects texture lines while ours only detects geometric wireframes.

In this experiment, we compare the performance with [63]. The goal of this experiment
is to validate the importance of joint training. Therefore we follow the exact same training
procedure and vectorization algorithms as in [63] except for the unified objective function
and network structure. Figure 4.3 shows the comparison of precision and recall curves
evaluated on the test images, using the same evaluation metrics as in [63]. Note that due to
different network designs, their model has about 30M parameters while ours only has 19M.
With fewer parameters, our system achieves 4-point AP improvement over [63] on the 2D
wireframe detection task.

As a sanity check, we also train our network separately for lines and junctions, as shown
by the green curve in Figure 4.3. The result is only slightly better than [63]. This experiment
shows that our performance gain is from jointly trained objectives instead of neural network
engineering.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 73

0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

f=0.4
f=0.5

f=0.5

f=0.6

f=0.7

f=0.8

PR Curve for AP and f-measure

(AP=67.5, f=72.1) [12]
(AP=67.8, f=72.6) ours-sep
(AP=71.0, f=74.3) ours-joint

Figure 4.3: Comparison with [63] on 2D wireframe detection. We improve the baseline
method by 4 points.

avg[EV] med[EV] avg[Ef] med[Ef] failures

Ours 2.69◦ 1.55◦ 4.02% 1.38% 2.3%

[146, 141] 4.65◦ 0.14◦ 12.40% 0.21% 20.0%

Table 4.2: Performance comparison between our method and LSD/J-linkage [146, 141] for
vanishing point detection. EV represents the angular error of Vi in degree, Ef represents the
relative error of the recovered camera focal lengths, and “failures” represents the percentage
of cases whose EV > 8◦.

4.1.3.5 Vanishing Points and Depth Refinement

In Section 4.1.2.4, vanishing point estimation and depth refinement are used in the last
stage of the 3D wireframe representation. Their robustness and precision are critical to the
final quality of the system output. In this section, we conduct experiments to evaluate the
performance of these methods.

For vanishing point detection, Table 4.2 shows the performance comparison between our
neural network-based method and the J-Linkage clustering algorithm [141, 138] with the
LSD line detector [146] on the SU3 dataset. We find that our method is more robust in term
of the percentage of failures and average error, while the traditional line cluster algorithm
is more accurate when it does not fail. This is because LSD/J-linkage applies a stronger
geometric prior, while the neural network learns the concept from the data. We choose our
method for its simplicity and robustness, as the focus of this project is more on the 3D

CHAPTER 4. STRUCTURE-BASED 3D PARSING 74

(a) Ground truth (b) Before refinement (c) After refinement

Figure 4.4: (b) shows a rendering of the wireframe from z̃i from a slightly different view,
while (c) shows the wireframe improved by the optimization in Section 4.1.2.4.

wireframe representation side, but we believe the performance can be further improved by
engineering a hybrid algorithm or designing a better network structure.

We also compare the error of the junction depth before and after depth refinement in term
of SILog. We find that on 65% of the testing cases, the error is smaller after the refinement.
This shows that the geometric constraints from vanishing points does help improve the
accuracy of the junction depth in general. As shown in Figure 4.4, the depth refinement also
improves the visual quality of the 3D wireframe. On the other hand, the depth refinement
may not be as effective when the vanishing points are not precise enough, or the scene is too
complex so that there are many erroneous lines in the wireframe. Some failure cases can be
found in the supplementary material.

4.1.3.6 3D Wireframe Reconstruction Results

We test our 3D wireframe reconstruction method on both the synthetic dataset and the real
images. Examples illustrating the visual quality of the final reconstruction are shown in
Figures 4.5 and 4.6. A video demonstration can be found in http://y2u.be/l3sUtddPJPY.
We do not show the ground truth 3D wireframes for the real landmark dataset due to its
incomplete depth maps.

4.2 Learning to Estimate Depth from Reflection

Symmetry

4.2.1 Introduction

3D reconstruction is one of the most long-lasting problems in computer vision. Although
commercially available solutions using time-of-flight cameras or structured lights may be

http://y2u.be/l3sUtddPJPY

CHAPTER 4. STRUCTURE-BASED 3D PARSING 75

GT’s 2D Our 2D [63]’s 2D GT’s 3D Our 3D GT’s 3D Our 3D

Figure 4.5: Left group: comparison of 2D results between the ground truth (column 1), our
predictions (column 2), and the results from wireframe parser [63] (column 3). Middle (columns
4-5) and right groups (columns 6-7): novel views of the ground truths and our reconstructions to
demonstrate the 3D representation of the scene. The color of the wireframes visualizes depth.

Ground truth Inferred Novel views Ground truth Inferred Novel views

Figure 4.6: Results of 3D wireframe on real images from MegaDepth.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 76

able to meet the needs of specific purposes, they are often expensive, have limited range,
and can be interfered by other light sources. On the other hand, traditional image-based 3D
reconstruction methods, such as structure-from-motion (SfM), visual SLAM, and multi-view
stereopsis (MVS) use only RGB images and recover the underlying 3D geometry [50].

Recent advances in convolutional neural networks (CNNs) have shown good potential in
inferring dense 3D depth maps from RGB images by leveraging supervised learning. Deep
learning-based multi-view stereo and optical flow methods employ 3D CNNs to regularize the
cost volumes that are built upon geometric structures to infer depth maps and have shown
the state-of-the-art results on various benchmarks [165]. Due to the popularity of mobile
apps, 3D inference from a single image starts to draw increasing attention. Nowadays,
learning-based single-view reconstruction methods are able to predict 3D shapes in various
representations with an encoder-decoder CNN that extrapolates objects from seen patterns
during the test time. However, unlike multi-view stereopsis, previous single-view methods
hardly exploit the geometric constraints between the input RGB image and the resulting 3D
shape. Hence, the formulation is ill-posed, and leads to inaccurate 3D shape recovery and
limited generalization capability [139].

To address the illness, we identify a structure that commonly exists in man-made objects,
the reflection symmetry, as a geometric connection between the depth maps and the images,
and incorporate it as a prior into deep networks through plane-sweep cost volumes built from
features of corresponding pixels, aiming to faithfully recover 3D shapes from single-view im-
ages under the principle of shape-from-symmetry. To this end, our method combines the
strength of learning-based recognition and geometry-based reconstruction methods. Specifi-
cally, we first detect the parameters of the mirror plane from the image with a coarse-to-fine
strategy and then recovers the depth from reflective stereopsis. The network consists of a
backbone feature extractor, a differentiable warping module for building the 3D cost volumes,
and a cost volume network. This framework naturally enables neural networks to utilize the
information from corresponding pixels of reflection symmetry inside a single image.

4.2.2 Related Work

Learning-Based Single-View 3D Reconstruction. Inspired by the success of CNNs in
classification and detection, numerous 3D representations and associated learning schemes
have been explored under the setting of single-view 3D reconstruction, including depth maps
[38, 16], voxels [163, 153], point clouds [36], signed distance fields (SDF) [115], and meshes
[148]. Although these methods demonstrate promising results on some datasets, single-view
reconstruction is essentially an ill-posed problem. Without geometric constraints, inferred
shapes will not be accurate enough by extrapolating from training data, especially for unseen
objects. To alleviate this issue, our method leverages the symmetry prior for accurate single-
view 3D reconstruction.

Multi-View Stereopsis. Traditional multi-view stereo methods build the cost volumes
from photometric measures of images, regularize the cost volume, and post-process to recover

CHAPTER 4. STRUCTURE-BASED 3D PARSING 77

the depth maps [72, 42, 39, 129]. Recent efforts leverage learning-based methods and have
shown promising results on benchmarks [44] with CNNs. Some directly learn patch corre-
spondence between two [170] or more views [51]. Others build plane-sweep cost volumes from
image features and employ 3D CNNs to regularize cost volumes, which then can be either
transformed into 3D representations [68, 73] or aggregated into depth maps [165, 59, 86, 19].
Different from these methods, our approach builds the plane-sweep cost volume through a
symmetry-based feature warping module, which makes such a powerful tool applicable to
the single-image setting.

4.2.3 Methods

Our method is based on NeRD in Section 2.3. We modify it so that the neural network
is able to fulfill two tasks simultaneously: symmetry detection and depth estimation. The
algorithm takes a single image as input and outputs parameters of the symmetry plane and
depth maps. We note that our method treats the symmetry as a prior rather than a hard
constraint, so the pipeline still works for objects that are not perfectly symmetric.

As cost volumes (i.e., depth probability tensors) has already been used in the symmetry
detection pipeline (Section 2.3.3.5), it is straightforward to use it for a geometry-based
depth estimation. With the estimated w∗, we compute the expectation of depth from the
probability tensor P as the depth map prediction D̂. This is sometimes referred as soft
argmin [75]. Mathematically, we have

D̂(x, y) =
1

|D|
∑

d∈D

dP(x, y, d). (4.7)

During training, we rescale the ground truth depth according to ‖ŵ‖2 and add an addi-
tional ℓ1 term to the training loss as the supervision of depth:

Ldpt =
1

n

∑

x,y

∣
∣
∣D̂(x, y)−D(x, y)

∣
∣
∣ , (4.8)

where n is the number of pixels.

4.2.4 Experiments

We conduct experiments on the ShapeNet dataset [14]. We use the same settings and hyper-
parameter as in Section 2.3.4. Despite we use additional branches in the cost volume network,
the total inference speed remains around 1 image per second per GPU.

4.2.4.1 Results

We compare our method with popular monocular depth estimation networks [38, 167, 112,
1] and shape reconstruction networks [148, 160]. The results on the task of depth estimation

CHAPTER 4. STRUCTURE-BASED 3D PARSING 78

absRel sqRel rmse mae <δ1 <δ2 <δ3

DORN [38] 0.028 0.0014 0.026 0.020 30.8% 54.1% 69.0%

GeoNet [167] 0.028 0.0013 0.025 0.019 29.7% 53.4% 69.2%

Hourglass [112] 0.026 0.0012 0.024 0.018 33.0% 56.9% 71.5%

DenseDepth [1] 0.024 0.0011 0.022 0.017 36.3% 60.5% 74.6%

Pixel2Mesh [148] 0.102 0.0546 0.032 0.073 28.6% 49.2% 62.3%

DISN [160] 0.040 0.0030 0.038 0.028 24.0% 43.4% 57.8%

NeRD 0.019 0.0009 0.021 0.011 49.5% 71.9% 82.3%

NeRD* 0.015 0.0006 0.018 0.011 60.2% 78.7% 86.5%

Table 4.3: Quantitative results on the task of depth estimation on ShapeNet. Here, δ = 1.01.
NeRD* uses the ground truth symmetry plane as input.

(a) Input (b) Hourglass (c) DISN (d) NeRD (e) GT (a) Input (b) Hourglass (c) DISN (d) NeRD (e) GT

Figure 4.7: Qualitative results on the task of of depth estimation. We visualize the depth
maps from Pixel2Mesh [148], DISN [160], and our NeRD on ShapeNet. The per-pixel ℓ1
errors are plotted at the lower right corner of each depth map. Bluish color represents
smaller values for error and depth.

are shown in Table 4.3. NeRD outperforms both monocular depth estimation networks
and shape reconstruction networks. Besides, NeRD*, the variant of NeRD that uses the
ground truth symmetry plane instead of the one predicted in coarse-to-fine inference, only
slightly outperforms the standard NeRD. These behaviors indicate that detecting symmetry
planes and incorporating photo-consistency priors of reflection symmetry into the neural
network makes the task of single-view reconstruction less ill-posed and thus can improve the
performance.

CHAPTER 4. STRUCTURE-BASED 3D PARSING 79

4.2.4.2 Visualization

In Figure 4.7, we show sampled results of depth maps. Visually, NeRD gives sharp and
accurate results among all the tested methods. For example, it is able to capture the details
of desk frames and the shapes of ship cabins, while those details are more blurry in the
results of other methods. Results from the hourglass network are also sharp but are less
accurate, which shows the signs of overfitting. In the region such as the chair armrests and
table legs, NeRD can recover the depth more accurate compared to the baseline methods.
This is because for NeRD, pixel-matching based on photo-consistency in those areas is easy
and can provide a strong signal, while other baseline methods need to extrapolate from the
training data.

80

Chapter 5

Conclusion

In this dissertation, I have studied the problem of 3D parsing from both data-driven and
geometric perspectives. I have presented a series of works on how to apply a geometry-
based learning framework to detect high-level structures for 3D parsing. More specifically,
I have designed novel neural networks that understand geometric structures such as lines,
junctions, planes, vanishing points, and bilateral symmetry, and accurately detect them
from images (Chapter 2); I have collected multiple 3D datasets to support future research
of structure extraction and structure-based scene understanding (Chapter 3); and I have
demonstrated how to use detected geometric structures to parse scenes (Chapter 4). I find
that with proper datasets and carefully designed neural network architectures, exploiting the
structural regularities that widely exist in man-made environments not only improves the
performance of learning-based algorithms, but also brings compact 3D representations that
are semantically meaningful, easy to interpret, and efficient to share.

5.1 Future Work

In this section, I will discuss some interesting topics that are relevant to my dissertation and
worth exploring.

Learning-Based Multi-View Geometry. In NeRD (Section 2.3), we have addressed the
problem of detecting the camera pose with respect to the symmetry plane of an object. A
highly related problem is determining the 6-DoF camera poses from a set of images, which
traditionally is solved with point features [95] and bundle adjustment [142] since the late ’90s,
as mentioned in the introduction. The problem is especially hard when the baseline is large,
which is often the case in SLAM systems to detect the loop [110]. A recent benchmark [70]
has found that with deep learning-based point feature extractors, the overall performance of
6-DoF pose recovery barely improves when compared to the pipeline using traditional SIFT
features [3], if not worsen. However, according to the evidence shown in Chapter 2, I believe
that when doing correctly, a learning-based multi-view geometry algorithm should bring

CHAPTER 5. CONCLUSION 81

considerable performance improvement. There might be two routes down the road. We can
use neural networks to extract more and better low-level or even high-level geometric features
and match them to get the association, similar to the ones with deep point features [70]. It
is also possible to design neural networks that take two images and output a 6-DoF camera
pose in a more end-to-end fashion, which might result in better accuracy. For methods in
both categories, I think the important thing is to properly incorporate geometric structures
into the neural network in order to achieve an efficient, robust, and accurate algorithm.

Image-Based CAD Model Reconstruction. In the project of the wireframe (Sec-
tions 2.1 and 4.1), we have reconstructed the scene in a compact wireframe representation.
The ultimate goal here is to reconstruct the scene in a high-level editable form, such as the
boundary representation (B-Rep) [100] that is commonly used in CAD solid modeling. One
thing that is currently missing is planar structures, which are vital for real-world applica-
tions. We have shown that neural networks are able to detect planar information in the
form of a pixel-wise mask in HoliCity Section 3.3. It is worthwhile to explore how to turn
such pixel-wise representations into or directly predict a vectorized planar representation,
and merge it with the 3D wireframe to get an integrated CAD representation. Moreover,
man-made objects often consist of curved lines and curved surfaces. It is necessary to sort
out the geometric relationship between 3D curved objects and their 2D projection and have
the ability to detect 2D and 3D curved structures.

SLAM/SfM in Deep Learning Software Systems. In Chapter 2, I have worked on
multiple problems related to detecting geometric structures from images. It is possible to
apply detected structures to help SfM/SLAM systems after building the correspondences.
For example, researchers have used vanishing points as a visual compass for navigation [82].
During my research, I find it time-consuming to design and test neural networks under the
framework of SLAM/SfM, as the pipeline of SLAM is often quite complex and written in
C++ [128]. Currently, we already have several high-quality tensor algebra frameworks for
deep learning, such as TensorFlow, PyTorch, and recently JAX. On one hand, operators in
deep-learning algebraic frameworks are often differentiable, so it is convenient to use gra-
dient descent to fine-tune hyper-parameters in SLAM/SfM systems and add learning-based
ingredients. On the other hand, modern deep-learning algebraic frameworks use a scripting
language such as Python as their interface, which significantly reduces the time for modi-
fying existing code and implementing new ideas. Because we have witnessed the power of
data-driven methods, and the current trend is to replace more and more components in the
traditional vision system with their learning-based counterparts for performance improve-
ments, I believe such a system can benefit research across multiple topics in 3D vision, such as
learning-based point features extraction, outlier rejection, view-geometry, visual odometry,
and multiview stereopsis.

82

Bibliography

[1] Ibraheem Alhashim and Peter Wonka. “High Quality Monocular Depth Estimation
via Transfer Learning”. In: arXiv preprint arXiv:1812.11941 (2018).

[2] Michel Antunes and Joao P Barreto. “A Global Approach for the Detection of Van-
ishing Points and Mutually Orthogonal Vanishing Directions”. In: CVPR. 2013.

[3] Relja Arandjelović and Andrew Zisserman. “Three Things Everyone Should Know to
Improve Object Retrieval”. In: CVPR. 2012.

[4] Iro Armeni et al. “Joint 2D-3D-Semantic Data for Indoor Scene Understanding”. In:
arXiv (2017).

[5] Aayush Bansal, Bryan Russell, and Abhinav Gupta. “Marr Revisited: 2D-3D Align-
ment via Surface Normal Prediction”. In: CVPR. 2016.

[6] Olga Barinova et al. “Geometric Image Parsing in Man-Made Environments”. In:
ECCV. 2010.

[7] Stephen T Barnard. “Interpreting Perspective Images”. In: Artificial intelligence (1983).

[8] Jean-Charles Bazin et al. “Globally Optimal Line Clustering and Vanishing Point
Estimation in Manhattan World”. In: CVPR. 2012.

[9] Robert C Bolles and Martin A Fischler. “A RANSAC-Based Approach to Model
Fitting and Its Application to Finding Cylinders in Range Data”. In: IJCAI. 1981.

[10] Ali Borji. “Vanishing Point Detection With Convolutional Neural Networks”. In:
arXiv preprint (2016).

[11] Joan Bruna and Stéphane Mallat. “Invariant Scattering Convolution Networks”. In:
PAMI (2013).

[12] John Canny. “A Computational Approach to Edge Detection”. In: PAMI (1986).

[13] Angel Chang et al. “Matterport3D: Learning From RGB-D Data in Indoor Environ-
ments”. In: 3DV (2017).

[14] Angel X Chang et al. “ShapeNet: An Information-Rich 3D Model Repository”. In:
arXiv preprint arXiv:1512.03012 (2015).

[15] Chin-Kai Chang, Jiaping Zhao, and Laurent Itti. “DeepVP: Deep Learning for Van-
ishing Point Detection on 1 Million Street View Images”. In: ICRA. 2018.

BIBLIOGRAPHY 83

[16] Jia-Ren Chang and Yong-Sheng Chen. “Pyramid Stereo Matching Network”. In:
CVPR. 2018.

[17] Xiaozhi Chen et al. “Monocular 3D Object Detection for Autonomous Driving”. In:
CVPR. 2016.

[18] Changhyun Choi and Henrik I Christensen. “3D Pose Estimation of Daily Objects
Using an RGB-D Camera”. In: IROS. 2012.

[19] Sungil Choi et al. “Learning Descriptor, Confidence, and Depth Estimation in Multi-
View Stereo”. In: CVPR Workshops. 2018.

[20] Christopher B Choy et al. “3D-R2N2: A Unified Approach for Single and Multi-View
3D Object Reconstruction”. In: ECCV. 2016.

[21] Ondřej Chum, Jǐŕı Matas, and Josef Kittler. “Locally Optimized RANSAC”. In: Joint
Pattern Recognition Symposium. 2003.

[22] Roberto Cipolla, Tom Drummond, and Duncan P Robertson. “Camera Calibration
From Vanishing Points in Image of Architectural Scenes.” In: BMVC. 1999.

[23] Maxwell B Clowes. “On Seeing Things”. In: Artificial intelligence (1971).

[24] Taco S Cohen et al. “Spherical CNNs”. In: ICLR. 2018.

[25] James M Coughlan and Alan L Yuille. “Manhattan World: Compass Direction From
a Single Image by Bayesian Inference”. In: ICCV. 1999.

[26] Brian Curless and Marc Levoy. “A Volumetric Method for Building Complex Models
From Range Images”. In: ToG. 1996.

[27] Angela Dai et al. “ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes”.
In: CVPR. 2017.

[28] Jifeng Dai, Kaiming He, and Jian Sun. “Instance-Aware Semantic Segmentation via
Multi-Task Network Cascades”. In: CVPR. 2016.

[29] Jifeng Dai et al. “Deformable Convolutional Networks”. In: ICCV. 2017.

[30] Jifeng Dai et al. “R-FCN: Object Detection via Region-Based Fully Convolutional
Networks”. In: NIPS. 2016.

[31] Patrick Denis, James H Elder, and Francisco J Estrada. “Efficient Edge-Based Meth-
ods for Estimating Manhattan Frames in Urban Imagery”. In: ECCV. 2008.

[32] David Eigen and Rob Fergus. “Predicting Depth, Surface Normals and Semantic
Labels With a Common Multi-Scale Convolutional Architecture”. In: CVPR. 2015.

[33] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction From a
Single Image Using a Multi-Scale Deep Network”. In: NIPS. 2014.

[34] Mark Everingham et al. “The PASCAL Visual Object Classes (VOC) Challenge”. In:
IJCV (2010).

BIBLIOGRAPHY 84

[35] Gilbert Falk. “Interpretation of Imperfect Line Data as a Three-Dimensional Scene”.
In: Artificial intelligence (1972).

[36] Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A Point Set Generation Network for
3D Object Reconstruction From a Single Image”. In: CVPR. 2017.

[37] Chen Feng, Fei Deng, and Vineet R Kamat. “Semi-Automatic 3D Reconstruction of
Piecewise Planar Building Models From Single Image”. In: CONVR (2010).

[38] Huan Fu et al. “Deep Ordinal Regression Network for Monocular Depth Estimation”.
In: CVPR. 2018.

[39] Yasutaka Furukawa, Carlos Hernández, et al. “Multi-View Stereo: A Tutorial”. In:
Foundations and Trends® in Computer Graphics and Vision (2015).

[40] Yasutaka Furukawa and Jean Ponce. “Accurate, Dense, and Robust Multiview Stere-
opsis”. In: PAMI (2009).

[41] Yasutaka Furukawa et al. “Manhattan-World Stereo”. In: CVPR. 2009.

[42] Yasutaka Furukawa et al. “Towards Internet-Scale Multi-View Stereo”. In: CVPR.
2010.

[43] Xiao-Shan Gao et al. “Complete Solution Classification for the Perspective-Three-
Point Problem”. In: PAMI (2003).

[44] Andreas Geiger et al. “Vision Meets Robotics: The KITTI Dataset”. In: IJRR (2013).

[45] Ross Girshick. “Fast R-CNN”. In: Proceedings Of The IEEE International Conference
On Computer Vision. 2015.

[46] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation”. In: CVPR. 2014.

[47] Álvaro González. “Measurement of Areas on a Sphere Using Fibonacci and Latitude–
Longitude Lattices”. In: Mathematical Geosciences (2010).

[48] Thibault Groueix et al. “A Papier-MâChÉ Approach to Learning 3D Surface Gener-
ation”. In: CVPR. 2018.

[49] Erwan Guillou et al. “Using Vanishing Points for Camera Calibration and Coarse 3D
Reconstruction From a Single Image”. In: The Visual Computer (2000).

[50] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vi-
sion. 2003.

[51] Wilfried Hartmann et al. “Learned Multi-Patch Similarity”. In: ICCV. 2017.

[52] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CVPR. 2016.

[53] Kaiming He et al. “Mask R-CNN”. In: ICCV. 2017.

[54] Manuel Hofer, Michael Maurer, and Horst Bischof. “Efficient 3D Scene Abstraction
Using Line Segments”. In: Computer Vision and Image Understanding (2017).

BIBLIOGRAPHY 85

[55] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Putting Objects in Perspective”.
In: IJCV (2008).

[56] W. Hong, A. Y. Yang, and Y. Ma. “On Group Symmetry in Multiple View Geometry:
Structure, Pose and Calibration From Single Images”. In: IJCV (2004).

[57] W. Hong, Y. Yu, and Y. Ma. “Reconstruction of 3D Symmetric Curves From Per-
spective Images Without Discrete Features”. In: ECCV. 2004.

[58] Paul VC Hough. “Machine Analysis of Bubble Chamber Pictures”. In: International
Conference On High Energy Accelerators And Instrumentation. 1959.

[59] Po-Han Huang et al. “DeepMVS: Learning Multi-View Stereopsis”. In: CVPR. 2018.

[60] Jingwei Huang et al. “3Dlite: Towards Commodity 3D Scanning for Content Cre-
ation”. In: ToG (2017).

[61] Jingwei Huang et al. “FrameNet: Learning Local Canonical Frames of 3D Surfaces
From a Single RGB Image”. In: ICCV. 2019.

[62] Jingwei Huang et al. “TextureNet: Consistent Local Parametrizations for Learning
From High-Resolution Signals on Meshes”. In: CVPR. 2019.

[63] Kun Huang et al. “Learning to Parse Wireframes in Images of Man-Made Environ-
ments”. In: CVPR. 2018.

[64] Eldar Insafutdinov and Alexey Dosovitskiy. “Unsupervised Learning of Shape and
Pose With Differentiable Point Clouds”. In: NIPS. 2018.

[65] Shahram Izadi et al. “KinectFusion: Real-Time 3D Reconstruction and Interaction
Using a Moving Depth Camera”. In: ISMAR. 2011.

[66] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial Transformer
Networks”. In: NIPS. 2015.

[67] Yunho Jeon and Junmo Kim. “Active Convolution: Learning the Shape of Convolution
for Image Classification”. In: CVPR. 2017.

[68] Mengqi Ji et al. “SurfaceNet: An End-to-End 3D Neural Network for Multiview Stere-
opsis”. In: ICCV. 2017.

[69] Chiyu Jiang et al. “Spherical CNNs on Unstructured Grids”. In: ICLR. 2019.

[70] Yuhe Jin et al. “Image Matching across Wide Baselines: From Paper to Practice”. In:
IJCV (2020).

[71] Takeo Kanade. “Recovery of the Three-Dimensional Shape of an Object From a Single
View”. In: Artificial intelligence (1981).

[72] Sing Bing Kang, Richard Szeliski, and Jinxiang Chai. “Handling Occlusions in Dense
Multi-View Stereo”. In: CVPR. 2001.

[73] Abhishek Kar, Christian Häne, and Jitendra Malik. “Learning a Multi-View Stereo
Machine”. In: NIPS. 2017.

BIBLIOGRAPHY 86

[74] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson Surface Recon-
struction”. In: SGP. 2006.

[75] Alex Kendall et al. “End-to-End Learning of Geometry and Context for Deep Stereo
Regression”. In: ICCV. 2017.

[76] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: ICLR (2015).

[77] N. Kiryati and Y. Gofman. “Detecting Symmetry in Grey Level Images: The Global
Optimization Approach”. In: IJCV (1998).

[78] Florian Kluger et al. “Deep Learning for Vanishing Point Detection Using an Inverse
Gnomonic Projection”. In: GCPR. 2017.

[79] Thomas H Kolbe, Gerhard Gröger, and Lutz Plümer. “CityGML: Interoperable Ac-
cess to 3D City Models”. In: Geo-Information For Disaster Management. Springer,
2005.

[80] Thommen Korah and Christopher Rasmussen. “Analysis of Building Textures for
Reconstructing Partially Occluded Facades”. In: ECCV. 2008.

[81] Jana Košecká andWei Zhang. “Efficient Computation of Vanishing Points”. In: ICRA.
2002.

[82] Jana Košecká and Wei Zhang. “Video Compass”. In: ECCV. Springer. 2002.

[83] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
With Deep Convolutional Neural Networks”. In: NIPS. 2012, pp. 1097–1105.

[84] Hei Law and Jia Deng. “CornerNet: Detecting Objects as Paired Keypoints”. In:
ECCV. 2018.

[85] Seokju Lee et al. “VPGNet: Vanishing Point Guided Network for Lane and Road
Marking Detection and Recognition”. In: ICCV. 2017.

[86] Vincent Leroy, Jean-Sébastien Franco, and Edmond Boyer. In: ECCV. 2018.

[87] José Lezama et al. “Finding Vanishing Points via Point Alignments in Image Primal
and Dual Domains”. In: CVPR. 2014.

[88] Yi Li et al. “Fully Convolutional Instance-Aware Semantic Segmentation”. In: CVPR.
2017.

[89] Zhengqi Li and Noah Snavely. “MegaDepth: Learning Single-View Depth Prediction
From Internet Photos”. In: Computer Vision And Pattern Recognition (CVPR). 2018.

[90] Chen Liu et al. “PlaneNet: Piece-Wise Planar Reconstruction From a Single RGB
Image”. In: CVPR. 2018.

[91] Chen Liu et al. “PlaneRCNN: 3D Plane Detection and Reconstruction From a Single
Image”. In: CVPR. 2019.

BIBLIOGRAPHY 87

[92] Shichen Liu et al. “Soft Rasterizer: A Differentiable Renderer for Image-Based 3D
Reasoning”. In: ICCV. 2019.

[93] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: CVPR. 2015.

[94] William E Lorensen and Harvey E Cline. “Marching Cubes: A High Resolution 3D
Surface Construction Algorithm”. In: ToG. 1987.

[95] David G Lowe. “Object Recognition From Local Scale-Invariant Features”. In: ICCV.
1999.

[96] Gareth Loy and Jan-Olof Eklundh. “Detecting Symmetry and Symmetric Constella-
tions of Features”. In: ECCV. 2006.

[97] Yi Ma et al. An Invitation to 3-D Vision: From Images to Geometric Models. Springer
Science & Business Media, 2012.

[98] Will Maddern et al. “1 Year, 1000 Km: The Oxford RobotCar Dataset”. In: IJRR
(2017).

[99] Michael J Magee and Jake K Aggarwal. “Determining Vanishing Points From Per-
spective Images”. In: Computer Vision, Graphics, and Image Processing (1984).

[100] Martti Mantyla. Introduction to solid modeling. WH Freeman & Co., 1988.

[101] David R Martin, Charless C Fowlkes, and Jitendra Malik. “Learning to Detect Nat-
ural Image Boundaries Using Local Brightness, Color, and Texture Cues”. In: PAMI
(2004).

[102] Jonathan Masci et al. “Geodesic Convolutional Neural Networks on Riemannian Man-
ifolds”. In: ICCV Workshop. 2015.

[103] John McCormac et al. “SceneNet RGB-D: Can 5M Synthetic Images Beat Generic
ImageNet Pre-Training on Indoor Segmentation?” In: ICCV. 2017.

[104] GF McLean and D Kotturi. “Vanishing Point Detection by Line Clustering”. In:
PAMI (1995).

[105] Lars Mescheder et al. “Occupancy Networks: Learning 3D Reconstruction in Function
Space”. In: CVPR. 2019.

[106] Ben Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis”. In: CVPR. 2020.

[107] Faraz M Mirzaei and Stergios I Roumeliotis. “Optimal Estimation of Vanishing Points
in a Manhattan World”. In: ICCV. 2011.

[108] Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. “Partial and Approximate Sym-
metry Detection for 3D Geometry”. In: ToG (2006).

[109] Arsalan Mousavian et al. “3D Bounding Box Estimation Using Deep Learning and
Geometry”. In: CVPR. 2017.

BIBLIOGRAPHY 88

[110] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System”. In: IEEE transactions on robotics
(2015).

[111] Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus. “Indoor Segmen-
tation and Support Inference From RGBD Images”. In: ECCV. 2012.

[112] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked Hourglass Networks for Hu-
man Pose Estimation”. In: ECCV. 2016.

[113] David Nistér. “An Efficient Solution to the Five-Point Relative Pose Problem”. In:
PAMI (2004).

[114] James F O’Brien and Hany Farid. “Exposing Photo Manipulation With Inconsistent
Reflections.” In: ToG (2012).

[115] Jeong Joon Park et al. “DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation”. In: CVPR (2019).

[116] Charles R Qi et al. “Frustum Pointnets for 3D Object Detection From RGB-D Data”.
In: CVPR. 2018.

[117] Charles Ruizhongtai Qi et al. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space”. In: NIPS. 2017.

[118] Long Quan and Roger Mohr. “Determining Perspective Structures Using Hierarchical
Hough Transform”. In: Pattern Recognition Letters (1989), pp. 279–286.

[119] Mahdi Rad and Vincent Lepetit. “BB8: A Scalable, Accurate, Robust to Partial
Occlusion Method for Predicting the 3D Poses of Challenging Objects Without Using
Depth”. In: ICCV. 2017.

[120] Srikumar Ramalingam and Matthew Brand. “Lifting 3D Manhattan Lines From a
Single Image”. In: ICCV. 2013.

[121] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection With
Region Proposal Networks”. In: NIPS. 2015.

[122] Stephan R Richter et al. “Playing for Data: Ground Truth From Computer Games”.
In: ECCV. 2016.

[123] Lawrence G Roberts. “Machine Perception of Three-Dimensional Solids”. PhD thesis.
Massachusetts Institute of Technology, 1963.

[124] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: International Conference On Medical
Image Computing And Computer-Assisted Intervention. 2015.

[125] German Ros et al. “The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes”. In: CVPR. 2016.

[126] Ethan Rublee et al. “ORB: An Efficient Alternative to SIFT or SURF”. In: ICCV.
2011.

BIBLIOGRAPHY 89

[127] Grant Schindler and Frank Dellaert. “Atlanta World: An Expectation Maximization
Framework for Simultaneous Low-Level Edge Grouping and Camera Calibration in
Complex Man-Made Environments”. In: CVPR. 2004.

[128] Johannes L Schonberger and Jan-Michael Frahm. “Structure-From-Motion Revis-
ited”. In: CVPR. 2016.

[129] Johannes L Schönberger et al. “Pixelwise View Selection for Unstructured Multi-View
Stereo”. In: ECCV. 2016.

[130] Jianbo Shi and Carlo Tomasi. “Good Features to Track”. In: CVPR. 1994.

[131] Laurent Sifre and Stéphane Mallat. “Rotation, Scaling and Deformation Invariant
Scattering for Texture Discrimination”. In: CVPR. 2013.

[132] Shuran Song and Jianxiong Xiao. “Deep Sliding Shapes for Amodal 3D Object De-
tection in RGB-D Images”. In: CVPR. 2016.

[133] Shuran Song et al. “Semantic Scene Completion From a Single Depth Image”. In:
CVPR. 2017.

[134] Richard S Stephens. “Probabilistic Approach to the Hough Transform”. In: Image
and vision computing (1991).

[135] Kent A Stevens. “The Visual Interpretation of Surface Contours”. In: Artificial In-
telligence (1981).

[136] Marco Straforini, C Coelho, and Marco Campani. “Extraction of Vanishing Points
From Images of Indoor and Outdoor Scenes”. In: Image and Vision Computing (1993).

[137] Xingyuan Sun et al. “Pix3D: Dataset and Methods for Single-Image 3D Shape Mod-
eling”. In: CVPR. 2018.

[138] Jean-Philippe Tardif. “Non-Iterative Approach for Fast and Accurate Vanishing Point
Detection”. In: ICCV. 2009.

[139] Maxim Tatarchenko et al. “What Do Single-View 3D Reconstruction Networks Learn?”
In: CVPR. 2019.

[140] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. “Real-Time Seamless Single Shot 6D
Object Pose Prediction”. In: CVPR. 2018.

[141] Roberto Toldo and Andrea Fusiello. “Robust Multiple Structures Estimation With
J-Linkage”. In: European Conference On Computer Vision. 2008.

[142] Bill Triggs et al. “Bundle Adjustment — A Modern Synthesis”. In: International
Workshop On Vision Algorithms. 1999.

[143] N.F. Troje and H.H. Bulthoff. “How Is Bilateral Symmetry of Human Faces Used for
Recognition of Novel Views”. In: Vision Research (1998).

[144] Shinji Umeyama. “Least-Squares Estimation of Transformation Parameters Between
Two Point Patterns”. In: PAMI (1991).

BIBLIOGRAPHY 90

[145] T. Vetter, T. Poggio, and H. H. Bulthoff. “The Importance of Symmetry and Virtual
Views in Three-Dimensional Object Recognition”. In: Current Biology (1994).

[146] Rafael Grompone Von Gioi et al. “LSD: A Fast Line Segment Detector With a False
Detection Control”. In: PAMI (2010).

[147] He Wang et al. “Normalized Object Coordinate Space for Category-Level 6D Object
Pose and Size Estimation”. In: CVPR. 2019.

[148] Nanyang Wang et al. “Pixel2mesh: Generating 3D Mesh Models From Single RGB
Images”. In: ECCV. 2018.

[149] Sen Wang et al. “DeepVO: Towards End-to-End Visual Odometry With Deep Recur-
rent Convolutional Neural Networks”. In: ICRA. 2017.

[150] Xiaolong Wang, David Fouhey, and Abhinav Gupta. “Designing Deep Networks for
Surface Normal Estimation”. In: CVPR. 2015.

[151] Horst Wildenauer and Allan Hanbury. “Robust Camera Self-Calibration FromMonoc-
ular Images of Manhattan Worlds”. In: CVPR. 2012.

[152] Scott Workman, Menghua Zhai, and Nathan Jacobs. “Horizon Lines in the Wild”.
In: BMVC. 2016.

[153] Jiajun Wu et al. “Learning Shape Priors for Single-View 3D Completion and Recon-
struction”. In: ECCV. 2018.

[154] Jiajun Wu et al. “Single Image 3D Interpreter Network”. In: ECCV. 2016.

[155] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. “Unsupervised Learning of
Probably Symmetric Deformable 3D Objects From Images in the Wild”. In: CVPR.
2020.

[156] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/detectron2.
2019.

[157] Yu Xiang et al. “Data-Driven 3D Voxel Patterns for Object Category Recognition”.
In: CVPR. 2015.

[158] Yu Xiang et al. “PoseCNN: A Convolutional Neural Network for 6D Object Pose
Estimation in Cluttered Scenes”. In: CVPR. 2019.

[159] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. “SUN3D: A Database of Big
Spaces Reconstructed Using SfM and Object Labels”. In: ICCV. 2013.

[160] Qiangeng Xu et al. “DISN: Deep Implicit Surface Network for High-Quality Single-
View 3D Reconstruction”. In: NIPS. 2019.

[161] Yifan Xu et al. “Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based
3D Reconstruction With Symmetry”. In: ECCV. 2020.

[162] Nan Xue et al. “Learning Attraction Field Representation for Robust Line Segment
Detection”. In: CVPR. 2019.

https://github.com/facebookresearch/detectron2

BIBLIOGRAPHY 91

[163] Xinchen Yan et al. “Perspective Transformer Nets: Learning Single-View 3D Object
Reconstruction Without 3D Supervision”. In: NIPS. 2016.

[164] Fengting Yang and Zihan Zhou. “Recovering 3D Planes From a Single Image via
Convolutional Neural Networks”. In: ECCV. 2018.

[165] Yao Yao et al. “MVSNet: Depth Inference for Unstructured Multi-View Stereo”. In:
ECCV. 2018.

[166] Yuan Yao et al. “Front2Back: Single View 3D Shape Reconstruction via Front to
Back Prediction”. In: CVPR. 2020.

[167] Zhichao Yin and Jianping Shi. “GeoNet: Unsupervised Learning of Dense Depth,
Optical Flow and Camera Pose”. In: CVPR. 2018.

[168] Zehao Yu et al. “Single-Image Piece-Wise Planar 3D Reconstruction via Associative
Embedding”. In: CVPR. 2019.

[169] H. Zabrodsky, S. Peleg, and D. Avnir. “Symmetry as a Continuous Feature”. In:
PAMI (1995).

[170] Jure Zbontar, Yann LeCun, et al. “Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches.” In: JMLR (2016).

[171] Huayi Zeng et al. “Bundle Pooling for Polygonal Architecture Segmentation Prob-
lem”. In: CVPR. 2020.

[172] Menghua Zhai, Scott Workman, and Nathan Jacobs. “Detecting Vanishing Points
Using Global Image Context in a Non-Manhattan World”. In: CVPR. 2016.

[173] Kaipeng Zhang et al. “Joint Face Detection and Alignment Using Multitask Cascaded
Convolutional Networks”. In: IEEE Signal Processing Letters (2016).

[174] Xiaodan Zhang et al. “Dominant Vanishing Point Detection in the Wild With Appli-
cation in Composition Analysis”. In: Neurocomputing (2018).

[175] Xuaner Cecilia Zhang et al. “Portrait Shadow Manipulation”. In: ToG (2020).

[176] Zhengdong Zhang et al. “TILT: TRansform Invariant Low-Rank Textures”. In: IJCV
(2012).

[177] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krähenbühl. “Bottom-up Object Detection
by Grouping Extreme and Center Points”. In: CVPR. 2019.

[178] Yi Zhou et al. “On the Continuity of Rotation Representations in Neural Networks”.
In: CVPR. 2019.

[179] Yichao Zhou, Shichen Liu, and Yi Ma. “Learning to Detect 3D Reflection Symmetry
for Single-View Reconstruction”. In: (2020). arXiv:2006.10042 [cs.CV].

[180] Yichao Zhou, Haozhi Qi, and Yi Ma. “End-to-End Wireframe Parsing”. In: ICCV.
2019.

BIBLIOGRAPHY 92

[181] Yichao Zhou et al. “HoliCity: A City-Scale Data Platform for Learning Holistic 3D
Structures”. In: (2020). arXiv:2008.03286 [cs.CV].

[182] Yichao Zhou et al. “Learning to Reconstruct 3D Manhattan Wireframes From a Single
Image”. In: ICCV. 2019.

[183] Yichao Zhou et al. “NeurVPS: Neural Vanishing Point Scanning via Conic Convolu-
tion”. In: NeurIPS. 2019.

[184] Zihan Zhou, Farshid Farhat, and James Z Wang. “Detecting Dominant Vanishing
Points in Natural Scenes With Application to Composition-Sensitive Image Retrieval”.
In: IEEE Transactions on Multimedia (2017).

[185] Chuhang Zou et al. “LayoutNet: Reconstructing the 3D Room Layout From a Single
RGB Image”. In: CVPR. 2018.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions

	Detecting Geometric Structures from Images
	Learning to Detect Wireframes
	Learning to Detect Vanishing Points
	Learning to Detect Reflection Symmetry

	Datasets for Scene Abstraction
	SU3: The SceneCity Urban 3D Synthetic Dataset
	L3W: The Landmark 3D Wireframe Dataset
	HoliCity: The Holistic City-Scale Data Platform

	Structure-Based 3D Parsing
	Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
	Learning to Estimate Depth from Reflection Symmetry

	Conclusion
	Future Work

	Bibliography

