Improving Quantized-State System Simulation

Mehrdad Niknami

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-23
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-23.html

May 1, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Improving Quantized-State System Simulation

Mehrdad Niknami!

!University of California, Berkeley

Abstract

We discuss and improve prior formulations of Quantized-State System simulation, an al-
ternate class of algorithms to the traditional time-stepping algorithms used for the numerical
solution of initial-value problems. We illustrate that the computation of higher-order derivatives
in an initial-value problem can be performed in multiple ways, and we present improvements
that allow QSS solutions to more closely match analytic solutions. We also show that the prob-
lem of backward QSS (BQSS) can be ill-posed, and we propose modifications to existing methods
to allow for well-defined solutions. Finally, we discuss the implications of these approaches on
the efficiency of a solver, and the trade-offs they naturally impose on the result.

1 Introduction

Traditional numerical algorithms for solving initial-value problems use a time-stepping approach:
they discretize the time variable and, at each iteration, solve for the system state vector at a later
time step considering the state vectors at prior time steps. By contrast, a more recent class of
algorithms due to Kofman and Junco [4], known as quantized-state system (QSS) simulation, uses
a state-stepping approach: these algorithms take the system state vector F, quantize it into a
vector ¢ consisting of low-order Taylor polynomial approximations at the current step, and, at each
iteration, solve for the time at which the continuous approzimation x; of each state component
would deviate from the quantized approximation ¢; of that state component by a threshold called
the quantum.

This approach is unique in relazing the normally-unchallenged assumption that all components of
the state vector are to be updated in lockstep. In QSS, this constraint is relaxed to allow each state
component to advance in time at its own natural pace, allowing for potentially improved accuracy,
stability, or performance. [I]

This approach turns out to have significant fundamental advantages compared to classical time-
stepping methods, some more obvious than others. The most obvious benefit is the fact that
merely aggregating together two systems into a single combined (yet decouplable) system no longer
automatically forces the ideal rate of simulation to slow down to the minimum of the individual
ones, as decoupled state components advance completely independently.

However, this is far from the only advantage of QSS. In fact, QSS has been shown to possess
a more extraordinary property: namely, it has been proven (Kofman [2]) that, in the particular
case of asymptotically stable LTI systems, QSS’s global error is bounded by an constant that is
independent of the length of the simulation. This is in stark contrast to (say) an algorithm such

as Euler’s method, whose error can grow without bound even when simulating an asymptotically
stable LTI system. Figure [1]illustrates a simple example of this phenomenon.

x(1)

4’ - — Xst(t)

ot i / \ - A\ A I It xanalytic(t)
¥) 5 10 15 20 25 30

—4 ’) - ~ XEuler (t)

Figure 1: The QSS1, analytic, and Euler solutions for a sample system (Z(t) = —%? — xz(t),
z(0) = —%, x(0) = 2) with quantum @ = é for QSS and time step At = % for Euler. We observe
that the analytic solution converges, and the QSS1 solution maintains bounded global error, in
stark contrast with the Euler solution, which diverges.

Just as there is no free lunch, however, the QSS approach is not without its trade-offs. For example,
at least in the case of first-order QSS (QSS1), although the error is upper-bounded by a function
of the quantum, it is also trivially lower-bounded by the quantum itself, meaning that the method
naturally cannot resolve granularities under one quantum. This issue, however, can be addressed
by simply restricting the size of the time-step along with the quantum, effectively forcing steps at
least as frequent as those of the Euler method to be taken. Other challenges, however, can be more
difficult to overcome, and will thus comprise the foci of this paper.

2 Assumptions

We consider the usual nonlinear initial-value problem given by the ordinary differential equation
Z(t) = f(#(t)) describing an autonomous dynamical system over time with known initial state Z(0).
As our goal is to study the simulation of physical systems modeled in this manner, we will implicitly

assume f is reasonably well-behaved in the relevant portions of the problem domain.

3 Forward Quantized-State System Simulation

As with the forward and backward Euler methods, one can attempt to apply the QSS method in
a forward or backward manner. We visit each of these in turn.

3.1 QSSl1

First-order forward quantized-state system (QSS1) simulation approximates a dynamical system
using a zero-order hold, by assuming that each state variable follows a piecewise-constant quantized
trajectory ¢; that “remembers” the value of the corresponding continuous state x; until x; deviates

by a quantum Q;:

#(t) = flaw) "
o JEi) i () —a(tT)] > Qs
at) = {qi t~) otherwise (2)

Here, ¢ is a vector with the same dimension as #, ¢; and z; are the i*® elements of vectors ¢
and #, and ¢t~ denotes the instant before time ¢ (i.e. ¢ (t7) = lim,_;— ¢;(7)). We call Z the
continuous approximation to the system (as it is continuous), and we similarly call ¢ the quantized
approzimation to the system (it is piecewise-continuous). Whenever z; deviates from ¢; by a
quantum @);, causing ¢;(t) to be reset to z;(t), we say that a quantization event has occurred.

We help visualize the behavior of a QSS solution, we illustrate the QSS1 approximation to a simple
system in figure

.
7k

6F o x(®
st

4F q(t)
3F o
2> S

e _ 1 I 1)

0.0 0.5 1.0 1.5 2.0

Figure 2: Tllustration of the QSS1 solution to the system & (t) = 2(¢) with initial condition x(0) = 1
and quantum @ = 1. (Note the error bound does not apply to unstable systems.)

As perhaps expected, the QSS1 method is far from perfect. In particular, the QSS solution can be
inefficient for some trivial systems. For example:

e i(t) = 1, which is a simple feed-forward system. A QSS1 solver with @ = 1 would iterate
through the steps z(0) = 0, z(1) = 1, x(2) = 2, ... despite the fact that the system is
completely trivial to pre-solve exactly.

e i(t) = —x, which is a basic decaying exponential. Because a QSS1 solver cannot take steps
smaller than one quantum @ (i.e. the quantum is its natural “resolution limit”), it produces a
solution that oscillates back and forth between x(0) % @ and z(0) % @ — @ indefinitely, unless
x(0) happens to be an integer multiple of Q. (Here, % is the modulo, or remainder, operator.)

These efficiency concerns are illustrated in figure [3]

[\ w = (S}
\
\
w

/ q(® 1 q(d
0t : 12 3 4.5
0 1 2 3 4 5 -1
(a) #(t) =1, z(0) = 1 (b) &(t) = —3a(t), z(0) =3+ %

Figure 3: QSS1 solutions of two simple systems. In both cases, QSS1 continues to process quantiza-
tion events indefinitely despite the eventually-linear trajectory of the system state, an undesirable
source of inefficiency in the model.

One way to attempt to address these issues is to relax the restriction that g be piecewise-constant
by generalizing QSS1 to a higher-order “QSS2” method that allows ¢ to be piecewise-linear. This
would naturally us to represent a linear state trajectory with a single quantization event, realizing
a significant performance improvement.

It is not immediately clear, however, how exactly to generalize this formulation to higher-order
methods such as QSS2 [2] or QSS3 [3]. We still need to obtain & by integrating Z, which is not
a problem for QSS1 since ¢ is by definition piecewise-constant and therefore & is piecewise-linear.
However, if we allow ¢ to be even piecewise-linear, then Z will not be piecewise-quadratic (or
anything else noteworthy in general) for nonlinear f

Let us make the discrete-event nature of QSS1 explicit to help us generalize QSS1 to a higher-order
method. Notice that, if g—g is the Jacobian of f‘, then g%; =0 (i.e., gg; is identically zero) iff f;
lacks dependence on g;. With this in mind, we now rewrite QSS1 in a more explicit but equivalent

i(t) = @i(7e, (1) + fi(@(72,(1))) - (£ = 72, (1)) 3)
t if |2 (t7) — q:(t7)] > Qs
T4(t7) otherwise

of;

Tz, (t) = mj‘@X {qu' (t) : aqj # 0} (6)
Here, we have defined 7, (t) to be the latest time before ¢ at which ¢; was quantized, and 7,,(t)
to be the latest time before ¢ at which x; was affected by the quantization of any dependent g;.
This reformulation makes the discrete-event nature of the model clear, since it is now apparent
that “events” in the simulation only occur when a component of 7, or 7, undergoes a change.
(Quantization events, therefore, would refer to changes in a component of 7;.)

3.2 Higher-Order QSS

We posit that the natural generalization of QSS1 to QSSd would be to calculate when a degree-d
Taylor polynomial approximation of x; deviates from a degree-d — 1 Taylor polynomial approxima-

tion of ¢; by one quantum.

In taking such an approach, Kofman formulates QSS2 as follows [2]:

‘rl(t) = fz(‘j‘(t» (7)

(1) — zi(t) ift:()\/‘qi(t_)f:v(t_)’ > Q;
%) {Q’i(TQi (1) + (t — 74, (1)) @i (74, (t7)) otherwise (8)
i'i(qu'(Oi)) =0 (9)

This formulation is then used to prove similar theoretical error bounds as for QSS1. Unlike
in QSS1—in which the the piecewise-constancy of all ¢; made the expression f;(¢(t)) piecewise-
constant and thus trivial to integrate—the piecewise-linearity of all g; in QSS2 is insufficient to
guarantee anything about the integrability of f;(¢(t)) for general nonlinear f;. Therefore, for sim-
ulation purposes, [Kofman| approximates nonlinear QSS2 as linear QSS2 by first linearizing f; at
each step to make it integrable, resulting in piecewise-quadratic trajectories for all x;. (Hereafter,
we use “QSS2” to refer to this simulable approximation of actual QSS2.)

Kofmans formulation of QSS2, however, can exhibit behavior unfaithful to the original system.

Notice that we have ¢;(t) = &;(74, (7)) between quantization events, while at every quantization,
we have ¢;(t) = z;(t). This means that the derivative &; from before each quantization event to be
used along with the value of x; after the quantization, causing the derivative to be obtained from
a state that lags behind the current time. Moreover, this lag also requires a valid derivative to be
specified at the initial time ¢ = 0, which in Kofman[s formulation has been (somewhat arbitrarily)
assumed to be zero. As may be expected, this timing inconsistency can introduce a discrepancy
between the simulated and expected solutions, which we will illustrate shortly.

While perhaps seemingly unnecessary at first glance, however, such a lag can be reasonable and
difficult to avoid in practical circumstances. For example, it can be difficult to avoid such a lag
when the function f is not known explicitly. (This can occur when a piece of software is used
to compute f at each desired value of ¢, as in such scenarios it can be impractical to compute
associated functions such as ﬁf? efficiently.) However, if f is given in a suitable form (such as via
an analytic formula), we no longer have this constraint. In that case, we can use the chain rule to
directly differentiate the original ODE Z(t) = f(Z(t)) with respect to ¢ as needed, evaluating the
desired derivatives directly at the current time.

One trade-off of evaluating the derivatives directly, however, is that it can introduce new depen-
dencies into the system, making it potentially less sparse and thus slightly less efficient to evaluate.
We will observe an example of this trade-off below in equation However, this decrease in the
sparsity can be be quite worthwhile, as it allows us to obtain a simulation result that is inherently
a closer match the analytic solution.

Therefore, formally, we put forward the following approximation for QSSd, removing the lag as

mentioned above:

d
zi(t) = zi (74, (t)) + Z :Ez(k) (1, (t), 1) (continuous trajectory)
k=1
d—1
qi(t) = qi(74, (1)) + @(k) (14 (1), 1) (quantized trajectory)
k=1
(k) 1) t—t% () (Taylor extrapolation
: ! : from time t* to t)
() dk—1 .)
x; (t) = Wfi(q(t)) (derivatives via eq.

And as a sanity check, we note that, as expected, the summations for ¢;(t) vanish when d = 1,
reducing the system to [3] and [4] for QSS1.

It is not difficult to find a system that demonstrates the differences between these two formulations
of QSS2. Indeed, even the trivial scalar system #(t) = z(t), (0) = 1 illustrates the effect of the
lag and its removal. We show this effect in figure [

51 5r
4 4

x (1) x (1)
3 g 3| g1
2r | et 2+ et
1 = . . . I L . 1 e L
00 02 04 06 08 1.0 12 14 00 02 04 06 08 10 12 14
(a) Kofman| QSS2 formulation. (b) New QSS2 formulation.
For t — 0T, z(t) =t and q(t) = 1 + Ot. For t — 0%, z(t) = 1+t +12/2, q(t) = 1+ t.
Ast— 17, q(t) = q(1) + 2(17)t = 1 +1. Ast—v27, q(t) = —V2+ (2 + V2L

Figure 4: Comparison of QSS2 formulations for the system @(¢) = z(t), 2(0) = 1 with the analytic
solution e!. The new formulation uses fresher derivatives, resulting in a better approximation to
the true exponential solution than would be obtained via the use of stale (lagging) derivatives.

Notice that the derivative discrepancy begins at the very first moment at ¢(0) = 0 and compounds
thereafter. Moreover, artificially forcing the initialization of ¢(0) = 1 would only resolve the discrep-
ancy at t = 0, not afterward: ¢(t) would still lag behind ¢(¢) = #(17), and the same inconsistency
would occur at the subsequent quantization. We can consequently see that eliminating this lag
allows the new QSS2 formulation to give a better approximation of the exponential solution than
the original formulation. But, of course, it requires that f be known and that we be able to ana-
lytically differentiate it. When these conditions are not satisfied, we can fall back to the [Kofman
formulation.

3.3 Quantization vs. Direct Evaluation of State Derivatives

It may be tempting to believe that there is an easier way to resolve the aforementioned discrepancy.
After all, the problem we encountered was that ¢ was out-of-sync with ¢. Could we not have resolved
this issue by simply updating ¢ as soon as ¢q is quantized?

While possibly less obvious, this approach would not resolved the problem. The reason, simply
put, is that updating ¢ only during quantization events is insufficient to ensure that ¢ tracks f (q)
in general.

We can illustrate this with a concrete counterexample. Consider the initial QSS2 trajectories of
the following system starting at #(0) = 0 with quantum @ = 1:

Differential eq. Continuous approx. & Quantized approx. ¢
z1(t) =1 zi(t) =1t ()=t

Bo(t) =1+ 21(1) zo(t) =t +t2/2 @) =

i3(t) = 1+ a9(t) x3(t) =t +12/2 g3(t) =t

d4(t) = 1+ 23(t) z4(t) =t + 12 u(t) =t

As usual, the continuous and quantized approximations differ by one Taylor term. Thus, quantizing
Z to get ¢, we observe that, since |x4 — q4| grows the fastest, the first quantization event is the one
that occurs for g4, at ¢ = 1. At this point, we attempt to evaluate #4(1) via the two approaches,
and notice the difference between them:

Z4(1) =0+ 2¢3(1) =2 (Kofman| approach) (10)
#£0+2 (14 (1) =4 (our approach) (11)
t3(1)
i3

Notice that, as there are no preceding quantization events, the value of ¢3(1) is simply %t‘ L= 1.
t=

We can therefore see that, at the cost of introducing a dependency on go (which makes the system
less sparse), our approach gains the ability to produce a result closer to the analytic solutionm
by fundamentally utilizing up-to-date values of upstream dependencies instead of attempting to
extrapolate them based on outdated information.

4 Backward Quantized-State System Simulation

In a “forward” simulation algorithm, we approximate the evolution of the system state at every step
as a function of the system state at the beginning of that step. Correspondingly, in a “backward”
algorithm, we approximate the evolution of the system state at every step as a function of the
system state at the end of the step. Given that the classical forward Fuler simulation method has
an analogous backward Euler counterpart that is more suitable for stiff systems, one hopes for a
backward @SS method analogous to forward @SS with similar properties.

1 . o 2 2 3 5 3 417
m(l):S,becausex(t):[t t+ 4 t+%+% t+t +%+i§] .

To address this, backward QSS1 (BQSS) has been previously defined by Migoni et al. [5] as follows:

ai(t) € {@(0).4,0)} (13)

such that fi(q(t)) - (¢i(t) — zs(t)) >0
if uniquely possible, or

qi(t) = qi(t™) otherwise (14)
(7)) + Qi i g(tT) < w(t)

() = @) - Qi ifqtT) > x(t) + Qi+ e (15)
7;(t7) otherwise
()~ Qi ifg(t) > mi(t)

q,(t) = qq,t7)+Qi ifg(t7) <m(t) +Qi+e (16)
q,(t7) otherwise

The idea of this formulation is that, whereas in forward QSS xz; starts at ¢; and diverges from g;
until the two differ by one quantum, in backward QSS, x; would be allowed to start one quantum
away from ¢; and subsequently evolve toward it. In other words, ¢; represents the anticipated
future value of z;. In this formulation, g;(?), ¢,(t), and ¢(t™) represent possible values of at the
end of the current time step for g;, corresponding to ¢; increasing, decreasing, or staying constant,
respectively. The constant ¢; is called the hysteresis width of the i** component, perhaps typically
1% of @, but is not of significance to our discussion.

Unfortunately, this proposed formulation of BQSS is not without its drawbacks. We explore and
attempt to address some of these difficulties below.

4.1 Performance Implications of BQSS

Recall that the fundamental principle of QSS—whether forward or backward—is that the quantized
state ¢; is assumed to follow a polynomial trajectory (i.e. a constant trajectory for QSS1), until—
and unless—the continuous state x; deviates from it by at least one quantum @);.

The aforementioned formulation of BQSS, however, does not quite follow this behavior: ¢; can
suddenly change long before x; deviates from it by a quantum. This is a direct consequence of
the fact that any change in the sign of f;(g(t)) can trigger an instantaneous change in the value
of ¢i(t) via equation Such premature quantizations can cause the model to undergo far more
quantization events than desirable from a backward algorithm, potentially decreasing simulation
performance.

Migoni et al. [5], however, do not investigate what would happen if we simply avoided updating
¢i(t) in response to sign changes in f;(g(t)). Would this resolve the issue?

Unfortunately, this method would not work: imposing such a hysteresis constraint can render the
model illegitimate—that is, the model would no longer be guaranteed to only complete a finite
number of steps in any finite time interval. Intuitively, the illegitimacy is due to the fact that when

x; changes its trajectory to move away from ¢; (recall that z; can change while ¢; is held constant
until the deviation exceeds one quantum), as soon as the value of ¢;(t) is updated, the trajectory
of z; can reverse, causing ¢; to immediately revert to its prior value. Figure [5] shows a concrete
counterexample illustrating this behavior. As we can see, one seems to have little choice but to
update g; in response to changes in z;(t).

2.0F
1.5F — x(d
1.0F
q:1(®)
0.5F
n 1 n n n 1 n n n 1 n n n I " n n 1 n n n 1 n " n I " A xZ(t)
0.2 0.4 0.6 0.8 1.0 1.2 1.4
—0.5F q2(1)
—1.0F

Figure 5: An illegitimate model caused by enforcing hysteresis in the system &1 () = —z1(t)+2 z2(t),
Z2(t) = —2x1(t) with the initial condition z1(0) = 2, 22(0) = 0 and quantum @ = 1.

4.2 Consistency and Dynamic Quantum Reduction in BQSS

A potentially greater concern than the aforementioned performance issue is the fact that the BQSS
formulation can actually introduce causality loops in the evaluation of the model: namely, while z;
can trigger a change to ¢;, a change in ¢; may itself result in reverting change in #;. Indeed, even
the trivial single-dimensional LTT system

(t) = —a(t)
z(0) =Q/2

exhibits a causality loop (recall ¢ is the future value of z, i.e. the value toward which = evolves):

0) < z(0) (negative # means x is decreasing)
= ¢(0) € {-Q/2} (contradiction)

Notice, therefore, that this results in an endless update cycle that would never terminate.

Migoni et al. [5] sidestep this problem by providing a greedy algorithm that forces #(t) = 0 while
keeping ¢(t) = q(t~) whenever there are zero or multiple solutions found for ¢q. This is justified on
the grounds that, by the intermediate value theorem, if the derivative is changing sign, then there
must exist a nearby value (within @) of ¢ for which Z is in fact 0.

The obvious drawback of this approach, is that x would not actually evolve toward ¢, but would
rather be forced to stay constant, making the BQSS approximation inconsistent with (albeit a close
approximation to) the actual system.

In an attempt to resolve this inconsistency, we propose, instead, that the quanta @ be dynamically
reduced by the mazimum scalar factor A < 1 that admits a consistent solution, because a sufficiently
small choice of \ will necessarily avoid flipping the sign of #; and therefore avoid triggering the
inconsistency. (We choose a uniform scaling factor A across all states rather than allowing for
different \;, as the latter choice may no longer result in a unique solution.) In effect, this results
in a premature quantization, which in general would maintain the solution accuracy.

We can illustrate this on a less trivial system, such as the following;:

#1(t) =0 21(0) = 1
ia(t) = z3(t) — 0.521 () 25(0) = 1
3(t) = —a2(t) + 0.57, (1) 23(0) = 0

A similar examination as before reveals that this system has no consistent solution vector ¢(0) that
T can evolve toward for the quantum Q = 1. Therefore, we lower the quanta by a factor A by
solving the following optimization problem:

—

q(0) = arg max A ¢= Z(0) + Adiag(sgn((@)))Q

1 0 0 0 . (17)
= argmax A : ¢J= |1| +Adiag|sgn| [-05 0 +1|(q| | Q@
7 0 +0.5 -1 0
1 ‘ 0]
. q(0)= 0.5 = Z(0)= f(q(0)) = |-0.5
0 0

In this problem, we attempt to maximize A subject to the constraint that & evolves toward ¢, as
dictated by the sign of #. This optimization problem can be easily solved for A via bisection if we
are provided an efficient method for computing ¢(0) (and detecting infeasibility) given a choice for
A

It is not obvious, however, how one may implement such a solver efficiently, due to the exponential
number of possibilities (3™, where m is the number of variables being quantized) that may arise
for ¢(t).

To implement such a solver, we exploit the monotonicity of the simulator: namely, the fact that,
in general, prematurely quantizing a state variable preserves—if not betters—the accuracy of the
solution. Therefore, when multiple state variables require a simultaneous backward solution, we can
perform a backward Euler (BE) step on these states simultaneously, searching (e.g. via bisection)
for the maximum time step prior to the next quantization time of any other variable that would
limit the deviation to one quantum.

While perhaps seem less than ideal, the use of a BE step here provides us the benefit of being
able to progress time efficiently while simultaneously ensuring consistency with the original system.
Moreover, and quite crucially, just as in forward QSS, the BE steps are only taken over the state
variables that are actually undergoing a quantization, making it far cheaper than a full-sized step
in the classical full-fledged BE algorithm.

10

5 Conclusion and Future Work

We have presented improvements for quantized-state system simulation to improve the quality of
the resulting solutions. Specifically, we have shown how to remove a lag in the prior formulation of
QSS2 and obtain more accurate simulations at the cost of a small increase in system density. We
have also proposed methods to tackle shortcomings in backward QSS, providing a hybrid BQSS
algorithm based on the backward FEuler method that ensures the solution’s consistency.

In spite of these, however, there is considerable room for further work on QSS, both from theoretical
and practical standpoints. Many aspect of the simulation may admit significant potential improve-
ments, ranging from parallelization of the discrete-event simulation model to the development of a
more intelligent adaptive quantum adjustment algorithm. We hope that our contributions can help
pave the way toward a comprehensive development of this elegant class of alternative simulation
algorithms.

References

[1] Frangois E Cellier and Ernesto Kofman. 2006. Continuous system simulation. Springer Science
& Business Media.

[2] Ernesto Kofman. 2002. A second-order approximation for DEVS simulation of continuous
systems. Simulation 78, 2 (2002), 76-89.

[3] Ernesto Kofman. 2006. A third order discrete event method for continuous system simulation.
Latin American applied research 36, 2 (2006), 101-108.

[4] Ernesto Kofman and Sergio Junco. 2001. Quantized-state systems: a DEVS Approach for
continuous system simulation. Transactions of The Society for Modeling and Simulation Inter-
national 18, 3 (2001), 123-132.

[5] Gustavo Migoni, Ernesto Kofman, and Francois Cellier. 2012. Quantization-based new integra-
tion methods for stiff ordinary differential equations. Simulation 88, 4 (2012), 387-407.

11

	Introduction
	Assumptions
	Forward Quantized-State System Simulation
	QSS1
	Higher-Order QSS
	Quantization vs. Direct Evaluation of State Derivatives

	Backward Quantized-State System Simulation
	Performance Implications of BQSS
	Consistency and Dynamic Quantum Reduction in BQSS

	Conclusion and Future Work

