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Abstract

Overcoming Model-Bias in Reinforcement Learning

by

Ignasi Clavera Gilaberte

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Autonomous skill acquisition has the potential to dramatically expand the tasks robots
can perform in settings ranging from manufacturing to household robotics. Reinforcement
learning offers a general framework that enables skill acquisition solely from environment
interaction with little human supervision. As a result, reinforcement learning presents itself
as a scalable approach for widespread adoption of robotic agents. While reinforcement
learning has achieved tremendous success, it has been limited to simulated domains; such as
video games, computer graphics, and board games. Its most promising methods typically
require large amount of interaction with the environment to learn optimal policies. In real
robotic systems, significant interaction can cause wear and tear, create unsafe scenarios
during the learning process, or become prohibitively time consuming to enable potential
applications.

One promising venue to minimize the interaction between the agent and environment
are the methods under the umbrella of model-based reinforcement learning. Model-based
methods are characterized by learning a predictive model of the environment that is used
for learning a policy or planning. By exploiting the structure of the reinforcement learning
problem and making a better use of the collected data, model-based methods can achieve
better sample complexity. Previous to this work, model-based methods were limited to
simple environments and tended to achieve lower performance than model-free methods. In
here, we illustrate the model-bias problem: the set of difficulties that prevent typical model-
based methods to achieve optimal policies; and propose solutions that tackle model-bias.
The methods proposed are able to achieve the same asymptotic performance as model-
free methods while being two orders of magnitude more sample efficient. We unify these
methods into an asynchronous model-based framework that allow fast and efficient learning.
We successfully learn manipulation policies, such as block stacking and shape matching,
on the real PR2 robot within 10 min of wall-clock time. Finally, we take a further step
towards real-world robotics and propose a method that can efficiently adapt to changes in
the environment. We showcase it on a real 6-legged robot navigating on different terrains,
like grass and rock.
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1
I N T R O D U C T I O N

Autonomous skill acquisition has the potential to dramatically expand the tasks robots
can perform in settings ranging from manufacturing to household robotics. The current
use of robotics is limited to perfectly controlled environments, such as warehouses or
factories, where one has a mapping of the environment and the robot encounters staged
situations with limited variability. However, for a widespread adoption of robotic agents,
they need to be able to handle the variability of the world. For instance, in a household,
they should be able to operate whether the kitchen is organized or dirty, be able to carry
out the task while people move around them, and function regardless the house they are
in. How can we accomplish this degree of generality?

Robotic applications have been driven by three main methods in the past: trajec-
tory optimization (Khatib, 1986; Schulman et al., 2014; Warren, 1989), hand-crafted con-
trollers (Maitin-Shepard et al., 2010; Moudgal et al., 1994; Hopcroft et al., 2007; Fikes
et al., 1972), and imitation learning (T. Zhang et al., 2018; Ross et al., 2010; Schaal, 1999;
Calinon, 2009; Coates et al., 2008; Abbeel et al., 2010). However, I would argue that none
of these approaches are suitable to get algorithms that enable such degree of generality.
First, trajectory optimization, while it can accomplish complex and precise motions it
needs a model of the environment. The need of the model limits its scalability. First,
it is not feasible to know in advance every single element of the world. And second,
there are elements in the world that are hard to model, such as clothes or liquids. On the
other hand, hand-crafted controllers are not bottlenecked by needing a description of the
world. However, defining the optimal controller in some scenarios might be extremely
hard, or we might not even know which is the optimal. For instance, in the game of chess
while we have good heuristics of how to play it, we do not know the optimal action. Fi-
nally, imitation learning provides a framework to easily teach robots and it also does
not need to model the environment. In imitation learning, the human needs to provide
supervision of which is the right action to take in each task. The strong human supervi-
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sion needed for this framework hinders the scalability of it. For instance, T. Zhang et al.
(2018) needed 200 demonstration to learn a simple reaching task with 90% success rate.

Reinforcement learning (RL) is a general framework to learn the optimal behavior of
an agent through interaction with the environment. Reinforcement learning methods
overcome the previously described limitations and present themselves as a scalable ap-
proach for autonomous skill acquisition. In the RL paradigm, there is no need to know
a dynamics model of the world, minimal supervision is provided through the reward
function, and an optimal policy with respect to such reward is obtained. In recent years,
reinforcement learning methods have accomplished tremendous success in the areas of
video games, computer graphics, and board games (Mnih et al., 2015; Schulman et al.,
2015b; Silver et al., 2016; Silver et al., 2017). This success, however, has been limited to ar-
eas where gathering data can be done at scale; namely, in simulated environments. In or-
der to achieve high performance, these methods typically require a large amount of data.
For instance, the number of Go games played in Silver et al. (2017) amount to 8 years,
if played sequentially. In real robotic systems, significant interaction can cause wear and
tear, create unsafe scenarios during the learning process, or become prohibitively time
consuming to enable applications.

One promising venue to minimize the interaction between the agent and environment
are the methods under the umbrella of model-based reinforcement learning. Model-
based methods, contrary to model-free ones, are characterized by learning a predictive
model of the environment that is used for learning a policy or planning. By exploiting
the structure of the reinforcement learning problem and making a better use of the col-
lected data, model-based methods can achieve better sample complexity. Previous to this
work, model-based methods were limited to simple environments and tended to achieve
lower performance as model-free methods. In this thesis, we illustrate the model-bias
problem (Deisenroth and Rasmussen, 2011; Schneider, 1997; Atkeson and Santamaria,
1997): the set of challenges that prevent typical model-based methods to achieve optimal
policies.

In this work, we propose a set of methods that tackle the model-bias problem. We
present sample efficient algorithms that achieve high asymptotic performance. By sub-
stantially decreasing the interaction with the environment, these methods decrease the
risk of wear and tear, and the exposure to hazardous situations. We further enable the
applicability of model-based methods by developing an algorithm that is able to learn in
long horizons tasks efficiently by making use of a value function and the model deriva-
tives. In order to decrease the training time, we propose an asynchronous framework for
model-based learning that reduces by a factor of 10 the wall clock time of these meth-
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ods. The result of our work is a set of fast and data-efficient policy learning algorithms.
Finally, we move one step closer to general real-world robotics, by introducing an algo-
rithm that allows the robotic agent to adapt to unseen environments. We showcase it on
a real 6-legged robot navigating on different terrains, like grass and rock.

The main contributions of this thesis are the following:
• In Chapter 2 we introduce the reinforcement learning (RL) framework. In this chap-

ter, we also introduce model-based RL and give an overview of previous model-
based methods. Finally, we summarize meta-reinforcement learning, which will be
helpful background for our proposed methods.

• Chapter 3, explains the model-bias problem. We decompose the problem into three
specific issues: estimation errors, compounding errors, and over-optimism.

• In Chapter 4 we propose an algorithm that tackles the over-optimism issue. Our
method model-based trust-region policy optimization tackles overoptimism by learn-
ing an ensemble of dynamics models and training a robust policy on top of them.

• In Chapter 5, model-based RL via meta-policy optimization is proposed. The method,
instead of tackling the approximation and compounding errors, harness them by
learning an adaptive policy to different dynamics. This approach uses meta-learning
to learn a policy that is able to quickly adapt to the real environment.

• In Chapter 6, we presented a theoretically justified meta-learning algorithm that
allows for better adaptation. Our method is able to optimize for the exploration
strategy that would result in the best adaptation.

• In Chapter 7, we make use of model-free methods; namely, actor-critic, to extend
the horizon at which model-based methods can perform. By using the models to
predict short horizons and the value function for longer horizon we are able to
learn in tasks with a longer horizons than the methods in Chapters 4 and 5. The
work presented is characterized by efficiently making use of the derivatives of the
learned model.

• In Chapter 8, we introduce our asynchronous model-based training framework.
Asynchronous training reduces the wall-clock time of model-based training by a
factor of 10. Furthermore, we notice that the sample complexity is also reduced
when using asynchronous learning. These results are showcased with a block stack-
ing and shape matching task with a real PR2 robot.

• In Chapter 9, a method that is able to adapt to different dynamics is proposed.
Our method uses meta-learning on temporal segments to identify the current envi-
ronment given the recent experience of the agent. The proposed algorithm is able
to generalize to out-of-distribution tasks, as we demonstrate with a real 6-legged
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robot.
• Finally, in Chapter 10.2, we conclude with future directions for model-based rein-

forcement learning.
The work presented in Chapter 4 was originally published at the International Confer-

ence on Learning Representations (ICLR), 2018 (Kurutach et al., 2018), lead by Thanard
Kurutach. The work presented in Chapter 5 was originally published at the Conference
on Robot Learning (CORL), 2018 (Clavera et al., 2018) and it was co-first authored by
Ignasi Clavera* and Jonas Rothfuss*. The works in Chapters 6 and 9 were presented at
ICLR 2019 (Rothfuss et al., 2018; Nagabandi et al., 2018a). (Rothfuss et al., 2018) was
co-first authored by Jonas Rothfuss*, Dennis Lee*, and Ignasi Clavera*. (Nagabandi et al.,
2018a) was co-first authored by Anusha Nagabandi* and Ignasi Clavera*. Chapter 8 was
originally published at CORL 2019 (Y. Zhang et al., 2019) and co-first authored by Yun-
zhi Zhang* and Ignasi Clavera*. Finally, the work in Chapter 7 was published at ICLR
2020 (Clavera et al., 2020).
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2
P R O B L E M S TAT E M E N T

2.1 reinforcement learning

The term reinforcement learning (RL) is simultaneously used to refer to a problem, a
class methods of that aim to solve the problem, an a field that studies these problems
and methods. In a nut shell, reinforcement learning aims to learn an optimal behaviour
by trial-and-error, i.e., by repeatedly interacting with the environment, of a given metric.
In here, we will formalize the problem of reinforcement learning.

The problem of reinforcement learning is a sequential decision problem where an
agent must maximize a function, named expected return, by interacting with an environ-
ment. Mathematically, the problem is specified by defining its Markov decision process
(MDP). In this work, we assume that the decisions are made at discrete intervals and the
horizon is finite; hence, a discrete-time finite Markov decision process. An MDP, M is de-
fined by the tuple (S,A,p, r,γ,p0,H). Here, S is the state space, i.e., all the possible states
that the agent can visit; and A define the action space, the actions allowed to the agent.
The transition distribution, also known as dynamics, is defined by p : S×A× S → [0, 1]
and determines the probability of going to a state s ′ given that the current state is s and
the agent took action a. The reward function r : S×A → R specifies the value of a par-
ticular state, while the discount factor γ ∈ [0, 1] accounts for the depreciation of future
states. Finally, p0 is the density function of the initial state and H is the horizon of the
task. The agent then, from an initial state sampled from p0 takes in each step and action
at ∈ A which result in the agent transition to a state st+1, according to the dynamics
p. As a result of this transition, the agent experiences a reward r(st,at, st+1). The agent
proceeds taking actions for H (horizon) time-steps. A policy policy π : S×A → [0, 1]
is density function that determines the probability of an action a for a given state s.
The reinforcement problem is the optimization problem that aims to find the policy that
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maximize the discounted sum of rewards, that is:

max
π∈Π

J(π) = max
π∈Π

Es0∼p0
at∼π(st)
st+1∼p(st+1|st,at)

[
H∑
t=0

γtr(st,at, st+1)

]

In here, Π is the family of functions that our policy π belongs to. In this work, we
mainly consider parametrized policies, we refer them by πθ. For a more thorough review
of reinforcement learning and its history, we refer the reader to (Sutton and Barto, 2018).

Typically, reinforcement learning methods can be classified in two categories: model-
free and model-based. Model-free approaches are simple and learn purely from trial-and-
error, that is the optimal mapping from state to actions is learned by directly interact-
ing with the environment. Model-free approaches, when combined with deep learning,
have resulted in tremendous success. These relatively simple methods tend to scale well,
hence successes such as in Silver et al., 2016; Silver et al., 2017; Mnih et al., 2015; Schul-
man et al., 2015b have been accomplished using these class of methods. On the other
hand, model-based methods are characterized by learning a predictive model of the en-
vironment, i.e., they aim to learn the transition distribution p. The learned model p̂ is
then used to perform planning or policy improvement. Model-based methods make a
better use of the collected data and fully exploit the structure of the reinforcement learn-
ing problem. As a result, they tend to be more efficient in terms of interactions with the
environment. However, learning a policy or doing planning on a learn model leads to
more complex algorithms and can lead to unstable learning. In this thesis, we aim to
tackle the instabilities of model-based RL, namely the model-bias (Chapter 3).

2.2 model-based reinforcement learning

Model-based reinforcement learning is the set of RL methods that learn the transition
distribution from the experience gathered by the agent. By constructing this learned
model, model-based methods exploit the sequential nature of the MDP, which results
in more sample efficient algorithms. There are two main ways of making use of the
model, the model can be used as a simulator on top of which a global policy is learned,
if the learned model is differientable one can use its gradient information (Sutton, 1990;
Deisenroth and Rasmussen, 2011; Depeweg et al., 2017b; Sutton, 1991a). The second
approach is to use the model for planning. In this case, there is no policy learning and
and the model is used to locally plan ahead the best sequence of actions. In this thesis,
we will mainly focus on the former, where the model is used to learn a global policy.
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However, Chapter 9 makes use of the latter, and more details about it can be found in
the chapter.

2.2.1 Related Work

There has been a large body of work on model-based reinforcement learning. They dif-
fer by the choice of model parameterization, which is associated with different ways of
utilizing the model for policy learning. Interestingly, the most impressive robotic learn-
ing applications so far were achieved using the simplest possible model parameteriza-
tion, namely linear models (Bagnell and Schneider, 2001; Abbeel et al., 2006; Levine and
Abbeel, 2014; Watter et al., 2015; Levine et al., 2016a; Kumar et al., 2016), where the model
either operates directly over the raw state, or over a feature representation of the state.
Such models are very data efficient, and allows for very efficient policy optimization
through techniques from optimal control. However, they only have limited expressive-
ness, and do not scale well to complicated nonlinear dynamics or high-dimensional state
spaces, unless a separate feature learning phase is used (Watter et al., 2015).

An alternative is to use nonparametric models such as Gaussian Processes (GPs) (Ras-
mussen, Kuss, et al., 2003; Ko et al., 2007; Deisenroth and Rasmussen, 2011). Such models
can effectively maintain uncertainty over the predictions, and have infinite representation
power as long as enough data is available. However, they suffer from the curse of dimen-
sionality, and so far their applications have been limited to relatively low-dimensional
settings. The computational expense of incorporating the uncertainty estimates from GPs
into the policy update also imposes an additional challenge.

Deep neural networks have shown great success in scaling up model-free reinforce-
ment learning algorithms to challenging scenarios (Mnih et al., 2015; Silver et al., 2016;
Schulman et al., 2015b; Schulman et al., 2016b). However, there has been only limited suc-
cess in applying them to model-based RL. Although many previous studies have shown
promising results on relatively simple domains (Nguyen and Widrow, 1990; Schmidhu-
ber and Huber, 1991; Jordan and Rumelhart, 1992; Gal et al., 2016), so far their applica-
tions on more challenging domains have either required a combination with model-free
techniques (Oh et al., 2015; Heess et al., 2015; Nagabandi et al., 2017), or domain-specific
policy learning or planning algorithms (Lenz et al., 2015; Agrawal et al., 2016; Levine
et al., 2016b; Finn and Levine, 2017a; Ashvin Nair et al., 2017).
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2.2.2 Vanilla Model-Based Method

In the following, we describe the vanilla model-based reinforcement learning algorithm
(see Algorithm 1). The vanilla algorithm iterates through the steps until convergence:
data collection, model learning, and policy improvement.

2.2.2.1 Data Collection

The first step of any reinforcement learning method is to collect data. The data collection
can be in principle done by an exploratory policy; however, in practice, the latest trained
policy of the algorithm is used. Using the latest policy allows to gather data in regions
of the environment where the model is being over-optimistic, correcting its predictions
in the subsequent model learning step. The data collected by the policy πθ is stored in
the data buffer D.

2.2.2.2 Model learning

Once we have stored the transitions experienced by the agent in the buffer D, we use
those to learn a predictive model of the environment. In this vanilla approach, as well as
in the rest of this manuscript, the learned model p̂φ corresponds to a feed-forward neural
network parametrized by the weightsφ. As is standard, the neural network parametrizes
the change in state, i.e., st+1 − st, instead of the next state given the current state and
action. This relieves the neural network from learning small deltas of the identity func-

Algorithm 1 Vanilla Model-Based Deep Reinforcement Learning

1: Initialize a policy πθ and a model p̂φ.
2: Initialize an empty dataset D.
3: repeat
4: Collect samples from the real environment p using πθ and add them to D.
5: Train the model p̂φ using D.
6: repeat
7: Collect fictitious samples from p̂φ using πθ.
8: Update the policy using BPTT on the fictitious samples.
9: Estimate the performance J(θ).

10: until the performance stop improving.
11: until the policy performs well in real environment f.
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tion, especially when the change is small (Deisenroth and Rasmussen, 2011; Fu et al.,
2016; Nagabandi et al., 2017). For notational convenience however, we will denote p̂φ
the density function of the next state, given the current state and action.

In the model learning step, we train the model by maximizing the likelihood of the
collected data:

max
φ

E(s ′,a,s)∼D
[
log p̂φ(s ′|s,a)

]
(1)

Hence, the model is learned with standard supervised learning. While some works
use multi-step losses, standard methods (and hence the vanilla method) learn one-step
prediction models1. The model used in most of the cases follows a Gaussian distribution
with an fixed diagonal covariance, hence resulting in the minimization of the standard
mean squared error. Standard techniques to prevent overfitting and facilitate learning
are used: early stopping with a validation dataset, and normalizing inputs and outputs.

2.2.2.3 Policy Improvement

The last step of the vanilla algorithm is to use the learned model to train a policy. The
beauty of model-based methods is that now we can consider the MDP M̂ formed by
(S,A, p̂φ, r,γ,p0,H) and use all the machinery of model-free RL, control, or planning.
Furthermore, given that the learned model is differiantable one can assume gradients of
the dynamics. Hence, in the policy improvement step we maximze the objective specified
in Equation 2.1 with the MDP M̂:

max
θ
J(θ) = max

θ
Es0∼p0
st+1∼p̂φ
at∼πθ

[
H∑
t=0

γtr(st,at, st+1)

]

The gradient of Equation 2.2.2.3 can be estimated by Monte-Carlo methods

∇θJ(θ) = Es0∼p0
st+1∼p̂φ
at∼πθ

[
∇θ

H∑
t=0

γtr(st,at, st+1)

]

The gradient of each sample is computed by propagating the gradient of the last step to
the initial step, named backpropation through time (BPTT).

1 We found that multi-step prediction loss did not significantly improve the policy learning results.
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2.3 meta-learning

The algorithms proposed in Chapters 5, 6, and 9 are build on top of meta-learning
algorithms. Here, we provide an overview of the meta-learning problem. For a more
thorough overview and methods, we refer to the reader to Schmidhuber, 1987; Finn,
2018; Duan, 2017.

Meta-learning is concerned with automatically learning, learning algorithms that are
more efficient and effective than learning from scratch. These algorithms leverage data
from previous tasks to acquire a learning procedure that can quickly adapt to new tasks.
These methods operate under the assumption that the previous meta-training tasks and
the new meta-test tasks are drawn from the same task distribution ρ(M) and share a
common structure that can be exploited for fast learning. In the supervised learning
setting, we aim to learn a function fφ with parametersφ′ that minimizes a loss LM. Then,
the goal of meta-learning is to find a learning procedure, denoted as φ′ = uψ(Dtrain

M ,φ),
that can learn a range of tasks M from small datasets Dtrain

M .
We can formalize this meta-learning problem setting as optimizing for the parameters

of the function and learning procedure, φ′andψ respectively:

min
φ,ψ

EM∼ρ(M)

[
L(Dtest

M ,φ′)
]

s.t. φ′ = uψ(Dtrain
M ,φ) (2)

where Dtrain
M ,Dtest

M are sampled without replacement from the meta-training dataset DM.
Once meta-training optimizes for the parametersφ ′∗,ψ∗, the learning procedure uψ∗(·,φ∗)

can then be used to learn new held-out tasks from small amounts of data. We will also
refer to the learning procedure u as the update function.

Gradient-based meta-learning. Gradient-based methods (Finn et al., 2017) aims to
learn the initial parameters of a neural network such that taking one or several gradi-
ent descent steps from this initialization leads to effective generalization (or few-shot
generalization) to new tasks. Then, when presented with new tasks, the model with the
meta-learned initialization can be quickly fine-tuned using a few data points from the
new tasks. Using the notation from before:

uψ(D
train
M ,φ) = φ−α∇φL(Dtrain

M ,φ′) (3)

The learning rate α may be a learnable parameter (in which case ψ = α) or fixed as
a hyperparameter, leading to ψ = ∅. Despite the update rule being fixed, a learned
initialization of an overparameterized deep network followed by gradient descent is as
expressive as update rules represented by deep recurrent networks (Finn and Levine,
2017b).

10



Recurrence-based meta-learning. Another approach to meta-learning is to use recur-
rent models. In this case, the update function is always learned, and ψ corresponds to
the weights of the recurrent model that update the hidden state. The parameters φ of
the prediction model correspond to the remainder of the weights of the recurrent model
and the hidden state. Both gradient-based and recurrence-based meta-learning methods
have been used for meta model-free RL (Finn et al., 2017; Duan et al., 2016b).

2.3.1 Meta-Learning for Reinforcement Learning

One can extend the concept of meta-learning to RL (J. Wang et al., 2016; Z. Xu et al.,
2018; Finn et al., 2017; Duan et al., 2016b), as we do in Chapters 5 and 6. In that case, the
different tasks M correspond to different MDPs and one optimizes the objective defined
in Equation 2.1 for each of the tasks. Then, meta-RL aims to learn a learning procedure
which is able to quickly learn optimal policies in a set of MDPs {Mk} drawn from a
distribution ρ(M). The MDPs Mk may differ in their reward function rk(s,a) and/or
transition distribution pk(st+1|st,at), but share action space A and state space S.

In the context of meta-reinforcement learning, we focus on gradient-based meta-learning
algorithms (Finn et al., 2017). They train a parametric policy πθ to quickly improve its
performance on a new task with one or a few vanilla policy gradient steps Peters and
Schaal, 2006. The meta-training objective for gradient-based meta-learning can be written
as:

max
θ

EMk∼ρ(M)
st+1∼pk
at∼πθ′

[H−1∑
t=0

rk(st,at)
]

s.t.: θ′ = θ+α ∇θEst+1∼pk
at∼πθ

[H−1∑
t=0

rk(st,at)
]

(4)
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3
M O D E L - B I A S

Model-based reinforcement learning offers the possibility to efficiently learn new tasks
in an autonomous way. When compared with model-free methods, this efficiency is ob-
tained by making a better use of the available data and exploiting the structure of the
problem. Since the reinforcement learning problem is set within the Markov decision pro-
cess framework, we know of the existence of a dynamics function that just depends on
the current state an action. Therefore, model-based RL aims to learn that dynamics func-
tion using the transitions that the agent experience. The learn model is then substituted
with the real dynamics, and a policy is learned on to of them. In contrast, model-free
RL ignores the dynamics of it and shortcuts the learning process by directly learning
the mapping from states to actions, a more costly learning process. However, because
of the extra approximation that model-based RL does, the asymptotic performance of
it is typically well bellow its model-free counter part, limiting its applicability to sim-
pler domains. The reason for this gap in performance is due to the commonly known
model-bias problem (Deisenroth and Rasmussen, 2011; Schneider, 1997; Atkeson and San-
tamaria, 1997; Schaal, 1997). Model-bias has been an umbrella term that encompasses
all the reasons of why model-based reinforcement learning suffers from poor perfor-
mance when compared with model-free methods. In the following, we decompose the
model-bias problem into three main issues: estimation errors, compounding errors, and
over-optimism.

3.1 estimation errors

Estimation errors occur during the model learning step, and are present in any super-
vised learning method. Estimation errors can also be decomposed into structural errors,
and approximation errors. Structural errors arise from the fact that our function class
has limited capacity; hence, failing to capture the complexity of the real environment.
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Essentially, they measure the estimation error our model would have if infinite data
was available. They can be mitigated by using higher capacity models, such as neural
networks (Nguyen and Widrow, 1990; Schmidhuber and Huber, 1991). Instead, approx-
imation errors measure how close can our model class can get to the capture the real
environment given the limited availability of data.

As we explained in the previous section, model-based RL first learn a model of the
environment. Then it uses this model to improve the policy that will be executed in the
real-environment.

max
θ
J(θ) = max

θ
Es0∼p0
st+1∼p̂φ
at∼πθ

[
H∑
t=0

γtr(st,at, st+1)

]

Notice that in the expectation, samples are drawn from the learned model. Model-
based RL uses this proxy objective to optimize the RL objective (Equation 2.1):

max
θ
J(θ) = max

θ
Es0∼p0
st+1∼p
at∼πθ

[
H∑
t=0

γtr(st,at, st+1)

]

As a result, large model errors, i.e., large DKL(p||p̂φ), will result in a policy learned on
top of wrong dynamics that will not transfer to the real-environment.

3.2 compounding errors

Estimation errors are exacerbated by their usage in model-based RL. Learned dynamics
are used to plan ahead into the future or to simulate trajectories (Sutton, 1991a; Naga-
bandi et al., 2017; Kurutach et al., 2018). The predictions of the model are bootstrapped
to predict further into the future states with a horizon of ranging from hundreds to thou-
sands of steps. During these multiple step predictions, errors are compounded resulting
in state predictions on regions that the model has not been trained on. Then, the predic-
tions of the model are completely arbitrary and they are claimed with full confidence,
see the conceptual sketch in Figure 1.

While learning more accurate models might relieve the compounding error issue, it is
still present when we use them for long horizons. Previous approaches have tackled this
problem by learning probabilistic models (Deisenroth and Rasmussen, 2011) or multi-
step prediction models (Asadi et al., 2019).
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Figure 1: Conceptual example. The model trained on collected trajectories (grey lines) is used
to predict a trajectory (red line). While the initial predictions present small error, the
compounding effect of these errors leads the predictions to regions where the model
has not been trained on, completely diverging from the real trajectory (blue line).

3.3 over-optimism

While the two previous issues are also present in supervised learning, the over-optimism
problem is just particular to model-based RL. Over-optimism refers to the common prob-
lem when a policy optimized in a learned model finds “shortcuts" not realizable, or sub-
optimal in the real environment, due to the lack of training data. For instance, consider
the conceptual example in Figure 2, where the agent’s goal is to reach the star. In the first
step of data collection, we gather trajectories that do not cover the entire state-space. As a
result, the learned function is able to model the regions around the gathered trajectories,
but it is not able to predict the environment correctly in the other regions. When we op-
timize for the optimal policy in the learned environment, it finds the shortest trajectory
in the learned model. However, the shortest trajectory in the model is not feasible in the
real maze.
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Figure 2: Conceptual example. The learned model (grey maze) captures the regions where data
has been collected (dashed lines), but cannot capture how the environment is in regions
where no data has been collected. When the policy is trained on top of the learned
model it will exploit inaccuracies in it to achieve the optimal policy (solid line) in the
learned environment. This results in a policy that can fail in the real environment.

Optimizing reinforcement learning agents on top of learned models is a hard task
because the policy chooses its own distribution. The agent then can very easily exploit
the errors of the model to its favour, and traditional regularization techniques do not
work (Kukacka et al., 2017). Because of these three problems, model-based reinforcement
learning has been limited to simple domains and little success has been accomplished.
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4
M O D E L - E N S E M B L E T R U S T- R E G I O N P O L I C Y O P T I M I Z AT I O N

In this first work, we aim to tackle the over-optimism problem in model-bias. As men-
tioned in the previous chapter, over-optimism is the result of the agent being able to
choose their own distribution on the learned model, which allows it to exploit the inac-
curacies of the model to achieve higher rewards. Because this shortcuts that the agent
finds in the learned model do not exist in the real environment, the agent fails to achieve
the task. In here, instead of training the policy in our best model, we learned the policy
in an ensemble of them. We learn multiple models, each slightly different, and aim to
learn a policy that is optimal in all of them. Since each model is different, it will present
different predictions in regions where it has not been trained on; and since we are train-
ing a policy that is optimal in all of them, it cannot exploit the shortcuts of each model
that do not exist in the real environment.

4.1 overview

The standard approach for model-based reinforcement learning alternates between model
learning and policy optimization. In the model learning stage, samples are collected
from interaction with the environment, and supervised learning is used to fit a dynam-
ics model to the observations. In the policy optimization stage, the learned model is used
to search for an improved policy. The underlying assumption in this approach, hence-
forth termed vanilla model-based RL, is that with enough data, the learned model will
be accurate enough, such that a policy optimized on it will also perform well in the real
environment.

Although vanilla model-based RL can work well on low-dimensional tasks with rel-
atively simple dynamics, we find that on more challenging continuous control tasks,
performance was highly unstable. The reason is that the policy optimization tends to
exploit regions where insufficient data is available to train the model, leading to catas-
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trophic failures. Previous work has pointed out this issue as model bias, i.e. (Deisenroth
and Rasmussen, 2011; Schneider, 1997; Atkeson and Santamaria, 1997). While this issue
can be regarded as a form of overfitting, we emphasize that standard countermeasures
from the supervised learning literature, such as regularization or cross validation, are
not sufficient here – supervised learning can guarantee generalization to states from the
same distribution as the data, but the policy optimization stage steers the optimization
exactly towards areas where data is scarce and the model is inaccurate. This problem
is severely aggravated when expressive models such as deep neural networks are em-
ployed.

To resolve this issue, we propose to use an ensemble of deep neural networks to main-
tain model uncertainty given the data collected from the environment. During model
learning, we differentiate the neural networks by varying their weight initialization and
training input sequences. Then, during policy learning, we regularize the policy updates
by combining the gradients from the imagined stochastic roll-outs. Each imagined step
is uniformly sampled from the ensemble predictions. Using this technique, the policy
learns to become robust against various possible scenarios it may encounter in the real
environment. To avoid overfitting to this regularized objective, we use the model ensem-
ble for early stopping policy training.

Standard model-based techniques require differentiating through the model over many
time steps, a procedure known as backpropagation through time (BPTT). It is well-
known in the literature that BPTT can lead to exploding and vanishing gradients (Bengio
et al., 1994). Even when gradient clipping is applied, BPTT can still get stuck in bad local
optima. We propose to use likelihood ratio methods instead of BPTT to estimate the gra-
dient, which only make use of the model as a simulator rather than for direct gradient
computation. In particular, we use Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015b), which imposes a trust region constraint on the policy to further stabilize
learning.

In this work, we propose model-ensemble trust-region policy optimization (ME-TRPO),
a model-based algorithm that achieves the same level of performance as state-of-the-art
model-free algorithms with 100× reduction in sample complexity. We show that the
model ensemble technique is an effective approach to overcome the challenge of model
bias in model-based reinforcement learning. We demonstrate that replacing BPTT by
TRPO yields significantly more stable learning and much better final performance. Fi-
nally, we provide an empirical analysis of vanilla model-based RL using neural networks
as function approximators, and identify its flaws when applied to challenging continu-
ous control tasks.
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4.2 method

The vanilla model-based approach tends to suffer from model-bias (Chapter 3). This
issue can be partly alleviated by early stopping on validation initial states. However, we
found this insufficient, since the performance is still evaluated using the same learned
model, which tends to make consistent mistakes. Furthermore, another complication
that arises when learning a policy with the vanilla approach is the instability from the
exploding and vanishing gradients. Since the gradients are backpropagated throughout
the entire trajectory their compouning results in extremely large or small values. While
gradient clipping can resolve exploding gradients, the backpropagation through time
(BPTT) still suffers from vanishing gradients, which cause the policy to get stuck in bad
local optima (Bengio et al., 1994; Pascanu et al., 2013). This problem is exacerbated in
when learning over long horizons.

In this section we present model ensemble trust region policy optimization (ME-
TRPO), pseudo-code is shown in Algorithm 2. ME-TRPO tackles the aforementioned
difficulties by characterizing the epistemic uncertainty with an ensemble of models and
by early stopping of the policy. Both techniques prevent the policy from presenting
model-bias. Finally, we use the models as proxies of the real-world; hence, drawing
samples from them instead of backpropagating through them, preventing the common
issue of exploding and vanishing gradients. Specifically, we use the trust-region policy
optimization (TRPO) algorithm to learn the policy over the ensemble of models. These
modifications are described in detail below.

Model learning. we fit a set of dynamics models {p̂φ1 , . . . , p̂φK} (termed a model ensem-
ble) using the same real world data. These models are trained via standard supervised
learning as described in Section 2.2.2.2, and they only differ by the initial weights and
the order in which mini-batches are sampled.

Policy optimization. To overcome the issues with BPTT, we use likelihood-ratio meth-
ods from the model-free RL literature. We evaluated using Vanilla Policy Gradient (VPG) (Pe-
ters and Schaal, 2006), Proximal Policy Optimization (PPO) (Schulman et al., 2017), and
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015b). The best results were
achieved by TRPO. In order to estimate the gradient, we use the learned models to sim-
ulate trajectories as follows: in every step, we randomly choose a model to predict the
next state given the current state and action. This avoids the policy from overfitting to
any single model during an episode, leading to more stable learning.

Policy validation. We monitor the policy’s performance using the K learned models.
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Algorithm 2 Model Ensemble Trust Region Policy Optimization (ME-TRPO)

1: Initialize a policy πθ and all models p̂φ1 , p̂φ1 , ..., p̂φK .
2: Initialize an empty dataset D.
3: repeat
4: Collect samples from the real system f using πθ and add them to D.
5: Train all models using D.
6: repeat
7: Optimize πθ using all models.
8: Collect fictitious samples from {p̂φi}

K
i=1 using πθ.

9: Update the policy using TRPO on the fictitious samples.
10: Estimate the performances Ji(θ) for i = 1, ...,K.
11: until the performances stop improving.
12: until the policy performs well in real environment f.

Specifically, we compute the ratio of models in which the policy improves:

1

K

K∑
k=1

1[Jk(θnew) > Jk(θold)]. (5)

The current iteration continues as long as this ratio exceeds a certain threshold. In
practice, we validate the policy after every 5 gradient updates and we use 70% as the
threshold. If the ratio falls below the threshold, a small number of updates is tolerated
in case the performance improves, and otherwise the current iteration is terminated.
Then, we repeat the overall process of using the policy to collect more real-world data,
optimizing the model ensemble, and using the model ensemble to improve the policy.
This process continues until the desired performance is reached in the real environment.

The model ensemble serves as effective regularization for policy learning: by using the
model ensemble for policy optimization and validation, the policy is forced to perform
well over a vast number of possible alternative futures. Even though any of the individual
models can still incur model bias, our experiments below suggests that combining these
models yields stable and effective policy improvement.

4.3 experiments

The algorithm described in the previous section aims to tackle the model-bias problem
of classical model-based methods. Here, we aim to evaluate if our method successfully
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Figure 3: Mujoco environments used in our experiments. Form left to right: Swimmer, Half Chee-
tah, Snake, Ant, Hopper, and Humanoid.

overcomes the common pitfalls of model-based methods. Specifically, we design the ex-
periments to know (1) what are the failure cases of the vanilla methods? (2) how does
ME-TRPO overcome these failers?

Finally, we compare our approach to state-of-the-art model-free methods. The algo-
rithms are evaluated on six standard continuous control benchmark tasks (Duan et al.,
2016a; Dhariwal et al., 2017) in Mujoco (Todorov et al., 2012): Swimmer, Snake, Hopper,
Ant, Half Cheetah, and Humanoid, shown in Figure 3. The details of the tasks can be
found in Appendix A.2. In the Appendix A.4 an ablation study to characterize the effect
of each component of our algorithm.

4.3.1 From Vanilla to ME-TRPO

In this section we explain and quantify the failure cases of vanilla model-based reinforce-
ment learning, and how our approach overcomes such failures. We analyze the effect of
each of our proposed modifications by studying the learning behavior of replacing BPTT
with TRPO in vanilla model-based RL using just a single model, and then the effect of
using an ensemble of models.

As discussed above, BPTT suffers from exploding and vanishing gradients, especially
when optimizing over long horizons. Furthermore, one of the principal drawbacks of
BPTT is the assumption that the model derivatives should match that of the real dynam-
ics, even though the model has not been explicitly trained to provide accurate gradient
information. In Figure 4 we demonstrate the effect of using policy gradient methods
that make use of a score function estimator, such as VPG and TRPO, while using a
single learned model. The results suggest that in comparison with BPTT, policy gradi-
ent methods are more stable and lead to much better final performance. By using such
model-free algorithms, we require less information from the learned model, which only
acts as a simulator. Gradient information through the dynamics model is not needed
anymore to optimize the policy.
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Figure 4: Comparison among different policy optimization techniques with one model. Using
TRPO for model-based optimization leads to the best policy learning across the different
domains (Best viewed in color).

However, while replacing BPTT by TRPO helps optimization, the learned policy can
still suffer from model bias. The learning procedure tends to steer the policy towards
regions where it has rarely visited, so that the model makes erroneous predictions to its
advantage. The estimated performances of the policy often end up with high rewards
according to the learned model, and low rewards according to the real one (see Ap-
pendix A.3 for further discussion). In Figure 5, we analyze the effect of using various
numbers of ensemble models for sampling trajectories and validating the policy’s per-
formance. The results indicate that as more models are used in the model ensemble, the
learning is better regularized and the performance continually improves. The improve-
ment is even more noticeable in more challenging environments like HalfCheetah and
Ant, which require more complex dynamics models to be learned, leaving more room
for the policy to exploit when model ensemble is not used.

4.3.2 Comparison to State-of-the-Art

We compare our method with the following state-of-the-art reinforcement learning algo-
rithms in terms of sample complexity and performance: trust region policy optimization
(TRPO) (Schulman et al., 2015b), proximal policy optimization (PPO) (Schulman et al.,
2017), deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015), and stochastic
value gradient (SVG) (Heess et al., 2015).

The results are shown in Figure 6. Prior model-based methods appears to achieve
worse performance compared with model-free methods. In addition, we find that model-
based methods tend to be difficult to train over long horizons. In particular, SVG(1), not
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Figure 5: Comparison among different number of models that the policy is trained on. TRPO is
used for the policy optimization. We illustrate the improvement when using 5, 10 and
20 models over a single model (Best viewed in color).

presented in the plots, is very unstable in our experiments. While SVG(∞) is more stable,
it does not scale up to more complex tasks. In contrast, our proposed method reaches
the same level of performance as model-free approaches with ≈ 100× less data. To the
best of our knowledge, it is the first purely model-based approach that can optimize poli-
cies over high-dimensional locomotion tasks such as Humanoid. For experiment details
please refer to Appendix A.
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Figure 6: Learning curves of our method versus state-of-the-art methods. The horizontal axis, in
log-scale, indicates the number of time steps of real world data. The vertical axis de-
notes the average return. These figures clearly demonstrate that our proposed method
significantly outperforms other methods in comparison (best viewed in color).

4.4 discussion

In this work, we present a simple and robust model-based reinforcement learning al-
gorithm that is able to learn neural network policies across different challenging do-
mains. We show that our approach significantly reduces the sample complexity com-
pared to state-of-the-art methods while reaching the same level of performance. In com-
parison, our analyses suggests that vanilla model-based RL tends to suffer from the
over-optimism in model bias and numerical instability, and fails to learn a good policy.
We further evaluate the effect of each key component of our algorithm, showing that
both using TRPO and model ensemble are essential for successful applications of deep
model-based RL.
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5
M O D E L - B A S E D R E I N F O R C E M E N T L E A R N I N G V I A M E TA - P O L I C Y
O P T I M I Z AT I O N

In the previous section we presented model-ensemble trust-region policy optimization
(ME-TRPO). The aforementioned method is able to surpass previous model-based rein-
forcement methods by (1) characterizing the uncertainty by the means of an ensemble of
models, and (2) sampling from the model instead of backpropagating through it. In the
following work we challenge underlying assumption of (1). ME-TRPO uses the model to
prevent the policy from overfitting to the learned dynamics, while it accomplishes this
task it prevents the policy from achieving optimal performance. First, the learned model
will not mimic perfectly the world dynamics; hence, some performance gap is bound to
exists. Second, this same fact is exacerbated by the posed optimization problem. We are
aiming to learn the optimal policy across different dynamics models. The result of it is
a policy that presents a gap in perfomance when compared against model-free methods;
gap which widens as environments become more complex.

In the following work, we acknowledge that learning accurate representations of the
dynamics is a nearly impossible task. Nevertheless, we are still interested in learning
optimal policies with minimal data requirements. We propose to add another layer
of abstraction in the learning process and relying on the generalization of such layer.
In model-based meta-policy optimization we consider the model-based reinforcement
learning process from the point of view of meta-learning (Finn et al., 2017; Duan et al.,
2016b), akin to dynamics randomization (Peng et al., 2017). In essence, we meta-learn a
policy that is able to adapt to different dynamics. This policy is trained entirely on an
ensemble of dynamics models, being each model a different dynamics randomization of
the real-world dynamics.
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5.1 overview

Most of the recent success in reinforcement learning was achieved using model-free rein-
forcement learning algorithms (Schulman et al., 2015b; Lillicrap et al., 2015; Silver et al.,
2016). Model-free (MF) algorithms tend to achieve optimal performance, are generally
applicable, and are easy to implement. However, this is achieved at the cost of being data
intensive, which is exacerbated when combined with high-capacity function approxima-
tors like neural networks. Their high sample complexity presents a major barrier to their
application to robotic control tasks, on which data gathering is expensive.

In contrast, model-based (MB) reinforcement learning methods are able to learn with
significantly fewer samples by using a learned model of the environment dynamics
against which policy optimization is performed. Learning dynamics models can be done
in a sample efficient way since they are trained with standard supervised learning tech-
niques, allowing the use of off-policy data. However, accurate dynamics models can
often be far more complex than good policies. For instance, pouring water into a cup
can be achieved by a fairly simple policy while modeling the underlying dynamics of
this task is highly complex. Hence, model-based methods have only been able to learn
good policies on a much more limited set of problems, and even when good policies
are learned, they typically saturate in performance at a level well below their model-free
counterparts (Deisenroth et al., 2013; Pong et al., 2018).

Model-based approaches tend to rely on accurate (learned) dynamics models to solve
a task. If the dynamics model is not sufficiently precise, the policy optimization is prone
to overfit on the deficiencies of the model, leading to suboptimal behavior or even to
catastrophic failures. This problem is known in the literature as model-bias (Deisenroth
and Rasmussen, 2011). Previous work has tried to alleviate model-bias by characterizing
the uncertainty of the models and learning a robust policy (Deisenroth and Rasmussen,
2011; Rajeswaran et al., 2016; Zhou et al., 1996; Lim et al., 2013; Kurutach et al., 2018),
often using ensembles to represent the posterior. This paper also uses ensembles, but
very differently.

We propose model-based meta-policy-optimization (MB-MPO), an orthogonal approach
to previous model-based RL methods: while traditional model-based RL methods rely
on the learned dynamics models to be sufficiently accurate to enable learning a policy
that also succeeds in the real world, we forego reliance on such accuracy. We are able to
do so by learning an ensemble of dynamics models and framing the policy optimization
step as a meta-learning problem. Meta-learning, in the context of RL, aims to learn a
policy that adapts fast to new tasks or environments (Finn et al., 2017; Duan et al., 2016b;
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J. Wang et al., 2016; Mishra et al., 2018; Sung et al., 2017). Using the models as learned
simulators, MB-MPO learns a policy that can be quickly adapted to any of the fitted dy-
namics models with one gradient step. This optimization objective steers the meta-policy
towards internalizing the parts of the dynamics prediction that are consistent among the
ensemble while shifting the burden of behaving optimally w.r.t discrepancies between
models towards the adaptation step. This way, the learned policy exhibits less model-
bias without the need to behave conservatively. While much is shared with previous MB
methods in terms of how trajectory samples are collected and the dynamic models are
trained, the use of (and reliance on) learned dynamics models for the policy optimization
is fundamentally different.

In this paper we show that 1) model-based policy optimization can learn policies
that match the asymptotic performance of model-free methods while being substan-
tially more sample efficient, 2) MB-MPO consistently outperforms previous model-based
methods on challenging control tasks, 3) learning is still possible when the models are
strongly biased. The low sample complexity of our method makes it applicable to real-
world robotics. For instance, we are able learn an optimal policy in high-dimensional
and complex quadrupedal locomotion within seven hours of real-world data. Note that
the amount of data required to learn such policy using model-free methods is 10× -
100× higher, and, to the best knowledge of the authors, no prior model-based method
has been able to attain the model-free performance in such tasks.

5.2 method

Enabling complex and high-dimensional real robotics tasks requires extending current
model-based methods to the capabilities of mode-free while, at the same time, main-
taining their data efficiency. Our approach, model-based meta-policy-optimization (MB-
MPO), attains such goal by framing model-based RL as meta-learning a policy on a
distribution of dynamic models, advocating to maximize the policy adaptation, instead
of robustness, when models disagree. This not only removes the arduous task of opti-
mizing for a single policy that performs well across differing dynamic models, but also
results in better exploration properties and higher diversity of the collected samples,
which leads to improved dynamic estimates.

We instantiate this general framework by employing an ensemble of learned dynamic
models and meta-learning a policy that can be quickly adapted to any of the dynamic
models with one policy gradient step. In the following, we first describe how the models
are learned, then explain how the policy can be meta-trained on an ensemble of models,
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and, finally, we present our overall algorithm.

5.2.1 Model Learning

A key component of our method is learning a distribution of dynamics models, in the
form of an ensemble, of the real environment dynamics. In order to decorrelate the
models, each model differs in its random initialization and it is trained with a different
randomly selected subset Dk of the collected real environment samples. In order to
address the distributional shift that occurs as the policy changes throughout the meta-
optimization, we frequently collect samples under the current policy, aggregate them
with the previous data D, and retrain the dynamic models with warm starts.

In our experiments, we consider the dynamics models to be a deterministic function
of the current state st and action at, employing a feed-forward neural network to ap-
proximate them. We follow the standard practice in model-based RL of training the
neural network to predict the change in state ∆s = st+1 − st (rather than the next state
st+1) (Nagabandi et al., 2017; Deisenroth and Rasmussen, 2011). We denote by p̂φ the
function approximator for the next state, which is the sum of the input state and the
output of the neural network. The objective for learning each model p̂φk of the ensemble
is to find the parameter vector φk that minimizes the `2 one-step prediction loss:

min
φk

1

|Dk|

∑
(st,at,st+1)∈Dk

‖st+1 − p̂φk(st,at)‖
2
2 (6)

where Dk is a sampled subset of the training data-set D that stores the transitions which
the agent has experienced. Standard techniques to avoid overfitting and facilitate fast
learning are followed; specifically, 1) early stopping the training based on the valida-
tion loss, 2) normalizing the inputs and outputs of the neural network, and 3) weight
normalization (Salimans and Kingma, 2016).

5.2.2 Meta-Reinforcement Learning on Learned Models

Given an ensemble of learned dynamic models for a particular environment, our core
idea is to learn a policy which can adapt quickly to any of these models. To learn this
policy, we use gradient based meta-learning with MAML (described in Section 2.3.1).
To properly formulate this problem in the context of meta-learning, we first need to de-
fine an appropriate task distribution. Considering the models {p̂φ1 , p̂φ2 , ..., p̂φK}, which
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approximate the dynamics of the true environment, we can construct a uniform task dis-
tribution by embedding them into different MDPs Mk = (S,A, p̂φk , r,γ,p0) using these
learned dynamics models. We note that, unlike the experimental considerations of prior
methods Duan et al., 2016b; Finn et al., 2017; Mishra et al., 2018, in our work the reward
function remains the same across tasks while the dynamics vary. Therefore, each task
constitutes a different belief about what the dynamics in the true environment could be.
Finally, we pose our objective as the following meta-optimization problem:

max
θ

1

K

K∑
k=0

Jk(θ
′
k) s.t.: θ′k = θ+α ∇θJk(θ) (7)

with Jk(θ) being the expected return under the policy πθ and the estimated dynamics
model p̂φk .

Jk(θ) = Eat∼πθ(at|st)

[H−1∑
t=0

r(st,at)
∣∣∣∣st+1 = p̂φk(st,at)] (8)

For estimating the expectation in Eq. 8 and computing the corresponding gradients, we
sample trajectories from the imagined MDPs. The rewards are computed by evaluating
the reward function, which we assume as given, in the predicted states and actions
r(p̂φk(st−1,at−1),at). In particular, when estimating the adaptation objectives Jk(θ), the
meta-policy πθ is used to sample a set of imaginary trajectories Tk for each model p̂φk .
For the meta-objective 1

K

∑K
k=0 Jk(θ

′
k), we generate trajectory roll-outs T ′k with the models

p̂φk and the policies πθ′k obtained from adapting the parameters θ to the k-th model.
Thus, no real-world data is used for the data intensive step of meta-policy optimization.

In practice, any policy gradient algorithm can be chosen to perform the meta-update of
the policy parameters. In our implementation, we use Trust-Region Policy Optimization
(TPRO) (Schulman et al., 2015b) for maximizing the meta-objective, and employ vanilla
policy gradient (VPG) Peters and Schaal, 2006 for the adaptation step. To reduce the
variance of the policy gradient estimates a linear reward baseline is used.

5.2.3 Algorithm

In the following, we describe the overall algorithm of our approach (see Algorithm 3).
First, we initialize the models and the policy with different random weights. Then, we
proceed to the data collection step. In the first iteration, a uniform random controller
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Algorithm 3 MB-MPO

Require: Inner and outer step size α, β
1: Initialize the policy πθ, the models p̂φ1 , p̂φ2 , ..., p̂φK and D← ∅
2: repeat
3: Sample trajectories from the real environment with the adapted policies

π
θ
′
1
, ...,π

θ
′
K

. Add them to D.
4: Train all models using D.
5: for all models p̂φk do
6: Sample imaginary trajectories Tk from p̂φk using πθ
7: Compute adapted parameters θ′k = θ+α ∇θJk(θ) using trajectories Tk
8: Sample imaginary trajectories T ′k from p̂φk using the adapted policy πθ′k
9: end for

10: Update θ→ θ−β 1
K

∑
k∇θJk(θ′k) using the trajectories T ′k

11: until the policy performs well in the real environment
12: return Optimal pre-update parameters θ∗

is used to collect data from the real-world, which is stored in a buffer D. At subse-
quent iterations, trajectories from the real-world are collected with the adapted policies
{πθ′1

, ...,πθ′K}, and then aggregated with the trajectories from previous iterations. The
models are trained with the aggregated real-environment samples following the proce-
dure explained in section 5.2.1. The algorithm proceeds by imagining trajectories from
each the ensemble of models {p̂φ1 , ..., p̂φk} using the policy πθ. These trajectories are are
used to perform the inner adaptation policy gradient step, yielding the adapted policies
{πθ′1

, ...,πθ′K}. Finally, we generate imaginary trajectories using the adapted policies πθ′k
and models p̂φk , and optimize the policy towards the meta-objective (as explained in
section 5.2.2). We iterate through these steps until desired performance is reached. The
algorithm returns the optimal pre-update parameters θ∗.

5.3 benefits of the algorithm

Meta-learning a policy over an ensemble of dynamic models using imaginary trajectory
roll-outs provides several benefits over traditional model-based and model-based model-
free approaches. In the following we discuss several such advantages, aiming to provide
intuition for the algorithm.

Regularization effect during training. Optimizing the policy to adapt within one
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policy gradient step to any of the fitted models imposes a regularizing effect on the policy
learning (as Nichol et al., 2018 observed in the supervised learning case). The meta-
optimization problem steers the policy towards higher plasticity in regions with high
dynamics model uncertainty, shifting the burden of adapting to model discrepancies
towards the inner policy gradient update.

We consider plasticity as the policy’s ability to change its (conditional) distribution
with a small change (i.e. gradient update) in the parameter space. The policy plasticity
is manifested in the statistical distance between the pre- and post-update policy. In sec-
tion 5.5.4 we analyze the connection between model uncertainty and the policy plasticity,
finding a strong positive correlation between the model ensembles predictive variance
and the KL-divergence between πθ and πθ′k

. This effect prevents the policy to learn
sub-optimal behaviors that arise in robust policy optimization. More importantly, this
regularization effect fades away once the dynamics models get more accurate, which
leads to asymptotic optimal policies if enough data is provided to the learned models.
In section 5.5.3, we show how this property allows us to learn from noisy and highly
biased models.

Tailored data collection for fast model improvement. Since we sample real-environment
trajectories using the different policies {πθ′1 , ...,πθ′K} obtained by adaptation to each model,
the collected training data is more diverse which promotes robustness of the dynamic
models. Specifically, the adapted policies tend to exploit the characteristic deficiencies of
the respective dynamic models. As a result, we collect real-world data in regions where
the dynamic models insufficiently approximate the true dynamics. This effect accelerates
correcting the imprecision of the models leading to faster improvement. In Appendix B.1,
we experimentally show the positive effect of tailored data collection on the performance.

Fast fine-tuning. Meta-learning optimizes a policy for fast adaptation Finn et al., 2017

to a set of tasks. In our case, each task corresponds to a different believe of what the
real environment dynamics might be. When optimal performance is not achieved, the
ensemble of models will present high discrepancy in their predictions increasing the
likelihood of the real dynamics to lie in the believe distribution’s support. As a result,
the learned policy is likely to exhibit high adaptability towards the real environment,
and fine-tuning the policy with VPG on the real environment leads to faster convergence
than training the policy from scratch or from any other MB initialization.

Simplicity. Our approach, contrary to previous methods, is simple: it does not rely
on parameter noise exploration, careful reinitialization of the model weights or policy’s
entropy, hard to train probabilistic models, and it does not need to address the model
distribution mismatch (Chua et al., 2018; Kurutach et al., 2018; Feinberg et al., 2018a).
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5.4 related work

In this section, we discuss related work in addressing model inaccuracies in model-based
RL as well as recent advances in the field of meta-learning.

Model-Based Reinforcement Learning: Addressing Model Inaccuracies. Impressive
results with model-based RL have been obtained using simple linear models (Bagnell
and Schneider, 2001; Abbeel et al., 2006; Levine and Abbeel, 2014; Levine et al., 2016a).
However, like Bayesian models (Deisenroth and Rasmussen, 2011; Nguyen-Tuong et al.,
2009; Kamthe and Deisenroth, 2017), their application is limited to low-dimensional do-
mains. Our approach, which uses neural networks (NNs), is easily able to scale to com-
plex high dimensional control problems. NNs for model learning offer the potential to
scale to higher dimensional problems with impressive sample complexity (Nagabandi
et al., 2017; Chua et al., 2018; Punjani and Abbeel, 2015; Wahlström et al., 2015). A ma-
jor challenge when using high-capacity dynamics models is preventing policies from
exploiting model inaccuracies. Several works approach this problem of model-bias by
learning a distribution of models (Depeweg et al., 2017a; Rajeswaran et al., 2016; Ku-
rutach et al., 2018; Chua et al., 2018), or by learning adaptive models (Nagabandi et al.,
2018a; Fu et al., 2016; Gu et al., 2016b). We incorporate the idea of reducing model-bias by
learning an ensemble of models. However, we show that these techniques do not suffice
in challenging domains, and demonstrate the necessity of meta-learning for improving
asymptotic performance.

Past work has also tried to overcome model inaccuracies through the policy optimiza-
tion process. Model Predictive Control (MPC) compensates for model imperfections by
re-planning at each step (Lenz et al., 2015), but it suffers from limited credit assignment
and high computational cost. Robust policy optimization (Rajeswaran et al., 2016; Zhou
et al., 1996; Lim et al., 2013) looks for a policy that performs well across models; as a
result policies tend to be over-conservative. In contrast, we show that MB-MPO learns
a robust policy in the regions where the models agree, and an adaptive one where the
models yield substantially different predictions.

Meta-Learning. Our approach makes use of meta-learning to address model inaccu-
racies. Meta-learning algorithms aim to learn models that can adapt to new scenarios or
tasks with few data points. Current meta-learning algorithms can be classified in three
categories. One approach involves training a recurrent or memory-augmented network
that ingests a training dataset and outputs the parameters of a learner model (Schmid-
huber, 1987; Andrychowicz et al., 2016). Another set of methods feeds the dataset fol-
lowed by the test data into a recurrent model that outputs the predictions for the test
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inputs (Duan et al., 2016b; Santoro et al., 2016). The last category embeds the structure
of optimization problems into the meta-learning algorithm (Finn et al., 2017; Hüsken
and Goerick, 2000; Ravi and Larochelle, 2018). These algorithms have been extended to
the context of RL (Duan et al., 2016b; J. Wang et al., 2016; Sung et al., 2017; Finn et al.,
2017). Our work builds upon MAML Finn et al., 2017. However, while in previous meta-
learning methods each task is typically defined by a different reward function, each of
our tasks is defined by the dynamics of different learned models.

5.5 experiments

The aim of our experimental evaluation is to examine the following questions: 1) How
does MB-MPO compare against state-of-the-art model-free and model-based methods in
terms of sample complexity and asymptotic performance? 2) How does the model uncer-
tainty influence the policy’s plasticity? 3) How robust is our method against imperfect
models?

To answer the posed questions, we evaluate our approach on six continuous control
benchmark tasks in the Mujoco simulator Todorov et al., 2012. A depiction of the environ-
ments as well a detailed description of the experimental setup can be found in Appendix
B.3. In all of the following experiments, the pre-update policy is used to report the aver-
age returns obtained with our method. The performance reported are averages over at
least three random seeds. The source code and the experiments data is available on our
supplementary website 1.

5.5.1 Comparison to State-of-the-Art: Model-Free

We compare our method in sample complexity and performance to four state-of-the-
art model free RL algorithms: Deep Deterministic Policy Gradient (DDPG) (Lillicrap et
al., 2015), Trust Region Policy Optimization (Schulman et al., 2015b), Proximal Policy
Optimization (PPO) (Schulman et al., 2017), and Actor Critic using Kronecker-Factored
Trust Region (ACKTR) (Wu et al., 2017). The results are shown in Figure 7.

In all the locomotion tasks we are able to achieve maximum performance using be-
tween 10 and 100 times less data than model-free methods. In the most challenging
domains: ant, hopper, and walker2D; the data complexity of our method is two orders
of magnitude less than the MF. In the easier tasks: the simulated PR2 and swimmer,
our method achieves the same performance of MF using 20-50× less data. These results

1 https://sites.google.com/view/mb-mpo
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Figure 7: Learning curves of MB-MPO (“ours") and four state-of-the-art model-free methods in
six different Mujoco environments with a horizon of 200. MB-MPO is able to match
the asymptotic performance of model-free methods with two orders of magnitude less
samples.

highlight the benefit of MB-MPO for real robotics tasks; the amount of real-world data
needed for attaining maximum return corresponds to 2 hours in the case of easier do-
mains and to 7 hours in the more complex ones.

5.5.2 Comparison to State-of-the-Art: Model-Based

We also compare our method against recent model-based work: Model-Ensemble Trust-
Region Policy Optimization (ME-TRPO) Kurutach et al., 2018, and the model-based ap-
proach introduced in (Nagabandi et al., 2017), which uses MPC for planning (MB-MPC).

The results, shown in Figure 8, highlight the strength of MB-MPO in complex tasks.
MB-MPC struggles to perform well on tasks that require robust planning, and completely
fails in tasks where medium/long-term planning is necessary (as in the case of hopper).
In contrast, ME-TRPO is able to learn better policies, but the convergence to such poli-
cies is slower when compared to MB-MPO. Furthermore, while ME-TRPO converges to
suboptimal policies in complex domains, MB-MPO is able to achieve max-performance.

5.5.3 Robustness to Imperfect Dynamic Models and Compounding Errors
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Figure 8: Learning curves of MB-MPO (“ours") and two MB methods in 6 different Mujoco envi-
ronments with a horizon of 200. MB-MPO achieves better asymptotic performance and
faster convergence rate than previous MB methods.

Figure 9: Comparison of our method with and
without adaptation. Learning curves of
three random seeds on the half-cheetah
environment with a horizon of 1000

time steps.

We pose the question of how robust our
proposed algorithm is w.r.t. imperfect dy-
namics predictions. We examine it in two
ways. First, with an illustrative example
of a model with clearly wrong dynam-
ics. Specifically, we add biased Gaussian
noise N(b, 0.12) to the next state predic-
tion, whereby the bias b ∼ U(0,bmax)

is re-sampled in every iteration for each
model. Second, we present a realistic case
on which long horizon predictions are
needed. Bootstrapping the model predic-
tions for long horizons leads to high com-
pounding errors, making policy learning
on such predictions challenging.

Figure 10 depicts the performance com-
parison between our method and ME-
TRPO on the half-cheetah environment for
various values of bmax. Results indicate
that our method consistently outperforms
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Figure 10: Comparison of MB-MPO and ME-TRPO using 5 biased and noisy dynamic models
in the half-cheetah environment with a horizon of 100 time steps. A bias term b is
sampled uniformly from a denoted interval in every iteration. During the iterations
we add to the predicted observation a Gaussian noise N(b, 0.1).

ME-TRPO when exposed to biased and noisy dynamics models. ME-TPRO catastrophi-
cally fails to learn a policy in the presence of strong bias (i.e. bmax = 0.5 and bmax = 1.0),
but our method, despite the strongly compromised dynamic predictions, is still able to
learn a locomotion behavior with a positive forward velocity.

This property also manifests itself in long horizon tasks. Figure 9 compares the perfor-
mance of our approach with inner learning rate α = 10−3 against the edge case α = 0,
where no adaption is taking place. For each random seed, MB-MPO steadily converges
to maximum performance. However, when there is no adaptation, the learning becomes
unstable and different seeds exhibit different behavior: proper learning, getting stuck in
sub-optimal behavior, and even unlearning good behaviors.

5.5.4 Model Uncertainty and Policy Plasticity

In section 5.5.4 we hypothesize that the meta-optimization steers the policy towards
higher plasticity in regions with high dynamics model uncertainty while embedding
consistent model predictions into the pre-update policy. To empirically analyze this hy-
pothesis, we conduct an experiment in a simple 2D-Point environment where the agent,
starting uniformly from [−2, 2]2, must go to the goal position (0, 0). We use the aver-
age KL-divergence between πθ and the different adapted policies πθ′k to measure the
plasticity conditioned on the state s.

Figure 11 depicts the KL-divergence between the pre- and post-update policy, as
well as the standard deviation of the predictions of the ensemble over the state space.
Since the agent steers towards the center of the environment, more transition data is
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available in this region. As a result the models present higher accuracy in the center.
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Figure 11: Upper: Standard devia-
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The results indicate a strong positive correlation
between model uncertainty and the KL-divergence
between pre- and post-update policy. We find this
connection between policy plasticity and predic-
tive uncertainty consistently throughout the train-
ing and among different hyper-parameter configu-
rations.

5.6 conclusion

In this work, we present a simple and generally
applicable algorithm, model-based meta-policy op-
timization (MB-MPO), that learns an ensemble of
dynamics models and meta-optimizes a policy for
adaptation in each of the learned models. Forego-
ing the reliance in accurate models, MB-MPO har-
ness model errors to learn more adaptable poli-
cies that can successfully adapt to the real en-
vironment. Our experimental results demonstrate
that meta-learning a policy over an ensemble of
learned models provides the recipe for reaching the
same level of performance as state-of-the-art model-
free methods with substantially lower sample com-
plexity. We also compare our method against pre-
vious model-based approaches, obtaining better
performance and faster convergence. Our analy-
sis demonstrate the ineffectiveness of prior ap-
proaches to combat model-bias, and showcases the
robustness of our method against imperfect mod-
els. As a result, we are able to extend model-based
to more complex domains and longer horizons.
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6
P R O M P : P R O X I M A L M E TA - P O L I C Y S E A R C H

In this chapter, we delve into the meta-learning procedure that model-based meta-policy
optimization (MB-MPO) uses. Specifically, we analyze the update rule by which adapta-
tion occurs. We point out that in the reinforcement learning setting, the commonly used
gradient based meta-learning from (Finn et al., 2017) is a first order approximation. The
approximation neglects the exploration strategy that the pre-udpate policy should fol-
low so the adapted policy is optimal. Instead, (Finn et al., 2017) pre-update policy’s just
tries to maximize the reward. However, purely maximizing the reward might not result
in any information about the environment at hand, thus failing to adapt to it.

In the following work, we analyze the different objectives used in gradient based meta-
learning and present an objective that allows to learn the optimal exploration strategy
for adaptation. Furthermore, we incorporate our objective into an efficient and stable
meta-learning algorithm named Proximal Meta-Policy Search (ProMP).

6.1 overview

A remarkable trait of human intelligence is the ability to adapt to new situations in
the face of limited experience. In contrast, our most successful artificial agents strug-
gle in such scenarios. While achieving impressive results, they suffer from high sample
complexity in learning even a single task, fail to generalize to new situations, and re-
quire large amounts of additional data to successfully adapt to new environments. Meta-
learning addresses these shortcomings by learning how to learn. Its objective is to learn
an algorithm that allows the artificial agent to succeed in an unseen task when only
limited experience is available, aiming to achieve the same fast adaptation that humans
possess (Schmidhuber, 1987; Thrun and Pratt, 1998).

Despite recent progress, deep reinforcement learning (RL) still relies heavily on hand-
crafted features and reward functions as well as engineered problem specific inductive
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bias. meta-RL aims to forego such reliance by acquiring inductive bias in a data-driven
manner. Recent work proves this approach to be promising, demonstrating that meta-RL
allows agents to obtain a diverse set of skills, attain better exploration strategies, and
learn faster through meta-learned dynamics models or synthetic returns (Duan et al.,
2016b; Z. Xu et al., 2018; Gupta et al., 2018b; Sæmundsson et al., 2018).

meta-RL is a multi-stage process in which the agent, after a few sampled environment
interactions, adapts its behavior to the given task. Despite its wide utilization, little work
has been done to promote theoretical understanding of this process, leaving meta-RL
grounded on unstable foundations. Although the behavior prior to the adaptation step
is instrumental for task identification, the interplay between pre-adaptation sampling
and posterior performance of the policy remains poorly understood. In fact, prior work
in gradient-based meta-RL has either entirely neglected credit assignment to the pre-
update distribution (Finn et al., 2017) or implemented such credit assignment in a naive
way (Al-Shedivat et al., 2018; Stadie et al., 2018).

To our knowledge, we provide the first formal in-depth analysis of credit assignment
w.r.t. pre-adaptation sampling distribution in meta-RL. Based on our findings, we de-
velop a novel meta-RL algorithm. First, we analyze two distinct methods for assigning
credit to pre-adaptation behavior. We show that the recent formulation introduced by (Al-
Shedivat et al., 2018) and (Stadie et al., 2018) leads to poor credit assignment, while the
MAML formulation (Finn et al., 2017) potentially yields superior meta-policy updates.
Second, based on insights from our formal analysis, we highlight both the importance
and difficulty of proper meta-policy gradient estimates. In light of this, we propose the
low variance curvature (LVC) surrogate objective which yields gradient estimates with
a favorable bias-variance trade-off. Finally, building upon the LVC estimator we develop
Proximal Meta-Policy Search (ProMP), an efficient and stable meta-learning algorithm
for RL. In our experiments, we show that ProMP consistently outperforms previous
meta-RL algorithms in sample-efficiency, wall-clock time, and asymptotic performance.

6.2 background

Meta-Reinforcement Learning aims to learn a learning algorithm which is able to
quickly learn the optimal policy for a task M drawn from a distribution of tasks ρ(M).
Each task M corresponds to a different MDP. Typically, it is assumed that the distribution
of tasks share the action and state space, but may differ in their reward function or their
dynamics.

Gradient-based meta-learning aims to solve this problem by learning the parameters
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θ of a policy πθ such that performing a single or few steps of vanilla policy gradient
(VPG) with the given task leads to the optimal policy for that task. This meta-learning
formulation, also known under the name of MAML, was first introduced by (Finn et al.,
2017). We refer to it as formulation I which can be expressed as maximizing the objective

JI(θ) = EM∼ρ(M)

[
Eτ′∼pM(τ′|θ′)

[
R(τ′)

] ]
with θ′ := U(θ,M) = θ+α∇θEτ∼pM(τ|θ) [R(τ)]

In that U denotes the update function which depends on the task M, and performs one
VPG step towards maximizing the performance of the policy in M. For national brevity
and conciseness we assume a single policy gradient adaptation step. Nonetheless, all
presented concepts can easily be extended to multiple adaptation steps.

Later work proposes a slightly different notion of gradient-based Meta-RL, also known
as E-MAML, that attempts to circumvent issues with the meta-gradient estimation in
MAML (Al-Shedivat et al., 2018; Stadie et al., 2018):

JII(θ) = EM∼ρ(M)

[
Eτ1:N∼pM(τ1:N|θ)

τ′∼pM(τ′|θ′)

[
R(τ′)

]]
with θ′ := U(θ,τ1:N) = θ+α∇θ

N∑
n=1

[
R(τ(n))

]
Formulation II views U as a deterministic function that depends on N sampled trajec-
tories from a specific task. In contrast to formulation I, the expectation over pre-update
trajectories τ is applied outside of the update function. Throughout this paper we refer
to πθ as pre-update policy, and πθ′ as post-update policy.

6.3 sampling distribution credit assignment

This section analyzes the two gradient-based meta-RL formulations introduced in Sec-
tion 2.3.1. Figure 12 illustrates the stochastic computation graphs (Schulman et al., 2015a)
of both formulations. The red arrows depict how credit assignment w.r.t the pre-update
sampling distribution pM(τ|θ) is propagated. Formulation I (left) propagates the credit
assignment through the update step, thereby exploiting the full problem structure. In
contrast, formulation II (right) neglects the inherent structure, directly assigning credit
from post-update return R ′ to the pre-update policy πθ which leads to noisier, less effec-
tive credit assignment.
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Figure 12: Stochastic computation graphs of meta-learning formulation I (left) and formulation II
(right). The red arrows illustrate the credit assignment from the post-update returns R ′

to the pre-update policy πθ through ∇θJpre. (Deterministic nodes: Square; Stochastic
nodes: Circle)

Both formulations optimize for the same objective, and are equivalent at the 0th or-
der. However, because of the difference in their formulation and stochastic computation
graph, their gradients and the resulting optimization step differs. In the following, we
shed light on how and where formulation II loses signal by analyzing the gradients
of both formulations, which can be written as (see Appendix C.1 for more details and
derivations)

∇θJ(θ) = EM∼ρ(M)

[
E τ∼pM(τ|θ)
τ′∼pM(τ′|θ′)

[
∇θJpost(τ,τ′) +∇θJpre(τ,τ′)

]]
(9)

The first term∇θJpost(τ,τ′) is equal in both formulations, but the second term,∇θJpre(τ,τ′),
differs between them. In particular, they correspond to

∇θJpost(τ,τ′) = ∇θ′ logπθ(τ′)R(τ′)︸ ︷︷ ︸
∇θ′J

outer

(
I+αR(τ)∇2θ logπθ′(τ))

)
︸ ︷︷ ︸

transformation from θ′ to θ

(10)

∇θJIIpre(τ,τ′) = α∇θ logπθ(τ)R(τ′) (11)

∇θJIpre(τ,τ′) = α∇θ logπθ(τ)
(
(∇θ logπθ(τ)R(τ))>︸ ︷︷ ︸

∇θJ
inner

(∇θ′ logπθ′(τ′)R(τ′))︸ ︷︷ ︸
∇θ′J

outer

)
(12)

∇θJpost(τ,τ′) simply corresponds to a policy gradient step on the post-update policy
πθ′ w.r.t θ′, followed by a linear transformation from post- to pre-update parameters.
It corresponds to increasing the likelihood of the trajectories τ′ that led to higher re-
turns. However, this term does not optimize for the pre-update sampling distribution,
i.e., which trajectories τ led to better adaptation steps.

The credit assignment w.r.t. the pre-updated sampling distribution is carried out by
the second term. In formulation II, ∇θJIIpre can be viewed as standard reinforcement
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learning on πθ with R(τ′) as reward signal, treating the update function U as part of the
unknown dynamics of the system. This shifts the pre-update sampling distribution to
better adaptation steps.

Formulation I takes the causal dependence of pM(τ′|θ′) on pM(τ|θ) into account. It
does so by maximizing the inner product of pre-update and post-update policy gradients
(see Eq. 12). This steers the pre-update policy towards 1) larger post-updates returns 2)
larger adaptation steps α∇θJinner, 3) better alignment of pre- and post-update policy
gradients (Z. Li et al., 2017; Nichol et al., 2018). When combined, these effects directly
optimize for adaptation. As a result, we expect the first meta-policy gradient formulation,
JI, to yield superior learning properties.

6.4 low variance curvature estimator

In the previous section we show that the formulation introduced by (Finn et al., 2017)
results in superior meta-gradient updates, which should in principle lead to improved
convergence properties. However, obtaining correct and low variance estimates of the
respective meta-gradients proves challenging. As discussed by (Foerster et al., 2018),
and shown in Appendix C.2.3, the score function surrogate objective approach is ill
suited for calculating higher order derivatives via automatic differentiation toolboxes.
This important fact was overlooked in the original RL-MAML implementation (Finn
et al., 2017) leading to incorrect meta-gradient estimates1. As a result, ∇θJpre does not
appear in the gradients of the meta-objective (i.e. ∇θJ = ∇θJpost). Hence, MAML does
not perform any credit assignment to pre-adaptation behavior.

But, even when properly implemented, we show that the meta-gradients exhibit high
variance. Specifically, the estimation of the hessian of the RL-objective, which is inherent
in the meta-gradients, requires special consideration. In this section, we motivate and
introduce the low variance curvature estimator (LVC): an improved estimator for the
hessian of the RL-objective which promotes better meta-policy gradient updates. As we
show in Appendix C.1.1, we can write the gradient of the meta-learning objective as

∇θJI(θ) = EM∼ρ(M)

[
Eτ′∼pM(τ′|θ′)

[
∇θ′ logpM(τ′|θ′)R(τ′)∇θU(θ,M)

]]
(13)

Since the update function U resembles a policy gradient step, its gradient ∇θU(θ,M) in-
volves computing the hessian of the reinforcement learning objective, i.e.,∇2θ Eτ∼pM(τ|θ) [R(τ)].

1 Note that MAML is theoretically sound, but does not attend to correctly estimating the meta-policy gradi-
ents. As consequence, the gradients in the corresponding implementation do not comply with the theory.
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Estimating this hessian has been discussed in (Bartlett and Baxter, 2011) and (Furmston
et al., 2016). In the infinite horizon MDP case, (Bartlett and Baxter, 2011) derived a de-
composition of the hessian. We extend their finding to the finite horizon case, showing
that the hessian can be decomposed into three matrix terms (see Appendix C.2.2 for
proof):

∇θU(θ,M) = I+α∇2θ Eτ∼pM(τ|θ) [R(τ)] = I+α
(
H1 +H2 +H12 +H

>
12

)
(14)

whereby

H1 = Eτ∼pM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at, st)∇θ logπθ(at, st)>
(
H−1∑
t ′=t

r(st ′ ,at ′)

)]

H2 = Eτ∼pM(τ|θ)

[
H−1∑
t=0

∇2θ logπθ(at, st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]

H12 = Eτ∼pM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at, st)∇θQπθt (st,at)>
]

Here Qπθt (st,at) = Eτt+1:H−1∼pM(·|θ)

[∑H−1
t ′=t r(st ′ ,at ′)|st,at

]
denotes the expected state-

action value function under policy πθ at time t.
Computing the expectation of the RL-objective is in general intractable. Typically, its

gradients are computed with a Monte Carlo estimate based on the policy gradient theo-
rem. In practical implementations, such an estimate is obtained by automatically differ-
entiating a surrogate objective (Schulman et al., 2015a). However, this results in a highly
biased hessian estimate which just computes H2, entirely dropping the terms H1 and
H12 +H

>
12. In the notation of the previous section, it leads to neglecting the ∇θJpre term,

ignoring the influence of the pre-update sampling distribution.
The issue can be overcome using the DiCE formulation, which allows to compute unbi-

ased higher-order Monte Carlos estimates of arbitrary stochastic computation graphs (Fo-
erster et al., 2018). The DiCE-RL objective can be rewritten as follows

JDiCE(τ) =

H−1∑
t=0

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)
r(st,at) τ ∼ pM(τ) (15)

Eτ∼pM(τ|θ)

[
∇2θJ

DiCE(τ)
]
= H1 +H2 +H12 +H

>
12 (16)

In that, ⊥ denotes the “stop_gradient" operator, i.e., ⊥(fθ(x))→ fθ(x) but ∇θ⊥(fθ(x))→
0. The sequential dependence of πθ(at|st) within the trajectory, manifesting itself through
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the product of importance weights in (15), results in high variance estimates of the hes-
sian ∇2θ Eτ∼pM(τ|θ) [R(τ)]. As noted by (Furmston et al., 2016), H12 is particularly difficult
to estimate, since it involves three nested sums along the trajectory. In section 6.7.2 we
empirically show that the high variance estimates of the DiCE objective lead to noisy
meta-policy gradients and poor learning performance.

To facilitate a sample efficient meta-learning, we introduce the low variance curvature
(LVC) estimator:

JLVC(τ) =

H−1∑
t=0

πθ(at|st)

⊥(πθ(at|st))

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
τ ∼ pM(τ) (17)

Eτ∼pM(τ|θ)

[
∇2θJ

LVC(τ)
]
= H1 +H2 (18)

By removing the sequential dependence of πθ(at|st) within trajectories, the hessian esti-
mate neglects the term H12+H

>
12 which leads to a variance reduction, but makes the esti-

mate biased. The choice of this objective function is motivated by findings in (Furmston
et al., 2016): under certain conditions the term H12 +H

>
12 vanishes around local optima

θ∗, i.e., Eτ[∇2θJ
LVC] → Eτ[∇2θJ

DiCE] as θ → θ∗. Hence, the bias of the LVC estimator
becomes negligible close to local optima. The experiments in section 6.7.2 underpin the
theoretical findings, showing that the low variance hessian estimates obtained through
JLVC improve the sample-efficiency of meta-learning by a significant margin when com-
pared to JDiCE. We refer the interested reader to Appendix C.2 for derivations and a more
detailed discussion.

6.5 method

Building on the previous sections, we develop a novel meta-policy search method based
on the low variance curvature objective which aims to solve the following optimization
problem:

max
θ

EM∼ρ(M)

[
Eτ′∼pM(τ′|θ′)

[
R(τ′)

]]
with θ′ := θ+α ∇θEτ∼pM(τ|θ)

[
JLVC(τ)

]
(19)

Prior work has optimized this objective using either vanilla policy gradient (VPG) or
TRPO (Schulman et al., 2015b). TRPO holds the promise to be more data efficient and
stable during the learning process when compared to VPG. However, it requires comput-
ing the Fisher information matrix (FIM). Estimating the FIM is particularly problematic
in the meta-learning set up. The meta-policy gradients already involve second order
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derivatives; as a result, the time complexity of the FIM estimate is cubic in the num-
ber of policy parameters. Typically, the problem is circumvented using finite difference
methods, which introduce further approximation errors.

The recently introduced PPO algorithm (Schulman et al., 2017) achieves comparable
results to TRPO with the advantage of being a first order method. PPO uses a surro-
gate clipping objective which allows it to safely take multiple gradient steps without
re-sampling trajectories.

JCLIP
M (θ) = Eτ∼pM(τ,θo)

[∑H−1
t=0 min

(
πθ(at|st)
πθo(at|st)

Aπθo (st,at) , clip1+ε1−ε

(
πθ(at|st)
πθo(at|st)

)
Aπθo (st,at)

)]
In case of meta-RL, it does not suffice to just replace the post-update reward objective

with JCLIP
M . In order to safely perform multiple meta-gradient steps based on the same

sampled data from a recent policy πθo , we also need to 1) account for changes in the
pre-update action distribution πθ(at|st), and 2) bound changes in the pre-update state
visitation distribution (Kakade and Langford, 2002).

We propose Proximal Meta-Policy Search (ProMP) which incorporates both the bene-
fits of proximal policy optimization and the low variance curvature objective (see Alg. 4.)
In order to comply with requirement 1), ProMP replaces the “stop gradient" importance
weight πθ(at|st)

⊥(πθ(at|st))
by the likelihood ratio πθ(at|st)

πθo(at|st))
, which results in the following objec-

tive

JLRM (θ) = Eτ∼pM(τ,θo)

[
H−1∑
t=0

πθ(at|st)

πθo(at|st)
Aπθo (st,at)

]
(20)

An important feature of this objective is that its derivatives w.r.t θ evaluated at θo are
identical to those of the LVC objective, and it additionally accounts for changes in the pre-
update action distribution. To satisfy condition 2) we extend the clipped meta-objective
with a KL-penalty term between πθ and πθo . This KL-penalty term enforces a soft local
“trust region" around πθo , preventing the shift in state visitation distribution to become
large during optimization. This enables us to take multiple meta-policy gradient steps
without re-sampling. Altogether, ProMP optimizes

JProMP
M (θ) = JCLIP

M (θ′) − ηD̄KL(πθo ,πθ) s.t. θ′ = θ+α ∇θJLRM (θ) , M ∼ ρ(M) (21)

ProMP consolidates the insights developed throughout the course of this paper, while at
the same time making maximal use of recently developed policy gradients algorithms.
First, its meta-learning formulation exploits the full structural knowledge of gradient-
based meta-learning. Second, it incorporates a low variance estimate of the RL-objective
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Algorithm 4 Proximal Meta-Policy Search (ProMP)

Require: Task distribution ρ, step sizes α, β, KL-penalty coefficient η, clipping range ε
1: Randomly initialize θ
2: while θ not converged do
3: Sample batch of tasks Mi ∼ ρ(M)

4: for step n = 0, ...,N− 1 do
5: if n = 0 then
6: Set θo ← θ

7: for all Mi ∼ ρ(M) do
8: Sample pre-update trajectories Di = {τi} from Mi using πθ
9: Compute adapted parameters θ′o,i ← θ+α ∇θJLRMi(θ) with Di = {τi}

10: Sample post-update trajectories D ′i = {τ′i} from Mi using πθ′o,i
11: end for
12: end if
13: Update θ← θ+β

∑
Mi
∇θJProMP

Mi
(θ) using each D ′i = {τ′i}

14: end for
15: end while

hessian. Third, ProMP controls the statistical distance of both pre- and post-adaptation
policies, promoting efficient and stable meta-learning. All in all, ProMP consistently out-
performs previous gradient-based meta-RL algorithms in sample complexity, wall clock
time, and asymptotic performance (see Section 6.7.1).

6.6 related work

Meta-Learning concerns the question of “learning to learn", aiming to acquire inductive
bias in a data driven manner, so that the learning process in face of unseen data or new
problem settings is accelerated (Schmidhuber, 1987; Schmidhuber et al., 1997; Thrun and
Pratt, 1998).

This can be achieved in various ways. One category of methods attempts to learn the
“learning program" of an universal Turing machine in form of a recurrent / memory-
augmented model that ingests datasets and either outputs the parameters of the trained
model (Hochreiter et al., 2001; Andrychowicz et al., 2016; Chen et al., 2017; Ravi and
Larochelle, 2018) or directly outputs predictions for given test inputs (Duan et al., 2016b;
Santoro et al., 2016; Mishra et al., 2018). Though very flexible and capable of learning
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very efficient adaptations, such methods lack performance guarantees and are difficult
to train on long sequences that arise in meta-RL.

Another set of methods embeds the structure of a classical learning algorithm in the
meta-learning procedure, and optimizes the parameters of the embedded learner during
the meta-training (Hüsken and Goerick, 2000; Finn et al., 2017; Nichol et al., 2018; Miconi
et al., 2018). A particular instance of the latter that has proven to be particularly success-
ful in the context of RL is gradient-based meta-learning (Finn et al., 2017; Al-Shedivat
et al., 2018; Stadie et al., 2018). Its objective is to learn an initialization such that after
one or few steps of policy gradients the agent attains full performance on a new task.
A desirable property of this approach is that even if fast adaptation fails, the agent just
falls back on vanilla policy-gradients. However, as we show, previous gradient-based
meta-RL methods either neglect or perform poor credit assignment w.r.t. the pre-update
sampling distribution.

A diverse set of methods building on meta-RL, has recently been introduced. This
includes: learning exploration strategies (Gupta et al., 2018b), synthetic rewards (Sung
et al., 2017; Z. Xu et al., 2018), unsupervised policy acquisition (Gupta et al., 2018a),
model-based RL (Clavera et al., 2018; Saemundsson et al., 2018), learning in competitive
environments (Al-Shedivat et al., 2018) and meta-learning modular policies (Frans et al.,
2018; Alet et al., 2018). Many of the mentioned approaches build on previous gradient-
based meta-learning methods that insufficiently account for the pre-update distribution.
ProMP overcomes these deficiencies, providing the necessary framework for novel appli-
cations of meta-RL in unsolved problems.

6.7 experiments

In order to empirically validate the theoretical arguments outlined above, this section
provides a detailed experimental analysis that aims to answer the following questions: (i)
How does ProMP perform against previous Meta-RL algorithms? (ii) How do the lower
variance but biased LVC gradient estimates compare to the high variance, unbiased DiCE
estimates? (iii) Do the different formulations result in different pre-update exploration
properties? (iv) How do formulation I and formulation II differ in their meta-gradient
estimates and convergence properties?

To answer the posed questions, we evaluate our approach on six continuous con-
trol Meta-RL benchmark environments based on OpenAI Gym and the Mujoco simu-
lator (Dhariwal et al., 2017; Todorov et al., 2012). A description of the experimental setup
is found in Appendix C.4. In all experiments, the reported curves are averaged over at
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Figure 13: Meta-learning curves of ProMP and previous gradient-based meta-learning algorithms
in six different MuJoCo environments. ProMP outperforms previous work in all the
the environments.

least three random seeds. Returns are estimated based on sampled trajectories from the
adapted post-update policies and averaged over sampled tasks. The source code and the
experiment data are available on our supplementary website.2

6.7.1 Meta-Gradient Based Comparison

We compare our method, ProMP, in sample complexity and asymptotic performance
to the gradient-based meta-learning approaches MAML-TRPO (Finn et al., 2017) and E-
MAML-TRPO (see Fig. 13). Note that MAML corresponds to the original implementation
of RL-MAML by (Finn et al., 2017) where no credit assignment to the pre-adaptation pol-
icy is happening (see Appendix C.2.3 for details). Moreover, we provide a second study
which focuses on the underlying meta-gradient estimator. Specifically, we compare the
LVC, DiCE, MAML and E-MAML estimators while optimizing meta-learning objective
with vanilla policy gradient (VPG) ascent. This can be viewed as an ablated version of
the algorithms which tries to eliminate the influences of the outer optimizers on the

2 https://sites.google.com/view/pro-mp
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learning performance (see Fig. 14).
These algorithms are benchmarked on six different locomotion tasks that require adap-

tation: the half-cheetah and walker must switch between running forward and backward,
the high-dimensional agents ant and humanoid must learn to adapt to run in different
directions in the 2D-plane, and the hopper and walker have to adapt to different config-
uration of their dynamics.
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Figure 14: Meta-learning curves corresponding to different meta-gradient estimators in conjunc-
tion with VPG. The introduced LVC approach consistently outperforms the other esti-
mators.

The results in Figure 13 highlight the strength of ProMP in terms of sample efficiency
and asymptotic performance. In the meta-gradient estimator study in Fig. 14, we demon-
strate the positive effect of the LVC objective, as it consistently outperforms the other esti-
mators. In contrast, DiCE learns only slowly when compared to the other approaches. As
we have motivated mathematically and substantiate empirically in the following exper-
iment, the poor performance of DiCE may be ascribed to the high variance of its meta-
gradient estimates. The fact that the results of MAML and E-MAML are comparable
underpins the ineffectiveness of the naive pre-update credit assignment (i.e. formulation
II), as discussed in section 6.3.

Results for four additional environments are displayed in Appendix C.4 along with
hyperparameter settings, environment specifications and a wall-clock time comparison
of the algorithms.
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Figure 15: Top: Relative std of meta-policy gradients. Bottom: Returns in the respective environ-
ments throughout the learning process. LVC exhibits less variance in its meta-gradients
which may explain its superior performance when compared to DiCE.

6.7.2 Gradient Estimator Variance and Its Effect on Meta-Learning

In Section 6.4 we discussed how the DiCE formulation yields unbiased but high vari-
ance estimates of the RL-objective hessian and served as motivation for the low variance
curvature (LVC) estimator. Here we investigate the meta-gradient variance of both esti-
mators as well as its implication on the learning performance. Specifically, we report the
relative standard deviation of the meta-policy gradients as well as the average return
throughout the learning process in three of the meta-environments.

The results, depicted in Figure 15, highlight the advantage of the low variance curva-
ture estimate. The trajectory level dependencies inherent in the DiCE estimator leads to
a meta-gradient standard deviation that is on average 60% higher when compared to
LVC. As the learning curves indicate, the noisy gradients may be a driving factor for
the poor performance of DiCE, impeding sample efficient meta-learning. Meta-policy
search based on the LVC estimator leads to substantially better sample-efficiency and
asymptotic performance.

In case of HalfCheetahFwdBack, we observe some unstable learning behavior of LVC-
VPG which is most likely caused by the bias of LVC in combination with the naive
VPG optimizer. However, the mechanisms in ProMP that ensure proximity w.r.t. to the
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policy’s KL-divergence seem to counteract these instabilities during training, giving us
a stable and efficient meta-learning algorithm.

6.7.3 Comparison of Initial Sampling Distributions

Here we evaluate the effect of the different objectives on the learned pre-update sam-
pling distribution. We compare the low variance curvature (LVC) estimator with TRPO
(LVC-TRPO) against MAML (Finn et al., 2017) and E-MAML-TRPO (Stadie et al., 2018)
in a 2D environment on which the exploration behavior can be visualized. Each task of
this environment corresponds to reaching a different corner location; however, the 2D
agent only experiences reward when it is sufficiently close to the corner (translucent re-
gions of Figure 16). Thus, to successfully identify the task, the agent must explore the
different regions. We perform three inner adaptation steps on each task, allowing the
agent to fully change its behavior from exploration to exploitation.
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Figure 16: Exploration patterns of the pre-update policy and exploitation post-update with differ-
ent update functions. Through its superior credit assignment, the LVC objective learns
a pre-update policy that is able to identify the current task and respectively adapt its
policy, successfully reaching the goal (dark green circle).

The different exploration-exploitation strategies are displayed in Figure 16. Since the
MAML implementation does not assign credit to the pre-update sampling trajectory, it
is unable to learn a sound exploration strategy for task identification and thus fails to
accomplish the task. On the other hand, E-MAML, which corresponds to formulation II,
learns to explore in long but random paths: because it can only assign credit to batches
of pre-update trajectories, there is no notion of which actions in particular facilitate good
task adaptation. As consequence the adapted policy slightly misses the task-specific tar-
get. The LVC estimator, instead, learns a consistent pattern of exploration, visiting each
of the four regions, which it harnesses to fully solve the task.
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6.7.4 Gradient Update Directions of the Two Meta-RL Formulations

Figure 17: Meta-gradient updates of policy pa-
rameters θ0 and θ1 in a 1D environ-
ment w.r.t Formulation I (red) and
Formulation II (green).

To shed more light on the differences of
the gradients of formulation I and formu-
lation II, we evaluate the meta-gradient
updates and the corresponding conver-
gence to the optimum of both formula-
tions in a simple 1D environment. In this
environment, the agent starts in a random
position in the real line and has to reach a
goal located at the position 1 or -1. In order
to visualize the convergence, we param-
eterize the policy with only two param-
eters θ0 and θ1. We employ formulation
I by optimizing the DiCE objective with
VPG, and formulation II by optimizing its
(E-MAML) objective with VPG.

Figure 17 depicts meta-gradient up-
dates of the parameters θi for both formu-
lations. Formulation I (red) exploits the in-
ternal structure of the adaptation update
yielding faster and steadier convergence
to the optimum. Due to its inferior credit assignment, formulation II (green) produces
noisier gradient estimates leading to worse convergence properties.

6.8 conclusion

We propose a novel meta-RL algorithm, proximal meta-policy search (ProMP), which
fully optimizes for the pre-update sampling distribution leading to effective task iden-
tification. Our method is the result of a theoretical analysis of gradient-based meta-RL
formulations, based on which we develop the low variance curvature (LVC) surrogate
objective that produces low variance meta-policy gradient estimates. Experimental re-
sults demonstrate that our approach surpasses previous meta-reinforcement learning
approaches in a diverse set of continuous control tasks. Finally, we underpin our theo-
retical contributions with illustrative examples which further justify the soundness and
effectiveness of our method.
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7
I M P R O V I N G M O D E L - B A S E D R E I N F O R C E M E N T L E A R N I N G V I A
M O D E L - A U G M E N T E D PAT H W I S E D E R I VAT I V E

While model-based via meta-policy adaptation (Chapter 5) is able to learn longer horizon
tasks than ME-TRPO (Chapter 4), it is limited to trajectories around a thousand steps in
simple domains. For longer horizons or more complex environments, learning becomes
unstable. Long horizon predictions are challenging because of the compounding error
effect. In this work, we specifically tackle the long horizon challenge by enhancing model-
based with actor-critic methods (Lillicrap et al., 2015; Haarnoja et al., 2018a) with model-
based. The model is just used to predict for a short horizon while the value function
captures the long horizon predictions. This set-up was introduced by (Heess et al., 2015)
and (Janner et al., 2019). In this work, we improve those methods by making use of
the model derivatives through the pathwise derivative estimator (Mohamed et al., 2019;
Kingma and Welling, 2013). We learn an ensemble of stochastic dynamics models, and
the pathwise derivative estimator allows us to backpropagate through the stochasticity
while at the same time have low variance gradients. Using the gradients of the learned
models allows us to extract more information from them for the policy learning step,
resulting in faster learning.

7.1 introduction

Model-based reinforcement learning (RL) offers the potential to be a general-purpose
tool for learning complex policies while being sample efficient. When learning in real-
world physical systems, data collection can be an arduous process. Contrary to model-
free methods, model-based approaches are appealing due to their comparatively fast
learning. By first learning the dynamics of the system in a supervised learning way, it can
exploit off-policy data. Then, model-based methods use the model to derive controllers
from it either parametric controllers (Luo et al., 2019; Buckman et al., 2018; Janner et al.,
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2019) or non-parametric controllers (Nagabandi et al., 2017; Chua et al., 2018).
Current model-based methods learn with an order of magnitude less data than their

model-free counterparts while achieving the same asymptotic convergence. Tools like
ensembles, probabilistic models, planning over shorter horizons, and meta-learning have
been used to achieved such performance (Kurutach et al., 2018; Chua et al., 2018; Clavera
et al., 2018). However, the model usage in all of these methods is the same: simple data
augmentation. They use the learned model as a black-box simulator generating samples
from it. In high-dimensional environments or environments that require longer planning,
substantial sampling is needed to provide meaningful signal for the policy. Can we further
exploit our learned models?

In this work, we propose to estimate the policy gradient by backpropagating its gradi-
ent through the model using the pathwise derivative estimator. Since the learned model
is differentiable, one can link together the model, reward function, and policy to obtain
an analytic expression for the gradient of the returns with respect to the policy. By com-
puting the gradient in this manner, we obtain an expressive signal that allows rapid pol-
icy learning. We avoid the instabilities that often result from back-propagating through
long horizons by using a terminal Q-function. This scheme fully exploits the learned
model without harming the learning stability seen in previous approaches (Kurutach
et al., 2018; Heess et al., 2015). The horizon at which we apply the terminal Q-function
acts as a hyperparameter between model-free (when fully relying on the Q-function) and
model-based (when using a longer horizon) of our algorithm.

The main contribution of this work is a model-based method that significantly reduces
the sample complexity compared to state-of-the-art model-based algorithms (Janner et
al., 2019; Buckman et al., 2018). For instance, we achieve a 10k return in the half-cheetah
environment in just 50 trajectories. We theoretically justify our optimization objective
and derive the monotonic improvement of our learned policy in terms of the Q-function
and the model error. Furtermore, we experimentally analyze the theoretical derivations.
Finally, we pinpoint the importance of our objective by ablating all the components of our
algorithm. The results are reported in four model-based benchmarking environments (T.
Wang et al., 2019; Todorov et al., 2012). The low sample complexity and high performance
of our method carry high promise towards learning directly on real robots.

7.2 background

In this section, we present how actor critic methods work and a summary on Monte-
Carlo gradient estimators.
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7.2.1 Actor-Critic Methods

In actor-critic methods, we learn a function Q̂ (critic) that approximates the expected
return conditioned on a state s and action a, E[

∑
t γ
tr(st,at)|s0 = s,a0 = a]. Then,

the learned Q-function is used to optimize a policy π (actor). Usually, the Q-function is
learned by iteratively minimizing the Bellman residual:

JQ = E[(Q̂(st,at) − (r(st,at) + γQ̂(st+1,at+1)))2]

The above method is referred as one-step Q-learning, and while a naive implementa-
tion often results in unstable behaviour, recent methods have succeeded in stabilizing
the Q-function training (Fujimoto et al., 2018). The actor then can be trained to maxi-
mize the learned Q̂ function Jπ = E

[
Q̂(s,π(s))

]
. The benefit of this form of actor-critic

method is that it can be applied in an off-policy fashion, sampling random mini-batches
of transitions from an experience replay buffer (Lin, 1992).

Model-Based RL. Model-based methods, contrary to model-free RL, learn the transi-
tion distribution from experience. Typically, this is carried out by learning a parametric
function approximator f̂φ, known as a dynamics model. We define the state predicted by
the dynamics model as ŝt+1, i.e., ŝt+1 ∼ f̂φ(st,at). The models are trained via maximum
likelihood: maxφ Jf(φ) = maxφE[logp(ŝt+1|st,at)]

7.2.2 Monte-Carlo Gradient Estimators

In order to optimize the reinforcement learning objective, it is needed to take the gra-
dient of an expectation. In general, it is not possible to compute the exact expectation
so Monte-Carlo gradient estimators are used instead. These are mainly categorized into
three classes: the pathwise, score function, and measure-valued gradient estimator (Mo-
hamed et al., 2019). In this work, we use the pathwise gradient estimator, which is also
known as the re-parameterization trick (Kingma and Welling, 2013). This estimator is
derived from the law of the unconscious statistician (LOTUS) (Grimmett and Stirzaker,
2001)

Epθ(x)[f(x)] = Ep(ε)[f(gθ(ε)]

Here, we have stated that we can compute the expectation of a random variable xwithout
knowing its distribution, if we know its corresponding sampling path and base distribu-
tion. A common case, and the one used in this manuscript, θ parameterizes a Gaussian
distribution: x ∼ pθ = N(µθ,σ2θ), which is equivalent to x = µθ + εσθ for ε ∼ N(0, 1).
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7.3 policy gradient via model-augmented pathwise derivative
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Figure 18: Stochastic computation graph of the
proposed objective Jπ. The stochastic
nodes are represented by circles and
the deterministic ones by squares.

In the following, we present our pol-
icy optimization scheme and describe the
full algorithm. Exploiting the full capabil-
ity of learned models has the potential
to enable complex and high-dimensional
real robotics tasks while maintaining low
sample complexity. Our approach, model-
augmented actor-critic (MAAC), exploits
the learned model by computing the an-
alytic gradient of the returns with respect
to the policy. In contrast to sample-based
methods, which one can think of as pro-
viding directional derivatives in trajectory
space, MAAC computes the full gradient,
providing a strong learning signal for pol-
icy learning, which further decreases the
sample complexity.

7.3.1 Model-Augmented Actor-Critic Objective

Among model-free methods, actor-critic methods have shown superior performance in
terms of sample efficiency and asymptotic performance (Haarnoja et al., 2018a). However,
their sample efficiency remains worse than model-based approaches, and fully off-policy
methods still show instabilities comparing to on-policy algorithms (Mnih et al., 2016).
Here, we propose a modification of the Q-function parametrization by using the model
predictions on the first time-steps after the action is taken. Specifically, we do policy
optimization by maximizing the following objective:

Jπ(θ) = E

[
H−1∑
t=0

γtr(st) + γ
HQ̂(sH,aH)

]

whereby, st+1 ∼ f̂(st,at) and at ∼ πθ(st). Note that under the true dynamics and Q-
function, this objective is the same as the RL objective. Contrary to previous reinforce-
ment learning methods, we optimize this objective by back-propagation through time.
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Since the learned dynamics model and policy are parameterized as Gaussian distribu-
tions, we can make use of the pathwise derivative estimator to compute the gradient,
resulting in an objective that captures uncertainty while presenting low variance. The
computational graph of the proposed objective is shown in Figure 18.

While the proposed objective resembles n-step bootstrap (Sutton and Barto, 2018), our
model usage fundamentally differs from previous approaches. First, we do not compro-
mise between being off-policy and stability. Typically, n-step bootstrap is either on-policy,
which harms the sample complexity, or its gradient estimation uses likelihood ratios,
which presents large variance and results in unstable learning (Heess et al., 2015). Sec-
ond, we obtain a strong learning signal by backpropagating the gradient of the policy
across multiple steps using the pathwise derivative estimator, instead of the REINFORCE
estimator (Mohamed et al., 2019; Peters and Schaal, 2006). And finally, we prevent the
exploding and vanishing gradients effect inherent to back-propagation through time by
the means of the terminal Q-function (Kurutach et al., 2018).

The horizon H in our proposed objective allows us to trade off between the accuracy
of our learned model and the accuracy of our learned Q-function. Hence, it controls the
degree to which our algorithm is model-based or well model-free. If we were not to trust
our model at all (H = 0), we would end up with a model-free update; for H = ∞, the
objective results in a shooting objective. We will perform policy optimization by taking
derivatives of the objective, hence we require accuracy on the derivatives of the objective.
The following lemma provides a bound on the gradient error in terms of the error on
the derivatives of the model, the Q-function, and the horizon H.

Lemma 1 (Gradient Error). Let f̂ and Q̂ be the learned approximation of the dynamics
f and Q-function Q, respectively. Assume that Q and Q̂ have Lq/2-Lipschitz continuous
gradient and f and f̂ have Lf/2-Lipschitz continuous gradient. Let εf = maxt ‖∇f̂(ŝt, ât) −
∇f(st,at)‖2 be the error on the model derivatives and εQ = ‖∇Q̂(ŝH, âH)−∇Q(sH,aH)‖2
the error on the Q-function derivative. Then the error on the gradient between the learned
objective and the true objective can be bounded by:

E
[
‖∇θJπ −∇θĴπ‖2

]
6 c1(H)εf + c2(H)εQ

Proof. See Appendix.

The result in Lemma 1 stipulates the error of the policy gradient in terms of the
maximum error in the model derivatives and the error in the Q derivatives. The functions
c1 and c2 are functions of the horizon and depend on the Lipschitz constants of the
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model and the Q-function. Note that we are just interested in the relation between both
sources of error, since the gradient magnitude will be scaled by the learning rate, or by
the optimizer, when applying it to the weights.

7.3.2 Monotonic Improvement

Previously, we presented our objective and the error it incurs in the policy gradient with
respect to approximation error in the model and the Q function. However, the error
on the gradient is not indicative of the effect of the desired metric: the average return.
Here, we quantify the effect of the modeling error on the return. We will bound the KL-
divergence between the policies resulting from taking the gradient with the true objective
and the approximated one. Then we will bound the performance in terms of the KL.

Lemma 2 (Total Variation Bound). Under the assumptions of the Lemma 1, let θ =

θo + α∇θJπ be the parameters resulting from taking a gradient step on the exact objective,
and θ̂ = θo +α∇θĴπ the parameters resulting from taking a gradient step on approximated
objective, where α ∈ R+. Then the following bound on the total variation distance holds

max
s
DTV(πθ||πθ̂) 6 αc3(εfc1(H) + εQc2(H))

Proof. See Appendix.

The previous lemma results in a bound on the distance between the policies origi-
nated from taking a gradient step using the true dynamics and Q-function, and using its
learned counterparts. Now, we can derive a similar result from (Kakade and Langford,
2002) to bound the difference in average returns.

Theorem 1 (Monotonic Improvement). Under the assumptions of the Lemma 1, be θ′

and θ̂ as defined in Lemma 2, and assuming that the reward is bounded by rmax. Then the
average return of the πθ̂ satisfies

Jπ(θ̂) > Jπ(θ) −
2αrmax

1− γ
αc3(εfc1(H) + εQc2(H))

Proof. See Appendix.
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Algorithm 5 MAAC

1: Initialize the policy πθ, model f̂φ, Q̂ψ, Denv ← ∅, and the model dataset Dmodel ← ∅
2: repeat
3: Sample trajectories from the real environment with policy πθ. Add them to Denv.
4: for i = 1 . . . G1 do
5: φ← φ−βf∇φJf(φ) using data from Denv.
6: end for
7: Sample trajectories T from f̂φ. Add them to Dmodel.
8: D← Dmodel ∪Denv
9: for i = 1 . . . G2 do

10: Update θ← θ+βπ ∇θJπ(θ) using data from D

11: Update ψ← ψ−βQ ∇ψJQ(ψ) using data from D

12: end for
13: until the policy performs well in the real environment
14: return Optimal parameters θ∗

Hence, we can provide explicit lower bounds of improvement in terms of model error
and function error. Theorem 1 extends previous work of monotonic improvement for
model-free policies (Schulman et al., 2015b; Kakade and Langford, 2002), to the model-
based and actor critic set up by taking the error on the learned functions into account.
From this bound one could, in principle, derive the optimal horizon H that minimizes
the gradient error. However, in practice, approximation errors are hard to determine and
we treat H as an extra hyper-parameter. In section 7.4.2, we experimentally analyze the
error on the gradient for different estimators and values of H.

7.3.3 Algorithm

Based on the previous sections, we develop a new algorithm that explicitly optimizes the
model-augmented actor-critic (MAAC) objective. The overall algorithm is divided into
three main steps: model learning, policy optimization, and Q-function learning.

Model learning. In order to prevent overfitting and overcome model-bias (Deisenroth
and Rasmussen, 2011), we use a bootstrap ensemble of dynamics models {f̂φ1 , ..., f̂φM}.
Each of the dynamics models parameterizes the mean and the covariance of a Gaussian
distribution with diagonal covariance. The bootstrap ensemble captures the epistemic
uncertainty, uncertainty due to the limited capacity or data, while the probabilistic mod-
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els are able to capture the aleatoric uncertainty (Chua et al., 2018), inherent uncertainty
of the environment. We denote by fφ the transitions dynamics resulting fromφU, where
U ∼ U[M] is uniform random variable on {1, ...,M}. The dynamics models are trained via
maximum likelihood with early stopping on a validation set.

Policy Optimization. We extend the MAAC objective with an entropy bonus (Haarnoja
et al., 2018c), and perform policy learning by maximizing

Jπ(θ) = E

[
H−1∑
t=0

γtr(ŝt) + γ
HQψ(ŝH,aH)

]
+βH(πθ)

where ŝt+1 ∼ fφ(ŝt,at), ŝ0 ∼ D, a ∼ πθ. We learn the policy by using the pathwise
derivative of the model through H steps and the Q-function by sampling multiple tra-
jectories from the same ŝ0. Hence, we learn a maximum entropy policy using pathwise
derivative of the model through H steps and the Q-function. We compute the expec-
tation by sampling multiple actions and states from the policy and learned dynamics,
respectively.

Q-function Learning. In practice, we train two Q-functions (Fujimoto et al., 2018)
since it has been experimentally proven to yield better results. We train both Q functions
by minimizing the Bellman error (Section 7.2.1):

JQ(ψ) = E[(Qψ(st,at) − (r(st,at) + γQψ(st+1,at+1)))2]

Similar to (Janner et al., 2019), we minimize the Bellman residual on states previously
visited and imagined states obtained from unrolling the learned model. Finally, the value
targets are obtained in the same fashion the Stochastic Ensemble Value Expansion (Buck-
man et al., 2018), using H as a horizon for the expansion. In doing so, we maximally
make use of the model by not only using it for the policy gradient step, but also for
training the Q-function.

Our method, MAAC, iterates between collecting samples from the environment, model
training, policy optimization, and Q-function learning. A practical implementation of our
method is described in Algorithm 5. First, we obtain trajectories from the real environ-
ment using the latest policy available. Those samples are appended to a replay buffer
Denv, on which the dynamics models are trained until convergence. The third step is
to collect imaginary data from the models: we collect k-step transitions by unrolling
the latest policy from a randomly sampled state on the replay buffer. The imaginary
data constitutes the Dmodel, which together with the replay buffer, is used to learn the
Q-function and train the policy.

59



Figure 19: Comparison against state-of-the-art model-free and model-based baselines in four dif-
ferent MuJoCo environments. Our method, MAAC, attains better sample efficiency
and asymptotic performance than previous approaches. The gap in performance be-
tween MAAC and previous work increases as the environments increase in complexity.

Our algorithm consolidates the insights built through the course of this paper, while at
the same time making maximal use of recently developed actor-critic and model-based
methods. All in all, it consistently outperforms previous model-based and actor-critic
methods.

7.4 results

Our experimental evaluation aims to examine the following questions: 1) How does
MAAC compares against state-of-the-art model-based and model-free methods? 2) Does
the gradient error correlate with the derived bound?, 3) Which are the key components
of its performance?, and 4) Does it benefit from planning at test time?

In order to answer the posed questions, we evaluate our approach on model-based
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continuous control benchmark tasks in the MuJoCo simulator (Todorov et al., 2012; T.
Wang et al., 2019).

7.4.1 Comparison Against State-of-the-Art

We compare our method on sample complexity and asymptotic performance against
state-of-the-art model-free (MF) and model-based (MB) baselines. Specifically, we com-
pare against the model-free soft actor-critic (SAC) (Haarnoja et al., 2018a), which is
an off-policy algorithm that has been proven to be sample efficient and performant;
as well as two state-of-the-art model-based baselines: model-based policy-optimization
(MBPO) (Janner et al., 2019) and stochastic ensemble value expansion (STEVE) (Buckman
et al., 2018). The original STEVE algorithm builds on top of the model-free algorithm
DDPG (Lillicrap et al., 2015), however this algorithm is outperformed by SAC. In order
to remove confounding effects of the underlying model-free algorithm, we have imple-
mented the STEVE algorithm on top of SAC. We also add SVG(1) (Heess et al., 2015)
to comparison, which similar to our method uses the derivative of dynamic models to
learn the policy.

The results, shown in Fig. 19, highlight the strength of MAAC in terms of performance
and sample complexity. MAAC scales to higher dimensional tasks while maintaining its
sample efficiency and asymptotic performance. In all the four environments, our method
learns faster than previous MB and MF methods. We are able to learn near-optimal poli-
cies in the half-cheetah environment in just over 50 rollouts, while previous model-based
methods need at least the double amount of data. Furthermore, in complex environ-
ments, such as ant, MAAC achieves near-optimal performance within 150 rollouts while
other take orders of magnitudes more data.

7.4.2 Gradient Error

Here, we investigate how the bounds obtained relate to the empirical performance. In
particular, we study the effect of the horizon of the model predictions on the gradient
error. In order to do so, we construct a double integrator environment; since the transi-
tions are linear and the cost is quadratic for a linear policy, we can obtain the analytic
gradient of the expect return.

Figure 20 depicts the L1 error of the MAAC objective for different values of the horizon
H as well as what would be the error using the true dynamics. As expected, using
the true dynamics yields to lower gradient error since the only source comes from the
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learned Q-function that is weighted down by γH.

Figure 20: L1 error on the policy gradient when using
the proposed objective for different values of
the horizon H as well as the error obtained
when using the true dynamics. The results cor-
relate with the assumption that the error in the
learned dynamics is lower than the error in the
Q-function, as well as they correlate with the
derived bounds.

The results using learned dy-
namics correlate with our as-
sumptions and the derived bounds:
the error from the learned dy-
namics is lower than the one
in the Q-function, but it scales
poorly with the horizon. For
short horizons the error de-
creases as we increase the hori-
zon. However, large horizons is
detrimental since it magnifies the
error on the models.

7.4.3 Ablations

In order to investigate the im-
portance of each of the compo-
nents of our overall algorithm, we
carry out an ablation test. Specifi-
cally, we test three different com-
ponents: 1) not using the model
to train the policy, i.e., set H = 0,
2) not using the STEVE targets for
training the critic, and 3) using
a single sample estimate of the
path-wise derivative.

The ablation test is shown in
Figure 21. The test underpins the
importance of backpropagating
through the model: setting H to
be 0 inflicts a severe drop in the
algorithm performance. On the
other hand, using the STEVE targets results in slightly more stable training, but it does
not have a significant effect. Finally, while single sample estimates can be used in simple
environments, they are not accurate enough in higher dimensional environments such
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as ant.

Figure 21: Ablation test of our method. We test the importance of several components of our
method: not using the model to train the policy (H = 0), not using the STEVE tar-
gets for training the Q-function (-STEVE), and using a single sample estimate of the
pathwise derivative. Using the model is the component that affects the most the per-
formance, highlighting the importance of our derived estimator.

7.4.4 Model Predictive Control

One of the key benefits of methods that combine model-based reinforcement learning
and actor-critic methods is that the optimization procedure results in a stochastic policy,
a dynamics model and a Q-function. Hence, we have all the components for, at test time,
refine the action selection by the means of model predictive control (MPC). Here, we
investigate the improvement in performance of planning at test time. Specifically, we
use the cross-entropy method with our stochastic policy as our initial distributions. The
results, shown in Table 1, show benefits in online planning in complex domains; however,
its improvement gains are more timid in easier domains, showing that the learned policy
has already interiorized the optimal behaviour.

7.5 related work

Differentable Planning. Previous work has used backpropagate through learned mod-
els to obtain the optimal sequences of actions. For instance, Levine and Abbeel, 2014

learn linear local models and obtain the optimal sequences of actions, which is then
distilled into a neural network policy. The planning can be incorporated into the neural
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AntEnv HalfCheetahEnv HopperEnv Walker2dEnv

MAAC+MPC 3.97e3± 1.48e3 1.09e4± 94.5 2.8e3± 11 1.76e3± 78
MAAC 3.06e3± 1.45e3 1.07e4± 253 2.77e3± 3.31 1.61e3± 404

Table 1: Performance at test time with (maac+mpc) and without (maac) planning of the con-
verged policy using the MAAC objective.

network architecture (Okada et al., 2017; Tamar et al., 2016; Srinivas et al., 2018; Karkus et
al., 2019) or formulated as a differentiable function (Pereira et al., 2018; Amos et al., 2018).
Planning sequences of actions, even when doing model-predictive control (MPC), does
not scale well to high-dimensional, complex domains Janner et al., 2019. Our method,
instead learns a neural network policy in an actor-critic fashion aided with a learned
model. In our study, we evaluate the benefit of carrying out MPC on top of our learned
policy at test time, Section 7.4.4. The results suggest that the policy captures the optimal
sequence of action, and re-planning does not result in significant benefits.

Policy Gradient Estimation. The reinforcement learning objective involves comput-
ing the gradient of an expectation (Schulman et al., 2015a). By using Gaussian pro-
cesses (Deisenroth and Rasmussen, 2011), it is possible to compute the expectation analyt-
ically. However, when learning expressive parametric non-linear dynamical models and
policies, such closed form solutions do not exist. The gradient is then estimated using
Monte-Carlo methods (Mohamed et al., 2019). In the context of model-based RL, previ-
ous approaches mostly made use of the score-function, or REINFORCE estimator (Peters
and Schaal, 2006; Kurutach et al., 2018). However, this estimator has high variance and
extensive sampling is needed, which hampers its applicability in high-dimensional envi-
ronments. In this work, we make use of the pathwise derivative estimator (Mohamed et
al., 2019). Similar to our approach, (Heess et al., 2015) uses this estimator in the context of
model-based RL. However, they just make use of real-world trajectories that introduces
the need of a likelihood ratio term for the model predictions, which in turn increases
the variance of the gradient estimate. Instead, we entirely rely on the predictions of the
model, removing the need of likelihood ratio terms.

Actor-Critic Methods. Actor-critic methods alternate between policy evaluation, com-
puting the value function for the policy; and policy improvement using such value func-
tion (Sutton and Barto, 2018; Barto et al., 1983). Actor-critic methods can be classified
between on-policy and off-policy. On-policy methods tend to be more stable, but at the
cost of sample efficiency (Sutton, 1991b; Mnih et al., 2016). On the other hand, off-policy
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methods offer better sample complexity (Lillicrap et al., 2015). Recent work has signifi-
cantly stabilized and improved the performance of off-policy methods using maximum-
entropy objectives (Haarnoja et al., 2018a) and multiple value functions (Fujimoto et al.,
2018). Our method combines the benefit of both. By using the learned model we can
have a learning that resembles an on-policy method while still being off-policy.

7.6 conclusion

In this work, we present model-augmented actor-critic, MAAC, a reinforcement learning
algorithm that makes use of a learned model by using the pathwise derivative across
future timesteps. We prevent instabilities arisen from backpropagation through time by
the means of a terminal value function. The objective is theoretically analyzed in terms of
the model and value error, and we derive a policy improvement expression with respect
to those terms. Our algorithm that builds on top of MAAC is able to achieve superior
performance and sample efficiency than state-of-the-art model-based and model-free
reinforcement learning algorithms. For future work, it would be enticing to deploy the
presented algorithm on a real-robotic agent.
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8
A S Y N C H R O N O U S M E T H O D S F O R M O D E L - B A S E D
R E I N F O R C E M E N T L E A R N I N G

Figure 22: Profiling of one iteration of model-
based via meta-policy optimization
(MB-MPO). Each iteration takes
around 25 min. The exact time
depends on the environment.

Previous chapters have focused on tack-
ling the algorithmic difficulties of model-
based reinforcement learning. Specifically,
we have aimed to answer the ques-
tion: how can we combat model-bias?
ME-TRPO (Chapter 4) offers a solution
in terms of uncertainty characterization
while MB-MPO (Chapter 5) tackles it from
the perspective of policy adaptation. In
this chapter, we are concerned of how to
effectively deploy these algorithms in the
real-world.

Current model-based methods are com-
putationally more expensive than tradi-
tional approaches, for instance the total
training time of MB-MPO for learning a
quadrupedal locomotion policy is of 2.2
days (T. Wang et al., 2019). Figure 22

shows the percentage of time spent in each
step of the model-based learning process.
This coupled by the sensitivity of model-based algorithms to multiple hyperparameters
makes experimentation and learning of new policies extremely slow. In the following,
we present an asynchronous framework for model-based methods that allows fast, wall-
clock time, learning.
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8.1 overview

Autonomous skill acquisition has the potential to dramatically expand the tasks robots
can perform ranging from manufacturing to household robotics. In real robotic agents,
where data gathering is typically expensive, low sample complexity algorithms are re-
quired. Model-based reinforcement learning (RL) (Kaelbling et al., 1996) offers the poten-
tial to be data-efficient while achieving the same learning capabilities as model-free RL
by first learning a predictive model of the environment and then deriving a controller
from it.

In recent years, significant advances have been made in deep model-based reinforce-
ment learning. Model-based algorithms presented in (Janner et al., 2019; Chua et al.,
2018; Clavera et al., 2018; Buckman et al., 2018) achieve the same asymptotic performance
as model-free algorithms while requiring an order of magnitude less data. However,
these impressive results have been achieved at the cost of increasing the computational
burden of model-based algorithms. Tools such as ensembles and probabilistic models
have been key ingredients, preventing the policy from overfitting to the deficiencies of
the learned model. As a result, while state-of-the-art model-based methods require just a
few hours of agent interaction to learn complex tasks, they can nevertheless take days to
train. For instance, the algorithm presented in (Clavera et al., 2018) takes less than three
hours of real-world interaction to learn a locomotion behaviour, but the total training
time is of 2.2 days (T. Wang et al., 2019). A need for algorithms that are both sample
efficient and computationally fast is even more pressing when considering that these
algorithms present a large number of sensitive hyperparameters. Altogether, slow ex-
perimentation and extensive hyperparameter search constitute a major barrier for the
applicability of model-based methods to real-world robotics.

To bring down the wall-clock time of current model-based RL algorithms, we propose
an asynchronous strategy where data collection, model learning, and policy improve-
ment take place in parallel and asynchronously. Aside from speed, our method has two
further benefits: First, learning the model while training the policy prevents the policy
from overfitting to the deficiencies of the model, effectively regularizing the policy learn-
ing step (Luo et al., 2019). Second, collecting each rollout using the latest policy trained
during the policy improvement process diversifies the data collected, which results in
better predictive models.

The main contribution of our work is a general asynchronous framework for model-
based reinforcement learning that reduces the run time of current model-based algo-
rithms to be just the sampling time. It achieves better sample complexity than the
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classical sequential versions, and removes some hard-to-tune hyperparameters in cur-
rent model-based approaches, such as the number of trajectories to collect or the num-
ber of gradients steps to take. Our experimental evaluation illustrates the strengths of
our framework on four standard MuJoCo (Todorov et al., 2012) locomotion tasks. For
instance, we were able to learn an optimal policy in high dimensional and complex
quadrupedal locomotion within 60 minutes, while the classic sequential version takes
more than 10 times longer. Finally, we showcase the effectiveness of our approach in
real robotic manipulation skills that include block stacking and shape matching. In these
cases, our asynchronous framework was able to succeed at each of the tasks within 10

minutes of wall-clock time. On the real robotic tasks our approach closely matches the
performance of prior specialized work for such complex contact manipulation (Levine et
al., 2015), while being more general. Code of parallel and sequential implementation of
model-based algorithms, as well as videos of our method on the real robot environment,
can be found at our website.1

8.2 method

Typically, model-based algorithms iterate through three phases till convergence: gath-
ering data by interacting with the environment, learning a dynamics model using the
gathered data, and improving policy using the learned dynamics model. Previous model-
based RL work has made significant strides in decreasing sample complexity. It reduces
interaction time with the environment, but shifts more computational load into learning
distribution with models to capture uncertainty (Chua et al., 2018), and also into learning
robust policies (Luo et al., 2019) or adaptive ones (Clavera et al., 2018). As a result, the
wall-clock time of running such methods has significantly increased; for instance, train-
ing for 200k timesteps in the Ant environment takes 55 hours for MB-MPO (T. Wang
et al., 2019).

Our asynchronous framework, shown in Figure 23a, overcomes this deficiency and
further improves sample efficiency of current model-based methods. In the following,
we present the general recipe for asynchronous model-based reinforcement learning.

Within the framework, three main tasks of model-based algorithms are assigned to
three parallel, independent workers that are respectively dedicated to data collection,
model learning and policy improvement. The main task for each worker contains only
the minimum amount of work (e.g. collecting one rollout, updating for one epoch or one
gradient step). As a result, each worker fetches updates from servers with high frequency

1 https://sites.google.com/view/asynch-mb-rl/home
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(a) Our proposed asynchronous model-based
framework with three workers, communicating
exclusively through three servers. The workers
do not proceed in a specified order nor wait
for the others to complete to execute their own
function.

(b) Classic synchronous model-based methods,
where three main steps proceed in well-defined
order. Each of the steps does not start running
until the preceding one has finalized.

and acts in fully asynchronous behavior. Each worker executes three operations:
• Pull. Worker gets an update from one of the three servers. For example, for the

data collection worker, it pulls the latest policy parameters from the corresponding
server.

• Step. The step operation corresponds to the main function of the worker. For the
data collection worker, Step corresponds to collecting one rollout under its local
copy of the policy. In the following subsections we explain in detail Step operation
for each of the workers.

• Push. This operation sends the latest parameters or data to one of the three servers.
Again, in the case the data collection worker, Push corresponds to pushing the
collected rollout to the data buffer.

Each worker first checks one specific server either to fetch the latest parameters or to
move all data from the remote server to its local buffer. Then it carries out its own step
operation, and finally pushes the local change onto another specific server. Each worker
loops through this process until a global stopping criterion is met. In the experiments,
Section 8.4, the stopping criterion is set to be a total number of collected trajectories.

data collection. The data collection worker first pulls policy parameters θ from
the server. With the latest policy it proceeds to the step operation, namely collecting one
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trajectory τ = (s0,a0, ..., sH−1,aH−1, sH). Finally, it pushes the trajectory onto the data
buffer and starts over from pulling again.

Algorithm 6 Data Collection
1: for i = 1, ... do
2: Pull policy parameters θ
3: Collect one trajectory (st,at, st+1) with πθ in the real environment
4: Push data {(st,at, st+1)}
5: end for

model learning . In each iteration, this worker moves all trajectories from the re-
mote data buffer, if it is not empty, to its local buffer. The local buffer is of fixed size
and first-in-first-out. Then, it fits the model for one epoch on the local data buffer. Lastly
it pushes model parameter φ to the model parameter server. Since in practice the data
collection worker obtains samples at a slower pace than model training, we apply early
stopping via computing validation loss on held-out samples. The training of the model
stops if the an exponentially moving average of the validation loss increases after an
epoch. When new samples are available, the worker resets the rolling average and starts
training again. For long-horizon or low-data-frequency tasks where data collection is
slow, early stopping is crucial to prevent overfitting.

Algorithm 7 Model Learning
1: D = ∅
2: for i = 1, ... do
3: Pull samples {st,at}
4: D← D∪ {(st,at, st+1)}
5: Train dynamics model p̂φ for one epoch on D

6: Push dynamcis model parameters φ
7: end for

policy improvement. In each iteration, the policy improvement worker first pulls
from the model parameter server. Then it carries out the specific policy improvement step
specified by a model-based algorithm. For instance, in the case of model-ensemble trust-
region policy optimization (ME-TRPO) (Kurutach et al., 2018), this step corresponds
to sampling a batch of imaginary trajectories followed by a TRPO update. Finally the
worker pushes the improved policy weights θ to the policy parameter server.
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Algorithm 8 Policy Improvement
1: Randomly initialize θ
2: for i = 1, ... do
3: Pull model parameters φ
4: Collect imagined samples using πθ
5: Train policy for one gradient step
6: Push policy

parameters θ
7: end for

Asynchronous learning offers several advantages over sequential learning. First, since
the three main processes run in parallel, the running time of the algorithms is reduced
to be the total sampling time. Second, since the policy is being learned while collect-
ing data, at the beginning of each rollout a new policy is usually available to the data
collection worker, resulting in more diverse data. Third, since the model and policy are
learning concurrently, at each policy improvement step a new model is readily available
for the policy to fit on. It prevents the policy from overfitting to the model deficien-
cies, similarly observed in (Luo et al., 2019). Finally, there is no need to specify cru-
cial hyper-parameters for proper learning: number of environment rollouts, number of
model epochs, or number of policy gradient steps per iteration.

8.3 related work

In this section, we discuss related work, including asynchronous learning in the context
of RL, and finally real robotic learning with RL.

Asynchronous learning. The Hogwild! algorithm (Recht et al., 2011) popularized asyn-
chronous learning by showing that lock-free asynchronous stochastic gradient descent
(SGD) is able to out perform its synchronous version. Later on, (Dean et al., 2012) demon-
strated its benefits when training deep neural networks. Inspired by this, (Arun Nair et
al., 2015) were the first to apply asynchronous training to deep reinforcement learning.
And further work has extended these results to more efficient algorithms (Babaeizadeh
et al., 2016; Espeholt et al., 2018; Heess et al., 2017; Mnih et al., 2016; Stooke and Abbeel,
2018). However, previous work has focused on model-free algorithms (Mnih et al., 2015;
Schulman et al., 2017; Precup et al., 2000; Precup et al., 2001), where large amounts of
data are required, and distributed data collection is crucial for fast learning. In the case
of real robotics agents, however, parallel data collection requires having multiple robots,
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which can easily be prohibitively expensive (Gu et al., 2016a). In our asynchronous frame-
work parallelization occurs across the different phases of model-based RL algorithms,
rather than across multiple agents collaborating on one single phase such as collecting
experience.

Real Robot Learning. Prior work on model-based reinforcement learning on real
robotic agents has explored a diversity of schemes for dynamics learning, including
Gaussian Processes (Deisenroth and Rasmussen, 2011), mixture models (Moldovan et al.,
2015), and local linear models (Lioutikov et al., 2014). In this work we focus on learning
dynamics model parametrized by deep neural networks, which offer the potential to
scale up to higher dimensional domains and more complex tasks. While deep dynamics
models has been previously used on real robots (Nagabandi et al., 2018a), it has been
done using MPC type approaches. Another line of work has applied pure model-free
RL (Haarnoja et al., 2018c; Haarnoja et al., 2018b; R. Hafner and M. Riedmiller, 2007;
Gullapalli et al., 1992). For instance, (Gu et al., 2016a) used an asynchronous data col-
lection method for door opening. However, model-free RL is still significantly more data
inefficient than model-based methods, which hinders its applicability to general real
robotics learning. The real robotic tasks attempted in this work are similar to the ones
proposed by (Levine et al., 2015). In that work, however, they use a specialized method
for contact rich manipulation tasks.

8.4 experiments

Here, we will empirically corroborate the claims in the previous sections. Specifically, the
experiments are designed to address the following questions: (1) How does the learning
speed of our asynchronous framework compare against sequential and model-free base-
lines? (2) Does asynchronous learning effectively prevent model-bias by regularizing the
policy improvement step? (3) Is asynchronous data collection more effective than batch
data collection? (4) Is our framework able to rapidly learn complex, real-world manipu-
lation tasks? (5) Is our asynchronous framework brittle to data collection frequency?

To answer the posed questions, we will first evaluate our framework on four contin-
uous control benchmark tasks in the Mujoco simulator (Todorov et al., 2012; Brockman
et al., 2016). Then, we will analyze its benefits in further depth on a subset of those tasks.
And finally, we will showcase its performance on several contact rich object manipula-
tion tasks on the PR2 robot, Figure 28. The performance on all the simulated results is
averaged over 4 random seeds.
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8.4.1 Wall-Clock Time Speed-up and Sample Efficiency

We adapt our asynchronous framework to three different model-based algorithms, namely
model-ensemble trust-region policy optimization (ME-TRPO) (Kurutach et al., 2018), a
variant of it using proximal policy optimization (PPO) (Schulman et al., 2017) which
will refer to as ME-PPO, and model-based meta-policy optimization (MB-MPO) (Clav-
era et al., 2018). We directly compare the performance of the sequential and the asyn-
chronous version of each method, as well as two model-free methods TRPO (Schulman
et al., 2015b) and PPO (Schulman et al., 2017). In order to simulate real-world robot ex-
periments, where data-collection is typically the time bottleneck for RL algorithms, we
report the wall-clock time that those algorithms would have taken if they were to be
run in the real-world. All the experiments have a maximum path length of 200 timesteps.
Hence, the time T to collect one trajectory corresponds to 200 times the control frequency,
which is an attribute of the environment (Brockman et al., 2016). In the asynchronous
case, since data simulation is typically much faster than real-time, the worker responsible
for data collection sleeps until the time T elapses, and then starts the next step.
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Figure 24: Wall-clock time comparison between asynchronous model-based (solid), synchronous
model-based (dashed), and model-free (dotted) methods. Solid lines refer to algo-
rithms within our asynchronous framework, and dashed to its corresponding sequen-
tial version. Asynchronous learning significantly speeds up the training time of current
model-based algorithms. Best viewed in color.

Figure 24 shows the performance of the different algorithms in terms of wall-clock
time. Here, we see that the asynchronous adaptations significantly speed up the training
process. In general, asynch-ME-TRPO and asynch-ME-PPO converge faster than asynch-
MB-MPO, and similar relative convergence speed is observed in their synchronous ver-
sions.
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Figure 25: Sample complexity comparison between asynchronous model-based (solid), syn-
chronous model-based (dashed), and model-free (dotted) methods. Solid lines refer
to algorithms within our asynchronous framework, and dashed lines refer to corre-
sponding sequential versions. Asynchronous learning in general offers better sample
complexity than sequential synchronous learning. Best viewed in color.

Figure 25 shows the performance of the different algorithms in terms of sample com-
plexity. These results show that in general, asynchronous learning converges to its op-
timal solution faster than their corresponding synchronous methods. They suggest that
the asynchronous framework enhances current model-based methods by further reduc-
ing the sample complexity of these already data-efficient algorithms.

8.4.2 Interleaved Policy Learning and Model Learning

One aspect that differentiates the asynchronous framework from the synchronous one
is that policy updates are interleaved with model updates, whereas in the latter case,
the policy does not start taking gradient steps until all the models in the ensemble have
either early stopped or reached a pre-determined maximum number of epochs. This
section aims to show that such difference benefits the overall learning through policy
regularization.

To remove confounding effects, we implemented a partially-asynchronous ME-TRPO ,
with each iteration containing two phases: First, collectN rollouts from environment; and
second, alternatively fit the model ensemble for E epochs on current dataset and train
the policy for G gradient steps with the updated models. The first phase inherits the
implementation of synch-ME-TRPO, while the second phase mimics the asynchronous
effect by updating the policy with the model parameters before the models are fully
trained on the available dataset.
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To test our hypothesis, we compare the aforementioned methods in two Mujoco envi-
ronments, HalfCheetah and Walker2d. Figure 26a shows that the partially-asynchronous
method achieves better sample-efficiency than the synchronous one. It suggests that in-
terleaving model and policy updates, as is the case with the asynchronous framework,
helps prevent the policy from overfitting to the model deficiencies.
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Figure 26: Effects of asynchronous training in learning performance and sample efficiency.

8.4.3 Interleaved Policy Learning and Data Collection

A second aspect that distinguishes asynchronous methods is that policy learning and
data collection are interleaved. That is, environment trajectories are potentially collected
under policy even before the policy learner has taken sufficient gradient steps to fit to
the current model.

To investigate whether such a difference improves exploration for data collection,
we implemented a second partially-asynchronous ME-TRPO. After acquiring an initial
dataset, the trainer loops with two phases: First, fit the model to the obtained dataset;
second, alternatively take G policy gradient steps and append a new sampled rollout to
the dataset, for a total of N times.

This implementation is compared with synchronous ME-TRPO on HalfCheetah and
Walker2d environments, as shown in Figure 26b. The result shows the advantage of
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asynchronous training in terms of sample-efficiency. It suggests that an asynchronous
framework effectively encourages data exploration which results in learning benefits.

8.4.4 Early Stopping & Sampling Speed Effect

In this section, we first investigate the importance of integrating an early-stopping mech-
anism into our framework. In our framework, we stop training the model if the current
validation loss is larger than the exponentially moving average of it. Second, we analyze
the effect of the sampling frequency in the data efficiency of asynchronous model-based
RL. We analyze these two aspects in asynchronous ME-TRPO in the environments of
HalfCheetah and Walker2d.

In Figure 27a we show how different values of the weight in the exponentially moving
average affect performance. In Walker2d, the framework is robust to different degree of
early stopping. However, in the HalfCheetah environment, an appropriate value of early
stopping leads to faster learning.
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(a) Effect of the early stopping. Lower values
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average result in a more aggressive early
stopping.
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Figure 27: Early stopping and sampling speed effect on the average returns.

The length of a rollout is typically a characteristic of the problem, and thus not
tunnable. Here, we compare the performance of our asynchronous training when data
collection is carried out at different speeds; specifically, twice the speed and half of it,
Figure 27b. The result shows that slower data collection, rather than faster, typically
leads to better results. We attribute this to the fact that in the asynchronous framework,
data collection speed determines the number of gradient steps taken on the model and
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policy. Slower data collection allows for more model and policy training. Hence in algo-
rithms where model or policy training is particularly slow, the asynchronous framework
would benefit from preventing the data collection worker to gather an excessive number
of samples. A particular instance of this effect is the increase on sample complexity of
asynch-MB-MPO in Section 8.4.1.

8.4.5 Real-World Experiments

To best evaluate the real-life efficacy of our proposed asynchronous methods, we ex-
panded our framework’s domain of application to include a physical PR2 robot. In par-
ticular, we evaluated asynch-MB-MPO in three tasks: reaching a position, inserting a
unique shape into its matching hole in a box, and stacking a modular block onto a fixed
base. In the latter two experiments, the manipulated objects were assumed to be fixed
extensions of the end-effector, allowing us to use forward kinematics to compute the
object’s current position. These tasks can be observed in Figures 28a-c.

The robot itself has a 23-dimensional state space composed of measurements from the
active left arm: seven joint angles, seven joint velocities, and nine Cartesian points of
the end-effector that determine the pose of the object. The action space was directly the
torque commands for the 7-DOF arm. The actions were applied at a frequency of 10 Hz.

The reward function for each task was applied on the distance, d, between the current
position of the end-effector and a fixed target position. As in (Levine et al., 2015), we
formulated reward as a mixture of a quadratic penalty and a Lorentzian ρ-functions, i.e.,
r(d) = −ωd2 − v log(d2 +α), where we set ω = 1.0, v = 1.0, and α = 10−5. The shape of
this cost function ensures quick and precise execution of tasks. Based on this reward, we
also introduced two scaled quadratic penalties on the magnitude of the joint velocities
and applied torques controls to best secure a smooth performance in task completion.

The results, shown in Figure 29, show that asynchronous MB-MPO achives contact rich
object manipulated tasks, such as lego stacking and shape matching, within 100 time-
steps. This corresponds to 10 minutes of run time, matching similar speed performance
attained in (Levine et al., 2015). Videos of our method on the real robot environment,
can be found at our website.2

2 https://sites.google.com/view/asynch-mb-rl/home
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(a) Shape matching, the
PR2 robot insert shape
into its matching hole.

(b) Reaching, the PR2

moves its end-effector
to an pre-specified
goal.

(c) Lego stacking, the PR2

assembles one lego
block on top of another.

Figure 28: Tasks in our PR2 experiments.
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Figure 29: Final distance attained in each of the tasks evaluated on the PR2 robot with asynch-
MB-MPO.

8.5 conclusion

In this work we proposed an asynchronous framework for model-based reinforcement
learning. Our empirical investigation shows that asynchronous model-based RL learns
substantially faster than prior approaches. We characterized the key traits of asynchronous
training that improves sample efficiency: policy regularization by interleaving policy
learning and model learning, and better data collection by interleaving policy learning
and data collection. Finally, we showcase the performance of asynchronous learning in
real robotic manipulation, achieving to learn contact rich tasks within 10 min of run
time.
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9
L E A R N I N G T O A D A P T I N D Y N A M I C , R E A L - W O R L D
E N V I R O N M E N T S T H R O U G H M E TA - R E I N F O R C E M E N T L E A R N I N G

In the previous chapters, we have developed a set of algorithms that allow for efficient,
and fast automatic skill acquisition. The tasks considered so far are static, that is the
environment does not change except because of the actions of the policy. While this for-
mulation encompasses a wide range of useful applications, such as warehouse robotics,
it is not sufficient for all real-world robotics: the real-world is stochastic and changing.
As a result, the classical Markov models are not suitable.

In this last chapter, we present an approach for adaptive models. Our approach, allows
for models that update themselves based on past timesteps. We stretch the notion of
meta-learning to formulate online adaptation into its framework and learn models that
can predict accurately in varying conditions. As in MB-MPO, Chapter 5, we rely on the
generalization of the adaption step instead of the generalization of the model, which
has been proven unsuccessful. We showcase our method on a real 6-legged robot on a
varying of terrains and tasks not seen during training.

9.1 overview

Both model-based and model-free reinforcement learning (RL) methods generally op-
erate in one of two regimes: all training is performed in advance, producing a model
or policy that can be used at test-time to make decisions in settings that approximately
match those seen during training; or, training is performed online (e.g., as in the case
of online temporal-difference learning), in which case the agent can slowly modify its
behavior as it interacts with the environment. However, in both of these cases, dynamic
changes such as failure of a robot’s components, encountering a new terrain, environ-
mental factors such as lighting and wind, or other unexpected perturbations, can cause
the agent to fail. In contrast, humans can rapidly adapt their behavior to unseen physical
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perturbations and changes in their dynamics (Braun et al., 2009): adults can learn to walk
on crutches in just a few seconds, people can adapt almost instantaneously to picking
up an object that is unexpectedly heavy, and children that can walk on carpet and grass
can quickly figure out how to walk on ice without having to relearn how to walk. How
is this possible? If an agent has encountered a large number of perturbations in the past,
it can in principle use that experience to learn how to adapt. In this work, we propose a
meta-learning approach for learning online adaptation.

Motivated by the ability to tackle real-world applications, we specifically develop a
model-based meta-reinforcement learning algorithm. In this setting, data for updating
the model is readily available at every timestep in the form of recent experiences. But
more crucially, the meta-training process for training such an adaptive model can be
much more sample efficient than model-free meta-RL approaches (Duan et al., 2016b; J.
Wang et al., 2016; Finn et al., 2017). Further, our approach foregoes the episodic frame-
work on which model-free meta-RL approaches rely on, where tasks are pre-defined to
be different rewards or environments, and tasks exist at the trajectory level only. Instead,
our method considers each timestep to potentially be a new “task, " where any detail or
setting could have changed at any timestep. This view induces a more general meta-RL
problem setting by allowing the notion of a task to represent anything from existing in
a different part of the state space, to experiencing disturbances, or attempting to achieve
a new goal.

Learning to adapt a model alleviates a central challenge of model-based reinforcement
learning: the problem of acquiring a global model that is accurate throughout the entire
state space. Furthermore, even if it were practical to train a globally accurate dynamics
model, the dynamics inherently change as a function of uncontrollable and often unob-
servable environmental factors, such as those mentioned above. If we have a model that
can adapt online, it need not be perfect everywhere a priori. This property has previously
been exploited by adaptive control methods (Åström and Wittenmark, 2013; Sastry and
Isidori, 1989; Pastor et al., 2011; Meier et al., 2016); but, scaling such methods to complex
tasks and nonlinear systems is exceptionally difficult. Even when working with deep
neural networks, which have been used to model complex nonlinear systems (Kurutach
et al., 2018), it is exceptionally difficult to enable adaptation, since such models typically
require large amounts of data and many gradient steps to learn effectively. By specifi-
cally training a neural network model to require only a small amount of experience to
adapt, we can enable effective online adaptation in complex environments while putting
less pressure on needing a perfect global model.

The primary contribution of our work is an efficient meta reinforcement learning ap-
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proach that achieves online adaptation in dynamic environments. To the best knowledge
of the authors, this is the first meta-reinforcement learning algorithm to be applied in a
real robotic system. Our algorithm efficiently trains a global model that is capable to use
its recent experiences to quickly adapt, achieving fast online adaptation in dynamic envi-
ronments. We evaluate two versions of our approach, recurrence-based adaptive learner
(ReBAL) and gradient-based adaptive learner (GrBAL) on stochastic and simulated con-
tinuous control tasks with complex contact dynamics (Fig. 30). In our experiments, we
show a quadrupedal “ant” adapting to the failure of different legs, as well as a “half-
cheetah" robot adapting to the failure off different joints, navigating terrains with dif-
ferent slopes, and walking on floating platforms of varying buoyancy. Our model-based
meta RL method attains substantial improvement over prior approaches, including stan-
dard model-based methods, online model-adaptive methods, model-free methods, and
prior meta-reinforcement learning methods, when trained with similar amounts of data.
In all experiments, meta-training across multiple tasks is sample efficient, using only the
equivalent of 1.5− 3 hours of real-world experience, roughly 10× less than what model-
free methods require to learn a single task. Finally, we demonstrate GrBAL on a real
dynamic legged millirobot (see Fig 30). To highlight not only the sample efficiency of
our meta model-based reinforcement learning approach, but also the importance of fast
online adaptation in the real world, we show the agent’s learned ability to adapt online
to tasks such as a missing leg, novel terrains and slopes, miscalibration or errors in pose
estimation, and new payloads to be pulled.

9.2 method

9.2.1 Meta-Learning for Online Model Adaptation

In this section, we present our approach for meta-learning for online model adaptation.
As explained in Section 2.3, standard meta-learning formulations require the learned
model φ∗,ψ∗ to learn using M data points from some new “task.” In prior gradient-
based and model-based meta-RL approaches (Finn et al., 2017; Sæmundsson et al., 2018),
the M has corresponded to M trajectories, leading to episodic adaptation.

Our notion of task is slightly more fluid, where every segment of a trajectory can be
considered to be a different “task,” and observations from the past T1 timesteps (rather
than the past episodes) can be considered as providing information about the current
task setting. Since changes in system dynamics, terrain details, or other environmental
changes can occur at any time, we consider (at every time step) the problem of adapting
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the model using the T1 past time steps to predict the next T2 timesteps. In this setting,
T1 and T2 are pre-specified hyperparameters; see appendix for a sensitivity analysis of
these parameters.

In this work, we use the notion of environment M to denote different settings or con-
figurations of a particular problem, ranging from malfunctions in the system’s joints to
the state of external disturbances. We assume a distribution of environments ρ(M) that
share some common structure, such as the same observation and action space, but may
differ in their dynamics pM(s ′|s,a). We denote a trajectory segment by τM[i : j], which
represents a sequence of states and actions (si,ai, ..., sj,aj, sj+1) sampled within an en-
vironment M. Our algorithm assumes that the environment is locally consistent, in that
every segment of length j− i has the same environment. Even though this assumption is
not always correct, it allows us to learn to adapt from data without knowing when the
environment has changed. Due to the fast nature of our adaptation (less than a second),
this assumption is seldom violated.

We pose the meta-RL problem in this setting as an optimization over (φ, ψ) with re-
spect to a maximum likelihood meta-objective. The meta-objective is the likelihood of the
data under a predictive model p̂φ′(s ′|s,a) with parametersφ′, whereφ′ = uψ(τM[t− T1, t],φ)

corresponds to model parameters that were updated using the past T1 data points. Con-
cretely, this corresponds to the following optimization:

min
φ,ψ

EτM[]t−T1:t+T2]∼D

[
L(τM[t : t+ T2],φ′M)

]
s.t.: φ′M = uψ(τM[t− T1 : t],φ), (22)

In that τM[t− T1, t+ T2) ∼ D corresponds to trajectory segments sampled from our pre-
vious experience, and the loss L corresponds to the negative log likelihood of the data
under the model:

L(τM[t : t+ T2],φ′M) , −
1

T2

t+T2∑
t ′=t

log p̂φ′M(st ′+1|st ′ ,at ′). (23)

In the meta-objective in Equation 22, note that the past T1 points are used to adapt φ
intoφ′, and the loss of thisφ′ is evaluated on the future T2 points. Thus, we use the past
T1 timesteps to provide insight into how to adapt our model to perform well for nearby
future timesteps. As outlined in Algorithm 9, the update rule uψ for the inner update
and a gradient step on φ for the outer update allow us to optimize this meta-objective
of adaptation. Thus, we achieve fast adaptation at test time by being able to fine-tune the
model using just T1 data points.

While we focus on reinforcement learning problems in our experiments, this meta-
learning approach could be used for a learning to adapt online in a variety of sequence
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modeling domains. We present our algorithm using both a recurrence and a gradient-
based meta-learner, as we discuss next.

Gradient-Based Adaptive Learner (GrBAL). GrBAL uses a gradient-based meta-learning
to perform online adaptation; in particular, we use MAML (Finn et al., 2017). In this case,
our update rule is prescribed by gradient descent ( 24.)

φ′M = uψ(τM[t− T1 : t],φ) = φM +ψ∇φ
1

T1

t−1∑
t ′=t−T1

log p̂φM
(st ′+1|st ′ ,at ′) (24)

Recurrence-Based Adaptive Learner (ReBAL). ReBAL, instead, utilizes a recurrent model,
which learns its own update rule (i.e., through its internal gating structure). In this case,
ψ and uψ correspond to the weights of the recurrent model that update its hidden state.

Algorithm 9 Model-Based Meta-Reinforcement Learning (train time)
Require: Distribution ρM over tasks
Require: Learning rate β ∈ R+

Require: Number of sampled tasks N, dataset D
Require: Task sampling frequency nS ∈ Z+

1: Randomly initialize φ
2: for i = 1, ... do
3: if i mod nS = 0 then
4: Sample M ∼ ρ(M)

5: Collect τM using Alg. 10

6: D← D∪ {τM}

7: end if
8: for j = 1 . . .N do
9: τM[t− T1 : t− 1],τM[t : t+ T2] ∼ D

10: φ′M ← uψ(τM[t− T1 : t],φ)

11: Lj ← L(τM[t : t+ T2],φ′M)

12: end for

13: φ← φ−β∇φ 1
N

N∑
j=1
Lj

14: ψ← ψ− η∇ψ 1
N

N∑
j=1
Lj

15: end for
16: Return (φ, ψ) as (φ∗, ψ∗)
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9.2.2 Meta-Online Adaptation for Control

Now that we have discussed our approach for enabling online adaptation, we next pro-
pose how to build upon this idea to develop a model-based meta-reinforcement learning
algorithm. First, we explain how the agent can use the adapted model to perform a task,
given parameters φ∗ and ψ∗ from optimizing the meta-learning objective.

Given φ∗ and ψ∗, we use the agent’s recent experience to adapt the model param-
eters: φ′∗ = uψ∗(τ[t− T1 : t],φ∗). This results in a model p̂θ′∗ that better captures the
local dynamics in the current setting, task, or environment. This adapted model is then
passed to our controller, along with the reward function r and a planning horizon H.
We use a planning H that is smaller than the adaptation horizon T2, since the adapted
model is only valid within the current context. We use model predictive path integral
control (MPPI) (Williams et al., 2015), but, in principle, our model adaptation approach
is agnostic to the model predictive control (MPC) method used.

Algorithm 10 Online Model Adaptation
(test time)
Require: Meta-learned parameters φ∗,ψ∗
Require: controller(), H, r, nA

1: D← ∅
2: for each timestep t do
3: φ′∗ ← uψ∗(D[t− T1 : t],φ∗)
4: a← controller(φ ′∗, r,H,nA)
5: Execute a, add result to D

6: end for
7: Return rollout D

The use of MPC compensates for model inaccuracies by preventing accumulating er-
rors, since we replan at each time step using updated state information. MPC also allows
for further benefits in this setting of online adaptation, because the model p̂φ′M itself will
also improve by the next time step. After taking each step, we append the resulting state
transition onto our dataset, reset the model parameters back to φ∗, and repeat the entire
planning process for each timestep. See Algorithm 10 for this adaptation procedure. Fi-
nally, in addition to test-time, we also perform this online adaptation procedure during
the meta-training phase itself, to provide on-policy rollouts for meta-training. For the
complete meta-RL algorithm, see Algorithm 9.
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9.3 related work

Prior online adaptation approaches (Tanaskovic et al., 2013; Aswani et al., 2012) have
aimed to learn an approximate global model and then adapt it at test time. Dynamic
evaluation algorithms (Rei, 2015; Krause et al., 2017; Krause et al., 2016; Fortunato et
al., 2017), for example, learn an approximate global distribution at training time and
adapt those model parameters at test time to fit the current local distribution via gra-
dient descent. There exists extensive prior work on online adaptation in model-based
reinforcement learning and adaptive control (Sastry and Isidori, 1989). In contrast from
inverse model adaptation (Kelouwani et al., 2012; Underwood and Husain, 2010; Pastor
et al., 2011; Meier et al., 2016; Meier and Schaal, 2016; Rai et al., 2017), we are concerned
in the problem of adapting the forward model, closely related to online system identi-
fication (Manganiello et al., 2014). Work in model adaptation (Levine and Koltun, 2013;
Gu et al., 2016b; Fu et al., 2016; Weinstein and Botvinick, 2017) has shown that a perfect
global model is not necessary, and prior knowledge can be fine-tuned to handle small
changes. These methods, however, face a mismatch between what the model is trained
for and how it is used at test time. In this paper, we bridge this gap by explicitly training
a model for fast and effective adaptation. As a result, our model achieves more effective
adaptation compared to these prior works, as validated in our experiments.

Our problem setting relates to meta-learning, a long-standing problem of interest in
machine learning that is concerned with enabling artificial agents to efficiently learn new
tasks by learning to learn (Thrun and Pratt, 1998; Schmidhuber and Huber, 1991; Naik
and Mammone, 1992; Lake et al., 2015). A meta-learner can control learning through
approaches such as deciding the learner’s architecture (B. Baker et al., 2016), or by pre-
scribing an optimization algorithm or update rule for the learner (Bengio et al., 1990;
Schmidhuber, 1992; Younger et al., 2001; Andrychowicz et al., 2016; K. Li and Malik,
2016; Ravi and Larochelle, 2018). Another popular meta-learning approach involves sim-
ply unrolling a recurrent neural network (RNN) that ingests the data (Santoro et al.,
2016; Munkhdalai and Yu, 2017; Munkhdalai et al., 2017; Mishra et al., 2018) and learns
internal representations of the algorithms themselves, one instantiation of our approach
(ReBAL) builds on top of these methods. On the other hand, the other instantiation of
our method (GrBAL) builds on top of MAML (Finn et al., 2017). GrBAL differs from
the supervised version of MAML in that MAML assumes access to a hand-designed dis-
tribution of tasks. Instead, one of our primary contributions is the online formulation
of meta-learning, where tasks correspond to temporal segments, enabling “tasks” to be
constructed automatically from the experience in the environment.
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Figure 30: Two real-world and four simulated environments on which our method is evaluated
and adaptation is crucial for success (e.g., adapting to different slopes and leg failures)

Meta-learning in the context of reinforcement learning has largely focused on model-
free approaches (Duan et al., 2016b; J. Wang et al., 2016; Sung et al., 2017; Al-Shedivat
et al., 2017). However, these algorithms present even more (meta-)training sample com-
plexity than non-meta model-free RL methods, which precludes them from real-world
applications. Recent work (Sæmundsson et al., 2018) has developed a model-based meta
RL algorithm, framing meta-learning as a hierarchical latent variable model, training
for episodic adaptation to dynamics changes; the modeling is done with GPs, and re-
sults are shown on the cart-pole and double-pendulum agents. In contrast, we propose
an approach for learning online adaptation of high-capacity neural network dynamics
models; we present two instantiations of this general approach and show results on both
simulated agents and a real legged robot.

9.4 experiments

Our evaluation aims to answer the following questions: (1) Does our approach enable
fast adaptation to varying dynamics, tasks, and environments, both inside and outside
of the training distribution? (2) How does our method’s performance compare to that
of other methods? (3) How do GrBAL and ReBAL compare? (4) How does meta model-
based RL compare to meta model-free RL in terms of sample efficiency and performance
for these experiments? (5) Can our method learn to adapt online on a real robot, and if
so, how does it perform? We next present our set-up and results, motivated by these
questions. Videos are available online1, and further analysis is provided in the appendix.

We first conduct a comparative evaluation of our algorithm, on a variety of simulated
robots using the MuJoCo physics engine (Todorov et al., 2012). For all of our environ-
ments, we model the transition probabilities as Gaussian random variables with mean
parameterized by a neural network model (3 hidden layers of 512 units each and ReLU
activations) and fixed variance. In this case, maximum likelihood estimation corresponds
to minimizing the mean squared error. We now describe the setup of our environments
(Fig. 30), where each agent requires different types of adaptation to succeed at run-time:

1 Videos available at: https://sites.google.com/berkeley.edu/metaadaptivecontrol
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Half-cheetah (HC): disabled joint. For each rollout during meta-training, we ran-
domly sample a joint to be disabled (i.e., the agent cannot apply torques to that joint).
At test time, we evaluate performance in two different situations: disabling a joint un-
seen during training, and switching between disabled joints during a rollout. The for-
mer examines extrapolation to out-of-distribution environments, and the latter tests fast
adaptation to changing dynamics.

HC: sloped terrain. For each rollout during meta-training, we randomly select an
upward or downward slope of low steepness. At test time, we evaluate performance on
unseen settings including a gentle upward slope, a steep upward slope, and a steep hill
that first goes up and then down.

HC: pier. In this experiment, the cheetah runs over a series of blocks that are floating
on water. Each block moves up and down when stepped on, and the changes in the
dynamics are rapidly changing due to each block having different damping and friction
properties. The HC is meta-trained by varying these block properties, and tested on a
specific (randomly-selected) configuration of properties.

Ant: crippled leg. For each meta-training rollout, we randomly sample a leg to cripple
on this quadrupedal robot. This causes unexpected and drastic changes to the underlying
dynamics. We evaluate this agent at test time by crippling a leg from outside of the
training distribution, as well as transitioning within a rollout from normal operation to
having a crippled leg.

In the following sections, we evaluate our model-based meta-RL methods (GrBAL and
ReBAL) in comparison to several prior methods:
• Model-free RL (TRPO): To evaluate the importance of adaptation, we compare to a

model-free RL agent that is trained across environments E ∼ ρ(E) using TRPO (Schul-
man et al., 2015b).

• Model-free meta-RL (MAML-RL): We compare to a state-of-the-art model-free meta-
RL method, MAML-RL (Finn et al., 2017).

• Model-based RL (MB): Similar to the model-free agent, we also compare to a single
model-based RL agent, to evaluate the importance of adaptation. This model is trained
using supervised model-error and iterative model bootstrapping.

• Model-based RL with dynamic evaluation (MB+DE): We compare to an agent trained
with model-based RL, as above. However, at test time, the model is adapted by taking
a gradient step at each timestep using the past T1 observations, akin to dynamic eval-
uation (Krause et al., 2017). This final comparison evaluates the benefit of explicitly
training for adaptability.
All model-based approaches (MB, MB+DE, GrBAL, and ReBAL) use model bootstrap-
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ping, use the same neural network architecture, and use the same planner within experi-
ments: MPPI (Williams et al., 2015) for the simulated experiments and random shooting
(RS) (Nagabandi et al., 2017) for the real-world experiments.

9.4.1 Effect of Adaptation

First, we analyze the effect of the model adaptation, and show results from test-time
runs on three environments : HC pier, HC sloped terrain with a steep up/down hill, and
ant crippled leg with the chosen leg not seen as crippled during training.

Figure 31: Histogram of normalized T2-step model prediction errors of GrBAL, showing the im-
provement of the post-update model’s predictions over the pre-update ones.

Figure 31 displays the distribution shift between the pre-update and post-update
model prediction errors of three GrBAL runs, showing that using the past T1 timesteps
to update φ∗ (pre) into φ′∗ (post) does indeed reduce model error on predicting the
following T2 timesteps.

9.4.2 Performance and Meta-training Sample Efficiency

We first study the sample efficiency of the meta-training process. Figure 32 shows the
average return across test environments w.r.t. the amount of data used for meta-training.
We (meta-)train the model-free methods (TRPO and MAML-RL) until convergence, using
the equivalent of about two days of real-world experience. In contrast, we meta-train
the model-based methods (including our approach) using the equivalent of 1.5-3 hours
of real-world experience. Our methods result in superior or equivalent performance
to the model-free agent that is trained with 1000 times more data. Our methods also
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surpass the performance of the non-meta-learned model-based approaches. Finally, our
performance closely matches the high asymptotic performance of the model-free meta-
RL method for half-cheetah disabled, and achieves a suboptimal performance for ant
crippled but, again, it does so with the equivalent of 1000 times less data. Note that this
suboptimality in asymptotic performance is a known issue with model-based methods,
and thus an interesting direction for future efforts. The improvement in sample efficiency
from using model-based methods matches prior findings (Deisenroth and Rasmussen,
2011; Nagabandi et al., 2017; Kurutach et al., 2018); the most important evaluation, which
we discuss in more detail next, is the ability for our method to adapt online to drastic
dynamics changes in only a handful of timesteps.

Figure 32: Compared to model-free RL, model-free meta-RL, and model-based RL methods, our
model-based meta-RL methods achieve good performance with 1000× less data. Dot-
ted lines indicate performance at convergence. For MB+DE+MPPI, we perform dy-
namic evaluation at test time on the final MB+MPPI model.

9.4.3 Test-time Performance: Online Adaptation & Generalization

In our second comparative evaluation, we evaluate final test time performance both
GrBAL and ReBAL in comparison to the aforementioned methods. In the interest of
developing efficient algorithms for real-world applications, we operate all methods in
the low data regime for all experiments: the amount of data available (meta-)training is
fixed across methods, and roughly corresponds to 1.5-3 hours of real-world experience
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depending on the domain. We also provide the performance of a MB oracle, which is
trained using unlimited data from only the given test environment (rather than needing
to generalize to various training environments).

Figure 33: Simulated results in a variety of dynamic test
environments. GrBAL outperforms other meth-
ods, even the MB oracle, in all experiments
where fast adaptation is necessary. These re-
sults highlight the difficulty of training a global
model, and the importance of adaptation.

In these experiments, note that
all agents were meta-trained on
a distribution of tasks/environ-
ments (as detailed above), but
we then evaluate their adapta-
tion ability on unseen environ-
ments at test time. We test the
ability of each approach to adapt
to sudden changes in the environ-
ment, as well as to generalize be-
yond the training environments.
We evaluate the fast adaptation
(F.A.) component on the HC dis-
abled joint, ant crippled leg, and
the HC pier. On the first two,
we cause a joint/leg of the robot
to malfunction in the middle of
a rollout. We evaluate the gener-
alization component also on the
tasks of HC disabled joint and
ant crippled leg, but this time, the
leg/joint that malfunctions has
not been seen as crippled during training. The last environment that we test general-
ization on is the HC slopped terrain for a hill, where the agent has to run up and down
a steep slope, which is outside of the gentle slopes that it experienced during training.
The results, shown in Fig. 33, show returns that are normalized such that the MB oracle
achieves a return of 1.

In all experiments, due to low quantity of training data, TRPO performs poorly. Al-
though MB+DE achieves better generalization than MB, the slow nature of its adaptation
causes it to fall behind MB in the environments that require fast adaptation. On the other
hand, our approach surpasses the other approaches in all of the experiments. In fact, in
the HC pier and the fast adaptation of ant environments, our approach surpasses the
model-based oracle. This result showcases the importance of adaptation in stochastic
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environments, where even a model trained with a lot of data cannot be robust to un-
expected occurrences or disturbances. ReBAL displays its strengths on scenarios where
longer sequential inputs allow it to better asses current environment settings, but overall,
GrBAL seems to perform better for both generalization and fast adaptation.

9.4.4 Real-World Results

To test our meta model-based RL method’s sample efficiency, as well as its ability to per-
form fast and effective online adaptation, we applied GrBAL to a real legged millirobot,
comparing it to model-based RL (MB) and model-based RL with dynamic evaluation
(MB+DE). Due to the cost of running real robot experiments, we chose the better per-
forming method (i.e., GrBAL) to evaluate on the real robot.

Figure 34: GrBAL clearly outperforms both MB and
MB+DE, when tested on environments that
(1) require online adaptation, and/or (2) were
never seen during training.

This small 6-legged robot, as
shown in Fig. 1 and Fig. 30,
presents a modeling and con-
trol challenge in the form of
highly stochastic and dynamic
movement. This robot is an excel-
lent candidate for online adapta-
tion for many reasons: the rapid
manufacturing techniques and
numerous custom-design steps
used to construct this robot make
it impossible to reproduce the
same dynamics each time, its
linkages and other body parts de-
teriorate over time, and it moves
very quickly and dynamically
with The state space of the robot
is a 24-dimensional vector, includ-
ing center of mass positions and
velocities, center of mass pose
and angular velocities, back-EMF
readings of motors, encoder read-
ings of leg motor angles and ve-
locities, and battery voltage. We define the action space to be velocity setpoints of the
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Left Str Z-z F-8

Carpet GrBAL 4.07 3.26 7.08 5.28

MB 3.94 3.26 6.56 5.21

Styrofoam GrBAL 3.90 3.75 7.55 6.01

MB 4.09 4.06 7.48 6.54

Turf GrBAL 1.99 1.65 2.79 3.40

MB 1.87 1.69 3.52 2.61

Table 2: Trajectory following costs for real-world GrBAL and MB results when tested on three
terrains that were seen during training. Tested here for left turn (Left), straight line (Str),
zig-zag (Z-z), and figure-8 shapes (F-8). The methods perform comparably, indicating
that online adaptation is not needed in the training terrains, but including it is not detri-
mental.

rotating legs. The action space has a dimension of two, since one motor on each side is
coupled to all three of the legs on that side. All experiments are conducted in a motion
capture room. Computation is done on an external computer, and the velocity setpoints
are streamed over radio at 10 Hz to be executed by a PID controller on the microcon-
troller on-board of the robot.

We meta-train a dynamics model for this robot using the meta-objective described in
Equation 22, and we train it to adapt on entirely real-world data from three different
training terrains: carpet, styrofoam, and turf. We collect approximately 30 minutes of
data from each of the three training terrains. This data was entirely collected using a
random policy, in conjunction with a safety policy, whose sole purpose was to prevent
the robot from exiting the area of interest.

Our first group of results (Table 2) show that, when data from a random policy is used
to train a dynamics model, both a model trained with a standard supervised learning ob-
jective (MB) and a GrBAL model achieve comparable performance for executing desired
trajectories on terrains from the training distribution.

Next, we test the performance of our method on what it is intended for: fast online
adaptation of the learned model to enable successful execution of new, changing, or out-
of-distribution environments at test time. Similar to the comparisons above, we compare
GrBAL to a model-based method (MB) that involves neither meta-training nor online
adaptation, as well as a dynamic evaluation method that involves online adaptation of
that MB model (MB+DE). Our results (Fig. 6) demonstrate that GrBAL substantially
outperforms MB and MB+DE, and, unlike MB and MB+DE, and that GrBAL can quickly
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1) adapt online to a missing leg, 2) adjust to novel terrains and slopes, 3) account for
miscalibration or errors in pose estimation, and 4) compensate for pulling payloads.

None of these environments were seen during training time, but the agent’s ability to
learn how to learn enables it to quickly leverage its prior knowledge and fine-tune to
adapt to new environments online. Furthermore, the poor performance of the MB and
MB+DE baselines demonstrate not only the need for adaptation, but also the importance
of good initial parameters to adapt from (in this case, meta-learned parameters). The
qualitative results of these experiments in Fig. 35 show that the robot is able to use our
method to adapt online and effectively follow the target trajectories, even in the presence
of new environments and unexpected perturbations at test time.

bounding-style gaits; hence, its dynamics are strongly dependent on the terrain or
environment at hand.

Figure 35: The dotted black line indicates the desired trajectory in the xy plane. By effectively
adapting online, our method prevents drift from a missing leg, prevents sliding side-
ways down a slope, accounts for pose miscalibration errors, and adjusts to pulling
payloads (left to right). Note that none of these tasks/environments were seen during
training time, and they require fast and effective online adaptation for success.

9.5 conclusion

In this work, we present an approach for model-based meta-RL that enables fast, on-
line adaptation of large and expressive models in dynamic environments. We show that
meta-learning a model for online adaptation results in a method that is able to adapt
to unseen situations or sudden and drastic changes in the environment, and is also
sample efficient to train. We provide two instantiations of our approach (ReBAL and
GrBAL), and we provide a comparison with other prior methods on a range of continu-
ous control tasks. Finally, we show that (compared to model-free meta-RL approaches),
our approach is practical for real-world applications, and that this capability to adapt
quickly is particularly important under complex real-world dynamics.
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10
C O N C L U S I O N

In this thesis, we have considered the problem of efficient autonomous skill acquisition,
aiming to find methods that can make a maximal use of the data available to obtain
optimal policies. We have focused our effort in model-based methods, which have the
potential to solve such problem. First, we defined the model-based paradigm and dis-
sected the problem of “model-bias," which explains the low performance of prior model-
based methods. Then, we presented model-ensemble trust-region policy optimization,
or ME-TRPO, that solves the issue of over-optimism in model-bias, allowing to train
performant and sample efficient policies in simple domains by learning an ensemble of
models that characterize the epistemic uncertainty. In order to scale ME-TRPO to more
complex domains, we had to tackle the approximation and compounding error present
in the model-bias problem. However, these errors are intrinsic of any machine learning
system. We present a method that exploits such errors to learn an adaptive policy to
different dynamics, more errors then correspond to more adaptability. At test time, the
policy is adapted to the real-world dynamics. This is the idea behind model-based via
meta-policy optimization (MB-MPO), a method that maintains the sample complexity
of ME-TRPO while scaling to complex domains. We further enhance MB-MPO by de-
veloping a meta-learning algorithm that is able to learn the exploration strategy needed
to identify the task, or dynamics, in order to adapt successfully. Finally, we present a
method that efficiently tackles the compounding error problem in model-bias by trun-
cating the predictions of the model with a value function. This last algorithm, model-
augmented actor-critic, is able to efficiently scale to complex environment by making
use of the derivatives of the learned model.

After presenting these two methods that tackle model-bias, we develop an asynchronous
framework for fast policy learning. Enabling not only efficient, but also fast skill learn-
ing will expand the applicability of robotic systems in our daily lives. The asynchronous
framework presented is tailored to model-based methods, reducing the wall-clock train-
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ing of these algorithm by a factor of 10. We use this framework to learn a block stacking
policy within 10 min, and a shape matching policy within 3 min in the real PR2 robot. Fi-
nally, we emphasize the difference between the studied environments and the real-world.
Contrary to the environments studied so far, the real-world is stochastic, partially observ-
able and changing. In the last chapter, we present a method that enables model-based
algorithms to adapt online when faced to changes in the environment. This is accom-
plished by the means of meta-reinforcement learning, when each task is considered to
be a sequence of state and actions. Our algorithm presents out-of-distribution adapta-
tion, as we show in a real 6-legged robot that has been trained in different terrains, but
tested in a variety of task such as different payload, leg removal, or walking different
inclinations of the terrain.

10.1 related work since original publication of this work

In here, we provide the related work on model-based reinforcement learning since the
publication of the first work in this thesis: model-ensemble trust-region policy optimiza-
tion. Specifically, we describe the areas of (1) tackling model-bias, and (2) online adapta-
tion in model-based RL.

Tackling model-bias. Beyond the works presented in this thesis, there has been several
of work since the publication of model-ensemble trust-region policy optimization (Chap-
ter 4). For instance, (Luo et al., 2019) uses a theoretically analyzes the ME-TRPO set up
and develops a more sample efficient algorithm from the findings. In the context, of
combining model-based methods and model-free actor critic algorithms, (Feinberg et al.,
2018b; Buckman et al., 2018) use the model to learn better estimates for the value function.
The method presented in Chapter 7 resembles to (Feinberg et al., 2018b); however, they
do not make use the gradients provided by the model to train the policy. (Kalweit and
Boedecker, 2017) tackles the model-bias problem by interpolating between model and
real data. Finally, exciting results have been obtained when planning with the model;
specifically, when using model predictive control (MPC). The first of those results was
presented in (Chua et al., 2018), which learned an ensemble of stochastic model to com-
bat the over-optimism challenge. (Lowrey et al., 2018; Hong et al., 2019; T. Wang and
Ba, 2019) have followed that line of work by using value functions and distillation of the
MPC controller.

Online adaptation. Nagabandi et al. (2018b) formulated the online learning set up pre-
sented in Chapter 9 as an expectation maximization algorithm with a Chinese restaurant
process, allowing the models to adapt as necessary while retaining old models in case a
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previously task is encountered again. In order to over come the limited expressivity that
model-agnostic meta-learning presents in practice and to capture the uncertainty on the
dynamics (M. Xu et al., 2020), represents each type of dynamics with a Gaussian process.
Guassian processes combined with latenet variables have been used by (Sæmundsson et
al., 2018) for online adaptation. Similarly, (K. Lee et al., 2020) uses a latent vector, which
extracts tasks specific information, that acts as a conditional variable for a neural net-
work dynamic model. Finally, (Song et al., 2020) draws inspiration from no-regret online
learning (Shalev-Shwartz, 2012) to develop a provably efficient algorithm.

10.2 future work

While these methods are a stepping-stone towards enabling general autonomous robotic
learning, there is a lot more that can be done. Below, we speculate on important direc-
tions for future work:

Long horizon predictions. While model-based via meta-policy adaptation (Chapter 5)
is able to learn longer horizon tasks than ME-TRPO (Chapter 4), it is limited to trajecto-
ries around a thousand steps in simple domains. For longer horizons or more complex
environments, learning becomes unstable. To carry out real-world complex tasks, long
horizon planning or reasoning is needed. In such cases, a promising avenue of work is
learning models at different temporal-scales, or hierarchical models (G. Lee et al., 2015;
Kaelbling et al., 1996; Stulp and Schaal, 2011). Another successful alternative for long
horizon tasks in the recent years has been to combine model-based methods with actor
critic ones (Janner et al., 2019; Clavera et al., 2020)

Learning from other sensory inputs. The work presented in this thesis learns mod-
els from positions and velocities, and exciting area of research is to successfully learn
model from other sensor modalities. Recent work has aimed to extend model-based
RL to raw sensory high-dimensional input spaces, such as images. In such cases, learn-
ing a compact and accurate latent space is crucial to relieve the dynamics model from
directly modeling the raw sensor input space. Recent work on high-dimensional obser-
vations on model-based RL can be categorized in two main classes: 1) video prediction
models (Ebert et al., 2018; Jayaraman et al., 2018), and 2) latent space learning with
reconstruction (D. Hafner et al., 2018; Ha and Schmidhuber, 2018; Watter et al., 2015;
Wahlström et al., 2015; M. Zhang et al., 2018). While progress has been made, current
MB methods from images still do not achieve similar levels of sample efficiency or perfor-
mance than state-based methods. Successfully deploying model-based algorithms from
high-dimensional observations will release the burden of running pose estimation.
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Life long learning. Being able to continually learn and adapt to new situations is
a hallmark of human intelligence. The world is too stochastic and variable for us to
describe or train an agent on all the possible situations it might encounter. We need
algorithms that enable our robotic agents to keep learning during deployment (Parisi
et al., 2018). Chapter 9 offers an approach for it. However, there is still a long way to go.
The algorithm presented optimizes at every step for adaptation, which in most of the
scenarios is not needed. Furthermore, the performance of the algorithm in static tasks is
well bellow MB-MPO.
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A
A P P E N D I X : M O D E L - E N S E M B L E T R U S T- R E G I O N P O L I C Y
O P T I M I Z AT I O N

a.1 model-ensemble trust-region policy optimization

Our algorithm can be broken down into three parts: data collection, model learning, and
policy learning. We describe the numerical details for each part below.

a.1.1 Data collection

In each outer iteration, we use the stochastic policy to collect 3000 timesteps of real
world data for every environment, except Humanoid in which we collect 6000 timesteps.
At the beginning of every roll-out we sample the policy standard deviation randomly
from U[0.0, 3.0], and we keep the value fixed throughout the episode. Furthermore, we
perturb the policy’s parameters by adding white Gaussian noise with standard deviation
proportional to the absolute difference between the current parameters and the previous
one. Finally, we split the collected data using a 2-to-1 ratio for training and validation
datasets.

a.1.2 Model Learning

We represent the dynamics model with a 2-hidden-layer feed-forward neural network
with hidden sizes 1024-1024 and ReLU nonlinearities. We train the model with the Adam
optimizer with learning rate 0.001 using a batch size of 1000. The model is trained until
the validation loss has not decreased for 25 passes over the entire training dataset (we
validate the training every 5 passes).
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a.1.3 Policy Learning

We represent the policy with a 2-hidden-layer feed-forward neural network with hidden
sizes 32-32 and tanh nonlinearities for all the environments, except Humanoid, in which
we use the hidden sizes 100-50-25. The policy is trained with TRPO on the learned
models using initial standard deviation 1.0, step size δKL 0.01, and batch size 50000. If
the policy fails the validation for 25 updates (we do the validation every 5 updates), we
stop the learning and repeat the overall process.

a.2 environment details

The reward functions rt(st,at) and optimization horizons are described below:

Environments Reward functions Horizon

Swimmer svelt - 0.005‖at‖22 200

Snake svelt - 0.005‖at‖22 200

Hopper
svelt - 0.005 ‖at‖22

−10max(0.45− sheightt , 0)
- 10

∑
(max(st − 100, 0))

100

Half Cheetah svelt - 0.05‖at‖22 100

Ant svelt - 0.005‖at‖22 + 0.05 100

Humanoid (sheadt − 1.5)2+ ‖at‖22 100

Note that in Hopper we relax the early stopping criterion to a soft constraint in reward
function, whereas in Ant we early stop when the center of mass long z-axis is outside
[0.2, 1.0] and have a survival reward when alive.

The state space of every environment is composed by the joint angles, joint velocities,
and the cartesian position of the center of mass of a part of the simulated robot. We are
not using the contact information, which make the environments effectively POMDPs in
Half Cheetah, Ant, Hopper and Humanoid. We also eliminate the redundancies in the
state space in order to avoid infeasible states in the prediction.
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a.2.1 Baselines

In Section 4.3.2 we compare our method against TRPO, PPO, DDPG, and SVG. For every
environment we represent the policy with a feed-forward neural network of the same
size, horizon, and discount factor as the ones specified in the Appendix A.1.3. In the
following we provide the hyper-parameters details:

Trust Region Policy Optimization. (Schulman et al., 2015b) We used the implemen-
tation of Duan et al., 2016a with a batch size of 500000, and we train the policies for 1000

iterations. The step size δKL that we used in all the experiments was of 0.05.
Proximal Policy Optimization (Schulman et al., 2017). We referred to the implemen-

tation of Dhariwal et al., 2017. The policies were trained for 107 steps using the default
hyper-parameters across all tasks.

Deep Deterministic Policy Gradient. (Lillicrap et al., 2015) We also use the imple-
mentation of Dhariwal et al., 2017 using a number epochs of 2000, the rest of the hyper-
parameters used were the default ones.

Stochastic Value Gradient. (Heess et al., 2015) We parametrized the dynamics model
as a feed-forward neural network of two hidden layers of 512 units each and ReLU
non-linearities. The model was trained after every episode with the data available in the
replay buffer, using the Adam optimizer with a learning rate of 10−4, and batch size of
128. We additionally clipped the gradient we the norm was larger than 10.

a.3 overfitting

We show that replacing the ensemble with just one model leads to the policy overop-
timizing to the one fitted dynamics model. At each outer iteration, we see that at the
end of the policy optimization step the estimated performance increases while the real
performance is in fact decreasing.

a.4 ablation study

We further provide a series of ablation experiments to characterize the importance of
the two main regularization components of our algorithm: the ensemble validation and
the ensemble sampling techniques. In these experiments, we make only one change at a
time to ME-TRPO with 5 models.
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Figure 36: Predicted and real performances during the training process using our approach with
one model instead of an ensemble. The policy overfits to dynamics model which de-
grades the real performance.

a.4.1 Ensemble Sampling Methods

We explore several ways to simulate the trajectories from the model ensemble. At a cur-
rent state and action, we study the effect of simulating the next step given by: (1) sam-
pling randomly from the different models (step_rand), (2) a normal distribution fitted
from the predictions (model_mean_std), (3) the mean of the predictions (model_mean),
(4) the median of the predictions (model_med), (5) the prediction of a fixed model
over the entire episode (i.e., equivalent to averaging the gradient across all simulations)
(eps_rand), and (6) sampling from one model (one_model).

The results in Figure 37 provide evidence that using the next step as the prediction
of a randomly sampled model from our ensemble is the most robust method across
environments. In fact, using the median or the mean of the predictions does not prevent
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overfitting; this effect is shown in the HalfCheetah environment where we see a decrease
of the performance in latter iteration of the optimization process. Using the gradient
average (5) also provides room for the policy to overfit to one or more models. This
supports that having an estimate of the model uncertainty, such as in (1) and (2), is the
principled way to avoid overfitting the learned models.

Figure 37: Comparison among different sampling techniques for simulating roll-outs. By sam-
pling each step from a different model, we prevent overfitting and enhance the learn-
ing performance (Best viewed in color).

a.4.2 Ensemble Validation

Finally, we provide a study of the different ways for validating the policy. We compare
the following techniques: (1) using the real performance (i.e., using an oracle) (real),
(2) using the average return in the trpo roll-outs (trpo_mean), (3) stopping the policy
after 50 gradient updates (no_early_50), (4) or after 5 gradient updates (no_early_5), (5)
using one model to predict the performances (one_model), and (6) using an ensemble
of models (ensemble). The experiments are designed to use the same number of models
and hyper-parameters for the other components of the algorithm.

In Figure 38 we can see the effectiveness of each approach. It is noteworthy that hav-
ing an oracle of the real performance is not the best approach. Such validation is over-
cautious, and does not give room for exploration resulting in a poor trained dynamics
model. Stopping the gradient after a fixed number of updates results in good perfor-
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mance if the right number of updates is set. This burdens the hyper-parameter search
with one more hyper-parameter. On the other hand, using the ensemble of models has
good performance across environments without adding extra hyper-parameters.

Figure 38: Comparison among validation techniques. The ensemble of models yields to good
performance across environments (Best viewed in color).
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B
A P P E N D I X : M O D E L - B A S E D R E I N F O R C E M E N T L E A R N I N G V I A
M E TA - P O L I C Y O P T I M I Z AT I O N

b.1 tailored data collection

We present the effects of collecting data using tailored exploration. We refer to tailored
exploration as the effect of collecting data using the post-update policies – the policies
adapted to each specific model. When training policies on learned models they tend to
exploit the deficiencies of the model, and thus overfitting to it. Using the post-update
policies to collect data results in exploring the regions of the state space where these poli-
cies overfit and the model is inaccurate. Iteratively collecting data in the regions where
the models are innacurate has been shown to greatly improve the performance (Ross
et al., 2010).

The effect of using tailored exploration is shown in Figure 39. In the half-cheetah and
the walker we get an improvement of 12% and 11%, respectively. The tailored exploration
effect cannot be accomplished by robust optimization algorithms, such as ME-TRPO.
Those algorithms learn a single policy that is robust across models. The data collection
using such policy will not exploit the regions in which each model fails resulting in less
accurate models.

b.2 hyperparameter study

We perform a hyperparameter study (see Figure 40) to assess the sensitivity of MB-MPO
to its parameters. Specifically, we vary the inner learning rate α, the size of the ensem-
ble, and the number of meta gradient steps before collecting further real environment
samples. Consistent with the results in Figure 9, we find that adaptation significantly
improves the performance when compared to the non-adaptive case of α = 0. Increasing
the number of models and meta gradient steps per iteration results in higher perfor-
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Figure 39: Tailored exploration study in the half-cheetah and walker2D environment. “True"
means the data is collected by using tailored exploration, and “False" is the result
of not using it, i.e., using the pre-update policy to collect data.

mance at a computational cost. However, as the computational burden is increased the
performance gains diminish.

Up to a certain level, increasing the number of meta gradient steps per iteration im-
proves performance. Though, too many meta gradients steps (i.e. 60) can lead to early
convergence to a suboptimal policy. This may be due to the fact that the variance of
the Gaussian policy distribution is also learned. Usually, the policies variance decreases
during the training. If the number of meta-gradient steps is too large, the policy loses
its exploration capabilities too early and can hardly improve once the models are more
accurate. This problem can be alleviated using a fixed policy variance, or by adding an
entropy bonus the learning objective.

b.3 experiment setup

In the following we provide a detailed description of the setup used in the experiments
presented in section 5.5:

Environments:
We benchmark MB-MPO on six continuous control benchmark tasks in the Mujoco

simulator (Todorov et al., 2012), shown in Fig. 41. Five of these tasks, namely swimmer,
half-cheetah, walker2D, hopper and ant, involve robotic locomotion and are provided
trough the OpenAI gym (Brockman et al., 2016).
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Figure 40: Hyper-parameter study in the the half-cheetah environment of a) the inner learning
rate α, b) the number of dynamic models in the ensemble, and c) the number of meta
gradient steps before collecting real environment samples and refitting the dynamic
models.

Figure 41: Mujoco environments used in our experiments. Form left to right: swimmer, half-
cheetah, walker2D, PR2, hopper, and ant.

The sixth, the 7-DoF arm of the PR2 robot, has to reach arbitrary end-effector positions.
Thereby, the PR2 robot is torque controlled. The reward function is comprised of the
squared distance of the end-effector (TCP) to the goal and energy / control costs:

r(s,a) = −||sTCP − xgoal||
2
2 − 0.05 ∗ ||a||22

In section 5.5.4 we use the simple 2D-Point environment to analyze the connection
between policy plasticity and model uncertainty. The corresponding MDP is defined as
follows:

S = R2

A = [−0.1, 0.1]2

p0(s0) = U[−2,2]2(s0) (uniform distribution over [−2, 2]2)

p(st+1|st,at) = δ(st + at)

r(st,at) = −||st||
2
2

H = 30

Policy: We use a Gaussian policy πθ(a|s) = N(a|µ(a)θµ ,σθσ) with diagonal covariance
matrix. The mean µ(a)θµ is computed by a neural network (2 hidden layers of size
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32, tanh nonlinearity) which receives the current state s as an input. During the policy
optimization, both the weights θµ of the neural network and the standard deviation
vector σθσ are learned.

Advantage-Estimation: We use generalized advantage estimation (GAE) (Schulman
et al., 2016a) with γ = 0.99 and λ = 1 in conjunction with a linear reward baseline as in
(Duan et al., 2016a) to estimate advantages.

Dynamics Model Ensemble: In all experiments (except in Figure 40b) we use an en-
semble of 5 fully connected neural networks. For the different environments the follow-
ing hidden layer sizes were used:

• Ant, Walker: (512, 512, 512)
• PR2, Swimmer, Hopper, Half-Cheetah: (512, 512)
• 2D-Point-Env: (128, 128)

In all models, we used weight normalization and ReLu nonlinearities. For the minimiza-
tion of the l2 prediction error, the Adam optimizer with a batch-size of 500 was employed.
In the first iteration all models are randomly initialized. In later iterations, the models
are trained with warm starts using the parameters of the previous iteration. In each itera-
tion and for each model in the ensemble the transition data buffer D is randomly split in
a training (80%) and validation (20%) set. The latter split is used to compute the valida-
tion loss after each training epoch on the shuffled training split. A rolling average of the
validation losses with a persistence of 0.95 is maintained throughout the epochs. Each
model’s training is stopped individually as soon as the rolling validation loss average
decreases.

Meta-Policy Optimization: As described in section 5.2.2, the policy parameters θ are
optimized using the gradient-based meta learning framework MAML. For the inner
adaptation step we use a gradient step-size of α = 0.001. For maximizing the meta-
objective specified in equation 7 we use the policy gradient method TPRO (Schulman
et al., 2015b) with KL-constraint δ = 0.01. Since computing the gradients of the meta-
objective involves second order terms such as the Hessian of the policy’s log-likelihood,
computing the necessary Hessian vector products for TRPO analytically is very compute
intensive. Hence, we use a finite difference approximation of the vector product of the
Fisher Information Matrix and the gradients as suggested in (Finn et al., 2017). If not
denoted differently, 30 meta-optimization steps are performed before new trajectories
are collected from the real environment.

Trajectory collection: In each algorithm iteration 4000 environment transitions (20

trajectories of 200 time steps) are collected. For the meta-optimization, 100000 imaginary
environment transitions are sampled.
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b.4 computational analysis

In this section we compare the computational complexity of MB-MPO against TRPO.
Specifically, we report the wall clock time that it takes both algorithms to reach maxi-
mum performance on the half-cheetah environment when running the experiments on
an Amazon Web Services EC2 c4.4xlarge compute instance. Our method only requires
20% more compute time than TRPO (7 hours instead of 5.5), while attaining 70× reduc-
tion in sample complexity. The main time bottleneck of our method compared with the
model-free algorithms is training the models.

Notice that when running real world experiment, our method will be significantly
faster than model-free approaches since the bottleneck then would shift towards the
data collection step.
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C
A P P E N D I X : P R O M P : P R O X I M A L M E TA - P O L I C Y S E A R C H

c.1 two meta-policy gradient formulations

In this section we discuss two different gradient-based meta-learning formulations, de-
rive their gradients and analyze the differences between them.

c.1.1 Meta-Policy Gradient Formulation I

The first meta-learning formulation, known as MAML (Finn et al., 2017), views the inner
update rule U(θ,M) as a mapping from the pre-update parameter θ and the task M to
an adapted policy parameter θ′. The update function can be viewed as stand-alone pro-
cedure that encapsulates sampling from the task-specific trajectory distribution PM(τ|πθ)

and updating the policy parameters. Building on this concept, the meta-objective can be
written as

JI(θ) = EM∼ρ(M)

[
Eτ ′∼PM(τ ′|θ′)

[
R(τ ′)

]]
with θ′ := U(θ,M) (25)

The task-specific gradients follow as

∇θJIM(θ) = ∇θEτ ′∼PM(τ ′|θ′)

[
R(τ ′)

]
(26)

= Eτ ′∼PM(τ ′|θ′)

[
∇θ logPM(τ ′|θ′)R(τ ′)

]
(27)

= Eτ ′∼PM(τ ′|θ′)

[
∇θ′ logPM(τ ′|θ′)R(τ ′)∇θθ′

]
(28)

In order to derive the gradients of the inner update ∇θθ′ = ∇θU(θ,M) it is necessary to
know the structure of U. The main part of this paper assumes the inner update rule to
be a policy gradient descent step

∇θU(θ,M) = ∇θ
(
θ+α ∇θEτ∼PM(τ|θ) [R(τ)]

)
(29)

= I+α∇2θ Eτ∼PM(τ|θ) [R(τ)] (30)
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Thereby the second term in (30) is the local curvature (hessian) of the inner adaptation
objective function. The correct hessian of the inner objective can be derived as follows:

∇2θ Eτ∼PM(τ|θ) [R(τ)] = ∇θ Eτ∼PM(τ|θ) [∇θ logπθ(τ)R(τ)] (31)

= ∇θ
∫
PM(τ|θ)∇θ logπθ(τ)R(τ)dτ (32)

=

∫
PM(τ|θ)∇θ logπθ(τ)∇θ logπθ(τ)>R(τ)+ (33)

PM(τ|θ)∇2θ logπθ(τ)R(τ)dτ (34)

= Eτ∼PM(τ|θ)

[
R(τ)

(
∇2θ logπθ(τ) +∇θ logπθ(τ)∇θ logπθ(τ)>

)]
(35)

c.1.2 Meta-Policy Gradient Formulation II

The second meta-reinforcement learning formulation views the the inner update θ′ =
U(θ, τ1:N) as a deterministic function of the pre-update policy parameters θ and N tra-
jectories τ1:N ∼ PM(τ1:N|θ) sampled from the pre-update trajectory distribution. This for-
mulation was introduced in (Al-Shedivat et al., 2018) and further discussed with respect
to its exploration properties in (Stadie et al., 2018).

Viewing U as a function that adapts the policy parameters θ to a specific task M given
policy rollouts in this task, the corresponding meta-learning objective can be written as

JII(θ) = EM∼ρ(M)

[
Eτ1:N∼PM(τ1:N|θ)

[
Eτ ′∼PM(τ ′|θ′)

[
R(τ ′)

]]]
with θ′ := U(θ,τ1:N) (36)

Since the first part of the gradient derivation is agnostic to the inner update ruleU(θ, τ1:N),
we only assume that the inner update functionU is differentiable w.r.t. θ. First we rewrite
the meta-objective J(θ) as expectation of task specific objectives JIIM(θ) under the task
distribution. This allows us to express the meta-policy gradients as expectation of task-
specific gradients:

∇θJII(θ) = EM∼ρ(M)

[
∇θJIIM(θ)

]
(37)
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The task specific gradients can be calculated as follows

∇θJIIM(θ) = ∇θEτ∼PM(τ1:N|θ)

[
Eτ ′∼PM(τ ′|θ′)

[
R(τ ′)

]]
= ∇θ

∫ ∫
R(τ ′) PM(τ ′|θ′) PM(τ1:N|θ) dτ ′ dτ

=

∫ ∫
R(τ ′) PM(τ ′|θ′) ∇θ logPM(τ1:N|θ)PM(τ1:N|θ)+

R(τ ′) ∇θ logPM(τ ′|θ′)PM(τ ′|θ′) PM(τ1:N|θ) dτ ′ dτ

= Eτ1:N∼PM(τ1:N|θ)
τ ′∼PM(τ ′|θ′)

[
R(τ ′)

(
∇θ logPM(τ ′|θ′) +

N∑
i=1

∇θ logPM(τ(n)|θ)

)]

= Eτ1:N∼PM(τ1:N|θ)
τ ′∼PM(τ ′|θ′)

[
R(τ ′)

(
∇θ′ logPM(τ ′|θ′)∇θθ′ +

N∑
n=1

∇θ logPM(τ(n)|θ)

)]

As in C.1.1 the structure of U(θ,τ1:N) must be known in order to derive the gradient
∇θθ′. Since we assume the inner update to be vanilla policy gradient, the respective
gradient follows as

U(θ, τ1:N) = θ+α
1

N

N∑
n=1

∇θ logπθ(τ(n)))R(τ(n)) with ∇θ logπθ(τ) =
H−1∑
t=0

∇θ logπθ(at|st)

The respective gradient of U(θ, τ1:N) follows as

∇θU(θ, τ1:N) = ∇θ

(
θ+α

1

N

N∑
n=1

∇θ logπθ(τ(n)))R(τ(n))

)
(38)

= I+α
1

N

N∑
n=1

∇2θ logπθ(τ(n)))R(τ(n)) (39)

c.1.3 Comparing the Gradients of the Two Formulations

In the following we analyze the differences between the gradients derived for the two
formulations. To do so, we begin with ∇θJIM(θ) by inserting the gradient of the inner
adaptation step (30) into (28):

∇θJIM(θ) = Eτ ′∼PM(τ ′|θ′)

[
∇θ′ logPM(τ ′|θ′)R(τ ′)

(
I+α∇2θ Eτ∼PM(τ|θ) [R(τ)]

)]
(40)
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We can substitute the hessian of the inner objective by its derived expression from
(35) and then rearrange the terms. Also note that ∇θ logPM(τ|θ) = ∇θ logπθ(τ) =∑H−1
t=1 logπθ(at|st) where H is the MDP horizon.

∇θJIM(θ) = Eτ ′∼PM(τ ′|θ′)

[
∇θ′ logPM(τ ′|θ′)R(τ ′)

(
I+αEτ∼PM(τ|θ)

[
R(τ) (41)

(
∇2θ logπθ(τ) +∇θ logπθ(τ)∇θ logπθ(τ)>

)])]
(42)

= E τ∼PM(τ|θ)
τ ′∼PM(τ ′|θ′)

∇θ′ logπθ′(τ ′)R(τ ′)
(
I+αR(τ)∇2θ logπθ(τ)

)
︸ ︷︷ ︸

∇θJpost(τ,τ ′)

(43)

+α∇θ′ logπθ′(τ ′)R(τ ′)R(τ)∇θ logπθ(τ)∇θ logπθ(τ)>︸ ︷︷ ︸
∇θJ

I
pre(τ,τ ′)


(44)

Next, we rearrange the gradient of JII into a similar form as ∇θJIM(θ). For that, we start
by inserting (39) for ∇θθ′ and replacing the expectation over pre-update trajectories τ1:N

by the expectation over a single trajectory τ.

∇θJIM(θ) = E τ∼PM(τ|θ)
τ ′∼PM(τ ′|θ′)

[
R(τ ′)∇θ′ logπθ(τ ′)

(
I+αR(τ)∇2θ logπθ(τ))

)
︸ ︷︷ ︸

∇θJpost(τ,τ ′)

(45)

+R(τ ′)∇θ logπθ(τ)︸ ︷︷ ︸
∇θJ

I
pre(τ,τ ′)

]
(46)

While the first part of the gradients match ((43) and (45)), the second part ((44) and (46))
differs. Since the second gradient term can be viewed as responsible for shifting the pre-
update sampling distribution PM(τ|θ) towards higher post-update returns, we refer to it
as ∇θJpre(τ,τ ′) . To further analyze the difference between∇θJIpre and ∇θJIIpre we slightly
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rearrange (44) and put both gradient terms next to each other:

∇θJIpre(τ,τ ′) = α∇θ logπθ(τ)

(∇θ logπθ(τ)R(τ))>︸ ︷︷ ︸
∇θJ

inner

(∇θ′ logπθ′(τ ′)R(τ ′))︸ ︷︷ ︸
∇θ′J

outer

 (47)

∇θJIIpre(τ,τ ′) = α∇θ logπθ(τ)R(τ ′) (48)

In the following we interpret and and compare of the derived gradient terms, aiming
to provide intuition for the differences between the formulations:

The first gradient term Jpost that matches in both formulations corresponds to a policy
gradient step on the post-update policy πθ′ . Since θ′ itself is a function of θ, the term(
I+αR(τ)∇2θ logπθ(τ))

)
can be seen as linear transformation of the policy gradient up-

date R(τ ′)∇θ′ logπθ(τ ′) from the post-update parameter θ′ into θ. Although Jpost takes
into account the functional relationship between θ′ and θ, it does not take into account
the pre-update sampling distribution PM(τ|θ).

This is where ∇θJpre comes into play: ∇θJIpre can be viewed as policy gradient update
of the pre-update policy πθ w.r.t. to the post-update return R(τ ′). Hence this gradient
term aims to shift the pre-update sampling distribution so that higher post-update re-
turns are achieved. However, ∇θJIIpre does not take into account the causal dependence
of the post-update policy on the pre-update policy. Thus a change in θ due to ∇θJIIpre

may counteract the change due to ∇θJIIpost. In contrast, ∇θJIpre takes the dependence of
the the post-update policy on the pre-update sampling distribution into account. Instead
of simply weighting the gradients of the pre-update policy ∇θ logπθ(τ) with R(τ ′) as
in ∇θJIpost, ∇θJIpost weights the gradients with inner product of the pre-update and post-
update policy gradients. This inner product can be written as

∇θJinner>∇θ′Jouter = ||∇θJinner||2 · ||∇θ′Jouter||2 · cos(δ) (49)

wherein δ denotes the angle between the the inner and outer pre-update and post-update
policy gradients. Hence, ∇θJIpost steers the pre-update policy towards not only towards
larger post-updates returns but also towards larger adaptation steps α∇θJinner, and bet-
ter alignment of pre- and post-update policy gradients. This directly optimizes for max-
imal improvement / adaptation for the respective task. See (Z. Li et al., 2017; Nichol
et al., 2018) for a comparable analysis in case of domain generalization and supervised
meta-learning. Also note that (49) allows formulation I to perform credit assignment on
the trajectory level whereas formulation II can only assign credit to entire batches of N
pre-update trajectories τ1:N.
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As a result, we expect the first meta-policy gradient formulation to learn faster and
more stably since the respective gradients take the dependence of the pre-update returns
on the pre-update sampling distribution into account while this causal link is neglected
in the second formulation.

c.2 estimating the meta-policy gradients

When employing formulation I for gradient-based meta-learning, we aim maximize the
loss

J(θ) = EM∼ρ(M)

[
Eτ ′∼PM(τ ′|θ′)

[
R(τ ′)

]]
with θ′ := θ+α ∇θEτ∼PM(τ|θ) [R(τ)] (50)

by performing a form of gradient-descent on J(θ). Note that we, from now on, assume
J := JI and thus omit the superscript indicating the respective meta-learning formulation.
As shown in C.1.2 the gradient can be derived as ∇θJ(θ) = E(T)∼ρ(T)[∇θJM(θ)] with

∇θJM(θ) = Eτ ′∼PM(τ ′|θ′)

[
∇θ′ logPM(τ ′|θ′)R(τ ′)

(
I+α∇2θ Eτ∼PM(τ|θ) [R(τ)]

)]
(51)

where ∇2θJinner(θ) := ∇2θ Eτ∼PM(τ|θ) [R(τ)] denotes hessian of the inner adaptation objec-
tive w.r.t. θ. This section concerns the question of how to properly estimate this hessian.

c.2.1 Estimating Gradients of the RL Reward Objective

Since the expectation over the trajectory distribution PM(τ|θ) is in general intractable,
the score function trick is typically used to used to produce a Monte Carlo estimate
of the policy gradients. Although the gradient estimate can be directly defined, when
using a automatic-differentiation toolbox it is usually more convenient to use an objective
function whose gradients correspond to the policy gradient estimate. Due to the Policy
Gradient Theorem (PGT) (Sutton et al., 2000) such a “surrogate" objective can be written
as:

ĴPGT =
1

K

∑
τk

H−1∑
t=0

logπθ(at|st)

(
H∑
t ′=t

r(st ′ ,at ′)

)
τk ∼ PM(τ) (52)

=
1

K

∑
τk

H−1∑
t=0

(
t∑

t ′=0

logπθ(at|st)

)
r(st ′ ,at ′) τk ∼ PM(τ) (53)
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While (52) and (53) are equivalent (Peters and Schaal, 2006), the more popular formula-
tion formulation (52) can be seen as forward looking credit assignment while (53) can be
interpreted as backward looking credit assignment (Foerster et al., 2018). A generalized
procedure for constructing “surrogate" objectives for arbitrary stochastic computation
graphs can be found in (Schulman et al., 2015a).

c.2.2 A decomposition of the hessian

Estimating the the hessian of the reinforcement learning objective has been discussed in
(Furmston et al., 2016) and (Bartlett and Baxter, 2011) with focus on second order policy
gradient methods. In the infinite horizon MDP case, (Bartlett and Baxter, 2011) derive
a decomposition of the hessian. In the following, we extend their finding to the finite
horizon case.

Proposition. The hessian of the RL objective can be decomposed into four matrix
terms:

∇2θJinner(θ) = H1 +H2 +H12 +H
>
12 (54)

where

H1 = Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at, st)∇θ logπθ(at, st)>
(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(55)

H2 = Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇2θ logπθ(at, st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(56)

H12 = Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at, st)∇θQπθt (st,at)>
]

(57)

Here Qπθt (st,at) = Eτt+1:H−1∼PM(·|θ)

[∑H−1
t ′=t r(st ′ ,at ′)|st,at

]
denotes the expected state-

action value function under policy πθ at time t.
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Proof. As derived in (35), the hessian of Jinner(θ) follows as:

∇2θJinner = Eτ∼PM(τ|θ)

[
R(τ)

(
∇2θ logπθ(τ) +∇θ logπθ(τ)∇θ logπθ(τ)>

)]
(58)

= Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

∇2θ logπθ(at ′ , st ′)

)
r(st,at)

]
(59)

+ Eτ∼PM(τ|θ)

H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ , st ′)

)(
t∑

t ′=0

∇θ logπθ(at ′ , st ′)

)>
r(st,at)


(60)

= Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇2θ logπθ(at, st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(61)

+ Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

t∑
h=0

∇θ logπθ(at ′ , st ′)∇θ logπθ(ah, sh)>
)
r(st,at)

]
(62)

The term in (61) is equal to H2. We continue by showing that the remaining term in (62)
is equivalent to H1+H12+H>12. For that, we split the inner double sum in (62) into three
components:

Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

t∑
h=0

∇θ logπθ(at ′ , st ′)∇θ logπθ(ah, sh)>
)
r(st,at)

]
(63)

= Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ , st ′)∇θ logπθ(at ′ , st ′)>
)
r(st,at)

]
(64)

+ Eτ∼PM(τ|θ)

H−1∑
t=0

 t∑
t ′=0

t ′−1∑
h=0

∇θ logπθ(at ′ , st ′)∇θ logπθ(ah, sh)>

 r(st,at)
 (65)

+ Eτ∼PM(τ|θ)

H−1∑
t=0

 t∑
t ′=0

t∑
h=t ′+1

∇θ logπθ(at ′ , st ′)∇θ logπθ(ah, sh)>

 r(st,at)
 (66)

By changing the backward looking summation over outer products into a forward look-
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ing summation of rewards, (64) can be shown to be equal to H1:

Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ , st ′)∇θ logπθ(at ′ , st ′)>
)
r(st,at)

]
(67)

= Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at, st)∇θ logπθ(at, st)>
(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(68)

= H1 (69)

By simply exchanging the summation indices t ′ and h in (66) it is straightforward to
show that (66) is the transpose of (65). Hence it is sufficient to show that (65) is equivalent
to H12. However, instead of following the direction of the previous proof we will now
start with the definition of H12 and derive the expression in (65).

H12 = Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at, st)∇θQπθt (st,at)>
]

(70)

(71)

The gradient of Qπθt can be expressed recursively:

∇θQπθt (st,at) = ∇θEst+1
at+1

[
Q
πθ
t+1(st+1,at+1)

]
(72)

= Est+1
at+1

[
∇θ logπθ(at+1, st+1)Q

πθ
t+1(st+1,at+1) +∇θQ

πθ
t+1(st+1,at+1)

]
(73)

By induction, it follows that

∇θQπθt (st,at) = Eτt+1:H−1∼PM(·|θ)

 H−1∑
t ′=t+1

∇θ logπθ(at ′ , st ′)

(
H−1∑
h=t ′

r(sh,ah)

) (74)

When inserting (74) into (70) and swapping the summation, we are able to show that H12
is equivalent to (65).

H12 = Eτ∼PM(τ|θ)

H−1∑
t=0

H−1∑
t ′=t+1

∇θ logπθ(at, st)∇θ logπθ(at ′ , st ′)>
(
H−1∑
h=t ′

r(sh,ah)

) (75)

= Eτ∼PM(τ|θ)

H−1∑
t=0

 t∑
t ′=0

t ′−1∑
h=0

∇θ logπθ(at ′ , st ′)∇θ logπθ(ah, sh)>

 r(st,at)
 (76)
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This concludes the proof that the hessian of the expected sum of rewards under policy
πθ and an MDP with finite time horizon H can be decomposed into H1+H2+H12+H>12.

�

c.2.3 Estimating the Hessian of the RL Reward Objective

As pointed out by (Al-Shedivat et al., 2018; Stadie et al., 2018) and (Foerster et al., 2018),
simply differentiating through the gradient of surrogate objective JPGT as done in the
original MAML version (Finn et al., 2017) leads to biased hessian estimates. Specifically,
when compared with the unbiased estimate, as derived in (35) and decomposed in Ap-
pendix C.2.2, both H1 and H12 +H>12 are missing. Thus, ∇θJpre does not appear in the
gradients of the meta-objective (i.e. ∇θJ = ∇θJpost). Only performing gradient descent
with ∇θJpost entirely neglects influences of the pre-update sampling distribution. This
issue was overseen in the RL-MAML implementation of (Finn et al., 2017). As discussed
in (Stadie et al., 2018) this leads to poor performance in meta-learning problems that
require exploration during the pre-update sampling.

c.2.3.1 The DICE Monte-Carlo Estimator

Addressing the issue of incorrect higher-order derivatives of monte-carlo estimators,
(Foerster et al., 2018) propose DICE which mainly builds upon an newly introduced
MagicBox(�) operator. This operator allows to formulate monte-carlo estimators with
correct higher-order derivatives. A DICE formulation of a policy gradient estimator reads
as:

JDICE =

H−1∑
t=0

�θ({a
t ′6t})r(st,at) (77)

=

H−1∑
t=0

exp

(
t∑

t ′=0

logπθ(at ′ |st ′) −⊥(logπθ(at ′ |st ′)

)
r(st,at) (78)

In that, ⊥ denotes a “stop_gradient" operator (i.e. ⊥(fθ(x))→ fθ(x) but∇θ⊥(fθ(x))→ 0).
Note that → denotes a “evaluates to" and does not necessarily imply equality w.r.t. to
gradients. Hence, JDICE(θ) evaluates to the sum of rewards at 0th order but produces the
unbiased gradients∇nθJ

DICE(θ) when differentiated n-times (see (Foerster et al., 2018) for
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proof). To shed more light on the maverick DICE formulation, we rewrite (78) as follows:

JDICE =

H−1∑
t=0

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)
r(st,at) (79)

Interpreting this novel formulation, the MagicBox operator �θ({at
′6t}) can be under-

stood as “dry" importance sampling weight. At 0th order it evaluates to 1 and leaves the
objective function unaffected, but when differentiated once it yields an estimator for the
marginal rate of return due to a change in the policy-implied trajectory distribution.

In the following we show that on expectation 1) the gradients of (79) match standard
policy gradients and 2) its hessian estimate is equal to the hessian of inner RL objective,
derived in C.2.2.

∇θJDICE =

H−1∑
t=0

∇θ

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)
r(st,at) (80)

=

H−1∑
t=0

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)
r(st,at) (81)

→
H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)
r(st,at) (82)

Here, (82) corresponds to the backward looking credit assignment formulation of policy
gradients ∇θJPGT as discussed in C.2.1. Once again we take the derivative in order to
obtain the Hessian of JDICE:

∇2θJ
DICE =

H−1∑
t=0

∇θ

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)
r(st,at) (83)

+

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)
∇θ

(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)
r(st,at) (84)

→
H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)>
r(st,at) (85)

+

(
t∑

t ′=0

∇2θ logπθ(at ′ |st ′)

)
r(st,at) (86)
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In expectation, Eτ∼PM(τ|θ)[∇2θJ
DICE] the DICE monte carlo estimate of the hessian is equiv-

alent to the hessian of the inner objective. To show this, we use the expression of ∇2θJinner
(60):

Eτ∼PM(τ|θ)[∇2θJ
DICE] (87)

= Eτ∼PM(τ|θ)

[H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)

)>
(88)

r(st,at) +

(
t∑

t ′=0

∇2θ logπθ(at ′ |st ′)

)
r(st,at)

]
(89)

= H1 +H2 +H12 +H
>
12 (90)

= ∇2θJinner (91)

c.2.4 Bias and variance of the curvature estimate

As shown in the previous section, ∇2θJ
DICE provides an unbiased estimate of the hes-

sian of the inner objective Jinner = Eτ∼PM(τ|θ) [R(τ)]. However, recall the DICE objective
involves a product of importance weights along the trajectory.

JDICE =

H−1∑
t=0

(
t∏

t ′=0

πθ(at ′ |st ′)

⊥(πθ(at ′ |st ′))

)
r(st,at) (92)

Taking the 2nd derivative of this product leads to the outer product of sums in (85) which
is of high variance w.r.t to τ. Specifically, this outer product of sums can be decomposed
into three terms H1+H12+H>12 (see Appendix C.2.2). As noted by (Furmston et al., 2016),
H12 +H

>
12 is particularly difficult to estimate. In section 6.7.2 we empirically show that

the high variance curvature estimates obtained with the DICE objective require large
batch sizes and impede sample efficient learning.

In the following we develop a low variance curvature (LVC) estimator JLVC which
matches JDICE at the gradient level and yields lower-variance estimates of the hessian
by neglecting H12 +H>12. Before formally introducing JLVC, we motivate such estimator
starting with the policy gradient estimate that was originally derived in (Sutton et al.,
2000), followed by marginalizing the trajectory level distribution PM(τ|θ) over states st
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and actions at. Note that we omit reward baselines for notational simplicity.

∇θJinner = Eτ∼PM(τ|θ)

[
H−1∑
t=0

∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(93)

=

H−1∑
t=0

E
st∼p

πθ
t (st)

at∼πθ(at|st)

[
∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(94)

In that, pπθt (st) denotes the state visitation frequency at time step t, i.e. the probability
density of being in st after t steps under the policy πθ. In the general case pπθt (st) is
intractable but depends on the policy parameter θ. We make the simplifying assumption
that pπθt (st) is fixed in a local region of θ. Since we make this assumption at the gradient
level, this corresponds to a 1st order Taylor expansion of pπθt (st) in θ. Note that this
assumption is also used in the Monotonic Policy Improvement Theory (Kakade and
Langford, 2002; Schulman et al., 2015b). Based on this condition, the hessian follows
as derivative of (94) whereby a “stop_gradient" expression around the state visitation
frequency pπθt (st) resembles the 1st order Taylor approximation:

Eτ

[
∇2θJ

LVC
]
= ∇θ

H−1∑
t=0

E
st∼⊥(p

πθ
t (st))

at∼πθ(at|st)

[
∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(95)

=

H−1∑
t=0

E
st∼⊥(p

πθ
t (st))

at∼πθ(at|st)

[
∇θ logπθ(at|st)∇θ logπθ(at|st)>

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(96)

+∇2θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)]
(97)

Since the expectation in (95) is intractable it must be evaluated by a monte carlo esti-
mate. However, simply replacing the expectation with an average of samples trajectories
induces a wrong hessian that does not correspond to (97) since outer product of log-
gradients would be missing when differentiated. To ensure that automatic differentiation
still yields the correct hessian, we add a “dry" importance weight comparable to DICE:

∇θJLVC =

H−1∑
t=0

πθ(at|st)

⊥(πθ(at|st))
∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
τ ∼ PM(τ|θ) (98)
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When integrated this resembles the LVC “surrogate" objective JLVC.

JLVC =

H−1∑
t=0

πθ(at|st)

⊥(πθ(at|st))

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
τ ∼ PM(τ|θ) (99)

The gradients of JLVC match ∇θJDICE and resemble an unbiased policy gradient estimate:

∇θJLVC =

H−1∑
t=0

∇θπθ(at|st)
⊥(πθ(at|st))

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(100)

=

H−1∑
t=0

πθ(at|st)

⊥(πθ(at|st))
∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(101)

→
H−1∑
t=0

∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(102)

The respective Hessian can be obtained by differentiating (101):

∇2θJ
LVC = ∇θ

H−1∑
t=0

πθ(at|st)

⊥(πθ(at|st))
∇θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(103)

=

H−1∑
t=0

πθ(at|st)

⊥(πθ(at|st))
∇θ logπθ(at|st)∇θ logπθ(at|st)>

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(104)

+
πθ(at|st)

⊥(πθ(at|st))
∇2θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(105)

→
H−1∑
t=0

∇θ logπθ(at|st)∇θ logπθ(at|st)>
(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(106)

+∇2θ logπθ(at|st)

(
H−1∑
t ′=t

r(st ′ ,at ′)

)
(107)

=

H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)∇θ logπθ(at|st)>
)
r(st,at) (108)

+

(
t∑

t ′=0

∇2θ logπθ(at ′ |st ′)

)
r(st,at) (109)
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In expectation ∇2θJ
LVC is equivalent to H1 +H2:

Eτ∼PM(τ|θ)

[
JLVC

]
= Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

∇θ logπθ(at ′ |st ′)∇θ logπθ(at|st)>
)
r(st,at)

]
(110)

+ Eτ∼PM(τ|θ)

[
H−1∑
t=0

(
t∑

t ′=0

∇2θ logπθ(at ′ |st ′)

)
r(st,at)

]
(111)

= H1 +H2 (112)

The Hessian ∇2θJ
LVC no longer provides an unbiased estimate of ∇2θJinner since neglects

the matrix term H12 + H
>
12. This approximation is based on the assumption that the

state visitation distribution is locally unaffected by marginal changes in θ and leads
to a substantial reduction of variance in the hessian estimate. (Furmston et al., 2016)
show that under certain conditions (i.e. infinite horizon MDP, sufficiently rich policy
parameterisation) the term H12 +H

>
12 vanishes around a local optimum θ∗. Given that

the conditions hold, this implies that Eτ[∇2θJ
LVC]→ Eτ[∇2θJ

DICE] as θ→ θ∗, i.e. the bias
of the LCV estimator becomes negligible close to the local optimum. The experiments
in section 6.7.2 confirm this theoretical argument empirically and show that using the
low variance curvature estimates obtained through JLVC improve the sample-efficiency
of meta-learning by a significant margin.

c.3 proximal policy search methods

c.3.1 Monotonic Policy Improvement Theory

This section provides a brief introduction to policy performance bounds and the the-
ory of monotonic policy improvement in the setting of reinforcement learning. While
Section 6.5 discusses the extension of this theory to meta learning, the following expla-
nations assume a standard RL setting where M is exogenously given. Hence, we will
omit mentioning the dependence on M for notational brevity. Since the monotonic pol-
icy improvement frameworks relies on infinite-time horizon MDPs, we assume H → ∞
for the remainder of this chapter.

In addition to the expected reward J(π) under policy π, we will use the state value
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function Vπ, the state-action value function Qπ as well as the advantage function Aπ:

Vπ(s) = Ea0,s1,...

[ ∞∑
t=0

γtr(st,at)
∣∣∣∣st = s

]

Qπ(s,a) = Es1,a1,...

[ ∞∑
t=0

γtr(st,at)
∣∣∣∣st = s,a0 = a

]
= r(s,a) + γEs ′∼p(s ′|s,a)

[
Vπ(s

′)
]

Aπ(s,a) = Qπ(s,a) − Vπ(s)

with at ∼ π(at|st) and st+1 ∼ p(st+1|st,at).
The expected return under a policy π̃ can be expressed as the sum of the expected re-

turn of another policy π and the expected discounted advantage of π̃ over π (see (Schul-
man et al., 2015b) for proof).

J(π̃) = J(π) + Eτ∼P(τ,π̃)

[ ∞∑
t=0

γtAπ(st,at)

]

Let dπ denote the discounted state visitation frequency:

dπ(s) = γt

∞∑
t=0

p(st = s|π)

We can use dπ to express the expectation over trajectories τ ∼ pπ(τ) in terms of states
and actions:

J(π̃) = J(π) + Es∼dπ̃(s)
a∼π̃(a|s)

[Aπ(s,a)] (113)

Local policy search aims to find a policy update π→ π̃ in the proximity of π so that J(π̃)
is maximized. Since J(π) is not affected by the policy update π → π̃, it is sufficient to
maximize the expected advantage under π̃. However, the complex dependence of dπ̃(s)
on π̃ makes it hard to directly maximize the objective in (113). Using a local approxi-
mation of (113) where it is assumed that the state visitation frequencies dπ and dπ̃ are
identical, the optimization can be phrased as

J̃π(π̃) = J(π) + Es∼dπ(s)
a∼π̃(a|s)

[Aπ(s,a)] = J(π) + Es∼dπ(s)
a∼π(a|s)

[
π̃(a|s)

π(a|s)
Aπ(s,a)

]
(114)

In the following we refer to J̃(π̃) as surrogate objective. It can be shown that the surrogate
objective J̃ matches J to first order when π = π̃ (see (Kakade and Langford, 2002)). If πθ
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is a parametric and differentiable function with parameter vector θ, this means that for
any θo:

J̃πθo (πθo) = Jπθo (πθo) and ∇θJ̃πθo (πθ)
∣∣
θo

= ∇θJπθo (πθ)
∣∣
θo

(115)

When π 6= π̃, an approximation error of the surrogate objective J̃ w.r.t. to the true
objective J is introduced. (Achiam et al., 2017) derive a lower bound for the true expected
return of π̃:

J(π̃) > Jπ(π̃) −C
√

Es∼dπ [DKL[π̃(·|s)||π(·|s)]] = Jπ(π̃) −C
√
D̄KL[π̃||π] (116)

with C =
√
2γ

1−γ maxs |Ea∼π̃(a,s)[A
π(s,a)]|

c.3.2 Trust Region Policy Optimization (TRPO)

Trust region policy optimization (TPRO) (Schulman et al., 2015b) attempts to approxi-
mate the bound in (116) by phrasing local policy search as a constrained optimization
problem:

arg max
θ

Es∼dπθo (s)
a∼πθo(a|s)

[
πθ(a|s)

πθo(a|s)
Aπθo (s,a)

]
s.t. D̄KL[πθo ||πθ] 6 δ (117)

Thereby the KL-constraint δ induces a local trust region around the current policy πθo . A
practical implementation of TPRO uses a quadratic approximation of the KL-constraint
which leads to the following update rule:

θ← θ+

√
2δ

g>Fg
F−1g (118)

with g := ∇θEs∼dπθo (s)
a∼πθo(a|s)

[
πθ(a|s)
πθo(a|s)

Aπθo (s,a)
]

being the gradient of the objective and F =

∇2θD̄KL[πθo ||πθ] the Fisher information matrix of the current policy πθo . In order to avoid
the cubic time complexity that arise when inverting F, the Conjugate Gradient (CG)
algorithm is typically used to approximate the Hessian vector product F−1g.
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c.3.3 Proximal Policy Optimization (PPO)

While TPRO is framed as constrained optimization, the theory discussed in Appendix
C.3.1 suggest to optimize the lower bound. Based on this insight, (Schulman et al., 2017)
propose adding a KL penalty to the objective and solve the following unconstrained
optimization problem:

arg max
θ

Es∼dπθo (s)
a∼πθo(a|s)

[
πθ(a|s)

πθo(a|s)
Aπθo (s,a) −βDKL[πθo(·|s)||πθ(·|s)]

]
(119)

However, they also show that it is not sufficient to set a fixed penalty coefficient β and
propose two alternative methods, known as Proximal Policy Optimization (PPO) that
aim towards alleviating this issue:

1) Adapting the KL coefficient β so that a desired target KL-divergence D̄KL[πθo ||πθ]

between the policy before and after the parameter update is achieved
2) Clipping the likelihood ratio so that the optimization has no incentive to move

the policy πθ too far away from the original policy πθo . A corresponding optimization
objective reads as:

JCLIP = Es∼dπθo (s)
a∼πθo(a|s)

[
min

(
πθ(a|s)

πθo(a|s)
Aπθo (s,a) , clip1+ε1−ε

(
πθ(a|s)

πθo(a|s)

)
Aπθo (s,a)

)]
(120)

Empirical results show that the latter approach leads to better learning performance
(Schulman et al., 2017).

Since PPO objective keeps πθ in proximity of πθo , it allows to perform multiple gra-
dient steps without re-sampling trajectories from the updated policy. This property
substantially improves the data-efficiency of PPO over vanilla policy gradient methods
which need to re-estimate the gradients after each step.

c.4 experiments

c.4.1 Hyperparameter Choice

The optimal hyperparameter for each algorithm was determined using parameter sweeps.
Table 3 contains the hyperparameter settings used for the different algorithms. Any en-
vironment specific modifications are noted in the respective paragraph describing the
environment.
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All Algorithms

Policy Hidden Layer Sizes (64, 64)
(128, 128) for Humanoid

Num Adapt Steps 1

Inner Step Size α 0.01

Tasks Per Iteration 40

Trajectories Per Task 20

ProMP

Outer Learning Rate β 0.001

Grad Steps Per ProMP Iteration 5

Outer Clip Ratio ε 0.3
KL Penalty Coef. η 0.0005

MAML-TRPO

Trust Region Size 0.01

MAML-VPG

Outer Learning Rate β 0.001

Table 3: Hyperparameter settings used in each algorithm

c.4.2 Environment Specifications

PointEnv (used in the experiment in 6.7.3)

• Trajectory Length : 100

• Num Adapt Steps : 3

In this environment, each task corresponds to one corner of the area. The point mass
must reach the goal by applying directional forces. The agent only experiences a reward
when within a certain radius of the goal, and the magnitude of the reward is equal to
the distance to the goal.

HalfCheetahFwdBack, AntFwdBack, WalkerFwdBack, HumanoidFwdBack
• Trajectory Length : 100 (HalfCheetah, Ant); 200 (Humanoid, Walker)
• Num Adapt Steps: 1

The task is chosen between two directions - forward and backward. Each agent must run
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along the goal direction as far as possible, with reward equal to average velocity minus
control costs.

AntRandDirec, HumanoidRandDirec
• Trajectory Length : 100 (Ant); 200 (Humanoid)
• Num Adapt Steps: 1

Each task corresponds to a random direction in the XY plane. As above, each agent must
learn to run in that direction as far as possible, with reward equal to average velocity
minus control costs.

AntRandGoal
• Trajectory Length : 200

• Num Adapt Steps: 2

In this environment, each task is a location randomly chosen from a circle in the XY
plane. The goal is not given to the agent - it must learn to locate, approach, and stop at
the target. The agent receives a penalty equal to the distance from the goal.

HopperRandParams, WalkerRandParams
• Trajectory Length : 200

• Inner LR : 0.05

• Num Adapt Steps: 1

The agent must move forward as quickly as it can. Each task is a different randomiza-
tion of the simulation parameters, including friction, joint mass, and inertia. The agent
receives a reward equal to its velocity.
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c.4.3 Further Experiments Results
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Figure 42: Meta-learning curves of ProMP and four other gradient-based meta-learning algo-
rithms in four new Mujoco environments

In addition to the six environments displayed in Figure 13, we ran experiments on the
other four continuous control environments described above. The results are displayed
in 42.

In addition to the improved sample complexity and better asymptotic performance,
another advantage of ProMP is its computation time. Figure 43 shows the average time
spent per iteration throughout the learning process in the humanoid environment differ-
ences of ProMP, LVC-VPG, and MAML-TRPO. Due to the expensive conjugate gradient
steps used in TRPO, MAML takes far longer than either first order method. Since ProMP
takes multiple stochastic gradient descent steps per iteration, it leads to longer outer up-
date times compared to VPG, but in both cases the update time is a fraction of the time
spent sampling from the environment.
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The difference in sampling time is due to the reset process: resetting the environment
when the agent “dies" is an expensive operation. ProMP acquires better performance
quicker, and as a result the agent experiences longer trajectories and the environment
is reset less often. In our setup, instances of the environment are run in parallel and
performing a reset blocks all environments.

0 20 40 60 80 100 120 140 160
Time (seconds/itr)

MAML-TRPO

LVC-VPG

ProMP (ours)

Average Iteration Time

Time-Sampling Time-SampleProc Time-InnerStep Time-OuterStep

Figure 43: Comparison of wall clock time with different algorithms on HumanoidRandDirec, av-
eraged over all iterations

147



D
A P P E N D I X : I M P R O V I N G M O D E L - B A S E D R E I N F O R C E M E N T
L E A R N I N G V I A M O D E L - A U G M E N T E D PAT H W I S E D E R I VAT I V E

d.1 appendix

Here we prove the lemmas and theorems stated in the manuscript.

d.1.1 Proof of Lemma 1

Let Jπ(θ) and Ĵπ(θ̂) be the expected return of the policy πθ under our objective and
under the RL objective, respectively. Then, we can write the MSE of the gradient as

E[‖∇θJπ(θ) −∇θĴπ(θ)‖2] = E[‖∇θ(M− M̂) + |∇θγH(Q− Q̂)‖2]
6 E[‖∇θ(M− M̂)‖2] + E[‖∇θγH(Q− Q̂)‖2]

whereby, M =
∑H
t=0 γ

tr(st) and M̂ =
∑H
t=0 γ

tr(ŝt).
We will denote as ∇ the gradient w.r.t the inputs of network, xt = (st,at) and x̂t =

(ŝt, ât); where ât ∼ πθ(ŝt). Notice that since ff̂ and π are Lipschitz and their gradient is
Lipschitz as well, we have that ∇θx̂t 6 Kt, where K depends on the Lipschitz constants
of the model and the policy. Without loss of generality, we assume that K is larger than
1. Now, we can bound the error on the Q as

‖∇θ(Q− Q̂)‖2 =‖∇Q∇θxH −∇Q̂∇θx̂H‖2
= ‖(∇Q−∇Q̂)∇θxH −∇Q̂(∇θx̂H −∇θxH)‖2
6 ‖∇Q−∇Q̂‖2‖∇θxH‖2 + ‖∇Q̂‖2‖∇θx̂H −∇θxH‖2
6 εQ‖∇θxH‖2 + LQ‖∇θx̂H −∇θxH‖2
6 εQK

H + LQ‖∇θx̂H −∇θxH‖2
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Now, we will bound the term ‖∇θŝt+1 −∇θst+1‖2:

‖∇θŝt+1 −∇θst+1‖2 = ‖∇sf̂∇θŝt +∇af̂∇θât −∇sf∇θst −∇af∇θat‖2
6 ‖∇sf̂∇θŝt −∇sf∇θst‖2 + ‖∇af̂∇θât −∇af∇θat‖2
6 εf‖∇θŝt‖2 + Lf‖∇θŝt −∇θst‖2 + Lf‖∇θât −∇θat‖+ εf‖∇θât‖2
6 εf‖∇θŝt‖2 + (Lf + LfLπ)‖∇θŝt −∇θst‖2 + εf‖∇θât
= εf‖∇θx̂t‖2 + (Lf + LfLπ)‖∇θŝt −∇θst‖2

Hence, applying this recursion we obtain that

‖∇θx̂t+1 −∇θxt+1‖2 6 εf
t∑
k=0

(Lf + LfLπ)
t−k‖∇θx̂k‖2 6 εf

Lt+1 − 1

L− 1
Kt

where L = Lf + LfLπ. Then, the error in the gradient in the previous term is bounded
by

‖∇θ(Q− Q̂)‖2 6 εQKH + LQεf
LH − 1

L− 1
KH

In order to bound the model term we need first to bound the rewards since

‖∇θ(M− M̂)‖2 6
H∑
t=0

γt‖∇θ(r(st) − r(ŝt))‖2

Similar to the previous bounds, we can bound now each reward term by

‖∇θ(r(st) − r(ŝt))‖2 6 εfLr
Lt+1 − 1

L− 1
Kt

With this result we can bound the total error in models

‖∇θ(M− M̂)‖2 6
H−1∑
t=0

γtεfLr
Lt+1 − 1

L− 1
Kt =

Lεf
(L− 1)

(
(γKL)H − 1

γKL− 1
−

(γK)H − 1

γK− 1

)
Then, the gradient error has the form

E[‖∇θJπ(θ) −∇θĴπ(θ)‖2] 6
Lεf

(L− 1)

(
(γKL)H − 1

γKL− 1
−

(γK)H − 1

γK− 1

)
+ εQ(γK)

H + LQεf
LH − 1

L− 1
(γK)H

= εfc1(H) + εQc2(H)
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d.1.2 Proof of Lemma 2

The total variation distance can be bounded by the KL-divergence using the Pinsker’s
inequality

DTV(πθ‖πθ̂) 6
√
DKL(πθ‖πθ̂)

2

Then if we assume third order smoothness on our policy, by the Fisher information
metric theorem then

DKL(πθ‖πθ̂) = c̃‖θ− θ̂‖22 + O(‖θ− θ̂‖32)

Given that ‖θ − θ̂‖2 = α‖∇θJπ −∇θĴπ‖2, for a small enough step the following in-
equality holds

DKL(πθ‖πθ̂) 6 α
2c̃(εfc1(H) + εQc2(H))

2 =

Combining this bound with the Pinsker inequality

DTV(πθ‖πθ̂) 6 α
√
c̃

2
(εfc1(H) + εQc2(H)) = αc3(εfc1(H) + εQc2(H))

d.1.3 Proof of Theorem 1

Given the bound on the total variation distance, we can now make use of the mono-
tonic improvement theorem to establish an improvement bound in terms of the gradient
error. Let Jπ(θ) and Jπ(θ̂) be the expected return of the policy πθ and πθ̂ under the
true dynamics. Let ρ and ρ̂ be the discounted state marginal for the policy πθ and πθ̂,
respectively

|Jπ(θ) − Jπ(θ̂)| =|
∑
s,a
ρ(s)πθr(s,a) − ρ̂(s)πθ̂r(s,a)|

6 |
∑
s,a
ρ(s)πθ(a|s)r(s,a) − ρ̂(s)πθ̂(a|s)r(s,a)|

6 rmax|
∑
s,a
ρ(s)πθ(a|s) − ρ̂(s)πθ̂(a|s)|

6
2rmax

1− γ
max
s

∑
a

|πθ(a|s) − πθ̂(a|s)|

=
2rmax

1− γ
max
s
DTV(πθ‖πθ̂)
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Then, combining the results from Lemma 2 we obtain the desired bound.

d.1.4 Ablations

In order to show the significance of each component of MAAC, we conducted more
ablation studies. The results are shown in Figure 44. Here, we analyze the effect of
training the Q-function with data coming from just the real environment, not learning a
maximum entropy policy, and increasing the batch size instead of increasing the amount
of samples to estimate the value function.

Figure 44: We further test the significance of some components of our method: not use the dynam-
ics to generate data, and only use real data sampled from environments to train policy
and Q-functions (real_data), remove entropy from optimization objects (no_entropy),
and using a single sample estimate of the pathwise derivative but increase the batch
size accordingly (5x batch size). Considering entropy and using dynamic models to
augment data set are both very important.

d.1.5 Execution Time Comparison
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Iteration (s) Training Model (s) Optimization (s) MBPO Iteration (s)

HalfCheetahEnv 1312 486 738 708

HopperEnv 845 209 517 723

Table 4: This table shows the time that different parts of MAAC need to train for one iteration
after 6000 time steps, averaged across 4 seeds. We also add the time needed for MBPO
for one iteration here for comparison.
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E
A P P E N D I X : L E A R N I N G T O A D A P T I N D Y N A M I C , R E A L - W O R L D
E N V I R O N M E N T S T H R O U G H M E TA - R E I N F O R C E M E N T L E A R N I N G

e.1 model prediction errors : pre-update vs . post-update

In this section, we show the effect of adaptation in the case of GrBAL. In particular, we
show the histogram of the K step normalized error, as well as the per-timestep visualiza-
tion of this error during a trajectory. Across all tasks and environments, the post-updated
model p̂θ′∗ achieves lower prediction error than the pre-updted model p̂θ∗ .
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Figure 45: Histogram of the K step normalized error across different tasks. GrBAL accomplishes
lower model error when using the parameters given by the update rule.
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Figure 46: At each time-step we show the K step normalized error across different tasks. GrBAL
accomplishes lower model error using the parameters given by the update rule.
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Figure 47: Effect of the meta-training distribution on test performance

e.2 effect of meta-training distribution

To see how training distribution affects test performance, we ran an experiment that used
GrBAL to train models of the 7-DOF arm, where each model was trained on the same
number of datapoints during meta-training, but those datapoints came from different
ranges of force perturbations. We observe (in the plot below) that

1. Seeing more during training is helpful during testing — a model that saw a large
range of force perturbations during training performed the best

2. A model that saw no perturbation forces during training did the worst
3. The middle 3 models show comparable performance in the "constant force = 4" case,

which is an out-of-distribution task for those models. Thus, there is not actually a strong
restriction on what needs to be seen during training in order for adaptation to occur at
train time (though there is a general trend that more is better)
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e.3 sensitivity of T1 and T2

In this section we analyze how sensitive is our algorithm w.r.t the hyperparameters T1
and T2. In all experiments of the paper, we set T1 equal to T2. Figure 48 shows the average
return of GrBAL across meta-training iterations of our algorithm for different values of
T1 = T2. The performance of the agent is largely unaffected for different values of these
hyperparameters, suggesting that our algorithm is not particularly sensitive to these val-
ues. For different agents, the optimal value for these hyperparameters depends on vari-
ous task details, such as the amount of information present in the state (a fully-informed
state variable precludes the need for additional past timesteps) and the duration of a
single timestep (a longer timestep duration makes it harder to predict more steps into
the future).

Figure 48: Learning curves, for different values of T1 = T2, of GrBAL in the half-cheetah disabled
and sloped terrain environments. The x-axis shows data aggreation iterations during
meta-training, whereas the y-axis shows the average return achieved when running on-
line adaptation with the meta-learned model from the particular iteration. The curves
suggest that GrBAL performance is fairly robust to the values of these hyperparame-
ters.

e.4 reward functions

For each MuJoCo agent, the same reward function is used across its various tasks. Table 5

shows the reward functions used for each agent. We denote by xt the x-coordinate of the
agent at time t, eet refers to the position of the end-effector of the 7-DoF arm, and g
corresponds to the position of the desired goal.
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Table 5: Reward functions

Reward function

Half-cheetah xt+1−xt
0.01 − 0.05‖at‖22

Ant xt+1−xt
0.0e − 0.005‖at‖22 + 0.05

7-DoF Arm −‖eet −g‖22
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e.5 hyperparameters

Below, we list the hyperparameters of our experiments. In all experiments we used a
single gradient step for the update rule of GrBAL. The learning rate (LR) of TRPO cor-
responds to the Kullback–Leibler divergence constraint. # Task/itr corresponds to the
number of tasks sampled for collecting data to train the model or model, whereas #
TS/itr is the total number of times steps collected (for all tasks). Finally, H refers to the
horizon of the task.

Table 6: Hyperparameters for the half-cheetah tasks

LR Inner LR Epochs T2 T1 Batch Size # Tasks/itr # TS/itr H nA Train H Train nA Test H Test

GrBAL 0.001 0.01 50 32 32 500 32 64000 1000 1000 10 2500 15

ReBAL 0.001 - 50 32 32 500 32 64000 1000 1000 10 2500 15

MB 0.001 - 50 - - 500 64 64000 1000 1000 10 2500 15

TRPO 0.05 - - - - 50000 50 50000 1000 - - - -

Table 7: Hyperparameters for the ant tasks

LR Inner LR Epochs T2 T1 Batch Size # Tasks/itr # TS/itr H nA Train H Train nA Test H Test

GrBAL 0.001 0.001 50 10 16 500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 500 32 32000 500 1000 15 1000 15

MB 0.001 - 70 - - 500 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

Table 8: Hyperparameters for the 7-DoF arm tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T na Train H Train na Test H Test

GrBAL 0.001 0.001 50 32 16 1500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 1500 32 24000 500 1000 15 1000 15

MB 0.001 - 70 - - 10000 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

159


	Acknowledgements
	Contents
	1 Introduction
	2 Problem Statement
	2.1 Reinforcement Learning
	2.2 Model-Based Reinforcement Learning
	2.2.1 Related Work
	2.2.2 Vanilla Model-Based Method

	2.3 Meta-Learning
	2.3.1 Meta-Learning for Reinforcement Learning


	3 Model-Bias
	3.1 Estimation Errors
	3.2 Compounding Errors
	3.3 Over-optimism

	4 Model-Ensemble Trust-Region Policy Optimization
	4.1 Overview
	4.2 Method
	4.3 Experiments
	4.3.1 From Vanilla to ME-TRPO
	4.3.2 Comparison to State-of-the-Art

	4.4 Discussion

	5 Model-Based Reinforcement Learning via Meta-Policy Optimization
	5.1 Overview
	5.2 Method
	5.2.1 Model Learning
	5.2.2 Meta-Reinforcement Learning on Learned Models
	5.2.3 Algorithm

	5.3 Benefits of the Algorithm
	5.4 Related Work
	5.5 Experiments
	5.5.1 Comparison to State-of-the-Art: Model-Free
	5.5.2 Comparison to State-of-the-Art: Model-Based
	5.5.3 Robustness to Imperfect Dynamic Models and Compounding Errors
	5.5.4 Model Uncertainty and Policy Plasticity

	5.6 Conclusion

	6 ProMP: Proximal Meta-Policy Search
	6.1 Overview
	6.2 Background
	6.3 Sampling Distribution Credit Assignment
	6.4 Low Variance Curvature Estimator
	6.5 Method
	6.6 Related Work
	6.7 Experiments
	6.7.1 Meta-Gradient Based Comparison
	6.7.2 Gradient Estimator Variance and Its Effect on Meta-Learning
	6.7.3 Comparison of Initial Sampling Distributions
	6.7.4 Gradient Update Directions of the Two Meta-RL Formulations

	6.8 Conclusion

	7 Improving Model-Based Reinforcement Learning via Model-Augmented Pathwise Derivative
	7.1 Introduction
	7.2 Background
	7.2.1 Actor-Critic Methods
	7.2.2 Monte-Carlo Gradient Estimators

	7.3 Policy Gradient via Model-Augmented Pathwise Derivative
	7.3.1 Model-Augmented Actor-Critic Objective
	7.3.2 Monotonic Improvement
	7.3.3 Algorithm

	7.4 Results
	7.4.1 Comparison Against State-of-the-Art
	7.4.2 Gradient Error
	7.4.3 Ablations
	7.4.4 Model Predictive Control

	7.5 Related Work
	7.6 Conclusion

	8 Asynchronous Methods for Model-Based Reinforcement Learning
	8.1 Overview
	8.2 Method
	8.3 Related Work
	8.4 Experiments
	8.4.1 Wall-Clock Time Speed-up and Sample Efficiency
	8.4.2 Interleaved Policy Learning and Model Learning
	8.4.3 Interleaved Policy Learning and Data Collection
	8.4.4 Early Stopping & Sampling Speed Effect
	8.4.5 Real-World Experiments

	8.5 Conclusion

	9 Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning
	9.1 Overview
	9.2 Method
	9.2.1 Meta-Learning for Online Model Adaptation
	9.2.2 Meta-Online Adaptation for Control 

	9.3 Related Work
	9.4 Experiments
	9.4.1 Effect of Adaptation
	9.4.2 Performance and Meta-training Sample Efficiency
	9.4.3 Test-time Performance: Online Adaptation & Generalization
	9.4.4 Real-World Results

	9.5 Conclusion

	10 Conclusion
	10.1 Related Work since Original Publication of this Work
	10.2 Future Work

	A Appendix: Model-Ensemble Trust-Region Policy Optimization
	A.1 Model-Ensemble Trust-Region Policy Optimization
	A.1.1 Data collection
	A.1.2 Model Learning
	A.1.3 Policy Learning

	A.2 Environment details
	A.2.1 Baselines

	A.3 Overfitting
	A.4 Ablation Study
	A.4.1 Ensemble Sampling Methods
	A.4.2 Ensemble Validation


	B Appendix: Model-Based Reinforcement Learning via Meta-Policy Optimization
	B.1 Tailored Data Collection
	B.2 Hyperparameter Study
	B.3 Experiment Setup
	B.4 Computational Analysis

	C Appendix: ProMP: Proximal Meta-Policy Search
	C.1 Two Meta-Policy Gradient Formulations
	C.1.1 Meta-Policy Gradient Formulation I
	C.1.2 Meta-Policy Gradient Formulation II
	C.1.3 Comparing the Gradients of the Two Formulations

	C.2 Estimating the Meta-Policy Gradients
	C.2.1 Estimating Gradients of the RL Reward Objective
	C.2.2 A decomposition of the hessian
	C.2.3 Estimating the Hessian of the RL Reward Objective
	C.2.4 Bias and variance of the curvature estimate

	C.3 Proximal Policy Search Methods
	C.3.1 Monotonic Policy Improvement Theory
	C.3.2 Trust Region Policy Optimization (TRPO)
	C.3.3 Proximal Policy Optimization (PPO)

	C.4 Experiments
	C.4.1 Hyperparameter Choice
	C.4.2 Environment Specifications
	C.4.3 Further Experiments Results


	D Appendix: Improving Model-Based Reinforcement Learning via Model-Augmented Pathwise Derivative
	D.1 Appendix
	D.1.1 Proof of Lemma 1
	D.1.2 Proof of Lemma 2
	D.1.3 Proof of Theorem 1
	D.1.4 Ablations
	D.1.5 Execution Time Comparison


	E Appendix: Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning 
	E.1 Model Prediction Errors: Pre-update vs. Post-update
	E.2 Effect of Meta-Training Distribution
	E.3 Sensitivity of T1 and T2
	E.4 Reward functions
	E.5 Hyperparameters


