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Applying the Four Russians Technique to Banded

Extension and X-Drop Sequence Alignment

CRISTINA TEODOROPOL, UC Berkeley

The Four Russians technique is a method that divides a sequence alignment problem into tiles and uses a precomputed lookup

table to quickly find the solution to each tile. By dividing the dynamic programming table into tiles of size tn× tm, the running

time of the alignment algorithm is reduced to O(nm/(tntm)). We explore this technique as it applies to the problem of genomic

sequence alignment. Beyond the simple global alignment problem, we implement the Four Russians technique for a banded

extension algorithm, which only covers a diagonal band of the dynamic programming table and, similar to local alignment,

extends an alignment ending anywhere in the table, and an early dropout algorithm similar to X-Drop. Using a t3 × t3 sized

tile, the average speedup was 5.15 for the Needleman-Wunsch full global alignment algorithm, 2.98 for the banded extension

algorithm, and 2.77 for the X-Drop algorithm, running over data produced by the PBSIM synthetic generator.

1. INTRODUCTION

The problem of aligning a pair of strings arises in many areas of computer science, but it is of par-

ticular importance in computational biology, to align DNA, RNA, or protein sequences. The general

approach to solving alignment problems is with dynamic programming. There exist many variations

of the sequence alignment problems that use heuristics to cut down on the quadratic search of the full

dynamic programming table, such as banded alignment and X-Drop. In this report I will be exploring

a speedup technique known as Four Russians in the context of these alignment variants. In particular

I believe this is the first application of Four Russians to an early dropout algorithm similar to X-Drop.

The Four Russians approach was originally developed to speed up boolean matrix multiplication, and

was then adapted to work for unit cost edit distance computation by Dan Gusfield [1997].

This report will cover the traditional global alignment algorithm, the Lookup Table (LUT) used in

Four Russians, how the Four Russians algorithm progresses, and experimental results, as well as some

boundary cases to consider.
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2. PAIRWISE SEQUENCE ALIGNMENT

The classic problem of sequence alignment is that of global alignment where the entirety of both se-

quences is included in the resulting alignment. The algorithm for computing the optimal global align-

ment is called Needleman-Wunsch [1970]. For a sequence S1 and a sequence S2 over a finite alphabet

Σ, of lengths |S1| = n and |S2| = m, we want to find an optimal alignment in the presence of a maximiz-

ing or minimizing function and given a particular scoring matrix. An alignment is formed by inserting

gap characters, represented by ‘-’, as needed. There can be multiple optimal alignments with the same

score. The score of an alignment is the sum of the scores of each pair of characters in the alignment

according to the scoring matrix. The Needleman-Wunsch1 algorithm is as follows:

Mi,j = max



Mi−1,j−1 + score(S1[i− 1], S2[j − 1]) if i > 0 and j > 0

Mi−1,j + d if i > 0

Mi,j−1 + d if j > 0

0 if i = 0 and j = 0

(1)

where d is the gap penalty.

In this report we will consider the case where d is −1, and where

score(α, β) =


1 if α = β

−1 if α ! = β

(2)

The scoring matrix can in general give different penalties for insertions, deletions, or different com-

binations of pairwise mismatches.

Mn,m gives the optimal alignment score. The result can be computed by filling a (n + 1) × (m + 1)

table using dynamic programming. This algorithm then runs in O(nm) time and space.

3. CLASSIC FOUR RUSSIANS

The basic idea of the Four Russians technique is to divide the dynamic programming table into small

tiles, precompute a lookup table (LUT) for every possible tile, and then use the LUT to perform the

1Note that the code written actually uses a symmetric minimizing function, positive gap penalty, and negated scoring matrix.
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Fig. 1: The cells of interest in a t-block are the first cell A, the remaining first row R, the first column C, the last row R’, and the
last column C’. Additionally we consider the subsequences X and Y.

actual computation. By dividing the dynamic programming table into tiles of size tn × tm , the run-

ning time of the algorithm is reduced to O(nm/(tntm)), plus the cost of precomputing the LUT. Some of

following subsections follow the presentation in the Master’s thesis of Mikkelsen [2015], as the expla-

nations naturally follow the same structure.

3.1 t-blocks

Rather than computing each cell in the table one by one, the table is divided into tiles called t-blocks,

which overlap on their edges (the first and last rows and columns of the t-block). Each t-block could

be viewed as a subtable and computed using the Needleman-Wunsch recurrence, but this would not

improve the running time of the algorithm. Therefore we want to build a LUT where each entry rep-

resents a t-block. An entry is indexed by the first row and column in the t-block subtable, and by the

subsequences of S1 and S2 covered by the t-block. Such subsequences S1[i...i + t] and S2[j...j + t] will

hereafter be referred to as X and Y respectively. An entry then stores the parts of the last row and

column of the t-block which do not overlap with the first row and column. See Figure 1. Note that in

this report, the size of a t-block excludes the first row and column.

The LUT can then be precomputed by running the Needleman-Wunsch algorithm for every possible

t-block input. Since the t-blocks overlap on their edges, the final alignment score can be found by adding

the output of one t-block as the input to the next, and so on until the whole table is covered.
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(a)
(b)

Fig. 2: Offsets between absolute cell values (left), and offsets as values in a t-block (right).

3.2 Encoding t-blocks

Precomputing the LUT for every possible combination of input values may not present an algorithmic

advantage. Consider that for edit distance computation, each cell can have a value between 0 and n.

Then an encoding of A, C, and R can have (n + 1)1+tn+tm possible combinations, and for the finite

alphabet Σ there are |Σ|tn+tm possible encodings of X and Y, for a total of (n+1)1+tn+tm |Σ|tn+tm entries

in the LUT. Since each t-block entry requires O(tntm) time to compute, this would be far less efficient

than simply performing the O(nm) alignment. Therefore we must find a more efficient way to encode

t-blocks.

Gusfield’s original observation and proof that makes Four Russians efficient is of the fact that each

cell’s value is only separated by at most a fixed amount from its neighbor’s value. Gusfield formally

proved that horizontally or vertically adjacent values differ by at most 1 for edit distance computation,

and Mikkelsen generalized the proof for arbitrary scoring matrices [1997; 2015]. These offsets between

absolute cell values can then be used as the values in a t-block encoding. See Figure 2.

For example, suppose there is an edge AR0R1R2 = [3, 2, 2, 4]. This is encoded as [−1, 0, 2]. Note that we

may add a fixed integer to all the absolute values of the edge without changing the offsets. Therefore

only the offset values are of interest to the encoding and A may be omitted. For computing the stored

result of a t-block, we simply use 0 in the A position.
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As Mikkelsen introduced, let I be the cardinality of the interval containing all the unique offset

values possible with a given scoring matrix and gap penalty [2015]. For edit distance, I = |{−1, 0, 1}| =

3. For the scoring matrix (and gap penalty) introduced by equation (2) in section 2, I = |{−1, 0, 1, 2}| = 4.

Using the above encoding, the number of possible LUT entries is reduced to (I|Σ|)tn+tm . I should be

a small integer, and in this report we only consider the DNA nucleotides A, C, G, and T so likewise

|Σ| = 4. This makes the Four Russians method practically feasible for sequence alignment.

Note that the boundaries of the interval can be found using the equations introduced by Mikkelsen:

Imin = d (3)

Imax = max


d

cmpmax − d
(4)

where Imin is the smallest offset, Imax is the largest offset, and cmpmax is the largest score possible

according to the scoring matrix. We refer the reader to [Mikkelsen 2015] for a proof of correctness for

these equations.

3.3 Block function

The mapping of the LUT inputs and outputs is formalized as the block function:

F (X,C,R, Y ) = R′, C ′ (5)

Here the X values take up the most significant bits of an entry address while the Y values use the

least significant bits. Mikkelsen showed that the addressing layout matters for performance [2015].

Specifically it is most beneficial to have the X value in the most significant bits for row-wise iteration

(and Y for column-wise) because the X subsequence remains constant, meaning that we are repeatedly

indexing into a contiguous section of the LUT and loading it into the cache, making repeated queries

faster.
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3.4 Padding and final result

Since the lengths of input sequences S1 and S2 might not end on a t-block boundary, we employ the

same padding strategy as in the work of Espeholt to ensure the sequences can be split into whole t-

blocks [2013]. Namely, the same number of ‘A’s are prepended to both sequences so that the new S1 is

now divisible by the size of a t-block, and then ‘A’s are appended onto S2 until the same condition is

reached. We refer the reader to the work of Espeholt for an argument of correctness by induction.

Then we must take the padding into account when we obtain the final result, by using the following

equation:

result = globalmax− prepadding ∗ score(A,A) = globalmax− prepadding (6)

Here prepadding is the number of ‘A’s prepended to both sequences. globalmax is the result at the

end of the filled matrix, which we obtain by starting off with the value of the first cell, 0, and adding

all the offsets until the end of the matrix along both axes. However since S2 may have some padding

appended, we only add offsets in the direction of S2 until the end of the original S2.

4. BANDED FOUR RUSSIANS

We now present our treatment of a banded Four Russians algorithm. t-blocks are only computed for a

diagonal band of a certain width. For the t-blocks on the boundary of the band, about half of the t-block

contains normal values and the other half contains a special offset representing an offset involving

negative infinity. See Figure 3. Note since we need to use an additional bit value for this new offset,

this may introduce wasted LUT entries if it now requires using an additional bit. Particularly for the

interval of our scoring matrix, shown the be 4 in subsection 3.2 and meaning we need to represent

4 different bit values, we can encode it using log2(4) = 2 bits, but if we add an additional bit value

this forces us to now use 3 bits with waste. Thus the scoring matrix chosen (along with the size of

the alphabet) greatly influences the size of the LUT. For this scoring matrix and a t3 × t3 sized t-

block, the wasted space due to the offset parts of the encoding is given by available bit values
used bit values , resulting

in ( 8
5 )tn+tm = ( 8

5 )3+3 = ( 8
5 )6 = 16.78 times the optimal space used [Mikkelsen 2015]. This makes our

scoring matrix a rather poor choice for a banded Four Russian application.
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Fig. 3: A banded layout of t-blocks. All grey cells represent the value of negative infinity.

Additionally since we use a diagonal band that is symmetric around the main diagonal, we then use

only square t-blocks to maintain the band around this diagonal.

5. EXTENSION

To work up to X-Drop, we first implemented an extension algorithm, which starts the alignment at the

top-left corner of the matrix or the start of both sequences, but extends the alignment to anywhere in

the matrix, not necessarily to the last (bottom-right) cell. In this regard the alignment starts similarly

to a global alignment but ends like a local alignment.

5.1 Tracking the global max

In order to accomplish this extension, we must now keep track of the global max as we go through the

matrix and return it at the end of the computation. But to do this we must know the local max of each

tile so that we may update the global max. Since the t-blocks store things in a relative manner though,

we need to store the relative max of each t-block in the LUT. We therefore present an updated block

function:

F (X,C,R, Y ) = R′, C ′,max (7)

max represents the maximal value of a t-block relative to A. Note our implementation uses packed,

unaligned fields to preserve memory space.
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Once we have the relative max of each t-block, we must get the absolute max values of each t-block in

order to update the absolute global max. Therefore we must also compute the absolute A values, since

the absolute max of a t-block is A + max. We do this by adding the offset edges of a previous t-block,

either on the left of or above the current t-block, to that block’s A value. Since we know the A value of

the first t-block, which is 0, we can continually add the offsets along t-block edges as we fill the matrix

and obtain each t-block’s A value.

5.2 Naive fallback

As we fill the matrix, a new global max is found whenever

A+ t block.max > global max. (8)

However it may be the case that this max is found in a cell that is beyond the boundaries of the original

S2 sequence, if the cell is in the post-padding. Therefore whenever condition (8) is met in the last t-

block of a row and that t-block contains post-padding, we fall back to naively computing the t-block.

This is the same approach used by Mikkelsen [2015].

6. X-DROP

We additionally implemented an early dropout extension algorithm inspired by X-Drop, which ends

the computation early if the score drops by more than X below the global max. Specifically our im-

plementation checks a similar condition along the antidiagonal t-blocks as Zhang et al. [2000], that is

A + t block.max < prev global max − X, but it does not shrink the size of the diagonal band dynami-

cally. Therefore the algorithm terminates when the X-Drop condition is true for all t-blocks along an

antidiagonal.

But what exactly is prev global max? To answer that we must first go over some differences from the

extension algorithm in the previous section. Notably, the extension algorithm calculated each t-block’s

absolute max, A + t block.max, and updated the global max in a row-wise iteration direction. The X-

Drop algorithm instead just calculates each t-block’s absolute max in a row-wise iteration direction

and stores it in an array, but then to more closely follow the original X-Drop algorithm, it updates the
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Fig. 4: Iteration directions for the X-Drop algorithm. The absolute max for each t-block is calculated row-wise along the blue
arrow. The X-Drop condition is calculated antidiagonal-wise based on the global max along the red arrow.

global max by iterating over the antidiagonals. See figure 4. So prev global max is the global max up to

and including the t-blocks in the previous antidiagonal.

This then introduces some inconsistency in the computation, because we evaluate the naive fallback

condition of equation (8) row-wise but based on the global max of the previous antidiagonal, so the

final resulting score may only be an approximation of the original X-Drop algorithm.

7. EXPERIMENTS

7.1 Setup

The implementation started off using the code from Espeholt [2013], which only contained a basic Four

Russians implementation that covered the whole matrix, performing a global alignment.

The experiments were run on an AMD Ryzen 9 3950X 16-core processor with a base clock of 3.5 GHz,

max boost clock of up to 4.7 GHz, and with Precision Boost Overdrive enabled. In total it has 1 MiB of

L1 cache, 8 MiB of L2 cache, 64 MiB of L3 cache, but since the code in single-threaded, each core has

up to 64 KiB L1 cache, 512 KiB L2 cache, and 16 MiB L3 cache available. The system also had 32 GiB

of DDR4-3200, CL14 RAM. The code was compiled with g++ 9.3.0 using c++17.

To verify correctness of the algorithms, each algorithm was tested against its naive counterpart on

random sequences of up to 1000 base pairs long.
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Banded and X-Drop experiments were run with a diagonal band size of 30 and with an X value of 15.

The max t-block size used was t3 × t3 since any larger size produced a LUT that could not fit in main

memory for the banded case.

Benchmarks were run on reads produced with the PBSIM synthetic generator [Ono et al. 2013],

using the provided sample genome and with Continuous Long Reads, model-based simulation, and the

default coverage depth of 20. Alignments were skipped if an alignment was to the reverse-complemented

reference sequence.

Note that LUT construction time is not included in these benchmarks, as building the LUTs is con-

sidered a one-time cost and thereafter the LUTs would be used for multiple alignments. Additionally

Mikkelsen showed that an alignment using t3 × t3 t-blocks surpasses the time required to construct

the LUT (for non-banded alignment), using the same scoring system, at a length of 4,985 base pairs,

and even less for smaller t-blocks [2015].

7.2 Results

The results of the synthetic benchmarks for different base pair lengths are shown in Figure 5. Each

speedup is calculated over its naive counterpart, so e.g. the banded extension speedup is over the naive

banded algorithm. Of note is the fact that running Four Russians with t-blocks of size t1 × t1 is slower

than running the naive algorithm. The overhead associated with such small t-blocks outweighs the

potential benefit. All algorithms show a quadratic effect from scaling the input, although the X-Drop

time is dependent on the values in the sequences, which makes the speedup more variable. The average

speedups are shown in Table I. It can be seen that speedups improve with larger t-block sizes, though

this would be limited by the ability to store the LUT in memory and fit used portions of the LUT in

the cache. Notably the runtimes for the X-Drop variant are similar or slightly worse than the banded

extension runtimes, which we believe is due to the overhead from iterating in both the row-wise and

antidiagonal-wise directions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Benchmark runtimes and speedups.
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Average Speedup
Algorithm t1 × t1 t2 × t2 t3 × t3
Needleman-Wunsch 0.60 2.43 5.15
Banded Extension 0.38 1.49 2.98
X-Drop 0.37 1.40 2.77

Table I. : Average speedups using the different algorithms for t-blocks of size t1 × t1, t2 × t2, and t3 × t3.

8. CONCLUSIONS AND FUTURE WORK

In this work we have introduced two new variants of the Four Russians technique for sequence align-

ment, namely a banded extension algorithm and an X-Drop algorithm with early cutoff for sequences

with poor alignments. The results show greater speedups with larger t-block sizes, up to average

speedups of 5.15 for Needleman-Wunsch, 2.98 for banded extension, and 2.77 for X-Drop with a t-block

of size t3 × t3. Of note is that the runtimes with the X-Drop algorithm do not exhibit an improve-

ment over the banded extension runtimes. This is likely caused by the iteration of both the rows and

antidiagonals in the X-Drop case.

There are many potential continuations of this work. A basic step would be to experiment with the

tuning: trying other scoring matrices, diagonal band sizes, and X values. Next we would perform a

cache analysis to observe how the different t-block sizes affect the portion of the LUT that fits in the

cache and in turn the runtimes. We would also experiment with different iteration directions, such as

only iterating over the antidiagonals rather than the current combined row-wise and antidiagonal-wise

iteration. Further optimization such as SIMD vectorization could be applied to the offset edge sums. A

different encoding scheme similar to [Kim et al. 2016] could be explored to enable the use of this Four

Russian technique with larger alphabet sizes, such as for protein sequences. Another improvement to

the algorithm would be to only use linear space, and to return the alignment rather than just the score,

using Hirschberg’s algorithm [Hirschberg 1975].

A significantly different direction would be to adapt the algorithms to run on the GPU. Finally, in

regards to the experiments, we would like to run the benchmarks on real genomic data, and compare

results to the X-Drop implementation in Seqan [Döring et al. 2008; Reinert et al. 2017]. A comparison

to the alternate banded Four Russians design in [Brubach et al. 2017; Brubach and Ghurye 2018],

which overlaps t-blocks on more than just their edges, could also prove insightful.
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