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2 Motivation and Background

2.1 Background

After looking at the ENIAC, the state of the art computer in 1945, it would be difficult to
imagine that this monstrous beast could ever fit inside the tip of a pen. ENIAC contained
approximately 18000 vacuum tubes (electronic switches), weighed 30 tons, occupied a 30x50
foot room, and consumed about 150 kW of power (equivalent to operating about 37 electric
ovens at the same time[1]). At its peak operating efficiency, the ENIAC could perform about
5000 instructions (calculations) per second.[2][3]

In contrast, the Intel Core i7-8700K, a representative top-end desktop computer CPU in
2017, is capable of executing about 39,000 million instructions per second using 2 billion1

transistors (electronic switches), and consumes only 95W of power[5]. The total chip package
weighs 3 ounces, and its dimensions are less than 4x5 inches2.[6]

This miracle of computing is usually explained via the phenomenon known as Moore’s law.
In the 1960s, Gordon Moore (co-founder of Intel) made an observation (now known as Moore’s
law) that the number of transistors on a computer chip doubles about every two years. His
observation has held true until recently, bringing computing from the crude machines of the
1960s/1970s to today’s smartphones, intelligent thermostats, and data centers.[7]

To first order, Moore’s law was significant in that it predicted performance would double,
while at the same time, area and power consumption would remain constant. With this power
of doubling, software developers were able to add more features and produce reasonably-
performant software in a shorter amount of time. This phenomenom occurred because they
could now program in increasingly productive higher-level languages (e.g. Java instead
of assembly/machine code), focus on non-performance aspects of computing such as user
interfaces, and exert less man-power on low-level performance optimization.[8] As Jeff Atwood
noted in 2008, “until the day that Moore’s Law completely gives out on us, one thing’s for
sure: hardware is cheap - and programmers are expensive.”[9]

Recently, however, Moore’s law has slowed in delivering the promised performance gains.
A companion trend called Dennard scaling allowed transistors to shrink in size and consume
proportionally less power, meaning that the number of transistors per area could quadruple,
while the chip as a whole still consumed the same amount of power.[10]. Around the mid-
2000s, however, Dennard scaling was the first trend to violate expectations when computer
chips hit the single-core “power wall” - the phenomenon where a chip would consume more
power than could be adequately dissipated via a heatsink. This meant that clock speeds
and single-threaded performance could no longer follow the exponential gain described by

1The actual number is unclear since Intel does not publish official transistor counts for this chip - estimates
range from 1 to 3 billion transistors.[4]

2Retail dimensions include consumer packaging and other overhead.
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Moore’s law. Since then, processor vendors like Intel have continued to pack more transistors
onto individual dies by increasing the number of cores instead of trying to increase the clock
frequency for a single core.[11]

Unfortunately, even Moore’s Law itself is under siege. As transistors approach atomic
limits where classical physics break down, we can observe the difficulties in process costs - e.g.
photolithography, tooling, and yield all become challenging, resulting in higher fabrication
costs. Despite the shrinkage of transistors, the cost per million gates stops dropping after
28nm. In fact, the cost per million gates actually starts to slightly increase.[12] [13] Recently,
the semiconductor community has been debating whether there will be any significant process
nodes past 7nm, heralding the death of Moore’s law.[14] While many exotic (non-CMOS
silicon-based) technologies such as carbon nanotubes and quantum computing exist, they do
not function in the same environmental conditions with the same performance and accuracy
characteristics.Hence, since software can no longer automatically rely on Moore’s law (either
via single or multi-core scaling), we must develop custom hardware and accelerators to
continue reaping performance gains.

Chip making, however, is very expensive, ranging from $50-$300 million for conventional
chip projects[14]. While manufacturing each chip costs some money, this amount may not
account for most of the cost in low to moderate-volume products, which is dominated by
non-recurring engineering costs (NREs) - one-time overhead costs required to design a chip
which remain constant regardless of the number of units manufactured. In particular, for
large chips, the cost is dominated by design complexity in all areas (software, hardware
design, and physical design). This design complexity results in high engineering effort which
translates to high costs. For example, the CEO of a fabless semiconductor company noted
that “engineering salaries are by far the biggest cost in SOC design”. [15]

Developing software for programming new semiconductor devices dominates the cost of
new products, followed by hardware costs like verification, validation, IP qualification, and
physical design. Fabrication and other overhead (e.g. marketing) come afterwards.[16] [15]
In other aspects of new semiconductor projects such as software, re-use helps bring down
cost, while current physical design methodology prevents physical design efforts from being
effectively re-used across nodes/projects/tools. Other work such as domain-specific languages
like Halide [17] can help reduce the cost of developing software for new semiconductor
products. This work focuses on addressing the hardware-related portions of the NRE.

On the hardware front, we hypothesize that a number of factors contribute to high
hardware design NREs, such as sub-optimal programming interfaces in CAD tools (TCL),
inefficient abstractions, and CAD tool vendor oligopolies. Another factor which could
contribute to high hardware design NREs is the disconnect between RTL and physical design.
By creating a platform for agile hardware design, we hope to tackle the hardware design NREs.
This work focuses mainly physical design, but also addresses validation, IP qualification, and
verification concerns by exploring inefficient programming interfaces and poor abstractions.

Why do we need these additional abstractions? RTL alone is not sufficient to tape out
a chip. RTL provides details regarding logic that goes on the chip, but almost completely
abstracts the physical implementation of the chip.3 The information required for physical

3Some CAD tool vendors support custom Verilog inline attributes to specify certain constraints, but as we
will discuss later, this is not portable nor necessarily desirable.
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implementation includes placement, clocks, power, port constraints, pads/bumps, but also
off-chip/integration concerns like packaging. While automatic place and route tools can do
most of the logic cell placement, large hard macros such as memories or analog blocks need to
be manually placed4 to achieve optimal efficiency. To tape out any real chip, this information
needs to be passed on to the CAD tools somehow.

While there are some existing solutions, they still prevent hardware innovation by making
the NRE cost high, mostly by non-portable or inefficient methodologies. Even in the presence
of previous tapeouts, creating a new chip project remains inefficient and frustrating, which
translates to high design engineering costs. We want to examine why this inefficiency occurs,
and propose a modular5 platform to enable hardware innovation and make new chip projects
less frustrating.

2.2 Existing Solutions Are Inadequate

Many large institutions have created internal scripts and flows6 to create chips. These scripts
hard-code information from 3 different sources that are mixed in together: 1) Technology
process design kit (PDK) (Process Design Kit) paths and references; 2) RTL/project-specific
paths; 3) CAD tool vendor-specific commands. In addition, many scripts are commonly im-
plemented using programming languages like GNU Make, bash scripting, sed, and TCL. They
lack abstractions like object-oriented programming, type systems, well-defined data structures,
well-defined libraries, etc, which, at least from anecdotal evidence, makes maintaining them
very difficult or frustrating7.8

While CAD tool vendors provide “example flows” or “reference methodologies” intended
to be somewhat modular, the fact that customizations and additions to the flow happen
directly in the flow by modifying or writing TCL commands/variables limits re-use by tying
those commands to a specific CAD tool vendor, technology node, and chip project.

Some vendors have custom inline attributes in Verilog which encode physical annotations
to CAD tools (e.g. FPGA tools, VCS, etc). These attributes are non-standard9, and variable

4Some CAD tool vendors may have some automatic macro placement but for the most part higher-level
design information is required to do this realistically.

5By modular here we mean that there should be a well-defined API to make it easy and safe to add new
plugins for supporting technologies and CAD tools without requiring a comprehensive understanding of all
the environment/shell/Make variables floating in a global namespace. We will discuss this further in the
Existing Solutions and design sections.

6Most of these scripts are non-general, institution-specific, and even if they were well engineered, they are
not freely available, hindering re-use.

7While frustration and errors are hard to quantify, some commit messages (written by multiple individuals)
from an internal chip repository include “Fixing [person]’s stupid typos”, “fixing carriage return in [person]s
block”, “Derpa doo”, “CAPS LOCK CUZ I HAVE ANGER ISSUES AND IM STILL SALTY THAT
FLIPCHIP IN [CAD tool] IS THE WORST”, “Jesus f*** [CAD tool]”, “Last edit. Last commit. Plzzz” (of
course, there were (many) more fixes required afterwards), and “Stupid stupid stupid”.

8PLSI was a previous attempt at creating a modular flow. During our attempt to use it for a tapeout
and maintaining it afterwards, we found it difficult to avoid making errors like simple typos, global variable
dependencies, esoteric syntax, etc that made it hard to use. In addition, the flow was very monolithic and it
was difficult to re-use portions of it but not others.

9Section 4.4: “There are no standard attributes in the Verilog-2001 standard; Software tools or other
standards will define attributes as needed.”[18]
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support across vendors makes it non-portable. Furthermore, not all physical design traits are
possible to specify in inline extensions (e.g. no major ASIC tool vendor supports encoding
clocks or SRAM placement).10 Therefore, encoding physical design information in inline
attributes is not a fully portable solution, and as we will see later, even if we could modify
the source RTL to include attributes/annotations, this may not necessarily increase re-use.

Other previous attempts tended to follow the framework pattern as opposed to the library
pattern. The key distinction between frameworks and libraries is the idea of “inversion of
control”[19] - in the library pattern, the API provides a collection of functions/methods we can
call, and the control flow is defined in our application. In contrast, the “framework [pattern]
embodies some abstract design” pattern and programmers use it through a series of bindings
or hook points in which to add application-specific functionality, and control is passed to
the framework via some form of “main loop”.[20] Fowler (2005) calls this phenomenon the
Hollywood Principle - “Don’t call us, we’ll call you”.[20]11

In terms of a VLSI flow, a framework-style approach involves calling the flow’s “main
function” (or entry point), and the flow is customized by injecting project-specific logic into
certain binding/hook points which the flow will call at the appropriate point.Unfortunately,
in the context of a VLSI flow, a framework approach makes it difficult to gradually adopt the
tool, since the framework makes some assumptions about the abstract design of the flow that
may not always hold when we are actually trying to use the tool. Here are a few examples of
situations where a framework-style design is problematic:

• Writing a design space exploration loop for a sub-step of place-and-route (e.g. clock
tree synthesis) - this will be difficult/annoying to do with a framework which assumes
a linear run through synthesis and place-and-route without repeating any steps in
between and does not provide programmatic, easy-to-use APIs to control the steps. In
contrast, a library would allow us to write such a program very easily since we can
control when portions of tools run.

• Integrating a build system for managing CAD tool runs - integrating complex build
systems which are often framework-style proves difficult when both the VLSI tool and
the build system assume ownership of control.

• Customizing specific methods and processes within the flow - the flow may embody a
specific model for adapting generic RTL to technology-specific RTL suitable for tapeout
(more on this later), but the project may have its own specific ways of generating or
adapting the RTL to the technology, and having a tool which assumes ownership of
calling those processes will be hard to re-use.

• Generating small digital blocks for analog - our VLSI flow may assume an abstract
model of generating a full digital-top chip with top-level I/Os, but we may want to use
the tool to only generate some small analog blocks without any top-level integration or
checks, resulting in a conflict of what the flow model should be.

10To our knowledge.
11Some examples of framework-style libraries include GUI libraries and JUnit.[20]
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When a framework lacks sufficient binding/hook points for fully controlling its behaviour,
often the only recourse is to create a fork (a local copy of the code) and modify those portions
of the code. This causes a large software maintenance burden since the modifications need
to be kept up to date with the upstream code in order to benefit from bug fixes and new
features in the upstream code.[21]

Nonetheless, we recognize that frameworks exist and are useful because patterns do in fact
repeat[19], and that not every use of a library is completely different. In order to address these
needs, we build libraries that have both modular (library-like) and high-level (framework-like)
APIs. However, the high-level APIs should be as thin as possible. The high-level APIs make
it easier to get started with using the tool by embodying common patterns, and the modular
APIs make it easy to build custom functions and extensions using the library. If we only
provided modular APIs but no high-level APIs, there would be a proliferation of copy-paste
in integrating all these modular APIs, making it difficult to add new features. For example,
if customizing a place-and-route flow required creating a fully custom function and running
each step individually, it would be difficult to re-use upstream changes e.g. when a new step
is introduced.

Another challenge faced in creating VLSI flows is being backwards-compatible with the
underlying languages/technologies we are trying to abstract - in this case, TCL and Verilog.
Many programming languages owe some to all of their success in being backwards-compatibility
with existing languages. For example:

• Chisel features compatibility with Verilog (the pre-existing technology) in both ways
- it allows users to use Verilog modules with a BlackBox mechanism[22], and while
Chisel’s modules elaborate to Verilog by default, it provides mechanisms for users to
define modules with fully customized port names and without the implicit clock and
reset ports.

• Scala is Java-compatible to first-order, making it possible to use existing Java li-
braries/frameworks and develop libraries/frameworks which can be used in Java.[23][24]

• C (with many compilers) is backwards-compatible with assembly language, making it
possible to (relatively) easily write and call assembly language routines from C.[25]

• High-level programming languages like Julia and Python all have C extensions. Lan-
guages not able to re-use optimized GEMM libraries will be at a disadvantage. Even
Java has JNI to call native code and take advantage of optimized libraries in ’legacy’
languages.

Hence, we aim to design a system which allows the use of TCL/Verilog for backwards-
compatibility and adoption, while providing a platform to make it possible to encode as much
of physical design knowledge at a higher level. Similarly, we aim to create a physical design
IR that can either be generated from agile tools like FIRRTL/Chisel or be hand-written.
In doing so, we aim to provide the infrastructure to use higher-order (e.g. Scala-based)
generators for physical design information without forcing their use.

Finally, we aim to create a platform which is modular. With existing compiler frameworks
like LLVM, instead of writing M ∗N pieces of code for M input languages and N output
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formats, we can write M + N pieces of code instead: M front-ends for input languages,
and N code generation backends. Likewise, through our hardware IR, we aim to enable
many different hardware “input passes” to generate physical design constraints that can be
consumed by a number of different backend tool and technology plugins. For example, instead
of writing a specific program to generate clock constraint TCL fragments for a specific CAD
tool vendor from rocket-chip, we can leverage FIRRTL and our hardware IR to generate
generic constraints which can be portably consumed by many different plugins.

2.3 Agile Hardware Design to the Rescue

Electrical engineering/software engineering inherited waterfall-style planning from older
engineering disciplines such as mechanical and civil engineering, where once execution of a
project was started, it would be very difficult and expensive to change course.[26] In contrast,
a group of software engineers published the Agile Manifesto in 2001, valuing small, close
iterations, adaptiveness to change, and producing working software.[27] The software industry
has benefitted from agile development - more specifically, from agile’s recommendation to
use small teams/projects and break down large projects into smaller projects - a 2013 study
referenced by Fox and Patterson indicates that small projects are cancelled 4% of the time,
in contrast to large projects which are cancelled 38% of the time.[28]

A traditional ASIC design process (e.g. as exemplified by [29] or [30]) involves a few
sequential stages performed in order, waterfall-style. First, requirements are gathered for
the chip project, and an architectural design is created at a block diagram level along with
specifications for each of the major blocks. This is typically called the architectural stage of
design. Next, this high-level architectural block diagram is passed to a group of engineers who
implement blocks in the architecture at the RTL level (or schematics for analog designs) and
then run simulations to verify that the blocks are correct12. Finally, the RTL and schematics
are turned into a layout either using place-and-route tools for digital, or via manual layout
for analog.13 This is followed by post-layout simulations, final signoff (DRC/LVS), and then
post-silicon test and bring-up.

We aim to bring agile ideas such as minimum viable product, fast feedback loop, and
adaptable tools and systems to chip design. As we have shown in the Background section,
conventional chip-making endeavours are $50-300 million projects, well above the $1 million
threshold used by [28]. However, software is malleable - in principle, it can in principle be
updated following initial deployment. In contrast, it is much harder to just “update” a
custom chip broadly14 deployed in datacenters, in the field, etc.15 Nonetheless, the fabrication
phase is still relatively short (say approximately 3-6 months) and most of the NRE cost
and inefficiencies occur during the design phase of the project. As we note later, even
producing a fabricatable chip design without actually fabricating it (called a tapein) is still

12Exactly how “correct” a design needs to be and how we can show/prove a design is correct has a degree
of freedom/controversy.

13The spoiler alert here is that analog design is becoming more agile via generators like BAG[31].
14This also implicitly assumes the “old Moore’s law” business model of few products and high volume, but

the same difficulties could also apply to limited-quantity, custom silicon like the TPU.
15Of course, microchips can be programmable and have firmware/microcode, but that comes with its own

set of deployment/security/logistical challenges.

9



very valuable for providing physical design/implementation feedback to other parts of the
chip building endeavour. Chip design is still very much waterfall-based, which makes it hard
to be adaptable, and increases the cost of designing a chip when changes need to be made.

Agility, defined as the ability for a project to quickly adapt to change, is essential both
from a business perspective and a technical perspective. As a 2011 Harvard Business Review
article notes, companies that “thrive are quick to read and act on signals of change”. In
particular, they note that companies which can experiment, manage complex systems, and
mobilize quickly have an advantage from adaptability in the marketplace.[32]16 These traits
are also embodied in agile ideas - for example, adaptable tools and systems can help manage
complexity, and the fast iteration loop allows us to quickly experiment and provide preliminary
results for faster mobilization.

On the technical side, making a chip is a complex set of negotiations between all aspects
of chip design, including process technology parameters, physical design, analog/mixed-signal
blocks, and IP blocks/macros. For example, during a system-on-chip (SoC) design, the
amount of space allocated to each portion of the chip varies over time as design progresses.
But existing design mentality (e.g. freezing RTL) prevents changes and makes SoC design
difficult, especially when later stages in the “waterfall” require changes to the chip. Instead of
being agile and adaptive, the idea of fixed/frozen designs (“design freezes”) being “thrown over
the wall” to another team ties the hands of downstream teams and prevents their feedback
from being effective in helping upstream teams in designing for downstream considerations.

For example, physical design (traditionally thought of as a “downstream” step from
architecture/RTL) problems often require architectural changes to fix properly:

• During the BROOM (BOOMout-of-order processor with memory resilience) tapeout,
a specialized register file was unimplementable with any reasonable QoR (space and
critical path wise), requiring an architectural re-design to split the register file and break
up the critical paths. Likewise, a cross-bar in the design turned out to be unroutable
and required conversion to a tri-state cross-bar to be implementable.[34]

• During the Hurricane (codename for Berkeley DVFS research demonstration chips)
tapeouts, not getting early feedback on how big certain cross-bars would be or how
much congestion it would create resulted in delays in taping out and lowered QoR.17

• During the SPLASH (ASIC spectrometer) tapeout[35], we encountered the so-called
SPLASH “ring of death”; a large ROM was mapped to gates in a way that does not
work well for the place-and-route tool.

Generator-based design can help us achieve our goal of building systems adaptively with a
fast feedback loop by facilitating re-use between blocks and projects. By providing a library
of pre-written, parametrizable generators, designers can achieve a minimum viable product in

16With regards to projections/forecasts, Warren Buffett opines that he has “no use whatsoever for projections
or forecasts. They create an illusion of apparent precision. The more meticulous they are, the more concerned
you should be.”[33] Since the traditional waterfall model involves performing each step without returning to
previous steps, it inevitably relies on projections or forecasts about downstream steps, casting doubt on the
viability of a purely waterfall model of development.

17Unfortunately, the author is not aware of pre-existing publications on this chip at the time of writing.
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less time and obtain feedback in order to facilitate the agile feedback cycle. These generators
encode a recipe or process for designing a family of circuits (digital or analog) and allow us to
re-use work in a way that works for our current project, thereby avoiding the time-consuming
phenomenon of having to re-write or modify instances to fit current project needs.[36]

Existing work such Chisel[22] and BAG[31] enable agile hardware design in RTL and
analog circuits respectively. However, in order to make a chip, we need a backend VLSI flow
which takes RTL, adds technology-specific mappings, and calls CAD tools for synthesis and
place-and-route, all while providing the appropriate physical design information along the
way. However, as outlined in the Existing Work section, we don’t yet have an agile, re-usable,
and principled18 backend flow implementation. As a result, we can’t directly leverage the
fixes and lessons from previous tapeouts, meaning we have to repeat history by writing the
same kind of RTL changes, the same kind of placement, etc over and over again, wasting
time - the same problem analog design faced before BAG or digital design before Chisel
(re-creating or tediously modifying existing instances from previous work to meet current
project needs.)

More specifically, we recognize that physical design is a collection of many difficult
problems - there is no single silver bullet. Hence, we aim to lower the barrier to solving these
problems. Other tapeouts have dealt with these problems, but their solutions are not general
or reusable. This makes it more difficult to produce a minimum viable product quickly,
causing low adaptivity and a long feedback loop - physical design becomes a bottleneck
in the agile hardware design ecosystem in the presence of agile generators like Chisel and
BAG. It also explains why, for example, analog designers don’t use place-and-route tools for
generating useful pieces of logic like decoders, adders, and state machines.19.

To remedy this, we aim to provide a system to encourage designers to encode solutions
in a more reusable way, so future tapeouts can leverage previous work (even with different
technologies, CAD tools, or designs). For example, we fixed the “ring of death” and BOOM
cross-bar problems with one-shot solutions, but had we encoded those solutions as generators,
future designs could leverage those generators/solutions when the same type of issues appeared,
reducing the time to minimum viable product.

In order to enable agile physical design, we provide many systems which designers leverage
to encode information modularly and build re-usable flows. These include:

• A physical design IR (higher-level and CAD-tool independent directives) to facilitate the
generation/description of physical design constraints separately from their underlying
expression in imperative TCL commands. This tightens the feedback loop (by not
requiring knowledge of tool TCL dialects to write constraints) and increasing adaptivity
(by being independent from specific tool expressions).

• An abstraction on top of CAD tools in order to increase adaptivity and manage
complexity by separating CAD tool concerns from physical design concerns.

• Higher-level technology abstractions to manage complexity (abstracting away the details
of the technology and PDK) and tighten the loop (reducing the amount of time hunting

18In terms of modularity, type safety, expressivity, etc. For example, a principled generator can provide
huge productivity savings compared to an ad-hoc, one-time, non-reusable solution (Rocket vs OpenPiton).[36]

19Anecdotally from speaking to analog designers at Berkeley.
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for PDK paths in order to use a technology).

• Pre-provided drivers to capture common patterns of running physical design / VLSI flows
and reduce the feedback loop by providing useful, out-of-the-box functions/APIs/shell
commands to make getting started easier and faster.

• A mechanism to directly manipulate/introspect on RTL to synchronize physical design
constraints with RTL generators and tighten the loop by connecting RTL generators to
physical design generators.

We will elaborate further on these in the Design section of this work.

2.4 Challenges

There are a number of possible challenges to this approach.

• Time required to fab is quite large, so automating/optimizing the flow doesn’t matter.

– Tapeouts aren’t necessary for evaluation - even doing a “tape-in” (performing the
entire design process to the point of generating a fabricatable GDS but without
sending it to the fab) will give us good design feedback to improve the architecture
and RTL in an agile manner (tight feedback loop, minimum viable product).

– In academia, it is possible to publish papers with realistic LVS-clean designs.

• Run-times are long on complex designs, so automating/optimizing the flow doesn’t
matter.

– It’s better to have safe and agile flows that will either work or fail early, rather
than manually writing/modifying flows that may or may not work, or relying on
copies of scripts of unknown origin.

– With re-usable generators, we can move towards getting things right the first time
or earlier on with checks.

– We can also iterate on smaller chunks of the design - being agile (e.g. Chisel with
Hammer generator), we can easily generate a smaller version of the design that is
faster to implement in order to get feedback faster.

– Also, this is not true for all use cases - for example, when generating digital blocks
for analog designers, the bottleneck is the configuration/environment setup and
ease of specifying physical design constraints, not the actual place-and-route run
time.

• Our abstraction may not always be relevant to everyone.

– We structure our tool/system in the library-style, enabling users to create custom
tools and APIs which build new abstractions relevant to their specific use cases.

– In addition, we feature explicit backwards-compatibility with TCL, so users can
also inject or use custom TCL blobs to achieve specific outcomes for certain cases.
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– Since we aim to build an open source solution, users can always download and
modify it (e.g. by making a pull request) to improve the solution. The next time
someone faces the same problem, they don’t have to solve or encode that aspect
of expertise again. Having an open source platform reduces the barrier to sharing
and re-using physical design solutions within an organization or in public, just as
how the fact that FIRRTL hardware compiler framework[36] and LLVM reduce
the effort required to share a compiler pass via standardization.

• If CAD tools can’t do a good job without all these extra physical design constraints,
then we should fix/optimize the CAD tools to do a good job automatically.20

– Placement[37] and routing[38] are both known to be NP-complete, requiring
exponential time. In practice, CAD tools can use good heuristics to achieve decent
results quickly enough, but often these optimizations need to be guided with
human designer knowledge/insight.

– Hence, until P = NP is proven, if ever, we still face the problem of passing
physical design constraints to CAD tools, and the associated problems of re-
usable VLSI flows to pass these constraints. We avoid placing belief in a magical
tool/algorithm/compiler that will solve all problems by itself.

– Even if we could parallelize place-and-route across many machines (assuming it is
a fully parallelizable task, which is unlikely), it would still require an exponentially
increasing number of machines to perform flat place-and-route (versus hierarchical
place-and-route).

– Furthermore, even if the underlying heuristics were sensible, a hard to compose,
hard to use API still creates a barrier to encoding physical design knowledge in a
reusable manner. Instead, our platform allows users to build generators an designs
using it that are useful for everyone.

• Large institutions may not care as much since 1) they can hire a physical design person
who is comfortable with inefficient design practices (their philosophy being either: “not
my job and I don’t care” or “I got used to the frustrations; it’s a part of the job”) or 2)
have in-house custom/non-reusable scripts that work well enough for their environment.

– Every institution (whether a company or university) is paying different people to
do the same/similar things. If every company/university is going to spend valuable
engineer/graduate student time solving the same problem, why not capture this
knowledge to save effort on everyone’s part? In fact, co-operation/collaboration
of this sort has precedence in computing history - in the 1950s, users of IBM 704
machines founded SHARE (Society to Help Avoid Redundant Effort) in order to 1)
share programs for the IBM 704 to reduce redundant effort across organizations;
2) share knowledge of the workings of the machine to avoid making the the same
mistakes across different organizations.[39]

20Personally the author would like to see a good open-source, modular, and extensible place-and-route
platform that makes it easy to test out new heuristics, just as how LLVM is an extensible platform that
allows us to test out compiler passes without having to re-write an entire compiler framework.
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– Engineer hours spent on things that could be fixed with better tools 1) cost $$$ to
the organization; 2) waste time - time is money; 3) cause frustration for engineers
which translates to stress, lower quality of life, boredom, poor morale, etc.

– Furthermore, in the agile spirit, we can also enable other members of the team
(e.g. architects, RTL engineers, etc) to get feedback earlier and more quickly
on their architectures/RTL. For example, computer architects designing caches,
accelerators, etc can use our tool to quickly check to first order the viability of
their designs. Our tool broadens the accessibility of physical design and VLSI to
beyond those who perform physical design for a living.

• Writing TCL/low-level scripts directly don’t seem to be that bad. Why spend all this
effort developing abstractions?

– Firstly, there are productivity gains to be had from writing in higher-level lan-
guages. Generators yield immense productivity gains, as we’ve been with BAG[31]
generators and the rocket-chipgenerator.

– More importantly, abstraction is fundamental to enabling us to keep track of
and understand the entire work in our mind. Writing software (or software that
produces hardware) does not scale well since it means that we must keep track of
an increasing amount of information. By using abstraction, we lower the amount
of detail we must keep track of in our mind, reducing mistakes and allowing us
to focus on the larger picture. As Dijkstra once mentioned - “as a slow-witted
human being I have a very small head and I had better learn to live with it and to
respect my limitations and give them full credit, rather than try to ignore them,
for the latter vain effort will be punished by failure”[40].

• Backends are proprietary and non-open source which will hinder re-use anyway.

– We aim to make it as easy as possible to re-use the core framework between
different plugins/site configurations. BAG[31] deals with the same problem - the
library itself is open source but it depends on proprietary local configurations and
technologies.

– More importantly, our modular approach allows us to switch between different
tool vendors - we will never acheive the same degree of portability by depending
only on one tool vendor’s APIs. Portability is a valued feature in both academia
and industry, and can be achieved by building a better open-source API.

– Nonetheless, a modular approach is capable of supporting open source backends
(e.g. yosys), so it does not detract from potential adoption of open source backend
tools.

14



3 HAMMER: A Platform to Enable Agile Physical De-

sign

3.1 Design Philosophy

HAMMER stands for Highly Agile Masks Made Easily from RTL, and here is our design
philosophy.

• Lego Blocks: Instead of a monolithic framework or tool, we provide a series of abstrac-
tions, tools, and DSLs which work together to enable agile physical design. Modularity
is king. Each part of the system should be able to be used independently from the rest,
to the maximum extent possible, in order to increase adoption and usability.

• Incremental Progress: Evolution, not revolution. Provide ways for designers to progres-
sively adopt the system without requiring an all-or-nothing. Provide suitable escape
hatches to allow fine-grained custom control where it matters, or where abstractions
are incomplete. We believe it is better to have to hardcode 30% than 90%, or to be
50% agile rather than 0% agile.

• Safe, Principled Foundations: Use modern programming languages’ benefits (DSLs,
type systems, object-oriented programming, software libraries, etc) to reduce errors in
the design specification and implementation.

3.2 Overview

An agile physical design flow using the full Hammer methodology starts with design entry in
Chisel.[22] Next, we run Chisel code to generate a circuit in the FIRRTL IR. We then run
the FIRRTL compiler including technology-mapping/physical design generation transforms
and user-written physical design generators (e.g. a floorplan generator), in addition to the
standard FIRRTL to Verilog transforms. This generates a technology-mapped Verilog file
ready for synthesis and place-and-route as well as fragment(s) of physical design information
in Hammer IR. Next, the technology-mapped Verilog, physical design information, driver
control information, and environment/tool settings are passed to the Hammer Driver (via the
Hammer CLI Driver) which uses the Hammer Tool Abstraction library (hammer-vlsi) as well
as the Technology Abstraction library to load and configure the required CAD tool plugins.
Finally, depending on the type of action (e.g. synthesis, or synthesis and place-and-route,
etc), the appropriate tool plugin is called to generate and run TCL scripts to implement its
action subject to the given physical design constraints and tool settings.

Having said that, as outlined in our Philosophy section, we believe in incremental adoption.
Instead of forcing users to use the entire Berkeley Scala-based (Chisel/FIRRTL) ecosystem,
we allow users to start using backend Hammer abstractions (Tool, Technology, and Driver)
with manual design entry in Verilog and manually written physical design constraints in
YAML/JSON (Hammer IR) and incrementally move generation of constraints and designs
to being generated from the FIRRTL-based passes and generators. We also support hybrid
modes of operation - e.g. generating Verilog from Chisel/FIRRTL and manually writing
constraints or using FIRRTL generating some constraints using transforms and writing
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Figure 1: The overall architecture of the Hammer methodology showing the points of design
entry, compilers/libraries, generated files/formats, and Hammer plugins, as well as the
interactions between them.

other constraints by hand. This allows us to effectively support non-generator (Verilog
and manually written physical design constraints) flows, Chisel/FIRRTL-based flows, other
FIRRTL-compatible HCLs like Magma[41], or entirely separate modes of design entry (e.g.
HLS).

3.3 Python Driver

The Hammer Driver is a Python API which is at a ’higher-level’ than the previous ab-
stractions we have seen so far, since we recognized earlier the necessity of providing higher-
level/framework-style APIs in order to capture common patterns of abstractions and make it
easier for users to get started with our system. The Hammer Driver uses the Driver Control
Information and the Tool Control Information (see the IR section for more details) in order
to load and instantiate the appropriate plugins in order to run a specific action.
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IR/Confguration library

Initialize logger

Read Driver Control Information 
from the IR/Confguration library

Load Technology Node Plugin
Attach IR/Confguration library 

and update it

Load Synthesis Plugin
Attach IR/Confguration library, 

technology
Update it

Load Technology Node Plugin
Attach IR/Confguration library 

and update it

Run  tool, check for errors

  run_synthesis()

Load Place-and-Route Plugin
Attach IR/Confguration library, 

technology
Update it
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  run_par()

load_synthesis_tool()                                                                  load_par_tool()

Figure 2: The Hammer driver workflow at a glance.

The Hammer IR/Configuration library recognizes a sequence of IR snippets and combines
them together into a large database. The Hammer Driver takes this abstraction a step up
and provides a set of well-defined IR snippets and assembles them together in the following
chain of precedence to the configuration system:

• builtins: Built-in variables defined by the Hammer Driver.

• core: Core settings defined by hammer-vlsi by default and available for overriding.

• tools: Settings provided by various tools.

• technology: Settings provided by various technologies.

• environment: User-supplied environment settings. (e.g. CAD tool paths, licence servers,
etc)

• project: Settings specific to a run of hammer-vlsi.
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The Hammer Driver API allows the latter two (environment and project) to be overridden;
all other settings are defined by Hammer Tool libraries or the hammer-vlsi core (e.g. builtins,
core). After running the appropriate action, the API returns an output copy of the project
JSON along with the outputs in order to allow for modular re-use of hammer-vlsi. For
example, the CLIDriver uses this API in order to implement a function that combines
synthesis and place-and-route by using the output settings from synthesis to set the inputs
for the place-and-route run.

3.4 Shell/CLI Driver

Action

Environment & 
project configration 

paths

Ogtpgt folders

Step control

Helper arigments
(e.i. -t for top 

modgle)

Hooks

Environment & project 
configration IR

Command-line arigments

Hammer IR

Hammer Driver

Action map Action fgnction

Cgstom 
(hierarchical) 

hooks

Cgstom actions

CLIDriver (Framework Wrapper to Hammer Libraries)

Sgb-class 
Overiddable 

Hooks

Figure 3: The Hammer CLIDriver framework class is intended to make developing CLI-based
flow based on the Hammer Python driver easy.

The command line driver to Hammer, CLIDriver, is a framework-style command line
wrapper to the (Python) Hammer Driver and the rest of the Hammer Tool Abstractions.
The CLIDriver has a main function and is callable from the command line. It implements a
set of actions which use the Hammer Driver API in order to achieve a specific purpose (e.g.
run synthesis, run place-and-route, or run synthesis and place-and-route in the same action.
The CLIDriver parses the shell arguments passed to it, sets up the environment and project
configurations and passes them to the Hammer Driver for initializing the environment. It also
sets the output folders for the Hammer Driver, in addition to parsing step control arguments
which get translated into custom hooks and passed to the driver. Finally, helper arguments
(e.g. input Verilog files, top module) which are translated to Tool Control Information IR
snippets and passed to the Driver.
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We created this class in order to 1) make it easy for new users to quickly start using
Hammer; and 2) make it easy to add custom hooks and logic to customize the flow. While
we recognize the power of the library-style APIs of Hammer in order to build fully custom
generators and applications in novel contexts, we want to make it easy to start modifying the
flow as a user, and providing this framework is the fastest way to inherit most of the default
flow abstraction while slowly adding custom actions, hooks, and features.

With regards to hierarchical support - the default Hammer Tool Abstraction supports
a hierarchical mode option but can only handle a single run in order to have maximum
separation of concern and lightweightness. Likewise, the Hammer Driver abstraction does not
add any additional capability to generate a hierarchical flow, though it facilitates manually
writing a hierarchical flow programmatically. The CLIDriver interface, however, is capable
of automatically generating hierarchical flows from Driver Control Information in the project
Hammer IR.

3.5 Physical Design IR / Configuration System

The Hammer IR is the primary data structure used for communicating information to and
within the backend of the Hammer methodology. It encompasses four types of information:

• Physical design information - physical design constraints (placement constraints, clock
constraints, etc).

• Driver control information - pointers for the Hammer Driver to load the appropriate
plugins.

• Tool control information - generic directives for the Hammer Driver on how to load-
/launch/configure the tool type (e.g. for synthesis, we have top module, input files,
etc).

• Plugin-specific information - settings specific to a given tool/vendor (e.g. licensing,
environment variables, tool versions, etc).

The Hammer IR is expressed as a key-value store, consisting of hierarchical keys stored
as strings (e.g. “vlsi.inputs.placement constraints”) with scalar (strings, numbers, booleans)
or array/list values. Dictionaries cannot be stored directly as values, but can be stored inside
arrays used as values. Each key-value pair is referred to as a setting.

Keys are strings with a hierarchy (e.g. “vlsi.inputs.test”), separated by periods. Legal key
sub-parts are alphanumeric characters and underscores; periods are forbidden since the keys
use periods to delimit sub-parts of the overall key. The Hammer IR/Configuration library
will “unpack” hierarchies for ease of configuration. For example, the below snippet of IR,
when loaded into the IR/Configuration library, will in the following settings (key-value pairs):
“vlsi.inputs.supplies.VDD” → “0.9V” and “vlsi.inputs.test” → “bench”.

{

"vlsi.inputs": {

"supplies": {

19



Hammer IR

vlsi.inputs.placement_contraints:
- {path: “Top/core/mem_0”, x: 128, y: 
512}
vlsi.inputs.clocks:
- {name: “clock”, period: “10ns”}
...

Physical Design Information

synthesis.inputs.input_fles: [“top.v”]
synthesis.inputs.top: “Top”
...

Tool Control Information

synthesis.genus.version: …
cadence.license: …
...

Plugin-Specifc Information

vlsi.core.synthesis_tool: “genus”
vlsi.core.par_tool: “innovus”
...

Driver Control Information

Tool Plugins

place_inst Top/core/mem_0 
create_clock clock -period 10
...

Generated TCL commands

Tool Plugins

read_hdl {top.v}
set_top Top
...

Generated TCL commands

Command-line 
arguments
Shell variables
Call executables
...

Tool Plugins

set license_info […]
load tech_snippet.tcl
...

Generated TCL commands

Command-line 
arguments
Shell variables
Call executables
...

Hammer Driver

Load plugins

PluginsPlugins
Plugins

Figure 4: An overview of the four types of information represented in the Hammer IR, stored
as a key-value store.

"VDD": "0.9V"

},

"test": "bench"

}

}

The IR/Configuration library accepts IR snippets stored in either the JSON (to facilitate
programmatic generation of constraints) or the YAML format (to make it easier for humans to
write). Configurations in YAML format will be converted to JSON and processed identically.
When loading plugins, a default settings file in YAML defaults.yml if it exists, will be
applied before the JSON default settings file (defaults.json).

Note: settings with names like “yes” and “no” do not work since JSON automatically
converts them to True/False booleans as keys.
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The IR/Configuration library, written in type-safe Python21reads in a sequence of IR
snippets (YAML or JSON) in order to generate the database, a programmatic key-value store
used by other parts of the Hammer methodology to query for information.

par.innovus.power_net: VDD
par.innovus.ground_net: VSS

par.innovus.ground_net: GND
par.fiier_ceiis: [“:ceiiA”, “:ceiiB”]

Override 
Mechanism

par.innovus.power_net: VDD
par.innovus.ground_net: GND
par.fiier_ceiis: [“:ceiiA”, “:ceiiB”]

Override 
Mechanism

par.inputs.input_fies: [“:netiist.v”]

par.innovus.power_net: VDD
par.innovus.ground_net: GND
par.fiier_ceiis: [“:ceiiA”, “:ceiiB”]
par.inputs.input_fies: [“:netiist.v”]

Figure 5: In the IR/Configuration library, IR snippets can override one another.

In order to facilitate re-use, IR snippets which occur later in the sequence of IR snippets
will overwrite22 key-value pairs if also defined in earlier snippets in the sequence. For example,
a technology plugin can define parameters with defaults which can be overridden later on in
a project IR snippet.

stdcells: 
[“NAND”, “NOR”]

stdcells: [“NOT”]
stdcells_meta: append

Override 
Mechanism

stdcells: 
[“NAND”, 
“NOR”, “NOT”]

Append

version: 6 executable: “/usr/bin/cadtool-
v${version}”

Override 
Mechanism

executable: 
“/usr/bin/cadtool-v6”

Subst

Figure 6: Two examples of meta directives in the IR/Configuration library. Meta directives
allow IR snippets to use and modify information from previous snippets.

Meta directives allow IR snippets to use and modify information from previous snippets
e.g. by appending to a pre-existing setting or using the value of another setting to create a
new setting. When reading a setting, if the setting has an accompanying _meta setting, it
will be used when getting the setting. The _meta setting’s value can be either a string of one
directive, or an array of multiple directives, processed in order.

The currently valid meta directives are:

21Via the mypy static type checker.
22While the implementation at the time of writing does not distinguish between intentional and unintentional

overwriting
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• append - append the elements in the setting to the pre-existing setting.

• subst - substitute any variable references (in the style of ${other_setting_key}) that
appear in this setting with other variables. Note that referencing other settings that do
not exist is an error.

• transclude - replace the value of this setting with the content of the file at the path
specified in this setting.

• json2list - replace the value of this setting with a list parsed from a JSON represen-
tation stored in this setting.

• prependlocal - prepend the local path of the config dict to this setting.

While user-defined meta directives are not currently supported by the IR/Configuration
library as of the time of writing, they may be supported in a future release of Hammer.

Lazy meta directives allow IR settings to forward-reference or re-use information in ’future’
snippets, just as how meta directives allow IR settings to re-use information from previous
snippets. Each ’regular’ meta directive comes with a corresponding meta directive with
the prefix lazy appended before its name. For example, subst has a corresponding lazy
meta directive named lazysubst. When the IR/Configuration library processes a lazy meta
directive, instead of executing the meta directive’s action now, it will treat the setting and its
meta setting as regular settings and then process them after all IR snippets in the sequence
have been processed.

Lazy meta directives are especially useful when defining plugin defaults that are dependent
on user settings which will only be available later in the substitution sequence. In particular,
lazysubst is useful since the setting/template will not be substituted until all known configs
have been bound.

Note that all lazy meta directives are single-stage - lazy meta directives cannot depend on
other lazy meta directives.23 For example, the following (YAML) IR snippet is not supported.

message: "${work} is fun"

message_meta: lazysubst

work: "taping out ${what}"

work_meta: lazysubst

what: "chips"

3.6 Tool Abstractions

hammer-vlsi, the Hammer tool library, consists of a tree of abstract interfaces that provide
APIs to perform various backend VLSI functions, including synthesis, place-and-route, DRC,
LVS, voltage drop analysis, and timing analysis. hammer-vlsi uses the IR/Configuration
library, as well as the Technology Abstraction library and is written in type-safe (via mypy)
Python to be as lightweight as possible in order to enable users to write powerful plugins for
Hammer in a modern programming language.

23It may be supported in a future release of Hammer.
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cmdline: “$
{executable} ${faag}}
cmdline_meta: 
lazygubgt

executable: “/ugr/bin/cadtool-
v${vergion}}
executable_meta: gubgt
vergion: 7

Override 
Mechanigm

cmdline: “${executable} ${faag}}
cmdline_meta: lazygubgt
executable: “/ugr/bin/cadtool-v7}
vergion: 7

With lazy gubgt

faag: “-tcl}

Override 
Mechanigm

cmdline: “/ugr/bin/cadtool-v7 -tcl}
executable: “/ugr/bin/cadtool-v7}
vergion: 7
faag: “-tcl}

cmdline: “$
{executable} ${faag}}
cmdline_meta: gubgt

executable: “/ugr/bin/cadtool-
v${vergion}}
executable_meta: gubgt
vergion: 7

Override 
Mechanigm

Error: cannot fnd variableg 
‘executable’ and ‘faag’ when 
evaluatina ‘cmdline’

Without lazy gubgt

Figure 7: Lazy meta directives allow IR snippets to forward-reference or re-use information
in ’future’ snippets.

The core abstraction, HammerTool, provides a set of common infrastructural methods/APIs
useful for writing CAD tool plugins. HammerTool contains functions for logging, querying the
database of Hammer IR, stage control (see below), accessing the technology, and various helper
functions including querying for PDK libraries, string manipulation, and shell functions.

HammerTool abstraction structures each CAD tool’s flow as a series of steps. This makes
it easier to have a fast iteration cycle by making it possible to selectively run steps in the
tool without always having to run the entire step. In addition, in order to provide backwards
compatibility with TCL, we developed a mechanism (referred to as TCL hooks in this
document) to allow users to inject or override portions of the flow using higher-order functions
operating on HammerTool in order to add, change, or suppress certain TCL generation
behaviours in the program. For example, we include hooks to insert functions before or after
a step (InsertPreStep/InsertPostStep), replace a step (ReplaceStep), resume before or after a
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Figure 8: An overview of the Hammer tool abstraction (hammer-vlsi) in abstract APIs,
mix-ins, concrete instances, and the relationships between them.

step (ResumePreStep/ResumePostStep) or pause the execution altogether.
After running, depending on the type of tool, each tool plugin populates a corresponding

output snippet of Hammer IR containing the outputs from that run. For example, a synthesis
run will populate outputs including the post-synthesis netlist and SDC constraints file.

@property
def s t ep s ( s e l f ) −> L i s t [ HammerToolStep ] :

return [
s e l f . i n i t d e s i g n ,
s e l f . f l o o r p l a n d e s i g n ,
s e l f . power straps ,
s e l f . p l a c e op t de s i gn ,
s e l f . r ou te de s i gn ,
s e l f . opt des ign ,
s e l f . w r i t e d e s i g n

]

CAD tool plugins are written as concrete classes which inherit from one or more of the
abstract interfaces. Each plugin reads Hammer IR and emits the right TCL commands.
Plugins can take full advantage of the the Hammer abstractions to minimize the effort required
to write them. For example, Hammer comes with built-in functions for filtering from PDK
libraries and processing them into the desired output format of the CAD tool (e.g. TCL or
shell).

Finally, we can use Python’s support for mixins[42] to “mix-in” common methods and
functions for re-use between plugins. For example, many times CAD tools (say a synthesis
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and a place-and-route tool) between the same vendor will share common startup/initialization
commands (e.g. reading HDL, initializing libraries, etc). To help reduce code duplication
and facilitate re-use between the two plugins, we can create a common class which contains
helper functions for generating the common commands (e.g. MyVendorTool), and mix that
into the actual tool classes (e.g. MySynthesisTool or MyPlaceAndRouteTool).

3.7 Technology Abstractions

Hammer Technology Abstraction

vlsi.technology.placement_site: "mysite"
vlsi.inputs.supplies.VDD: "0.90 V"
par.innovus.gnd_net: “gnd”
technology.mytech.location: standard

IR snippet to defne/override variables

List of libraries

PluginsPlugins
...

Tool PluginsHammer Tool Library

PluginsPlugins
...

Support fles

Technology Lib
● Techfle / TLEF
● DRC decks
● TLUplus (PEX)
● Metal layer info

Standard cell / I/O cell
● Timing libraries
● LEFs/abstract views/layouts
● Verilog simulation fles

SRAMs / Hard macros / IP
● Timing libraries
● LEFs/abstract views/layouts
● Verilog simulation fles
● Extraction scripts to generate MDFs

PDK Library Types

Figure 9: An overview of the three main components of the Hammer technology abstraction
(hammer-tech).

A technology plugin in Hammer, implemented as a folder which the Hammer Technology
library reads, consists of three main parts - 1) a defaults.yml or defaults.json snippet
to define technology-specific IR settings, and to override any default tool or core (see Driver
section) settings for this technology; 2) any support files necessary to support this technology
properly - e.g. sometimes PDKs will have bugs or omissions which can be fixed with locally
modified copies of files; 3) a list of libraries. The types of libraries supported include
the technology itself (including technology LEFs, techfiles, DRC decks, etc) and standard
cell/macro libraries, which include timing databases, Verilog simulation files, LEFs/Milkyway
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databases, and some scripts to extract data e.g to generate MDF files (see below) for use in
other parts of the Hammer methodology.

At the moment, we have ported to the following technology nodes to the Hammer
Technology abstraction:

• ST 28nm FDSOI

• TSMC 16nm FinFET

• SAED32

Having independent technology plugins is essential to making Hammer portable. Tech-
nology PDKs are highly sensitive and often cannot be easily shared across organizational
boundaries. By decoupling technology concerns from the rest of the system, we can isolate this
particular area of concern using an open-source API, allowing us to be more portable across
technologies, projects, and organizational boundaries. By creating a technology abstraction,
we aim to make it possible to encode solutions to physical design problems more abstractly
with more potential for re-use.

We organized our technology plugin this way in noticing that certain technology nodes
required overriding certain CAD tool behaviours in certain ways or supplying sets of data
to the CAD tools. We encode our list of libraries as a JSON array. We read this array into
our technology library, which parses the file into Python data structures. The technology
plugin instance is then attached by hammer-vlsi (the Hammer Tool Abstraction) and made
available to CAD tool plugins to query. For example, we provide functions to filter and
process libraries in the technology to make it easy to look for information from the technology
abstraction (e.g. all LEFs from standard cell/macro libraries) and emit it in the appropriate
manner for the CAD tool.

In addition to the above, the Hammer methodology features the macro description format
(MDF), which is used to describe macros (type) and currently used most significantly for
SRAMs (SRAM macros), though we plan to expand its use for other areas of backend VLSI
(e.g. filler cells, I/O cells, etc). The description format is different for each type of macro -
the most well-defined type of macro at the moment is the SRAM macro, which describes the
width, depth, ports (names, read/write, masks, etc) of SRAMs. This format is currently used
in the Hammer methodology by MacroCompiler, a pass which maps a generic Chisel/FIRRTL
memory into a concrete implementation using a list of foundry SRAM macros. See the Agile
RTL transformations and DSLs section for more about this.

3.8 Agile RTL transformations and DSLs

As outlined in the overview, in order to be truly agile (fast, automated feedback loops), we
would like to automatically generate physical design constraints using the FIRRTL circuit
and any associated annotations. A related project at Berkeley, CICL (Circuit Introspection
and Command Language) is an API/DSL embedded in Scala for manipulating RTL circuits
represented in FIRRTL. It consists of a selection language, backed by a graph representation
(as opposed to an AST). This enables us to develop agile transformations and DSLs by making
it easier to query and manipulate the circuit while generating physical design information.
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Chisel Design

Chisel Compiler

FIRRTL Compiler

InferReadWrite

ReplSeqMem hammer-generate-mdf.conf Hammer Tech Library

Technology Node Plugin

MDF Description of 
Available SRAMs

MDF Description of Target 
Memories to Map

MacroCompiler

Hammer Driver

Figure 10: An example of using MDF to map abstract memories to technology-specific
memories.

We want to tie the physical design constraint generation to the RTL generators due to
powerful generators which can radically change RTL with parameter changes like rocket-chip,
dsptools, etc.

For example, an operation that would be easily done in FIRRTL/CICL but tedious/non-
reusable in TCL would be a transformation which takes half of an asynchronous FIFO and
moves it to a different module with a different clock domain.

Should these transforms operate at the FIRRTL level? While there is theoretically
nothing preventing you from writing Chisel code which generates Hammer IR, writing these
transformations in FIRRTL allows you to address and manage circuit elements that didn’t
exist at the Chisel level yet, like memory macros generated by the MacroCompiler pass. In
addition, not all designs are used in ASIC contexts, so having Chisel generators emit physical
design constraints directly limits re-use.

MacroCompiler is a pass that takes FIRRTL with abstract memories. Using MDF
information generated by Hammer from the technology plugin, it maps the abstract memory
to an implementation using the foundry memories.

There are two main scenarios in terms of generating physical design information from
Chisel/FIRRTL generators. The first is constraints that don’t depend on technology/chip
project information. In this case, we can encode these as FIRRTL annotations and use a simple
FIRRTL pass to consume them and generate the appropriate Hammer IR. The second case
involves constraints that depend on both the source RTL generator and technology/project
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information. Examples of this include floorplanning (the same chip can be floorplanned in
different ways to achieve different QoR), pad frame generation (depends on the technology
as well as the pad/bump output), and clock/power gating constraints (requires insertion of
power gating cells which depend on the technology).

As part of our efforts to explore the second scenario, we created an agile floorplan DSL to
enable us to write floorplan generators corresponding to FIRRTL circuits which were portable
and could emit physical design placement constraints in the Hammer IR.

Figure 11: Floorplan generation - an example of a scenario where generation of physical design
constraints requires both upstream knowledge from the RTL generator but also downstream
technology/project information.

The floorplan DSL is designed to enable users (hardware engineers) to write re-usable
layout generators corresponding to RTL. The floorplan DSL consists of three major portions
- a geometry API, connections to CICL and FIRRTL for interfacing with the RTL, and a
numeric solver to concretize the design with numbers to enable tapeout.

We provide a variety of geometry constructs to enable the construction of layouts. These
constructs can be nested within one another and are independent of any numerical co-ordinates
to enable re-use of layouts across different technologies and chip projects.

These constructs, which facilitates relative placement, include:

• HBox - tile the given elements horizontally.

• VBox - tile the given elements vertically.

• AutoLayout - do not specify any particular constraints to the backend tools for the
module in this box.

• Expander - create a space/separate the given modules as much as possible.
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• HardMacro - represents a hard macro, which has a fixed size but can vary in position.

Each geometry element can be attached to a module at the RTL level via a CICL Path, a
selector for exactly one hardware component (in this case, a module). Not every geometry
element is required to have a CICL Path. For example, a VBox could be attached to a
module and have two sub-elements to floorplan parts of that module and an expander in
between. In this case, the expander would not need a RTL module attached to it.

Notably, the RTL hierarchy does not need to correspond to the physical hierarchy. For
example, consider a design with a Rocket in-order core with a Hwacha vector processing unit.
Hwacha could exist as a submodule of Rocket while in the physical hierarchy, Hwacha and
Rocket could be two parallel modules.24

In the DSL, geometry elements are connected to CICL’s hardware module selectors via
the attachPath() function.

Finally, in order to tape out a chip, a floorplan needs to be resolved into concrete numbers
(position and dimensions). Since the exact co-ordinates for a particular module or layout
will differ widely between different process nodes, we want to enable layout generators to be
re-used as much as possible. In order to enable this, numbers are specified separately in a
second stage as opposed to being required when the layout is created.

In the DSL, geometric elements have numbers entered to them via setDimensions() and
setCoordinates(). We can instruct the DSL to resolve all the co-ordinates in the system (e.g.
for visualization or export to backend tools) via resolveAll().

4 Evaluation

4.1 Sample Flows

g i t c l one git@github . com : ucb−bar/hammer−examples . g i t
cd hammer−examples
g i t submodule update −− i n i t −−r e c u r s i v e
# Edit sourceme . sh f o r the s i t e se tup
source sourceme . sh

Simple Adder Flow Given a simple 2-bit adder written in Verilog:

module adder (
input [ 1 : 0 ] a ,
input [ 1 : 0 ] b ,
output [ 1 : 0 ] c
) ;
assign c = a + b ;
endmodule

24Synthesis might shuffle or flatten the hierarchy around. Currently it is the responsibility of the CAD tool
plugin to ensure that floorplanning paths are valid and exist after synthesis.
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Running synthesis and place-and-route using Hammer is trivial:

hammer−v l s i syn−par −o output . j son −v adder . v −−top adder

s y n t h e s i s . inputs . i n p u t f i l e s : [ ” SodorTi le . v ” ]
s y n t h e s i s . inputs . top module : ” SodorTi le ”
v l s i . inputs . c l o c k s :
− name : ” c l o ck ”

per iod : ”50 ns”
unce r ta in ty : ”1 ns”

v l s i . inputs . p l a c ement cons t r a in t s :
− path : ” SodorTi le ”

type : ” t o p l e v e l ”
x : 0
y : 0
width : 1500
he ight : 1500
margins :

l e f t : 100
r i g h t : 100
top : 100
bottom : 100

− path : ” SodorTi le / core /d/ c s r ”
type : ” placement ”
x : 600 .0
y : 600 .0
width : 30 .0
he ight : 200 .0

− path : ” SodorTi le /memory/ async data / bleh ”
type : ”hardmacro”
x : 30 .0
y : 30 .0
width : 100 .0
he ight : 200 .0

# H i e r a r c h i c a l example with manually s p e c i f i e d placement c o n s t r a i n t s f o r each sub−block .

s y n t h e s i s . inputs . i n p u t f i l e s : [ ” H i e r a r ch i c a lWr i t e r . v ” ]

s y n t h e s i s . inputs . top module : ” Hierarch ica lWri terTop ”

v l s i . inputs . h i e r a r c h i c a l . c o n f i g s o u r c e : manual
v l s i . inputs . h i e r a r c h i c a l . manual modules :
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− Hierarch ica lWri terTop :
− Hie ra r ch i ca lWr i t e r 2
H i e ra r ch i ca lWr i t e r 2 :
− Hie ra r ch i ca lWr i t e r 1

v l s i . inputs . h i e r a r c h i c a l . manua l p lacement const ra int s :
− Hierarch ica lWri terTop :
− path : ” Hierarch ica lWri terTop ”

type : ” t o p l e v e l ”
x : 0
y : 0
width : 2600
he ight : 1500
margins :

l e f t : 50
r i g h t : 50
top : 50
bottom : 100

− path : ” Hierarch ica lWri terTop /SRAM1RW512x32”
type : ”hardmacro”
x : 1198
y : 1200
width : 204 .684
he ight : 247 .541

− path : ” H i e ra r ch i ca lWr i t e r 2 / H i e ra r ch i ca lWr i t e r 2 ”
type : ”hardmacro”
x : 50
y : 100
width : 1200
he ight : 1000

− path : ” H i e ra r ch i ca lWr i t e r 2 / H i e r a r ch i c a lW r i t e r 2 1 ”
type : ”hardmacro”
x : 1300
y : 100
width : 1200
he ight : 1000

− Hie ra r ch i ca lWr i t e r 2 :
− path : ” H i e ra r ch i ca lWr i t e r 2 ”

type : ” t o p l e v e l ”
x : 0
y : 0
width : 1200
he ight : 1000
margins :

l e f t : 50
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r i g h t : 100
top : 100
bottom : 100

− path : ” H i e ra r ch i ca lWr i t e r 2 /SRAM1RW512x32”
type : ”hardmacro”
x : 498
y : 650
width : 204 .684
he ight : 247 .541

− path : ” H i e ra r ch i ca lWr i t e r 2 / H i e ra r ch i ca lWr i t e r 1 ”
type : ”hardmacro”
x : 50
y : 100
width : 500
he ight : 500

− path : ” H i e ra r ch i ca lWr i t e r 2 / H i e r a r ch i c a lW r i t e r 1 1 ”
type : ”hardmacro”
x : 600
y : 100
width : 500
he ight : 500

− Hie ra r ch i ca lWr i t e r 1 :
− path : ” H i e ra r ch i ca lWr i t e r 1 ”

type : ” t o p l e v e l ”
x : 0
y : 0
width : 500
he ight : 500
margins :

l e f t : 50
r i g h t : 50
top : 50
bottom : 50

− path : ” H i e ra r ch i ca lWr i t e r 1 /SRAM1RW512x32”
type : ”hardmacro”
x : 60
y : 60
width : 204 .684
he ight : 247 .541

v l s i . inputs . c l o c k s :
− name : ” c l o ck ”

per iod : ”50 ns”
unce r ta in ty : ”1 ns”

32



Porting to a Different CAD Tool Vendor Given two snippets (use_synopsys.json
and use_cadence.json):

use_cadence.json

{
” v l s i . co re . s y n t h e s i s t o o l ” : ” genus ” ,
” v l s i . co re . p a r t o o l ” : ” innovus ” ,
. . .

}
use_synopsys.json

{
” v l s i . co re . s y n t h e s i s t o o l ” : ”dc ” ,
” v l s i . co re . p a r t o o l ” : ” i c c ” ,
. . .

}
Switching is as easy as going from:

hammer−v l s i syn−par −o output . j son −v adder . v −−top adder \\
−e use synopsys . j son

To:

hammer−v l s i syn−par −o output . j son −v adder . v −−top adder \\
−e use cadence . j son

Porting to a Different Technology Create a JSON/YAML IR snippet to reference the
appropriate technology (YAML example below) and as before, use -e to point to the new
technology.

use_mytech.yml

v l s i . core . techno logy : my tech
v l s i . core . techno logy path : [ ” path to my tech ” ]
v l s i . core . technology path meta : append

hammer−v l s i syn−par −o output . j son −v adder . v −−top adder −e use mytech . yml

export HAMMER ENVIRONMENT CONFIGS=”/path/ to / f i l e / with / l o c a l / s e t t i n g s . j son ”

4.2 EAGLE

EAGLE is an 8-core (Rocket in-order core+ Hwacha vector unit), 4-cluster SoC with 5 SerDes
lanes in TSMC 16nm being taped out at the BWRC and ADEPT lab at UC Berkeley. Our
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preliminary estimates for QoR include power consumption in the range of 6-7 watts, area of
5mm x 5mm, and a maximum clock rate of 980 MHz.

A successor to Hurricane-225 and CRAFT in terms of design methodology, EAGLE
provided us with an opportunity to explore the benefits of the new Hammer methodology.
We took the information encoded in previous 16nm CRAFT tapeouts and used it to write
a new, re-usable 16nm technology plugin for Hammer. This plugin is in fact being used by
multiple 16nm projects here at Berkeley, highlighting its re-usability.

EAGLE (eagle-vlsi) uses the CLIDriver abstraction to modify the default Hammer
flow abstraction, since we weren’t creating an entirely custom application/generator. Most
of the customizations are via TCL hooks, which allowed us to incrementally use Hammer,
increasing adoption and usability, especially while hooks were being added. For example, we
used TCL hooks to implement a hierarchical flow while the Hammer hierarchical API was
still being developed. Likewise, we currently use TCL hooks for extra VLSI/physical design
features, like RDL routing, filler cells, tap cells, etc. This is consistent with our philosophy of
incremental adoption. In fact, due to its open source nature, certain parts of Hammer used
by EAGLE designers were found to be easier to use than competing commercial tools like
flowtool.

Note that neither the hammer nor hammer-cad-plugins repo was forked during this
tapeout, a first after many previous tapeouts involved wholesale forking/copying/modifying
directly upstream flows and generators. For example, the Hurricane-2 tapeout repo was a fork
of the rocket-chip generator with a heavily customized/mutated Synopsys RM copied/merged
into it.

4.3 EE194/290C

EE194/290C is a special topics class at UC Berkeley designed to teach advanced undergrad-
uates who have never taped out before a hands-on experience in taping out a chip. Last
iteration of the course, we used Synopsys tools and a traditional-style flow26. As in the flow
for EAGLE, we never forked hammer or hammer-cad-plugins.

To give an idea of how much time we saved using re-usable libraries/frameworks/abstrac-
tions:

• Only 3 hours to initial GDS flow, ST28, first time using Cadence flows. Some debugging
due to LEF files. No SRAMs yet.

• About 2 hours to investigate results and create power grid.

• About 5 hours (mostly editing paths in .tech.json files) to porting 10-layer 2.7 PDK to
8-layer 2.9 PDK (modulo the foundry dropping .lib files in some libraries)

• 3 hours porting new SRAMs and generating them with MacroCompiler.

25Unfortunately no publication is available yet at the time of writing.
26We attempted to use PLSI but it devolved into a traditional flow because it was difficult to customize

the flow without effectively forking it into a separate repo.
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• 5-6 hours to understand + implement I/O cells and implement usage in Innovus.

5 Related Work

• PLSIis the closest work to this one. However, it is designed framework-style and in
low-level programming languages, hindering adoption, re-use, and maintenance.

• Flowtoolis a set of flow management scripts written in TCL for Cadence tools. It is not
portable across CAD tool vendors, mixes in concerns of CAD tool vendors, technologies,
and project, and as with PLSI, is low-level.

• vlsi_mem_gen et al are Python scripts used to generate Verilog for various physical
design problems (e.g. SRAM mapping, I/O cell generation, etc) used at Berkeley. While
they work they are stringly-typed, unsafe, and not reusable (every chip project has its
own copy of this script with very subtle modification that prevent re-use).

• Spongepaintis a procedural layout generator written in Java. It does not use a front-end
HDL like Verilog making re-use problematic, and is closer to BAG[31] in style as a
direct-to-layout generator as opposed to our solution which leverages the power of
modern place-and-route tools by generating constraints for them.

• Jackhammeris a DSE framework which solves a parallel/orthogonal problem and
theoretically could plug into Hammer to run the backend but is parallel.

• https://pdfs.semanticscholar.org/4e45/d145742228596753fee7fb440818c102390a.

pdf seems to be about 3D ICs

• http://www.inf.pucrs.br/~calazans/publications/2015-DSD_ACSD.pdf only ap-
plicable to self-timed circuit, not generic, not re-usable

• State of the art in industry: many companies have internal flows that aren’t published.
They suffer from the problems described in the background section of this work.

6 Lessons Learned

• To build useful tools, listen to users to understand their needs and use-cases, but also
don’t hesitate to introduce new tools, languages, or paradigms to solve problems.

• Dogfooding (the act of using the software one develops) goes a long way to ensuring
that tools are usable in the real world.
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• Think about what environments the tool will be deployed in, and anticipate logistics
(e.g. NDAs, licensing, etc) problems and develop solutions (e.g. abstractions) for them
to increase portability.

• Rocket is hard to use because it doesn’t have textual descriptions of its building blocks,
forcing people to read the code. Reading code is harder and slower than writing code.
If writing the code yourself is faster, we just missed the point of agile re-use.

• Likewise, existing IP blocks used in hardware design[36] are hard to use because they
are unparametrizable and hard to customize to the target/project environment, inviting
the temptation to just write the code yourself again.

• Examples and templates go a long way to helping push adoption - think of chisel-
template, project-template, or hwacha-template.

• Non immutable data structures suck - https://github.com/ucb-bar/hammer/commit/
256eef15e2d558debe84dfed3bd4291fd2364a32

7 Future Directions

• Simulation - we can use Hammer to set up the flow and environment for that; we just
haven’t written the infrastructure to do so yet.

• Incorporate input from analog designers to achieve a layout that is most optimal for
their designs as well - if we have a Chisel/Hammer (digital/physical design) generator
and a BAG (analog) generator, we could write a design space exploration/optimization
engine which starts from a seed set of parameters, runs both generators, integrates
them, evaluates the resultant QoR, and adjusts the parameters accordingly to increase
QoR. There is potential to apply some optimization/ML in this scenario.

• Alternatively, the generators could feature a two-phase Diplomacy-like API where in
the first pass part of the API, we obtain an acceptable range of values for a set of
certain parameters from each part of the generator, and the call the second pass part
to generate a concrete instance using both generators. This is similar to the above
scenario but with an extra API queries what is acceptable to both generators.

• Design space exploration engine (using ML or traditional optimization) to automatically
set parameters to increase agility.

• Expand the number/variety of Hammer project templates/examples.

• Integration with analog generators like BAG.

• Integration with formal verification.
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• Extend the work to support FPGA flows, or co-generation of FPGA and ASIC flows in
order to make it easier to do agile pre-tapeout simulations of ASICs. This could be
accomplished using FIRRTL/CICL passes as well as interfacing with MIDAS.

• Explore type-safe aspects/Hammer IR generation at the Chisel level.

• Integration for push-button (GUI) generators.

• More CAD tool knobs.

• More hammer-vlsi plugins for more tools.

8 Conclusion

Hardware design faces a critical crossroads - increased demand for performance from the end
of Moore’s law meeting the inefficient design practices common in the hardware design scene
today. We recognize that current design methodology of manually writing VLSI flow scripts
that combine information about tools, technologies, and the RTL design limits productivity
and portability. This is beecause digital physical design effort is not shared and re-used across
different tools/technologies/RTL designs.

As such, we created the Hammer methodology, a modular platform consisting of 1) libraries
to abstract tools and technologies; 2) a physical design IR for interchange of physical design
information between upstream generators and backend VLSI tools that is human-writable
(e.g. in YAML with comments) as well as programmatically generatable; 3) drivers and shell
wrappers to make it easy to get started in using the Hammer methodology.

While there remains more work to do to improve Hammer and add more features, we
explicitly design Hammer to enable partial and incremental adoption via mechanisms like
TCL hooks. This allows expert users to directly write TCL, while continuing to use Hammer
to support their existing features without requiring an all-or-nothing migration. We aim to
build a tool useful to a wide audience, including but not limited to computer architects, RTL
engineers, and physical designers.

Similar to how the SHARE society of the 1950s aimed to reduce redundant effort among
software developers, we aim to help everyone share the load and bridge the gap between
architectural exploration and taping out by making it easier to tape out, while simultaneously
reducing the amount of engineer hours spent wasted due to inefficient design practices.
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Appendices

A Reproducibility

Open source code in this thesis is available on Github (some repositories may be NDA-
restricted, private, or moved to other URLs; contact the author for access):

• Hammer

– Repository: https://github.com/ucb-bar/hammer

– Branch: master

– Commit: e99efd9d2056677e0167a8dcc634dbdd16016803

• Hammer CAD Tool Plugins

– Repository: https://github.com/ucb-bar/hammer-cad-plugins

– Branch: master

– Commit: 85547c9a1cac351e9d88870ec6b04d0257f54d0b

• CICL and Floorplanning

– Repository: https://github.com/ucb-bar/fcl-floorplan

– Branch: master

– Commit: 419ed288f4f24284f833b80bfd26f67fcbaa6b06

• Barstools (Agile FIRRTL/CICL passes for tapeouts)

– Repository: https://github.com/ucb-bar/barstools

– Branch: master

– Commit: 93bf7895bee4fe866ede244e91da9514bb321087

B Hammer Tool and Driver API Documentation
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CHAPTER

ONE

HAMMER_VLSI MODULE

class hammer_vlsi.CLIDriver→ None
Bases: object

Helper class for projects to easily write/customize a CLI driver for hammer without needing to rewrite/copy all
the argparse and plumbing.

action_map()→ typing.Dict[str, typing.Callable[[hammer_driver.HammerDriver, typing.Callable[str,
NoneType]], typing.Union[dict, NoneType]]]

Return the mapping of valid actions -> functions for each action of the command-line driver.

all_hierarchical_actions
Return a list of hierarchical actions if the given project configuration is a hierarchical design. Set when the
driver is first created in args_to_driver. Create syn/synthesis-[block], par-[block], and /syn_par-[block].

Returns Dictionary of actions to use (could be empty).

args_to_driver(args: dict, default_options: typing.Union[hammer_driver.HammerDriverOptions,
NoneType] = None) → typing.Tuple[hammer_driver.HammerDriver, typ-
ing.List[str]]

Parse command line arguments and environment variables for the command line front-end to hammer-vlsi.

Returns HammerDriver and a list of errors.

create_action(action_type: str, extra_hooks: typing.Union[typing.List[hammer_vlsi_impl.HammerToolHookAction],
NoneType], pre_action_func: typing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None, post_load_func: typ-
ing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None, post_run_func: typ-
ing.Union[typing.Callable[[hammer_driver.HammerDriver], NoneType],
NoneType] = None) → typing.Callable[[hammer_driver.HammerDriver, typ-
ing.Callable[str, NoneType]], typing.Union[dict, NoneType]]

Create an action function for the action_map.

Parameters

• action_type – Either “syn”/”synthesis” or “par”

• extra_hooks – List of hooks to pass to the run function.

• pre_action_func – Optional function to call before doing anything.

• post_load_func – Optional function to call after loading the tool.

• post_run_func – Optional function to call after running the tool.

Returns Action function.

1
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hammer-vlsi Documentation, Release 0.1.0

create_par_action(custom_hooks: typing.List[hammer_vlsi_impl.HammerToolHookAction],
pre_action_func: typing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None, post_load_func: typ-
ing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None, post_run_func: typ-
ing.Union[typing.Callable[[hammer_driver.HammerDriver], NoneType],
NoneType] = None) → typing.Callable[[hammer_driver.HammerDriver,
typing.Callable[str, NoneType]], typing.Union[dict, NoneType]]

create_synthesis_action(custom_hooks: typing.List[hammer_vlsi_impl.HammerToolHookAction],
pre_action_func: typing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None, post_load_func: typ-
ing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None, post_run_func: typ-
ing.Union[typing.Callable[[hammer_driver.HammerDriver],
NoneType], NoneType] = None) → typ-
ing.Callable[[hammer_driver.HammerDriver, typing.Callable[str,
NoneType]], typing.Union[dict, NoneType]]

create_synthesis_par_action(synthesis_action: typing.Callable[[hammer_driver.HammerDriver,
typing.Callable[str, NoneType]], typ-
ing.Union[dict, NoneType]], par_action: typ-
ing.Callable[[hammer_driver.HammerDriver, typ-
ing.Callable[str, NoneType]], typing.Union[dict, NoneType]])
→ typing.Callable[[hammer_driver.HammerDriver, typ-
ing.Callable[str, NoneType]], typing.Union[dict, NoneType]]

Create a parameterizable synthesis_par action for the CLIDriver.

Parameters

• synthesis_action – synthesis action

• par_action – par action

Returns Custom synthesis_par action

get_extra_hierarchical_par_hooks() → typing.Dict[str, typ-
ing.List[hammer_vlsi_impl.HammerToolHookAction]]

Return a list of extra hierarchical place and route hooks in this project. To be overridden by subclasses.

Returns Dictionary of (module name, list of hooks)

get_extra_hierarchical_synthesis_hooks() → typing.Dict[str, typ-
ing.List[hammer_vlsi_impl.HammerToolHookAction]]

Return a list of extra hierarchical synthesis hooks in this project. To be overridden by subclasses.

Returns Dictionary of (module name, list of hooks)

get_extra_par_hooks()→ typing.List[hammer_vlsi_impl.HammerToolHookAction]
Return a list of extra place and route hooks in this project. To be overridden by subclasses.

get_extra_synthesis_hooks()→ typing.List[hammer_vlsi_impl.HammerToolHookAction]
Return a list of extra synthesis hooks in this project. To be overridden by subclasses.

get_hierarchical_par_action(module: str)→ typing.Callable[[hammer_driver.HammerDriver,
typing.Callable[str, NoneType]], typing.Union[dict, None-
Type]]

Get the action associated with hierarchical par for the given module (in hierarchical flows).

2 Chapter 1. hammer_vlsi module
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get_hierarchical_synthesis_action(module: str) → typ-
ing.Callable[[hammer_driver.HammerDriver, typ-
ing.Callable[str, NoneType]], typing.Union[dict,
NoneType]]

Get the action associated with hierarchical synthesis for the given module (in hierarchical flows).

get_hierarchical_synthesis_par_action(module: str) → typ-
ing.Callable[[hammer_driver.HammerDriver,
typing.Callable[str, NoneType]], typ-
ing.Union[dict, NoneType]]

Get the action associated with hierarchical syn_par for the given module (in hierarchical flows).

main()→ None
Main function to call from your entry point script. Parses command line arguments. Example: >>> if
__name__ == ‘__main__’: >>> CLIDriver().main()

run_main_parsed(args: dict)→ int
Given a parsed dictionary of arguments, find and run the given action.

Returns Return code (0 for success)

set_hierarchical_par_action(module: str, action: typ-
ing.Callable[[hammer_driver.HammerDriver, typ-
ing.Callable[str, NoneType]], typing.Union[dict, NoneType]])
→ None

Set the action associated with hierarchical par for the given module (in hierarchical flows).

set_hierarchical_synthesis_action(module: str, action: typ-
ing.Callable[[hammer_driver.HammerDriver, typ-
ing.Callable[str, NoneType]], typing.Union[dict,
NoneType]])→ None

Set the action associated with hierarchical synthesis for the given module (in hierarchical flows).

set_hierarchical_synthesis_par_action(module: str, action: typ-
ing.Callable[[hammer_driver.HammerDriver,
typing.Callable[str, NoneType]], typ-
ing.Union[dict, NoneType]])→ None

Set the action associated with hierarchical syn_par for the given module (in hierarchical flows).

synthesis_to_par_action(driver: hammer_driver.HammerDriver, append_error_func: typ-
ing.Callable[str, NoneType])→ typing.Union[dict, NoneType]

Create a config to run the output.

valid_actions()→ typing.List[str]
Get the list of valid actions for the command-line driver.

class hammer_vlsi.CadenceTool
Bases: hammer_vlsi_impl.HasSDCSupport, hammer_vlsi_impl.HammerTool

Mix-in trait with functions useful for Cadence-based tools.

config_dirs

env_vars
Get the list of environment variables required for this tool. Note to subclasses: remember to include
variables from super().env_vars!

generate_mmmc_script()→ str
Output for the mmmc.tcl script. Innovus (init_design) requires that the timing script be placed in a separate
file.

Returns Contents of the mmmc script.
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get_liberty_libs()→ str
Helper function to get the list of ASCII liberty files in space separated format.

Returns List of lib files separated by spaces

get_mmmc_libs(corner: hammer_vlsi_impl.MMMCCorner)→ str

get_mmmc_qrc(corner: hammer_vlsi_impl.MMMCCorner)→ str

get_qrc_tech()→ str
Helper function to get the list of rc corner tech files in space separated format.

Returns List of qrc tech files separated by spaces

class hammer_vlsi.Callable
Bases: collections.abc.Callable

Callable type; Callable[[int], str] is a function of (int) -> str.

The subscription syntax must always be used with exactly two values: the argument list and the return type. The
argument list must be a list of types or ellipsis; the return type must be a single type.

There is no syntax to indicate optional or keyword arguments, such function types are rarely used as callback
types.

class hammer_vlsi.ClockPort(name, period, port, uncertainty)
Bases: tuple

name
Alias for field number 0

period
Alias for field number 1

port
Alias for field number 2

uncertainty
Alias for field number 3

class hammer_vlsi.FullMessage(message, level, context)
Bases: tuple

context
Alias for field number 2

level
Alias for field number 1

message
Alias for field number 0

class hammer_vlsi.HammerDriver(options: hammer_driver.HammerDriverOptions, ex-
tra_project_config: dict = {})→ None

Bases: object

static generate_par_inputs_from_synthesis(config_in: dict)→ dict
Generate the appropriate inputs for running place-and-route from the outputs of synthesis run.

static get_default_driver_options()→ hammer_driver.HammerDriverOptions
Get default driver options.

get_hierarchical_settings()→ typing.List[typing.Tuple[str, dict]]
Read settings from the database, determine leaf/hierarchical modules, an order of execution, and return an
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ordered list (from leaf to top) of modules and associated config snippets needed to run syn+par for that
module hierarchically.

Returns List of tuples of (module name, config snippet)

load_par_tool(run_dir: str = ‘’)→ bool
Load the place and route tool based on the given database.

Parameters run_dir – Directory to use for the tool run_dir. Defaults to the run_dir passed in
the HammerDriver constructor.

load_synthesis_tool(run_dir: str = ‘’)→ bool
Load the synthesis tool based on the given database.

Parameters run_dir – Directory to use for the tool run_dir. Defaults to the run_dir passed in
the HammerDriver constructor.

Returns True if synthesis tool loading was successful, False otherwise.

load_technology(cache_dir: str = ‘’)→ None

project_config

run_par(hook_actions: typing.Union[typing.List[hammer_vlsi_impl.HammerToolHookAction], None-
Type] = None, force_override: bool = False)→ typing.Tuple[bool, dict]

Run place and route based on the given database.

run_synthesis(hook_actions: typing.Union[typing.List[hammer_vlsi_impl.HammerToolHookAction],
NoneType] = None, force_override: bool = False)→ typing.Tuple[bool, dict]

Run synthesis based on the given database.

Parameters

• hook_actions – List of hook actions, or leave as None to use the hooks sets in
set_synthesis_hooks. Hooks from set_synthesis_hooks, if present, will be appended af-
terwards.

• force_override – Set to true to overwrite instead of append.

Returns Tuple of (success, output config dict)

set_post_custom_par_tool_hooks(hooks: typing.List[hammer_vlsi_impl.HammerToolHookAction])
→ None

Set the extra list of hooks used for control flow (resume/pause) in run_par. They will run after
main/hook_actions.

Parameters hooks – Hooks to run

set_post_custom_syn_tool_hooks(hooks: typing.List[hammer_vlsi_impl.HammerToolHookAction])
→ None

Set the extra list of hooks used for control flow (resume/pause) in run_synthesis. They will run after
main/hook_actions.

Parameters hooks – Hooks to run

update_project_configs(project_configs: typing.List[dict])→ None
Update the project configs in the driver and database.

update_tool_configs()→ None
Calls self.database.update_tools with self.tool_configs as a list.

class hammer_vlsi.HammerDriverOptions(environment_configs, project_configs, log_file, obj_dir)
Bases: tuple

environment_configs
Alias for field number 0
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log_file
Alias for field number 2

obj_dir
Alias for field number 3

project_configs
Alias for field number 1

class hammer_vlsi.HammerPlaceAndRouteTool
Bases: hammer_vlsi_impl.HammerTool

export_config_outputs()→ typing.Dict[str, typing.Any]

fill_outputs()→ bool

input_files
Get the input post-synthesis netlist files.

Returns The input post-synthesis netlist files.

output_ilms
Get the (optional) output ILM information for hierarchical mode.

Returns The (optional) output ILM information for hierarchical mode.

post_synth_sdc
Get the input post-synthesis SDC constraint file.

Returns The input post-synthesis SDC constraint file.

top_module
Get the top RTL module.

Returns The top RTL module.

hammer_vlsi.HammerStepFunction
alias of Callable

class hammer_vlsi.HammerSynthesisTool
Bases: hammer_vlsi_impl.HammerTool

export_config_outputs()→ typing.Dict[str, typing.Any]

fill_outputs()→ bool

input_files
Get the input collection of source RTL files (e.g. *.v).

Returns The input collection of source RTL files (e.g. *.v).

output_files
Get the output collection of mapped (post-synthesis) RTL files.

Returns The output collection of mapped (post-synthesis) RTL files.

output_sdc
Get the (optional) output post-synthesis SDC constraints file.

Returns The (optional) output post-synthesis SDC constraints file.

top_module
Get the top-level module.

Returns The top-level module.
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class hammer_vlsi.HammerTool
Bases: object

static append_contents_to_path(content_to_append: str, target_path: str)→ None
Append the given contents to the file located at target_path, if target_path is not empty.

Parameters

• content_to_append – Content to append.

• target_path – Where to append the content.

attr_getter(key: str, default: typing.Any)→ typing.Any
Helper function for implementing the getter of a property with a default. If default is None, then raise a
AttributeError.

attr_setter(key: str, value: typing.Any)→ None
Helper function for implementing the setter of a property with a default.

check_duplicates(lst: typing.List[hammer_vlsi_impl.HammerToolStep]) → typing.Tuple[bool,
typing.Set[str]]

Check that no two steps have the same name.

check_input_files(extensions: typing.List[str])→ bool
Verify that input files exist and have the specified extensions.

Parameters extensions – List of extensions e.g. [”.v”, ”.sv”]

Returns True if all files exist and have the specified extensions.

config_dirs
List of folders where (default) configs can live. Defaults to self.tool_dir.

Returns List of default config folders.

create_enter_script(enter_script_location: str = ‘’, raw: bool = False)→ None
Create the enter script inside the rundir which can be used to create an interactive environment with all the
same variables used to launch this tool.

Parameters

• enter_script_location – Location to create the enter script. Defaults to
self.run_dir + “/enter”

• raw – Emit the raw string without shell escaping (without quotes!!!)

static create_nonempty_check(description: str) → typing.Callable[typing.List[str], typ-
ing.List[str]]

do_between_steps(prev: hammer_vlsi_impl.HammerToolStep, next: ham-
mer_vlsi_impl.HammerToolStep)→ bool

Function to run after the list of steps executes. Does not include pause hooks. Intended to be overridden
by subclasses.

Parameters

• prev – The step that just finished

• next – The next step about to run.

Returns True if successful, False otherwise.

do_post_steps()→ bool
Function to run after the list of steps executes. Intended to be overridden by subclasses.

Returns True if successful, False otherwise.
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do_pre_steps(first_step: hammer_vlsi_impl.HammerToolStep)→ bool
Function to run before the list of steps executes. Intended to be overridden by subclasses.

Parameters first_step – First step to be taken.

Returns True if successful, False otherwise.

dump_database()→ str
Dump the current database JSON in a temporary file in the run_dir and return the path.

env_vars
Get the list of environment variables required for this tool. Note to subclasses: remember to include
variables from super().env_vars!

Returns Mapping of environment variable -> contents of said variable.

export_config_outputs()→ typing.Dict[str, typing.Any]
Export the outputs of this tool to a config.

Returns Config dictionary of the outputs of this tool.

fill_outputs()→ bool
Fill the outputs of the tool. Note: if you override this, remember to call the superclass method too!

Returns True if successful, False otherwise.

filter_and_select_libs(lib_filters: typing.List[typing.Callable[abc.Library, bool]] =
[], sort_func: typing.Union[typing.Callable[[abc.Library], typ-
ing.Union[numbers.Number, str, tuple]], NoneType] = None,
extraction_func: typing.Callable[abc.Library, typing.List[str]] =
None, extra_funcs: typing.List[typing.Callable[str, str]] = []) →
typing.List[str]

Generate a list by filtering the list of libraries and selecting some parts of it.

Parameters

• lib_filters – Filters to filter the list of libraries before selecting desired results from
them. e.g. remove libraries of the wrong type

• sort_func – Sort function to re-order the resultant components. e.g. put stdcell libraries
before any other libraries

• extraction_func – Function to call to extract the desired component of the lib. e.g.
turns the library into the ”.lib” file corresponding to that library

• extra_funcs – List of extra functions to call before wrapping them in the arg prefixes.

Returns List generated from list of libraries

filter_for_mmmc(voltage, temp)→ typing.Callable[abc.Library, bool]
Selecting libraries that match given temp and voltage.

filter_for_supplies(lib: abc.Library)→ bool
Function to help filter a list of libraries to find libraries which have matching supplies. Will also use
libraries with no supplies annotation.

Parameters lib – Library to check

Returns True if the supplies of this library match the inputs for this run, False otherwise.

get_clock_ports()→ typing.List[hammer_vlsi_impl.ClockPort]
Get the clock ports of the top-level module, as specified in vlsi.inputs.clocks.

get_config()→ typing.List[dict]
Get the config for this tool.
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get_input_ilms()→ typing.List[hammer_vlsi_impl.ILMStruct]
Get a list of input ILM modules for hierarchical mode.

get_mmmc_corners()→ typing.List[hammer_vlsi_impl.MMMCCorner]
Get a list of MMMC corners as specified in the config.

get_output_load_constraints()→ typing.List[hammer_vlsi_impl.OutputLoadConstraint]
Get a list of output load constraints as specified in the config.

get_placement_constraints()→ typing.List[hammer_vlsi_impl.PlacementConstraint]
Get a list of placement constraints as specified in the config.

get_setting(key: str, nullvalue: typing.Union[str, NoneType] = None)→ typing.Any
Get a particular setting from the database.

Parameters

• key – Key of the setting to receive.

• nullvalue – Value to return in case of null (leave as None to use the default).

hierarchical_mode
Input files for this tool library. The exact nature of the files will depend on the type of library.

input_files
Input files for this tool library. The exact nature of the files will depend on the type of library.

lef_filter
Select LEF files for physical layout.

liberty_lib_filter
Selecting ASCII liberty (.lib) libraries. Prefers CCS if available; picks NLDM as a fallback.

logger
Get the logger for this tool.

static make_check_isdir(description: str = ‘Path’)→ typing.Callable[str, str]
Utility function to generate functions which check whether a path exists.

static make_check_isfile(description: str = ‘File’)→ typing.Callable[str, str]
Utility function to generate functions which check whether a path exists.

static make_from_to_hooks(from_step: typing.Union[str, NoneType] = None,
to_step: typing.Union[str, NoneType] = None) → typ-
ing.List[hammer_vlsi_impl.HammerToolHookAction]

Helper function to create a HammerToolHookAction list which will run from and to the given steps,
inclusive.

Parameters

• from_step – Run from the given step, inclusive. Leave as None to resume from the
beginning.

• to_step – Run to the given step, inclusive. Leave as None to run to the end.

Returns HammerToolHookAction list for running from and to the given steps, inclusive.

static make_insertion_hook(step: str, location: hammer_vlsi_impl.HookLocation, func:
typing.Callable[_ForwardRef(‘HammerTool’), bool]) → ham-
mer_vlsi_impl.HammerToolHookAction

Create a hook action is inserted relative to the given step.

static make_pause_function()→ typing.Callable[_ForwardRef(‘HammerTool’), bool]
Get a step function which will stop the execution of the tool.

9
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static make_post_insertion_hook(step: str, func: typing.Callable[_ForwardRef(‘HammerTool’),
bool])→ hammer_vlsi_impl.HammerToolHookAction

Create a hook action is inserted after the given step.

static make_post_pause_hook(step: str)→ hammer_vlsi_impl.HammerToolHookAction
Create pause before the execution of the given step.

static make_post_resume_hook(step: str)→ hammer_vlsi_impl.HammerToolHookAction
Resume after the given step. Note that only one resume hook may be present.

static make_pre_insertion_hook(step: str, func: typing.Callable[_ForwardRef(‘HammerTool’),
bool])→ hammer_vlsi_impl.HammerToolHookAction

Create a hook action is inserted prior to the given step.

static make_pre_pause_hook(step: str)→ hammer_vlsi_impl.HammerToolHookAction
Create pause before the execution of the given step.

static make_pre_resume_hook(step: str)→ hammer_vlsi_impl.HammerToolHookAction
Resume before the given step. Note that only one resume hook may be present.

static make_removal_hook(step: str)→ hammer_vlsi_impl.HammerToolHookAction
Helper function to remove a step by replacing it with an empty step.

Returns Hook action which replaces the given step.

static make_replacement_hook(step: str, func: typing.Callable[_ForwardRef(‘HammerTool’),
bool])→ hammer_vlsi_impl.HammerToolHookAction

Create a hook action which replaces an existing step.

Returns Hook action which replaces the given step.

static make_resume_hook(step: str, location: hammer_vlsi_impl.HookLocation) → ham-
mer_vlsi_impl.HammerToolHookAction

Create a hook action is inserted relative to the given step.

static make_step_from_function(func: typing.Callable[_ForwardRef(‘HammerTool’), bool],
name: str = ‘’)→ hammer_vlsi_impl.HammerToolStep

Create a HammerToolStep from a function.

Parameters

• func – Class function for the given substep

• name – Name of the hook. If unspecified, defaults to func.__name__.

Returns A HammerToolStep defining this step.

static make_step_from_method(func: typing.Callable[bool], name: str = ‘’) → ham-
mer_vlsi_impl.HammerToolStep

Create a HammerToolStep from a method.

Parameters

• func – Method for the given substep (e.g. self.elaborate)

• name – Name of the hook. If unspecified, defaults to func.__name__.

Returns A HammerToolStep defining this step.

static make_steps_from_methods(funcs: typing.List[typing.Callable[bool]]) → typ-
ing.List[hammer_vlsi_impl.HammerToolStep]

Create a series of HammerToolStep from the given list of bound methods.

Parameters funcs – List of bound methods (e.g. [self.step1, self.step2])

Returns List of HammerToolSteps

10 Chapter 1. hammer_vlsi module
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milkyway_lib_dir_filter

milkyway_techfile_filter
Select milkyway techfiles.

name
Short name of the tool library. Typically the folder name (e.g. “dc”, “yosys”, etc).

Returns Short name of the tool library.

process_library_filter(pre_filts: typing.List[typing.Callable[abc.Library, bool]], filt: ham-
mer_vlsi_impl.LibraryFilter, output_func: typing.Callable[[str, ham-
mer_vlsi_impl.LibraryFilter], typing.List[str]], must_exist: bool =
True)→ typing.List[str]

Process the given library filter and return a list of items from that library filter with any extra post-
processing.

• Get a list of lib items

• Run any extra_post_filter_funcs (if needed)

• For every lib item in each lib items, run output_func

Parameters

• pre_filts – List of functions with which to pre-filter the libraries. Each function must
return true in order for this library to be used.

• filt – LibraryFilter to check against the list.

• output_func – Function which processes the outputs, taking in the filtered lib and the
library filter which generated it.

• must_exist – Must each library item actually exist? Default: True (yes, they must
exist)

Returns Resultant items from the filter and post-processed. (e.g. –timing foo.db –timing bar.db)

qrc_tech_filter
Selecting qrc RC Corner tech (qrcTech) files.

read_libs(library_types: typing.Iterable[hammer_vlsi_impl.LibraryFilter], output_func: typ-
ing.Callable[[str, hammer_vlsi_impl.LibraryFilter], typing.List[str]], pre_filters: typ-
ing.Iterable[typing.Callable[abc.Library, bool]] = [], must_exist: bool = True) → typ-
ing.List[str]

Read the given libraries and return a list of strings according to some output format.

Parameters

• library_types – List of libraries to filter, specified as a list of LibraryFilter elements.

• output_func – Function which processes the outputs, taking in the filtered lib and the
library filter which generated it.

• must_exist – Must each library item actually exist? Default: True (yes, they must
exist)

Returns List of filtered libraries processed according output_func.

static replace_tcl_set(variable: str, value: str, tcl_path: str, quotes: bool = True)→ None
Utility function to replaces a “set VARIABLE ...” line with set VARIABLE “value” in the given TCL
script file.

Parameters

11
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• variable – Variable name to replace

• value – Value to replace it with (default quoted)

• tcl_path – Path to the TCL script.

• quotes – (optional) Set to False to disable quoting of the value.

run(hook_actions: typing.List[hammer_vlsi_impl.HammerToolHookAction] = [])→ bool
Run this tool.

Perform some setup operations to set up the config and tool environment, runs the tool-specific actions
defined in steps, and collects the outputs.

Returns True if the tool finished successfully; false otherwise.

run_dir
Get the location of the run dir, a writable temporary information for use by the tool. This should return an
absolute path.

Returns Path to the location of the library.

run_executable(args: typing.List[str], cwd: str = None)→ str
Run an executable and log the command to the log while also capturing the output.

Parameters

• args – Command-line to run; each item in the list is one token. The first token should be
the command to run.

• cwd – Working directory (leave as None to use the current working directory).

Returns Output from the command or an error message.

run_steps(steps: typing.List[hammer_vlsi_impl.HammerToolStep], hook_actions: typ-
ing.List[hammer_vlsi_impl.HammerToolHookAction] = [])→ bool

Run the given steps, checking for errors/conditions between each step.

Parameters

• steps – List of steps.

• hook_actions – List of hook actions.

Returns Returns true if all the steps are successful.

set_database(database: hammer_config.config_src.HammerDatabase)→ None
Set the settings database for use by the tool.

set_setting(key: str, value: typing.Any)→ None
Set a runtime setting in the database.

steps
List of steps defined for the execution of this tool.

static tcl_append(cmd: str, output_buffer: typing.List[str])→ None
Helper function to echo and run a command.

Parameters

• cmd – TCL command to run

• output_buffer – Buffer in which to enqueue the resulting TCL lines.

technology
Get the technology library currently in use.

Returns HammerTechnology instance
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timing_db_filter
Selecting Synopsys timing libraries (.db). Prefers CCS if available; picks NLDM as a fallback.

tlu_max_cap_filter
TLU+ max cap filter.

tlu_min_cap_filter
TLU+ min cap filter.

static to_command_line_args(lib_item: str, filt: hammer_vlsi_impl.LibraryFilter) → typ-
ing.List[str]

Generate command-line args in the form –<filt.tag> <lib_item>.

static to_plain_item(lib_item: str, filt: hammer_vlsi_impl.LibraryFilter)→ typing.List[str]
Generate plain outputs in the form of <lib_item1> <lib_item2> ...

tool_dir
Get the location of the tool library.

Returns Path to the location of the library.

static verbose_tcl_append(cmd: str, output_buffer: typing.List[str])→ None
Helper function to echo and run a command.

Parameters

• cmd – TCL command to run

• output_buffer – Buffer in which to enqueue the resulting TCL lines.

verilog_synth_filter
Selecting verilog_synth files which are synthesizable wrappers (e.g. for SRAM) which are needed in some
technologies.

class hammer_vlsi.HammerToolHookAction(location, target_name, step)
Bases: tuple

location
Alias for field number 0

step
Alias for field number 2

target_name
Alias for field number 1

exception hammer_vlsi.HammerToolPauseException
Bases: Exception

Internal hammer-vlsi exception raised to indicate that a step has stopped execution of the tool. This is not
necessarily an error condition.

class hammer_vlsi.HammerToolStep(func, name)
Bases: tuple

func
Alias for field number 0

name
Alias for field number 1

class hammer_vlsi.HammerVLSIFileLogger(output_path: str, format_msg_callback: typ-
ing.Callable[hammer_vlsi_impl.FullMessage, str]
= None)→ None

Bases: object
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A file logger for HammerVLSILogging.

callback
Get the callback for HammerVLSILogging.add_callback.

close()→ None
Close this file logger.

class hammer_vlsi.HammerVLSILogging
Bases: object

Singleton which handles logging in hammer-vlsi.

This class is generally not intended to be used directly for logging, but through HammerVLSILoggingContext
instead.

COLOUR_BLUE = ‘\x1b[96m’

COLOUR_CLEAR = ‘\x1b[0m’

COLOUR_GREY = ‘\x1b[37m’

COLOUR_RED = ‘\x1b[91m’

COLOUR_RED_BG = ‘\x1b[101m’

COLOUR_YELLOW = ‘\x1b[33m’

classmethod add_callback(callback: typing.Callable[hammer_vlsi_impl.FullMessage, NoneType])
→ None

Add a callback.

classmethod build_log_message(fullmessage: hammer_vlsi_impl.FullMessage)→ str
Build a plain message for logs, without colour.

classmethod build_message(fullmessage: hammer_vlsi_impl.FullMessage)→ str
Build a colour message.

classmethod callback_buffering(fullmessage: hammer_vlsi_impl.FullMessage)→ None
Get the current contents of the logging buffer and clear it.

classmethod callback_print(fullmessage: hammer_vlsi_impl.FullMessage)→ None
Default callback which prints a colour message.

callbacks = [<bound method HammerVLSILogging.callback_print of <class ‘hammer_vlsi_impl.HammerVLSILogging’>>, <bound method HammerVLSILogging.callback_buffering of <class ‘hammer_vlsi_impl.HammerVLSILogging’>>]

classmethod clear_callbacks()→ None
Clear the list of callbacks.

classmethod context(new_context: str = ‘’)→ hammer_vlsi_impl.HammerVLSILoggingContext
Create a new context.

Parameters new_context – Context name. Leave blank to get the global context.

enable_buffering = False

enable_colour = True

enable_tag = True

classmethod get_buffer()→ typing.Iterable[str]
Get the current contents of the logging buffer and clear it.

classmethod get_colour_escape(level: hammer_vlsi_impl.Level)→ str
Colour table to translate level -> colour in logging.

14 Chapter 1. hammer_vlsi module
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static get_tag(context: typing.List[str])→ str
Helper function to get the tag for outputing a message given a context.

classmethod log(fullmessage: hammer_vlsi_impl.FullMessage)→ None
Log the given message at the given level in the given context.

output_buffer = []

class hammer_vlsi.HammerVLSILoggingContext(context: typing.List[str], logging_class: typ-
ing.Type[hammer_vlsi_impl.HammerVLSILogging])
→ None

Bases: object

Logging interface to hammer-vlsi which contains a context (list of strings denoting hierarchy where the log
occurred). e.g. [”synthesis”, “subprocess run-synthesis”]

context(new_context: str)→ VT
Create a new subcontext from this context.

debug(message: str)→ None
Create an debug-level log message.

error(message: str)→ None
Create an error-level log message.

fatal(message: str)→ None
Create an fatal-level log message.

info(message: str)→ None
Create an info-level log message.

log(message: str, level: hammer_vlsi_impl.Level)→ None

warning(message: str)→ None
Create an warning-level log message.

class hammer_vlsi.HammerVLSISettings
Bases: object

Static class which holds global hammer-vlsi settings.

static get_config()→ dict
Export settings as a config dictionary.

hammer_vlsi_path = ‘’

classmethod set_hammer_vlsi_path_from_environment()→ bool
Try to set hammer_vlsi_path from the environment variable HAMMER_VLSI.

Returns True if successfully set, False otherwise

class hammer_vlsi.HasSDCSupport
Bases: hammer_vlsi_impl.HammerTool

Mix-in trait with functions useful for tools with SDC-style constraints.

sdc_clock_constraints
Generate TCL fragments for top module clock constraints.

sdc_pin_constraints
Generate a fragment for I/O pin constraints.

class hammer_vlsi.HierarchicalMode
Bases: enum.Enum

An enumeration.

15
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Flat = 1

Hierarchical = 3

Leaf = 2

Top = 4

static from_str(x: str)→ hammer_vlsi_impl.HierarchicalMode

is_nonleaf_hierarchical()→ bool
Helper function that returns True if this mode is a non-leaf hierarchical mode (i.e. any block with hierar-
chical sub-blocks).

class hammer_vlsi.HookLocation
Bases: enum.Enum

An enumeration.

InsertPostStep = 2

InsertPreStep = 1

ReplaceStep = 10

ResumePostStep = 21

ResumePreStep = 20

class hammer_vlsi.ILMStruct
Bases: hammer_vlsi_impl.ILMStruct

static from_setting(ilm: dict)→ hammer_vlsi_impl.ILMStruct

to_setting()→ dict

class hammer_vlsi.Level
Bases: enum.Enum

Logging levels.

DEBUG = 0

ERROR = 3

FATAL = 4

INFO = 1

WARNING = 2

class hammer_vlsi.LibraryFilter
Bases: hammer_vlsi_impl.LibraryFilter

static new(tag: str, description: str, is_file: bool, extraction_func: typing.Callable[abc.Library,
typing.List[str]], filter_func: typing.Union[typing.Callable[[abc.Library], bool],
NoneType] = None, sort_func: typing.Union[typing.Callable[[abc.Library], typ-
ing.Union[numbers.Number, str, tuple]], NoneType] = None, extra_post_filter_funcs:
typing.List[typing.Callable[typing.List[str], typing.List[str]]] = []) → ham-
mer_vlsi_impl.LibraryFilter

Convenience “constructor” with some default arguments.

class hammer_vlsi.MMMCCorner(name, type, voltage, temp)
Bases: tuple

name
Alias for field number 0

16 Chapter 1. hammer_vlsi module
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temp
Alias for field number 3

type
Alias for field number 1

voltage
Alias for field number 2

class hammer_vlsi.MMMCCornerType
Bases: enum.Enum

An enumeration.

Extra = 3

Hold = 2

Setup = 1

static from_string(s: str)→ hammer_vlsi_impl.MMMCCornerType

class hammer_vlsi.Margins(left, bottom, right, top)
Bases: tuple

bottom
Alias for field number 1

left
Alias for field number 0

right
Alias for field number 2

top
Alias for field number 3

class hammer_vlsi.OutputLoadConstraint(name, load)
Bases: tuple

load
Alias for field number 1

name
Alias for field number 0

class hammer_vlsi.PlacementConstraint
Bases: hammer_vlsi_impl.PlacementConstraint

static from_dict(constraint: dict)→ hammer_vlsi_impl.PlacementConstraint

to_dict()→ dict

class hammer_vlsi.PlacementConstraintType
Bases: enum.Enum

An enumeration.

Dummy = 1

HardMacro = 4

Hierarchical = 5

Placement = 2

TopLevel = 3
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static from_str(x: str)→ hammer_vlsi_impl.PlacementConstraintType

class hammer_vlsi.SynopsysTool
Bases: hammer_vlsi_impl.HasSDCSupport, hammer_vlsi_impl.HammerTool

Mix-in trait with functions useful for Synopsys-based tools.

env_vars
Get the list of environment variables required for this tool. Note to subclasses: remember to include
variables from super().env_vars!

get_synopsys_rm_tarball(product: str, settings_key: str = ‘’)→ str
Locate reference methodology tarball.

Parameters

• product – Either “DC” or “ICC”

• settings_key – Key to retrieve the version for the product. Leave blank for DC and
ICC.

class hammer_vlsi.TimeValue(value: str, default_prefix: str = ‘n’)→ None
Bases: object

Time value - e.g. “4 ns”. Parses time values from strings.

str_value_in_units(prefix: str, round_zeroes: bool = True)→ str
Get this time value in the given prefix but including the units. e.g. return “5 ns”.

Parameters

• prefix – Prefix for the resulting value - e.g. “ns”.

• round_zeroes – True to round 1.00000001 etc to 1 within 2 decimal places.

value
Get the value of this time value.

value_in_units(prefix: str, round_zeroes: bool = True)→ float
Get this time value in the given prefix. e.g. “ns”

class hammer_vlsi.VerilogUtils
Bases: object

static contains_module(v: str, module: str)→ bool
Check if the given Verilog source contains the given module.

Parameters

• v – Verilog source code

• module – Module to look for

Returns True if the given module exists.

static remove_comments(v: str)→ str
Remove comments from the given Verilog file.

Parameters v – Verilog source code

Returns Source code without comments

static remove_module(v: str, module: str)→ str
Remove the given module from the given Verilog source file, if it exists.

Parameters

18 Chapter 1. hammer_vlsi module
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• v – Verilog source code

• module – Module to remove

Returns Verilog with given module definition removed, if it exists

hammer_vlsi.add_dicts(a: dict, b: dict)→ dict
Helper method: join two dicts together while type checking. The second dictionary will override any entries in
the first.

hammer_vlsi.add_lists(a: typing.List[str], b: typing.List[str])→ typing.List[str]
Helper method: join two lists together while type checking.

hammer_vlsi.check_hammer_step_function(func: typing.Callable[_ForwardRef(‘HammerTool’),
bool])→ None

hammer_vlsi.deepdict(x: dict)→ dict
Deep copy a dictionary. This is needed because dict() by itself only makes a shallow copy. See https:
//stackoverflow.com/questions/5105517/deep-copy-of-a-dict-in-python Convenience function.

Parameters x – Dictionary to copy

Returns Deep copy of the dictionary provided by copy.deepcopy().

hammer_vlsi.deeplist(x: list)→ list
Deep copy a list. This is needed because list() by itself only makes a shallow copy. See https://stackoverflow.
com/questions/5105517/deep-copy-of-a-dict-in-python Convenience function.

Parameters x – List to copy

Returns Deep copy of the list provided by copy.deepcopy().

hammer_vlsi.in_place_unique(items: typing.List[typing.Any])→ None
“Fast” in-place uniquification of a list.

Parameters items – List to be uniquified.

hammer_vlsi.load_tool(tool_name: str, path: typing.Iterable[str]) → ham-
mer_vlsi_impl.HammerTool

Load the given tool. See the hammer-vlsi README for how it works.

Parameters

• tool_name – Name of the tool

• path – List of paths to get

Returns HammerTool of the given tool

hammer_vlsi.make_raw_hammer_tool_step(func: typing.Callable[_ForwardRef(‘HammerTool’),
bool], name: str) → ham-
mer_vlsi_impl.HammerToolStep

hammer_vlsi.reduce(function, sequence[, initial])→ value
Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the
sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5).
If initial is present, it is placed before the items of the sequence in the calculation, and serves as a default when
the sequence is empty.

hammer_vlsi.reduce_named(function: typing.Callable, sequence: typing.Iterable, initial=None) →
typing.Any

Version of functools.reduce with named arguments. See https://mail.python.org/pipermail/python-ideas/
2014-October/029803.html
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hammer_vlsi.reverse_dict(x: dict)→ dict
Reverse a dictionary (keys become values and vice-versa). Only works if the dictionary is isomorphic (no
duplicate values), or some pairs will be lost.

Parameters x – Dictionary to reverse

Returns Reversed dictionary

hammer_vlsi.topological_sort(graph: typing.Dict[str, typing.Tuple[typing.List[str], typ-
ing.List[str]]], starting_nodes: typing.List[str])→ typing.List[str]

Perform a topological sort on the graph and return a valid ordering.

Parameters

• graph – dict that represents key as the node and value as a tuple of (outgoing edges, in-
coming edges).

• starting_nodes – List of starting nodes to use.

Returns A valid topological ordering of the graph.

hammer_vlsi.with_default_callbacks(cls)

20 Chapter 1. hammer_vlsi module
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CHAPTER

TWO

HAMMER_CONFIG MODULE

class hammer_config.HammerDatabase→ None
Bases: object

Define a database which is composed of a set of overridable configs. We need something like this in order to
e.g. bind technology afterwards, since we never want technology to override project. If we just did an .update()
with the technology config, we’d possibly lose the previously-bound project config.

Terminology: - setting: a single key-value pair e.g. “vlsi.core.technology” -> “footech” - config: a single
concrete dictionary of settings. - database: a collection of configs with a specific override hierarchy.

Order of precedence (in increasing order): - builtins - core - tools - technology - environment - project - runtime
(settings dynamically updated during the run a hammer run)

get(key: str)→ typing.Any
Alias for get_setting().

get_config()→ dict
Get the config of this database after all the overrides have been dealt with.

get_database_json()→ str
Get the database (get_config) in JSON form as a string.

get_setting(key: str, nullvalue: str = ‘null’)→ typing.Any
Retrieve the given key.

Parameters

• key – Desired key.

• nullvalue – Value to return out for nulls.

Returns The given config

has_setting(key: str)→ bool
Check if the given key exists in the database.

Parameters key – Desired key.

Returns True if the given setting exists.

static internal_keys()→ typing.Set[str]
Internal keys that shouldn’t show up in any final config.

runtime

set_setting(key: str, value: typing.Any)→ None
Set the given key. The setting will be placed into the runtime dictionary.

Parameters
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• key – Key

• value – Value for key

update_builtins(builtins_config: typing.List[dict])→ None
Update the builtins config with the given builtins config.

update_core(core_config: typing.List[dict])→ None
Update the core config with the given core config.

update_environment(environment_config: typing.List[dict])→ None
Update the environment config with the given environment config.

update_project(project_config: typing.List[dict])→ None
Update the project config with the given project config.

update_technology(technology_config: typing.List[dict])→ None
Update the technology config with the given technology config.

update_tools(tools_config: typing.List[dict])→ None
Update the tools config with the given tools config.

hammer_config.combine_configs(configs: typing.Iterable[dict])→ dict
Combine the given list of unpacked configs into a single config. Later configs in the list will override the earlier
configs.

Parameters

• configs – List of configs.

• handle_meta – Handle meta configs?

Returns A loaded config dictionary.

hammer_config.deepdict(x: dict)→ dict
Deep copy a dictionary. This is needed because dict() by itself only makes a shallow copy. See https:
//stackoverflow.com/questions/5105517/deep-copy-of-a-dict-in-python Convenience function.

Parameters x – Dictionary to copy

Returns Deep copy of the dictionary provided by copy.deepcopy().

hammer_config.load_config_from_defaults(path: str, strict: bool = False)→ typing.List[dict]
Load the default configuration for a hammer-vlsi tool/library/technology in the given path, which consists of
defaults.yml and defaults.json (with defaults.json taking priority).

Parameters

• config_paths – Path to defaults.yml and defaults.json.

• strict – Set to true to error if the file is not found.

Returns A list of configs in increasing order of precedence.

hammer_config.load_config_from_file(filename: str, strict: bool = False)→ dict
Load config from a filename, returning a blank dictionary if the file is empty, instead of an error. Supports .yml
and .json, and will raise an error otherwise.

Parameters

• filename – Filename to the config in .yml or .json.

• strict – Set to true to error if the file is not found.

Returns Loaded config dictionary, unpacked.
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hammer_config.load_config_from_paths(config_paths: typing.Iterable[str], strict: bool = False)
→ typing.List[dict]

Load configuration from paths containing *.yml and *.json files. As noted in README.config, .json will take
precedence over .yml files.

Parameters

• config_paths – Path to *.yml and *.json config files.

• strict – Set to true to error if the file is not found.

Returns A list of configs in increasing order of precedence.

hammer_config.load_config_from_string(contents: str, is_yaml: bool, path: str = ‘unspecified’)
→ dict

Load config from a string by loading it and unpacking it.

Parameters

• contents – Contents of the config.

• is_yaml – True if the contents are yaml.

• path – Path to the folder where the config file is located.

Returns Loaded config dictionary, unpacked.

hammer_config.load_yaml(yamlStr: str)→ dict
Load a YAML database as JSON.

The input file is parsed as YAML and converted to a python dict tree, then that tree is converted to the JSON
output. There is a check to make sure the two dict trees are structurally identical.

Parameters yamlStr – A string containing the yaml database.

Returns A dictionary object representing the yaml database.

hammer_config.reduce(function, sequence[, initial])→ value
Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the
sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5).
If initial is present, it is placed before the items of the sequence in the calculation, and serves as a default when
the sequence is empty.

hammer_config.unpack(config_dict: dict, prefix: str = ‘’)→ dict
Unpack the given config_dict, flattening key names recursively. >>> p = unpack({“one”: 1, “two”: 2}, pre-
fix=”snack”) >>> p == {‘snack.one’: 1, ‘snack.two’: 2} True >>> p = unpack({“a”: {“foo”: 1, “bar”: 2}})
>>> p == {‘a.foo’: 1, ‘a.bar’: 2} True >>> p = unpack({“a.b”: {“foo”: 1, “bar”: 2}}) >>> p == {“a.b.foo”:
1, “a.b.bar”: 2} True >>> p = unpack({ ... “a”: { ... “foo”: 1, ... “bar”: 2 ... }, ... “b”: { ... “baz”: 3, ...
“boom”: {“rocket”: “chip”, “hwacha”: “vector”} ... }, ... }) >>> p == {“a.foo”: 1, “a.bar”: 2, “b.baz”: 3,
“b.boom.rocket”: “chip”, ... “b.boom.hwacha”: “vector”} True

hammer_config.update_and_expand_meta(config_dict: dict, meta_dict: dict)→ dict
Expand the meta directives for the given config dict and return a new dictionary containing the updated settings
with respect to the base config_dict.

Parameters

• config_dict – Base config.

• meta_dict – Dictionary with potentially new meta directives.

Returns New dictionary with meta_dict updating config_dict.
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CHAPTER

THREE

HAMMER_TECH MODULE

class hammer_tech.HammerTechnology
Bases: object

cache_dir
Get the location of a cache dir for this library.

Returns Path to the location of the cache dir.

check_installs()→ bool
Check that the all directories for a pre-installed technology actually exist.

Returns Return True if the directories is OK, False otherwise.

extract_tarballs()→ None
Extract tarballs to the given cache_dir, or verify that they’ve been extracted.

extract_technology_files()→ None
Ensure that the technology files exist either via tarballs or installs.

extracted_tarballs_dir
Return the path to a folder under self.path where extracted tarballs are stored/cached.

get_config()→ typing.List[dict]
Get the hammer configuration for this technology. Not to be confused with the ”.tech.json” which
self.config refers to.

get_setting(key: str)
Get a particular setting from the database.

classmethod load_from_dir(technology_name: str, path: str)
Load a technology from a given folder.

Parameters

• technology_name – Technology name (e.g. “saed32”)

• path – Path to the technology folder (e.g. foo/bar/technology/saed32)

logger
Get the logger for this tool.

prepend_dir_path(path: str)→ str
Prepend the appropriate path (either from tarballs or installs) to the given library item.

set_database(database: hammer_config.config_src.HammerDatabase)→ None
Set the settings database for use by the tool.
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class hammer_tech.HammerVLSILoggingContext(context: typing.List[str], logging_class: typ-
ing.Type[hammer_logging.HammerVLSILogging])
→ None

Bases: object

Logging interface to hammer-vlsi which contains a context (list of strings denoting hierarchy where the log
occurred). e.g. [”synthesis”, “subprocess run-synthesis”]

context(new_context: str)→ hammer_logging.HammerVLSILoggingContext
Create a new subcontext from this context.

debug(message: str)→ None
Create an debug-level log message.

error(message: str)→ None
Create an error-level log message.

fatal(message: str)→ None
Create an fatal-level log message.

info(message: str)→ None
Create an info-level log message.

log(message: str, level: hammer_logging.Level)→ None

warning(message: str)→ None
Create an warning-level log message.

class hammer_tech.Library(**props)
Bases: python_jsonschema_objects.classbuilder.ProtocolBase

ccs_liberty_file

ccs_library_file

corner

itf_files

lef_file

metal_layers

milkyway_lib_in_dir

milkyway_techfile

nldm_liberty_file

nldm_library_file

openaccess_techfile

provides

qrc_techfile

supplies

tluplus_files

verilog_sim

verilog_synth

hammer_tech.TechJSON
alias of techjson
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E Floorplanning DSL documentation

This appendix section contains documentation for the key data structures/types in the
floorplanning DSL. For full documentation, please see the appropriate source repository.
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LayoutBase
Related Docs: object LayoutBase | package floorplan

trait LayoutBase extends AnyRef

Base type for all layout elements. NOTE: all layout engine data structures are immutable. replace*() methods
will create a new copy of the data structure with the given field altered.

Linear Supertypes
AnyRef, Any
Known Subclasses
ArrayLayout, ArrayLayoutImpl, AutoLayout, Expander, ExpanderImpl, HBox, HardMacro,
HorizontalExpander, LayoutBaseImpl, VBox, VerticalExpander

Ordering

1. Alphabetic
2. By Inheritance

Inherited 

1. LayoutBase
2. AnyRef
3. Any

1. Hide All
2. Show All

Visibility

1. Public
2. All

Abstract Value Members

1. abstract def create(newProperties: PropertyMap): LayoutBase.this.type

Create a copy of this object but replacing the properties with the given ones.

Create a copy of this object but replacing the properties with the given ones.
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newProperties

New properties to put in the object.

returns

A new copy of this object with replaced properties.

2. abstract def properties: PropertyMap

Concrete Value Members

1. def allConstraints: LayoutConstraints

Get all constraints for this block, recursively, named relative to this layout block.

Get all constraints for this block, recursively, named relative to this layout block. It will append names
hierarchically to solve.

returns

List of all constraints (recursive)

2. def dimensions: Dimensions

3. def get[T](key: PropertyKey, other: Option[T] = None): T

4. def hasFixedDimensions: Boolean

Determines if the dimensions for this block are fixed.

Determines if the dimensions for this block are fixed. For example, this is true for hard macros or a box
whose elements are all hard macros.

returns

true if the dimensions for this block are fixed.

5. def height: Option[LayoutDimension]
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6. def heightConstraintName: String

7. def hierarchicalAddName(constraints: LayoutConstraints): LayoutConstraints

8. def localConstraints: LayoutConstraints

Get all local constraints (non-recursive), named relative to this layout block.

Get all local constraints (non-recursive), named relative to this layout block. e.g. if this is a HBox named
"a" with two elements x and y, it will return a list of "a=x+y", "x=a-y", "y=a-x".

returns

List of local constraints

9. def localConstraintsInternal: LayoutConstraints

10. def name: String

11. def path: Option[Path]

12. def replaceCoordinates(x: LayoutDimension, y: LayoutDimension): LayoutBase.this.type

13. def replaceDimensions(dimensions: Dimensions): LayoutBase.this.type

14. def replaceHeight(height: LayoutDimension): LayoutBase.this.type

15. def replaceName(name: String): LayoutBase.this.type
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16. def replacePath(path: Option[Path]): LayoutBase.this.type

17. def replacePath(path: Path): LayoutBase.this.type

18. def replacePathViaCommand(command: Command)(implicit cc: CircuitContext, options:
CircuitContextOptions): LayoutBase.this.type

Attach the given FCL selector to this item via CircuitContext.selectOne().

Attach the given FCL selector to this item via CircuitContext.selectOne().

command

Command to select.

cc

CircuitContext to use.

options

CircuitContext options.

19. def replaceProperties(props: Seq[(PropertyKey, AnyRef)]): LayoutBase.this.type

20. def replaceProperty(key: PropertyKey, value: AnyRef): LayoutBase.this.type

21. def replaceWidth(width: LayoutDimension): LayoutBase.this.type

22. def replaceWidthAndHeight(width: LayoutDimension, height: LayoutDimension):
LayoutBase.this.type

23. def resolve(updateCoordinates: Boolean = true)(implicit verbosity: Verbosity = ...):
LayoutBase.this.type
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Attempt to fully resolve all widths and heights in this layout using the constraint engine.

Attempt to fully resolve all widths and heights in this layout using the constraint engine.

updateCoordinates

Update co-ordinates? (true by default)

returns

A fully resolved version of this layout block.

24. def width: Option[LayoutDimension]

25. def widthConstraintName: String

26. def x: Option[LayoutDimension]

27. def y: Option[LayoutDimension]
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Dimensions
Related Doc: package floorplan

case class Dimensions(x: Option[LayoutDimension], y: Option[LayoutDimension], width:
Option[LayoutDimension], height: Option[LayoutDimension]) extends Product with Serializable

Rectangular dimensions to specify the location and size. Note: the dimensions are cartesian - increasing x moves
to the right, increasing y moves up.

x

x-coordinate

y

y-coordinate

width

Width of the object

height

Height of the object

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any

Ordering

1. Alphabetic
2. By Inheritance

Inherited 

1. Dimensions
2. Serializable
3. Serializable
4. Product
5. Equals
6. AnyRef
7. Any

73



1. Hide All
2. Show All

Visibility

1. Public
2. All

Instance Constructors

1. new Dimensions(x: Option[LayoutDimension], y: Option[LayoutDimension], width:
Option[LayoutDimension], height: Option[LayoutDimension])

x

x-coordinate

y

y-coordinate

width

Width of the object

height

Height of the object

Value Members

1. val height: Option[LayoutDimension]

Height of the object

2. val width: Option[LayoutDimension]

Width of the object

3. val x: Option[LayoutDimension]

x-coordinate

4. val y: Option[LayoutDimension]
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ArrayLayout
Related Docs: object ArrayLayout | package floorplan

trait ArrayLayout extends LayoutBase

Linear Supertypes
LayoutBase, AnyRef, Any
Known Subclasses
ArrayLayoutImpl, HBox, VBox

Ordering

1. Alphabetic
2. By Inheritance

Inherited 

1. ArrayLayout
2. LayoutBase
3. AnyRef
4. Any

1. Hide All
2. Show All

Visibility

1. Public
2. All

Abstract Value Members

1. abstract def create(newProperties: PropertyMap): ArrayLayout.this.type

Create a copy of this object but replacing the properties with the given ones.

Create a copy of this object but replacing the properties with the given ones.

newProperties
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New properties to put in the object.

returns

A new copy of this object with replaced properties.

Definition Classes
LayoutBase

2. abstract def elements: Seq[LayoutBase]

3. abstract def properties: PropertyMap

Definition Classes
LayoutBase

4. abstract def replaceElements(elements: Seq[LayoutBase]): ArrayLayout.this.type

Concrete Value Members

1. def allConstraints: LayoutConstraints

Get all constraints for this block, recursively, named relative to this layout block.

Get all constraints for this block, recursively, named relative to this layout block. It will append names
hierarchically to solve.

returns

List of all constraints (recursive)

Definition Classes
LayoutBase

2. def dimensions: Dimensions

Definition Classes
LayoutBase

3. def get[T](key: PropertyKey, other: Option[T] = None): T
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Definition Classes
LayoutBase

4. def hasFixedDimensions: Boolean

Determines if the dimensions for this block are fixed.

Determines if the dimensions for this block are fixed. For example, this is true for hard macros or a box
whose elements are all hard macros.

returns

true if the dimensions for this block are fixed.

Definition Classes
LayoutBase

5. def height: Option[LayoutDimension]

Definition Classes
LayoutBase

6. def heightConstraintName: String

Definition Classes
LayoutBase

7. def hierarchicalAddName(constraints: LayoutConstraints): LayoutConstraints

Definition Classes
LayoutBase

8. def localConstraints: LayoutConstraints

Get all local constraints (non-recursive), named relative to this layout block.

Get all local constraints (non-recursive), named relative to this layout block. e.g. if this is a HBox named
"a" with two elements x and y, it will return a list of "a=x+y", "x=a-y", "y=a-x".
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returns

List of local constraints

Definition Classes
LayoutBase

9. def localConstraintsInternal: LayoutConstraints

Definition Classes
LayoutBase

10. def name: String

Definition Classes
LayoutBase

11. def path: Option[Path]

Definition Classes
LayoutBase

12. def replaceCoordinates(x: LayoutDimension, y: LayoutDimension): ArrayLayout.this.type

Definition Classes
LayoutBase

13. def replaceDimensions(dimensions: Dimensions): ArrayLayout.this.type

Definition Classes
LayoutBase

14. def replaceHeight(height: LayoutDimension): ArrayLayout.this.type

Definition Classes
LayoutBase

15. def replaceName(name: String): ArrayLayout.this.type
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Definition Classes
LayoutBase

16. def replacePath(path: Option[Path]): ArrayLayout.this.type

Definition Classes
LayoutBase

17. def replacePath(path: Path): ArrayLayout.this.type

Definition Classes
LayoutBase

18. def replacePathViaCommand(command: Command)(implicit cc: CircuitContext, options:
CircuitContextOptions): ArrayLayout.this.type

Attach the given FCL selector to this item via CircuitContext.selectOne().

Attach the given FCL selector to this item via CircuitContext.selectOne().

command

Command to select.

cc

CircuitContext to use.

options

CircuitContext options.

Definition Classes
LayoutBase

19. def replaceProperties(props: Seq[(PropertyKey, AnyRef)]): ArrayLayout.this.type

Definition Classes
LayoutBase

20. def replaceProperty(key: PropertyKey, value: AnyRef): ArrayLayout.this.type
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Definition Classes
LayoutBase

21. def replaceWidth(width: LayoutDimension): ArrayLayout.this.type

Definition Classes
LayoutBase

22. def replaceWidthAndHeight(width: LayoutDimension, height: LayoutDimension):
ArrayLayout.this.type

Definition Classes
LayoutBase

23. def resolve(updateCoordinates: Boolean = true)(implicit verbosity: Verbosity = ...):
ArrayLayout.this.type

Attempt to fully resolve all widths and heights in this layout using the constraint engine.

Attempt to fully resolve all widths and heights in this layout using the constraint engine.

updateCoordinates

Update co-ordinates? (true by default)

returns

A fully resolved version of this layout block.

Definition Classes
LayoutBase

24. def unsizedSumConstraintName: String

Special constraint for the sum of all unsized expanders.

Special constraint for the sum of all unsized expanders. Used when multiple expanders exist in a box and
need to be resolved.

25. def width: Option[LayoutDimension]
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Definition Classes
LayoutBase

26. def widthConstraintName: String

Definition Classes
LayoutBase

27. def x: Option[LayoutDimension]

Definition Classes
LayoutBase

28. def y: Option[LayoutDimension]

Definition Classes
LayoutBase
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floorplan

HardMacro
Related Docs: object HardMacro | package floorplan

class HardMacro extends LayoutBaseImpl with LayoutBase

Hard macro block. Basically a big black box with fixed dimensions which needs to be placed somewhere.

Linear Supertypes
LayoutBaseImpl, LayoutBase, AnyRef, Any

Ordering

1. Alphabetic
2. By Inheritance

Inherited 

1. HardMacro
2. LayoutBaseImpl
3. LayoutBase
4. AnyRef
5. Any

1. Hide All
2. Show All

Visibility

1. Public
2. All

Instance Constructors

1. new HardMacro(properties: PropertyMap)

Value Members

1. def allConstraints: LayoutConstraints
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Get all constraints for this block, recursively, named relative to this layout block.

Get all constraints for this block, recursively, named relative to this layout block. It will append names
hierarchically to solve.

returns

List of all constraints (recursive)

Definition Classes
LayoutBase

2. def create(newProperties: PropertyMap): HardMacro.this.type

Create a copy of this object but replacing the properties with the given ones.

Create a copy of this object but replacing the properties with the given ones.

newProperties

New properties to put in the object.

returns

A new copy of this object with replaced properties.

Definition Classes
HardMacro → LayoutBase

3. def dimensions: Dimensions

Definition Classes
LayoutBase

4. def get[T](key: PropertyKey, other: Option[T] = None): T

Definition Classes
LayoutBase

5. def hasFixedDimensions: Boolean

Determines if the dimensions for this block are fixed.
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Determines if the dimensions for this block are fixed. For example, this is true for hard macros or a box
whose elements are all hard macros.

returns

true if the dimensions for this block are fixed.

Definition Classes
HardMacro → LayoutBase

6. def height: Option[LayoutDimension]

Definition Classes
LayoutBase

7. def heightConstraintName: String

Definition Classes
LayoutBase

8. def hierarchicalAddName(constraints: LayoutConstraints): LayoutConstraints

Definition Classes
LayoutBase

9. def localConstraints: LayoutConstraints

Get all local constraints (non-recursive), named relative to this layout block.

Get all local constraints (non-recursive), named relative to this layout block. e.g. if this is a HBox named
"a" with two elements x and y, it will return a list of "a=x+y", "x=a-y", "y=a-x".

returns

List of local constraints

Definition Classes
LayoutBase

10. def localConstraintsInternal: LayoutConstraints

Definition Classes
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LayoutBase

11. def name: String

Definition Classes
LayoutBase

12. def path: Option[Path]

Definition Classes
LayoutBase

13. val properties: PropertyMap

Definition Classes
HardMacro → LayoutBaseImpl → LayoutBase

14. def replaceCoordinates(x: LayoutDimension, y: LayoutDimension): HardMacro.this.type

Definition Classes
LayoutBase

15. def replaceDimensions(dimensions: Dimensions): HardMacro.this.type

Definition Classes
LayoutBase

16. def replaceHeight(height: LayoutDimension): HardMacro.this.type

Definition Classes
LayoutBase

17. def replaceName(name: String): HardMacro.this.type

Definition Classes
LayoutBase
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18. def replacePath(path: Option[Path]): HardMacro.this.type

Definition Classes
LayoutBase

19. def replacePath(path: Path): HardMacro.this.type

Definition Classes
LayoutBase

20. def replacePathViaCommand(command: Command)(implicit cc: CircuitContext, options:
CircuitContextOptions): HardMacro.this.type

Attach the given FCL selector to this item via CircuitContext.selectOne().

Attach the given FCL selector to this item via CircuitContext.selectOne().

command

Command to select.

cc

CircuitContext to use.

options

CircuitContext options.

Definition Classes
LayoutBase

21. def replaceProperties(props: Seq[(PropertyKey, AnyRef)]): HardMacro.this.type

Definition Classes
LayoutBase

22. def replaceProperty(key: PropertyKey, value: AnyRef): HardMacro.this.type

Definition Classes
LayoutBase
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23. def replaceWidth(width: LayoutDimension): HardMacro.this.type

Definition Classes
LayoutBase

24. def replaceWidthAndHeight(width: LayoutDimension, height: LayoutDimension):
HardMacro.this.type

Definition Classes
LayoutBase

25. def resolve(updateCoordinates: Boolean = true)(implicit verbosity: Verbosity = ...):
HardMacro.this.type

Attempt to fully resolve all widths and heights in this layout using the constraint engine.

Attempt to fully resolve all widths and heights in this layout using the constraint engine.

updateCoordinates

Update co-ordinates? (true by default)

returns

A fully resolved version of this layout block.

Definition Classes
LayoutBase

26. def width: Option[LayoutDimension]

Definition Classes
LayoutBase

27. def widthConstraintName: String

Definition Classes
LayoutBase

28. def x: Option[LayoutDimension]

88



Definition Classes
LayoutBase

29. def y: Option[LayoutDimension]

Definition Classes
LayoutBase
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Glossary

place-and-route The process of physically actualizing a design by placing structural netlist
of standard-cell gates and macros onto a given chip area and routing all connections
between them, while obeying a certain set of constraints. 7–13, 15, 18, 22, 25, 30, 35, 90

process design kit A set of design files provided by a semiconductor foundry which includes
(but is not limited to) technology description files (e.g. TLEFs, techfiles) which describe
number of layers, layer functions, etc; standard cell libraries and associated layout,
timing, and simulation information; IP blocks/memory macros and associated files. 6,
11, 90

synthesis The process of mapping a RTL description of a circuit into a structural netlist of
standard-cell gates. 7, 11, 15, 18, 22, 24, 30, 90

system-on-chip A chip which contains not only a CPU/microcontroller but also including
memory systems, peripherals, accelerators (e.g. GPUs, vector units, co-processors).
For mixed-signal SoCs, this also includes analog/RF peripherals like on-chip radios,
regulators, and sensing circuits. 10, 33, 90

tapein A tapein refers to the product of the exercise of producing a fabricatable chip design
without actually fabricating it. This can help provide valuable feedback at the RTL
and architectural level on the feasibility of a design without committing to the full cost
of fabricating the chip. 9

tapeout Tapeout/taping out refers to the entire process of designing a chip to be manufac-
tured by a semiconductor fab, including design, layout, VLSI (including synthesis and
place-and-route), verification, and signoff checks (DRC/LVS), resulting in a GDS file to
be sent to the bad. Named so because in pre-CAD days, IC designs would actually be
physically defined using tape, hence the name to ”tape out” a design. 5–7, 10

Acronyms

PDK process design kit 6, 11

SoC system-on-chip 10, 33
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