
Modular and Safe Event-Driven Programming

Ankush Desai

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-3
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-3.html

January 7, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Modular and Safe Event-Driven Programming

by

Ankush Pankaj Desai

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair
Dr. Shaz Qadeer

Professor Koushik Sen
Professor Raja Sengupta
Professor Claire Tomlin

Fall 2019

Modular and Safe Event-Driven Programming

Copyright 2019
by

Ankush Pankaj Desai

Abstract

Modular and Safe Event-Driven Programming

by

Ankush Pankaj Desai

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Asynchronous event-driven systems are ubiquitous across domains such as device drivers,
distributed systems, and robotics. These systems are notoriously hard to get right as the
programmer needs to reason about numerous control paths resulting from the complex in-
terleaving of events (or messages) and failures. Unsurprisingly, it is easy to introduce subtle
errors while attempting to fill in gaps between high-level system specifications and their
concrete implementations. This dissertation proposes new methods for programming safe
event-driven asynchronous systems.

In the first part of the thesis, we present ModP, a modular programming framework for
compositional programming and testing of event-driven asynchronous systems. The ModP
module system supports a novel theory of compositional refinement for assume-guarantee
reasoning of dynamic event-driven asynchronous systems. We build a complex distributed
systems software stack using ModP. Our results demonstrate that compositional reasoning
can help scale model-checking (both explicit and symbolic) to large distributed systems.
ModP is transforming the way asynchronous software is built at Microsoft and Amazon
Web Services (AWS). Microsoft uses ModP for implementing safe device drivers and other
software in the Windows kernel. AWS uses ModP for compositional model checking of
complex distributed systems. While ModP simplifies analysis of such systems, the state
space of industrial-scale systems remains extremely large.

In the second part of this thesis, we present scalable verification and systematic testing
approaches to further mitigate this state-space explosion problem. First, we introduce the
concept of a delaying explorer to perform prioritized exploration of the behaviors of an
asynchronous reactive program. A delaying explorer stratifies the search space using a custom
strategy (tailored towards finding bugs faster), and a delay operation that allows deviation
from that strategy. We show that prioritized search with a delaying explorer performs
significantly better than existing approaches for finding bugs in asynchronous programs.

Next, we consider the challenge of verifying time-synchronized systems; these are almost-
synchronous systems as they are neither completely asynchronous nor synchronous. We
introduce approximate synchrony, a sound and tunable abstraction for verification of almost-

1

synchronous systems. We show how approximate synchrony can be used for verification of
both time-synchronization protocols and applications running on top of them. Moreover,
we show how approximate synchrony also provides a useful strategy to guide state-space
exploration during model-checking. Using approximate synchrony and implementing it as
a delaying explorer, we were able to verify the correctness of the IEEE 1588 distributed
time-synchronization protocol and, in the process, uncovered a bug in the protocol that was
well appreciated by the standards committee.

In the final part of this thesis, we consider the challenge of programming a special class
of event-driven asynchronous systems – safe autonomous robotics systems. Our approach
towards achieving assured autonomy for robotics systems consists of two parts: (1) a high-
level programming language for implementing and validating the reactive robotics software
stack; and (2) an integrated runtime assurance system to ensure that the assumptions used
during design-time validation of the high-level software hold at runtime. Combining high-
level programming language and model-checking with runtime assurance helps us bridge the
gap between design-time software validation that makes assumptions about the untrusted
components (e.g., low-level controllers), and the physical world, and the actual execution
of the software on a real robotic platform in the physical world. We implemented our
approach as Drona, a programming framework for building safe robotics systems. We used
Drona for building a distributed mobile robotics system and deployed it on real drone
platforms. Our results demonstrate that Drona (with the runtime-assurance capabilities)
enables programmers to build an autonomous robotics software stack with formal safety
guarantees.

To summarize, this thesis contributes new theory and tools to the areas of program-
ming languages, verification, systematic testing, and runtime assurance for programming
safe asynchronous event-driven across the domains of fault-tolerant distributed systems
and safe autonomous robotics systems.

2

To my parents, Lata and Pankaj,
and my wife, Priyanka.

i

Guru Brahma Guru Vishnu
Guru Devo Maheshwara
Guru Sakshat Param Brahma
Tasmai Shri Gurave Namah

— Adi Shankaracharya
Guru strotam

A C K N O W L E D G M E N T S

The above prayer best describes the dedication of this thesis to all my teachers, mentors,
and family. It means: "Guru is verily the supreme reality. Sublime prostrations to all my
Gurus". None of what I have achieved would have been possible without their constant
guidance and support.

I want to begin by thanking my amazing advisors Sanjit Seshia and Shaz Qadeer.
I will always be indebted to Sanjit for the continuous support and guidance received

over the past six years. He has taught me, trusted me, and has always shown an
unwavering enthusiasm to all my nebulous ideas. His patience and positive attitude
towards each rejection (which I had quite a few) have always amazed me. I hope that
a small percentage of his brilliance has rubbed off on me through our collaboration
over the last six years.

I am incredibly fortunate to have had the opportunity to work with Shaz for more
than eight years now. His unceasing support and thoughtful advice over the years has
bolstered the quality of my research. I idolize Shaz for his industriousness and the
passion for doing impactful, practical research. He has not only been a great advisor
to me but also a friend, a collaborator, a hacker on P, and a mentor for life!

I will always be grateful to Sriram Rajamani for taking me under his wings at
Microsoft Research. It was under his and Shaz’s guidance that I started working on P.
Sriram introduced me to research, gave me the essential training, and encouraged me
to pursue a doctorate degree.

I sincerely thank my thesis and quals committee: Claire Tomlin, Koushik Sen, and
Raja Sengupta for their valuable feedback.

Special thanks to Amar Phanishayee for getting me interested in distributed systems
and for the wonderful summer internship at Microsoft Research. I was fortunate
to do a summer internship at SRI with Natarajan Shankar and Ashish Tiwari, their
knowledge and humility will always be a source of inspiration for me.

I thank the people of Learn and Verify group for being a part of my journey and
making the time spent in 545S memorable: Pramod Subramanyan, Daniel Fremont,
Rohit Sinha, Eric Kim, Dorsa Sadigh, Markus Rabe, Tommaso Dreossi, Indranil Saha,

ii

Ben Caulfield, Marcell Vazquez-Chanlatte, Shromona Ghosh, Hadi Ravanbakhsh, Yi-
Chin Wu, Nishant Totla, Garvit Juniwal, Edward Kim, Wenchao Li, Alexander Donze,
Daniel Bundala, and Jonathan Kotker. A big shout out to Daniel Fremont for his help
reviewing many of my papers before submission.

Thanks to the staff within EECS and BIO, in particular, Shirley Salanio, and Tatiana
Djordjevic.

I want to thank my family for giving me the strength to complete my graduate
studies. I am, as ever, indebted to my parents, Lata and Pankaj, for all the love, support,
and sacrifices they have made to give us the best. My sister, Nikita, I cannot thank her
enough; she has been like my second mother in the US. My brother-in-law, Abhijit, I
thank him for always being there for me and encouraging me to follow my dreams. I
am so blessed to have two Angels, Mihika and Anay, spending time with them over
the weekends energized me for the Ph.D. grind.

The final thanks go to my wonderful wife, Priyanka, for being that one person who
held everything together and helped me keep my sanity amid chaos. Her belief in me;
and her positivity has led me to look at the world differently. Words cannot express
my thanks to her. Looking forward to our life together!

iii

C O N T E N T S

1 introduction 1
1.1 Background: The P Programming Framework 3
1.2 Primary Contributions . 4
1.3 Thesis Outline . 8
1.4 Previously Published Work and Formal Acknowledgment 9

i modular programming of event-driven systems

2 a module system for compositional reasoning of event-driven

systems 11
2.1 Motivation and Overview . 12
2.2 ModP Module System . 20
2.3 Operational Semantics of ModP Modules . 31
2.4 Compositional Reasoning using ModP Modules 37
2.5 Related Work . 49
3 building distributed systems compositionally 52
3.1 From Theory to Practice . 52
3.2 Implementation of the ModP Tool Chain . 56
3.3 Evaluation . 58
3.4 Summary . 64

ii verification and systematic testing of event-driven systems

4 systematic testing of asynchronous event-driven programs 66
4.1 Delaying Explorer . 69
4.2 Stratified Exhaustive Search . 73
4.3 Stratified Sampling . 76
4.4 Evaluation . 80
4.5 Related Work . 87
4.6 Summary . 88
5 verifying almost-synchronous event-driven systems using ap-

proximate synchrony abstraction 89
5.1 Almost-Synchronous Systems . 92
5.2 Approximate Synchrony Abstraction . 95
5.3 Model Checking with Approximate Synchrony 103
5.4 Evaluation . 105
5.5 Related Work . 110
5.6 Summary . 111

iv

contents

iii assured autonomy for robotics systems

6 assured autonomy : challenges and advances 114
6.1 Case Study: Autonomous Drone Surveillance System 115
6.2 Challenges in Building Safe Robotics Systems 118
6.3 Our Approach: The Drona Programming Framework 121
6.4 Related Work . 123
7 programming safe distributed mobile robotics systems 126
7.1 Overview . 127
7.2 Building Distributed Mobile Robotics (DMR) System 130
7.3 Verification of DMR Systems . 139
7.4 Evaluation . 142
7.5 Related Work . 145
7.6 Summary . 146
8 guaranteeing safety using runtime assurance 147
8.1 Overview . 149
8.2 Runtime Assurance (RTA) Module . 154
8.3 Correctness of an RTA Module . 157
8.4 Operational Semantics of an RTA Module . 160
8.5 Evaluation . 164
8.6 Related Work . 170
8.7 Summary . 171

iv conclusion

9 conclusion 173
9.1 Closing Thoughts . 173
9.2 Future Work . 174

bibliography 176

v

L I S T O F F I G U R E S

Figure 1.1 The Primary Contributions of this Thesis 4
Figure 2.1 Module constructors . 24
Figure 2.2 Operational Semantics Rules for Local Computation 33
Figure 2.3 Operational Semantics Rules for Creating Interfaces 34
Figure 2.4 Operational Semantics Rules for Sending Events 35
Figure 3.1 Fault-Tolerant Distributed Services 53
Figure 3.2 Specifications checked for each protocol 54
Figure 3.3 ModP Programming Framework 56
Figure 3.4 Structure of ModP application . 58
Figure 3.5 Source lines of ModP code . 59
Figure 3.6 Test-Amplification via Abstractions: Chain-Replication Protocol 60
Figure 3.7 CST vs. Monolithic Testing. (NF: Bug not found) 61
Figure 3.8 Performance of ModP HashTable using Multi-Paxos (MP) is

comparable with an open source baseline implementation (mean
over 60s close-loop client runs). 63

Figure 4.1 Stratification using Delaying Explorers. D1 and D2 represent
two different search strategies induced by different delay ex-
plorers, and db represents the delay budget. 67

Figure 4.2 A concurrent program represented as a transition graph 70
Figure 4.3 A concurrent program composed with a delaying explorer . . . 71
Figure 4.4 Stratified Exhaustive Search . 73
Figure 4.5 A run of SS algorithm . 77
Figure 5.1 Almost-synchronous systems comprise an application protocol

running on top of a time-synchronization layer. 90
Figure 5.2 Approximate Synchrony condition violated for ∆ = 2 96
Figure 5.3 Phases of the IEEE 1588 time-synchronization protocol 100
Figure 5.4 Iterative algorithm for computing ∆ exploiting logical convergence101
Figure 6.1 Case Study: Autonomous Drone Surveillance System 115
Figure 6.2 Reactive Robotics Software Stack for the Autonomous Drone

Surveillance System . 116
Figure 6.3 Flight Controller Protocol for an Autonomous Drone. 119
Figure 6.4 Experiments with (untrusted) third-party and machine-learning

controllers . 121
Figure 6.5 Drona Tool Chain (RTA: Runtime Assurance) 123
Figure 7.1 Workspace for the Multi-Robot Surveillance System. 128

vi

Figure 7.2 Multi-Robot ROS Simulator . 145
Figure 8.1 RTA Architecture . 148
Figure 8.2 Online monitoring of obstacle avoidance property during

surveillance mission. green: property satisfied, orange : sys-
tem very close to violating the property, red: property violated. 152

Figure 8.3 An RTA-protected Motion Primitive 153
Figure 8.4 An RTA Protected Software Stack for Drone Surveillance 154
Figure 8.5 Regions of Operation for an RTA Module. 159
Figure 8.6 Operational Semantics of Soter 163
Figure 8.7 Evaluation of RTA-Protected Motion Primitives 166
Figure 8.8 Guaranteeing Battery Safety (φbat) using Runtime Assurance . 168
Figure 8.9 Safe exploration using RTA module 169

L I S T O F TA B L E S

Table 4.1 Evaluation Results for SS and SES using various delaying ex-
plorers (Numbers in blue represent the winning search strategy) 83

Table 5.1 Temporal properties verified for the case studies 106
Table 5.2 Verification results using Approximate Synchrony. 108
Table 5.3 Iterative Approximate Synchrony with bound ∆ for finding

bugs faster. 109
Table 7.1 Performance of SMT-based plan-generator 143
Table 7.2 Performance of A* based plan-generator 143
Table 7.3 Scalability of verification approach 144

L I S T I N G S

Listing 2.1 Client State Machine in ModP . 13
Listing 2.2 Server State Machine in ModP . 14
Listing 2.3 Modular Client-Server Implementation 16
Listing 2.4 Abstraction and Specifications in ModP 17

vii

Listings

Listing 2.5 Test Declarations for Compositional Testing of the Client-Server
Application . 18

Listing 2.6 Renaming Interfaces Module Constructor 30
Listing 3.1 Compositional Testing of Transaction Commit Service 55
Listing 4.1 Delaying Explorer Implementation Interface 81
Listing 8.1 Declaration of topics and nodes in Soter 151
Listing 8.2 Declaration of an RTA module . 153
Listing 8.3 Decision Module Switching Logic for Module M 156

viii

1
I N T R O D U C T I O N

There is a race between the increasing
complexity of the systems we build and
our ability to develop intellectual tools
for understanding their complexity. If
the race is won by our tools, then
systems will eventually become easier to
use and more reliable. If not, they will
continue to become harder to use and
less reliable for all but a relatively small
set of common tasks. Given how hard
thinking is, if those intellectual tools are
to succeed, they will have to substitute
calculation for thought.

— Leslie Lamport

Today applications across domains are implemented as event-driven asynchronous
systems1 — from the device-drivers in an operating system, to the fault-tolerant
distributed systems running the cloud services, to the control software in a modern
car or an autonomous robot. Programmers inevitably choose to develop these systems
as event-driven asynchronous systems to exploit concurrency for better performance,
responsiveness, fault tolerance, and autonomy. Asynchrony has, therefore, become a
fundamental attribute of most main-stream software systems.

Unfortunately, asynchrony is at odds with correctness, programming asynchronous
event-driven systems is notoriously hard as one needs to reason about numerous
control paths resulting from the myriad interleaving of messages. It is easy to intro-
duce subtle errors while improvising to fill in gaps between the high-level protocol
descriptions and their concrete implementations. In practice, it is extremely difficult
to test asynchronous systems; unlike sequential programs whose execution can be

1 Event-driven asynchronous systems are systems that are built on top of the actor [5] or communicating
state-machines [93] model of computation where processes execute concurrently and communicate
with each other by sending message asynchronously.

1

introduction

controlled via the input, controlling the execution of an asynchronous program re-
quires fine-grained control over the timing of the execution of event handlers (or
delivery of messages). In the absence of such control, most control paths remain
untested, and serious bugs lie dormant for months or even years after deployment.
Finally, bugs that occur during testing or after deployment tend to be Heisenbugs;
they are notoriously difficult to reproduce because their manifestation requires timing
requirements that might not hold from one execution to another. These problems
are well-known and have been highlighted by creators of large-scale industrial sys-
tems [37]. Despite decades of research in verification and testing techniques oriented
towards concurrent, asynchronous event-driven systems, the practice of programming
such systems “in-the-wild” has not changed. However, this problem can no longer be
overlooked, especially as most of the real-world systems increasingly have correctness
requirements such as consistency or fault-tolerance guarantees for distributed services
and safety guarantees for autonomous robots. In order to address these challenges:

This dissertation presents a new language, supported by novel testing, verification,
and run-time assurance techniques, for programming safe asynchronous event-
driven systems.

We address these challenges by dividing it into three core problems and take the
following approaches for solving them:

• First, to address the problem of programming complex event-driven system,
we design a domain-specific programming language for implementing and
specifying asynchronous event-driven systems. Thus, enabling the programmers
to capture the protocol logic at a higher level of abstraction without worrying
about the low-level implementation details.

• Second, to check the correctness of systems built using our language, we propose
new verification and systematic testing techniques that enable scalable analysis
of these systems.

• Finally, to demonstrate the efficacy of the proposed programming language and
the accompanying formal analysis techniques for building real-world systems,
we build applications across the domains of fault-tolerant distributed systems
and safe autonomous robotics systems. When building these applications, we
also solved several domain-specific challenges. For example, we had to extend
the framework with the principles of runtime assurance to ensure the safety of
robotics systems in the presence of machine learning components.

To summarize, this thesis combines ideas from and contributes new theory and
tools to the areas of programming languages, verification, systematic testing, and
runtime assurance for solving the challenging problem of safe asynchronous event-driven
programming. The contributions are described in further detail in Section 1.2.

2

1.1 background : the p programming framework

We strongly believe that formal methods can succeed in practice and become a part
of the software development cycle if the process of modeling, specification, implemen-
tation, and verification (or systematic testing) is unified into a single programming
framework. Hence, the solutions proposed in this thesis are all built on top of (and
integrated into) the unified programming framework, P [53, 150].

In the rest of this chapter, we first provide a brief background on the P programming
framework and then present the primary contributions of this thesis. We conclude by
providing the thesis outline and list the previously published work included in this
thesis.

1.1 background : the p programming framework

Event-driven asynchronous systems are ubiquitous and developers in the industry
use frameworks based on popular asynchronous programming paradigms of actors [5,
7, 13, 32, 161] and communicating state machines [53, 93, 112] for building these
systems of significant commercial interest [7, 24, 47, 53]. Event-driven asynchronous
programs typically have layers of design, where the higher layers reason with how the
various components (or machines) interact and the protocol they follow, and where
lower layers manage more data-intensive computations, controlling local devices,
etc. However, the programs often get written in traditional languages that offer no
mechanisms to capture these abstractions, and hence over time leads to code where
the individual layers are no longer discernible. High-level protocols, though often first
designed on paper using clean graphical state-machine abstractions, eventually get
lost in code, and hence verification tools for such programs face the daunting task of
extracting these models from the programs.

The natural solution to the above problem is to build a programming language
for asynchronous event-driven programs that preserves the protocol abstractions in
code. Apart from the difficulty in designing such a language, this task is plagued by
the reluctance of programmers to adopt a new language of programming and the
discipline that it brings. However, this precise solution was pioneered by the P [52]
programming framework, where, during the development of Windows 8, the team
building the USB driver stack used P for modeling, implementing, and model-checking
of the USB 3.0 device drivers. Programs written in P capture the high-level protocol
using a collection of interacting state machines that communicate with each other
by exchanging messages. P supports the actor [5] model of computation with the
additional syntactic sugar of actors being replaced by state-machines as it is easier to
capture the protocol design as state-machines

Figure 1.1 presents the architectural overview of the P framework, consisting of
three main building blocks — (1) the P programming language for implementing
and specifying the event-driven programs, (2) the P-Explorer (model-checker) for
verification and systematic testing of P programs, and (3) the P-Runtime that efficiently

3

1.2 primary contributions

executes the generated code from the high-level P programs. Not only can a P program
be compiled into executable code, but it can also be validated using model-checking.
This aspect of the P language, of being a unified framework, effectively blurs the
distinction between modeling, writing specification, and programming; and hence,
makes formal methods more accessible to programmers.

1.2 primary contributions

Figure 1.1: The Primary Contributions of this Thesis

The P programming framework laid the foundation for this thesis and was the
first step towards enabling safe programming of asynchronous event-driven systems.
However, when building more complex applications like fault-tolerant distributed
system and safe robotics systems using P, we had to overcome several challenges
and propose new methods which led to the contributions of this thesis. Figure 1.1
provides an overview of the primary contributions of this thesis: (1) a module system
for compositional programming and testing of event-driven asynchronous systems (Sec-
tion 1.2.1), (2) new approaches for scalable analysis (verification and systematic testing)
of event-driven asynchronous systems (Section 1.2.2), and (3) applying this unified
framework for building reliable distributed systems and safe robotics systems (Section 1.2.2).

4

1.2 primary contributions

1.2.1 A Language for Modular Programming of Event-Driven Systems

P is based on the actor model of computation similar to other popular languages frame-
works used for implementing high-performance asynchronous distributed systems [7,
13, 32, 161]. However, these languages do not support compositional programming
and testing of distributed systems. A real-world system is rarely implemented as a
standalone monolithic system. Instead, it is composed of multiple independent inter-
acting components that together ensure the desired system-level specification (e.g.,
our case study in Figure 3.1). One can scale systematic testing to large, industrial-scale
implementations by decomposing the system-level testing problem into a collection of
simpler component-level testing problems. Moreover, the results of component-level
testing can be lifted to the whole system level by leveraging the theory of assume-
guarantee (AG) reasoning [3, 9, 132].

We propose a module system based on a novel theory of compositional trace refine-
ment for dynamic event-driven systems consisting of asynchronously-communicating
state machines, where state machines can be dynamically created, and communication
topology of the existing state machines can change at runtime. We present ModP
(Modular P), an extension of the P language that implements the module system for
compositional programming and testing (based on assume-guarantee reasoning) of
asynchronous event-driven systems. To the best of our knowledge, ModP is the first sys-
tem that supports assume-guarantee reasoning in a practical programming language
with these dynamic features for implementing asynchronous event-driven systems.

Research Impact

Positive experience with P and ModP in the Windows kernel and Microsoft
Azure led to the development of P# [47], a framework that provides state ma-
chines and systematic testing via an extension to C#. The programming model of
P# (e.g., state machines and monitors for writing specifications) is inspired from
the ModP language described in this thesis. P# is used by several teams in Azure
to design, implement and automatically test production distributed systems and
services (https://github.com/p-org/PSharp). More recently, ModP is being
used inside Amazon Web Services (AWS) for compositional model checking of
distributed protocols.

1.2.2 Approaches for Scalable Analysis of Event-Driven Systems

The ModP module system enables compositional verification (or systematic testing)
of P programs. Analysis (model-checking) of the decomposed system does simplify
the overall monolithic problem but still suffers from scalability issues when applied
to industrial-scale systems. Each component in a real-world system software stack

5

https://github.com/p-org/PSharp

1.2 primary contributions

implements a complex protocol, and hence, even testing a component in isolation can
lead to the state-space explosion problem. To further scale the analysis and mitigate
the state-space explosion problem, we complement compositional testing with two
techniques: (1) Search prioritization-based falsification (or bug-finding): Extending the
model-checker with guided or directed search geared towards falsification of the
property to be verified; and (2) Abstraction-based verification: Using a sound abstraction
(superset) of the program behaviors to simplify the overall verification problem.

We introduce the concept of a delaying explorer to perform prioritized exploration
of the behaviors of an asynchronous reactive program. A delaying explorer stratifies
the search space using a custom strategy (tailored towards finding bugs faster), and
a delay operation that allows deviation from that strategy. We show that prioritized
search with a delaying explorer performs significantly better than existing approaches
for finding bugs in asynchronous programs. Our results also demonstrated that there
is no unique winning strategy for finding bugs in concurrent systems.

Research Impact

The P# [47] framework used by Microsoft Azure to build several distributed
services implements a portfolio approach for systematic testing, where they run
a collection of different search prioritization strategies in parallel, each targeting
a different part of the search space.
The portfolio approach beats other state-of-the-art search heuristics for finding
bugs in asynchronous programs and is inspired from the results and observations
of our work on delaying explorers.

The next challenge problem we considered was verification of the IEEE 1588 [68]
distributed time synchronization protocol using P. For time-synchronized systems, at
any time point, clocks of different nodes can have different values, but time synchro-
nization ensures that those values are within a specified offset of each other, i.e., they
are almost synchronized, neither completely asynchronous or synchronous. We present
an abstraction-based model-checking approach for verification of almost-synchronous
event-driven systems. We introduce approximate synchrony, a sound and tunable ab-
straction for verification of almost-synchronous systems. We show how approximate
synchrony can be used for verification of both time-synchronization protocols and
applications running on top of them. Moreover, we show how approximate-synchrony
also provides a useful strategy to guide state-space exploration during model-checking.

6

1.2 primary contributions

Research Impact

Using approximate synchrony and implementing it as a delaying explorer, we
were able to verify the correctness of IEEE1588 protocol and also in the process
uncovered a bug in the protocol that was well appreciated by the standards
committee [30].

1.2.3 Building Reliable Distributed Systems and Robotics Applications

To demonstrate the efficacy of the modular P (ModP) language and its backend scalable
analysis framework described above, we built applications across two domains: fault-
tolerant distributed systems and autonomous robotics systems.

Reliable distributed systems. We used ModP to build a fault-tolerant distributed
services software stack consisting of 7 complex protocols. Our results demonstrate
that the theory of compositional refinement can be used in practice to build systems
compositionally and scale systematic testing to large systems. We also compared the
performance of services built using ModP with its open-source equivalent to show
that distributed systems can be implemented in a principled way using formal analysis
without sacrificing performance.

Assured Autonomy. The recent drive towards achieving greater autonomy and
intelligence in robotics has led to increasing levels of complexity in the robotics
software stack. This trend has resulted in a widening gap between the complexity of
systems being deployed and those that can be certified for safety and correctness of
operation. Assured autonomy requires a robot to make correct and timely decisions,
where the robotics software stack is implemented as a concurrent, reactive, event-
driven system that may also use advanced machine learning-based components.

Our approach towards achieving assured autonomy for robotics systems consists of
two parts: (1) a high-level programming language based on P for implementing and
validating the reactive robotics software stack; and (2) an integrated runtime assurance
system to ensure that the assumptions used during design-time validation of the high-
level software hold at runtime. Combining high-level programming language and
model-checking with runtime assurance helps us bridge the gap between design-time
software validation that makes assumptions about the untrusted components (e. g.,
low-level controllers), and the physical world, and the actual execution of the software
on a real robotic platform in the physical world. We implemented the above approach
in Drona, a framework for building safe robotics systems. We advocate the use of
principles of runtime assurance to ensure the safety of the robotics systems in the
presence of untrusted components like third-party libraries or machine learning-based
components. We present the runtime assurance framework integrated into Drona and

7

1.3 thesis outline

demonstrate how it enables guaranteeing the safety of the robotics system, including
when untrusted components have bugs or deviate from the desired behavior.

Research Impact

We used Drona for building distributed robotics systems and deployed them
on autonomous drone platforms for several DARPA demos (videos available
on https://drona-org.github.io/Drona/). To the best of our knowledge, we
are the first to integrate the principles of runtime assurance into a practical
programming language and use it to build real-world robotics software stack
that can be deployed on real drones. We conducted rigorous software in the loop
simulations for 104 hours. We found that there were 109 disengagements; these
were cases where one of the safety systems took control and avoided a potential
crash. These results demonstrated that runtime assurance can help guarantee
safety of the system in the presence of machine-learning components that are
hard to verify.

1.3 thesis outline

The remainder of this dissertation proceeds in three parts, describing each of the
contributions as follows:

1. Part i presents the ModP module system for compositional programming and
testing of event-driven asynchronous systems. Chapter 2 presents the novel
theory of compositional refinement supported by the ModP module system that
enables assume-guarantee reasoning of P programs. Chapter 3 demonstrates
the efficacy of the theory of compositional refinement in practice by building
real-world fault-tolerance distributed services using ModP.

2. Part ii discusses the systematic testing and verification approaches for scalable
analysis of complex systems implemented using P. Chapter 4 presents a pro-
grammable search-prioritization technique for systematic testing of asynchronous
reactive programs. Chapter 5 introduces approximate synchrony, an abstraction
for scalable verification of almost-synchronous systems.

3. Part iii presents the application of novel programming languages and runtime
assurance techniques for building safe autonomous robotics systems. Chapter 6
describes our robotics case study of autonomous drones and highlights the
challenges in guaranteeing assured autonomy. Chapter 7 presents the Drona

framework that extends P to enable programming reliable distributed mobile
robotics software stack. Chapter 8 presents the Soter framework that extends

8

https://drona-org.github.io/Drona/

1.4 previously published work and formal acknowledgment

Drona with runtime assurance capabilities for guaranteeing assured autonomy
in the presence of untrusted components.

Finally, Chapter 9 concludes and provides future work for this dissertation.

1.4 previously published work and formal acknowledgment

This thesis includes and revises content from several of my previously published
papers. I gratefully acknowledge and thank my advisors, Sanjit Seshia and Shaz
Qadeer, who have played an important role in shaping the contributions in all these
papers. Chapter 2 and Chapter 3 revises our paper on ModP [57]. I thank Amar
Phanishayee for introducing us to the challenges in building fault-tolerant distributed
systems and explaining the complex protocols used as case-studies in the ModP paper.
Chapter 4 revises material from [50]. Chapter 5 revises our paper on approximate
synchrony [55]. I sincerely thank John Eidson for introducing us to the problem of
verifying the IEEE 1588 protocol that led to the development of approximate synchrony
and the follow-up paper [30] that describes the bug we found in the IEEE 1588 protocol.
Chapter 6 summarizes material from [51] and [49]. Chapter 7 includes content from
our paper on Drona [56], which is joint work with Indranil Saha and Cambridge Yang.
Chapter 8 revises our publication on Soter [58]. I thank Natarajan Shankar and Ashish
Tiwari for proposing the idea of exploring Simplex assurance for building safe robotics
systems. Shromona Ghosh helped with the experiments in Soter [58] involving the
FastTrack framework for computing the safe-controllers. Chapter 8 also includes some
results from our paper on runtime verification for safe robotics systems [48], which is
joint work with Tommaso Dreossi.

9

Part I

M O D U L A R P R O G R A M M I N G O F E V E N T- D R I V E N
S Y S T E M S

10

2
A M O D U L E S Y S T E M F O R C O M P O S I T I O N A L R E A S O N I N G O F
E V E N T- D R I V E N S Y S T E M S

To keep large programs well structured
and modular, you either need
superhuman will power, or proper
language support.

— Greg Nelson

Existing validation methods for asynchronous even-driven systems fall into two
categories: proof-based verification and systematic testing. Researchers have used theorem
provers to construct correctness proofs of both single-node systems [38, 95, 113, 199]
and distributed systems [96, 152, 200]. To prove a safety property on a distributed
system, one typically needs to formulate an inductive invariant. Moreover, the in-
ductive invariant often uses quantifiers, leading to unpredictable verification time
and requiring significant manual assistance. While invariant synthesis techniques
show promise, the synthesis of quantified invariants for large-scale real-world systems
remains difficult. In contrast to proof-based verification, systematic testing explores
behaviors of the system in order to find violations of safety specifications [90, 111, 205].
Systematic testing is attractive to programmers as it is mostly automatic and needs
less expert guidance. Unfortunately, even state-of-the-art systematic testing techniques
scale poorly with increasing system complexity.

A real-world system is rarely implemented as a standalone monolithic system.
Instead, it is composed of multiple independent interacting components that together
ensure the desired system-level specification (e.g., our case study in Figure 3.1). One
can scale systematic testing to large, industrial-scale implementations by decomposing
the system-level testing problem into a collection of simpler component-level testing
problems. Moreover, the results of component-level testing can be lifted to the whole
system level by leveraging the theory of assume-guarantee (AG) reasoning [3, 9, 132].

In this chapter, we present ModP (Modular P)1, an extension of the P language
for compositional programming and testing (based on AG reasoning) of asynchronous

1 ModP stands for Modular P and is available as part of the P programming framework [150].

11

2.1 motivation and overview

event-driven systems. ModP occupies a spot between proofs and black-box monolithic
testing in terms of the trade-off between validation coverage and programmer effort.

Actors [5, 7, 13, 32, 161] and state machines [53, 93, 112] are popular paradigms for
programming asynchronous systems. These programming models support features
like dynamic creation of machines (processes), directed messaging using machine ref-
erences (as opposed to broadcast), and dynamic communication topology as references
to machines can flow through the system (essential for modeling non-determinism like
failures). These dynamic features have an important impact on assume-guarantee (AG)
reasoning, which typically relies on having explicit component interfaces – e.g., wires
between circuits or shared variables between programs [9, 128]. In dynamic distributed
systems, interfaces between modules can change as new state machines instances are
created, or communication topology changes and this dynamic behavior depends on
the context of a module. While some formalisms for AG reasoning [18, 77] support
such dynamic features, they do not provide a programming framework for building
practical dynamic distributed systems. To the best of our knowledge, ModP is the
first system that supports assume-guarantee reasoning in a practical programming
language with these dynamic features.

We have implemented ModP on top of P [53] and used it for building reliable
distributed systems (Chapter 3) and for programming safe robotics systems (Part iii)..
The ModP compiler generates code for compositional testing, which involves both
safety and refinement testing of the decomposed system. We empirically demonstrate
(in Chapter 3) that ModP’s abstraction-based decomposition helps the existing P
systematic testing (both explicit and symbolic execution) back-ends to scale to large
distributed systems.

In the rest of this chapter, we first provide an overview of the ModP framework
(Section 2.1), and then present our novel theory of compositional refinement and
a module system for the assume-guarantee reasoning of dynamic distributed sys-
tems (Section 2.2.1-Section 2.4.1). We conclude the chapter with the related work
(Section 2.5).

2.1 motivation and overview

We illustrate the ModP framework for compositionally implementing, specifying, and
testing distributed systems by developing a simple client-server application.

2.1.1 Basic Programming Constructs in ModP

A ModP program comprises P state machines communicating asynchronously with
each other using events accompanied by typed data values. Each machine has an input

12

2.1 motivation and overview

buffer, event handlers, and a local store. The machines run concurrently, receiving and
sending events, creating new machines, and updating the local store.

We introduce the key constructs of ModP through a simple client-server application
implemented as a collection of ModP state machines. In this example, the client sends
a request to the server and waits for a response; on receiving a response from the
server, it computes the next request to send and repeats this in a loop. The server
waits for a request from the client; on receiving a request, it interacts with a helper
protocol to compute the response for the client.

Events. An event declaration has a name and a payload type associated with it.
Listing 2.1 (line 2) declares an event eRequest that must be accompanied by a tuple of
type RequestType. Listing 2.1 (line 6) declares the named tuple type RequestType. ModP
supports primitive types like int, bool, float, and complex types like tuples, sequences
and maps.

Interfaces. Each interface declaration has an interface name and a set of events that
the interface can receive. For example, the interface ClientIT declared at Listing 2.2
(line 3) is willing to receive only event eResponse. Interfaces are like symbolic names for
machines. In ModP, unlike in the actor model where an instance of an actor is created
using its name, an instance of a machine is created indirectly by performing new of an
interface and linking the interface to the machine separately. For example, execution
of the statement server = new ServerToClientIT at Listing 2.1 (line 16) creates a fresh
instance of machine ServerImpl and stores a unique reference to the new machine
instance in server. The link between ServerToClientIT and ServerImpl is provided
separately by the programmer using the bind operation.� �

1 /* Events */
2 event eRequest : RequestType;
3 event eResponse: ResponseType;
4 ...
5 /* Types */
6 type RequestType = (source: ClientIT ,reqId:int ,val: int);
7 type ResponseType = (resId: int , success: bool);
8

9 machine ClientImpl receives eResponse;
10 sends eRequest; creates ServerToClientIT;
11 {
12 var server : ServerToClientIT;
13 var nextId , nextVal : int;
14 start state Init {
15 entry {
16 server = new ServerToClientIT;
17 goto StartPumpingRequests;
18 }
19 }

13

2.1 motivation and overview

20 state StartPumpingRequests {
21 entry {
22 if(nextId < 5) //send 5 requests
23 {
24 send server , eRequest , (source = this ,reqId = nextId ,

val = nextVal);
25 nextId ++;
26 }
27 }
28 on eResponse do (payload: ResponseType) {
29 /* compute nextVal */
30 goto StartPumpingRequests;
31 }
32 }
33 }� �

Listing 2.1: Client State Machine in ModP� �
1 /* Interfaces */
2 interface ServerToClientIT receives eRequest;
3 interface ClientIT receives eResponse;
4 interface HelperIT receives eProcessReq;
5

6 machine ServerImpl
7 sends eResponse , eProcessReq;
8 receives eRequest , eReqSuccess , eReqFail;
9 creates HelperIT;

10 {
11 var helper: HelperIT;
12 start state Init {
13 entry {
14 helper = new HelperIT;
15 goto WaitForRequests;
16 }
17 }
18

19 state WaitForRequests {
20 on eRequest do (payload: RequestType) {
21 var client: ClientIT;
22 var result: bool;
23 client = payload.source;
24 /* interacts with the helper machine */
25 send helper , eProcessReq , (payload.reqId ,payload.val);
26 ...

14

2.1 motivation and overview

27 /* outcome: result = true or false*/
28 send client , eResponse , (resId = payload.reqId ,success

= result);
29 }
30 }
31 }
32 machine HelperImpl receives eProcessReq;
33 sends eReqSuccess , eReqFail , ..; creates .. ;
34 { /* body */ }� �

Listing 2.2: Server State Machine in ModP

Machines. Listing 2.1 (line 9) declares a machine ClientImpl that is willing to receive
event eResponse, guarantees to send no event other than eRequest, and guarantees to
create (by executing new) no interface other than ServerToClientIT. The body of a
state machine contains variables and states. Each state can have an entry function
and a set of event handlers. The entry function of a state is executed each time the
machine transitions into that state. After executing the entry function, the machine
tries to dequeue an event from the input buffer or blocks if the buffer is empty. Upon
dequeuing an event from the input queue of the machine, the attached handler is
executed. Listing 2.1 (line 28) declares an event-handler in the StartPumpingRequests
state for the eResponse event, the payload argument stores the payload value associated
with the dequeued eResponse event. The machine transitions from one state to another
on executing the goto statement. Executing the statement send t,e,v adds event e
with payload value v into the buffer of the target machine t. Sends are buffered,
non-blocking, and directed. For example, the send statement Listing 2.1 (line 24) sends
eRequest event to the machine referenced by the server identifier. In ModP, the type
of a machine-reference variable is the name of an interface (Section 2.2.1.2).

Next, we walk through the implementation of the client (ClientImpl) and the server
(ServerImpl) machines. Let us assume that the interfaces ServerToClientIT, ClientIT,
and HelperIT are programmatically linked to the machines ServerImpl, ClientImpl, and
HelperImpl respectively (we explain these bindings in Section 2.1.2). A fresh instance
of a ClientImpl machine starts in the Init state and executes its entry function; it
first creates the interface ServerToClientIT that leads to the creation of an instance of
the ServerImpl machine, and then transitions to the StartPumpingRequests state. In the
StartPumpingRequests state, it sends a eRequest event to the server with a payload value
and then blocks for a eResponse event. On receiving the eResponse event, it computes
the next value to be sent to the server and transitions back to the StartPumpingRequests
state. The this keyword is the “self” identifier that references the machine itself.
The ServerImpl machine starts by creating the HelperImpl machine and moves to the
WaitForRequests state. On receiving a eResponse event, the server interacts with the
helper machine to compute the result that it sends back to the client.

15

2.1 motivation and overview

Dynamism. Two key features lead to dynamism in this model of computation,
making compositional reasoning challenging: (1) Machines can be created dynamically
during the execution of the program using the new operation that returns a reference
to the newly-created machine. (2) References to machines are first-class values, and
the payload in the sent event can contain references to other machines. Hence, the
communication topology can change dynamically during the execution of the program.

2.1.2 Compositional Programming using ModP Modules

ModP allows the programmer to decompose a complex system into simple components
where each component is a ModP module.

Listing 2.3 presents a modular implementation of the client-server application. A
primitive module in ModP is a set of bindings from interfaces to state machines.
ServerModule is a primitive module consisting of machines ServerImpl and HelperImpl
where the ServerImpl machine is bound to the ServerToClientIT interface and the
HelperImpl machine is bound to the HelperIT interface. The compiler ensures that
the creation of an interface leads to the creation of a machine to which it binds. For
example, creation of the ServerToClientIT interface (executing new ServerToClientIT)
by any machine inside the module or by any machine in the environment (i.e., outside
ServerModule) would lead to the creation of an instance of ServerImpl.

The client-server application (Listing 2.3) can be implemented modularly as two
separate modules ClientModule and ServerModule; these modules can be implemented
and tested in isolation. Modules in ModP are open systems, i.e., machines inside the
module may create interfaces that are not bound in the module. Similarly, machines
may send events to or receive events from machines that are not in the module. For
example, the ClientImpl machine in ClientModule creates an interface ServerToClientIT
that is not bound to any machine in ClientModule, it sends eRequest and receives
eResponse from machines that are not in ClientModule.� �

1 module ClientModule = { ClientIT → ClientImpl };
2 module ServerModule = { ServerToClientIT → ServerImpl ,

HelperIT → HelperImpl };
3

4 //C code generation for the implementation.
5 implementation app: ClientModule ‖ ServerModule;
6

7 module ServerModule ′ = { ServerToClientIT → ServerImpl ′,
HelperIT → HelperImpl };

8

9 implementation app ′: ClientModule ‖ ServerModule ′;� �
Listing 2.3: Modular Client-Server Implementation

16

2.1 motivation and overview

Composition in ModP (denoted ||) is supported by type checking. If the composition
type checks (Section 2.2.2) then the composition of modules behaves like language
intersection over the traces of the modules. The compiler ensures that the joint actions
in the composed module (ClientModule || ServerModule) are linked appropriately, e.g.,
the creation of the interface ServerToClientIT (Listing 2.1 line 16) in ClientModule is
linked to ServerImpl in ServerModule and all the sends of eRequest events are enqueued
in the corresponding ServerImpl machine. Note that the indirection enabled by the
use of interfaces is critical for implementing the key feature of substitution required
for modular programming, i.e., the ability to seamlessly replace one implementation
module with another. For example, ServerModule’ (Listing 2.3 line 7) represents a mod-
ule where the server protocol is implemented by a different machine ServerImpl’. In
module ClientModule || ServerModule’, the creation of an interface ServerToClientIT
in the client machine is linked to machine ServerImpl’. The substitution feature is
also critical for compositional reasoning, in which case, an implementation module
is replaced by its abstraction. The compiler generates C code for the module in the
implementation declaration.

2.1.3 Compositional Testing using ModP Modules

Monolithic testing of large distributed systems is prohibitively expensive due to an
explosion of behaviors caused by concurrency and failures. The ModP approach
to this problem is to use the principle of assume-guarantee reasoning for decom-
posing the monolithic system-level testing problem into simpler component-level
testing problems; testing each component in isolation using abstractions of the other
components.� �

1 machine AbstractServerImpl receives eRequest;
2 sends eResponse;
3 {
4 start state Init {
5 on eRequest do (payload: RequestType) {
6 send payload.source ,eResponse ,(resId = payload.reqId ,

success = choose ());
7 }
8 }
9 }

10 spec ReqIdsAreMonoInc observes eRequest {
11 var prevId : int;
12 start state Init {
13 on eRequest do (payload: RequestType) {
14 assert(payload.reqId == prevId + 1);
15 prevId = payload.reqId;

17

2.1 motivation and overview

16 }
17 }
18 }
19 spec ResIdsAreMonoInc observes eResponse
20 {
21 var prevId : int;
22 start state Init {
23 on eResponse do (payload: ResponseType) {
24 assert(payload.resId == prevId + 1);
25 prevId = payload.resId;
26 }
27 }
28 }� �

Listing 2.4: Abstraction and Specifications in ModP

In ModP, a programmer can specify temporal properties via specification machines
(monitors). spec s observes E1, E2 { .. } declares a specification machine s that
observes events E1 and E2. If the programmer chooses to attach s to a module M, the
code in M is instrumented automatically to forward any event-payload pair (e, v) to s if
e is in the observes list of s; the handler for event e inside s executes synchronously
with the delivery of e. The specification machines observe only the output events of a
module. Thus, specification machines introduce a publish-subscribe mechanism for
monitoring events to check temporal specifications while testing a ModP module.
The module constructor assert s in P attaches specification machine s to module
P. In Listing 2.4, ReqIdsAreMonoInc and ResIdsAreMonoInc are specification machines
observing events eRequest and eResponse to assert the safety property that the reqId
and resId in the payload of these events are always monotonically increasing. Note
that ReqIdsAreMonoInc is a property of the client machine and ResIdsAreMonoInc is a
property of the server machine.

In ModP, abstractions used for assume-guarantee reasoning are also implemented
as modules. For example, AbstractServerModule is an abstraction of the ServerModule
where the AbstractServerImpl machine implements an abstraction of the interaction
between ServerImpl and HelperImpl machine. The AbstractServerImpl machine on
receiving a request sends back a random response.� �

1 module AbsServerModule = { ServerToClientIT →
AbstractServerImpl };

2

3 module AbsClientModule = { ClientIT → AbstractClientImpl };
4

5 /* Compositional Safety Checking */
6 //Test: ClientModule.

18

2.1 motivation and overview

7 test test0: (assert ReqIdsAreMonoInc in ClientModule) ‖
AbsServerModule;

8 //Test: ServerModule.
9 test test1: (assert ResIdsAreMonoInc in ServerModule) ‖

AbsClientModule;
10

11 /* Circular Assume -Guarantee */
12 //Check that client abstraction is correct.
13 test test2: ClientModule ‖ AbsServerModule
14 refines
15 AbsClientModule ‖ AbsServerModule;
16

17 //Check that server abstraction is correct.
18 test test3: AbsClientModule ‖ ServerModule
19 refines
20 AbsClientModule ‖ AbsServerModule;
21

22 // Create abstract module using Hide
23 module hideModule = hide X in AbsServerModule;
24

25 test test4: ClientModule ‖ ServerModule
26 refines
27 AbsClientModule ‖ hideModule;� �

Listing 2.5: Test Declarations for Compositional Testing of the Client-Server Application

ModP enables decomposing the monolithic problem of checking: (assert
ReqIdsAreMonoInc, ResIdsAreMonoInc in ClientModule || ServerModule) into four sim-
ple proof obligations. ModP allows the programmer to write each obligation as a
test-declaration. The declaration test tname: P introduces a safety test obligation that
the executions of module P do not result in a failure/error. The declaration test tname:
P refines Q introduces a test obligation that module P refines module Q. The notion of

refinement in ModP is trace-containment based only on externally visible actions, i.e.,
P refines Q, if every trace of P projected onto the visible actions of Q is also a trace of Q.
ModP automatically discharges these test obligations using systematic testing. Using
the theory of compositional safety (Theorem 2.4.3), we decompose the monolithic
safety checking problem into two obligations (tests) test0 and test1 (Listing 2.5). These
tests use abstractions to check that each module satisfies its safety specification. Note
that interfaces and the programmable bindings together enable substitution during
compositional reasoning. For example, ServerToClientIT gets linked to ServerImpl in
implementation but to its abstraction AbstractServerImpl during testing.

Meaningful testing requires that these abstractions used for decomposition be sound.
To this end, ModP module system supports circular assume-guarantee reasoning (The-
orem 2.4.4) to validate the abstractions. Tests test2 and test3 perform the necessary

19

2.2 modp module system

refinement checking to ensure the soundness of the decomposition (test0,test1). The
challenge addressed by our module system is to provide the theorems of composi-
tional safety and circular assume-guarantee for a dynamic programming model of
ModP state machines. ModP module system also provides module constructors like
hide for hiding events (interfaces) and rename for renaming of conflicting actions for
more flexible composition. Hide operation introduces private events (interfaces) into
a module, it can be used to convert some of the visible actions of a module into
private actions that are no longer part of its visible trace. For example, assume that
modules AbstractServerModule and ServerModule use event X internally for completely
different purposes. In that case, the refinement check between them is more likely to
hold if X is not part of the visible trace of the abstract module. Listing 2.5 (line 23-27)
show how hide can be used in such cases. Ensuring compositional refinement for a
dynamic language like ModP is particularly challenging in the presence of private
events (Section 2.2.2.2)

2.1.4 Roadmap

ModP’s module system supports two key theorems for the compositional reasoning
of distributed systems: Compositional Safety (Theorem 2.4.3) and Circular Assume-
Guarantee (Theorem 2.4.4). We use Section 2.2.1 through Section 2.3.1 to build up to
these theorems. The module system formalized in this paper can be adapted to any
actor-oriented programming language provided certain extensions can be applied. We
describe these extensions that ModP state machines make to the P state machines in
Section 2.2.1. When defining the operational semantics of a module and to ensure
that composition is intersection, it is essential that constructed modules be well-formed.
Section 2.2.2 presents the type-checking rules to ensure well-formedness for a module.
Section 2.3.1 presents the operational semantics of a well-formed module. Finally, we
describe how we apply the theory of compositional refinement to test distributed
systems (Section 3.1) and present our empirical results (Section 3.3).

2.2 modp module system

2.2.1 ModP State Machines

A module in ModP is a collection of the dynamic instances of ModP state machines.
In this section, we describe the extensions ModP state machines makes to P state
machines in terms of syntactic constructs and semantics. These extensions to P state
machines are required for defining the operational semantics of ModP modules and
making them amenable to compositional reasoning.

20

2.2 modp module system

(Extension 1): we add interfaces that are symbolic names for machines. In ModP, as
described in Section 2.1.1, an instance of a machine is created indirectly by performing
new of an interface (instead of new of a machine in P).
(Extension 2): we extend P machines with annotations declaring the set of receive,
send and create actions the dynamic instance of that machine can perform. These
annotations are used to statically infer the actions a module can perform based on the
actions of its comprising machines.
(Extension 3): we extend the semantics of send in P to provide the guarantee that
a ModP state machine can never receive an event (from any other machine) that is
not listed in its receive set. This is achieved by extending machine identifiers with
permissions (more details in Section 2.2.1.2).

2.2.1.1 Semantics of ModP State Machines

Let E represent the set of names of all the events. Permissions is a nonempty subset of
E; Let K represent the set of all permissions (2E \ {∅}). Let I and M represent the sets
of names of all interfaces and machines, respectively; these sets are disjoint from each
other. Let S represent the set of all possible values the local state of a machine could
have during execution. The local state of a machine represents everything that can
influence the execution of the machine, including control stack and data structures. The
buffer associated with a machine is modeled separately. Let B represent the set of all
possible buffer values. The input buffer of a machine is a sequence of (e, v) ∈ E× Vals()
pairs, where Vals() represent the set of all possible payloads that may accompany any
event in a send action. Let Z be the set of all the machine identifiers.

A ModP state machine is a tuple (MRecvs, MSends, MCreates, Rem, Enq, New, Local)
where:

1. MRecvs ⊆ E is the nonempty set of events received by the machine.

2. MSends ⊆ E is the set of all events sent by the machine.

3. MCreates ⊆ I is the set of interfaces created by the machine.

4. Rem ⊆ S×B×N× S is the transition relation for removing a message from the
input buffer. If (s,b,n, s ′) ∈ Rem, then the n-th entry in the input buffer b is
removed and the local state moves from s to s ′.

5. Enq ⊆ S×Z× E× Vals(×)S is the transition relation for sending a message to a
machine. If (s, id, e, v, s ′) ∈ Enq, then event e with payload v is sent to machine
id and the local state of the sender moves from s to s ′.

6. New ⊆ S× I× S is the transition relation for creating an interface. If (s, i, s ′) ∈
New, then the machine linked against interface i is created and the machine
moves from s to s ′.

21

2.2 modp module system

7. Local ⊆ S × Z × S × Z is the transition relation for local computation in the
machine. The state of a machine is a pair (s, id) ∈ S× Z. The first component
s is the machine local-state. The second component id is a placeholder used to
store the identifier of a freshly-created machine or to indicate the target of a
send operation. If (s, id, s ′, id ′) ∈ Local, then the state can move from (s, id) to
(s ′, id ′), which allows us to model the movement of machine identifiers from s

to id and vice-versa. The role of id will become clearer when we use it to define
the operational semantics of the module (Section 2.3.1).

We refer to components of machinem ∈M as MRecvs(m), MSends(m), MCreates(m),
Rem(m), Enq(m), New(m), and Local(m) respectively. We use IRecvs(i) to refer to the
receive set corresponding to an interface i ∈ I.

2.2.1.2 Machine Identifiers with Permissions

A machine can send an event to another machine only if it has access to the receiver’s
machine identifier. The capability of a machine to send an event to another machine
can change dynamically as machine identifiers can be passed from one machine to
another.

Machine identifiers cannot be created out of thin air. A state machine can get
access to a machine identifier either through a remove transition (Rem) where some
other machine sent the identifier as a payload or through create transition (New) where
it creates an instance of a machine. The assumption that machine identifiers cannot
appear “out-of-thin-air” is formalized as follows. For all m ∈M, s, s ′ ∈ S, id, id ′ ∈ Z,
e ∈ E, v ∈ Vals(), i ∈ I, b ∈ B, and n ∈N:

1. (s, id, s ′, id ′) ∈ Local(m)⇒ ids(s ′)∪ {id ′} ⊆ ids(s)∪ {id}.

2. (s,b,n, s ′) ∈ Rem(m)⇒ ids(s ′) ⊆ ids(s)∪ {ids(v) | ∃e. b[n] = (e, v)}).

3. (s, id, e, v, s ′) ∈ Enq(m)⇒ ids(v)∪ ids(s ′) ⊆ ids(s).

4. (s, i, s ′) ∈ New(m)⇒ ids(s ′) ⊆ ids(s).

There are two key properties required for the compositional reasoning of communi-
cating state machines using our module system: (1) a machine never receives an event
that is not in its receive set, this property is required when formalizing the open module
semantics of ModP modules and its receptiveness to input events (Section 2.3.1); (2)
the capability to send a private (internal) event of a module does not leak outside the module,
this property is required to ensure that compositional refinement in the presence of
private events (Section 2.2.2.2). These properties are particularly challenging in the
presence of machine-identifier that can flow freely. Our solution is similar in spirit to
permissions based capability control for π-calculus [97, 159] where permissions are
associated with channels or locations and enforced using type-systems.

22

2.2 modp module system

We concretize the set of machine identifiers Z as I×N×K. For our formalization,
we are interested in machine identifiers that are embedded inside the data structures
in a machine local-state s ∈ S or value v ∈ Vals(). Instead of formalizing all datatypes
in ModP, we assume the existence of a function ids such that ids(s) is the set containing
all machine identifiers embedded in s and ids(v) is the set containing all machine
identifiers embedded in v. An identifier (i,n,α) ∈ Z refers to the n-th instance of
an interface represented by i ∈ I. We refer to the final component α of a machine
identifier as its permissions. The set α represents all the events that may be sent via this
machine identifier using the send operation. The creation of an interface I returns a
machine identifier (I,n,β) ∈ Z referencing to the n-th instance of interface I where β
represents the receive set associated with the interface I (β = IRecvs(I)). The ModP
compiler checks that if an interface I is bound to M in a module, then the received
events of I are contained in the received events of M (IRecvs(I) ⊆MRecvs(M)). Hence,
the events that can be sent using an identifier is a subset of the events that the machine
can receive. This mechanism ensures that a machine never receives an event that it
has not declared in its receive set. Note that the permissions embedded in a machine
identifier control the capabilities associated with that identifier.

In order to control the flow of these capabilities, ModP requires the programmer
to annotate each event with a set A ∈ 2K of allowed permissions. For an event
e, the set A(e) represents any permission that the programmer can put inside the
payload accompanying e i.e., if v represents any legal payload value with e then
∀(_, _,α) ∈ ids(v),α ∈ A(e). In other words, A(e) represents the set of permissions
that can be transferred from one machine to another using event e.

Finally, the modified send operation send t,e,v succeeds only if: (1) e is in the
permissions of machine identifier t, to ensure t receives only those events that are
in its receives set, and (2) all permissions embedded in v are in A(e), the send fails
otherwise (captured as the (SendOk) condition when defining the semantics of send in
Section 2.3.1). This changed semantics of send based on permission-based capability
control plays a crucial role in ensuring well-formedness of the hide operation that
adds private events to a module (Section 2.2.2.2).

To statically check the permission that is passed using an event, we need to reflect the
permission of a machine-reference stored in a variable in the variable’s type. Recollect
that, the type of a machine-reference variable is the name of an interface (Listing 2.1).
An interface type represents the set of machine-identifiers whose permission is the
receives events set of the interface. In other words, the type of a machine-identifier
represents the permission stored in it. Thus, the static type of the payload associated
with an event can be used to infer the permissions embedded in it and the check (2)
above for the correctness of the send operation can be performed statically. We do
not present the state-machine level typing rules for performing these checks statically
because of space constraints; instead, they are described as dynamic checks when
presenting the operational semantics in Section 2.3.1.

23

2.2 modp module system

α ∈ 2E β ∈ 2I i, i ′, i1, ., ik ∈ I m1, .,mk ∈M

P,Q ∈ModuleExpr ::= bind i1 → m1, .., ik → mk

| P ‖ Q
| hide α in P

| hide β in P

| rename i→ i ′ in P

Figure 2.1: Module constructors

The module system formalized in this paper can be adopted to any actor-oriented
programming language whose semantics is as described in Section 2.2.1.1 and can be
extended with the three features (Extension 1) − (Extension 3).

2.2.2 ModP Modules

ModP seeks to manage the complexity of a distributed system by designing it in a
structured way, at different levels of abstractions and modularly as the composition of
interacting modules. Figure 2.1 presents the expression language supported by ModP
module system for module construction.

The bind constructor creates a primitive module as a collection of machines
m1, . . . ,mk bound to interfaces i1, . . . , ik respectively (syntax is a bit different from the
examples in Section 2.1). The composition (‖) constructor builds a complex module
from simpler ones. The hide constructor creates an abstraction of a module, by con-
verting some of its visible actions to private actions. The rename operation enables
reuse of modules (and resolution of conflicting actions) when composing modules to
create larger ones. The module language enables programmatic construction of mod-
ules, reuse of module expressions and ease of assembling modules for compositional
reasoning (Section 2.4.1).

Well-formed module. In the ModP module system, a module P is a syn-
tactic expression and its well-formedness is checked using the judgment P `
EPP, IPP, IP, LP, ERP, ESP, ICP. If module P satisfies the judgment then we read it as:
Module P is well-formed with private events EPP, private interfaces IPP, interface definition
map IP, interface link map LP, events received ERP, events sent ESP, and interfaces created
ICP. The judgment derives the components on the right-hand side which are used for
defining the operational semantics of a well-formed module (Section 2.3.1). We use
dom(x) and codom(x) to refer to the domain and codomain of any map x.

We next describe the components on the right-hand side of the judgment:

1. Private events. EPP ∈ 2E represents the private events for module P, these events
must not cross the boundary of module P i.e. if a machine in P sends event
e ∈ EPP, then the target must be some machine in P and, if a machine in P

24

2.2 modp module system

receives e ∈ EPP, the sender must be some machine in P. The send of a private
event is an internal (invisible) action of a module.

2. Private interfaces. IPP ∈ 2I represents the interfaces that are declared private in
P; the creation of any interface in IPP is an internal (invisible) action of P.

3. Interface definition map. IP ∈ I → M interface definition map that binds an
interface name i to a machine name IP[i]. Recollect that in the ModP model
of computation, dynamic instances of machines are created indirectly using
interfaces. An interface definition map (IP) is a collection of bindings from
interface names to machine names. These bindings are initialized using the bind
operation, so that if (i,m) ∈ IP then the creation of an interface i in module P
leads to the creation of an instance of m.

4. Interface link map. LP ∈ I → I → I is the interface link map that maps each
interface i ∈ dom(IP) to a machine link map that binds interfaces created by the
code of machine IP[i] to an interface name. If the statement new x is executed by
an instance of machine IP[i], an interface actually created in lieu of the interface
name x is provided by the machine specific link map LP[i]. If (x, x ′) ∈ LP[i],
then the compiler interprets x in statement new x in the code of machine IP[i] as
creation of interface x ′, creating an instance of machine IP[x

′].

The last three components of the judgment can be inferred using the first four compo-
nents:

5. Events received. ERP ∈ 2E represent the set of events received by module P. It
is inferred as the set of non-private events received by machines in P, ERP =⋃
m∈codom(IP)

MRecvs(m) \ EPP.

6. Events sent. ESP ∈ 2E represent the set of events sent by module P. It
is inferred as the set of non-private events sent by machines in P, ESP =⋃
m∈codom(IP)

MSends(m) \ EPP.

7. Interfaces created. ICP ∈ 2I represent the set of interfaces created by module P.
It is inferred as the set of interfaces created by machines in P (interpreted based
on its link map), ICP =

⋃
(i,m)∈IP,x∈MCreates(m){LP[i][x]}.

Exported interfaces. The domain of the interface definition map after removing the
private interfaces is the set of exported interfaces for module P; these interfaces can be
created either by P or its environment.
Input and output actions. The input events of module P are the events that are received
but not sent by P i.e. ERP \ ESP. The input interfaces of P are the set of interfaces that
are exported but not created by P i.e. dom(IP) \ (IPP ∪ ICP). The output events of P are

25

2.2 modp module system

the sent events i.e. ESP and the output interfaces are the created non-private interfaces
of P i.e. ICP \ IPP. Informally, the input actions of a module is the union of its input
events and input interfaces, the output actions of a module is the union of its output
events and output interfaces (formally defined in Definition 2.3.1).

In the rest of this section, we describe the various module constructors and present
the static rules to ensure that the constructed module satisfies: (1) well-formedness
conditions (WF1− WF3) required for defining the semantics of a module, and (2) the
compositionality Theorems 2.4.1- 2.4.2.

Note. For simplicity, when describing the static rules we do not provide the deriva-
tion for the last three components of the judgment as they can be inferred, but we use
them above the line.

2.2.2.1 Primitive Module

In ModP, a primitive module is constructed using the bind operation. Programmati-
cally initializing IP using bind operation enables linking the creation of an interface I
to either a concrete machine Impl for execution or an abstract machine Abs for testing,
a key feature required for substitution during compositional reasoning.

(Bind)
f = {(i1,m1), . . . , (in,mn)} f ⊆ I→M(b1) ∀(i,m) ∈ f. IRecvs(i) ⊆MRecvs(m)(b2)

bind i1 → m1, . . . , in → mn ` {}, {}, f, {(i, x, x) | (i,m) ∈ f∧ x ∈MCreates(m)}

Rule Bind presents the rule for bind i1 → m1, . . . , ik → mk that constructs a primitive
module by binding each interface ik to machine mk for k ∈ [1,n]. These bindings are
captured in f; condition (b1) checks that f is a function. Condition (b2) checks that the
received events of an interface are contained in the received events of the machine
bound to it (ensures (WF1) below). The resulting module does not have any private
events and interfaces. The function f is the interface definition map and the interface
link map for interface i ∈ dom(f) contains the identity binding for each interface
created by f(i) (ensures (WF2) below). The first entry for name x ever added to LP[i]
is the identity map (x, x); subsequently, if interface x is renamed to x ′ (using rename
constructor), this entry is updated to (x, x ′).

Well-formedness condition (WF1) helps ensure that a machine-identifier obtained by
creating an interface can be used to send only those events that are in the receives set
of the target machine ((SendOk) in Section 2.2.1.2).
(WF1) Interface definition map is consistent: For each (i,m) ∈ IP, we have IRecvs(i) ⊆
MRecvs(m).

Well-formedness condition (WF2) ensures that the link map lookups used during
the create action always succeed.

26

2.2 modp module system

(WF2) Interface link map is consistent: The domains of IP and LP must be identical and for
each (i,m) ∈ IP and x ∈MCreates(m), we have x ∈ dom(LP[i]).

2.2.2.2 Hiding Events and Interfaces

Hiding events and interfaces in a module allow us to construct a more abstract mod-
ule [18]. There are two reasons to construct a more abstract version of a module P
by hiding events or interfaces. First, suppose we want to check that another module
ServerModule refines AbstractServerModule. But the event X is used for internal inter-
action among machines, for completely different purposes, in both ServerModule and
AbstractServerModule. Then, the check that ServerModule refines AbstractServerModule
is more likely to hold since sending of X is not a visible action of AbstractServerModule.
Second, hiding helps make a module more composable with other modules. To com-
pose two modules, the sent events and created interfaces of one module must be
disjoint from the sent events and created interfaces of the other (Section 2.2.2.3). This
restriction is onerous for large systems consisting of many modules, each of which may
have been written independently by a different programmer. To address this problem,
we relax disjointness for private events and interfaces, thus allowing incompatible
modules to become composable after hiding conflicting events and interfaces.

To illustrate hiding of an event and an interface, we revisit the ServerModule in
Listing 2.3. To legally hide an event in a module, it must be both a sent and received
event of the module.� �

1 module HE_Server =
2 hide eProcessReq ,eReqSuccess ,eReqFail in ServerModule� �
Module HE_Server is well-formed and eProcessReq, eReqSuccess, eReqFail become

private events in it. A send of event eProcessReq is a visible action in ServerModule but
a private action in HE_Server. To hide an interface, it must be both an exported and
created interface of that module.� �

1 module HI_Server = hide HelperIT in HE_Server� �
Module HI_Server is well-formed and interface HelperIT becomes a private interface
in it. Creation of interface HelperIT is a visible action in HE_Server but a private action
in HI_Server. Hiding makes events and interfaces private to a module and converts output
actions into internal actions. All interactions between the server and the helper machine
in HI_Server are private actions of the module.
Avoiding private permission leakage. Not requiring disjointness of private events
creates a possibility for programmer error and a challenge for compositional refine-
ment. When reasoning about a module P in isolation, only its input events (that are

27

2.2 modp module system

disjoint from private events) would be considered as input actions. This is based on
the assumption that private events of a module are exchanged only within a module,
in other words, a private event of a module can never be sent by any machine outside
the module to any machine inside the module.

Recollect that a machine can send only those events to a target machine that are in
the permission set of the reference to the target machine (Section 2.2.1.2). Suppose
a machine M in module P has a private event e in its set of received events. Any
machine that possesses a reference to an instance of M could send e to this instance.
If such a reference were to leak outside the module P to a machine in a different
module, it would create an obstacle to reasoning about P separately (and proving the
compositionality theorems for a module with private events), since the environment
may now send private events targeted at a machine inside P. ModP ensures that such
leakage of a machine reference with permissions containing a private event cannot
happen.

In ModP, there are two ways for permissions to become available to a machine: (1)
by creating an interface, or (2) by sending permissions to the machine in the payload
accompanying some event. To tackle private permission leakage through (1), ModP
requires that an input interface not have a private event in its set of received events
so that an interface with private permissions cannot be created from outside the
module. This is ensured by the condition (he2) below. To tackle private permission
leakage through (2), ModP enforces that (a) each send of event e adheres to the
specification (SendOk) in Section 2.2.1, and (b) the set of private events is disjoint from
any permission in A(e) for any non-private event e (ensure (WF3) below). Together,
these two checks ensure that permission containing a private event does not leak
outside the module through sends.
(WF3) Permissions to send private events does not leak: For all e ∈ ERP ∪ ESP and
α ∈ A(e), we have α∩ EPP = ∅. This is a static check asserting the capabilities that can
leak outside the module.

(HideEvent) (A∆B = (A \B)∪ (B \A))

P ` EPP, IPP, IP, LP, ERP, ESP, ICP α ⊆ ERP ∩ ES(he1)
P

∀x ∈ ICP∆dom(IP). IRecvs(x)∩α = ∅(he2)

∀e ∈ (ERP ∪ ESP) \α. ∀α ′ ∈ A(e). α∩α ′ = ∅(he3)

hide α in P ` EPP ∪α, IPP, IP, LP

(HideInterface)
P ` EPP, IPP, IP, LP, ERP, ESP, ICP β ⊆ dom(IP)∩ IC(hi1)

P

hide β in P ` EPP, IPP ∪β, IP, LP

Rule HideEvent handles the hiding of a set of events α in module P. This rule adds
α to EPP. Condition (he1) checks all events in β are both sent and received by module

28

2.2 modp module system

P; this condition is required to ensure that the resulting module is an abstraction of P.
Conditions (he2) and (he3) together ensure that once an event e becomes private, any
permission containing e cannot cross the boundary of the resulting module (ensure
(WF3)). Rule HideInterface handles the hiding of a set of interfaces β in module
P. This rule adds β to IPP. Condition (hi1) is similar to the condition (he1) of rule
HideEvent; this condition ensures that the resulting module is an abstraction of P.

2.2.2.3 Module Composition

Module composition in ModP enforces an extra constraint that the output actions of
the modules being composed are disjoint. The requirement of output disjointness i.e.
output actions of P and Q be disjoint in order to compose them is important for compo-
sitional reasoning, especially to ensure that composition is intersection (Theorem 2.4.1).
For defining the open system semantics of a module P (Section 2.3.1), we require P
to be receptive only to its input actions (sent by its environment). In other words, for
the input actions, P assumes that its environment will not send it any event sent by
P itself. Similarly, P assumes that its environment will not create an interface that is
created by P itself. Any input action of P that is an output action of Q is an output
action of P ‖ Q and hence not an input action of P ‖ Q. This property ensures that
by composing P with a module Q (that outputs some input action of P), we achieve
the effect of constraining the behaviors of P. Thus, the composition is a mechanism
used to introduce details about the environment of a component, which constrains its
behaviors (composition is intersection), and ultimately allows us to establish the safety
properties of the component.

However, composition inevitably makes the size of the system larger thus making
the testing problem harder. Hence, we need abstractions of components to allow
precise yet compact modeling of the environment. If one component is replaced by
another whose traces are a subset of the former, then the set of traces of the system
only reduces, and not increases, i.e., no new behaviors are added (trace containment
is monotonic with respect to composition: Theorem 2.4.2). This permits refinement of
components in isolation.

(Composition) (A∆B = (A \B)∪ (B \A))

P ` EPP, IPP, IP, LP, ERP, ESP, ICP Q ` EPQ, IPQ, IQ, LQ, ERQ, ESQ, ICQ
dom(IP)∩ dom(IQ) = ∅(c1) (ERP ∪ ERQ ∪ ESP ∪ ESQ)∩ (EPP ∪ EPQ) = ∅(c2)

∀x ∈ (dom(IP)∆ICP)∪ (dom(IQ)∆ICQ). IRecvs(x)∩ (EPP ∪ EPQ) = ∅(c3)

∀e ∈ ERP ∪ ERQ ∪ ESP ∪ ESQ. ∀α ∈ A(e). α∩ (EPP ∪ EPQ) = ∅(c4)

ICP ∩ ICQ = ∅(c5) ESP ∩ ESQ = ∅(c6)

P ‖ Q ` EPP ∪ EPQ, IPP ∪ IPQ, IP ∪ IQ, LP ∪ LQ

Rule Composition handles the composition of P and Q. Condition (c1) enforces that
the domains of IP and IQ are disjoint, thus preventing conflicting interface bindings.

29

2.2 modp module system

Conditions (c2) ensures that the input and output actions of P are not hidden by
private events of Q and vice-versa. Conditions (c3) and (c4) together check that private
permissions of P ‖ Q do not leak out. Condition (c3) checks that creation of an input
interface of P does not leak permission containing a private event of Q and vice-versa.
Condition (c4) checks that non-private events sent or received by P do not leak a
permission containing a private event of Q and vice-versa (ensure (WF3)). Condition
(c5) checks that created interfaces are disjoint; condition (c6) checks that sent events
are disjoint. Composition is associative and commutative.
Example. If the conditions (c1) to (c6) hold then the composition of two modules is a
union of its components. The composition operation acts as a language intersection.
Consider the example of ClientModule || ServerModule from Listing 2.3. The interface
ServerToClientIT is an input interface of ServerModule but becomes an output (no
longer input) interface of ClientModule || ServerModule. Similarly, eResponse is an in-
put event of ClientModule but becomes an output event of the composed module. Also,
the union of the link-map and the interface definition maps ensures that the previously
unbounded interfaces in link-map are appropriately bound after composition.

2.2.2.4 Renaming Interfaces

The rename module constructor allows us to rename conflicting interfaces before
composition. The example in Listing 2.6 builds on top of the Client-Server example
in Section 2.1. In module ServerModule ′, the interface ServerToClientIT ′ is bound to
machine ServerImpl. The creation of HelperIT interface (Listing 2.2) in ServerImpl
machine is bound to HelperImpl machine in both ServerModule and ServerModule’. But,
it is not possible to compose modules ServerModule and ServerModule ′ because of the
conflicting bindings of interface HelperIT (rule Composition (c1)).� �

1 interface ServerToClientIT ′ receives eRequest ,eReqFail;
2 interface HelperIT ′ receives eProcessReq;
3
4 machine HelperImpl ′ receives eProcessReq; sends ..; creates

..;
5 { /* body */ }
6
7 module ServerModule ′ =
8 {ServerToClientIT ′ → ServerImpl , HelperIT → HelperImpl };
9

10 module allServers =
11 ServerModule ‖ rename HelperIT → HelperIT ′ in ServerModule ′;� �

Listing 2.6: Renaming Interfaces Module Constructor

In Listing 2.6, the interface name HelperIT is renamed to HelperIT ′. The rename
module constructor updates the interface binding (HelperIT→ HelperImpl) to (HelperIT

30

2.3 operational semantics of modp modules

′ → HelperImpl)and the interface link map entry of (ServerToClientIT ′ → HelperIT→
HelperIT) to ()ServerToClientIT ′→ HelperIT→ HelperIT ′). As a result, the composition
of modules ServerModule and ServerModule ′ is now possible.

Recollect that each module has an interface link map (Section 2.2.2) that maintains a
machine specific mapping from the interface created by the code of a machine to the
actual interface to be created in lieu of the new operation. The interface link map plays a
critical role enable renaming of interfaces without changing the code of the involved
machines. The execution of new HelperIT (Listing 2.2) in ServerImpl still leads to the
creation of HelperImpl machine because of the indirection in the interface link map,
and the corresponding visible action is creation of interface HelperIT ′.

ITE(a,b, c): if a then b else c

(Rename)
P ` EPP, IPP, IP, LP, ERP, ESP, ICP i ∈ dom(IP)∪ ICP(r1) IRecvs(i) = IRecvs(i ′)(r2)

i ′ ∈ I \ (dom(IP)∪ ICP)(r3) A = {x | x ′ ∈ IPP ∧ x = ITE(x ′ = i, i ′, x ′)}(r4)
B = {(x,y) | (x ′,y) ∈ IP ∧ x = ITE(x ′ = i, i ′, x ′)}(r5)

C = {(x,y, z) | (x ′,y, z ′) ∈ LP ∧ x = ITE(x ′ = i, i ′, x ′)∧ z = ITE(z ′ = i, i ′, z ′)}(r6)

rename i→ i ′ in P ` EPP,A,B,C

Rule Rename handles the renaming of interface i to i ′ in module P. Condition (r1)
checks that i is well-scoped; the set of dom(IP) ∪ ICP is the universe of all interfaces
relevant to P. Condition (r2) checks that the set of received events of i and i ′ are
the same. Condition (r3) checks that i ′ is a new name different from the current set
of interfaces relevant to P. Together with condition (b2) in rule Bind, this condition
ensures that the set of received events of an interface is always a subset of the set of
received events of the machine bound to it. Condition (r4) calculates in A the renamed
set of private interfaces. Condition (r5) calculates in B the renamed interface definition
map. Condition (r6) calculates in C the renamed interface link map.

2.3 operational semantics of modp modules

The ModP module system allows compositional reasoning of a module based on
the principles of assume-guarantee reasoning. For assume-guarantee reasoning, the
module system must guarantee that composition is intersection (Theorem 2.4.1), i.e.,
traces of a composed module are entirely determined by the traces of the component
modules. We achieve this by first ensuring that a module is well-formed (Section 2.2.2),
and then defining the operational semantics (as a set of traces) of a well-formed
module such that its trace behavior (observable traces) satisfies the compositional trace
semantics required for assume-guarantee reasoning.

In Section 2.2.2, a ModP module is described as a syntactic expression comprising
of the module constructors listed in Figure 2.1. If the static rules are satisfied then

31

2.3 operational semantics of modp modules

any constructed module P is well-formed and can be represented by its components
(EPP, IPP, IP, LP, ERP, ESP, ICP). In this section, we present the operational semantics
of a well-formed module (Section 2.3.1) that help guarantee the key compositionality
theorems described in Section 2.4.1.

2.3.1 Operational Semantics of ModP Modules

A key requirement for assume-guarantee reasoning [11, 128] is to consider each
component as an open system that continuously reacts to input that arrives from its
environment and generates outputs. The transitions (executions) of a module include
non-deterministic interleaving of possible environment actions. Each component must
be modeled as a labeled state-transition system so that traces of the component can be
defined based only on the externally visible transitions of the system.

We refer to components on the right hand side of the judgment P `
EPP, IPP, IP, LP, ERP, ESP, ICP (Section 2.2.2) when defining the operational semantics
of a well-formed module P. We present the open system semantics of a well-formed
module P as a labeled transition system.

Configuration. A configuration of a module is a tuple (S,B,C): (1) The first compo-
nent S is a partial map from I×N to S×Z. If (i,n) ∈ dom(S), then S[i,n] is the state
of the n-th instance of machine IP[i]. The state S[i,n] has two components, local state
s ∈ S and a machine identifier id ∈ Z (as described in Section 2.2.1.1). (2) The second
component B is a partial map from I×N to B. If (i,n) ∈ dom(B), then B[i,n] is the
input buffer of the n-th instance of the machine IP[i]. (3) The third component C is a
map from I to N. C[i] = n means that there are n dynamically created instances of
interface i.

We present the operational semantics of a well-formed module P as a transition
relation over its configurations. Let (SP,BP,CP) represent the configuration for a
module P. A transition is represented as (SP,BP,CP)

a−→ (S ′P,B ′P,C ′P) ∪ {error} where
a is the label on a transition indicating the type of step being taken. The initial
configuration of any module P is defined as (S0P,B0P,C0P) where S0P and B0P are empty
maps, and C0P maps each element in its domain (I) to 0.
Rules for local computation: Rules (R1)-(R2) present the rules for local computation
of a machine. Rule Internal picks an interface i and instance number n and updates
S[i,n] according to the transition relation Local, leaving B and C unchanged. The
map IP is used to obtain the concrete machine corresponding to the interface i.
Rule Remove-Event updates S[i,n] and B[i,n] according to the transition relation
(s,b, pos, s ′) ∈ Rem(IP[i]), the entry in pos-th position of B[i,n] is removed and the
local state in S[i,n] is updated to s ′ leaving the machine identifier (id) unchanged. The
transition for both these rules is labeled with ε to indicate that the computation is
local and is an internal transition of the module P.

32

2.3 operational semantics of modp modules

(Internal)(R1)
SP[i,n] = (s, id) (s, id, s ′, id ′) ∈ Local(IP[i])

(SP,BP,CP)
ε−→ (SP[(i,n) 7→ (s ′, id ′)],BP,CP)

(Remove-Event)(R2)
SP[i,n] = (s, id) BP[i,n] = b

(s,b, pos, s ′) ∈ Rem(IP[i])) b ′ = rem(b, pos)

(SP,BP,CP)
ε−→ (SP[(i,n) 7→ (s ′, id)],BP[(i,n) 7→ b ′],CP)

Figure 2.2: Operational Semantics Rules for Local Computation

Rules for creating interfaces: Let s0 ∈ S represent a state such that ids(s0) = ∅. Let b0 ∈
B be the empty sequence over E× Vals(). Rules (R3)-(R8) present the rules for interface
creation. In all the rules, IP is used to look-up the machine name corresponding to an
interface bound in module P. The environment of P triggers the first two rules, and the
last four are triggered by P itself. The rule Environment-Create creates an interface
that is neither created nor exported by P; consequently, it updates C by incrementing
the number of instances of i but leaves S and B unchanged. The rule Input-Create

creates an interface i exported by P that is not created by P. The instance number of the
new interface is C[i]; its local-store is initialized to (s0, id) where id in this case stores the
“self” identifier that references the machine itself. Note that the environment cannot
create an interface that is also created by P, which is based on the key assumption
of output disjointness required for compositional reasoning (Section 2.2.2.3). The rule
Create-Bad creates a transition into error if the interface i ′ being created by machine
(i,n) violates the predicate CreateOk(m, x) = x ∈ MCreates(m). Thus, machine (i,n)
may only create machines in MCreates(IP[i]).

We use machine (i,n) to refer to the n-th instance of the machine IP[i]. Output-
Create-Outside allows machine (i,n) to create an interface i ′′ that is not implemented
inside P, indicated by i ′′ 6∈ dom(IP). Create of interface i ′′ will get bound to an
appropriate machine when P is composed with another module Q that has binding for
i ′′ i.e. i ′′ ∈ dom(IQ). The predicate CreateOk(m, x) = x ∈ MCreates(m) checks that if a
machine m performs new x then x belongs to its creates set. Thus, machine (i,n) may
only create machines in MCreates(IP[i]). A well-formed module satisfies the condition
(WF1) together with the property that machines cannot create identifiers out of thin air
to guarantee that the set of permissions in any machine identifier is a subset of the
received events of the machine referenced by that identifier.

The rule Output-Create-Inside allows the creation of an interface that is exported
by P. An interesting aspect of this rule is that the machine identifier made available to
the creator machine has permission IRecvs(i ′′) but the “self” identifier of the created
machine is the entire receive set which may contain some private events in addition to

33

2.3 operational semantics of modp modules

(Environment-Create)(R3)
i ∈ I \ (ICP ∪ dom(IP)) n = CP[i]

(SP,BP,CP)
i−→ (SP,BP,CP[i 7→ n+ 1])

(Input-Create)(R4)
i ∈ dom(IP) \ ICP n = CP[i] id = (i,n, IRecvs(i))

(SP,BP,CP)
i−→ (SP[(i,n) 7→ (s0, id)],BP[(i,n) 7→ b0],CP[i 7→ n+ 1])

(Create-Bad)(R5)
SP[i,n] = (s, _) (s, i ′, _) ∈ New(IP[i])

¬CreateOk(IP[i], i ′)

(SP,BP,CP)
ε−→ error

(Output-Create-Outside)(R6)
SP[i,n] = (s, _) (s, i ′, s ′) ∈ New(IP[i]) CreateOk(IP[i], i ′)

i ′′ = LP[i][i ′] n ′ = CP[i
′′]

i ′′ 6∈ dom(IP) id ′ = (i ′′,n ′, IRecvs(i ′′))

(SP,BP,CP)
i ′′−→ (SP[(i,n) 7→ (s ′, id ′)],BP,CP[i ′′ 7→ n ′ + 1])

(Output-Create-Inside)(R7)
SP[i,n] = (s, _)

(s, i ′, s ′) ∈ New(IP[i]) CreateOk(IP[i], i ′) i ′′ = LP[i][i ′] i ′′ ∈ dom(IP) \ IPP
n ′ = CP[i

′′] id ′ = (i ′′,n ′, IRecvs(i ′′)) id ′′ = (i ′′,n ′, MRecvs(IP[i
′′]))

(SP,BP,CP)
i ′′−→ (SP[(i,n) 7→ (s ′, id ′), (i ′′,n ′) 7→ (s0, id ′′)],

BP[(i
′′,n ′) 7→ b0],CP[i ′′ 7→ n ′ + 1])

(Create-Private)(R8)
SP[i,n] = (s, _) (s, i ′, s ′) ∈ New(IP[i]) CreateOk(IP[i], i ′) i ′′ = LP[i][i ′]

i ′′ ∈ IPP n ′ = CP[i
′′] id ′ = (i ′′,n ′, IRecvs(i ′′)) id ′′ = (i ′′,n ′, MRecvs(IP[i

′′]))

(SP,BP,CP)
ε−→ (SP[(i,n) 7→ (s ′, id ′), (i ′′,n ′) 7→ (s0, id ′′)],BP[(i ′′,n ′) 7→ b0],CP[i ′′ 7→ n ′ + 1])

Figure 2.3: Operational Semantics Rules for Creating Interfaces

34

2.3 operational semantics of modp modules

(Input-Send)(R9)
BP[i,n] = b e ∈MRecvs(IP[i]) \ (EPP ∪ ESP)

v ∈ Vals() ∀(i ′,n ′,α ′) ∈ ids(v). α ′ ∈ A(e)∧n ′ < CP[i
′]

(SP,BP,CP)
((i,n),e,v)−−−−−−−→ (SP,BP[(i,n) 7→ b� (e, v)],CP)

(Send-Bad)(R10)
SP[i,n] = (s, idt) idt = (_, _,αt)

(s, idt, e, v, _) ∈ Enq(IP[i]) ¬SendOk(IP[i],αt, e, v)

(SP,BP,CP)
ε−→ error

(Output-Send-Outside)(R11)
SP[i,n] = (s, idt)

idt = (it,nt,αt) it 6∈ dom(IP) (s, idt, e, v, s ′) ∈ Enq(IP[i]) SendOk(IP[i],αt, e, v)

(SP,BP,CP)
((it,nt),e,v)−−−−−−−−→ (SP[(i,n) 7→ (s ′, idt)],BP,CP)

(Output-Send-Inside)(R12)
SP[i,n] = (s, idt) idt = (it,nt,αt) it ∈ dom(IP)

e ∈ ESP bt = BP[it,nt] (s, idt, e, v, s ′) ∈ Enq(IP[i]) SendOk(IP[i],αt, e, v)

(SP,BP,CP)
((it,nt),e,v)−−−−−−−−→ (SP[(i,n) 7→ (s ′, idt)],BP[(it,nt) 7→ bt � (e, v)],CP)

(Send-Private)(R13)
SP[i,n] = (s, idt) idt = (it,nt,αt) it ∈ dom(IP)

e ∈ EPP bt = BP[it,nt] (s, idt, e, v, s ′) ∈ Enq(IP[i]) SendOk(IP[i],αt, e, v)

(SP,BP,CP)
ε−→ (SP[(i,n) 7→ (s ′, idt)],BP[(it,nt) 7→ bt � (e, v)],CP)

Figure 2.4: Operational Semantics Rules for Sending Events

all events in IRecvs(i ′′). Allowing extra private events in the permission of the “self”
identifier is useful if the machine wants to send permissions to send private events to
a sibling machine inside P. In all these rules, the link map (LP) is used to look up the
interface i ′′ to be created corresponding to new i ′. The condition (WF2) holds for any
well-formed module and guarantees that this lookup always succeeds.
Rules for sending events: Rules (R9)-(R13) present the rules for sending events. The
environment of P triggers the first rule, and the last two are triggered by P itself. The
rule Input-Send enqueues a pair (e, v) into machine (i,n) if e ∈MRecvs(IP[i]) and e is
neither private in P nor sent by P and v does not contain any machine identifiers with
private events in its permissions. First, an event that is sent by P is not considered as
an input event, which is safe since rules of output-disjointness (Section 2.2.2.3) forbid
composing P with another module that sends an event in common with P. Second,
only an event in the receives set of a machine is considered as an input event, because

35

2.3 operational semantics of modp modules

any machine can send only those events that are in the permission of an identifier and
the permission set of an identifier is guaranteed to be a subset of the receives set of the
machine referenced by it (based on (WF1)). Finally, private events or payload values
with private events in its permissions are not considered as input because permission
to send a private event cannot leak out of a well-formed module (based on (WF3)).

Before executing a send statement the target machine identifier is loaded into
the local store represented by idt using an internal transition. The predicate
SendOk(m̂,α, e, v) = e ∈ MSends(m̂) ∧ e ∈ α ∧ ∀(_, _,β) ∈ ids(v). β ∈ A(e)) cap-
tures the (SendOk) specification described in Section 2.2.1.2. Thus, machine (i,n) may
only send events declared by it in MSends(IP[i]) and allowed by the permission αt of
the target machine and should not embed machine identifiers with private permis-
sions in the payload v. Note that the dynamic check (SendOk) helps guarantee the
well-formedness condition (WF3) and also ensures that a module receives only those
events from other modules that are its input events (and is expected to be receptive
against).

The rule Output-Send-Outside sends an event to machine outside P whereas rules
Output-Send-Inside and Send-Private send an event to some machine inside P. In
the former, the target machine mt is not in the domain of IP, whereas in the latter
cases the target machine is inside the module and hence present in the domain of IP.
For Send-Private, the label on the transition is ε as a private event is sent. For brevity,
we refer to a configuration (Sk,Bk,Ck) as Gk.

Definition 2.3.1: Execution

An execution of P is a finite sequence G0
a1−→ . . .

an−1−−−→ Gn for some n ∈N such that
Gi

ai−→ Gi+1 for each i ∈ [0,n).

Let execs(P) represent the set of all possible executions of the module P.

Invariants for Executions of a Module

For any execution τ ∈ execs(P) where τ is a sequence of global configurations
G0

a0−→ G1
a1−→ . . .

an−1−−−→ Gn, all global configurations Gi satisfy the invariants:

I1 dom(SP) = dom(BP)

I2 ∀(i,n) ∈ dom(BP). i ∈ dom(IP)∧n < C[i]

I3 ∀i ∈ dom(IP). C[i] = card({n | (i,n) ∈ dom(BP)})

I4 ∀(x,n,α) ∈ ids(SP)∪ ids(BP). x ∈ dom(IP)⇒ (x,n) ∈ dom(BP)

I5 ∀(x,n,α) ∈ ids(SP)∪ ids(BP). n < CP[x]

36

2.4 compositional reasoning using modp modules

An execution is unsafe if Gn ε−→ error; otherwise, it is safe. The module P is safe, if for
all τ ∈ execs(P), τ is a safe execution. The signature of a module P is the set of labels
corresponding to all externally visible transitions in executions of P.

Definition 2.3.2: Module Signature

The signature of a module P is the set ΣP = (I \ IPP) ∪ ((I×N)× (ESP ∪ ERP)×
Vals()). The signature is partitioned into the output signature (ICP \ IPP) ∪ ((I×
N)× ESP × Vals()) and the input signature (I \ ICP)∪ ((I×N)× (ERP \ ESP)×
Vals()).

The transitions in an execution labeled by elements of the output signature are the
output actions whereas transitions labeled by elements of the input signature are the
input actions.

Definition 2.3.3: Trace

Given an execution τ = G0
a1−→ . . .

an−1−−−→ Gn of P, the trace of τ is the sequence σ
obtained by removing occurrences of ε from the sequence a1, . . . ,an−1.

Let traces(P) represents the set of all possible traces of P. Our definition of a trace
captures externally visible operations that add dynamism in the system like machine
creation and sends with a payload that can have machine-references. If σ ∈ traces(P)
then σ[ΣP] represents the projection of trace σ over the set ΣP where if σ = a0, . . . ,an,
then σ[ΣP] is the sequence obtained after removing all ai such that ai 6∈ ΣP.

Definition 2.3.4: Refinement

The module P refines the module Q, written P � Q, if the following conditions hold:
(1) ICQ \ IPQ ⊆ ICP \ IPP, (2) dom(IQ) \ IPQ ⊆ (dom(IP)∪ ICP) \ IPP, (3) ESQ ⊆ ESP,
(4) ERQ ⊆ ERP ∪ ESP (note that (1)-(4) together imply ΣQ ⊆ ΣP), (5) and for every
trace σ of P the projection σ[ΣQ] is a trace of Q.

2.4 compositional reasoning using modp modules

2.4.1 Principles of Assume-Guarantee Reasoning

The two fundamental compositionality results required for assume-guarantee reason-
ing are:

37

2.4 compositional reasoning using modp modules

Theorem 2.4.1: Composition Is Intersection

Let P, Q and P||Q be well-formed modules. For any π ∈ Σ∗P||Q, π ∈ traces(P||Q) iff
π[ΣP] ∈ traces(P) and π[ΣQ] ∈ traces(Q).

Theorem 2.4.1 states that composition of modules behaves like language intersection,
the traces of the component modules completely determine traces of a composed
module.

Theorem 2.4.2: Composition Preserves Refinement

Let P, Q, and R be well-formed modules such that P||Q and P||R are well-formed. Then
R � Q implies that P||R � P||Q.

Theorem 2.4.2 states that parallel composition is monotonic with respect to trace
inclusion i.e. if one module is replaced by another whose traces are a subset of the
former, then the set of traces of the resultant composite module can only be reduced.

Theorems 2.4.1 and 2.4.2 form the basis of our theory of compositional refinement
and are used for proving the principles of circular assume-guarantee reasoning un-
derlying our compositional testing methodology (Theorems 2.4.3-2.4.4). We introduce
a generalized composition operation ‖ P, where P is a non-empty set of modules.
This operator represents the composition of all modules in P. The binary parallel
composition operator is both commutative and associative. Thus, ‖ P is a module
obtained by composing modules in P in some arbitrary order. Let P and Q be set of
modules. We say that P is a subset of Q if P can be obtained by dropping modules in
Q.

Theorem 2.4.3: Compositional Safety

Let ‖ P and ‖ Q be well-formed. Let ‖ P refine each module Q ∈ Q. Suppose for each
P ∈ P, there is a subset X of P∪Q such that P ∈ X, ‖X is well-formed, and ‖X is safe.
Then ‖P is safe.

When using Theorem 2.4.3 in practice, modules in P and Q typically consists of the
implementation and abstraction modules respectively. When proving the safety of any
module P ∈ P, it is allowed to pick any modules in Q for constraining the environment
of P. To use Theorem 2.4.3, we need to show that ‖P refines each module Q ∈ Q which
requires reasoning about all modules in P together. The following theorem shows that
the refinement between ‖P and Q can also be checked compositionally.

38

2.4 compositional reasoning using modp modules

Theorem 2.4.4: Circular Assume-Guarantee

Let ‖P and ‖Q be well-formed. Suppose for each module Q ∈ Q there is a subset X of
P ∪ Q such that Q 6∈ X, ‖X is well-formed, and ‖X refines Q. Then ‖P refines each
module Q ∈ Q.

Theorem 2.4.4 states that to show that ‖P refines Q ∈ Q, any subset of modules in P

and Q can be picked as long as Q is not picked. Therefore, it is possible to perform
sound circular reasoning, i.e., use Q1 to prove refinement of Q2 and Q2 to prove
refinement of Q1. This capability of circular reasoning is essential for compositional
testing of the distributed systems we have implemented.

Note that ‖P refines every submodule of Q is implied by ‖P refines module ‖Q. If
‖P refines ‖Q, then using Theorem 2.4.1, ‖P would refine each individual submodule
in Q as well. Similarly, if ‖P refines every submodule of Q and ‖Q is a well-formed
module, then ‖P refines module ‖Q.

39

2.4 compositional reasoning using modp modules

2.4.2 Proofs and Lemmas for the ModP Module System

Summary

The ModP module system provide the following important top-level theorems
and lemmas:

1. Composition Is Intersection: Composition behaves like language inter-
section. This is captured by the Theorem 2.4.1, which asserts that traces
of a composed module are completely determined by the traces of the
component modules. This Lemma forms the basis and used by the rest of
the lemmas.

2. Composition Preserves Refinement: The traces of a composed module is
a subset of the traces of each component module. Hence, the composition
of two modules creates a new module which is equally or more detailed
than its components. This is captured by the Lemma 2.4.3.

3. Circular Assume-Guarantee: Theorem 2.4.4 states that to show ‖ P refines
Q ∈ Q, any subset of modules in P and Q can be picked as long as Q is not
picked. Therefore, it is possible to perform sound circular reasoning, i.e.,
use Q1 to prove Q2 and Q2 to prove Q1.

4. Compositional Safety Analysis: Theorem 2.4.3 talks about implementa-
tion modules in P and abstraction modules in Q. When proving safety of
any module P ∈ P, it is allowed to pick any modules in Q for constraining
the environment of P.

5. Hide Event Preserves Refinement: Lemma 2.4.6 states that the hide event
operation preserves refinement, is compositional and create a sound ab-
straction of the module.

6. Hide Interface Preserves Refinement: Lemma 2.4.7 states that the hide
interface operation preserves refinement, is compositional and create a
sound abstraction of the module.

In the rest of this section, we present the proofs for the theorems introduced in
Section 2.4.1 and the also the lemmas supported by the ModP Module system. We
first present the definitions needed for the formalism and proofs in this section.

1. Let G be the set of all possible configurations. For a configuration G = (S,B,C),
we refer to its elements as GS, GB, and GC respectively.

40

2.4 compositional reasoning using modp modules

2. Let last be a function that given an execution which is a sequence of alternating
global configuration and transition labels returns the last global configuration
state. If τ = G0

a0−→ G1
a1−→ . . .

an−1−−−→ Gn then last(τ) = Gn

3. Let trace(τP) represent the trace corresponding to execution τP ∈ execs(P).

4. Two configurations G,G ′ ∈ G are compatible, if the following conditions hold:

a) ∀(i,n) ∈ (dom(GS)∩ dom(G ′S)), GS[i,n] = G ′S[i,n],
b) ∀(i,n) ∈ (dom(GB)∩ dom(G ′B)), GB[i,n] = G ′B[i,n],
c) ∀i ∈ (dom(GC)∩ dom(G ′C)), GC[i] = G ′C[i]

Informally, two configurations are compatible, if each element in the configura-
tions agree on the common values in their domain.

5. Let union be a partial function from (G× G) to G satisfying the following proper-
ties:

a) (G,G ′) ∈ dom(union) iff G and G ′ are compatible.

b) (Gp,Gq,Gc) ∈ union iff Gc = (GpS ∪G
q
S ,GpB ∪G

q
B,GpC ∪G

q
C).

We prove the Theorem 2.4.1 by proving two simpler lemmas, Lemma 2.4.1 and
Lemma 2.4.2. The proof is decomposed into the following two implications:
Forward Implication for traces:
If σ ∈ traces(P||Q) then the projection σ[ΣP] ∈ traces(P) and the projection σ[ΣQ] ∈
traces(Q). This follows from the Lemma 2.4.1.
Backward Implication for traces:
If there exists a sequence σ ∈ Σ∗P||Q such that σ[ΣP] ∈ traces(P) and σ[ΣQ] ∈ traces(Q),
then σ ∈ traces(P||Q). This follows from the Lemma 2.4.2.

Lemma 2.4.1

For any execution τc ∈ execs(P||Q), there exists an execution τp ∈ execs(P) such
that trace(τp)[ΣP] = trace(τc)[ΣP] and there exists an execution τq ∈ execs(Q)

such that trace(τq)[ΣQ] = trace(τc)[ΣQ].

Proof. We perform induction over the length of execution τc of the composed
module P||Q.

Inductive Hypothesis: For every execution τc ∈ execs(P||Q), there exists an
execution τp ∈ execs(P) such that trace(τp)[ΣP] = trace(τc)[ΣP], there ex-
ists an execution τq ∈ execs(Q) such that trace(τq)[ΣQ] = trace(τc)[ΣQ], and
last(τc) = union(last(τp), last(τq)).

41

2.4 compositional reasoning using modp modules

We refer to the elements of the global configuration last(τc) as last(τc)S, last(τc)B,
last(τc)C.
Base case: The base case for the inductive proof is for an execution τc of length 0,
τc ∈ execs(P||Q). The projection of the execution τc over the alphabet of the individual
modules results in a execution of length zero which belongs to the set of executions of
all the modules. We know that, for the base case there exists an execution τp ∈ execs(P)
and τq ∈ execs(Q) of length zero such that last(τc) = union(last(τp), last(τq)).
Hence, the inductive hypothesis holds for the base case.
Inductive case: Let us assume that the hypothesis holds for any execution τc ∈
execs(P||Q). Let τp and τq be the corresponding executions for module P and Q such
that trace(τc)[ΣP] = trace(τp)[ΣP], trace(τc)[ΣQ] = trace(τq)[ΣQ] and last(τc) =

union(last(τp), last(τq)).
To prove that the hypothesis is inductive we show that it also holds for the execution

τ ′c ∈ execs(P||Q) where τ ′c = τc
a−→ G and τ ′p, τ ′q be the corresponding executions of P

and Q.
We perform case analysis for all possible transitions labels a.

1. a = ε

This is the case when the composed module P||Q takes an invisible transition.
Lets say n-th instance of an interface i identified by (i,n) ∈ dom(last(τc)S)
made an invisible transition. This could be because the machine took any of the
following transitions: Internal, Remove-Event, Create-Bad,Output-Create-3,
Send-Bad, and Output-Send-3.

Consider the case when i ∈ dom(IP) i.e. machine corresponding to interface i is
implemented in module P.

Based on the assumption that last(τc) = union(last(τp), last(τq)), we know
that last(τc)S[i,n] = last(τp)S[i,n] and last(τc)B[i,n] = last(τp)B[i,n]. Hence,
if machine instance (i,n) in P||Q can make an invisible transition a when in
global configuration last(τc), then the same invisible transition can be taken
by module P in configuration last(τp). Hence, trace(τ ′p)[ΣP] = trace(τ ′c)[ΣP]
(where τ ′p = τp

a−→ G ′). Since a = ε, trace(τq)[ΣQ] = trace(τ ′c)[ΣQ]

Note that the invisible transitions do not change the map C. Since, the mod-
ule P||Q and P took the same transition a and configuration of module Q
has not changed, the resultant configurations satisfy the property last(τ ′c) =
union(last(τ ′p), last(τq)).

The same analysis can be applied to the case when m ∈ dom(MQ).

2. a = i where i ∈ I

This is the case when the composed module or the environment takes the visible
transition of creating an interface i. We perform case analysis for all such possible
transitions:

42

2.4 compositional reasoning using modp modules

a) Environment-Create

Consider the case when the environment of module P||Q takes a transition to
create an interface i. If i is created by P||Q using the Environment-Create,
then it can be created by P and Q only using the Environment-Create

rule. This comes from the fact that i does not belong to ICP||Q and dom(IP||Q).

Hence the environment of both P and Q can take the transition and
the resultant executions τ ′p, τ ′q will satisfy the condition last(τ ′c) =

union(last(τ ′p), last(τ ′q), trace(τ ′c)[ΣP] = trace(τ ′p)[ΣP], trace(τ ′c)[ΣQ] =
trace(τ ′q)[ΣQ].

b) Input-Create

Our definition of composition and compatibility guarantees that if P||Q is
well-formed then:

i. dom(IP||Q) = dom(IP)∪ dom(IQ)

ii. dom(IP)∩ dom(IQ) = ∅
Hence, if the composed module P||Q receives an input create request for i ∈
dom(IP) ⊂ ICIP from the environment, then either i ∈ dom(IP), or i ∈ dom(IQ).
Also, since i 6∈ ICP||Q, it implies that i 6∈ ICQ and i 6∈ ICP.

Consider the case when i ∈ dom(IP). Based on the assumption that
last(τc) = union(last(τp), last(τq)), we know that last(τc)S[i,n] =

last(τp)S[i,n] and last(τc)B[i,n] = last(τp)B[i,n]. Hence, if P||Q takes
the visible Input-Create transition i, when in global configuration last(τc),
then the same transition can be taken by module P in configuration
last(τp). i ∈ ΣQ (we know that i 6∈ (dom(IQ) ∪ ICQ)), hence Q takes the
Environment-Create transition. The resultant executions τ ′c, τ ′p and
τ ′q satisfy the condition that last(τ ′c) = union(last(τ ′p), last(τ ′q)). Also,
trace(τ ′c)[ΣP] = trace(τ ′p)[ΣP] and trace(τ ′c)[ΣQ] = trace(τ ′q)[ΣQ] since all
modules took the same labeled transition.

The same analysis can be applied to the case when i ∈ dom(IQ).

c) Output-Create-1
This is the case when a machine instance (i ′,n) ∈ dom(last(τc)S) creates an
interface i and i 6∈ dom(IP||Q) which means that interface i is implemented
by some machine in the environment of P||Q.

Consider the case when i ′ ∈ dom(IP) (which implies that i ′ 6∈ dom(IQ)), since
i 6∈ dom(IP||Q) we know that i 6∈ dom(IP) and i 6∈ dom(IQ).

Based on the assumption that last(τc) = union(last(τp), last(τq)) we
know that S[τc][i,n] = S[τp][i,n] and B[τc][i,n] = B[τp][i,n] and hence
if P||Q takes the visible Output-Create-1 transition when in global con-

43

2.4 compositional reasoning using modp modules

figuration last(τck), the same transition can be taken by module P in
configuration last(τpk ′).

i ∈ ΣQ and hence the environment of module Q creates an interface i
(Environment-Create) and the resultant executions satisfy the condition
that last(τ ′c) = union(last(τ ′p), last(τ ′q)).

d) Output-Create-2
Similar analysis can be applied to prove that our inductive hypothesis holds
when the composed module P||Q takes an Output-Create-2 transition.

�

Lemma 2.4.2

For every pair of executions τp ∈ execs(P) and τq ∈ execs(Q), if there exists
σ ∈ Σ∗P||Q such that σ[ΣP] = trace(τp)[ΣP] and σ[ΣQ] = trace(τq)[ΣQ], then there
exists an execution τc ∈ execs(P||Q) such that trace(τc)[ΣP||Q] = σ.

Proof.
Given a pair of executions (p,q) and (p ′,q ′), we define a partial order over pair of

executions as (p,q) � (p ′,q ′) iff p is a prefix of p ′ and q is a prefix of q ′. We perform
induction over the pair of executions of module P and Q using the partial order.

Inductive Hypothesis: For any pair of executions (τp, τq) of modules P and
Q respectively, if there exists σ ∈ Σ∗P||Q such that σ[ΣP] = trace(τp)[ΣP] and
σ[ΣQ] = trace(τq)[ΣQ] then there exists an execution τc ∈ execs(P||Q) such that
trace(τc)[ΣP||Q] = σ and last(τc) = union(last(τp), last(τq)).

Base case: The inductive hypothesis hold trivially for the base case when the length
of the executions τp, τq of modules P, Q is zero.
trace(τp)[ΣP] = trace(τq)[ΣP] = ε (ε ∈ Σ∗P||Q).
we know that: there exists τp = (Sp0 ,Bp0 ,Cp0) ∈ execs(P), there exists τq =

(Sq0 ,Bq0 ,Cq0) ∈ execs(Q) and there exists τc = (Sc0,B
c
0,C

c
0) ∈ execs(P||Q).

Hence, there exists an execution τc ∈ execs(P||Q) such that trace(τc)[ΣP||Q] = ε
Finally, we have last(τc) = union(last(τp), last(τq)) as:

• Sc0 = S
p
0 = S

q
0 = S0 (empty map)

• Bc0 = B
p
0 = B

q
0 = B0 (empty map)

• Cc0 = C
p
0 = C

q
0 = C0 (all elements map to 0)

44

2.4 compositional reasoning using modp modules

Inductive case: Let us assume that the hypothesis holds for any pair of executions
(τp, τq) and any σ. To prove that the hypothesis is inductive, we show that the
hypothesis holds for the next pair of executions in the partial order ((τ ′p, τq), (τp, τ ′q)
and (τ ′p, τ ′q) where τ ′p = τp

a−→ G ′, τ ′q = τq
a−→ G ′′ and τ ′c = τc

a−→ G ′′′). Just to provide
an intuition, (τ ′p, τq) represents the case when module P takes a transition with label
a and a 6∈ ΣQ, similarly (τp, τ ′q) represents the case when module Q takes a transition
with label a and a 6∈ ΣP. (τ ′p, τ ′q) represents the case when module P and Q both take
transition with label a, as a ∈ ΣP,a ∈ ΣQ.

We perform case analysis for all possible transitions taken by module P and module
Q. We provide a proof for one such case:

1. Let us consider the case when module P takes a transition Output-Send-1 with
label a = ((it,nt), e, v). Let (i,n) ∈ dom(last(τP)S) be the machine that takes this
transition. Hence, σ ′ = σ.a and trace(τ ′p)[ΣP] = σ

′[ΣP].

Let us consider the case when it ∈ dom(IQ), and e ∈ MRecvs(it) \
(EPQ ∪ ESQ) (input event of Q). Based on the assumption that last(τc) =

union(last(τp), last(τq)) and the invariants I1-I6 about the state configura-
tions, we know that (it,nt) ∈ dom(last(τq)B).
Hence, Q can take a Input-Send transition with label a = ((it,nt), e, v) and
therefore trace(τ ′q)[ΣQ] = σ

′[ΣQ].

Finally, using same assumption last(τc) = union(last(τp), last(τq)) and the in-
variants I1-I6, the composed module P||Q can take the transition Output-Send-2
with the same label a = ((it,nt), e, v). Hence, trace(τ ′c)[ΣP||Q] = σ ′. The resultant
executions still satisfy the condition that last(τ ′c) = union(last(τ ′p), last(τ ′q)).

Note that proving that executions of modules satisfy the property last(τc) =
union(last(τp), last(τq)) helps us prove a stronger property than what is
needed for the lemma.

�

Lemma 2.4.3: Composition preserves refinement

Let P, Q, and R be three modules such that P,Q and R are composable. Then the
following holds: (1) P||R � P and (2) P � Q implies that P||R � Q||R

Proof. (1) follows directly from the Theorem 2.4.1. For (2), let σ be a trace of P||R,
then we know that σ[ΣP] is a trace of P and σ[ΣR] is a trace of R. We know that, P � Q
therefore σ[Q] is a trace of Q and using the Theorem 2.4.1 σ[ΣQ||R] is a trace of Q||R.
�

45

2.4 compositional reasoning using modp modules

Lemma 2.4.4: Circular Assume-Guarantee

Let ‖P and ‖Q be well-formed. Suppose for each module Q ∈ Q there is a subset
X of P⊕ Q such that Q 6∈ X, ‖X is well-formed, and ‖X refines Q. Then ‖ P
refines each module Q ∈ Q.

Proof. Definitions:

• Let Q be a collection of (n > 1) composable modules represented by the set
{Q1,Q2, ...Qn}.

• Let P be a collection of (n ′ > 1) composable modules represented by the set
{P1,P2, ...Pn ′}. In this proof, we refer to ‖P (composition of all modules in P) as
module P

• Let ∀k.Xk be a subset of P⊕Q.

Let us assume that ∀Qk ∈ Q there exists a Xk such that Xk � Qk.

Inductive Hypothesis: Our inductive hypothesis is that for every execution
τP ∈ execs(P) and for all Qk ∈ Q, there exists an execution τQk ∈ execs(Qk) such
that trace(τP)[ΣQk] = trace(τQk)[ΣQk].
Note that the inductive hypothesis is over the executions of P but it implies
that, if for all Qk ∈ Q, there exists a Xk such that Xk � Qk then for all traces
σP ∈ traces(P) and for all Qk ∈ Q we have σP[ΣQk] ∈ traces(Qk).

We prove our inductive hypothesis by performing induction over the length of
execution τP.

1. Base case: The base case is one where the length of execution τP is 0. The
inductive hypothesis trivially holds for the base case.

2. Inductive case: Let us assume that the inductive hypothesis holds for any execu-
tion τp ∈ execs(P) of length k. To prove that the hypothesis is inductive, we show
that the hypothesis also holds for any execution τ ′p where τ ′p = τp

a−→ G.

We have to perform the case analysis for all possible transition labels a. We
provide a proof for some of these cases:

a) a = ε (Invisible transition)

It can be easily seen that the inductive hypothesis holds for the case when
the module P takes an invisible transition.

b) a = i where i ∈ I (creation of an interface)
a can be equal to i because of any of the following cases: (1) module P creates
an interface using the transitions: Output-Create-1, Output-Create-2 or

46

2.4 compositional reasoning using modp modules

(2) the environment creates it using the transitions: Environment-Create,
Input-Create.

Let us consider the case when a = i because P executes the Output-Create-
1 transition.

Recollect that P is a composition of modules P1,P2, ..Pn ′ . Using Lemma 2.4.1,
we can decompose the execution τP of module P (τP ∈ execs(P)) into the
executions τP1 , τP2 , ... of the component modules such that for all Pk ∈ P,
trace(τP)[ΣPk] = trace(τPk)[ΣPk].

From the operational semantics of Output-Create-1, we know that i ∈ ICP

and i 6∈ dom(IP). Let us consider the case when there exists a module Pk ∈ P

such that i ∈ ICPk , and from the definition of composition we know that
∀j, j 6= k, i 6∈ ICPj .

If ∃j, s.t. j 6= k∧ i ∈ ΣPj then Pj can take the Environment-Create transition
to match the visible action a = i.

If i ∈ ICQ, then for some Qk ∈ Q, i ∈ ICQk – (1).

If ∀Qk ∈ Qk, i 6∈ ICQ, then all Qk can take the Environment-Create transi-
tion to match the visible action a = i .

Let us consider the case when only (1) is true. Since i ∈ ICQk and Xk � Qk
we have i ∈ ICXk .

Note that P and Q are well formed modules. Since (1) Qk 6∈ Xk (2) ∀j, j 6=
k.i 6∈ ICPj ∧ i 6∈ ICQj , we know that Pk ∈ Xk.

Using Lemma 2.4.2, and the fact that Xk � Qk, we know that for
any given τ ′Pk ∈ execs(Pk) there exist τ ′Qk such that trace(τ ′Pk)[ΣQk] =

trace(τ ′Qk)[ΣQk].

Finally, we know that:

i. Inductive hypothesis holds for any execution τP and τ ′P = τP
i−→ G

(Output-Create-1)

ii. i ∈ ICQk and i ∈ ICPk .

iii. ∀j, j 6= k.i 6∈ ICPj and ∀j, j 6= k.i 6∈ ICQj .

iv. there exists an execution τ ′Pk ∈ execs(Pk) such that trace(τ ′P)[ΣPk] =
trace(τ ′Pk)[ΣPk].

v. there exists an execution τ ′Qk ∈ execs(Qk) such that trace(τ ′Pk)[ΣQk] =
trace(τ ′Qk)[ΣQk]

Hence, we can conclude that for the execution τ ′P there exists an execution
τ ′Qk such that trace(τ ′P)[ΣQk] = trace(τ ′Qk)[ΣQk].

47

2.4 compositional reasoning using modp modules

And using (3), we also know that for all Qj ∈ Qk, trace(τ ′P)[ΣQj] =

trace(τQk)[ΣQj]

Hence, the inductive hypothesis holds for the execution τ ′P.

We do similar analysis to prove the other cases.

�

Lemma 2.4.5: Compositional Safety Analysis

Let ‖P and ‖Q be well-formed. Let ‖P refine each module Q ∈ Q. Suppose for
each P ∈ P, there is a subset X of P⊕Q such that P ∈ X, ‖X is well-formed, and
‖X is safe. Then ‖P is safe.

Proof.
We describe a proof strategy using contradiction for a simplified system consisting

of two implementation modules P1,P2 and two abstraction modules Q1,Q2. For such
a system, the theorem states that if P1 ‖ P2 � Q1, P1 ‖ P2 � Q2 and P1 ‖ Q2, Q1 ‖ P2
are safe then P1 ‖ P2 is safe.

Lets say that there exists an error execution in τe in P1 ‖ P2. Using the compositional
refinement Lemma, we can decompose the execution τe into τe1 of P1 and τe2 of P2. Lets
say the error was because of module P1 taking a transition and hence τe1 is an error
trace.

We know that P1 ‖ Q2 is safe which means that for all executions of module P1 ‖ Q2
there is no execution of P1 that is equal to τe1 after decomposition.

The above condition also implies that in the composed module P1 ‖ P2, module P2
using an output action is triggering an execution in P1 which results in execution τe1.
And this output action is not triggered by Q2 in the composition P1 ‖ Q2.

The above condition implies that P1 ‖ P2 � Q2 does not hold which is a contradic-
tion.

We generalized this proof strategy for proving the given lemma.
�

Lemma 2.4.6: Hide Event Preserves Refinement

For all well-formed modules P and Q and a set of events α, if (hide ¸ in P) and
(hide ¸ in Q) are well-formed, then (1) P � (hide ¸ in P) and (2) if P � Q, then
(hide ¸ in P) � (hide ¸ in Q).

Proof. Let hP = (hide ¸ in P) and hQ = (hide ¸ in Q).
We perform induction over the length of execution τhP of module hP

48

2.5 related work

Inductive Hypothesis: For every execution τp ∈ execs(hP), there exists an exe-
cution τp ∈ execs(hQ) such that trace(τhP)[ΣhQ] = trace(τhQ)[ΣhQ]

We prove our inductive hypothesis by performing induction over the length of
execution τP.

• Base case: The base case is trivially satisfied by an execution of length zero.

• Inductive case: Let us assume that the hypothesis holds for any execution τhP ∈
execs(hP) and the corresponding execution of module hQ be τhQ ∈ execs(hQ).

To prove that the hypothesis is inductive we show that it also holds for the
execution τ ′hP ∈ execs(hP) where τ ′hP = τhP

a−→ G and τ ′hQ be the resultant
executions of hQ.

Hide operation only converts visible actions into internal actions. Hence, it can
be easily shown that any execution of hP is also an execution of P, similarly for
module hQ and Q, every execution of hQ is an execution of Q.

The above property, along with the fact that P � Q helps us conclude that the
inductive hypothesis always holds.

�

Lemma 2.4.7: Hide Interface Preserves Refinement

For all well-formed modules P and Q and a set of interfaces α, if (hide ¸ in P)
and (hide ¸ in Q) are well-formed, then (1) P � (hide ¸ in P) and (2) if P � Q,
then (hide ¸ in P) � (hide ¸ in Q).

Proof. The proof is similar to the proof for Lemma 2.4.6. �

2.5 related work

Assume-Guarantee reasoning has been implemented in model checkers [11, 133, 134]
and successfully used for hardware verification [69, 99, 132] and software testing [26].
However, the present paper is the first to apply it to distributed systems of considerable
complexity and dynamic behavior. We next situate ModP with related techniques for
modeling and analysis of distributed systems.

Formalisms and programming models. We categorize the formalisms for the model-
ing and compositional analysis of dynamic systems into three foundational approaches:
process algebras, reactive modules [9], and I/O automata [128].

49

2.5 related work

(1) Process algebra. In the process algebra approach deriving from Hoare’s CSP [102]
and Milner’s CCS [137], the π-calculus [138, 158] has become the de facto standard in
modeling mobility and reconfigurability for applications with message-based commu-
nication. The popular approach to reasoning about behavior in these formalisms is the
notions of equivalence and congruence: weak and strong bisimulation, which involves
examining the state transition structure of the two systems. There’s also extensive
literature on observational equivalence in π-calculus based on trace inclusion [43].
Extensions of π-calculus such as asynchronous π-calculus, distributed join calculus [79,
80], Dπ-calculus [166] deal with distributed systems challenges like asynchrony and
failures respectively. ModP chooses Actors [5] as its model of computation, and our
theory of compositional refinement uses trace inclusion based only on the externally
visible behavior as it dramatically simplifies our refinement testing framework. In ModP,
abstractions (modules) are state machines capable of expressing arbitrary trace prop-
erties. More recent work like session types [35, 60, 105] and behavioral-types [12]
that have their roots in process calculi can encode abstractions in the type language
(e.g., [28]).
(2) Reactive modules. Reactive modules [9] is a modeling language for concurrent
systems. Modules communicate via single-writer multiple-reader shared variables
and a global clock drives each module in lockstep. Dynamic Reactive Modules [77]
(DRM) is an extension of Reactive Modules with support for the dynamic creation of
modules and dynamic topology. Dynamic discrete systems [77] gives the semantics
of dynamic reactive modules to model the creation of module instances and the
refinement relation between dynamic reactive modules is defined using a specialized
notion of transition system refinement. DRM does not formalize a compositionality
theorem for the hide operation. Also, our module system is novel compared to DRM
because of the fundamental differences in the supported programming model.
(3) I/O automata. Dynamic I/O automata (DIOA) [18] is a compositional model of
dynamic systems, based on I/O automata [128]. DIOA is primarily a (set-theoretic)
mathematical model, rather than a programming language or calculus. Our notion of
parallel composition, trace monotonicity, and trace inclusion based on externally visible
actions is inspired from DIOA and is formalized for the compositional reasoning
of actor programs. ModP incorporates these ideas into a practical programming
framework for building distributed systems.

Verification of distributed systems. There has been a lot of work towards reasoning
about concurrent systems using program logics deriving from Hoare logic [78, 101]
– which includes rely-guarantee reasoning [83, 191, 203] and concurrent separation
logic [74, 123, 149]. Actor services [185] propose program logic for modular proofs of
actor programs. DISEL [177] provides a language to implement and verify distributed
systems compositionally. The goal of these techniques is similar to ours, enable
compositional reasoning; they decompose reasoning along the syntactic structure
of the program and emphasize modularity principles that allow proofs to be easily

50

2.5 related work

constructed, maintained and reused. They require fine-grained specifications at the
level of event-handler, in our case programmer writes specifications for components
as abstractions. The focus on compositional testing instead of proof allows us to attach
an abstraction to an entire protocol rather than individual actions within that protocol
(e.g., Send-hooks in DISEL), thereby reducing the annotations required for validation.
The goal of this paper is to scale automated testing to large distributed services and
to achieve this goal we develop a theory of assume-guarantee reasoning for actor
programs.

Many recent efforts like IronFleet [96], Verdi [200], and Ivy [152] have produced
impressive proofs of correctness for the distributed system, but the techniques in these
efforts do not naturally allow for horizontal composition. McMillan [135] extended Ivy
with a specification idiom based on reference objects and circular assume-guarantee
reasoning to perform modular verification of a cache-coherence protocol.

Systematic testing of distributed systems. Researchers have built testing tools [121,
175] for automated unit testing of Java actor programs. Mace [112], TeaPot [36] and
P [53] provide language support for implementation, specification and systematic test-
ing of asynchronous systems. MaceMC [111] and MoDist [205] operate directly on the
implementation of a distributed system and explore the space of executions to detect
bugs in distributed systems. DistAlgo [127] supports asynchronous communication
model, similar to ours, and allows extraction of efficient distributed systems imple-
mentation from the high-level specification. None of these programming frameworks
tackle the challenges of compositional testing addressed in this paper. The conclusion
of most of the researchers who developed these systems is similar to ours: monolithic
testing of distributed systems does not scale [90].

McCaffrey’s article [131] provides an excellent summary of the approaches used
in the industry for systematic testing of distributed systems. Manual-targeted testing
is an effective technique where an expert programmer provides manually crafted
test-cases for finding critical bugs. However, it requires considerable expertise and
manual effort. ModP’s focus is on scaling automated testing and hence do not consider
manual-target testing as a baseline for comparison. Property-based testing is another
popular approach in industry for the semi-automatic testing of distributed systems
(e.g., QuickCheck) [14, 108]). ModP’s compositional testing approach, as well as the
monolithic testing method we compare it to, can both be viewed as property-based
testing since they assert the safety properties specified as monitors given a non-
deterministic test harness. The compositional testing methodology described in this
paper is orthogonal to the technique used for analyzing the test declarations; other
approaches such as manual-targeted or property-based testing can also be used for
discharging the test declarations.

51

3
B U I L D I N G D I S T R I B U T E D S Y S T E M S C O M P O S I T I O N A L LY

the fault-tolerant distributed computing
community has not developed the tools
and know-how to close the gaps between
theory and practice .. these gaps are
non-trivial and they merit attention by
the research community.

— Chandra et al., in “Paxos Made Live -
An Engineering Perspective”

In Chapter 2, we introduced a programming framework, ModP, that leverages
a new theory of compositional refinement for modular programming and scalable
systematic-testing of distributed systems. In this chapter, we present how this theory
of compositional reasoning can be applied in practice to build reliable distributed
systems. Using ModP, we build two fault-tolerant distributed services; we present an
empirical evaluation of the compositional systematic testing and runtime performance
of these distributed services that combine 7 different protocols.

3.1 from theory to practice

Theorems 2.4.3 and 2.4.4 indicate that there are two kinds of obligations that result
from assume-guarantee reasoning—safety and refinement. Although these obligations
can be verified using proof techniques, the focus of ModP is to use systematic testing
to falsify them. ModP allows the programmer to write each obligation as a test
declaration. The declaration test tname: P introduces a safety test obligation that the
executions of module P do not result in a failure (module P is safe). The declaration
test tname: P refines Q introduces a test obligation that module P refines module Q.
These test obligations are automatically discharged using ModP’s systematic testing
engine (Section 3.2).

52

3.1 from theory to practice

case study : fault tolerant distributed services . Figure 3.1 shows two
large distributed services that are representative of challenges in real-world distributed
systems: (i) atomic commit of updates to decentralized, partitioned data using two-
phase commit [88], and (ii) replicated data structures such as hash-tables and lists.
These distributed services use State Machine Replication (SMR) for fault-tolerance [172].
Protocols for SMR, such as Multi-Paxos [118] and Chain-Replication [165], in turn
use other protocols like leader election and fault detectors. To evaluate ModP, we
implemented each sub-protocol (diagonal lines) as a separate module and performed
compositional reasoning at each layer of the protocol stack. We also compare the
performance of the hash-table distributed service against its open-source counterpart
by benchmarking it on a cluster.

Figure 3.1: Fault-Tolerant Distributed Services

We illustrate using the protocol stack in Figure 3.1, how we used ModP to implement
and test a complex distributed system compositionally. We implement distributed
transaction commit using the two-phase commit protocol, which uses a single coor-
dinator state machine to atomically commit updates across multiple participant state
machines. Hashtable and list are implemented as deterministic state machines with PUT
and GET operations. These services by themselves are not tolerant to node failures. We
use SMR to make the two-phase commit and the data structures fault-tolerant by repli-
cating the deterministic coordinator, participant, and hash-table (list) state-machines
across multiple nodes. We implemented Multi-Paxos [118] and Chain-Replication [165]
based SMR, these protocols guarantee that a consistent sequence of events is fed to
the deterministic (replicated) state machines running on multiple nodes. These events
could be operations on a data-structure or operations for two-phase-commit. Multi-
Paxos and Chain-Replication, in turn, use different sub-protocols. Though both these
protocols provide linearizability guarantees their implementations are very different

53

3.1 from theory to practice

with distinct fault models and hence acts as an excellent case study for module (proto-
col) substitution. For example, Multi-Paxos uses 2n+ 1 replicas to tolerate n failures
whereas Chain Replication exploits a reliable failure detector to use only n+ 1 replicas
for tolerating n failures. The protocols in the software stack use various OS services
like timers, network channels, and storage services which are not implemented in
ModP. We provide over approximating models for these libraries in ModP which are
used during testing but replaced with the library, and OS calls for real execution.

compositionally testing transaction-commit service . The ModP ap-
proach would be to test each of the sub-protocol in isolation using abstractions of the
other protocols. For example, when testing the two-phase commit protocol, we replace
the Multi-Paxos based SMR implementation with its single process linearizability
abstraction. Our evaluation demonstrates that such abstraction based decomposition
provides orders of magnitude test-coverage amplification compared to monolithic
testing. Further, our approach for checking refinement through testing is effective in
finding errors in module abstractions, thus, helping ensure soundness. We checked
the safety specifications (as spec. machines) of all the protocols as described in their
respective paper. The table below shows examples of specifications checked for some
of the distributed protocols.

Protocol Specifications

2PC Transactions are atomic [87] (2PCSpec)

Chain Repl. All invariants in [165], cmd-log consistency (CRSpec)

Multi-Paxos Consensus requirements [119], log consistency [193] (MPSpec)

Figure 3.2: Specifications checked for each protocol

Listing 3.1 presents a simplified version of the test-script used for compositionally
testing the transaction-commit service. The modules 2PC, MultiPaxosSMR, ChainRepSMR
represent the implementations of the two-phase commit, Multi-Paxos based SMR, and
Chain-Replication based SMR protocols respectively. The module SMRLinearizAbs rep-
resent the linearizability abstraction of the SMR service, both Multi-Paxos based SMR
and Chain-Replication based SMR provide this abstraction. The module SMRClientAbs
represent the abstraction of any client of the SMR service. OSServAbs implements
the models for mocking OS services like timers, network channels, and storage. A
failure injector machine that randomly halts machines in the program is also added
as part of the OSServAbs. There are two sets of implementation modules Pm ={2PC
, MultiPaxosSMR, OSServAbs} or Pc ={2PC, ChainRepSMR, OSServAbs} representing the
Multi-Paxos and Chain-Replication based versions. The set of abstraction modules
is Q ={SMRClientAbs, SMRLinearizAbs, OSServAbs}. The test obligation mono represents
the monolithic testing problem for transaction-commit service.

54

3.1 from theory to practice

� �
1 // monolithic testing of software stack
2 test mono: (assert 2PCSpec in 2PC) || MultiPaxosSMR ||

OSServAbs;
3
4 // Decomposition using compositional safety
5 test t1: (assert 2PCSpec in 2PC) || SMRLinearizAbs ||

OSServAbs;
6 test t2: SMRClientAbs || MultiPaxosSMR || OSServAbs;
7 test t3: SMRClientAbs || MultiPaxosSMR || OSServAbs
8 refines SMRClientAbs || SMRLinearizAbs || OSServAbs;
9 test t4: 2PC || SMRLinearizAbs || OSServAbs

10 refines SMRClientAbs || SMRLinearizAbs || OSServAbs;
11 //Multi Paxos linearizability as specification machine
12 test t5: SMRClientAbs || assert MPSec in MultiPaxosSMR ||

OSServAbs;
13
14 //test chain replication SMR
15 test t6: SMRClientAbs || ChainRepSMR || OSServAbs
16 test t7: SMRClientAbs || ChainRepSMR || OSServAbs
17 refines SMRClientAbs || SMRLinearizAbs || OSServAbs;
18 //Chain replication linearizability as specification machine
19 test t8: SMRClientAbs || assert CRSpec in ChainRepSMR ||

OSServAbs;
20
21 //test 7
22 module LHS = ChainRepSMR || SMRClientAbs || TestDriver ||

OSServAbs;
23 module RHS =
24 // hide replicated machine creation operation
25 (hidei SMRReplicatedMachineInterface in
26 //hide events used for interaction with replicated

machine
27 (hidee eSMRReplicatedMachineOperation ,

eSMRReplicatedLeader in
28 SMRClientAbs || TestDriver || SMRReplicated ||

OSServAbs));
29 test t7: LHS refines RHS;� �

Listing 3.1: Compositional Testing of Transaction Commit Service

Similar to property-based testing [14], the programmer can attach specifications to
modules under test using the assert constructor (e.g., Listing 3.1-line 5). Using The-
orem 2.4.3, we can decompose the monolithic problem into safety tests t1 and t2
under the assumption that each module in Pm refines each module in Q. This as-

55

3.2 implementation of the modp tool chain

sumption is then validated using the Theorem 2.4.4 and tests t3, t4. The power of
compositional reasoning is substitutability; if the programmer wants to migrate the
transaction commit service from using Multi-Paxos to use Chain-Replication then he
just needs to validate ChainRepSMR in isolation using tests t6 and t7. The tests t5 and
t8 are substitutes for the refinement checks t4 andt7 since the spec. machines (from
the table) assert the linearizability abstraction of these protocols.

The test declarations used in practice are a bit more involved than Listing 3.1. There
are two main points: (1) For each test declaration, the programmer provides a finite test
harness module comprising non-deterministic machines that close the module under
test by either supplying inputs or injecting failures. The programmer may provide a
collection of test harnesses modules for each test declaration to cover various testing
scenarios for each test obligation. (2) In some cases, the module constructors like
hide and rename have to be used to make modules composable or create the right
projection relation. Listing 3.1 (line 22-29) represent the test-script we used to perform
test t7. We had to hide internal events sent to the replicated machine to create the
right projection relation for refinement.

3.2 implementation of the modp tool chain

In this section, we describe the implementation of the ModP toolchain (Figure 3.3).
The ModP toolchain is available as part of the P programming framework (https:
//github.com/p-org/P).

Implementation

Specification

Abstraction

Test

Compiler
Toolchain

ModP
systematic

testing
tool

C# Code

Wrappers

Autogen
 C Impl.

ModP
deployment

tool

OS, libs

Wrappers

ModP
 Runtime

Autogen
 Impl.

Target Platform

(Reproducible) Error Trace

ModP Program

Figure 3.3: ModP Programming Framework

56

https://github.com/p-org/P
https://github.com/p-org/P

3.2 implementation of the modp tool chain

Compiler. A ModP program comprises four blocks — implementation modules,
specifications monitors, abstraction modules and tests. The compiler static-analysis
of the source code not only performs the usual type-correctness checks on the code
of machines but also checks that constructed modules are well-formed, and test
declarations are legal. The compiler generates code for each test declaration; this
generated code makes all sources of nondeterminism explicit and controllable by the
systematic testing engine, which generates executions in the test program checking
each execution against implicit and explicit specifications. For each test declaration, the
compiler generates a standalone program that can be independently analyzed by the back-end
systematic testing engine. The compiler also generates C code which is compiled and
linked against the ModP runtime to generate application executables.
Systematic testing engine. The ModP systematic testing engine efficiently enumerates
executions resulting from scheduling and explicit nondeterministic choices. The ModP
compiler generates a standalone program for each safety test declaration. We reuse
the existing P testing backends for safety test declarations with modifications to take
into account the extensions to P state machines. There are two backends provided
by P: (1) a sampling-based testing engine that explicitly sample executions using
delay-bounding based prioritization (Chapter 4), and (2) a symbolic execution engine
with efficient state-merging using MultiSE [176, 204].

We extended the sampling based testing engine to perform refinement testing of
ModP programs based on trace containment. Our algorithm for checking P � Q

consists of two phases: (1) In the first phase, the testing engine generates all possible
visible traces of the abstraction module Q and compactly caches them in memory. The
abstraction modules are generally small, and hence, all the traces of Q can be loaded in
memory for all our experiments. (2) In the second phase, the testing engine performs
stratified sampling of the executions in P, and for each terminating execution checks
if the visible trace is contained in the cache (traces of Q). A safety bug is reported
as a sequence of visible actions that lead to an error state. In the case of refinement
checking, the tool returns a visible trace in implementation that is not contained in the
abstraction.
Distributed runtime. Figure 3.4 shows the structure of a ModP application executing
on distributed nodes. We believe that the multi-container runtime is a generic archi-
tecture for executing programs with distributed state-machines. Each node hosts a
collection of Container processes. Container is a way of grouping collection of ModP
state machines that interact closely with each other and must reside in a common
fault domain. Each Container process hosts a listener, whose job is to forward events
received from other containers to the state machines within the container. State ma-
chines within a container are executed concurrently using a thread pool and as an
optimization interacts without serializing/deserializing the messages.

Each node runs a NodeManager process which listens for requests to create new
Container processes. Similarly, each Container hosts a single ContainerManager that

57

3.3 evaluation

Node Manager

StateMachines

C
on

ta
in

er
-1

 L
is

te
n

er

Container
Manager

g

Node Manager

StateMachines

C
on

ta
in

er
-1

 L
is

te
n

er
Container
Manager

g

StateMachines

C
o

n
ta

in
er

-2
 L

is
te

n
er

Container
Manager

Node 1 Node 2

Figure 3.4: Structure of ModP application

services requests for creations of new state machines within the container. In the typical
case, each node has one NodeManager process and one Container process executing
on it, but ModP also supports a collection of Containers per node enabling emulation
of large-scale services running on only a handful of nodes. A ModP state machine
can create a new container by invoking runtime’s CreateContainer function. A state
machine can create a new local or remote state machine by specifying the hosting
container’s ID. Hence, the ModP runtime enables the programmer to distribute
state-machines across distributed nodes and also group them within containers for
optimizing the performance.

In summary, the runtime executes the generated C representation of the ModP
program and has the capability to (1) create, destroy, and execute distributed state
machines, (2) efficiently communicate among state machines that can be distributed
across physical nodes, (3) serialize data values before sends and deserialize them after
receives.

3.3 evaluation

We empirically evaluate ModP framework by compositionally implementing and
testing the fault-tolerant distributed services software stack (Figure 3.1). The goal of
our evaluation is twofold:
(Goal 1) Demonstrate that the theory of compositional refinement helps scale systematic
testing to complex large distributed systems. We show that compositional testing leads

58

3.3 evaluation

Protocol Impl. Specs. Abst. Test Test

Driver Decls

2 Phase Commit 441 61 41 35 128

Chain Rep. SMR 1267 220 173 130 105

Multi-Paxos SMR 1617 101 121 92 90

Data structures 276 25 - 89 25

Total 3601 Others = 1436

Figure 3.5: Source lines of ModP code

to test-amplification in terms of both: increasing the test-coverage and finding more
bugs (faster) than the monolithic testing approach (Section 3.3.2). We present anecdotal
evidence of the benefits of refinement testing. It helps find bugs that would have been
missed otherwise when performing abstraction-based compositional testing.
(Goal 2) Demonstrate that the performance of the (rigorously tested) distributed
services built using ModP is comparable to the corresponding open-source baseline.
We evaluate the performance of the hash-table distributed service by benchmarking it
on Azure cluster (Section 3.3.3).

3.3.1 Programmer Effort

The Table below shows a five-part breakdown, in source lines of ModP code, of our
implementation of the distributed service. The Impl. column represents the detailed
implementation of each module whose – generated C code can be deployed on the
target platform. Specs. column represents the component-level temporal properties
(monitors). Abst. column represents abstractions of the modules used when testing
other modules. The Driver column represents the different finite test-harnesses written
for testing each protocol in isolation. The last column represents the test declarations
across protocols to compositionally validate the “whole-system” level properties as
described in Section 2.4.1.

3.3.2 Compositional Testing

The goal of our evaluation is to demonstrate the benefits of using the theory of
compositional refinement in testing distributed systems, and hence, we use the same
backend engine (Section 3.2) for testing both the monolithic test declaration and the
corresponding compositional test declarations. We use the existing systematic testing
engine of P that supports state-of-the-art search prioritization (Chapter 4) and other
efficient bug-finding techniques for analyzing the test declarations. Note that the

59

3.3 evaluation

Figure 3.6: Test-Amplification via Abstractions: Chain-Replication Protocol

approach used for analyzing the test declarations is orthogonal to the benefits of using
compositional testing.

Compositional reasoning led to the state-space reduction and hence amplification of
the test-coverage, uncovering 20 critical bugs in our implementation of the software
stack. To highlight the benefits of using ModP-based compositional reasoning, we
present two results in the context of our case-study: (1) abstractions help amplify the
test-coverage for both the testing backends, the prioritized execution sampling and
symbolic execution (Section 3.2), and (2) this test-coverage amplification results in
finding bugs faster than the monolithic approach. For monolithic testing, we test the
module constructed by composing the implementation modules of all the components.

Test-amplification via abstractions. Using abstractions simplifies the testing prob-
lem by reducing the state-space. The reduction is obtained because a large number
of executions in the implementations can be represented by an exponentially small
number of abstraction traces.

To show the kind of amplification obtained for the sampling based testing approach,
we conducted an experiment to count the number of unique executions in the imple-
mentation of a protocol that maps to a trace in its abstraction. Figure 3.6 present the
graph for the Chain-Replication (CR) protocol with a finite test-harness that randomly
pumps in 5 update operations. The x-axis represents the traces in the abstraction
sorted by y-axis values, where the y-axis represents the number of executions in
the implementation that maps (projects) to the trace in abstraction. The linearizability
abstraction (guaranteed by Chain-Replication protocol) has 1931 traces for the finite
test-harness, and there were exponentially many executions in the CR implementation.
We sampled 106 unique executions in the CR implementation for this experiment.

The graph in Figure 3.6 is highly skewed and can be divided into three regions of
interest: region (A) correspond to those traces in the abstraction to which no execution

60

3.3 evaluation

Protocol
Schedules Explored

Monolithic CST

MPaxos (bug1) 13 11
2PC (bug2) 1944 19

ChainR (bug3) 2018 13
MPaxos (bug4) NF 91

T2PC (bug5) NF 112
ChainR (bug6) NF 187
ChainR (bug7) NF 782
MPaxos (bug8) NF 2176

Figure 3.7: CST vs. Monolithic Testing. (NF: Bug not found)

mapped from the samples set of 106 implementation executions which could be either
because these traces correspond to a very low probability execution in implementa-
tion or are false positives; region (B) represent those traces that correspond to low
probability executions in the implementation; region (C) represent those executions
that may lead to a lot of redundant explorations during monolithic testing. Using
linearizability abstraction helps in mitigating this skewness and hence increases the
probability of exploring low probability behaviors in the system leading to amplifica-
tion of test-coverage (as in some cases exploring one execution in the abstraction is
equivalent to exploring approx. 8779 executions in the implementation).

Next, we show that the compositional testing approach helps the sampling based
back-end to find bugs faster. We randomly chose 8 bugs (out of 20) that we found in
different protocols during the development process. We compared the performance of
compositional testing (CST) against the monolithic testing approach where the entire
protocol stack is composed together and considered as a single monolithic system.
We use the number of schedules explored before finding the bug as the comparison
metric. Figure 3.7 shows that ModP-based compositional approach helps the sampling
based back-end find bugs faster than the monolithic approach and in most cases, the
monolithic approach fails to find the bug even after exploring 106 different schedules.

P also supports a symbolic execution back-end that uses the MultiSE [176, 204]
based approach for state-merging. To evaluate the test amplification obtained for the
symbolic execution back-end, we compared the performance of the testing engine for
the monolithic testing problem and its decompositions from Listing 3.1. We performed
the test mono using the symbolic engine for a finite test-harness where the 2PC performs
5 transactions. The symbolic engine could not explore all possible execution of the
problem even after 10 hrs. We performed the tests t1, t2, t5, t8 (for the same finite
test-harness) and the symbolic engine was able to explore all possible executions for

61

3.3 evaluation

each decomposed test in 1.3 hours (total). The upshot of our module system is that we
can get complete test-coverage (guaranteeing absence of bugs) for a finite test-harness
which was not possible when doing monolithic testing.

We describe a few of these bugs in detail to illustrate the diversity of bugs found in
practice.

1. ChainR (bug7) represents a consistency bug that violates the update propagation
invariant in [165]. The bug was in the chain repair logic and can be reproduced
only when an intermediate node in the chain that has uncommitted operations,
first becomes a tail node because of tail failure and then a head node on the head
failure. This specific scenario could not be uncovered using monolithic testing
but is triggered when testing the Chain-Replication protocol in isolation because
of the state-space reduction obtained using abstractions.

2. MPaxos (bug4) represents a bug in our acceptor logic implementation that vi-
olates the P2c invariant in [119]. For this bug to manifest, it requires multiple
leaders (proposers) in the Multi-Paxos system to make a decision based on an
incorrect promise from the acceptor. In a monolithic system, because of the
explosion of non-deterministic choices possible the probability of triggering a
failure that leads to choosing multiple leaders is extremely low. When composi-
tionally testing Multi-Paxos, we compose it with a coarse-grained abstraction of
the leader election protocol. The abstraction non-deterministically chooses any
Multi-Paxos node as a leader and hence, increasing the probability of triggering
a behavior with multiple leaders.

3. Meaningful testing requires that the abstractions used during compositional
reasoning are sound abstractions of the components being replaced. We were
able to uncover scenarios where bugs could have been missed during testing
because of an unsound abstraction. The linearizability abstraction was used
when testing the distributed services built on top of SMR. Our implementation
of the abstraction guaranteed that for every request there is a single response. For
Chain-Replication protocol (as described in [165]), in a rare scenario when the tail
node of the system fails and after the system has recovered, there is a possibility
that a request may be responded multiple times. Our refinement checker was
able to find this unsound assumption in the linearizability abstraction which
led to modifying our Chain-Replication implementation. This bug could have
caused an error in the client of the Chain-Replication protocol as it was tested
against the unsound linearizability abstraction.

During compositional systematic testing, abstractions are used for decomposition.
False positives can occur if the abstractions used are too coarse-grained and contain
behaviors not present in the implementation. The number of false positives uncovered

62

3.3 evaluation

Figure 3.8: Performance of ModP HashTable using Multi-Paxos (MP) is comparable with an
open source baseline implementation (mean over 60s close-loop client runs).

during compositional testing was low (4) compared to the real bugs that we found.
We think that this could be because the protocols that we considered in this paper
have well-studied and known abstractions.

3.3.3 Performance Evaluation

We would like to answer the question: Can the distributed applications build modularly
using ModP with the aim of scalable compositional testing rival the performance of corre-
sponding state-of-the-art implementations? We compare the performance of the code
generated by ModP for the fault-tolerant hash-table built using Multi-Paxos against
the hash-table built using the popular open-source reference implementation of Multi-
Paxos from the EPaxos codebase [142, 143]. All benchmarking experiments for the
distributed services were run on A3 Virtual Machine (with 4-core Intel Xeon E5-2660
2.20GHz Processor, 7GB RAM) instances on Azure.

To measure the update throughput (when there are no node failures in the system),
we use clients that pump in requests in a closed loop; on getting a response for
an outstanding request, the client goes right back to sending the next request. We
scale the workload by changing the number of parallel clients from 2 to 128. For the
experiments, each replica executes on a separate VM. Figure 3.8 summarizes our result
for one fault-tolerant (1FT = 3 paxos nodes) and two fault-tolerant (2FT = 5 paxos
nodes) hash-tables. We find the systematically tested ModP implementation achieves
between 72%(2FT, 64 clients) to 80% (1FT, 64 clients) of peak throughput of the open
source baseline (EPaxos codebase [142, 143]). The open source implementation of the

63

3.4 summary

E-Paxos protocol suite is highly optimized and implemented in Go language (1169
LOC). We believe that the current performance gap between the two implementations
can be further reduced by engineering our distributed runtime. The high-level points
we would like to convey from these performance number is that it is possible to
build distributed services using ModP that are rigorously tested and have comparable
performance to the open source counterpart.

3.4 summary

ModP is a new approach that makes it easier to build, specify, and test distributed
systems. We use ModP to implement and validate a practical distributed systems
protocol stack. ModP is effective in finding bugs quickly during development and
get orders of magnitude more test-coverage than monolithic approach. ModP ’s
compositional testing has the power to generate and reproduce within minutes,
executions that could take months or even years to manifest in a live distributed
system. The distributed services built using ModP achieve performance comparable
to state-of-the-art open source equivalents.

64

Part II

V E R I F I C AT I O N A N D S Y S T E M AT I C T E S T I N G O F
E V E N T- D R I V E N S Y S T E M S

In Part i, we introduced the P language for modular and safe event-driven
programming. The ModP module system (Chapter 2) allows programmers
to perform compositional verification (or systematic testing) of P programs.
Scalable analysis (using model-checking) of even the decomposed system is
difficult because of the state-space explosion problem. State-space explosion
occurs due to several reasons – explosion of the underlying data-space
domain, explosion due to the myriad interleavings caused due to con-
currency, and explosion due to the unbounded message buffers used for
communication.

In this part, we describe two potential approaches for mitigating the state-
space explosion problem: (1) Search prioritization-based Falsification
(or bug-finding): Extending the model-checker with guided or directed
search geared towards falsification of the property to be verified; and (2)
Abstraction-based Verification: Using a sound abstraction (superset) of the
program behaviors to simply the overall verification problem.

Chapter 4 presents a scalable approach for systematic testing of P programs.
We introduce the concept of a delaying explorer with the goal of perform-
ing prioritized exploration of the behaviors of an asynchronous reactive
program. A delaying explorer stratifies the search space using a custom
strategy, and a delay operation that allows deviation from that strategy.
We show that prioritized search with a delaying explorer performs signifi-
cantly better than existing approaches for finding bugs in P programs. In
Chapter 5, we present an abstraction-based model-checking approach for
verification of almost-synchronous event-driven systems implemented us-
ing P. We introduce approximate synchrony, a sound and tunable abstraction
for verification of almost-synchronous systems. We show how approximate
synchrony can be used for verification of both time-synchronization pro-
tocols and applications running on top of them. Moreover, we show how
approximate synchrony also provides a useful strategy to guide state-space
exploration during model-checking.

65

4
S Y S T E M AT I C T E S T I N G O F A S Y N C H R O N O U S E V E N T- D R I V E N
P R O G R A M S

Thorough testing is the touchstone of
reliability in quality assurance and
control of modern production
engineering.

— C.A.R Hoare in “How Did Software
Get So Reliable Without Proof?”

Systematic testing of asynchronous programs is notoriously difficult due to the
nondeterministic nature of their computation; an error could result from a combination
of some choice of inputs and some interleaving of event handlers. This chapter
is concerned with the problem of systematic testing of complex P programs by
automatically enumerating all sources of nondeterminism, both from environment
input and from scheduling of concurrent processes.

The main challenge in scaling systematic testing to real-world P programs is a large
number of behaviors that explode exponentially with the complexity of the imple-
mented system. Techniques such as state caching [104] and partial-order reduction [84]
have been developed to combat this explosion, yet their worst-case complexity remains
exponential. In practice, the search often takes too long and has to be terminated
because of a time-bound, thereby giving no information to the programmer. Therefore,
researchers have been motivated to investigate prioritized search techniques, both
deterministic [71, 146] and randomized [31], to provide partial coverage information.
However, all of these techniques have been developed for shared-memory multi-
threaded programs. In asynchronous reactive programs, the primary mechanism for
communication among concurrent processes is message-passing rather than shared
memory. We have discovered empirically (Section 4.4) that prioritization techniques de-
veloped for multithreaded programs are not effective when applied to message-passing
programs.

Systematic Testing using Delaying Explorer. We introduce a new technique for
the systematic testing of asynchronous reactive programs. Our technique is inspired

66

systematic testing of asynchronous event-driven programs

by the notion of a delaying scheduler [71] for multithreaded programs. A delaying
scheduler is a deterministic thread scheduler equipped with a delay operation whose
invocation changes the default scheduling strategy. For asynchronous reactive pro-
grams, we generalize this notion to a delaying explorer of all nondeterministic choices
(Section 4.1), both from the input and the interleaving of event handlers. The crucial
observation that makes a delaying explorer suitable for systematic testing is that every
execution can be produced by introducing a finite number of delays in the determinis-
tic execution prescribed by the explorer (Theorem 4.1.1). We show that appropriately
designed delaying explorers are significantly more effective than existing prioritization
techniques in searching for errors in executions of asynchronous message-passing
systems.

db = 1

db = 2

db = 3 db = 4
db = 5

db = 1
db = 2

D1 D2

Figure 4.1: Stratification using Delaying Explorers. D1 and D2 represent two different search
strategies induced by different delay explorers, and db represents the delay budget.

A delaying explorer induces stratification in the search space of all executions. A
stratum is the set of executions that require the same number of delays. Figure 4.1
represents the stratification pictorially; db = 1 is the set of executions with one delay,
db = 2 is the set of executions with two delays, and so on. A delaying explorer specifies
a prioritized search that explores these strata in order. Since the number of possible
executions increases exponentially with the delay budget, exploration for high budget
values becomes prohibitively expensive. Therefore, a delaying explorer is practical
only if bugs are uncovered at low values of the delay budget. Figure 4.1 shows the
stratification induced by two different delaying explorers. The explorer D2 is more
effective than D1 at discovering a particular bug if that bug lies in a lower stratum for
D2 than for D1.

The difference in stratification induced by different delaying explorers has practical
consequences. We have observed empirically that there is considerable variance in the

67

systematic testing of asynchronous event-driven programs

speed of detecting errors across different delaying explorers for different test problems1.
Motivated by this observation, we have designed a general delaying explorer interface
that helps programmers quickly write custom search strategies in a small amount of
code, typically less than 50 LOC. Delaying explorers also provides developers and
testers with a simple and elegant mechanism to express domain-specific knowledge
regarding parts of the search space to prioritize. We have written several delaying
explorers using our framework and used them to find bugs in implementations of
distributed protocols that could not be discovered using any other method. We describe
a particular case study in Section 4.4.

Given a delaying explorer, we need techniques for effectively exploring the strata
induced by the explorer. In this chapter, we also present two algorithms —Stratified
Exhaustive Search (SES) and Stratified Sampling (SS)— for solving this problem.
SES performs a stratified search by iteratively incrementing the delay budget and
exhaustively enumerating all schedules that can be explored with a given delay
budget. Inspired by model checking techniques, we incorporate state caching to avoid
redundant exploration of schedules. By caching the states visited along with execution,
we can prune the search if an execution generated subsequently leads to a state in the
cache. Incorporating state caching in delaying exploration is nontrivial because search
is performed over executions of the composition of the program and the delaying
explorer, both reading and updating their private state in each step of the execution.
The naive strategy of caching the product of the program and the explorer state does
not work because the delaying explorer can be an arbitrary program with a huge state
space of its own. Instead, our algorithm caches only the program state yet guarantees
that in the limit of increasing delay budgets, all executions of the program are covered.
Our evaluation shows that SES finds bugs orders of magnitude faster than prior
prioritization techniques on our benchmarks (Section 4.4).

Even though state caching is an important optimization, it is not a panacea to the
explosion inherent in systematic testing. The complexity of the algorithm mentioned
in the previous paragraph still grows exponentially with the number of allowed delays.
Consequently, if a delaying explorer is unable to find a bug quickly within a few
delays, the search must be stopped because of the external time bound. To further
scale search to large delay budgets, we present the SS algorithm, which performs
stratified sampling of the search space with probabilistic guarantees. Our algorithm
guarantees that any execution that is visited with db delays is sampled with probability
at least 1/Ldb, where L is the maximum number of program steps. SS is useful because
it allows even distribution of the limited time resource over the entire search space.
Furthermore, since each sample is generated independently of every other sample,
random exploration can be easily and efficiently parallelized or distributed. Finally, for
some systems state caching may not be possible because of the difficulty of taking a
snapshot of the entire system state. In this situation, search based on random sampling

1 A test problem is the combination of a program and a specification.

68

4.1 delaying explorer

could be very useful. We empirically show (Section 4.4) that on our benchmarks,
SS can find bugs faster, often by an order-of-magnitude, compared to the prior best
technique [31] for random sampling of executions of multithreaded programs.

We have implemented these algorithms in the P explorer for systematic testing
of P [53] programs. We note that our techniques are not limited to the P language.
They generalize to any programming system with two properties: (1) ability to create
executable models of the execution environment of a program, and (2) control over all
sources of nondeterminism in program semantics. The search prioritization approach
using delaying explorers can then be applied to analyze programs in that framework
by systematically enumerating non-deterministic choices with stratification.

We conclude this section by summarizing our contributions:

1. We introduce delaying explorers as a foundation for systematic testing of asyn-
chronous reactive programs. We empirically demonstrate that for the domain of
message-passing programs, delaying explorers are better, often by an order-of-
magnitude than existing prioritization techniques.

2. We observe that the efficacy of a delaying explorer depends on the type of bug
and scenario that causes it. To enable programmers to write custom explorers,
we have created a flexible interface for specifying explorers. We have written
four delaying explorers, each in less than 50 LOC, using our interface.

3. We present the SES algorithm that uses state-caching for efficiency while prior-
itizing search using a delaying explorer. The algorithm guarantees soundness
even without caching the state of the delaying explorer.

4. We present the SS algorithm to efficiently sample executions with a fixed number
of delays. Our algorithm guarantees that if a buggy execution exists with db
delays for a given delaying explorer, then each sample triggers the bug with
probability at least 1/Ldb where L is the maximum number of steps in the
program.

4.1 delaying explorer

In this section, we provide intuition for delaying explorers and their use in systematic
testing of asynchronous reactive systems. We begin by formally stating our model of
programs and explorers.

A program P is a tuple (S, Cid, T , s0):

1. S is the set of states of P.

2. Cid is a finite set of nondeterministic choices that P can make during execution.
This set includes both choices due to the scheduling of concurrent processes in P

and choices due to nondeterministic input received by each process.

69

4.1 delaying explorer

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Figure 4.2: A concurrent program represented as a transition graph

3. T ∈ Cid× S⇀ S is the transition function of P. If s ′ = T(c, s), we say that (s, s ′)
is a transition of P. We define Choices(s) = {c | ∃s ′. T(c, s) = s ′}.

4. s0 is the initial state of P.

A sequence of states s0, s1, s2, . . . , sn is an execution of P if (si, si+1) is a transition of
P for all i ∈ [0,n). A state s ∈ S is reachable if it is the final state of some execution.
An infinite sequence of states s0, s1, s2, . . . is an infinite execution of P if (si, si+1) is a
transition of P for all i > 0. We assume that P is terminating, i.e., it does not have any
infinite executions.

The formalization of the nondeterministic transition graph of an asynchronous
reactive program is standard in the literature; it is depicted pictorially in Figure 4.2.
The exploration algorithms popularized by model checking tools, e.g., SPIN [104],
view the transitions coming out of a state as unordered; the order in which those
transitions are explored is considered an implementation-level detail. A delaying
explorer, formalized below, instead considers the order of transitions an important
concern for efficient exploration. It provides a general interface for specifying this
order based on the entire history of the program execution.

A delaying explorer D is a tuple (D, Next, Step, Delay,d0):

1. D is the set of states of D. The state of the explorer typically includes a data
structure, e.g., stack or queue, to maintain an ordering among the choices
available to the program.

2. Next ∈ D→ Cid is a total function. Given an explorer state d, the choice Next(d)
is prescribed by the explorer to be taken next.

3. Step ∈ S×D→ D is a total function. Suppose we have a program state s and a
explorer state d, and we execute the choice Next(d) at s. Then Step(s,d) yields
the explorer state corresponding to the program state T(Next(d), s). The Step
function enables building explorers which change their state in response to

70

4.1 delaying explorer

Next Delay

Next Delay Next Delay

𝑆1, 𝐷1 , 0

𝑆0, 𝐷0 , 0

𝑆0, 𝐷2 , 1

𝑆4, 𝐷3 , 0 𝑆1, 𝐷4 , 1 𝑆2, 𝐷5 , 0
𝑆0, 𝐷6 , 2

Next

𝑆3, 𝐷11 , 0

Next Delay

𝑆5, 𝐷7 , 0 𝑆1, 𝐷8 , 2

Next Delay

𝑆7, 𝐷9 , 0 𝑆2, 𝐷10 , 1

Figure 4.3: A concurrent program composed with a delaying explorer

specific events that occur during the execution of the program, such as sending
or receiving of messages, creation of new processes, etc.

4. Delay ∈ D → D is a total function. Given an explorer state d, the application
Delay(d) yields a new explorer state. The Delay function provides a mechanism
to change the next choice to be explored. We call the operation a delay operation
as it delay’s the current choice of the deterministic scheduler and moves to the
next choice.

5. d0 is the initial state of D.

Consider a delaying explorer that attempts to order the outgoing transitions of each
state left to right for the program in Figure 4.2. The unfolding of the nondeterminism
in this program as controlled by such a delaying explorer is shown in Figure 4.3. We
formalize and explain the intuition behind this figure below.

Let (P,D) denote the composition of a program P and a delaying explorer D. A
state of (P,D) is a triple (s,d,n), where s is the state of P, d is the state of D, and n
is the number of consecutive delay operations applied in state s. A finite sequence
(s0,d0,n0)

x0−→ (s1,d1,n1)
x1−→ (s2,d2,n2)

x2−→ · · · is an execution of (P,D) if for all
i > 0, either (1) xi = Next, ni+1 = 0, T(Next(di), si) = si+1, and Step(si,di) = di+1, or
(2) xi = Delay, ni+1 = ni + 1, ni+1 < card(Choices(s)), si = si+1, and Delay(di) = di+1.

71

4.1 delaying explorer

In this execution, a transition Next−→ is a Next-transition and
Delay
−→ is a Delay-transition. In

Figure 4.3, each state has these two outgoing transitions precisely. A triple (s,d,n) is
a reachable state of (P,D) if it occurs on an execution. A db-delay execution of (P,D)

is one in which the number of Delay-transitions is db. Thus, a delaying explorer D

induces a stratification of the executions of a program P such that the i-th stratum
contains precisely the set of i-delay executions.

In order to ensure that all behaviors are covered, the delaying explorer must ensure
that successive applications of Delay generate all nondeterministic choices from a state.
To formalize this requirement, we define Delayk (for k > 0) inductively as

Delay0(d) = d

Delayk+1(d) = Delay(Delayk(d))
(4.1)

and Nextk (for k > 0) inductively as

Next0(d) = {}

Nextk+1(d) = Nextk(d)∪ {Next(Delayk(d))}.
(4.2)

A delaying explorer D is sound with respect to a program P if Choices(s) =

Nextcard(Choices(s))(d) for every reachable state (s,d) of (P,D). This property states
that all nondeterministic choices in a state are covered through iterative application of
the Delay operation composed with Next. In Figure 4.3, all successors, S1 through S3,
of state S0 are reachable via at most two invocations of Delay. This property guaran-
tees (Theorem 4.1.1) that reachability analysis on (P,D) is equivalent to reachability
analysis on P.

Theorem 4.1.1: Soundness of Delaying Explorer

Consider a program P and a delaying explorer D that is sound with respect to P. A
state s is reachable in P iff (s,d) is reachable in (P,D) for some d.

Proof. The proof is by induction on the length of an execution of P. The base case
for the initial state of P is trivial. For the inductive case, suppose s is reachable in k
steps and s has a transition to s ′. From the induction hypothesis, (s,d) is reachable
in (P,D) for some d i.e., all non-deterministic choices can be explored from (s, d).
Therefore, we can take a sequence of transitions in (P,D) to get to (s ′,d ′) for some d ′.
�

72

4.2 stratified exhaustive search

0 L-1

00 L-1 L-1

0

db

Execution with 0 delay

Executions with 1 delay

Executions with 2 delays

Figure 4.4: Stratified Exhaustive Search

Example 4.1.1: Round-Robin Delaying Explorer

Let us consider a simple program in which the only source of nondeterminism is the
scheduling of concurrent processes. An example of a delaying explorer for this program
is a round-robin process scheduler. The state D of this scheduler is a queue of process
ids initialized to contain the id of the initial process. Next returns the process id at the
head of the queue. Step instruments the program’s execution so that the id of a new
process is added to the tail, the id of a terminated process is removed, and the id of a
blocked process is moved to the tail. Delay moves the process id at the head to the tail.
This explorer maintains the invariant that the ids of all enabled processes are present in
the queue. By applying the Delay operation at most n times, where n is the size of the
queue, any enabled process can be moved to the head and be returned by a subsequent
call to Next. Therefore, this explorer is sound with respect to the program.

4.2 stratified exhaustive search

Figure 4.4 shows a pictorial representation of stratified exhaustive search of a program
with respect to a delaying explorer. In this picture, L is the maximum number of steps
in the program. In contrast to the graphs in Figure 4.2 and Figure 4.3 where a node
represents the program state, each node in Figure 4.4 is a complete execution of the
program. The root node is the execution with no delays. This execution presents at
most L positions to insert a delay operation, each yielding another complete execution
with a single delay operation. These executions are indicated by the nodes at the end
of the edges coming out of the root node. This process can be continued until all
executions have been generated. It is clear that there can be at most Ldb executions

73

4.2 stratified exhaustive search

with no more than db delays. Thus, for small values of db, it is feasible to enumerate
all executions even for large values of L. This observation suggests our stratified
exhaustive search algorithm (SES) which generates executions level by level, exploring
all executions at a level before moving to the next level. A delaying explorer induces a
stratification of the executions of a program; in general, different delaying explorers
induce different stratification for the same program. Thus, a delaying explorer is a
mechanism to bias the search performed by our SES algorithm to different parts of the
execution space.

Algorithm 4.2.1 Stratified Exhaustive Search
1: var db : N

2: var Frontier : Dictionary〈S, (D×N)〉
3: var Cache : Set〈S〉
4: function DelayBoundedDFS(s : S,d : D, i : N,n : N)
5: var s ′ : S
6: while (i < card(Choices(s)))
7: s ′ ← T(Next(d), s), i← i+ 1

8: if (s ′ 6∈ Cache) then
9: Cache← Cache∪ {s ′}

10: DelayBoundedDFS(s ′, Step(s,d), 0,n)
11: end if
12: if (n = db ∧ i < card(Choices(s))) then
13: Frontier(s)← (d, i)
14: return
15: end if
16: d← Delay(s,d),n← n+ 1

17: end
18: end function
19:
20: function SES
21: var db ′ : N

22: var Frontier ′ : Dictionary〈S, (D×N)〉
23: db← 0, Frontier← ∅, Cache← {s0}

24: DelayBoundedDFS(s0,d0, 0, 0)
25: while (Frontier 6= ∅)
26: Frontier ′ ← Frontier, Frontier← ∅
27: db ′ ← db, db← db + δ
28: for all ((s,d, i) ∈ Frontier ′) do
29: DelayBoundedDFS(s, Delay(s,d), i, db ′ + 1);
30: end
31: end
32: end function

74

4.2 stratified exhaustive search

The Algorithm 4.2.1 takes as input a program P, a delaying explorer D, and a
parameter δ > 0. It uses three global variables. The integer db, initialized to 0 and
iteratively incremented by δ, contains the current delay bound. During the search, a
frontier of pending executions that go beyond the current delay bound, is maintained
in the dictionary Frontier. For each state s in the frontier, Frontier contains a pair (d, i),
where d is the explorer state just prior to the the execution of i-th transition from state
s. The mapping from s to (d, i) is put into the frontier because the execution of the
i-th transition would require more delays than the current bound. Finally, we optimize
the search by using a cache of (hashes of) visited states maintained in the set Cache.

The workhorse of our algorithm is DelayBoundedDFS, a procedure with four
parameters—program state s, explorer state d, transition count i, and delay count n.
The goal of DelayBoundedDFS is to continue exploration from state s. The transition
count i is the number of transitions already explored from s. The delay count n is the
number of delays required, starting from the initial state, to execute the next transition
out of s. DelayBoundedDFS iterates through the transitions from s by repeatedly
invoking the Next operation of the delaying explorer to find out which transition
to execute also, incrementing i to indicate the execution of another transition. For
each discovered state s ′, if s ′ is not present in Cache then it is added to Cache and
DelayBoundedDFS is called recursively on s ′. The Delay operation of the delaying
explorer needs to be invoked to move to the next schedule. If the current delay count
n has already reached the current delay bound db, and there is at least one more
transition to be executed, then exploration cannot continue from s and work for
the remainder of exploration from s is added to the frontier. Otherwise, the Delay
operation is used to update d, and the delay count n is incremented.

The top-level procedure of our algorithm is SES. This procedure initializes db to 0
and Frontier and Cache to ∅. It then executes two nested loops. The outer loop iterates
over the value of db incrementing it by δ each time around. The goal of each iteration
of this loop is to restart each pending exploration in the current frontier. To do this
task, a copy of Frontier is made in Frontier ′ and Frontier is reset to ∅. The inner loop
then picks each work item in Frontier ′ and invokes DelayBoundedDFS with it. The
execution of the inner loop refills Frontier which is again emptied in the next iteration
of the outer loop. Theorem 4.2.1 formalizes the correctness of the SES algorithm.

Theorem 4.2.1: Soundness of Stratified Exhaustive Search

Consider a program P and a delaying explorer D that is sound with respect to P. The
SES Algorithm 4.2.1 terminates and visits a state s ′ iff s ′ is reachable from s0.

Proof. We argue that SES terminates for any program P. Since P does not have
any infinite executions and Choices(s) ⊆ Cid is finite for any state s, any invocation
of DelayBoundedDFS terminates. The inner loop in SES terminates because each
iteration removes one entry from Frontier ′. The termination of the outer loop is based

75

4.3 stratified sampling

on the observation that the inner loop adds a state s to Frontier only if there is an
execution reaching s with more delays than db ′. The number of delays in an execution
is bounded by L×Cid, where L is the maximum number of steps in P. Since the outer
loop increments db ′ in each iteration and the number of delays for an execution is
bounded, eventually Frontier will become empty.

Next, we argue that SES is safe and eventually visits all reachable states of P. This
argument depends on the crucial assumption that the delaying explorer D is sound
with respect to P. Because of this property, by applying delays repeatedly in a state all
outgoing transitions are taken.

Neither the termination nor the safety argument for our algorithm depends on Cache.
The only role of Cache is to optimize the search by avoiding redundant executions.
Therefore, there is considerable flexibility in how much memory is devoted to the
storage for Cache. The two extreme cases are when Cache is not used at all, and when
all visited states are put into Cache. However, it is possible, and our implementation
supports imposing a bound on the memory consumption for Cache beyond which
states are either not added to Cache or added with replacement.

An important consideration in our use of Cache is that we store only the program
state in it and avoid storing the explorer state. This design has the advantage that we
get the maximum pruning out of the use of state caching. If a state s is first visited
with explorer state d and later with explorer state d ′, the second visit is ignored
even if it happened with fewer delays compared to the first visit. As a result, we can
avoid re-exploration for the second visit. However, it may be possible that a state is
discovered with a higher delay than the minimum delay required to visit it. We believe
that this trade-off is good because the primary goal of a delaying explorer is to bias
the search rather than enforcing strict priority.

Finally, we note that it is enough to store only a hash of a state in Cache. How-
ever, it is essential to store the full state both when it is passed as a parameter to
DelayBoundedDFS or when it is stored in Frontier since the program needs to be
executed from it. For the latter uses, a state could either be cloned or reconstructed by
re-executing the program from the beginning.

�

4.3 stratified sampling

In the previous section, we described the SES algorithm to perform an exhaustive
stratified search over the executions of an asynchronous reactive program. In this
section, we describe a complementary algorithm that enables stratified exploration via
near-uniform random sampling of executions from the strata induced by a delaying
explorer; we call this algorithm the stratified sampling algorithm (SS).

76

4.3 stratified sampling

𝑆0,0

𝑆𝑛0,0

𝑆𝑛0+1,0

𝑆𝐿0,0

𝑆𝑛1,1

𝑆0,1

𝑆𝑛1+1,1

𝑆𝐿1,1

𝑆𝐿2,2

𝑆0,2

𝑆1,2

Next

Next

Next

Next

Next

Next

Delay

Next

Delay

Figure 4.5: A run of SS algorithm

To motivate why random sampling is beneficial, we note that the complexity of the
SES algorithm grows exponentially with the upper bound on the number of allowed
delays. Consequently, if a delaying explorer is unable to find a bug quickly within
a few delays, the search often takes more time than the programmer is willing to
wait for. To deal with this common problem, a time bound is usually supplied in
addition to the number of delays. When an external time bound could stop the search
before the delay limit has been reached, random sampling has certain advantages over
exhaustive deterministic exploration. First, unlike deterministic exploration, random
sampling can sample every execution with a non-zero probability, making it possible
to distribute the limited time resource over the entire search space. Second, since each
sample is generated independently of every other sample, random exploration can be
easily and efficiently parallelized, an important advantage in an era where parallelism
is abundantly available via multicore and cloud computing.

Figure 4.5 shows how our algorithm samples an execution with two delay operations.
First, the ExecutePath function (defined later in Algorithm 4.3.2) executes the program
using a custom strategy defined by the delaying scheduler without introducing any
delays. The ExecutePath function returns the length of the execution L0 from the
start state to the terminal state. Using choose(L0) we uniformly pick a value n0
in the range [0,L0) to insert the first delay. When ExecutePath is invoked again, it
introduces a delay at n0, deterministically executes the program up to termination,
and returns L1, the length of the path since the last delay. Using choose(L1) we

77

4.3 stratified sampling

uniformly pick a value n1 in the range [0,L1) to insert the second delay. Finally, the
execution S0,0 →∗ Sn0,0 → S0,1 →∗ Sn1,1 → S0,2 →∗ SL2,2 represents a random execution
with two delays.

Given a program P, a delaying explorer D, and a delay bound db, an invocation
of DelayBoundedSample (Algorithm 4.3.2) produces a terminating execution of P with
no more than db delays. The random exploration performed by our algorithm is
very different in spirit from the classical random walk algorithm on a state-transition
graph (Figure 4.2) which starts from the initial state and executes the program by
randomly selecting a transition out of the current state. This naive random walk,
although it guarantees a non-zero probability for sampling any execution, suffers from
the problem that the probability of sampling long executions decreases exponentially
with the execution length. Instead, our algorithm performs a random walk, not on
the state-transition graph, but a different graph (Figure 4.4) induced by the delaying
explorer D. In this graph, each node is a complete terminating execution (as opposed
to a state), and an edge is a position in the execution for inserting a delay (as opposed
to transition). We show later that the probability of sampling any execution requiring
db delays is at least 1

Ldb . Unlike the naive random walk, the probability of sampling an
execution is exponential in the number of required delays rather than the number of
steps. A long execution has just as much chance to be produced as a short execution
with the same number of delays, thereby eliminating the bias towards short executions.

The Algorithm 4.3.2 uses a single global variable path, a sequence of natural numbers.
This sequence represents a path as follows. For each i starting from 0 and up to
path.Length − 1, execute P for path[i] steps followed by a delay. Finally, execute P until
it terminates. The procedure ExecutePath performs the execution encoded by path and
returns the number of steps performed after the last delay.

The procedure DelayBoundedSample invokes the procedure ExecutePath repeatedly
to randomly sample an execution with db delays. If the initial state s0 does not have
any transitions, there is nothing to do. Otherwise, it sets path to the empty sequence
and calls ExecutePath which executes P without any delays. The algorithm chooses
a step at random from the number of steps returned by ExecutePath as the position
to execute a delay operation. It extends path with it and invokes ExecutePath again to
create a new execution. It continues to do so iteratively until the number of delays
in the execution has reached db. A single invocation of DelayBoundedSample samples
a single execution with db delays. To calculate this sample, it must re-execute the
program db times and perform db random choices.

78

4.3 stratified sampling

Algorithm 4.3.2 Stratified Sampling: Near-Uniform Random Sampling
1: var path : Sequence〈N〉
2:
3: function ExecutePath

4: var i, j : N

5: var s : S
6: var d : D

7: s← s0,d← d0, i← 0

8: while (i < path.Length)
9: j← 0

10: while (j < path[i])
11: s← T(Next(d), s),d← Step(s,d), j← j+ 1

12: end
13: d← Delay(s,d), i← i+ 1

14: end
15: j← 0

16: while (0 < card(Choices(s)))
17: s← T(Next(d), s),d← Step(s,d), j← j+ 1

18: endreturn j
19: end function
20:
21: function DelayBoundedSample

22: var i, l : N

23: if (card(Choices(s0)) = 0) then return
24: end if
25: path← ∅
26: l← ExecutePath

27: i← 0

28: while (i < db) . invariant 0 < l
29: path.Append(choose(l))
30: l← ExecutePath

31: i← i+ 1

32: end
33: end function
34:
35: function SS
36: var i : N

37: db← 1

38: while true
39: i← 0

40: while i < NumSamples(db))
41: DelayBoundedSample

42: i← i+ 1

43: end
44: db← db + 1
45: end
46: end function

79

4.4 evaluation

Theorem 4.3.1: Probabilistic Guarantees for Stratified Sampling

Consider a program P and a delaying explorer D that is sound with respect to P. Let
L be the maximum number of steps along any execution of P. For any integer db > 0
and any execution τ of (P,D) with db delays, the SS Algorithm 4.3.2 generates τ with
probability at least 1

Ldb .

Proof. The SS algorithm performs a random walk on the graph in Figure 4.4. The
branching factor of this graph is bounded by L, the maximum number of steps in
P, and its depth is bounded by the delay bound db. Since Ldb bounds the number of
terminal nodes in the graph, the probability of sampling any execution requiring db
delays is at least 1

Ldb . �

Algorithm 4.3.2 also shows a procedure SS that repeatedly invokes
DelayBoundedSample to implement a stratified sampling algorithm. This procedure
has a (timeout-terminated and infinite) outer loop that repeatedly increases the de-
lay bound db. The inner loop samples NumSamples(db) executions from the set of
executions with exactly db delays by invoking DelayBoundedSample repeatedly. Our
algorithm is parameterized by a function NumSamples that specifies the number of
executions to be sampled for each delay bound. As we have explained before, the
number of executions increases exponentially with the number of available delays.
Therefore, we believe that a practical NumSamples function should also have an expo-
nential dependency on the delay bound. For our evaluation (Section 4.4), we chose
c1 + c

db
2 to be the shape for NumSamples(db); through trial and error, we found that

c1 = 100 and c2 = 3 work well for the benchmarks.

4.4 evaluation

In this section, we first provide an overview of our implementation of the delaying
explorers for the systematic testing of P programs and then present the empirical
evaluation of the their efficacy in finding bugs in complex asynchronous reactive
systems.

4.4.1 Implementation of the Delaying Explorers

Recollect that there are two sources of non-determinism in the semantics of P programs:
(1) P has interleaving non-determinism because the language provides a primitive
for dynamic machine creation. As a result, multiple machines can be executing con-
currently. In each step, one machine can be chosen nondeterministically to execute,
and it can either compute on the local state or dequeue a message or send a message
to another machine. This non-determinism implicitly creates non-determinism in the

80

4.4 evaluation

order in which messages are delivered to a machine. The code of a machine has to be
programmed robustly and tested so that it continues to perform safely regardless of
the reordering. (2) a P program may also make an explicit non-deterministic choice by
using the special expression $ whose evaluation results in a non-deterministic Boolean
choice. This feature is extremely useful for modeling the environment of reactive sys-
tems; like a non-deterministic component failure or message loss. To find bugs quickly
and debug them, it is essential to control both these sources of non-determinism.

We have implemented the algorithms in Section 4.2 and Section 4.3 in the P explorer.
The component of P explorer most pertinent to our implementation is state caching and
the scheduler that orchestrates the depth-first search of the state-transition graph of the
input program. We modified the explorer to query an external object implementing the
IDelayingScheduler interface. The explorer invokes the method Next to determine
the process whose transition it should explore and the method Delay to inform the
scheduler of its decision to delay the next process.� �

1 interface IDelayingScheduler
2 {
3 // Next is called to get the next process to be executed
4 int Next ();
5
6 // Delay is called to cycle through scheduling choices
7 void Delay ();
8
9 // Start is called when a new process is created

10 void Start (int processId);
11
12 // Finish is called when a process is terminated
13 void Finish (int processId);
14
15 // Step is called to communicate information about

execution ,
16 // e.g. change priority , blocked process , etc.
17 void Step (params object [] P);
18 }� �

Listing 4.1: Delaying Explorer Implementation Interface

The methods Start, Finish, and Step together implement the capability formalized
by the Step function described in Section 4.1; these methods inform the delaying
scheduler of important events occurring during the execution. The method Start
is invoked whenever a new process is created and the method Finish whenever a
process terminates. The method Step is used to implement a general mechanism for
instrumenting the program’s execution for updating the scheduler state.

81

4.4 evaluation

Controlling nondeterminism: The general approach of controlling schedules in
systematic testing frameworks [31, 85, 146] is to instrument the program at every
synchronization points. In the context of asynchronous message passing programs
like P, the only synchronization points are at enqueue of a message, blocking at
dequeue and creation of a new machine. The P compiler automatically instruments
the program at these three points and passes the information to the delaying explorer
using the Step function. In addition to prioritizing interleaving non-determinism, a
delaying explorer must also prioritize explicit non-deterministic choice. We adopt
the convention that false is ordered before true. For a language that provides non-
deterministic choice over types other than Boolean, the choices may be controlled by
expanding the IDelayingScheduler interface.

4.4.2 Empirical Evaluations of the Delaying Explorers

Our evaluation was directed towards the following goals:
(Goal 1) Evaluate the performance of SES and SS in comparison with the best known
approaches, preemption bounding [146] and probabilistic concurrency testing [31],
respectively (Section 4.4.3).
(Goal 2) Evaluate the performance of different delaying explorers in finding bugs, and
demonstrate the need for flexible delaying explorer interface (Section 4.4.4).
(Goal 3) Demonstrate the benefit of writing custom explorer with a case study of chain
replication protocol(Section 4.4.5).

Experimental setup: All the experiments are performed on Intel Xeon E5-2440,
2.40GHz, 12 cores (24 threads), 160GB machine running 64 bit Windows Server OS.
The Zing model checker can exploit multiple cores during exploration as its iterative
depth-first search algorithm is parallel [189]. We do not report the time taken to
find bugs as it is dependent on the degree of parallelism and the parallel explorer
implementation, but instead, we report the number of distinct states explored (in the
case of SES), and the number of schedules explored (in the case of SS) before finding
the bug. Time taken to find the bug is directly proportional to these parameters. The
numbers reported for the evaluation of stratified sampling algorithm in Table 4.1 are a
median over 5 runs of the experiment.

Benchmarks: We have used P to implement a fault tolerant Transaction Management
Service (TMS) (3) and a Windows driver communicating with an OSR device. The
buggy programs used for evaluation were collected during the development of this
protocol suite. Each row in Table 4.1 represents a different bug. We only consider
hard-to-find bugs that led to unhandled-event exceptions (system crash) and violation
of global safety specifications (written as monitors).

82

4.4 evaluation

Table 4.1: Evaluation Results for SS and SES using various delaying explorers (Numbers in
blue represent the winning search strategy)

Stratified Sampling Stratified Exhaustive Search

Programs
No. of schedules explored before finding bug No. of states explored before finding bug

RS IRS PCT
SS + Delaying Explorer

PB
SES + Delaying Explorer

RR RTC PRR RR RTC PRR

2pc_1 9842 1891 1983 781 331 816 793221 8851 6571 6512

2pc_2 * * * 10943 6378 6300 * * 17690 9090

2pc_3 * 2966 9835 1823 1018 4109 48321 1898 1123 2189

2pc_4 * 7629 * * 3321 * * * 5101 77212

ChainRep_1 9655 652 9832 5607 9999 1985 * 92178 9913 936

ChainRep_2 * * * 34034 7829 28221 74231 32166 8821 88732

ChainRep_3 * * 13283 2032 1711 6093 * 19731 3452 8981

ChainRep_4 4213 313 4439 3452 4249 1238 59234 672 5441 11742

ChainRep_5 196 77 55 53 110 101 * 3973 521 6652

ChainRep_6 * * * * * * * 78443 44331 54981

ChainRep_7 * * * * * * * * 3538 *

ChainRep_8 * 4561 * 5513 * 2201 8342 9791 * 8218

ChainRep_9 * * * 66381 9425 16559 * 37222 7812 37213

ChainRep_10 782 159 74 129 331 888 4561 5431 1944 1781

MultiPaxos_1 * 5211 9934 7821 765 5819 * 82114 89341 88129

MultiPaxos_2 * * * 9872 8873 11239 * 15563 9983 1934

Multipaxos_3 * * * * 15023 9589 * 18831 8923 1198

Paxos_1 229 86 592 122 53 233 3320 2233 1098 4312

Paxos_2 * 2211 * 9563 831 1874 77834 4912 833 8831

Paxos_3 * * * * * * * * 14832 *

TMS_1 224 64 227 12 305 34 553 2220 660 8965

TMS_2 * * * * * * * * 44832 *

TMS_3 # # # # # 3009214 # # # #

TMS_4 # # # # 5530042 # # # # #

OSR_1 435 122 332 75 122 1009 5532 4421 683 55392

OSR_2 756 78 131 115 66 224 12864 12931 1634 3212

* → the search ran out of memory budget of 60GB or exceeded the time budget of 2 hours.

→ the search exceeded the time budget of 5 hours (running for longer duration).

83

4.4 evaluation

4.4.3 Evaluation of SES and SS

Evaluating SES: We applied the iterative SES algorithm with different delaying ex-
plorers to the set of buggy programs (incrementing the value of db by 1 after each
iteration). For evaluating the performance of SES, we implemented iterative preemp-
tion bounding [146] (PB) with state-caching in P explorer. Table 4.1 shows the number
of distinct states explored before finding the bug by both the approaches. It can be
seen that PB fails to find the bug in most of the cases, and in cases where PB succeeds,
SES with some delaying explorer is able to find the bug orders of magnitude faster
(except for TMS_1 and ChainRep_8). Also, there is much variance in the performance
of SES when combined with different delaying explorers, which motivates the need
for a flexible interface to write custom delaying explorers.

Evaluating SS: We implemented random scheduler (RS) [187] as the baseline for
comparison. Random scheduler fails to find most of the bugs, as the probability of
finding a bug decreases exponentially with the length of buggy execution. We found
that iterative random scheduler (IRS) that combines random scheduling with iterative
depth bounding performs better than simple random scheduling. Stratification in IRS
is obtained by iteratively incrementing the maximum depth bound. We incremented
the depth bound by 100 after each iteration and sampled 100+ 3i executions from
each stratum (where i is the iteration number).

We compared the iterative SS algorithm described in Section 4.3 with the PCT [31]
algorithm, which is considered as state of the art in probabilistic concurrency testing.
PCT provides probabilistic guarantees of finding a bug with bug-depth d, by randomly
inserting d priority inversions. Most of the concurrency bugs using PCT were found
with bug depth of less than 3 in [31, 147]. The PCT algorithm assumes the maximum
length of program execution (k), which is hard to compute statically in the case of
asynchronous reactive programs. We use k = 5000 and d = 5 for our experiments.
Table 4.1 shows that PCT fails to find most of the bugs, confirming that the bugs in
asynchronous programs generally have a larger bug-depth. In the cases where PCT
succeeds in finding the bug, SS with some delaying explorer is orders of magnitude
faster. Similar to the behavior of SES, for SS also, we see the variance in performance
of different delaying explorers across different problems.

Comparison between SES and SS: We have extensively used both SES and SS for
finding bugs in our implementations. In our experience, the SES algorithm can find
bugs faster than SS in most of the cases as it uses state-caching to prune redundant
explorations. Furthermore, SES can find low-probability bugs that occur at smaller
values of delay budget faster than SS. In the case of ChainRep_6 and Paxos_3 there
was a low probability bug at small delay budget; SS fails to find it whereas SES finds
it.

As the delay bound increases, search space explodes exponentially. If there is a bug
that requires a large delay budget for a given stratification strategy, then SES may

84

4.4 evaluation

fail to find it due to running out of memory. We came across scenarios (TMS_3 and
TMS_4 in Table 4.1) where SES ran out of memory but after running SS for a long time
we uncovered a bug. SS can be kept running for a long time without any memory
constraints. Since it performs sampling with probabilistic guarantees, it may find a
bug at a larger delay budget where SES fails.

We can fruitfully combine both approaches as follows. Perform SES first to find all
shallow (few delays) bugs quickly and get strong coverage guarantees. Once SES has
uncovered all shallow bugs and has almost consumed the memory budget, perform
SS from the frontier states and get probabilistic guarantees. We leave the evaluation of
this combination for future work.

4.4.4 Experience with Delaying Explorers

We have implemented three different delaying explorers. In this section, we explain the
construction of each explorer and the reasons for the variance in their performance.

Run-to-completion explorer (RTC): The default strategy in RTC is to follow the
causal sequence of events, giving priority to the receiver of the most recently sent event.
When a delay is applied, the highest priority process is moved to the lowest priority
position. Even for small values of delay bound, this explorer is able to explore long
paths in the program since it follows the chain of generated events. In our experience,
this explorer is able to find bugs that are at large depth better than any other explorer.
For example, bugs in ChainRep_7 and TMS_2 were found by RTC at a depth greater
than 1500 and delay budget less than 4 while other explorers could not find these
bugs.

Round-robin explorer (RR): The round-robin delaying explorer, explained earlier in
Section 4.1, cycles through the processes in process creation order. It moves to the next
task in the list only on a delay or when the current task is completed. Round-robin
explorer has been used in the past ([71, 187]) to test multithreaded programs. In our
experience, in most of the cases (Table 4.1) other delaying explorers perform better
than RR. RR can be used for finding bugs that manifest through a small number of
preemptions or interleaving between processes. Our evaluation shows that most bugs
in asynchronous programs do not fall in that category.

Probabilistic round-robin explorer (PRR): A probabilistic delaying explorer is one
in which the Step operation is allowed to make random choices. While a deterministic
delaying explorer induces a fixed stratification over the executions of a program, a
probabilistic delaying explorer induces a probability space over stratification. We have
experimented with a cannibalistic version of the round-robin explorer (PRR). We
believe that the culprit behind the poor performance of the round-robin explorer is
its default process scheduling order, which is based on the order of process creation.
The simplest way to change this default order is to randomize it. Instead of inserting a
freshly-created process at the tail of the queue, insert it at a random position in the

85

4.4 evaluation

queue; everything else carries over from the round-robin explorer. The probabilistic
round-robin explorer is still sound since the definitions of Next and Delay do not
change. Table 4.1 indicates that PRR typically performs better than RR.

4.4.5 Writing a Custom Delaying Explorer

After testing the chain replication protocol using the three delaying explorers explained
earlier, we tested it for more specific scenarios. One such scenario is testing the system
against random node failures. We provide a brief description of the chain replication
protocol. Next, we show how we wrote a custom explorer to test for the node failure
scenario and found a previously unknown bug in our implementation.

The chain replication protocol [165] is a distributed fault-tolerant protocol for
replicating state machines. Consider an instance of a chain replication system with 6
machines—4 instances of Server machine (S1, . . . ,S4) connected in a chain, 1 instance
of Master machine (M), and 1 instance of Fault machine (F). S1, . . . ,S4 communicate
with each other to implement replication. M periodically monitors the health of
S1, . . . ,S4 to detect if any of them has failed. If it detects a fault in Si, it tells the
neighbors of Si to reconfigure. F is a machine that models fault injection. It maintains a
set of numbers initialized to {1, . . . , 4}. F repeatedly and nondeterministically removes
a number i from this set and sends a failure message to Si until the size of the set
becomes 1. The chain replication protocol is expected to behave correctly for N servers
as long as at most N− 1 fail.

When a distributed system starts up, there is an initialization phase involving
the exchange of messages between nodes for setting up the network topology and
other system configuration. Bugs during the initialization phase are straight forward,
infrequent, and get discovered quickly. Subtle bugs are generally encountered after
the system is initialized and has reached an interesting global state. Since we want
to test our system against a specific scenario of failure occurring after the system has
stabilized, the new delaying explorer should not spend much time injecting failures
or monitoring the system during the initialization phase. We need stratification that
gives less priority to particular interleaving in the initial phase.

To capture this intuition with a delaying explorer, we wrote a customized delaying
explorer (CustExplorer). The explorer maintains the ordering of all dynamically-created
machine and cycles through them based on the ordering. The program can change
the ordering by invoking ChangeOrder callbacks (implemented using Step). Using
ChangeOrder callback in the initialization phase, the machines S1, . . . ,S4 are ordered
before machines M and F. After the initialization phase, the machines M and F are
moved ahead in the ordering as compared to machines S1, . . . ,S4. Thus, CustExplorer
helps in stratifying the search by giving less priority to interleaving the failure and
monitor machines until the system has stabilized.

86

4.5 related work

Using CustExplorer, we were able to find a previously unknown bug in chain
replication, which occurred when the failure was injected simultaneously at two
neighboring nodes after the initialization phase. CustExplorer was able to find the bug
with SES by exploring 220103 states and with SS by exploring 193442 schedules. We
applied the same strategy to ChainRep_6 as it had a similar bug related to node failure,
and we were able to find the bug in 10445 states which is nearly 4 times faster than
the next best.

4.5 related work

Model checking [104, 195] is a classic technique applied to prove temporal properties
on programs whose semantics is an arbitrary state-transition graph. Our use of state
caching to prune search is inspired by model checking. Partial-order reduction [84] is
another technique to prune search. Combining partial-order reduction with schedule
prioritization techniques are known to be a challenging problem [144]. Coons et
al. [41] have proposed a technique to combine preemption-bounding with partial-order
reduction. In future work, we would like to investigate the feasibility of combining
delayed exploration with partial-order reduction.

There is prior work on a random sampling of concurrent executions. Sen [173] pro-
vides an algorithm for sampling partially-ordered multithreaded executions. Similar
to our work, the PCT algorithm [31] also exploits prioritization techniques to sample
multithreaded executions adequately. The PCT algorithm characterizes a concurrency
bug according to its depth and guarantees that the probability of finding a bug with
depth d in a program with L steps and n threads is at least 1/nLd−1. The mathematical
techniques underlying PCT and our sampling algorithm are different. PCT provides a
custom algorithm for a particular notion of bug depth whose definition has a deep
connection with the proof for the probability bound. On the other hand, our algorithm
does not depend on the characterization of bugs. Instead, it is parameterized by a
delaying explorer, a mechanism used by the programmer to stratify the search space.
Consequently, the proof for our probability bound is a straightforward combinatorial
argument on a bounded tree in terms of its branching factor and depth.

Predictive testing [174, 183, 197, 198] follows the basic recipe of executing the
program, collecting information from the execution, constructing a model of the
program from the collected information, and then re-executing the program based on
new predicted interleavings likely to reveal errors. The various techniques differ in
the information collected and the targeted class of errors. The search performed by
predictive techniques is goal-driven but typically does not provide coverage guarantees.
On the other hand, our search technique is not goal-driven but provides coverage
guarantees.

Concurrit [70] proposes a domain specific language for writing debugging scripts
that help the tester specify thread schedules for reproducing concurrency bugs. The

87

4.6 summary

script guides the search without any prioritization. In contrast, our work is focused on
finding rather than reproducing bugs. Instead of a debugging script, a tester writes a
domain-specific scheduler with appropriate uses of sealing; iterative deepening with
delays automatically prioritizes the search with respect to the given scheduler.

4.6 summary

We have demonstrated how delaying explorers help in scalable systematic testing of
P programs. We also showed that using delay bounding [71] with a single default
scheduler is not scalable for finding bugs. Different delaying explorers induce different
stratification, and hence, writing custom delaying explorers as unit test strategies
can make testing complex asynchronous protocols scalable. We also presented and
evaluated two algorithms, (1) SES for exhaustive search with strong coverage guar-
antees and showed how state-caching can be used efficiently for pruning, (2) SS for
sampling executions with probabilistic guarantees. We evaluated both these algorithms
on real implementation of distributed protocols and showed that our techniques per-
form orders of magnitude better than state-of-art search prioritization techniques like
preemption bounding and PCT.

88

5
V E R I F Y I N G A L M O S T- S Y N C H R O N O U S E V E N T- D R I V E N S Y S T E M S
U S I N G A P P R O X I M AT E S Y N C H R O N Y A B S T R A C T I O N

Forms of synchrony can greatly simplify modeling, design, and verification of dis-
tributed systems. The Time-Triggered Architecture (TTA) [167] provides an infrastruc-
ture for safety-critical systems of the kind used in autonomous robots, modern cars,
and airplanes, and is more recently also being used for building high-performance
industrial distributed systems [42]. Traditionally, a common sense of time is estab-
lished using time-synchronization (clock-synchronization) protocols or systems such as
the global positioning system (GPS), network time protocol (NTP), and the IEEE
1588 [68] precision time protocol (PTP). These protocols, however, synchronize the dis-
tributed clocks only within a certain bound. In other words, at any time point, clocks
of different nodes can have different values, but time synchronization ensures that
those values are within a specified offset of each other, i.e., they are almost synchronized.

In Chapter 4, we introduced delaying-explorers based search prioritization for scalable
systematic testing of asynchronous distributed systems. In this chapter, we consider the
problem of verification or systematic testing of “almost-synchronous” systems that are
neither completely asynchronous or synchronous. Distributed protocols running on top
of time-synchronized nodes are designed under the assumption that while processes
at different nodes make independent progress, no process falls very far behind any
other. Figure 5.1 provides examples of such real-world systems. For example, Google
Spanner [42] is a distributed fault tolerant system that provides consistency guarantees
when running on top of nodes that are synchronized using GPS and atomic clocks,
wireless sensor networks [186, 188] use time synchronized channel hopping (TSCH) [1]
as a standard for time synchronization of sensor nodes in the network, and IEEE
1588 precision time protocol (PTP) [68] has been adopted in industrial automation,
scientific measurement [126], and telecommunication networks. The correctness of
these protocols depends on having some synchrony between different processes or
nodes.

When modeling and verifying systems that are almost-synchronous, it is essential
to compose them using the right concurrency model. One requires a model that lies
somewhere between completely synchronous (lock-step progress) and completely
asynchronous (unbounded delay). Various such concurrency models have been pro-

89

verifying almost-synchronous event-driven systems using approximate

synchrony abstraction

Google Spanner

Wireless Sensor
Network

Industrial Automation
Distributed

Autonomous Robots

IEEE 1588 (PTP)

IEEE 802.15.4e (TSCH)GPS and Atomic Clocks

NTP

TSCH

Telecommunication

Application Layer

Time Synchronization Layer

Figure 5.1: Almost-synchronous systems comprise an application protocol running on top of a
time-synchronization layer.

posed in the literature, including quasi-synchrony [34, 92] and bounded-asynchrony [76].
However, as discussed in Section 5.5, these models permit behaviors that are typically
disallowed in almost-synchronous systems. Alternatively, one can use formalism for
hybrid or timed systems that explicitly model clocks (e.g., [8, 10]), but the associated
methods (e.g., [81, 120]) tend to be less efficient for systems with a huge discrete state
space, which is typical for distributed software systems.

For modeling and verification of such applications, we introduce symmetric, almost-
synchronous (SAS) systems, a class of distributed systems in which processes have
symmetric timing behavior. In our experience, protocols at both the application layer
and the time-synchronization layer (Figure 5.1) can be modeled as SAS systems. Addi-
tionally, we introduce the notion of approximate synchrony (AS) as a concurrency model
for almost-synchronous systems, which also enables one to compute a sound discrete
abstraction of a SAS system. Intuitively, a system is approximately-synchronous if the
number of steps taken by any two processes does not differ by more than a specified
bound, denoted ∆. The presence of the parameter ∆ makes approximate synchrony a
tunable abstraction method.

We demonstrate three different uses of the approximate synchrony abstraction:

1. Verifying time-synchronized systems: Suppose that the system to be verified
runs on top of a layer that guarantees time synchronization throughout its
execution. In this case, we show that there is a sound value of ∆, which can be
computed using a closed-form equation as described in Section 5.2.2.

90

verifying almost-synchronous event-driven systems using approximate

synchrony abstraction

2. Verifying systems with recurrent logical behavior: Suppose the system to be
verified does not rely on time synchronization, but its traces contain recurrent
logical conditions — a set of global states that are visited repeatedly during
the protocol’s operation. We show that an iterative approach based on model
checking can identify such recurrent behavior and extract a value of ∆ that
can be used to compute a sound discrete abstraction for model checking (see
Section 5.2.5). Protocols verifiable with this approach include some at the time-
synchronization layer, such as IEEE 1588 [68].

3. Prioritizing state-space exploration: The approximate synchrony abstraction
can also be used as a search prioritization technique for model checking. We
show in Section 5.4 that in most cases it is more efficient to search behaviors for
a smaller value of ∆ (“more synchronous” behaviors) first for finding bugs.

We present two practical case studies: (i) a time-synchronized channel hopping
(TSCH) protocol that is part of the IEEE802.15.4e [1] standard, and (ii) the best master
clock (BMC) algorithm of the IEEE 1588 precision time protocol. The former is a
system where the nodes are time-synchronized, while the latter is the case of a system
with recurrent logical behavior. We implemented these systems/protocols in P and
extended the P explorer to implement approximate synchrony abstraction. Our results
show that approximate synchrony can reduce the state space to be explored by orders
of magnitude while modeling relevant timing semantics of these protocols, allowing
one to verify properties that cannot be verified otherwise. Moreover, we were able to
find a so-called “rogue frame” scenario that the IEEE 1588 standards committee had
long debated without resolution (see our companion paper written for the IEEE 1588
community [30] for details).

The Approximate Synchrony abstraction technique can be used with any finite-
state model checker. We implemented it on top of P’s Systematic Testing backend
(Chapter 4), due to its ability to control the search using an external scheduler that
enforces the approximate synchrony condition.

To summarize, we make the following contributions:

• The formalism of symmetric, almost synchronous (SAS) systems and its use in
modeling an important class of distributed systems (Section 5.1.2);

• A tunable abstraction technique, termed approximate synchrony (Section 5.2);

• Automatic procedures to derive values of ∆ for sound verification (Section 5.2.2
and Section 5.2.5);

• An implementation of approximate synchrony in the P explorer (Section 5.3),
and

91

5.1 almost-synchronous systems

• The use of approximate synchrony for verification and systematic testing of two
real-world protocols, the BMC algorithm (a key component of the IEEE 1588
standard), and the time synchronized channel hopping protocol (Section 5.4).

5.1 almost-synchronous systems

In this section, we define clock synchronization precisely and formalize the notion of
symmetric almost-synchronous (SAS) systems.

5.1.1 Clocks and Synchronization

Each node in the distributed system has an associated (local) physical clock χ, which
takes a non-negative real value. For purposes of modeling and analysis, we will also
assume the presence of an ideal (global) reference clock, denoted t. The notation χ(t)
denotes the value of χ when the reference clock has value t. Given this notation, we
describe the following two basic concepts:

1. Clock Skew: The skew between two clocks χi and χj at time t (according to the
reference clock) is the difference in their values |χi(t) − χj(t)|.

2. Clock Drift: The drift in the rate of a clock χ is the difference per unit time of the
value of χ from the ideal reference clock t.

Time synchronization ensures that the skew between any two physical clocks in the
network is bounded. The formal definition is as below.

Definition 5.1.1: Time-Synchronized Systems

A distributed system is time-synchronized (or clock-synchronized) if there exists a
parameter β such that for every pair of nodes i and j and for any t,

|χi(t) − χj(t)| 6 β (5.1)

For ease of exposition, we will not explicitly model the details of dynamics of
physical clocks or the updates to them. We will instead abstract the clock dynamics as
comprising arbitrary updates to χi variables subject to additional constraints on them
such as Equation 5.1 (wherever such assumptions are imposed).

Example 5.1.1: IEEE 1588 Precision Time Protocol

The IEEE 1588 precision time protocol [68] can be implemented to bound the physical
clock skew to the order of sub-nanoseconds [126], and the typical clock drifts to at most
10−4 [68].

92

5.1 almost-synchronous systems

5.1.2 Symmetric, Almost-Synchronous Systems

We model the distributed system as a collection of processes, where processes are used
to model both the behavior of nodes as well as of communication channels. There can
be one or more processes executing at a node.

Formally, the system is modeled as the tuple MC = (S,T, I, Id,~χ, ~τ) where

• S is the set of discrete states of the system,

• T ⊆ S× S is the transition relation for the system,

• I ⊆ S is the set of initial states,

• Id = {1, 2, . . . ,k} is the set of process identifiers,

• ~χ = (χ1,χ2, . . . ,χk) is a vector of local clocks, and

• ~τ = (τ1, τ2, . . . , τk) is a vector of process timetables. The timetable of the ith pro-
cess, τi, is an infinite vector (τ1i , τ

2
i , τ

3
i , . . .) specifying the time instants according

to local clock χi when process i executes (steps). 1 In other words, process i
makes its jth step when χi = τ

j
i.

For convenience, we will denote the ith process by Pi. Since in practice the dynamics
of physical clocks can be fairly intricate, we choose not to model these details —
instead, we assume that the value of a physical clock χi can vary arbitrarily subject to
additional constraints (e.g., Equation 5.1).

The kth nominal step size of process Pi is the intended interval between the (k− 1)th
and kth steps of Pi, viz., τki − τ

k−1
i . The actual step size of the process is the actual time

elapsed between the (k− 1)th and kth step, according to the ideal reference clock t. In
general, the latter differs from the former due to clock drift, scheduling jitter, etc.

Motivated by our case studies with the IEEE 1588 and 802.15.4e standards, we
impose two restrictions on the class of systems considered:

1. Common Timetable: For any two processes Pi and Pj, τi = τj. Note that this does
not mean that the process steps synchronously, since their local clocks may report
different values at the same time t. However, if the system is time synchronized,
then the processes step “almost synchronously.”

2. Bounded Process Step Size: For any process Pi, its actual step size lies in an
interval [σl,σu]. This interval is the same for all processes. This restriction arises
in practice from the bounded drift of physical clocks.

1 We make the simplifying the assumption that all processes make their initial step when their local clock
is at 0. The results also apply to the case when the process timetables do not start at 0.

93

5.1 almost-synchronous systems

A set of processes obeying the above restrictions is termed a symmetric, almost-
synchronous (SAS) system. The adjective “symmetric” refers only to the timing behavior
— note that the logical the behavior of different processes can be very different. Note
also that SAS systems may or may not be running on top of a time synchronization
layer, i.e., SAS systems and time-synchronized systems are orthogonal concepts.

Example 5.1.2: Nodes in the IEEE 1588 system are Almost Synchronous

The IEEE 1588 protocol can be modeled as a SAS system. All processes intend to step
at regular intervals called the announce time interval. The specification [68] states
the nominal step size for all processess as 1 second; thus the timetable is the sequence
(0, 1, 2, 3, . . .). However, due to the drift of clocks and other non-idealities such as jitters
due to OS scheduling, the step size in typical IEEE 1588 implementations can vary by
±10−3. From this, the actual step size of processes can be derived to lie in the interval
[0.999, 1.001].

Traces and Segments: A timed trace (or simply trace) of the SAS system MC is a
timestamped record of the execution of the system according to the global (ideal) time
reference t. Formally, a timed trace is a sequence h0,h1,h2, . . . where each element
hj is a triple (sj,~χj, tj) where sj ∈ S is a discrete (global) state at time t = tj and
~χj = (χ1,j,χ2,j, . . . ,χk,j) is the vector of clock values at time tj. For all j, at least one
process makes a step at time tj, so there exists at least one i and a corresponding
mi ∈ {0, 1, 2, . . .} such that χi,j(tj) = τ

mi
i . Moreover, processes step according to their

timetables; thus, if any Pi makes its mith and lith steps at times tj and tk respectively,
for mi < li, then χi,j(tj) = τ

mi
i < τ

li
i = χi,k(tk). Also, by the bounded process step size

restriction, if any Pi makes its mith and mi + 1th steps at times tj and tk respectively
(for all mi), |tk − tj| ∈ [σl,σu]. Finally, s0 ∈ I and T(sj, sj+1) holds for all j > 0 with the
transition into sj occurring at time t = tj.
A trace segment is a (contiguous) sub-sequence hj,hj+1, . . . ,hl of a trace of MC.

5.1.3 Verification Problem and Approach

The central problem considered in this chapter is as follows:

Problem 5.1.1: Verification of SAS Systems

Given an SAS system MC modeled as above, and a linear temporal logic (LTL) [160]
propertyΦ with propositions over the discrete states of MC, verify whether MC satisfies
Φ.

One way to model MC would be as a hybrid system [122] (due to the continuous
dynamics of physical clocks), but this approach does not scale well due to the huge
discrete state space. Instead, we provide a sound discrete abstraction MA of MC

94

5.2 approximate synchrony abstraction

that preserves the relevant timing semantics of the almost-synchronous systems.
(Soundness is formalized in Section 5.2).

There are two phases in our approach:

1. Compute Abstraction Parameter: Using parameters of MC (relating to clock dy-
namics), we compute a parameter ∆ characterizing the “approximate synchrony”
condition, and use ∆ to generate a sound abstract model MA.

2. Model Checking: We verify the temporal logic property Φ on the abstract model
using finite-state model checking.

The key to this strategy is the first step, which is the focus of the following sections.

5.2 approximate synchrony abstraction

We now formalize the concept of approximate synchrony (AS) and explain how it can
be used to generate a discrete abstraction of almost-synchronous distributed systems.
Approximate synchrony applies to both (segments of) traces and to systems.

Definition 5.2.1: Approximate Synchrony for SAS Traces

A trace (segment) of a SAS system MC is said to satisfy approximate synchrony (is
approximately-synchronous) with parameter ∆ if, for any two processes Pi and Pj in
MC, the number of steps Ni and Nj taken by the two processes in that trace (segment)
satisfies the following condition:

|Ni −Nj| 6 ∆

Although this definition is in terms of traces of SAS systems, we believe the notion
of approximate synchrony is more generally applicable to other distributed systems
also. An early version of this definition appeared in [54].

The definition extends to a SAS system in the standard way:

Definition 5.2.2: Approximate Synchrony for SAS Systems

A SAS system MC satisfies approximate synchrony (is approximately-
synchronous) with parameter ∆ if all traces of that system satisfy approximate syn-
chrony with parameter ∆.

We refer to the condition in Definition 5.2.1 above as the approximate synchrony (AS)
condition with parameter ∆, denoted AS(∆). For example, in Figure 5.2, executing
step 5 of process P1 before step 3 of process P2 violates the approximate synchrony
condition for ∆ = 2. Note that ∆ quantifies the “approximation” in approximate
synchrony. For example, for a (perfectly) synchronous system ∆ = 0, since processes

95

5.2 approximate synchrony abstraction

P 1 P 2

1

2

3

4

5

1

2

Figure 5.2: Approximate Synchrony condition violated for ∆ = 2

step at the same time instants. For a fully asynchronous system, ∆ = ∞, since one
process can get arbitrarily ahead of another.

5.2.1 Discrete Approximate Synchrony Abstraction

We now present a discrete abstraction of a SAS system. The key modification is to
(i) remove the physical clocks and timetables, and (ii) include instead an explicit
scheduler that constrains execution of processes to satisfy the approximate synchrony
condition AS(∆).

Formally, given a SAS system MC = (S,T, I, Id,~χ, ~τ), we construct an ∆-abstract
model MA as the tuple (S,Ta, I, Id, ρ∆) where ρ∆ is a scheduler process that performs
an asynchronous composition of the processes P1,P2, . . . ,Pk while enforcing AS(∆).
Conceptually, the scheduler ρ∆ maintains state counts Ni of the numbers of steps
taken by each process P̂i from the initial state. The inclusion of step counts may seem
to make the model infinite-state. We will show in Section 5.3 how the model checker
can be implemented without explicitly including the step counts in the state space.
A configuration of MA is a pair (s,N) where s ∈ S and N ∈ Nk is the vector of step
counts of the processes. The abstract model MA changes its configuration according to
its transition function Ta where Ta((s,N), (s ′,N ′)) iff (i) T(s, s ′) and (ii) N ′i = Ni + 1 if
ρ∆ permits Pi to make a step and N ′i = Ni otherwise.

In an initial state, all processes Pi are enabled to make a step. At each step of Ta,
ρ∆ enforces the approximate synchrony condition by only enabling Pi to step iff that
step does not violate AS(∆). Behaviors of MA are untimed traces, i.e., sequences of
discrete (global) states s0, s1, s2, . . . where sj ∈ S, s0 is an initial (global) state, and each
transition from sj to sj+1 is consistent with Ta defined above.

Note that approximate synchrony is a tunable timing abstraction. Larger the value
of ∆, more conservative the abstraction. The key question is: for a given system,
what value of ∆ constitutes a sound timing abstraction, and how do we automatically

96

5.2 approximate synchrony abstraction

compute it? Recall that one model is a sound abstraction of another if and only if
every execution trace of the latter (concrete model MC) is also an execution trace of
the former (abstract model MA). In our setting, the ∆-abstract and concrete models
both capture the protocol logic in an identical manner and differ only in their timing
semantics. The concrete model explicitly models the physical clocks of each process as
real-valued variables as described in Section 5.1.2. The executions of this model can be
represented as timed traces (sequences of timestamped states). On the other hand, in
the ∆-abstract model, processes are interleaved asynchronously while respecting the
approximate synchrony condition stated in Definition 5.2.2. Execution of the ∆-abstract
model is an untimed trace (sequences of states). We equate timed and untimed traces
using the “untiming” transformation proposed by Alur and Dill [8] — i.e., the traces
must be identical with respect to the discrete states.

5.2.2 Computing ∆ for Time-Synchronized Systems

We now address the question of computing a value of ∆ such that the resulting MA is
a sound abstraction of the original SAS system MC. We consider here the case when
MC is a system running on a layer that guarantees time synchronization (Equation 5.1)
from the initial state. A second case, when nodes are not time-synchronized, and
approximate synchrony only holds for segments of the traces of a system, is handled
in Section 5.2.5.

Consider a SAS system in which the physical clocks are always synchronized to
within β, i.e., Equation 5.1 holds for all time t and β is a tight bound computed based
on the system configuration. Intuitively, if β > 0, then ∆ > 1 since two processes are
not guaranteed to step at the same time instants, and so the number of steps of two
processes can be off by at least one. The main result of this section is that SAS systems
that are time-synchronized are also approximately-synchronous, and the value of ∆ is
given by the following theorem.

Theorem 5.2.1: Approximate Synchrony for Time-Synchronized Systems

Any SAS system MC satisfying Equation 5.1 is approximately-synchronous with pa-
rameter ∆ =

⌈
β
σl

⌉
.

Proof. Consider two arbitrary processes Pi and Pj. We show that it is always the
case that |Ni −Nj| 6 d βσl e.

Consider an arbitrary time point t according to an ideal time reference. Without loss
of generality, assume Ni(t) > Nj(t) (i.e., that Pi has made more steps than Pj) and
that Pj has performed a step at time t. We seek to bound the number of additional
steps that Pi has made over Pj.

97

5.2 approximate synchrony abstraction

By the “Common Timetable” assumption, Pi and Pj step at the same values of their
respective clocks. Therefore, it must be the case that χi > χj. Further, due to time
synchronization, we also have χi − χj 6 β. Also, the step size of Pi is bounded below
by σl. Thus, the number of additional steps Pi could have taken at time t over Pj is
bounded above by

d
χi − χj
σl

e 6 d β
σl
e

Thus, |Ni −Nj| 6 d βσl e at time t, for any t. This yield the desired value of ∆. �

Suppose the abstract model MA is constructed as described in Section 5.2.1 with
∆ as given in Theorem 5.2.1 and σl is the lower bound of the step size defined
in Section 5.1.2. Then as a corollary, we can conclude that MA is a sound abstraction
of MC: every trace of MC satisfies AS(∆) and hence is a trace of MA after untiming.

Example 5.2.1: Time-Synchronized Channel Hopping Protocol

The Time-Synchronized Channel Hopping (TSCH) [1] protocol is being adopted as
a part of the low power Medium Access Control standard IEEE802.15.4e. It can be
modeled as a SAS system since it has a time-slotted architecture where processes share
the same timetable for making steps. The TSCH protocol has two components: one that
operates at the application layer, and one that provides time synchronization, with the
former relying upon the latter. We verify the application layer of TSCH that assumes
that nodes in the system are always time-synchronized within a bound called the “guard
time” which corresponds to β. Moreover, in practice, β is much smaller than σl and
thus ∆ is typically 1 for implementations of the TSCH.

This is the case for the TSCH protocol (more details in Technical Report [54]).
TSCH protocol could be modeled as a SAS system; it has time-slotted architecture

that is captured using the common timetable formalism in the SAS system. Approximate
synchrony could accurately capture the notion of nodes in the wireless sensor network
using TSCH being time-synchronized 2. Using this abstraction, we verified the sub-part
of TSCH (at the application layer) that helps in maintaining synchronization and low
power operation.

5.2.3 Systems with Recurrent Logical Conditions

We now consider the case of a SAS system that does not execute on top of a layer
that guarantees time synchronization (i.e., Equation 5.1 may not hold). We identify
behavior of certain SAS systems, called recurrent logical conditions, that can be exploited

2 TSCH has time-slotted architecture moreover, because of time synchronization difference between the
slot numbers at different nodes (steps) is bounded

98

5.2 approximate synchrony abstraction

for abstraction and verification. Specifically, even though AS(∆) may not hold for the
system for any finite ∆, it may still hold for segments of every trace of the system.

Definition 5.2.3: Recurrent Logical Condition

For a SAS system MC, a recurrent logical condition is a predicate logicConv on the
state of MC such that MC satisfies the LTL property G F logicConv.

Our verification approach is based on finding a finite ∆ such that, for every trace
of MC, segments of the trace between states satisfying logicConv satisfy AS(∆). This
property of system traces can then be exploited for efficient model checking.

An example of such a SAS system is the best master clock (BMC) algorithm, a vital
component of the IEEE 1588 time-synchronization protocol. The BMC algorithm makes
no assumptions about the clocks at various nodes being synchronized. However, its
operation has a unique structure, comprising two phases. In the first phase, nodes in
the system execute a distributed algorithm to agree on a stable network configuration
(e.g., spanning tree). This stable configuration is then used in the second phase to
synchronize the physical clocks. We refer to this agreement on a stable configuration
in the first phase as logical convergence. Formally it is represented as a predicate
logicConv on the global state of the system. We show in this section that, if logical
convergence holds in every trace of a system in a recurrent fashion, then one can
compute a finite ∆ for segments of the trace between states satisfying logicConv. Put
another way, the only traces of the system are those in which, between states satisfying
logicConv, the processes obey AS(∆). This property of system traces can then be
exploited for efficient model checking.

We begin with an example of a recurrent logical condition case in the context of the
IEEE 1588 protocol (Section 5.2.4). We then present our verification approach based on
inferring ∆ for trace segments via iterative use of model checking (Section 5.2.5).

5.2.4 Example: IEEE 1588 protocol

The IEEE 1588 standard [68], also known as the precision time protocol (PTP), enables
precise synchronization of clocks over a network. The protocol consists of two parts:
the best master clock (BMC) algorithm and a time synchronization phase. The BMC al-
gorithm is a distributed algorithm whose purpose is two-fold: (i) to elect a unique
grandmaster clock that is the best clock in the network, and (ii) to find a unique spanning
tree in the network with the grandmaster clock at the root of the tree. The combination
of a grandmaster clock and a spanning tree constitutes the global stable configura-
tion known as logical convergence that corresponds to the recurrent logical condition.
The second phase, the time synchronization phase uses this stable configuration to
synchronize or correct the physical clocks (more details in [68]).

99

5.2 approximate synchrony abstraction

Failure, causing re-
configuration

BMCA running

Logical Convergence

Physical
Synchronization

Recurrent logical condition

Maximum Difference in
Number of Steps of Processes =

Figure 5.3: Phases of the IEEE 1588 time-synchronization protocol

Figure 5.3 gives an overview of the phases of the IEEE 1588 protocol execution. The
distributed system starts executing the first phase (e.g., the BMC algorithm) from
an initial configuration. Initially, the clocks are not guaranteed to be synchronized
to within a bound β. However, once logical convergence occurs, the clocks are syn-
chronized shortly after that. Once the clocks have been synchronized, it is possible
for a failure at a node or link to break clock synchronization. The BMC algorithm
operates continually, to ensure that, if time synchronization is broken, the clocks
will be re-synchronized. Thus, a typical 1588 protocol execution is structured as a
(potentially infinite) repetition of the two phases: logical convergence, followed by
clock synchronization. We exploit this recurrent structure to show in Section 5.2.5 that
we can compute a value of ∆ obeyed by segments of any trace of the system. The
approach operates by iterative model checking of a specially-crafted temporal logic
formula.

Note that the time taken by the protocol to logically converge depends on various
factors, including network topology and clock drift. In Section 5.4, we demonstrate
empirically that the value of ∆ depends on the number of steps (length of the segment)
taken by BMCA to converge which in turn depends on factors mentioned above.

5.2.5 Iterative Algorithm to Compute ∆-Abstraction for Verification

Given a SAS system MC whose traces have a recurrent structure, and an LTL property
Φ, we present the following approach to verify whether MC satisfies Φ:

1. Define recurrent condition: Guess a recurrent logical condition, logicConv, on the
global state of MC.

2. Compute Nmin: Guess an initial value of ∆, and compute, from parameters σl,σu

of the processes in MC, a number Nmin such that the AS(∆) condition is satisfied
on all trace segments where no process makes Nmin or more steps. We describe
the computation of Nmin in more detail below.

100

5.2 approximate synchrony abstraction

3. Verify if ∆ is sound: Verify using model checking on MA that, every trace segment
that starts in an initial state or a state satisfying logicConv and ends in another
state in logicConv satisfies AS(∆). This is done by checking that no process
makes Nmin or more steps in any such segment. Note that verifying MA in place
of MC is sound as AS(∆) is obeyed for up to Nmin steps from any state. Further
details, including the LTL property checked, are provided below.

4. Verify MC using ∆: If the verification in the preceding step succeeds, then a
model checker can verify Φ on a discrete abstraction M̂A of MC, which, similar
to MA, is obtained by dropping physical clocks and timetables and enforcing
the AS(∆) condition to segments between visits to logicConv. Formally, M̂A =

(S, T̂a, I, Id, ρ∆) where T̂a differs from Ta only in that for a configuration (s,N),
N ′i = 0 for all i if s ′ ∈ logicConv (otherwise it is identical to Ta). However, if the
verification in Step 3 fails, we go back to Step 2 and increment ∆ and repeat the
process to compute a sound value of ∆.

Pick a value of

Compute

Verify Eventual Logical Convergence (Property eq. 2)

Verify that achieves
logical convergence in less
than steps (under

Found sound Verify
using

Increment

Failed Success

Repeat the process to
compute sound value of

Consider a recurrent condition for the system.

Figure 5.4: Iterative algorithm for computing ∆ exploiting logical convergence

Figure 5.4 depicts this iterative approach for the specific case of the BMC algorithm.
We now elaborate on Steps 2 and 3 of the approach.
Step 2: Computing Nmin for a given ∆. Recall from Section 5.1.2 that the actual step
size of a process lies in the interval [σl,σu]. Let Pf be the fastest process (the one
that makes the most steps from the initial state), and Ps be the slowest (the fewest
steps). Denote the corresponding number of steps by Nf and Ns respectively. Then the
approximate synchrony condition in Definition 5.2.2 is always satisfied if Nf −Ns 6 ∆.
We wish to find the smallest number of steps taken by the fastest process when AS(∆)

101

5.2 approximate synchrony abstraction

is violated. We denote this value as Nmin and obtain it by formulating and solving a
linear program.

Suppose first that Ps and Pf begin stepping at the same time t. Then, since the time
between steps of Pf is at least σl and that between steps of Ps is at most σu, the total
elapsed must be at least σlNf and at most σuNs, yielding the inequality σlNf 6 σuNs.

However, processes need not begin making steps simultaneously. Since each process
must make its first step at least σu seconds into its execution, the maximum initial
offset between processes is σu. The smallest value of Nf occurs when the fast process
starts σu time units after the slowest one, yielding the inequality:

σlNf + σ
u 6 σuNs

We can now set up the following integer linear program (ILP) to solve for Nmin:

min Nf s.t.

Nf > Ns, Nf −Ns > ∆, σlNf + σ
u 6 σuNs, Nf,Ns > 1

Nmin is the optimal value of this ILP. In effect, it gives the fewest steps any process
can take (smallest Nf) to violate the approximate synchrony condition AS(∆).

Example 5.2.2: Computing Nmin for IEEE 1588

For the IEEE 1588 protocol, as described in Section 5.1.2, the actual process step sizes
lie in [0.999, 1.001]. Setting ∆ = 1, solving the above ILP yields Nmin = 1502.

Step 3: Temporal Logic Property. Once Nmin is computed, we verify on the discrete
abstraction MA whether, from any state satisfying I ∨ logicConv, the model reaches
a state satisfying logicConv in less than Nmin steps. This also verifies that all traces
in the BMC algorithm satisfy the recurrent logicConv property and the segments
between logicConv satisfy AS(∆). We perform this by invoking a model checker to
verify the following LTL property, which references the variables Ni recording the
number of steps of process Pi:

(I ∨ logicConv) =⇒ F
[
logicConv∧

(∧
i

(0 < Ni < Nmin)
)]

(5.2)

We show in Section 5.3 how to implement the above check without explicitly
including the Ni variables in the system state. Note that it suffices to verify the above
property on the discrete abstraction MA constrained by the scheduler ρ∆ because we
explore no more than Nmin steps of any process and so MA is a sound abstraction.
The overall soundness result is formalized below.

102

5.3 model checking with approximate synchrony

Theorem 5.2.2: Soundness of Approximate Synchrony Abstraction

If the abstract model MA satisfies Property 5.2, then all traces of the concrete model MC

are traces of the model M̂A (after untiming)

Proof. From the computation of Nmin we know that if, in any trace segment,
no process makes Nmin or more steps, then that trace segment satisfies AS(∆). In
particular, this applies to every trace of the concrete model MC.

Since MA satisfies Property 5.2, every segment of a trace of MA starting in a state
satisfying I ∨ logicConv must reach another state in logicConv before any process
makes Nmin steps. In other words, every trace of MA has the form

s0, s1, s2, . . . , si1 , . . . , si2 , . . . , si3 , . . .

where s0 ∈ I and sij ∈ logicConv for all j, and furthermore, during the trace segments
between states s0, si1 , si2 etc., no process makes Nmin or more steps.

We now argue that this type of recurrent behavior is also present in traces of MC.
Let us hypothesize that, to the contrary, there is a trace of MC with a prefix of the
form (s0,~χ0, t0), (s1,~χ1, t1), (s2,~χ2, t2), . . . , (sk,~χk, tk) where s0 ∈ I, si 6∈ logicConv for
any i, and some process makes its Nminth step with the transition into sk. Note that
the untimed prefix s0, s1, s2, . . . , sk−1 is a valid prefix of some trace of MA, since no
process has made Nmin or more steps, and hence AS(∆) holds. However, we know
that MA satisfies Property 5.2, which implies that some state si, i = 0, 1, . . . ,k− 1 must
be in logicConv. This contradicts our hypothesis. Similar reasoning also applies to
a hypothesized trace with a suffix that starts in a state in logicConv rather than I.
Altogether these imply that all traces of MC must visit a state in logicConv infinitely
often with no process making Nmin or more steps between visits. By construction of
M̂A, the untiming of each of these traces is a trace of M̂A, from which the theorem
follows. �

5.3 model checking with approximate synchrony

We implemented approximate synchrony within the P systematic testing backend
(Chapter 4). It performs a “constrained” asynchronous composition of processes, using
an external scheduler to guide the interleaving. Approximate synchrony is enforced by
an external scheduler that explores only those traces satisfying AS(∆) by scheduling,
in each state, only those processes whose steps will not violate AS(∆). Section 5.2.5
described an iterative approach to verify whether a ∆-abstract model of a protocol is
sound. The soundness proof depends on verifying Property 5.2. A naïve approach for
checking this property would be to include a local variable Ni in each process as part
of the process state to keep track of the number of steps executed by each process,

103

5.3 model checking with approximate synchrony

causing state space explosion. Instead, we store the values of Ni for each i external to
the system state, as a part of the model checker explorer.

Algorithm 5.3.1 Verification of Property 5.2
1: var StateTable : Dictionary〈S,List〈int〉〉
2: function BoundedDFS(s : S)
3: var i : int, s ′ : State, steps ′ : List〈int〉
4: i← 0

5: while i < #Processes(s)
6: steps ′ ← IncElement(i, StateTable[s]))
7: if ¬ CheckASCond(steps ′)∨ steps ′[i] > (Nmin +∆)∨ s |= logicConv then
8: continue
9: end if

10: s ′ ← NextState(s, i)
11: if steps ′[i] = Nmin then
12: assert(s ′ |= logicConv)

13: end if
14: if s ′ /∈ Domain(StateTable)∨ ¬(steps ′ >pt StateTable[s ′]) then
15: StateTable[s ′]← steps ′

16: BoundedDFS(s ′)
17: end if
18: i← i+ 1

19: end
20: end function
21:
22: function Verify

23: StateTable[sinitial]← newList〈int〉
24: BoundedDFS(sinitial)
25: end function

The Algorithm 5.3.1 performs a systematic bounded depth-first search for a state
sinitial, belonging to the set of all possible initial states. To check whether all traces of
length Nmin satisfy eventual logical convergence under AS(∆) constraint, we enforce
two bounds: first, the final depth bound is (Nmin + ∆) and second, in each state a
process is enabled only if executing that process does not violate AS(∆). If a state
satisfies logicConv then we terminate the search along that path.

The BoundedDFS function is called recursively on each successor state and it explore
only those traces that satisfy AS(∆). If the steps executed by a process is Nmin then
the logicConv monitor is invoked to assert if s ′ |= logicConv (i.e. we have reached
logical convergence state) and if the assertion fails we increment the value of ∆ as
described in Section 5.2.5. Nmin and ∆ values are derived as explained in Section 5.2.5.

104

5.4 evaluation

StateTable is a map from reachable state to the tuple of steps with which it was
last explored. steps ′ is the vector of number of steps executed by each process and
is stored as a list of integers. #Processes(s) returns the number of enabled processes
in the state s. IncElement(i, t) increments the ith element of tuple t and returns the
updated tuple. CheckASCond(steps ′) checks the following condition that ∀s1, s2 ∈
steps ′ |s1 − s2| 6 ∆.

To avoid re-exploring a state which may not lead to new states, we do not re-
explore a state if it is revisited with steps ′ greater than what it was last visited with.
The operator >pt does a pointwise comparison of the integer tuples. We show in
the following section that we can obtain significant state space reduction using this
implementation.

5.4 evaluation

In this section, we present our empirical evaluation of the approximate synchrony
abstraction, guided by the following goals:
(Goal 1) Verify two real-world standards protocols: (1) the best master clock algo-
rithm in IEEE 1588 and (2) the time synchronized channel hopping protocol in IEEE
802.15.4e.
(Goal 2) Evaluate if we can verify properties that cannot be verified with full asynchrony
(either by reducing state space or by capturing relevant timing constraints).
(Goal 3) Evaluate approximate synchrony as an iterative bounding technique for
finding bugs efficiently in almost-synchronous systems.

5.4.1 Modeling and Experimental Setup

Both the case studies, the BMC algorithm, and the TSCH protocol are modeled in the
P language. Each node in the protocol is modeled as a separate P state machine. Faults
and message losses in the protocol are modeled as non-deterministic choices. The LTL
properties were implemented as monitors that are synchronously composed with the
model.

All experiments were performed on a 64-bit Windows server with Intel Xeon ES-
2440, 2.40GHz (12 cores/24 threads) and 160 GB of memory. P explorer can exploit
parallelism as its iterative depth-first search algorithm is completely parallelized. All
timing results reported in this section are when the P explorer is run with 24 threads.
We use the number of states explored and the time taken to explore them as the
comparison metric.

105

5.4 evaluation

5.4.2 Verification and Testing using Approximate Synchrony

We applied approximate synchrony in three different contexts : (1) Time synchronized
Channel Hopping protocol (time synchronized system) (2) Best Master Clock Algorithm
in IEEE 1588 (exploiting recurrent logical condition) (3) Approximate Synchrony as a
bounding technique for finding bugs.

Protocol Temporal Property Description

BMCA F G (logicConv) Eventually the BMC algorithm stabilizes with a
unique spanning tree having the grandmaster at its
root. The system is said to be in logicConv state when
the system has converged to the expected spanning
tree.

TSCH
∧
i∈nG(¬desynchedi) A node in TSCH is said to be desynched - if it fails

to synchronize with its master within the threshold
period. The desired property of a correct system is
that the nodes are always synchronized.

Table 5.1: Temporal properties verified for the case studies

Verification of the TSCH Protocol. Time Synchronized Channel Hopping (TSCH)
is a Medium Access Control scheme that enables low power operations in wireless
sensor network using time-synchronization. It assumes that the clocks are always
time-synchronized within a bound, referred to as the ‘guard’ time in the standard.
The low power operation of the system depends on the sensor nodes being able
to maintain synchronization 3 (desynchronization property in Table 5.1). A central
server broadcasts the global schedule that instructs each sensor node when to perform
operations. Whether the system satisfies the desynchronization property depends
on this global schedule, and the standard provides no recommendation on these
schedules.

We modeled the TSCH as a SAS system and used Theorem 5.2.1 to calculate the
value of ∆ 4. We verified the desynchronization property (Table 5.1) in the presence of
failures like message loss, interference in a wireless network, etc. For the experiments,
we considered three schedules (1) round-robin: nodes are scheduled in a round robin
fashion, (2) shared with random back-off: all the schedule slots are shared, and conflict
is resolved using random back-off (3) Priority Scheduler: nodes are assigned fixed
priority, and conflict is resolved based on the priority.

3 Nodes losing synchronization may lead to more messages being transmitted which in turn leads to
power wastage.

4 For system of nodes under consideration, the maximum clock skew, ε = 120µs and nominal step size
of 100ms, the value of ∆ = 1

106

5.4 evaluation

We were able to verify if the property was satisfied for a given topology under the
global schedule, and generated a counterexample otherwise (Table 5.2) which helped
the TSCH system developers in choosing the right schedules for low power operation.
Using sound approximate synchrony abstraction (with ∆ = 1), we could accurately
capture the “almost synchronous” behavior of the TSCH system.

Verification of BMC Algorithm. The BMC algorithm is a core component of the
IEEE 1588 precision time protocol. It is a distributed fault-tolerant protocol where
nodes in the system perform operations periodically to converge on a unique hierar-
chical tree structure, referred to as the logical convergence state in Section 5.2.4. Note
that the convergence property for BMCA holds only in the presence of almost synchrony
— it does not guarantee convergence in the presence of unbounded process delay or
message delay. Hence, it is essential to verify BMC using the right form of synchrony.

We generated various verification instances by changing the configuration param-
eters such as the number of nodes, clock characteristics, also, the network topology.
The results in Table 5.2 for the BMC algorithm are for 5 and 7 nodes in the network
with linear, star, ring, and random topologies. The ∆ value used for verification of
each of these configurations was derived by using the iterative approach described
in Section 5.2.5. The results demonstrate that the value of ∆ required to construct
the sound abstraction varies depending on network topology, and clock dynamics.
Table 5.2 shows the total number of states explored and time taken by the model
checker for proving the safety and convergence property (Table 5.1) using the sound
∆-abstract model. Approximate synchrony abstraction is orders of magnitude faster
as it explores the reduced state-space. BMCA algorithm satisfies safety invariant even
in the presence of complete asynchrony. For demonstrating the efficiency of using ap-
proximate synchrony, we also conducted the experiments with complete asynchronous
composition, exploring all possible interleaving (for safety properties). The complete
asynchronous model is simple to implement but fails to prove the properties for most
of the topologies.

An upshot of our approach is that we are the first to prove that the BMC algorithm
in IEEE 1588 achieves logical convergence to a unique stable state for some interesting
configurations. This was possible because of the sound and tunable approximate syn-
chrony abstraction. Although experiments with 5/7 nodes may seem small, networks
of this size do occur in practice, e.g., in industrial automation where one has small
teams of networked robots on a factory floor.

Endlessly circulating (rogue) frames in IEEE 1588: The possibility of an endlessly
circulating frame in a 1588 network has been debated for a while in the standards
committee. Using a formal model of BMC algorithm under approximate synchrony,
we were able to reproduce a scenario were rogue frame could occur. Existence of a
rogue frame can lead to network congestion or cause the BMC algorithm never to
converge. The counterexample was cross-validated using simulation and is described
in detail in [30]. It was well received by the IEEE 1588 standards committee and

107

5.4 evaluation

Ve
ri

fic
at

io
n

of
BM

C
A

lg
or

it
hm

N
et

w
or

k
Sa

fe
ty

Pr
op

er
ty

C
on

ve
rg

en
ce

Pr
op

er
ty

To
po

lo
gy

Fu
lly

A
sy

nc
hr

on
ou

s
M

od
el

w
it

h
A

pp
ro

xi
m

at
e

M
od

el
w

it
h

A
pp

ro
xi

m
at

e

(#
N

od
es

)
M

od
el

Sy
nc

hr
on

y
Sy

nc
hr

on
y

St
at

es
Ti

m
e

Pr
op

er
ty

∆
St

at
es

Ti
m

e
Pr

op
er

ty
∆

St
at

es
Ti

m
e

Pr
op

er
ty

Ex
pl

or
ed

(h
:m

m
)

Pr
ov

ed
Ex

pl
or

ed
(h

:m
m

)
Pr

ov
ed

Ex
pl

or
ed

(h
h:

m
m

)
Pr

ov
ed

Li
ne

ar
(5

)
1.

2
E+

9
7:

12
Ye

s
1

9.
5

E+
5

0:
35

Ye
s

1
5.

3
E+

8
6:

33
Ye

s

St
ar

(5
)

2.
4

E+
10

9:
40

Ye
s

1
5.

8
E+

5
0:

54
Ye

s
1

4.
1

E+
7

5:
10

Ye
s

R
an

do
m

(5
)

9.
19

E+
9

9:
01

Ye
s

2
5.

5
E+

6
1:

44
Ye

s
2

1.
8

E+
9

9:
10

Ye
s

R
in

g(
5)

7.
1

E+
12

*
*

N
o

1
4.

8
E+

7
3:

44
Ye

s
1

8
E+

9
8:

04
Ye

s

Li
ne

ar
(7

)
1.

4
E+

13
*

*
N

o
1

4.
6

E+
7

3:
05

Ye
s

1
1.

0
E+

8
6:

21
Ye

s

St
ar

(7
)

1.
1

E+
13

*
*

N
o

2
3.

7
E+

8
5:

06
Ye

s
2

3.
3

E+
10

13
:3

4
Ye

s

R
in

g(
7)

3.
3

E+
12

*
*

N
o

2
6.

8
E+

8
8:

04
Ye

s
2

2.
1

E+
10

11
:1

1
Ye

s

R
an

do
m

(6
)

1.
1

E+
13

*
*

N
o

3
5.

7
E+

9
6:

00
Ye

s
3

1.
3

E+
10

10
:3

4
Ye

s

R
an

do
m

(7
)

1.
1

E+
13

*
*

N
o

3
8.

1
E+

8
7:

11
Ye

s
3

9.
9

E+
10

10
:1

1
Ye

s

Ve
ri

fic
at

io
n

of
TS

C
H

Pr
ot

oc
ol

N
et

w
or

k
R

ou
nd

-R
ob

in
Sc

he
du

le
r

Sh
ar

ed
w

it
h

C
SM

A
Pr

io
ri

ty
Sc

he
du

le
r

To
po

lo
gy

St
at

es
Ti

m
e

Pr
op

er
ty

St
at

es
Ti

m
e

Pr
op

er
ty

St
at

es
Ti

m
e

Pr
op

er
ty

(#
N

od
es

)
Ex

pl
or

ed
(h

:m
m

)
Sa

ti
sfi

ed
Ex

pl
or

ed
(h

:m
m

)
Sa

ti
sfi

ed
Ex

pl
or

ed
(h

:m
m

)
Sa

ti
sfi

ed

Li
ne

ar
(5

)
4.

4
E+

4
0:

20
Ye

s
1.

2
E+
2

#
0:

03
N

o
2.

4E
+3

#
0:

09
N

o

R
an

do
m

(5
)

3.
6

E+
2

#
0:

05
N

o
6.

2
E+
3

#
0:

12
N

o
1.

9E
+6

0:
35

Ye
s

M
es

h(
5)

1.
7

E+
7

4:
05

Ye
s

9.
1

E+
6

2:
01

Ye
s

9.
3

E+
5

0:
31

Ye
s

*
de

no
te

s
en

d
of

ex
pl

or
at

io
n

as
m

od
el

ch
ec

ke
r

ra
n

ou
to

fm
em

or
y,

#
de

no
te

s
pr

op
er

ty
vi

ol
at

ed
an

d
co

un
te

r
ex

am
pl

e
is

re
po

rt
ed

Ta
bl

e
5.

2:
Ve

ri
fic

at
io

n
re

su
lt

s
us

in
g

A
pp

ro
xi

m
at

e
Sy

nc
hr

on
y.

108

5.4 evaluation

Bu
gg

y
It

er
at

iv
e

D
ep

th
Bo

un
di

ng
N

on
-I

te
ra

ti
ve

A
S

It
er

at
iv

e
A

S

w
it

h
R

an
do

m
Se

ar
ch

M
od

el
s

D
ep

th
St

at
es

Ti
m

e
∆

St
at

es
Ti

m
e

∆
St

at
es

Ti
m

e

Ex
pl

or
ed

(h
:m

m
)

Ex
pl

or
ed

(h
:m

m
)

Ex
pl

or
ed

(h
:m

m
)

BM
C

A
_B

ug
_1

51
1.

4
E+

3
0:

05
2

1.
1

E+
3

0:
04

0
2.

1
E+

2
0:

02

BM
C

A
_B

ug
_2

64
5.

9
E+

5
0:

15
2

6.
1

E+
4

0:
14

0
1.

6
E+

3
0:

04

BM
C

A
_B

ug
_3

10
1

9.
4

E+
7

0:
45

3
3.

3
E+

5
0:

17
1

9.
1

E+
2

0:
05

R
O

G
U

E_
FR

A
M

E_
Bu

g_
1

44
3.

9
E+

5
0:

18
2

9.
7

E+
6

0:
29

1
5.

6
E+

4
0:

12

R
O

G
U

E_
FR

A
M

E_
Bu

g_
2

87
4.

4
E+

4
0:

09
2

2.
1

E+
3

0:
05

1
1.

1
E+

3
0:

03

SP
T_

Bu
g_

1
12

1
8.

4
E+

8
1:

05
3

8.
1

E+
4

0:
11

0
5.

5
E+

2
0:

04

Ta
bl

e
5.

3:
It

er
at

iv
e

A
pp

ro
xi

m
at

e
Sy

nc
hr

on
y

w
it

h
bo

un
d
∆

fo
r

fin
di

ng
bu

gs
fa

st
er

.

109

5.5 related work

acknowledged in the standards report that a rogue frame bug is possible in certain
network topologies.

Approximate Synchrony as a Search Prioritization Technique. Approximate syn-
chrony can also be used as a bounding technique to prioritize search. We collected
buggy models during the process of modeling the BMC algorithm and used them
as benchmarks, along with a buggy instance of the Perlman’s Spanning Tree Proto-
col [154] (SPT). We used AS as an iterative bounding technique, starting with ∆ = 0

and incrementing ∆ after each iteration. For ∆ = 0, the model checker explores only
synchronous system behaviors. Increasing the value could be considered as adding
bounded asynchronous behaviors incrementally. Table 5.3 shows a comparison be-
tween iterative AS, non-iterative AS with a fixed value of ∆ taken from Table 5.2 and
iterative depth bounding with random search. The number of states explored and the
corresponding time taken for finding the bug is used as the comparison metric. Results
demonstrate that most of the bugs are found at small values of ∆ (hence iterative
search is beneficial for finding bugs). Some bugs like the rogue frame error that occurs
only when there is asynchrony were found with minimal asynchrony in the system
(∆ = 1). These results confirm that prioritizing search based on approximate synchrony
is beneficial in finding bugs. Other bounding techniques such as delay bounding [71]
and context bounding [145] can be combined with approximate synchrony, but this is
left for future work.

5.5 related work

The concept of partial synchrony has been well-studied in the theory of distributed
systems [61, 67, 162]. There are many ways to model partial synchrony depending on
the type of system and the end goal (e.g., formal verification). Approximate synchrony
is one such approach, which we contrast against the most closely-related work below.

Hybrid/Timed Modeling: The choice of modeling formalism greatly influences
the verification approach. A time-synchronized system can be modeled as a hybrid
system [10]. However, it is important to note that, unlike traditional hybrid systems
examples from the domain of control, the discrete part of the state space for these pro-
tocols is very large. Due to this, we observed that leading hybrid systems verification
tools, such as SpaceEx [81], cannot explore the entire state space.

There has been work on modeling timed protocols using real-time formalisms such
as timed automata [8], where the derivatives of all continuous-time variables are equal
to one. While tools based on the theory of timed automata do not explicitly support
modeling and verification of multi-rate timed systems [120], there do exist techniques
for approximating multirate clocks. For instance, Huang et al. [107] propose the use
of integer clocks on top of UPPAAL models. Daws and Yovine [44] show how multi-
rate timed systems can be over-approximated into timed automata. Vaandrager and
Groot [190] models a clock that can proceed with different rate by defining a clock

110

5.6 summary

model consisting of one location and one self transition. Such models only approxi-
mately represent multirate time systems. By contrast, our approach algorithmically
constructs abstractions that can be refined to be more precise by tuning the value of
∆, and results in a sound untimed model that can be directly checked by a finite-state
model checker. Consequently, for the systems we consider, our approach does not
suffer from any approximation on integer clocks, and we do not need to resort to
advanced real-time model checkers such as UPPAAL.

Synchrony and Asynchrony: There have been numerous efforts devoted towards
mixing synchronous and asynchronous modeling. Multiclock Esterel [164] and com-
municating reactive processes (CRP) [25] extend the synchronous language Esterel to
support a mix of synchronous and asynchronous processes. Multiclock Esterel provides
language extensions to partition clocks into two categories: those that tick simulta-
neously and those that can have unbounded skew and drift. In time-synchronized
systems, there is a guarantee of a fixed bound which is captured by approximate
synchrony but cannot be captured by these abstractions. Bounded asynchrony is another
such modeling technique with applications to biological systems [76]. It can be used
to model systems in which processes can have different but constant rates, and can be
interleaved asynchronously (with possible stuttering) before they all synchronize at the
end of a global “period.” Approximate synchrony has no such synchronizing global
period. The quasi-synchronous (QS) [34, 92] approach is designed for communicating
processes that are periodic and have almost the same period. QS [92] is defined as
“Between any two successive activations of one period process, the process on any
other process is activated either 0, 1, or at most 2 times”. As a consequence, in both
quasi-synchrony and bounded asynchrony, the difference of the absolute number of
activations of two different processes can grow unboundedly. In contrast, the definition
of AS does not allow this difference to grow unbounded.

5.6 summary

This chapter has introduced two new concepts: a class of distributed systems termed as
symmetric, almost-synchronous (SAS) systems, and approximate synchrony, an abstraction
method for such systems. We evaluated applicability of approximate synchrony for
verification in two different contexts: (i) application-layer protocols running on top of
time-synchronized systems (TSCH), and (ii) systems that do not rely on time synchro-
nization but exhibit recurrent logical behavior (BMC algorithm). We also described an
interesting search prioritization technique based on approximate synchrony with the
key insight that, prioritizing synchronous behaviors can help in finding bugs faster.

We integrated approximate synchrony based model-checking into the P explorer for
validating almost-synchronous systems or protocols implemented using P. In partic-
ular, we used an extension of approximate synchrony abstraction for systematically

111

5.6 summary

testing robotics systems that consists of concurrently executing periodic processes
(Chapter 7).

112

Part III

A S S U R E D AU T O N O M Y F O R R O B O T I C S S Y S T E M S

The recent drive towards achieving greater autonomy and intelligence
in robotics has led to increasing levels of complexity in the robotics soft-
ware stack. Assured autonomy requires a robot to make correct and timely
decisions, where the robotics software stack is implemented as a concur-
rent, reactive, event-driven system that may also use advanced machine
learning-based components. This trend has resulted in a widening gap
between the complexity of systems being deployed and those that can be
certified for safety and correctness of operation. In Chapter 6, we provide
an overview of these challenges and describe the existing approaches and
their short-comings.

Our approach towards acheiving assured autonomy for robotics systems
consists of two parts: (1) a high-level programming language for implement-
ing and validating the reactive robotics software stack; and (2) an inte-
grated runtime assurance system to ensure that the assumptions used during
design-time validation of the high-level software hold at runtime. Combin-
ing high-level programming language and model-checking with runtime
assurance helps us bridge the gap between design-time software validation
that makes assumptions about the untrusted components (e. g., low-level
controllers), and the physical world, and the actual execution of the soft-
ware on a real robotic platform in the physical world. We implemented our
approach in Drona (introduced in Chapter 6), a programming framework
for building safe robotics systems.

In Chapter 7, we consider the problem of building safe distributed mobile
robotics system and describe how Drona can be used for programming
and validating the complex multi-robot event-driven software stack. We
advocate the use of principles of runtime assurance to ensure the safety
of the robotics systems in the presence of untrusted components like
third-party libraries or machine learning-based components. In Chapter 8,
we present the runtime assurance framework integrated into Drona and
demonstrate how it enables guaranteeing the safety of the robotics system,
including when untrusted components have bugs or deviate from the
desired behavior.

https://drona-org.github.io/Drona/

113

https://drona-org.github.io/Drona/

6
A S S U R E D AU T O N O M Y: C H A L L E N G E S A N D A D VA N C E S

- A robot may not injure a human being
or, through inaction, allow a human
being to come to harm.
- A robot must obey orders given to it by
a human being except where such orders
would conflict with the first law.
- A robot must protect its own existence
as long as such protection does not
conflict with the first or second law.

— Isaac Asimov’s Three Laws of
Robotics

Recent advances in robotics have led to the adoption of autonomous mobile robots
across a broad spectrum of applications like surveillance, precision agriculture, ware-
house, delivery systems, and personal transportation. As autonomous robots are
finding applications in complex real-world systems that have acute safety and relia-
bility requirements, programmability with high assurance and provable robustness
guarantees remains a significant barrier to their large-scale adoption.

This drive towards autonomy is also leading to ever-increasing levels of software
complexity. This complexity stems from two central requirements: (1) event-driven,
real-time, concurrent software required for ensuring reactive and safe robotics system,
(2) integration of advanced data-driven, machine-learning components in the software
stack required to enable autonomous decision making in complex environments.
Moreover, the dependence of robotic systems on third-party off-the-shelf components
and machine-learning techniques is predicted to increase. However, advances in
formal verification and systematic testing have yet to catch up with this increased
complexity [178]. This has resulted in a widening gap between the complexity of
systems being deployed and those that can be certified for safety and correctness.

In this chapter, we first provide an overview of our robotics case study: a safe
autonomous drone surveillance system, and also discuss the corresponding robotics soft-
ware stack design (Section 6.1). We next highlight the main challenges involved in

114

6.1 case study : autonomous drone surveillance system

building safe autonomous robotics systems (Section 6.2) and finally, present our ap-
proach implemented in the Drona toolchain (Section 6.3) to address these challenges
of programming safe reactive robotics software stack (Section 6.2.1) and guaranteeing
safety in the presence of untrusted components (Section 6.2.2).

6.1 case study : autonomous drone surveillance system

In this thesis, we use the unmanned aerial vehicles, also called drones as the target
robotics platform to highlight both, the challenges in building safe robotics systems and
the efficacy of our approach. The approach presented in this thesis, and implemented
in the Drona toolchain is independent of the target robotics platform and is not
specific to drones.

We consider an autonomous drone surveillance system where a drone must au-
tonomously patrol a set of locations in a city. Figure 6.1a shows a snapshot of the
workspace in the Gazebo simulator [114]. Figure 6.1b presents the obstacle map for the
workspace with the surveillance points (dots) and a possible path that the autonomous
drone can take when performing the surveillance task (solid trajectory).

(a) A Gazebo [114] workspace for simulating
the surveillance mission. The workspace
models a city with obstacles like houses,
cars, and pedestrians on the streets.

(b) The static obstacle-map for the workspace.
The waypoints w1 . . . w6 represent a poten-
tial motion plan, and the dotted lines repre-
sent the reference trajectory for the drone.
The solid line represents the actual trajec-
tory of the drone, which deviates from the
reference trajectory because of the underly-
ing dynamics and disturbances.

Figure 6.1: Case Study: Autonomous Drone Surveillance System

The surveillance system requires that the autonomous drone must satisfy the
following specifications:

115

6.1 case study : autonomous drone surveillance system

(S1) Sequencing and Coverage (φapp): The drone must visit all surveillance points in a
priority order. The surveillance points to be monitored can be added or removed
dynamically. Hence, the drone must be capable of handling of dynamically
generated tasks. The drone must eventually visit all surveillance points.

(S2) Collision avoidance (φcol): The drone must never collide with an obstacle.

(S3) Battery safety (φbat): The drone must never crash because of low-battery. Instead,
when the battery is low it must prioritize either landing safely or visiting a
battery charging station.

For our case study, we consider a simplified setting where all the obstacles (houses,
cars, etc.) are static, known a priori, and that there are no environment uncertainties
like the wind. Even for such a simplified setup, the corresponding robotics software
stack (Figure 6.2) is complex: consisting of multiple components interacting with each
other and uses uncertified/untrusted components (red blocks).

6.1.1 Reactive Robotics Software Stack

At the heart of an autonomous robot is the specialized onboard software that ensures
safe operation without any human intervention. Figure 6.2 presents the robotics
software stack for an autonomous drone surveillance system. We next briefly introduce
each component in the software stack; they are discussed in more detail and formally
defined in Section 7.1.1 and Section 8.1.1.

Figure 6.2: Reactive Robotics Software Stack for the Autonomous Drone Surveillance System

1. Task Planner (Application): The task planner implements the application-specific
protocol, which ensures that the system satisfies the desired application-specific
properties.

116

6.1 case study : autonomous drone surveillance system

For example, in our case, the surveillance protocol at the top ensures that
the sequence of tasks performed by the drone satisfies the desired system
specifications, e. g., the drone must repeatedly visit the surveillance points in
fixed priority order. The surveillance protocol generates the sequence of next
target locations (tasks) for the drone and sends it to the motion planner.

The rest of the components in the software stack are the generic components present in
most mobile robotics systems, they together ensure safe movement of the robot in the
workspace.

2. Motion Planner: The Motion planner [117] solves the navigation problem for
a robot by breaking down the desired movement task into discrete motions
that satisfy movement constraints and possibly optimize some aspect of the
movement.

The motion planner computes a motion plan, which is a sequence of waypoints
from the current location to the target location. The waypoints w1 . . . w6 in
Figure 6.1b represent one such motion plan generated by the planner, and the
dotted lines represent the reference trajectory for the drone. The motion planner
on receiving a target location from the task planner generates the safe motion
plan that does not collide with any obstacle and forwards it to the motion
primitives library.

Implementing an on-the-fly motion planner may involve solving an optimization
problem or using an efficient graph search technique that relies on a solver or a
third-party library (e. g., OMPL [184]).

3. Motion Primitives: Motion primitives are a set of short closed loop trajectories
of a robot under the action of a set of precomputed control laws [117, 136]. The
set of motion primitives form the basis of the motion for a robot.

The motion primitives library on receiving the next waypoint generate the
required low-level controls necessary to follow the reference trajectory from the
current location to the target waypoint. Given the complex dynamics of a robot,
noisy sensors, and environmental disturbances, ensuring that the robot precisely
follows a fixed trajectory under the influence of a motion primitive is extremely
hard. The trajectory in Figure 6.1b represents the actual path of the drone, which
deviates from the reference trajectory because of the underlying dynamics and
disturbances.

These motion primitives are either designed using machine-learning techniques
like Reinforcement Learning [109], or optimized for specific tasks without con-
sidering safety, or are off-the-shelf controllers provided by third parties [151].

4. Flight Controller: During a complex autonomous mission, a drone might have
to switch between different modes of operation. The flight controller module

117

6.2 challenges in building safe robotics systems

implements the switching protocol, which ensures that the critical events are
prioritized correctly, and the robot always operates in the correct mode to
guarantee over-all safety of the mission. More details about the flight controller
are provided in the Section 6.2.1.

5. Perception Module: The perception module is responsible for detecting obstacles
and passing the information to the planner and controller to avoid a collision.
Machine learning techniques, primarily based on Deep Neural Networks [86]
have been responsible for the advances in solving the perception problem in
autonomous robotics.

6. State Estimators and Sensors: State estimation [21] for robotics is the field that
deals with the challenge of using onboard sensors and appropriate mathematical
tools to estimate the vehicle state (typically the combination of position, velocity,
orientation, angular velocity, etc.).

Most of the robot (drone) manufacturing companies provide a software devel-
opment kit (SDK) [151] that implements basic primitives for programmatically
controlling a robot and estimating its state. We leverage the PX4 [151] and
ROS [163]1 SDKs for implementing the state-estimation component of the soft-
ware stack.

Remark: We assume that the state estimators are trusted and can accurately provide
the system state within known bounds.

6.2 challenges in building safe robotics systems

We would like to re-emphasize two important characteristics of the components in the
robotics software stack presented in Figure 6.2:

1. Reactive and event-driven: Each component implements a complex protocol
that involves making discrete-decisions and continuous interactions with other
components to ensure that the robot safely achieves its goals. This requires the
software to be implemented as a event-driven system.

2. Untrusted components: These component may depend on untrusted2 software,
e. g., the motion primitives library may use third-party libraries that implement
closed-loop controllers.

1 The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot
applications. http://wiki.ros.org/ROS/Introduction

2 we refer to a software component as untrusted if it is hard to reason about its correctness, e.g. could be
third-party libraries or machine-learning based algorithms

118

http://wiki.ros.org/ROS/Introduction

6.2 challenges in building safe robotics systems

These characteristics makes it notoriously hard to provide high-assurance of cor-
rectness that the autonomous drone will always satisfy properties (S1)-(S3). Next, we
discuss these challenges in further details with motivating examples.

6.2.1 Programming Safe Reactive Event-Driven Robotics Software

Components in a robotics software stack are generally implemented as concurrent
event-driven systems as they must be reactive to inputs from the physical world and
from other software components.

To illustrate the complexity and event-driven nature of components in robotics
software stack, let us consider the flight controller component which ensures that
the robot always operates in correct mode and switches from one mode to another
depending on the changes in the state of the system. Figure 6.3 presents an abstract
version of the flight controller state machine implemented in the PX4 [151] drone
software stack.

Figure 6.3: Flight Controller Protocol for an Autonomous Drone.

The controller operates in different states (modes) and transition between states
based on the events received. An execution of the flight controller can look like: the
drone starts in Disarmed state; on receiving the arm command it moves to Armed
state where rotors are started; on receiving the takeoff command followed by the
autopilot command, the drone moves to the Mission mode where it starts performing
the surveillance mission.

In each mode, different components cooperate with the goal of performing the
mode-specific operations. For instance, in the mission mode components like appli-
cation, motion planner, and motion primitives together ensure that the robot safely
performs the surveillance mission. Irrespective of the mode of operation, the flight
controller must handle critical events that can happen at any time. For example, a
criticalBattery event must be handled correctly by aborting all operations and

119

6.2 challenges in building safe robotics systems

safely returning to home location. For this, the flight controller must always safely
transition to the Return Home mode which may in turn involve sending an event to all
the other components like application, motion planner, and motion primitives so that
they coordinate together to land the drone safely. To guarantee battery safety (φbat)
the flight controller must satisfy the property that “globally if criticalBattery then
eventually drone has returned home and landed”

All the components in the robotics software stack implement similar complex
protocols. Hence, to provide formal guarantees of correctness for the software stack
(properties (S1) to (S3)), there is a need for a framework that allows implementing,
specifying and verifying complex event-driven software.

To demonstrate the value of safe event-driven programming in the context of robotics
systems, we modeled the flight controller of PX4 Autopilot [151] in P and found a
bug in the protocol (within a few seconds) where the drone could have crashed as the
criticalBattery event was not handled correctly. This further motivated the need for
building a programming framework around P for implementing safe robotics system.

6.2.2 Guaranteeing Safety in the Presence of Untrusted Components

As described in Section 6.1, most of the components in the robotics software stack
end-up using untrusted software like third-party controllers or modules that are built
using data-driven approaches like machine-learning or deep learning. We treat these
as untrusted/unsafe since they often exhibit unsafe behavior in off-nominal conditions
and uncertain environments, and even when they do not, it is hard to be sure since
their complexity makes verification or exhaustive testing prohibitively expensive.
Furthermore, the trend in robotics is towards advanced, data-driven controllers, such
as those based on neural networks (NN), that usually do not come with safety
guarantees. To demonstrate that using such untrusted components can lead to failures
we conducted two experiments with the motion primitives library in the robotics
software stack.

Figure 6.4a presents an experiment where the drone was tasked to repeatedly visit
locations g1 to g4 in that order, i.e., the sequence of waypoints g1, . . . g4 are passed to
the motion primitives library. The motion primitives library generates control actions
to traverse the reference trajectory from current position to the target waypoint using
a low-level controller provided by the third-party robot manufacturer (e.g., we use the
PX4 Autopilot [151]). These low-level controllers generally use approximate models
of the dynamics of the robot and are optimized for performance rather than safety,
making them unsafe. The blue lines represent the actual trajectories of the drone.
Given the complex dynamics of a drone and noisy sensors, ensuring that it precisely
follows a fixed trajectory (ideally a straight line joining the waypoints) is extremely
hard. The low-level controller (untrusted) optimizes for time and, hence, during high

120

6.3 our approach : the drona programming framework

(a) Motion Primitive Library implemented us-
ing third-party controller (PX4 Autopilot).
The drone was tasked to repeated visit
g1 . . . g4 in a tube surrounded by obstacle
in gray. The region in red represent cases
where the drone deviated too far from the
reference trajectory and could have collided
with obstacle.

(b) Motion Primitive Library implemented using
machine learning based controller. The drone
was tasked to repeated visit in a eight-shaped
loop (blue stars). The trajectories in red repre-
sents cases where the drone deviated danger-
ously away from the desired trajectory.

Figure 6.4: Experiments with (untrusted) third-party and machine-learning controllers

speed maneuvers the reduced control on the drone leads to overshoot and trajectories
that collide with obstacles (represented by the red regions).

We also conducted a similar experiment with a different low-level controller de-
signed using data-driven approach (Figure 6.4b) where we tasked the drone to follow
a eight loop. The trajectories in green represent the cases where the drone closely
follows loop, the trajectories in red represent the cases the drone dangerously deviates
from the reference trajectory. Note that in both cases, the controllers can be used
during majority of their mission except for a few instances of unsafe maneuvers.

The key observation we would like to make from these experiments is that the
usage of untrusted software can lead to failures, and as complexity of robotics systems
increases the dependence on these untrusted components cannot be avoided, hence,
we need techniques that ensure safety of the system in the presence of these untrusted
components (red block in the Figure 6.2).

6.3 our approach : the drona programming framework

Let us revisit the drone surveillance system case study in Section 6.1. We would like
the system to satisfy the properties (S1) to (S3). These properties involve different

121

6.3 our approach : the drona programming framework

reasoning domains and robot components. For instance, property (S1) is application
specific and comprise discrete events. Contrarily, properties (S2) and (S3) are generic
(i.e., they should be satisfied by any safe robotics system) and concern both discrete and
continuous domains. In particular, property (S2) can be further decomposed into two
parts: (S2a) Safe Motion Planner: The motion planner must always generate a motion-
plan such that the reference trajectory does not collide with any obstacle, (S2b) Safe
Motion Primitives: When tracking the reference trajectory between any two waypoints
generated by the motion planner, the controls generated by the motion primitives
must ensure that the drone closely follows the trajectory and avoids collisions. Note
that (S2a) must be ensured by the discrete motion planner that generates discrete
trajectories (i.e., a sequence of waypoints), whereas the property (S2b) is dependent
on the low-level controllers (continuous). These observations motivate the need for
decomposing the verification problem into sub-problems that can be tackled by using
the right technique. For instance, traditional programming abstractions and model
checking approaches can address property (S1), and it could also be used to reason
about the discrete part of the property (S2) by making an assumption about the
(continuous behavior) property (S2b). And use a different approach to ensure that the
assumption (S2b) is guaranteed by the system.

Our approach combines discrete modeling (programming), and design-time verifica-
tion with runtime assurance. We use the modular P programming language framework
(Part i) to implement and specify the reactive robotics software stack, and use the sys-
tematic testing backend (Part ii) to validate the system (i.e., satisfies the properties (S1)
to (S3)). When validating the software we use discrete abstractions of the components
that involve reasoning about dynamics of the robotics or that are hard to analyze like
third-party components. We ensure that these assumption (discrete abstractions) made
during design-time validation hold at runtime using principles of runtime assurance.
We next describe the Drona tool chain that implements our approach.

The Drona tool-chain (Figure 6.5) consists of three main building blocks —

1. Reactive programming language: The Drona framework uses the P program-
ming language for implementing and specifying reactive event driven robotics
software. Drona extends the P framework to enable programmers provide de-
tails about the robot workspace, like size of the workspace grid, location of static
obstacles, location of battery charging points, starting location of each robot, etc.
It also provides language primitives to programmatically design systems with
runtime assurance architecture (more details in Chapter 8).

2. Compiler and Model Checker: Drona extends the P compiler to generates C
code that can be deployed on the ROS robotics platform. It also extends the P
explorer with approaches for scalable model-checking of robotics software which
consists of both event-driven and periodic processes (more details in Chapter 7).

122

6.4 related work

Figure 6.5: Drona Tool Chain (RTA: Runtime Assurance)

3. Robotics Runtime: Drona extends the P runtime with runtime assurance ca-
pabilities to safely integrate untrusted components into the robotics software
stack. It also implements primitives for efficient communication between robots
used for implementing distributed mobile robotics applications (more details in
Chapter 7).

6.4 related work

There has been a lot of research targeted towards addressing the problem of building
robotics systems with high-assurance of correctness [89]. The techniques proposed
span across domains, for example: (1) using high-level programming abstractions to
simplify the process building safe robotics systems, (2) using temporal-logic based
reactive synthesis to auto-generate critical parts of the robotics software stack, (3) using
design-time verification approaches like reachability analysis to prove properties about
the behavior of the robot (dynamics) under the influence of a software controller,
(4) using falsification approaches to find bugs in the implementation of the robotics
software by running it in a loop with a realisitc simulator, (5) using runtime assurance
based approach for guaranteeing safety of the robot by monitoring the state of the
robot and enforcing safe operation at runtime. In this section, we first discuss some
of the state-of-the-art approaches from each of these domains and show how they all
fail to address all the challenges described in Section 6.2. We conclude by presenting
how Drona combines ideas from these domains to be the first framework capable of
addressing both the challenges.

123

6.4 related work

Programming Abstractions. The closest work related to Drona is the recently pro-
posed StarL [125] framework, that unifies programming, specification and verification
of distributed robotics systems. Antlab [82] is another end-to-end system that takes
streams of user task requests and executes them using collections of robots. The tasks
are specified as temporal specifications and the Antlab framework automatically gen-
erates and assigns the task optimally to the set of robots in the system. The software
stack implemented in the Antlab framework is capable of synthesizing multi-robot
motion-plans and performs the required coordination between robots. Programming
frameworks like Giotto [98] have been used for building critical distributed embedded
systems software. Giotto provides an abstract model for the implementation of periodic
software tasks with real-time constraints. All these frameworks provide abstractions
that help programmers implement safe mobile robotics systems; framework like StarL
also provides backend verification engine to prove correctness of the implementa-
tion. But they fail to address the challenge of guaranteeing safety in the presence of
untrusted components.

Reactive Synthesis. There is increasing interest towards synthesizing reactive
robotics controllers from temporal logic [73, 115, 168, 182]. Tools like TuLip [202],
BIP [4, 23], and LTLMoP [75] construct a finite transition system that serves as an
abstract model of the physical system and synthesizes a strategy, represented by a
finite state automaton, satisfying the given high-level temporal specification. Fly-by-
Logic [153] presents an approach to solve the problem of safe multi-quadrotor missions
by allowing the programmer to encode these missions using STL (Signal Temporal
Logic). Though the generated strategy is guaranteed to be safe in the abstract model
of the environment, this approach has limitations: (1) there is gap between the abstract
models of the system and its actual behavior in the physical world; (2) there is gap
between the generated strategy state-machine and its actual software implementation
that interacts with the low-level controllers; and finally (3) the synthesis approach
scale poorly both with the complexity of the mission and the size of the workspace.
Recent tools such as SMC [182] generate both high-level and low-level plans, but
still need additional work to translate these plans into reliable software on top of
robotics platforms. All these synthesis-based approaches target correct-by-construction
strategy for implementing complex controller software, but faces scalability issues
when building complex real-world robotics software stack. Also, it cannot handle the
challenge of guaranteeing safety in the presence of untrusted components.

Reachability Analysis. Reachability analysis tools [39, 65, 81] have been used to
verify robotics systems modeled as hybrid systems. The upshot of this approach is that
if the analysis terminates then it provides a proof that the system (or its model) satisfies
the desired specifications. Reachability methods require an explicit representation
of the robot dynamics and often suffer from scalability issues when the system has
a large number of discrete states. The analysis is performed using the models of
the system, and hence, there is a gap between the models being verified and their

124

6.4 related work

implementation. Also, it cannot handle the challenge of guaranteeing safety in the
presence of untrusted components.

Simulation-based Falsification. Simulation-based tools for the falsification of CPS
models (e.g., [62]) are more scalable than reachability methods, but generally, they
do not provide any formal guarantees. In this approach, the entire robotics software
stack is tested by simulating it in a loop with a high-fidelity model of the robot and
hence, this approach does not suffer from the gap between model and implementation
described in the previous approaches. However, a challenge to achieving scalable
coverage comes from the considerable time it can take for simulations. Also, not
that these are falsification based approaches and does not provide any guarantee of
correctness, hence, cannot address the two challenges.

Runtime Verification and Assurance. Runtime verification has been applied to
robotics [48, 59, 103, 106, 124, 130, 155] where online monitors are used to check the
correctness (safety) of the robot at runtime. Schierman et al. [171] investigated how
a runtime assurance framework can be used at different levels of the software stack
of an unmanned aircraft system. The idea of using an advanced controller under
nominal conditions; while at the boundaries, using optimal safe control to maintain
safety has also been used in [6] for operating quadrotors in the real world. In [16]
the authors use a switching architecture ([17]) to switch between a nominal safety
model and learned performance model to synthesize policies for a quadrotor to follow
a trajectory. Similarly, ModelPlex [140] combines offline verification of CPS models
with runtime validation of system executions for compliance with the model to build
correct by construction runtime monitors which provides correctness guarantees for
CPS executions at runtime. Note that most prior applications of RTA do not provide
high-level programming language support for constructing provably-safe RTA systems
in a compositional fashion while designing for timing and communication behavior of
such systems. They are all instances of using runtime assurance as a design methodology
for building reliable systems in the presence of untrusted components.

Our Approach implemented in Drona framework. In order to ease the construction
of safe robotics systems, there is a need for a general programming framework that
supports run-time assurance principles, and also considers implementation aspects
such as timing and communication. As described in Section 6.3 the Drona framework
combines ideas from different domains to address the short-coming of the related
work. It integrates a state-machine based programming language for safe event-driven
robotics software, leverages advances in scalable systematic-testing techniques for
validation of the actual implementation of the software, and, provides language
support for runtime assurance to ensure safety in the real physical world.

125

7
P R O G R A M M I N G S A F E D I S T R I B U T E D M O B I L E R O B O T I C S
S Y S T E M S

There are known knowns. These are
things we know that we know. There are
known unknowns. That is to say, there
are things that we know we don’t know.
But there are also unknown unknowns.
There are things we don’t know we don’t
know.

— Donald Rumsfeld

In Chapter 6, we discussed two challenges that the Drona framework help address,
first being the safe programming of reactive robotics software and second is guaran-
teeing safety of the system in the presence of untrusted components. In this chapter,
we consider the first challenge and demonstrate the efficacy of Drona (Section 6.3) by
taking a principled approach of specifying, implementing, and verifying a distributed
mobile robotics (DMR) system. The challenges described in the Chapter 6 are amplified
for an DMR system as there are multiple robots involved and they have to coordinate
with each other continuously to ensure safe mission completion.

When building a reliable DMR software stack using Drona, we also had to solve
the fundamental problem of safe multi-robot motion planning. For example, in the multi-
robot surveillance system, as surveillance requests are generated in real-time and the
drones must move simultaneously in the shared workspace computing collision-free
paths on-the-fly. To address this problem, we present a provably correct multi-robot
motion planner (MRMP) which is decentralized, asynchronous, and reactive to dynami-
cally generated task requests. Prior work on multi-robot motion planning (e.g., [33,
169, 170, 194, 196]) assumes that the robots in the system step synchronously, or in
other words, their local clocks are synchronized. However, in distributed systems,
there is no perfect synchrony, and hence, this unsound assumption can lead to motion
planner computing colliding trajectories. One of the salient features of MRMP imple-
mented and verified using Drona is that it does not assume perfect synchrony of the

126

7.1 overview

distributed clocks. It produces safe collision-free trajectories taking into account the
“almost synchronized” nature of a time-synchronized DMR system.

We make the following contributions in this chapter:

• We present a novel and provably correct decentralized asynchronous motion
planner that can perform on-the-fly collision-free planning for dynamically
generated tasks. Moreover, the motion planner is the first to take into account
the fact that distributed robots may have clocks that are only synchronized up to
a tolerance (Section 7.2). Our results show that the MRMP scales efficiently for
systems with a large number of robots (up to 128 robots), and can be used for
on-the-fly computation of safe-trajectories in real deployments (Section 7.4).

• A DMR software stack consists of both event-driven asynchronous processes
and periodic processes. For verifying a DMR system, we formalize it as a mixed
synchronous system, present a sound abstraction-based model-checking approach
for scalable analysis, and implement it as part of the P systematic testing backend.
(Section 7.3).

• We demonstrate the advantages of using Drona for safe programming and veri-
fication of DMR systems by implementing the multi-drone surveillance system as a
case study. Using Drona, we found several critical bugs in our implementation
and successfully deployed it on real drone platforms (Section 7.4).

In the rest of this chapter, we first briefly describe our DMR case study of a
multi-robot surveillance system. We then present our implementation of the DMR
software stack, in particular, the novel multi-robot motion planner (Section 7.2) and
the abstraction-based approach used for verifying our implementation (Section 7.3).
Finally, we present the empirical evaluation of the Drona to demonstrate its efficacy
towards building reliable distributed robotics systems (Section 7.4).

7.1 overview

Multi-Robot Surveillance System: Figure 7.1 shows the discretized 2-D grid-map
of a city area in which a fleet of drones operates to perform surveillance (similar
to the workspace in Figure 6.1). The black blocks represent buildings and are the
static obstacles in the workspace. The dotted blocks are battery charging locations
that the drones must visit to charge their batteries. In the multi-robot surveillance
system, a fixed set of drones shares a known workspace with static obstacles and
the surveillance points to be monitored by each drone are generated dynamically;
hence, the drones must be capable of performing reactive task-planning. Each drone
must, in turn, satisfy the properties (S1)-(S3) described in Section 6.1. The collision
avoidance property (S2) is modified to ensure that the drone must not collide with

127

7.1 overview

the static obstacles as well as with other drones moving simultaneously in the shared
workspace.

Figure 7.1: Workspace for the Multi-Robot Surveillance System.

Each robot in the DMR system executes the robotics software stack presented in Fig-
ure 6.2. To reiterate, at the top is the task-planner (TP) that implements the application
specific protocol to guarantee that the system satisfies application-specific goals. For
example, the surveillance protocol is responsible for ensuring that the surveillance
points are visited eventually and are always in priority order. For the DMR system, the
motion planner module in Figure 6.2 consists of two sub-components: a multi-robot
motion planner (MRMP) and a plan-executor (PE). The MRMP must not only ensure
collision avoidance with static obstacles but also with other robots operating in the
workspace. It is the role of the MRMP module to compute safe and collision-free
trajectory for the robot by coordinating with other robots in the workspace. The plan-
executor module ensures that the robot correctly follows the trajectory computed by
the motion planner by invoking the motion-primitives periodically. More details about
the dependence of the correctness of the trajectory computed by the MRMP on PE are
described in Section 7.2. The rest of the components in the software stack are similar
to those described in Figure 6.2.

7.1.1 Terminology and Definitions

Workspace: We represent the workspace for a DMR application as a 3-D occupancy
grid map, the top view of an example 3-D workspace is shown in Figure 7.1. The
grid decomposes the workspace into cube-shaped blocks. The size of a workspace is
represented using the number of blocks along each dimension. For example, if the
workspace contains nx, ny and nz blocks along the x, y and z dimension respectively,
the size of the workspace is represented as [nx × ny × nz]. Each block is assigned a
unique identifier which represents the location of that block in the workspace. The set
of all locations in the workspace is denoted by the set W. Static obstacles can occupy
some parts of the workspace. If an obstacle partially occupies a grid block, we mark

128

7.1 overview

the entire grid block to be covered by an obstacle. The set of locations covered by
obstacles is denoted by Ω. The set of free locations in the workspace is denoted by F,
where F =W \Ω. The fixed set of robots operating in the workspace is denoted by the
set R = {r1, . . . , r|R|}.

Tasks: In a DMR application, tasks can be generated dynamically and assigned to a
robot. To complete a task, the robot needs to visit the goal location associated with
the task. A task is denoted as the tuple (l,p), where l ∈ F denotes the goal location
where the robot needs to reach for finishing the task, and p ∈N denotes the unique
identifier of the task. We denote by T the set of all atomic tasks. A complex task can
be represented as a sequence of atomic tasks. We will use the term task to refer to an
atomic task.

Motion primitives: Motion primitives are a set of short closed-loop trajectories of
a robot under the action of a set of precomputed control laws [117, 136]. The set of
motion primitives form the basis of the motion for a robot. A robot moves from its
current location to a destination location by executing a sequence of motion primitives.
We denote by Γ the set of all motion primitives available for a robot. For example, in
the most simple case a ground robot has five motion primitives: {H, L, R, U, D}, where
the primitive H keeps the robot in the same grid block and the primitives L, R, U and D
move the robot to the adjacent left, right, upper, and lower grid block respectively.

For a grid location l and a motion primitive γ ∈ Γ , we denote by post(l,γ) the
location where the robot moves when the motion primitive γ is applied at l. We use
intermediate(l,γ) to denote the set of locations through which the robot may traverse
after applying γ at location l (including l and post(l,γ)). For a motion primitive
γ ∈ Γ , we denote by cost(γ) the cost (e.g., energy expenditure) to execute the motion
primitive. We assume that for all robots in the system, each motion primitive requires
τ unit time for execution. This assumption may not hold for heterogeneous systems
and extending our approach for such systems is left as future work.

Motion plan: Now we formally define a motion plan.

Definition 7.1.1: Motion Plan

A motion plan is defined as a sequence of motion primitives to be applied to a robot ri
to move from its current location lic to a goal location lig. A motion plan is denoted by
ρi = (γ1 . . . γk), where, γq ∈ Γ for q ∈ {1, . . . ,k}.

Timed trajectories: The trajectory of a robot ri can be represented as a sequence of
timestamped locations (τi0, l

i
0), (τ

i
1, l

i
1) . . ., where τin represents the n-th periodic time

step for robot ri. In the rest of the chapter, we refer to (τin, lin) as lin representing the
location of robot ri in the n-th time step. The size of the period |τin − τ

i
n+1| = τ, where

τ is the time it takes to execute any motion primitive.

129

7.2 building distributed mobile robotics (dmr) system

Definition 7.1.2: Trajectory

Given the current location lic of the robot ri and a motion plan ρi = (γ1 . . . γk) that
is applied to the robot at the time step τin, the trajectory of the robot is a sequence of
locations ξi = (linl

i
n+1 . . . l

i
n+k), such that lin = lic, ∀q ∈ {0, . . . ,k− 1}, γq+1 is applied

to the robot at location lin+q at the time step τin+q and lin+q+1 = post(lin+q,γq+1).

Safe task-completion property: The trajectory computed by the motion planner
must always satisfy the safe task-completion property (Φst) which is a conjunction of
following three properties: (a) obstacle avoidance (φo), (b) collision avoidance (φc),
and (c) successful task completion (φf). The property φo requires that a robot never
attempts to pass through a location l ∈ Ω associated with a static obstacle. The
property φc entails that two robots never collide with each other. The property φf
captures the requirement that if a robot follows the trajectory, then it will eventually
reach the goal location.

7.2 building distributed mobile robotics (dmr) system

We designed and implemented a safe DMR software stack for the distributed surveil-
lance system. We implemented all the components in the software stack using P, and
model-checked that the system satisfied the desired specifications (S1) to (S3). One
of the key component required for ensuring the property (S2) of the DMR system
is the distributed motion planner that must provide a provably correct solution for
the Problem 7.2.1. In this section, we describe our novel distributed asychronous
multi-robot motion planner that can compute safe trajectories on-the-fly and also
account for the clock synchronization error in a distributed system.

7.2.1 Distributed Multi-Robot Motion Planner

We present the multi-robot motion planner (MRMP) implemented in Drona. MRMP
is asynchronous, decentralized, and robust to clock skew in distributed systems.

Problem 7.2.1: Motion Planning Problem in DMR Systems

Given a set of robots R = {r1, . . . , r|R|} operating in a common workspace W, if a
dynamically generated task (l,p) ∈ T is assigned to a robot ri ∈ R, find trajectory ξi
such that it satisfies safe task-completion property Φst.

We decompose the above motion planning problem into two sub-problems:

130

7.2 building distributed mobile robotics (dmr) system

1. Trajectory coordination problem: For computing the collision-free trajectory of
a robot, the motion planner must have consistent information (consistent snapshot)
about the trajectories of all other robots in the system (Section 7.2.2).

2. Safe plan-generation problem: Given the set of current trajectories of all the
robots (Ψ), synthesize a trajectory that is robust against time-synchronization
errors and satisfies Φst (Section 7.2.3).

7.2.2 Distributed Trajectory Coordination

In a DMR system, tasks are generated dynamically. Hence, the motion planner for
such a system should be able to compute trajectories on-the-fly and in a decentralized
fashion. The decentralized motion-planner for robot ri ∈ R is shown in Algorithm 7.2.1
in the form of a state machine, which is executed by each robot in the system. It
is presented in the form of pseudo-code that closely represents the syntax of the
P programming language. The function broadcast (ev,pd) broadcasts event ev with
payload pd to all the robots in workspace, including oneself.

The motion-planner state machine has three states: WaitForTaskRequest, Coordi-
nateAndGeneratePlan, and WaitForPlanCompletion. Planner starts executing in the
WaitForTaskRequest state. On receiving a NewTask event from the task-planner, it
updates the task information (currTaskid and lig) and moves to the CoordinateAnd-
GeneratePlan state. If the planner receives a ReqForCurrentTraj event from another
robot rj ∈ R, it sends its current location lic to robot rj.

131

7.2 building distributed mobile robotics (dmr) system

Algorithm 7.2.1 Decentralized Motion Planner
1: machine DecentralizedMotionPlanner {
2: start state WaitForTaskRequest {
3: entry { lic ←getCurrentLocation() }
4: on NewTask (task : T) do {
5: currTaskid ← task.id, lig ← task.goal
6: goto CoordinateAndGeneratePlan

7: }
8: on ReqForCurrentTraj (taskid, rj) do {
9: send (rj, CurrentTraj, (ri, [lic]))

10: }
11: }
12: state CoordinateAndGeneratePlan {
13: entry {
14: Rpend ← {} , Rrecv ← {}, Ψi ← {}
15: broadcast (ReqForCurrentTraj, (currTaskid, ri))
16: }
17: on CurrentTraj (rj, ζj) do {
18: Rrecv ← Rrecv ∪ {rj}, Ψi ← Ψi ∪ {ζj}
19: if (sizeof(Rrecv) = |R|) then
20: ρi ← synthesizeMotionPlan(lic, lig,Ω,Ψi)
21: SendMotionPlanToPlanExecutor(ρi)
22: ξi ← ConvertMotionPlanToTraj(ρi)
23: foreach rj ∈ Rpend
24: send (rj, CurrentTraj, (ri, ξi))
25: end
26: goto WaitForPlanCompletion

27: end if
28: }
29: on ReqForCurrentTraj (taskid, rj) do {
30: if (taskid 6 currTaskid) then
31: send (rj, CurrentTraj, (ri, [lic]))
32: else
33: Rpend ← Rpend ∪ {rj}
34: end if
35: }
36: }
37: state WaitForPlanCompletion {
38: on ReqForCurrentTraj (task_id, rj) do {
39: send (rj, CurrentTraj, (ri, ξi))
40: }
41: on Reset () do {
42: goto WaitForTaskRequest

43: }
44: }
45: }

132

7.2 building distributed mobile robotics (dmr) system

Upon entering the CoordinateAndGeneratePlan state, planner broadcasts
ReqForCurrentTraj event with the identifier of the current task and its own iden-
tifier, asking for trajectories of all robots in the workspace. Rrecv stores identifiers of
the robots that have sent their trajectories as a response to the ReqForCurrentTraj
event, and Ψi stores the current trajectories of all those robots. Rpend is used for stor-
ing identifiers of all robots from which it has received ReqForCurrentTraj and have
to send its newly computed trajectory. Upon receiving the CurrentTraj event from
another robot rj, the planner adds robot rj to set Rrecv and its trajectory ζj to the set
Ψi. The planner state machine is blocked in CoordinateAndGeneratePlan state until
it receives CurrentTraj event from all the robots.

On receiving trajectories from all the robots (line 19), the planner invokes the
synthesizeMotionPlan function with its current location lic, the goal location lig, the set
of static obstacles Ω and the set of trajectories of all the robots Ψi. The implementation
of plan generator function synthesizeMotionPlan is described in Section 7.2.3. The
motion-plan returned by the synthesizeMotionPlan function is sent to the plan-
executor module so that the robot can start executing it, and the corresponding
trajectory is sent to all the robots whose identifiers are present in the set Rpend and are
blocked waiting for the trajectory of robot ri.

If two robots ri and rj attempt to generate motion plans simultaneously, then a
race situation arises as both of them are waiting for the current trajectory of the other
robot. This deadlock situation is resolved based on the unique identifier assigned
to each task. If the planner of ri receives a ReqForCurrentTraj event from rj in the
CoordinateAndGeneratePlan state and if the task identifier taskid in the event is less
than its current task identifier currTaskid then it implies that the robot rj is dealing
with a higher priority task. In such a case, the motion planner of ri sends its current
location lic to the motion planner of rj to unblock it and waits for rj’s computed
trajectory. Otherwise, it adds the robot rj to the set Rpend, and once it computes its
own trajectory, sends the trajectory to unblock rj (Line 23-25).

In the WaitForPlanCompletion state, motion planner waits for a Reset event from
the plan-executor indicating that the task is completed, on receiving which it moves to
WaitForTaskRequest.

Notice that if the planner for robot ri generates trajectory ξi, then ξi is always safe
as the coordination protocol guarantees that all future trajectories computed by any
other robot rj will have ξi in Ψj.

7.2.3 Safe Plan Generator

In this section, we present an approach for synthesizing a motion plan to generate a
trajectory that satisfies the safe task-completion property Φst.

133

7.2 building distributed mobile robotics (dmr) system

7.2.3.1 Motion Plan Synthesis Problem

The inputs to the motion plan synthesis problem (Algorithm 7.2.1, line 20) for a
robot ri is the current location of the robot (lic), the goal location (lig), the set of static
obstacles (Ω), and the set of current trajectories of other robots (Ψi). We call the tuple
Pi = 〈lic, lig,Ω,Ψi〉 as the motion plan synthesis problem instance for robot ri.

Recall that a trajectory ξi of robot ri is a sequence of locations (lin, lin+1, . . . , l
i
n+k),

where the trajectory starts at the n-th time step. We adopt a technique based on the
composition of motion primitives [169, 170] to solve the motion-plan synthesis problem.
To generate such a trajectory ξi, we must synthesize a motion plan (Definition 7.1.1)
ρi = (γ1,γ2, . . . ,γk), where γq ∈ Γ , 1 6 q 6 k. Recollect that the desired trajectory
(Definition 7.1.2) is realized by applying motion primitive γq+1 to the robot at time
step τin+q.

We now define the motion plan synthesis problem:

Problem 7.2.2: Safe Motion Plan Synthesis

Given a motion plan synthesis problem instance Pi for robot ri, a set of motion
primitives Γ , and the time step τin when the plan executor will start executing the
motion plan, synthesize a motion plan ρi = (γ1 . . . γk) such that the trajectory
ξi = (linl

i
n+1 . . . l

i
n+k) generated by the plan executor by executing the motion plan

ρi satisfies the safe task-completion property Φst.

Accounting for clock skew: Each robot ri ∈ R operates based on its own local clock
χi. Let t denote an ideal global time reference (just for purposes of formalization).
We denote by χi(t) the valuation of the clock χi at the global time t. Synchronization
of these clocks plays an important role in the correctness of our distributed motion
planning algorithm with respect to the collision avoidance property φc.

We assume that the DMR software stack implements a time-synchronization proto-
col [68] that bounds the skew between two clocks, given by |χi(t) − χj(t)| 6 β. If β = 0,
we say that the clocks of the robots are in perfect synchrony. Otherwise, the clocks are
almost-synchronous with precision β > 0.

To capture the skew between timed trajectories of two robots, we reuse the approxi-
mate synchrony condition introduced in Chapter 5.

Theorem 7.2.1: Using Approximate Synchrony Condition

If the local clocks of robots ri and rj are time-synchronized with a synchronization
precision β, and at some global time point t, if robot ri takes the time step τip and robot
rj takes the time step τjq, then |p− q| 6 ∆, where ∆ is given by ∆ =

⌈
β
τ

⌉
where τ is the

duration of a time step (Theorem 5.2.1).

134

7.2 building distributed mobile robotics (dmr) system

Informally, Theorem 7.2.3.1 states that if the clocks of two robots are synchronized
within a bound β, then the difference between the number of periodic steps taken by
the two robots is bounded by ∆. Hence, for collision avoidance, while synthesizing
motion plan it is important to know precisely where the other robots in the system
would be for a time-step window of size ±∆. The parameter ∆ determines how
conservative a robot should be when computing its trajectory that avoids collision
with other robots.

7.2.3.2 Motion Plan Generation

We now describe how a motion plan ρi = (γ1, . . . ,γk) is synthesized from a motion
plan synthesis problem instance Pi = 〈lic, lig,Ω,Ψ〉. We formulate the problem as an
optimization problem where the decision variables are the motion primitives to be
applied at different time steps, and the objective is to minimize the total cost to execute
the trajectory. The functions post, cost, and intermediate used in this section are
defined in Section 7.1.1.
The objective function is given as follows:

minimize
(γ1,γ2,...,γk)

k∑
j=1

cost(γj) (7.1)

The constraints for the optimization problem is a conjunction of four constraints as
described below:
(1) Initial and final location: The first location in ξi is the current location, lic of the
robot. Similarly, the last location in ξi must be the goal location lig.

lin = lic ∧ l
i
n+k = l

i
g (7.2)

(2) Trajectory continuity: A location in a trajectory is reachable from the previous
location using the motion primitive applied at the previous location.

∀q ∈ {0, . . . ,k− 1} : lin+q+1 ∈ post(lin+q,γq+1) (7.3)

(3) Obstacle avoidance: No location on the trajectory should be covered with obstacles.

∀q ∈ {0, . . . ,k− 1} ∀l ∈ intermediate(lin+q,γq+1) : l /∈ Ω (7.4)

135

7.2 building distributed mobile robotics (dmr) system

This constraint ensures the obstacle avoidance component φo of the safe task-
completion property Φst.

(4) Collision avoidance: If the local clocks of all the robots are in perfect synchrony,
ensuring collision avoidance would require that the robots do not occupy the same grid
location in the workspace at the same time period according to their local clock. Motion
plan synthesizer must ensure collision avoidance of robot ri’s trajectory represented
as ξi = (linl

i
n+1 . . . l

i
n ′) with the trajectories of other robots captured in the set Ψ. The

trajectory of any other robot rj is denoted by (ljm, . . . , ljn, . . . , ljm ′) ∈ Ψ, where m 6 n.
The following constraint guarantees collision avoidance property φc for a perfectly

synchronous system:

∀rj ∈ R \ {ri}, (ljm, . . . , ljn, . . . , ljm ′) ∈ Ψ :

((∀q ∈ {n, . . . , min(n ′,m ′)} : liq 6= l
j
q) ∧

/* The robot ri reaches destination before robot rj */
(n ′ < m ′ ⇒ ∀q ∈ {n ′ + 1, . . . ,m ′} : lin ′ 6= ljq) ∧
/* The robot ri reaches destination after robot rj */
(n ′ > m ′ ⇒ ∀q ∈ {m ′ + 1, . . . ,n ′} : liq 6= l

j
m ′))

(7.5)

Once a robot reaches its destination, it stays there unless it computes a new trajectory
using the motion planner. Equation 7.5 comprises a conjunction of three constraints
(one per line). The first constraint enforces that two robots cannot occupy the same
location at the same instant while moving. The second and third constraint specifies
that a robot that is moving does not occupy the location of a stationary robot (that has
stopped after reaching the destination).

When the clocks are not perfectly synchronous, then one must consider the synchro-
nization precision β. We do so using the notion of approximate synchrony introduced
in Chapter 5. Specifically, to ensure collision avoidance with another robot, the plan
synthesizer of a robot should ensure that its location at time step τin does not over-
lap with the location of the other robot at any step in the range of (τin − ∆, τin + ∆).
Equation 7.6 extends Equation 7.5 to encode collision avoidance constraint with an
approximate synchrony bound of ∆.

136

7.2 building distributed mobile robotics (dmr) system

∀rj ∈ R \ {ri}, (ljm, ljm+1, . . . , l
j
n, . . . , ljm ′) ∈ Ψ :

((∀q ∈ {n, . . . , min(n ′,m ′)} ∀p ∈ {q−∆, . . . ,q+∆} :
(n 6 p 6 m ′ ⇒ liq 6= l

j
p) ∧

(p < m⇒ liq 6= l
j
m) ∧ (p > m ′ ⇒ liq 6= l

j
m ′)) ∧

/* The robot ri reaches destination before robot rj */
((n ′ < m ′)⇒ ∀q ∈ {n ′ + 1, . . . ,m ′} ∀p ∈ {q−∆, . . . ,q+∆} :

(p 6 n ′ ⇒ lip 6= l
j
q) ∧ (p > n ′ ⇒ lin ′ 6= ljq)) ∧

/* The robot ri reaches destination after robot rj */
((n ′ > m ′)⇒ ∀q ∈ {m ′ + 1, . . . ,n ′} ∀p ∈ {q−∆, . . . ,q+∆} :

(p 6 m ′ ⇒ liq 6= l
j
p) ∧ (p > m ′ ⇒ liq 6= l

j
m ′)))

(7.6)

SMT solver based safe plan-generator: To synthesize the motion plan using a
satisfiability modulo theories (SMT) solver [22], we first start by initializing the length
of the trajectory (k) to be the manhattan distance between the current location of the
robot and its goal location. The constraints (Eq.(1)-Eq.(6)) are from the theory of
linear integer arithmetic and the theory of equality with uninterpreted functions. We
represent the obstacles using an uninterpreted function. If there exists a solution for
the set of constraints, the solution provides us the desired motion plan. If no solution
exists, we increase the value of k by 1 and attempt to solve the constraints again. We
iterate that process until the value of k is less than or equal to Limax (a parameter that
represents the maximal length to be considered for generating the trajectory for robot
ri). If no motion plan of length less than or equal to Limax is found, it is guaranteed
that there does not exist a feasible motion plan of length less than equal to Limax for
the given problem instance.

However, as our experimental results reveal (Section 7.4), an SMT based solution
suffers from a lack of scalability for large grid sizes and multi-robot systems as
constraints become hard to solve.

A* based safe plan-generator: To have a scalable implementation, we extend the
well-known A* search algorithm [94] to generate safe motion plans. A* search algorithm
can natively handle the objective function Equation 7.1 and the constraints Equation 7.2-
(7.4) for static obstacles. We extended the function that computes adjacent nodes in A*
to incorporate the constraints in Eq. (7.5) and Equation 7.6. We associate a time-stamp
value to each node in the A* search graph. The time-stamp denotes the number of
steps required to reach the current node from the start node. During adjacent node
calculation, we use time-stamp at a node to encode the constraints in Equation 7.5 and
Equation 7.6 to ensure that the trajectory through the potential adjacent node will not
be in collision with the trajectory of any other robot.

137

7.2 building distributed mobile robotics (dmr) system

7.2.4 Plan Executor

The plan-executor (PE) module plays an important role in the overall correctness of
MRMP. It is the responsibility of the plan-executor module to ensure that the robot
correctly follows its computed trajectory. The plan-generator (Section 7.2.3) generates
a safe trajectory under the assumption that all robots in the system will follow their
timed-trajectories that they communicated to other robots.

Recollect that the MRMP protocol (Algorithm 7.2.1, line 21) on computing a motion
plan ρi sends it to the plan-executor module. The plan-executor executes the sequence
of motion-primitives in ρi such that the robot ri realizes its timed-trajectory ξi (Defini-
tion 7.1.1). It is implemented as a periodic state-machine with the duration of each
period as τ, executing the next motion-primitive at each period.

For all the robots to follow their timed-trajectories correctly, the path-executor
processes across robots must step periodically with a symmetric period τ, i.e, ∀ri ∈
R,∀n, |τin − τin+1| = τ. Since path-executor at each robot ri step using its local clock
χi, the path-executors across the system do not step perfectly synchronously but
almost-synchronously with a bound ±∆ which the plan-generator has accounted for
in Equation 7.6.

7.2.5 Provably Correct Motion Planner

Recollect that when computing a trajectory for a robot ri, the execution of MRMP
is decomposed into two phases: first, the coordination protocol computes the avoid
trajectories set Ψi which is then used by the safe plan-generator for computing the
collision-free trajectory ξi. We say that the avoid trajectories set Ψi is consistent if
∀ζj ∈ Ψi, ζj = ξj, where ζj is the trajectory sent by robot rj to robot ri and ξj is the
actual trajectory being executed by robot rj.

As described in Section 7.2.3.2, the A* based plan-generator always generates
trajectories that satisfy the safe task-completion property Φst under the assumption
that avoid trajectory set Ψi is consistent. In other words, given the set of trajectories Ψi,
if the plan-generator computes trajectory ξi then consistent(Ψi) =⇒ (ξi |= Φst).

In order to prove that the assumption consistent(Ψi) holds, we verify (using model-
checking) the following properties about the coordination protocol: (1) Safety: The
avoid trajectory set Ψi computed by the coordination protocol is always consistent. (2)
Liveness: If a dynamically generated task (l,p) ∈ T is assigned to the robot ri then it
eventually computes consistent Ψi.

The multi-robot motion planner described in this section satisfies the following
soundness theorem:

138

7.3 verification of dmr systems

Theorem 7.2.2: Safe Task Completion

If a dynamically generated task (lig,p) is assigned to a robot ri then the corresponding
trajectory ξi computed by MRMP always satisfies the safe task-completion property
Φst.

Proof. As stated earlier, if ξi is the trajectory computed by the plan-generator us-
ing Ψi then it provides the guarantee that consistent(Ψi) =⇒ (ξi |= Φst) and
we proved using model-checking that the coordination protocol always satisfies
∀Ψi, consistent(Ψi). �

However, MRMP is not complete due to the following reason: for a given task,
the corresponding robot may not be able to reach the destination because the other
stationary robots may block its possible trajectories.

Ensuring properties (S1) to (S3) for a DMR system. The Theorem 7.2.2, implies the
collision avoidance property (S2) when performing a task. Also, it can be used to prove
that the satisfies the application specific task completion properties (S1). However,
note that the safe motion plan and safe task completion guarantees are satisfied under
the assumption that the motion primitives satisfy the desired safety property that it
always moves through the intermediate locations (see Section 7.1.1). This property
may not hold when the motion primitives are implemented using third-party libraries
or other untrusted techniques. In Chapter 8, we describe how this assumption about
motion primitives is guaranteed using runtime assurance which in turn helps ensure
the Theorem 7.2.2 for the robotics software stack.

7.3 verification of dmr systems

In this section, we describe our approach for verifying that a DMR system (M) satisfies
specification Φ. As explained in Section 7.2.4, for the robots in the system to success-
fully follow their computed trajectories, the plan executor (PE) processes must step
almost-synchronously with symmetric period τ. Hence, the PE processes across robots
are implemented as periodic processes. All the other processes in the software stack,
e.g., TP, MRMP, and SI are event-driven and are composed asynchronously. We call the
DMR system as a mixed synchronous system as it is a composition of asynchronously
composed processes and almost-synchronously composed processes.

7.3.1 Formal Model of DMR system

We model the DMR mixed synchronous system as a tuple (k, S, I,Psp,Pas,~χ, τ, δ)
where:

- k is the number of robots in the system.

139

7.3 verification of dmr systems

- S is the set of discrete states of the system which is a product of the local states
of all the processes.

- I ⊆ S is the set of initial states of the system.

- Psp = {P1sp,P2sp, . . . ,Pksp} is the set of process identifiers for the symmetric periodic
(PE) processes. Pisp represents symmetric periodic process running on ri.

- Pas = {P1as,P2as, . . . ,Pkas} is the set of process identifiers for the asynchronous
processes. Pias represents composition of asynchronous process running on ri.
Pias = TPi ‖MRMPi ‖ SIi.

- ~χ = (χ1,χ2, . . . ,χk) is a vector of real valued local clocks, each robot ri has an
associated local clock χi.

- ~τ is the common global process timetable for the periodic Psp processes. The
timetable ~τ is an infinite vector (τ1, τ2, τ3, . . .) specifying the time instants accord-
ing to local clock χi when the process Pisp executes (steps). In other words, Pisp
makes its jth step when χi(t) = τj where χi(t) is the value of the local clock χi
at global reference time t. Also, since the Psp processes step with a period of τ,
|τj+1 − τj| = τ.

- δ ⊆ S×ΣMS×S is the labeled transition relation for the mixed synchronous system.
ΣMS denote (2Psp \ {})tPas, the transition labels of the system.

Note that the periodic Psp processes have the same timetable, but that does not
mean that the processes step perfectly synchronously, since their local clocks may
report different values at the same global time t.

Timed traces: A timed trace σ of the mixed synchronous system MMS is an infinite
sequence of the timestamped record of the execution of the system according to the
global (ideal) time reference t and is of the form σ : (s0, t0), . . . (sn, tn) . . . with ∀i. i > 0,
si ∈ S, ti ∈ R>0 and ti 6 ti+1 satisfying requirements:
Initiation: s0 ∈ I, and ∀i. χi(t0) = 0, t0 = 0.
Consecution: for all i > 0, there is a transition of the form (si,ai, si+1) in δ such that
the label ai is either one of the following:

1. The label ai is an asynchronous process, ai ∈ Pas and the transition represents
process ai stepping at time ti.

2. The label ai is a subset of symmetric periodic processes, ai ⊆ Psp and ∀j.Pjsp ∈ ai,
χj(ti) = τm for some m ∈ {0, 1, 2, . . .}. χj(ti) is the value of the local clock χj at
current global reference time ti. This transition represents a subset of symmetric
periodic processes making a step whose local clock value at time ti is equal to
some timetable value. Moreover, Psp processes step according to their timetables;

140

7.3 verification of dmr systems

thus, if any process Pisp ∈ Psp makes its mth and lth steps at times tj and tk
respectively, for m < l, then χi(tj) = τmi < τli = χi(tk).

7.3.2 Mixed Synchronous Abstraction

MMS system described above can be modeled as a hybrid or timed system (due to
the continuous dynamics of physical clocks), but the associated methods [81, 120] for
verification tend to be less efficient for systems with huge discrete state space. Instead,
we construct the discrete abstraction M̂MS of MMS that preserves the relevant timing
semantics of the mixed synchronous systems. We extend the approximate synchrony
abstraction (see Section 5.2) to create an untimed mixed synchronous abstraction of
MMS.

We define M̂MS as a tuple (k, S, I,Psp,Pas, ρ∆, δa) where ρ∆ is a scheduler process
that performs an asynchronous composition of all the processes while enforcing
approximate synchrony condition with parameter ∆ (computed using Theorem 5.2.1)
only for the Psp processes. The scheduler ρ∆ maintains counter Ni of the number
of steps taken by each process Pisp from the initial state. A configuration of M̂MS

is a pair (s,N) where s ∈ S and N ∈ Nk is the vector of step counts for the Psp

processes. The transition function δa for the abstract model M̂MS can be defined as
((s,N),ai, (s ′,N ′)) ∈ δa iff δ(s,ai, s ′) and one of following holds: (1) N ′j = Nj + 1 and

ρ∆ permits all Pjsp ∈ ai to make a step, (2) ai ∈ Pas and ai makes a step.
ρ∆ scheduler enforces the mixed synchrony condition during exploration by allow-

ing Psp processes to step iff their step does not violate the approximate synchrony
condition, and the Pas are always allowed to step.

Untimed traces: Traces of M̂MS are (untimed) sequences of discrete (global) states
s0, s1, s2, . . ., where sj ∈ S, s0 ∈ I, and for all j, (sj,aj, sj+1) ∈ δa.

Theorem 7.3.1: Soundness of Mixed-Synchronous Abstraction

The abstract model M̂MS is a sound abstraction of the concrete model MMS. Hence,
M̂MS |= Φ implies MMS |= Φ.

Proof. Let traces(M) represent the set of all untimed traces of the system M. The
untiming logic for timed traces is as defined by Alur in [8]. M̂ is a sound abstraction
of M if traces(M) ⊆ traces(M̂) We derive the proof-sketch from Theorem 5.2.1 which
proves that for a time-synchronized system Mps with synchronization β, the approx-
imate synchrony based abstract model M̂ps is a sound abstraction with parameter
∆ =

⌈
β
τ

⌉
. Since the Pas are interleaved asynchronously in both MMS and M̂MS we can

further prove that traces(MMS) ⊆ traces(M̂MS). �

141

7.4 evaluation

Note that mixed-synchronous abstraction is critical for the verification of DMR
systems. Performing synchronous composition of all processes in the system is un-
sound and performing asynchronous composition can lead to false-positives due to
over-approximation.

Implementation of the verification approach: The P explorer (model checker) sup-
ports directed search based on an external scheduler (as described in Chapter 4). We
implemented the mixed synchrony scheduler (ρ∆) as an external scheduler that con-
straints the interleaving explored during verification. The model-checking algorithm
that uses approximate synchrony scheduler is described in Chapter 5. Note that the
key feature that comes to rescue is the ability of the P explorer to enable analysis of
event-driven systems using external schedulers.

7.4 evaluation

In this chapter, we empirically evaluate the Drona framework with the following
goals:
(Goal 1) Show that safe plan-generator can be used for on-the-fly motion planning
with a large number of robots and large workspace size.
(Goal 2) Show how time-synchronization error (∆) effects optimal path computation.
(Goal 3) Demonstrate the advantages of using Drona for building reliable DMR system
by implementing and verifying the priority mail delivery system as a case study.
(Goal 4) Deploy the generated code from Drona on the ROS [163] simulator (and real
drone platforms) for various configurations to validate the reliability.
All the experiments were performed on a laptop with 2.5 GHz Intel i7 core processor
with 16GB RAM.

Evaluation of safe plan generator: Recently, there is an increased interest towards
using SMT solvers for motion plan synthesis [148, 169, 170]. The performance of the
plan generator depends on the complexity of constraints generated, which varies based
on the size of the workspace, the number of robots, their current trajectories, and the
density of static obstacles. From our experiments, we found that the state-of-the-art
solver Z3 [45] does not scale for plan generation in the context of multi-robot systems.
Generating a motion plan with a workspace of size 64x64 and 16 robots takes 2 min
18 secs (see Table 7.1).

We implemented the plan-generator using a publicly available A* implementa-
tion [15] and encoded the path constraints into A* search. In our evaluation of A*
based plan generator, we increase the number of robots from 4 to 128 and consider
2-D grids of sizes 16x16 to 256x256 (our motion planner supports 3-D workspaces,
simulation video at [64]). We generated random workspaces of varying size such that
obstacles occupy 20% of the grid locations. We simulated a system with n robots
and created an environment that pumps in a sequence of task requests with random
goal location. We measured the amount of time it takes for each robot to compute

142

7.4 evaluation

Time in seconds

|R| Grid Size

16x16 32x32 64x64

4 0.66 3.5 15.4

8 0.9 8.5 33.55

16 - 44.6 138

Table 7.1: Performance of SMT-based plan-generator

its trajectory. Table 7.2 reports the average computation time over 300 invocations of
plan-generator for different configurations.

Computation time in seconds

Grid Size

|R| 16x16 32x32 64x64 128x128 256x256

4 0.0174 0.0179 0.0215 0.0518 0.1485

8 0.0179 0.0184 0.0249 0.0837 0.2651

16 0.0187 0.0206 0.0318 0.0884 0.3038

32 - 0.0247 0.0435 0.1007 0.3186

64 - - 0.0666 0.1538 0.3882

128 - - - 0.2293 0.5159

Table 7.2: Performance of A* based plan-generator

The results show that our plan generator that takes into account time-synchronized
clocks is scalable for large grid sizes and robots. Hence, it can be used for generating
plans on-the-fly in a decentralized fashion with formal guarantees.

Effect of ∆ on planning: The approximate-synchrony parameter ∆ represents the
clock skew (and thus, step skew) in the system and effects the window of locations
avoided by robots when computing trajectory. In other words, it affects how conserva-
tive a robot is when computing the trajectory. Hence, the optimal path for a robot may
change based on the value of ∆. A simulation video to demonstrate this scenario is
available at [64].

Building multi-robot surveillance system: We implemented the multi-robot surveil-
lance system software stack (Figure 6.2) in P. We used the mixed synchronous discrete
abstraction (Section 7.3.2) for verifying that the implementation always satisfies the
properties (S1) to (S3)(Section 6.1). These specifications were implemented as P moni-
tors. During the process of implementing the software stack, we found many critical
bugs that would have been hard to find otherwise using traditional simulation-based

143

7.4 evaluation

approach. For example, there was a bug (race condition) in the coordination protocol,
which led to the case where a robot computes its trajectory using an older trajectory of
other robots, causing a collision. This race condition could not be reproduced with 2
hours of random simulations but was caught in a few seconds using the model-checker.
We also deployed the generated code on to the drone platform for conducting simple
drone missions, and the videos are available on the Drona website [64].

Evaluation of the Mixed-Synchronous abstraction-based Verification: We per-
formed an analysis of the application in two phases:
(1) Stratified random sampling: To catch shallow bugs in our implementation, we first
performed stratified sampling of executions (Section 4.3). We were able to find most of
the bugs in our implementation during this mode of testing. Note that this is similar
to performing random simulations but much more scalable as we use a parallel model
checker for exploration.

Max depth explored in 10 hours

|R|
Grid Size

8x8 16x16 32x32

2 X X X

4 X X X

8 X X (78)

Table 7.3: Scalability of verification approach

(2) Deterministic exploration: Sampling-based approaches fail to provide coverage
guarantees, for that, we performed deterministic enumeration (with state caching) of
all possible executions in the system with max depth 100 and time budget of 10 hours.
Table 7.3 shows the coverage results for various grid sizes and the number of robots.
Xrepresents that P explored all possible executions till depth 100 and (n) represents
that P explored all possible executions till the depth n in the given time budget.

Rigorous Simulations: We also implemented a ROS simulator that supports 3-D
simulation of the code generated from the Drona framework. Figure 7.2 presents a
snapshot of our multi-robot simulator. Simulation videos for various configurations
are available at [64]. To validate the reliability of code generated by Drona, we added
runtime assertions into the generated C code and ran the simulations for 128 robots
with random task generator for 12 hours. We did not find any bug during this stress
testing, confirming that the verified code generated from the Drona framework is
reliable.

144

7.5 related work

Figure 7.2: Multi-Robot ROS Simulator

7.5 related work

We have discussed the related work in the area of building safe robotics systems, and
have situated it with regards to the Drona framework (see Section 6.4). In this section,
we consider our other contribution of a novel decentralized reactive multi-robot motion
planner and present the corresponding related work.

The problem of synthesizing collision-free trajectories for multi-robot systems in
a scenario where the robots are preassigned a set of tasks has been addressed in
several prior works. It can be categorized as follows: (1) Centralized motion planning
(e.g. [72, 169, 170, 192]) where a central server, given a set of tasks and robots in the
system, computes the collision-free trajectory for each robot offline, (2) Decentralized
prioritized planning (e.g. [33, 91, 194]) where given a fixed set of tasks, the robots in
the system coordinate with each other asynchronously for computing the trajectories.
These papers empirically show that decentralized approaches can converge faster
than the centralized approach. In this chapter, we presented a decentralized motion
planning that can handle dynamically generated tasks and are robust against “almost
synchrony”. Recently, there is increased interest in using temporal logic formalism for
synthesizing reactive motion plans [46, 116, 201]. This approach, in principle, can be
extended and applied to solve a DMR problem. However, the problem with automated
synthesis is that the algorithms scale poorly both with the number of robots and the
size of the workspace. Also, they resolve collisions only locally and therefore cannot
always guarantee that the resulting motion plan will be deadlock-free and that the
robot will eventually reach its destination.

145

7.6 summary

7.6 summary

In this chapter, we presented the Drona framework for building reliable robotics
systems. We implemented the reactive DMR software stack in P and used the ab-
straction based model-checking approach to find bugs in our implementation which
rigorous random simulations failed to find. The multi-robot motion planner (MRMP)
implemented as part of the DMR stack is provably correct and scales efficiently for
large number of robots and large workspaces. MRMP is the first to take into account
the time-synchronization error in a distributed multi-robot system when generating
safe motion plans. We deployed the reliable DMR software stack on actual drone
platform to perform several experiments and demos, the videos are available on the
Drona webpage.

146

8
G UA R A N T E E I N G S A F E T Y U S I N G R U N T I M E A S S U R A N C E

Exploring the unknown requires
tolerating uncertainty

— Brian Greene

In Chapter 7, we described how the Drona framework can be used for building
safe robotics systems, in particular, we address the first challenge (Section 6.2) of
programming safe reactive event-driven robotics software stack and verifying that
the implementation satisfies the desired correctness specifications. However, these
guarantees are provided by the Drona framework under the assumption that the
untrusted components (colored blocks in Figure 6.2) in the software stack satisfy the
desired specification. This leads to a gap between the guarantees provided by the
design-time verification and the actual behavior of the robot at runtime. One approach
to bridging this gap is to leverage techniques for run-time assurance, where the results
of design-time verification are used to build a system that monitors itself and its
environment at run time; and, when needed, switches to a provably-safe operating
mode, potentially at lower performance and sacrificing certain non-critical objectives.
In this chapter, we seek to address the second challenge (Section 6.2) of building safe
robotics systems in the presence of untrusted components by extending Drona with
runtime assurance capabilities.

We refer to the runtime assurance component of the Drona tool chain as Soter [58].
Runtime Assurance Architecture: A prominent example of a Run-Time Assurance

(RTA) framework is the Simplex Architecture [181], which has been used for building
provably-correct safety-critical avionics [171, 180], robotics [157] and cyber-physical sys-
tems [19, 20, 40]. The typical RTA architecture based on Simplex [181] (see Figure 8.1)
comprises three sub-components: (1) The advanced controller (AC) that controls the
robot under nominal operating conditions, and is designed to achieve high-performance
with respect to specialized metrics (e.g., fuel economy, time), but it is not provably
safe, (2) The safe controller (SC) that can be pre-certified to keep the robot within a
region of safe operation for the plant/robot, usually at the cost of lower performance,
and (3) The decision module (DM) which is pre-certified (or automatically synthesized

147

guaranteeing safety using runtime assurance

to be correct) to periodically monitor the state of the plant and the environment to
determine when to switch from AC to SC so that the system is guaranteed to stay
within the safe region. When AC is in control of the system, DM monitors (samples)
the system state every ∆ period to check whether the system can violate the desired
safety specification (φ) in time ∆. If so, then DM switches control to SC.

Figure 8.1: RTA Architecture

This Simplex-based RTA architecture is a very useful high-level framework, but
there are several limitations of its existing instantiations. First, existing techniques
either apply RTA [27, 156, 171] to a single untrusted component in the system or
wrap the large monolithic system into a single instance of Simplex which makes the
design and verification of the corresponding SC and DM difficult or infeasible. Second,
most prior applications of RTA do not provide high-level programming language support
for constructing provably-safe RTA systems in a modular fashion while designing for
timing and communication behavior of such systems. In order to ease the construction
of RTA systems, there is a need for a general programming framework for building
provably-safe robotic software systems with run-time assurance that also considers
implementation aspects such as timing and communication. Finally, existing techniques
do not provide a principled and safe way for DM to switch back from SC to AC to
keep performance penalties to a minimum while retaining strong safety guarantees.

In this chapter, we address these limitations with Soter, an extension of Drona

with runtime assurance capabilities. We extended the P language (the programming
language used in Drona) with primitives to implement periodic processes, termed
nodes, that interact with each other using a publish-subscribe model of communication
(which is popular in robotics, e.g., in Robot Operating System, ROS [163]). An RTA
module in Soter consists of an advanced controller node, a safe controller node, and
a safety specification; if the module is well-formed, then the framework provides a
guarantee that the system satisfies the safety specification. Soter allows programmers
to declaratively construct an RTA module with specified timing behavior, combining

148

8.1 overview

provably-safe operation with the feature of using AC whenever safe to achieve good
performance. Soter provides a provably-safe way for DM to switch back from SC to
AC, thus extending the traditional RTA framework and providing higher performance.
Our evaluation demonstrates that Drona is effective at achieving this blend of safety
and performance.

Crucially, Soter supports compositional construction of the overall RTA system.
The extended Soter language framework includes constructs for decomposing the
design and verification of the overall RTA system into that for individual RTA modules
while retaining guarantees of safety for the overall composite system. The compiler
generates the DM node that implements the switching logic, and which also generates
C code to be executed on common robotics software platforms such as ROS [163] and
MavLink [151].

We show that Soter can be used to build a complex robotics software stack consist-
ing of both third-party untrusted components and complex machine learning modules,
and still provide system-wide correctness guarantees. The generated code for the
robotics software has been tested both on an actual drone platform (the 3DR [2] drone)
and in simulation (using the ROS/Gazebo [114] and OpenAI Gym [29]). Our results
demonstrate that the RTA-protected software stack built using Soter can ensure the
safety of the drone both when using unsafe third-party controllers and in the presence
of bugs introduced using fault injection in the advanced controller.
In summary, we make the following novel contributions in this chapter:

1. A programming framework for a Simplex-based run-time assurance system that
provides language primitives for the modular design of safe robotics systems
(Section 8.2);

2. A theoretical formalism based on computing reachable sets that keep the system
provably safe while maintaining smooth switching behavior from advanced to a
safe controller and vice-versa (Section 8.3);

3. A framework for the modular design of run-time assurance (Section 8.4), and

4. Experimental results in simulation and on real drone platforms demonstrating
how Soter can be used for guaranteeing the correctness of a system even in the
presence of untrusted or unverified components (Section 8.5).

8.1 overview

We illustrate the runtime assurance extensions to Drona framework by using our case
study of an autonomous drone surveillance system.

149

8.1 overview

8.1.1 Case Study: Drone Surveillance System

We revisit the drone surveillance case study from Section 6.1, we would like the
system to satisfy two safety invariants: (1) Obstacle Avoidance (φobs): The drone must
never collide with any obstacle. (2) Battery Safety (φbat): The drone must never crash
because of low battery. Instead, when the battery is low it must prioritize landing safely.
φobs can be further decomposed into two parts φobs := φplan ∧φmpr; (a) Safe Motion
Planner (φplan): The motion planner must always generate a motion-plan such that
the reference trajectory does not collide with any obstacle, (b) Safe Motion Primitives
(φmpr): When tracking the reference trajectory between any two waypoints generated
by the motion planner, the controls generated by the motion primitives must ensure
that the drone closely follows the trajectory and avoids collisions.

Challenges and Motivation. As described in Section 6.1, when implementing the
software stack, the programmer may use several uncertified components. For example,
implementing an on-the-fly motion planner may involve solving an optimization
problem or using an efficient search technique that relies on a solver or a third-party
library (e.g., OMPL [184]). Similarly, motion primitives are either designed using
machine-learning techniques like Reinforcement Learning [109], or optimized for
specific tasks without considering safety, or are off-the-shelf controllers provided by
third parties [151]. Ultimately, in the presence of such uncertified or hard to verify
components, it is challenging to provide formal guarantees of safety at design time.

In practice, for complex systems, it can be extremely difficult to design a component
that is both safe and high-performance. The AC, in general, is any program or
component designed for high-performance under nominal conditions using either
third-party libraries or machine-learning techniques. We treat them as unsafe since they
often exhibit unsafe behavior in off-nominal conditions and uncertain environments,
and even when they do not, it is hard to be sure since their complexity makes
verification or exhaustive testing prohibitively expensive. Furthermore, the trend in
robotics is towards advanced, data-driven controllers, such as those based on neural
networks (NN), that usually do not come with safety guarantees. Our approach of
integrating RTA into a programming framework is motivated by the need to enable
the use of such advanced controllers (e.g., designed using NN or optimized for
performance) while retaining strong guarantees of safety.

8.1.2 Extending the P Language

The Robot Operating System (ROS [163]) is an open-source meta-operating system
considered as the de facto standard for robot software development. In most cases,
a ROS programmer implements the system as a collection of periodic processes that
communicate using the publish-subscribe model of communication. We extended the P
language based on a similar publish-subscribe model of communication. We introduce

150

8.1 overview

periodic nodes (processes) in P that communicate with each other by publishing on
and subscribing to message topics. A node periodically listens to data published on
specific topics, performs computation, and publishes computed results on certain
other topics. A topic is an abstraction of a communication channel.

Topics: Listing 8.1 declares the topic targetWaypoint that can be used to communi-
cate messages of type coord (coordinates in 3D space). In Soter, a node communicates
with other nodes in the system by publishing messages on a topic (e.g., targetWaypoint)
and the target nodes can consume these messages by subscribing to it.� �

1 type coord = (x: float , y: float , z: float);
2 topic NextWaypoint : coord;
3 ...
4 node MotionPrimitive
5 period 10;
6 subscribes LocalPosition , NextWaypoint;
7 publishes Control;
8 { /* body */ }� �

Listing 8.1: Declaration of topics and nodes in Soter

Nodes: Listing 8.1 also declares a node MotionPrimitive that subscribes to topics
localPosition and targetWaypoint. Each node has a separate local buffer associated
with each subscribed topic. The publish operation on a topic adds the message into
the corresponding local buffer of all the nodes that have subscribed to that topic.
The MotionPrimitive node runs periodically every 10 ms. It reads messages from the
subscribed topics, performs local computations, and then publishes the control action
on the output topic. For the exposition, we ignore the syntactic details of the node
body; it can be any sequential function written in P that performs the required read
→ compute→ publish step.

8.1.3 Guaranteeing Safety using Runtime Assurance

In practice, the motion primitives (e.g., MotionPrimitive node in Listing 8.1) might
generate control actions to traverse the reference trajectory from current position to
the target waypoint using a low-level controller provided by the third-party robot
manufacturer (e.g., [151]). These low-level controllers generally use approximate
models of the dynamics of the robot and are optimized for performance rather than
safety, making them unsafe.

In Section 6.2.2, we presented experiments that demonstrate unsafe behavior of a
drone under the influence of untrusted motion primitives provide by third-party or
are built using machine-learning techniques. To further emphasize the uncertainties
involved when using untrusted component, we online-monitored trajectories taken
by the drone during a surveillance mission in the city workspace (see Figure 6.1).

151

8.1 overview

(a) 3-D View (b) Top View

Figure 8.2: Online monitoring of obstacle avoidance property during surveillance mission.
green: property satisfied, orange : system very close to violating the property, red:
property violated.

We consider an obstacle avoidance scenario, where the drone must never get closer
than 0.5m to any obstacle in the workspace during its flight. We online monitored
this requirement on all the trajectories generated by the drone during the surveillance
task. Figure 8.2 shows two views of a faulty trajectory of the drone. Note how online
monitoring detects a specification violation (red trace), meaning that the drone gets
too close (< 0.5m) to an obstacle. Also, observe that the robot robustly satisfy the
specification in most of the trajectory (orange and green).

This motivates the need for a RTA system that guarantees safety by switching to
a safe controller in case of danger but also maximizes the use of the untrusted but
performant controller under nominal conditions.

Runtime Assurance module: Figure 8.3 illustrates the behavior of a Soter based
RTA-protected motion primitive module. We want the drone to move from its current
location wi to the target location wf, and the desired safety property is that the drone
must always remain inside the region φsafe (outermost tube). Initially, the untrusted
AC node (e.g., MotionPrimitive) is in control of the drone (red trajectory), and since it
is not certified for correctness, it may generate controls action that tries to push the
drone outside the φsafe region.

If AC is wrapped inside an RTA module (see Figure 8.1) then DM must detect this
imminent danger and switch to SC (blue trajectory) with enough time for SC to gain
control over the drone. SC must be certified to keep the drone inside φsafe and also
move it to a state in φsafer where DM evaluates that it is safe enough to return control

152

8.1 overview

Figure 8.3: An RTA-protected Motion Primitive

to AC. The novel aspect of an RTA module formalized is that it also allows control to
return to AC to maximize performance.� �

1 type State = ..;
2 ...
3 fun PhiSafer_MPr (s : State) : bool { ... }
4 fun TTF2D_MPr (s : State) : bool { ... }
5 ...
6 node MotionPrimitiveSC period 60;
7 subscribes LocalPosition , LocalVelocity , NextWaypoint;
8 publishes Control;
9 { /* body */ }

10
11 rta SafeMotionPrimitive = { MotionPrimitive ,

MotionPrimitiveSC , 150, PhiSafer_MPr , TTF2D_MPr };� �
Listing 8.2: Declaration of an RTA module

Listing 8.2 presents the declaration of an RTA module consisting of MotionPrimitive
(from Listing 8.1) and MotionPrimitiveSC as AC and SC nodes. The compiler checks
that the declared RTA module SafeMotionPrimitive is well-formed (Section 8.3) and
then generates the DM and the other glue code that together guarantees the φsafe
property. Details about other components of the module declaration are provided in
Section 8.3.
Compositional RTA System. A large system is generally built by composing multiple
components together. When the system-level specification is decomposed into a
collection of simpler component-level specifications, one can scale provable guarantees
to large, real-world systems.

Soter enables building a reliable version (Figure 8.4) of the software stack with
runtime assurance of the safety invariant: φplan∧φmpr∧φbat. We decompose the stack
into three components: (1) An RTA-protected motion planner that guarantees φplan,
(2) A battery-safety RTA module that guarantees φbat, and (3) An RTA-protected
motion primitive module that guarantees φmpr. Our theory of well-formed RTA
modules (Theorem 8.3.1) ensures that if the constructed modules are well-formed,
then they satisfy the desired safety invariant and their composition (Theorem 8.4.1)
helps prove that the system-level specification is satisfied.

153

8.2 runtime assurance (rta) module

Figure 8.4: An RTA Protected Software Stack for Drone Surveillance

8.2 runtime assurance (rta) module

In this section, we formalize the Soter runtime assurance module and present the
well-formedness conditions required for its correctness. We conclude by informally
describing the behavior of a system protected by an RTA module.

8.2.1 Programming Model

Recollect that a program in Soter is a collection of periodic nodes communicating
with each other by publishing on and subscribing to message topics.
Topic. Formally, a topic is a tuple (e, v) consisting of a unique name e ∈ T, where T

is the universe of all topic names, and a value v ∈ V, where V is the universe of all
possible values that can be communicated using topic e. For simplicity of presentation:
(1) we assume that all topics share the same set V of possible values and (2) instead of
modeling the local buffers associated with each subscribed topic of a node; we model
the communication between nodes using the global value associated with each topic.

Let N represent the set of names of all the nodes. We sometimes refer to a node by
its unique name, for example, when Nac ∈ N and we say “node Nac”, we are referring
to a node with name Nac. Let L represent the set of all possible values the local state
of any node could have during its execution. A valuation of a set X ⊆ T of topic names
is a map from each topic name x ∈ X to the value v stored at topic (x, v). Let Vals(X)
represent the valuations of set X.
Node. A node in Soter is a tuple (N, I,O, T ,C) where:

1. N ∈ N is the unique name of the node.

154

8.2 runtime assurance (rta) module

2. I ⊆ T is the set of names of all topics subscribed to by the node (inputs).

3. O ⊆ T is the set of names of all topics on which the node publishes (output). The
output topics are disjoint from the set of input topics (I∩O = ∅).

4. T ⊆ L × (I → V) × L × (O → V) is the transition relation of the node. If
(l, Vals(I), l ′, Vals(O)) ∈ T , then on the input (subscribed) topics valuation of
Vals(I), the local state of the node moves from l to l ′ and publishes on the output
topics to update its valuation to Vals(O).

5. C = {(N, t0), (N, t1), . . . } is the time-table representing the times t0, t1, . . . at
which the node N takes a step.

Intuitively, a node is a periodic input-output state-transition system: at every time
instant in its calendar, the node reads the values in its input topics, updates its local
state, and publishes values on its output topics. Note that we are using the timeout-
based discrete event simulation [66] to model the periodic real-time process as a
standard transition system (more details in Section 8.4). Each node specifies, using a
time-table, the fixed times at which it should be scheduled. For a periodic node with
period δ, the calendar will have entries (N, t0), (N, t1), . . . such that ti+1 − ti = δ for all
i. We refer to the components of a node with name N ∈ N as I(N),O(N), T(N) and
C(N) respectively. We use δ(N) to refer to the period δ of node N.

8.2.2 Runtime Assurance Module

Let S represent the state space of the system, i.e., the set of all possible configurations
of the system (formally defined in Section 8.4). We assume that the desired safety
property is given in the form of a subset φsafe ⊆ S (safe states). The goal is to ensure
using an RTA module that the system always stays inside the safe set φsafe.
RTA Module. An RTA module is represented as a tuple
(Nac,Nsc,Ndm,∆,φsafe,φsafer) where:

1. Nac ∈ N is the advanced controller (AC) node,

2. Nsc ∈ N is the safe controller (SC) node,

3. Ndm ∈ N is the decision module (DM) node,

4. ∆ ∈ R+ represents the period of DM (δ(Nsc) = ∆),

5. φsafe ⊆ S is the desired safety property.

6. φsafer ⊆ φsafe is a stronger safety property.

155

8.2 runtime assurance (rta) module

� �
1 if (mode=SC ∧ st ∈ φsafer)
2 mode = AC /* switch to AC*/
3 else if (mode=AC ∧ ReachM(st, ∗, 2∆) 6⊆ φsafe)
4 mode = SC /* switch to SC*/
5 else
6 mode = mode /* no mode switch */� �

Listing 8.3: Decision Module Switching Logic for Module M

Given an RTA module M, Listing 8.3 presents the switching logic that sets the mode
of the RTA module given the current state st of the system. The DM node evaluates
this switching logic once every ∆ time unit. When it runs, it first reads the current
state st and sets mode based on it. Note that the set φsafer determines when it is
safe to switch from Nsc to Nac. ReachM(s, ∗, t) ⊆ S represents the set of all states
reachable in time [0, t] starting from the state s, using any non-deterministic controller.
We formally define Reach in Section 8.4, informally, ReachM(st, ∗, 2∆) 6⊆ φsafe checks
that the system will remain inside φsafe in the next 2∆ time. This 2∆ look ahead is
used to determine when it is necessary to switch to using Nsc, in order to ensure that
the Nsc (δ(Nsc) 6 ∆) will be executed at least once before the system leaves φsafe. The
Soter compiler automatically generates a unique DM node (Ndm) for each primitive
RTA module declaration.

For an RTA module (Nac,Nsc,Ndm,∆,φsafe,φsafer), DM is the node
(Ndm, Idm, ∅, Tdm,Cdm) where:

1. The local state is a binary variable mode : {AC,SC}.

2. Topics subscribed by DM include the topics subscribed by either of the nodes;
i.e., I(Nac) ⊆ Idm and I(Nsc) ⊆ Idm.

3. DM does not publish on any topic. But it updates a global data structure that
controls the outputs of AC and SC nodes (more details in Section 8.4).

4. If (mode, Vals(Idm),mode ′, ∅) ∈ Tdm, then the local state moves from mode to
mode ′ based on the logic in Listing 8.3.

5. Cdm = {(Ndm, t0), (Ndm, t1), . . . } where ∀i|ti − ti+1| = ∆ represents the time-table
of the node.

We are implicitly assuming that the topics Idm read by the DM contain enough infor-
mation to evaluate φsafe, φsafer, and perform the reachability computation described
in Section 8.4. Given a declaration of the RTA module (Listing 8.2), the Soter compiler
can automatically generate its DM.

156

8.3 correctness of an rta module

8.3 correctness of an rta module

The goal of an RTA module is to ensure that the system always stays inside the safe
set φsafe. We need an RTA module to satisfy some additional conditions to prove its
safety.

An RTA module M = (Nac,Nsc,Ndm,∆,φsafe,φsafer) is said to be well-formed if its
components satisfy the following properties:

(P1a) The maximum period of Nac and Nsc is ∆, i.e., δ(Ndm) = ∆, δ(Nac) 6 ∆, and
δ(Nsc) 6 ∆.

(P1b) The output topics of the Nac and Nsc nodes must be same, i.e., O(Nac) = O(Nsc).

The safe controller, Nsc, must satisfy the following properties:

(P2a) (Safety) ReachM(φsafe,Nsc,∞) ⊆ φsafe. This property ensures that if the system
is in φsafe, then it will remain in that region as long as we use Nsc.

(P2b) (Liveness) For every state s ∈ φsafe, there exists a time T such that for all s ′ ∈
ReachM(s,Nsc, T), we have ReachM(s ′,Nsc,∆) ⊆ φsafer. In words, from every
state in φsafe, after some finite time, the system is guaranteed to stay in φsafer
for at least ∆ time.

(P3) ReachM(φsafer, ∗, 2∆) ⊆ φsafe. This condition says that irrespective of the con-
troller if the system starts from a state in φsafer, it remains in φsafe for 2∆ time
units. Note that this condition is stronger than the condition φsafer ⊆ φsafe.

Theorem 8.3.1: Runtime Assurance

For a well-formed RTA module M, let φInv(mode, s) denote the predicate (mode=SC∧
s ∈ φsafe)∨ (mode=AC∧ ReachM(s, ∗,∆) ⊆ φsafe).
If the initial state satisfies the invariant φInv, then every state st reachable from s will
also satisfy the invariant φInv.

Proof. Let (mode, s) be the initial mode and initial state of the system. We know
that the invariant holds at this state. Since the initial mode is SC, then, by assumption,
s ∈ φsafe. We need to prove that all states st reachable from s also satisfy the invariant.
If there is no mode change, then invariant is satisfied by Property (P2a). Hence, assume
there are mode switches. We prove that in every time interval between two consecutive
executions of the DM, the invariant holds. So, consider time T when the DM executes.
(Case1) We first prove that as long as there is no mode switch, this claim is valid. The
mode at time T is SC, and there is no mode switch at this time. Property (P2a) implies
that all future states satisfy the invariant.

157

8.3 correctness of an rta module

(Case2) The mode at time T is SC, and there is a mode switch to the AC at this time.
Then, the current state sT at time T satisfies the condition sT ∈ φsafer. By Property (P3),
we know that ReachM(sT , ∗, 2∆) ⊆ φsafe, and hence, it follows that ReachM(sT , ∗,∆) ⊆
φsafe, and hence the invariant φInv holds at time T . In fact, irrespective of what actions
AC applies to the plant, Property (P3) guarantees that the invariant holds for the
interval [T , T +∆]. Now, it follows from Property (P1) that the DM executes again at or
before the time instant T +∆, and hence the invariant holds until the next execution
of DM.
(Case3) The current mode at time T is AC, and there is a mode switch to SC at this time.
Then, the current state sT at time T satisfies the condition ReachM(sT , ∗, 2∆) 6⊆ φsafe.
Since the mode at time T − ε was still AC, and by the inductive hypothesis, we know
that the invariant held at that time; therefore, we know that ReachM(sT−ε, ∗,∆) ⊆ φsafe.
Therefore, for the period [T − ε, T − ε+∆], we know that the reached state is in φsafe
and the invariant holds. Moreover, SC gets a chance to execute in this interval at least
once, and hence, from that time point onwards, Property (P2a) guarantees that the
invariant holds.
(Case4) The current mode at time T is AC, and there is a no mode switch. Since there
is no mode switch at T , it implies that ReachM(sT , ∗, 2∆) ⊆ φsafe and hence for the
next ∆ time units, we are guaranteed that ReachM(sT , ∗,∆) ⊆ φsafe holds. �

The invariant established in Theorem 8.3.1 ensures that if the assumptions of the
theorem are satisfied, then all reachable states are always contained in φsafe.

Remark 8.3.1: Guarantee switching and avoid oscillation

The liveness property (P2b) guarantees that the system will definitely switch from Nsc
to Nac (to maximize performance). Property (P3) ensures that the system stays in the
AC mode for some time and not switch back immediately to the SC mode. Note that
property (P2b) is not needed for Theorem 8.3.1.

Remark 8.3.2: AC is a black-box

Our well-formedness check does not involve proving anything about Nac. (P1a) and
(P1b) require that Nac samples at most as fast as Ndm and generates the same outputs
as Nsc, this is for smooth transitioning between Nac and Nsc. We only need to reason
about Nsc, and we need to reason about all possible controller actions (when reasoning
with ReachM(s, ∗,∆)). The latter is a worst-case analysis and includes Nac’s behavior.
One could restrict behaviors to Nac ∪Nsc if we wanted to be more precise, but then
Nac would not be a black-box anymore.

Our formalism makes no assumptions about the code (behavior) of the AC node,
except that we do need to know the set of all possible output actions (required for
doing worst-case reachability analysis). Theorem 3.1 ensures safety as long as all

158

8.3 correctness of an rta module

output actions generated by the code AC (like in Listing 8.1) belong to the assumed
set of all possible actions.

Definition 8.3.1: Regions or Set of States for an RTA Module

Let R(φ, t) = {s | s ∈ φ∧ ReachM(s, ∗, t) ⊆ φ}. For example, R(φsafe,∆) represents
the region or set of states in φsafe from which all reachable states in time ∆ are still in
φsafe.

Regions of operation of a well-formed RTA module. We informally describe the
behavior of an RTA protected module by organizing the state space of the system into
different regions of operation (Figure 8.5). R1 represents the unsafe region of operation
for the system. Regions R2-R5 represent the safe region, and R3-R5 are the recoverable
regions of the state space. The region R3\R4 represents the switching control region
(from AC to SC) as the time to escape φsafe for the states in this region is less than 2∆.

Figure 8.5: Regions of Operation for an RTA Module.

As the DM is guaranteed to sample the state of the system at least once in ∆ time
(property (P1a)), the DM is guaranteed to switch control from AC to SC if the system
remains in the switching control region for at least ∆ time, which is the case before
system can leave region R3. Consider the case where T1 represents a trajectory of the
system under the influence of AC when the system is in the switching control region
the DM detects the imminent danger and switches control to SC. (P1a) ensures that
Nsc takes control before the system escapes φsafe in the next ∆ time. Property (P2a)
ensures that the resultant trajectory T2 of the system remains inside the safe region
and Property (P2b) ensures that the system eventually enters region R5 where the
control can be returned to AC for maximizing the performance of the system. Property
(P3) ensures that the switch to AC is safe and the system will remain in AC mode for
at least ∆ time.

159

8.4 operational semantics of an rta module

Remark 8.3.3: Choosing φsafer and ∆

The value of ∆ is critical for ensuring safe switching from AC to SC. It also determines
how conservatively the system behaves: for example, large value of ∆ implies a large
distance between boundaries of region R4 and R5 during which SC (conservative) is in
control. Small values of ∆ and a larger R5 region (φsafer) can help maximize the use
of AC but might increase the chances of switching between AC and SC as the region
between the boundaries of R4 and R5 is too small. Currently, we let the programmer
choose these values and leave the problem of automatically finding the optimal values
as future work.

From Theory to Practice. We are assuming here that the checks in Property (P2)
and Property (P3) can be performed. The popular approach in control theory is to use
reachability analysis when designing an Nsc that always keeps the system within a set
of safe states. We used existing tools like FastTrack [100] and the Level-Set Toolbox [81].

First, consider the problem of synthesizing the safe controller Nsc for a given safe
set φsafe. Nsc can be synthesized using pre-existing safe control synthesis techniques.
For example, for motion primitives, we can use a framework like FaSTrack [100] for
the synthesis of low-level Nsc. Next, we note that the DM needs to reason about
the reachable set of states for a system when either the controller is fixed to Nsc or
is nondeterministic. Again, there are several tools and techniques for performing
reachability computations [81]. One particular concept that Soter requires here is the
notion of time to failure less than 2∆ (ttf2∆). The function ttf2∆ : S× 2S → B, given a
state s ∈ S and a predicate φ ⊆ S returns true if starting from s, the minimum time after
which φ may not hold is less than or equal to 2∆. The check Reach(st, ∗, 2∆) 6⊆ φsafe in
Listing 8.3 can be equivalently described using the ttf2∆ function as ttf2∆(st,φsafe).
Let us revisit the boolean functions PhiSafer_MPr and TTF2D_MPr from Listing 8.2, these
functions correspond to the checks st ∈ φsafer and ttf2∆(st,φsafe) respectively.

8.4 operational semantics of an rta module

Definition 8.4.1: Composable RTA Modules

A set of RTA modules S = {M0,M1, . . . ,Mn} are composable if:
(1) Nodes in all modules are disjoint, i. e., if Niac, Nisc, and Nidm represent the AC,
SC and DM nodes of a module Mi then, for all i, j s.t. i 6= j, {Niac,Nisc,Nidm} ∩
{N

j
ac,N

j
sc,N

j
dm} = ∅.

(2) Outputs of all modules are disjoint, i. e., for all i, j s.t. i 6= j, O(Mi)∩O(Mj) = ∅.

160

8.4 operational semantics of an rta module

Note that the only constraint for composition is that the outputs (no constraints on
inputs) must be disjoint (as discussed in the traditional compositional frameworks like
I/O Automata and Reactive Modules [9, 129]).

An RTA system is a set of composable RTA modules. If RTA modules P and Q are
composable then their composition P ‖ Q is an RTA system consisting of the two
modules {P,Q}. Also, composition of two RTA systems S1 and S2 is an RTA system
S1∪ S2, if all modules in S1∪ S2 are composable.

Theorem 8.4.1: Compositional RTA System

Let S = {M0, . . .Mn} be an RTA system. If for all i, Mi is a well-formed RTA module
satisfying the safety invariant φiInv then, S satisfies the invariant

∧
iφ

i
Inv.

Proof. Note that this theorem follows from the fact that composition restricts the
environment. Since we are guaranteed output disjointness during composition, the
composition of two modules is guaranteed to be language intersection. The proof for
such composition theorem is described in details in [9, 129]. �

Theorem 8.4.1 plays a vital role in building a reliable robotics software stack. The
software stack is decomposed such that each component is protected by an RTA
module, individually satisfying the respective safety invariant, and their composition
satisfies the system-level specification.

Attributes of an RTA system. Given an RTA system S = {M0, . . . ,Mn}, its attributes
(used for defining the operational semantics) can be inferred as follows1:

1. ACNodes ∈ N→ N is a map that binds a DM node n to the particular AC node
ACNodes[n] it controls, i.e., if Mi ∈ S then (Nidm,Niac) ∈ ACNodes.

2. SCNodes ∈ N→ N is a map that binds a DM node n to the particular SC node
SCNodes[n] it controls, i.e., if Mi ∈ S then (Nidm,Nisc) ∈ SCNodes.

3. Nodes ⊆ N represents the set of all nodes in the RTA system, Nodes =

dom(ACNodes)∪ codom(ACNodes)∪ codom(SCNodes).

4. OS ⊆ T represents the set of outputs of the RTA system, OS =
⋃
n∈NodesO(n).

5. IS ⊆ T represents the set of inputs of the RTA system (inputs from the environ-
ment), IS =

⋃
n∈Nodes I(n) \OS.

6. CS represents the calendar or time-table of the RTA system, CS =
⋃
n∈NodesC(n).

We refer to the attributes of an RTA system S as ACNodes(S), SCNodes(S),
Nodes(S), OS(S), IS(S), and CS(S) respectively.

1 Recollect that dom(X) refers to the domain of map X and codom(X) refers to the codomain of X.

161

8.4 operational semantics of an rta module

Note that the semantics of an RTA module is the semantics of an RTA system where
the system is a singleton set. We use the timeout-based discrete event simulation
model [66] for modeling the semantics of an RTA system. The calendar CS stores the
future times at which nodes in the RTA system must step. Using a variable ct to store
the current time and FN to store the enabled nodes, we can model the real-time system
as a discrete transition system.

Configuration. The configuration of an RTA system is a tuple (L,OE, ct, FN, Topics)
where:

1. L ∈ Nodes→ L represents a map from a node to the local state of that node.

2. OE ∈ N → B represents a map from a node to a boolean value indicating
whether the output of the node is enabled or disabled. This is used for deciding
whether AC or SC should be in control. The domain of OE is codom(ACNodes)∪
codom(SCNodes).

3. ct ∈ R represents the current time.

4. FN ⊆ N represents the set of nodes that are remaining to be fired at time ct.

5. Topics ∈ T → V is a map from a topic name to the value stored at that topic, it
represents the globally visible topics. If X ⊆ T then Topics[X] represents a map
from each x ∈ X to Topics[x].

The initial configuration of any RTA system is represented as
(L0,OE0, ct0, FN0, Topics0) where: (1) L0 maps each node in its domain to de-
fault local state value l0, if the node is a DM then mode = SC; (2) OE0 maps each SC
node to true and AC node to false (this is to ensure that each RTA module starts
in SC mode); (3) ct0 = 0; (4) FN0 = ∅; and (5) Topics0 maps each topic name to its
default value v ∈ V.

We represent the operational semantics of a RTA system as a transition relation
over its configurations (Figure 8.6). There are two types of transitions: (1) discrete
transitions that are instantaneous and hence does not change the current time, and (2)
time-progress transitions that advance the time when no discrete transition is enabled.

Environment-Input transitions are triggered by the environment and can happen
at any time. It updates any of the input topics e ∈ IS of the module to (e, v).

Discrete-Time-Progress-Step represents the time-progress transitions that can be
executed when no discrete transitions are enabled (dt1). It updates ct to the next time
at which a discrete transition must be executed (dt2). FN is updated to the set of nodes
that are enabled and must be executed (dt3) at the current time.

DM-Step and AC-or-SC-Step are the discrete transitions of the system. DM-Step

represents the transition of any of the DM nodes in the module. The important
operation performed by this transition is to enable or disable the outputs of the AC

162

8.4 operational semantics of an rta module

ITE(x, y, z) represents if x then y else z

(Environment-Input)
e ∈ IS v ∈ V

(L,OE, ct, FN, Topics)→ (L,OE, ct, FN, Topics[e 7→ v])

(Discrete-Time-Progress-Step)
FN = ∅(dt1) ct ′ = min({t | (x, t) ∈ CS, t > ct})(dt2)

FN ′ = {n | (n, ct ′) ∈ CS}(dt3)

(L,OE, ct, FN, Topics)→ (L,OE, ct ′, FN ′, Topics)

(DM-Step)
dm ∈ FN FN ′ = FN \ {dm}

dm ∈ dom(ACNodes) (l, {(STATE, st)}, l ′, ∅) ∈ T(dm) ac = ACNodes[dm]

sc = SCNodes[dm] ITE(l ′ = AC, en = true, en = false)(dm1)

(L,OE, ct, FN, Topics)→
(L[dm 7→ l ′],OE[ac 7→ en, sc 7→ ¬en](dm2), ct, FN ′, Topics)

(AC-or-SC-Step)
n ∈ FN FN ′ = FN \ {n}

n 6∈ dom(ACNodes) in = Topics[I(n)] (l, in, l ′,out) ∈ T(n)
ITE(OE[n], Topics ′ = out∪ Topics[T \ dom(out)], Topics ′ = Topics)(n1)

(L,OE, ct, FN, Topics)→ (L[n 7→ l ′],OE, ct, FN ′, Topics ′)

Figure 8.6: Operational Semantics of Soter

and SC node (dm2) based on its current mode (dm1). Finally, AC-or-SC-Step represents
the step of any AC or SC node in the module. Note that the node updates the output
topics only if its output is enabled (based on OE(n) (n1)).

Reachability. Note that the state space S of an RTA system is the set of all possible
configurations. The set of all possible reachable states of an RTA system is a set of
configurations that are reachable from the initial configuration using the transition
system described in Figure 8.6. Since the environment transitions are nondeterministic,
potentially many states are reachable even if the RTA modules are all deterministic.

Let ReachM(s,Nsc, t) ⊆ S represent the set of all states of the RTA system S reachable
in time [0, t] starting from the state s, using only the controller SC node Nsc of the
RTA module M ∈ S. In other words, instead of switching control between SC and AC
of the RTA module M, the DM always keeps SC node in control. ReachM(s, ∗, t) ⊆ S

represents the set of all states of the RTA system S reachable in time [0, t] starting from

163

8.5 evaluation

the state s, using only a completely nondeterministic module instead ofM ∈ S. In other
words, instead of module M, a module that generates nondeterministic values on the
output topics of M is used. The notation Reach is naturally extended to a set of states:
ReachM(ψ, x, t) =

⋃
s∈ψ ReachM(s, x, t) is the set of all states reachable in time [0, t]

when starting from a state s ∈ ψ using x. Note that, ReachM(ψ,Nsc, t) ⊆ ReachM(ψ, ∗, t).
We note that the definition of DM for an RTA module M is sensitive to the choice of

the environment for M. Consequently, every attribute of M (such as well-formedness)
depends on the context in which M resides. We implicitly assume that all definitions
of M are based on a completely nondeterministic context. All results hold for this
interpretation, but they also hold for any more constrained environment.

8.5 evaluation

We empirically evaluate the Soter framework by building an RTA-protected software
stack (presented in Figure 8.4) that satisfies the safety invariant: φplan ∧φmpr ∧φbat .
The goal of our evaluation is twofold:
(Goal 1) Demonstrate how the Soter runtime assurance framework can be used for
building the software stack compositionally, where each component is guaranteed
to satisfy the component-level safety specification. Further, we show how the pro-
grammable switching feature of an RTA module can help maximize its performance.
(Goal 2) Empirically validate using rigorous simulations that an RTA-protected software
stack can ensure the safety of the drone in the presence of third-party (or machine
learning) components, where otherwise, the drone could have crashed.

Implementation and Experimental Setup. We extended the Drona tool chain (see
Section 6.3) with the Soter runtime assurance component. This involved extending
the P language with capabilities to implement periodic nodes and RTA modules. The
Soter compiler first checks that all the constructed RTA modules in the program are
well-formed and then converts the source-level syntax into C code (extending the P
code generator). This code contains statically-defined C array-of-structs and functions
for the topics, nodes, and functions declarations. The OE that controls the output of
each node is implemented as a shared-global data-structure updated by all the DM in
the program. The Drona runtime implements periodic behavior of each node using
OS timers for our experiments, deploying the generated code on a real-time operating
system is future work. Since a Soter program is a multi-rate periodic system, we use a
bounded-asynchronous scheduler [76] to explore only those schedules that satisfy the
bounded-asynchrony semantics. In this case as well, we leveraged the capability of the
P explorer to encode exploration strategies as external scheduler (Chapter 4). When
performing systematic testing of the robotics software stack the third-party (untrusted)
components that are not implemented in Drona are replaced by their abstractions
implemented in Drona.

164

8.5 evaluation

For our experiments on the real drone hardware, we use a 3DR Iris [2] drone that
comes with the open-source Pixhawk PX4 [151] autopilot. The simulation results were
done in the Gazebo [114] simulator environment that has high fidelity models of Iris
drone. For our simulations, we execute the PX4 firmware in the loop.

The videos and other details corresponding to our experiments on real drones are
available on https://drona-org.github.io/Drona/.

8.5.1 RTA-Protected Safe Motion Primitives

A drone navigates in the 3D space by tracking trajectories between waypoints com-
puted by the motion planner. Given the next waypoint, an appropriate motion primitive
is used to track the reference trajectory. Informally, a motion primitive consists of a
pre-computed control law (sequence of control actions) that regulates the state of the
drone as a function of time.

Failure in the presence of untrusted components. For our experiments in Figure 6.4
and Figure 8.2, we used the motion primitives provided by the PX4 autopilot [151] as
our advanced controller and found that it can lead to failures or collision.

To achieve RTA-protected motion primitive, there are three essential steps: (1) Design
of the safe controller Nsc; (2) Designing the ttf2∆ function that controls switching
from the AC to SC for the motion primitive; (3) Programming the switching from
SC to AC and choosing an appropriate ∆ and φsafer so that the system is not too
conservative.

When designing the Nsc, it must satisfy the Property (P2), where φsafe is the region
not occupied by any obstacle. Techniques from control theory, like reachability [139]
can be used for designing Nsc. We use the FaSTrack [100] tool for generating a correct-
by-construction controller for the drone such that it satisfies all the properties required
for a Nsc.

To design the switching condition from AC to SC, we need to compute the ttf
function that checks Reach(st, ∗, 2∆) 6⊆ φsafe (Listing 8.3) where st is the current
state. Consider the 2D representation of the workspace in Figure 8.7b. The obstacles
(shown in grey) represent the φunsafe region, and any region outside is φsafe. Note
that, Nsc can guarantee safety for all locations in φsafe (P2). We can use the level set
toolbox [139] to compute the backward reachable set from φsafe in 2∆ (shown in
yellow), i.e., the set of states from where the drone can leave φsafe (collide with an
obstacle) in 2∆. In order to maximize the performance of the system, the RTA module
must switch from SC to AC after the system has recovered. In our experiments, we
choose φsafer = R(arg2,φsafe)2∆ (shown in green). Nsc is designed such that given
φsafer, Property (P2b) holds. DM transfers control to AC when it detects that the drone
is in φsafer, which is the backward reachable set from φsafe in 2∆ time.

Choosing the period ∆ is an important design decision. Choosing a large ∆ can lead
to overly-conservative ttf2∆(st,φsafe) and φsafer. In other words, a large ∆ pushes the

165

https://drona-org.github.io/Drona/

8.5 evaluation

switching boundaries further away from the obstacle. In which case, a large part of
the workspace is covered by red or yellow region where SC (conservative controller) is
in control.

(a) Example trajectory demonstrating RTA-
enabled safety of the drone (collision
avoidance) when flying in a workspace
surrounded by obstacles (also see Fig-
ure 6.4a). Red dots are points where RTA
module switched control from AC to SC
to safeguard the system. Green dots are
points where the drone had recovered,
and the control is returned to the AC.

(b) Example trajectory demonstrating RTA-enabled safety
(collision avoidance) during Surveillance Mission. Re-
gions N1, N2 represent cases where the AC takes the
drone too close to the obstacle which leads to switch-
ing control to SC that bring the drone away from the
obstacle into the green region

Figure 8.7: Evaluation of RTA-Protected Motion Primitives

We implemented the safe motion primitive as a RTA module using the components
described above. Figure 8.7a presents one of the interesting trajectories where the SC
takes control multiple times and ensures the overall correctness of the mission. The
green tube inside the yellow tube represents the φsafer region. The red dots represent
the points where the DM switches control to SC, and the green dots represent the
points where the DM returns control back to the AC for optimizing performance. The
average time taken by the drone to go from g1 to g4 is 10 secs when only the unsafe
Nac is in control (can lead to collisions), it is 14 secs when using the RTA protected
safe motion primitive, and 24 secs when only using the safe controller. Hence, using
RTA provides a “safe” middle ground without sacrificing performance too much.

Figure 8.7b presents the 2D representation of our workspace in Gazebo (Figure 6.1b).
The dotted lines represent one of the reference trajectories of the drone during the
surveillance mission. The trajectory in solid shows the trajectory of the drone when
using the RTA-protected software stack consisting of the safe motion primitive. At
N1 and N2, the Nsc takes control and pushes the drone back into φsafer (green);

166

8.5 evaluation

and returns control back to Nac. We observe that the Nac is in control for most of
the surveillance mission even in cases when the drone deviates from the reference
trajectory (N3) but is still safe.

8.5.2 RTA-Protected Battery Safety

We want our software stack to provide the battery-safety guarantee, that prioritizes
safely landing the drone when the battery charge falls below a threshold level. We
first augment the state of the drone with the current battery charge, bt. Nac is a node
that receives the current motion plan from the planner and forwards it to the motion
primitives module.Nsc is a certified planner that safely lands the drone from its current
position. The set of all safe states for the battery safety is given by, φsafe := bt > 0,
i.e., the drone is safe as long as the battery does not run out of charge. We define
φsafer := bt > 85%, i.e., the battery charge is greater than 85%. Since the battery
discharges at a slower rate compared to changes in the position of the drone, we define
a larger ∆ for the battery RTA compared to the motion primitive RTA.

To design the ttf2∆, we first define two terms: (1) Maximum battery charge required
to land Tmax; and (2) Maximum battery discharge in 2∆, cost∗. In general, Tmax
depends on the current position of the drone. However, we approximate Tmax as
the battery required to land from the maximum height attained by the drone safely.
Although conservative, it is easy to compute and can be done offline. To find cost∗,
we first define a function cost, which given the low-level control to the drone and
a time period, returns the amount of battery the drone discharges by applying that
control for the given time period. Then, cost∗ = maxu cost(u, 2∆) is the maximum
discharge that occurs in time 2∆ across all possible controls, u. We can now define
ttf2∆(bt,φsafe) = bt − cost

∗ < Tmax. It guarantees that DM switches control to SC
if the current battery level may not be sufficient to safely land if AC were to apply
the worst possible control. DM returns control to Nac once the drone is sufficiently
charged. This is defined by φsafer, which is chosen to assert that the battery has at
least 85% charge before DM can hand control back to AC. The resultant RTA module
is well-formed and satisfies the battery safety property φbat.

We implemented the battery safety RTA module with the components defined
above. Figure 8.8 shows a trajectory, where the battery falls below the safety threshold,
causing DM to transfer control to Nsc, which lands the drone.

8.5.3 RTA for Safe Motion Planner

We implemented the motion-planner for our surveillance application using the
RRT* [110] algorithm from OMPL. OMPL [184] is a third-party motion-planning
library that implements many state-of-the-art sampling-based motion planning algo-

167

8.5 evaluation

Figure 8.8: Guaranteeing Battery Safety (φbat) using Runtime Assurance

rithms. We injected bugs into the implementation of RRT* such that in some cases, the
generated motion plan can collide with obstacles. We wrapped the motion-planner
inside an RTA module to ensure that the waypoints generated by motion plan do not
collide with an obstacle (violating φplan).

8.5.4 RTA for Safe Exploration

When operating in environments which are unknown a-priori, a robot faces the chal-
lenge of exploring the environment safely and still accomplishing the desired goal.
A large body of research, classified as safe exploration [141], focuses on developing
techniques to explore the environment safely.

As a case study, we use the RTA approach for decomposing the problem of optimized
exploration from the problem of providing a safety guarantee for a robot working in a
previously unknown environment. In the previous experiments, the motion planner
was aware of the static obstacles in the system. To design the RTA module to safely
explore unknown environments, we need to (1) Design RTA components Nac, Nsc and
φsafe, (2) Design the switching condition ttf2∆ for switching from AC to SC, and (3)
Programming the switching from SC to AC and choosing an appropriate ∆ and φsafer.

In this experiment, Nac is a motion planner designed to explore the environment
optimally with the minimum number of steps, and the Nsc is responsible for bringing
the system to a a-priori known part of the environment. φsafe is the entire state space
outside the obstacles.

If the environment was known a-priori, we could have used the reachability based
technique proposed in Section 8.5.1. However, in the absence of full knowledge of
the environment, we approximate ttf2∆ := {s : s ∈ S s.t. s + vmax · 2 · ∆ /∈ φsafe}
where vmax is the maximum velocity attainable by the quadrotor in x,y, or z direction.
Intuitively, it checks if a state would leave φsafe in 2∆ if it were moving with its
highest velocity. This function is more conservative compared to ttf2∆ proposed in

168

8.5 evaluation

Figure 8.9: Safe exploration using RTA module

Section 5.1 computed using reachability. However, this is fast to compute and can
be computed on the fly, making it particularly attractive to be used in a partially
observable environment.

Since the environment is unknown, we have to be conservative about our set φsafer.
In our experiments, φsafer is a predefined known area of the state space. The switching
from SC to AC occurs at the boundary of the set R(φsafer,∆). Similar to Section 8.5.1,
∆ should be chosen to avoid overly-conservative ttf2∆ and R(φsafer,∆).

We used our RTA module to safely explore an environment (Figure 8.9) by avoiding
collision with the surrounding wall in gray whose location is unknown a-priori. φsafe
is the entire workspace contained within the gray wall, R(φsafer,∆) is the green square
at the center of the workspace. Additionally, ∆ is chosen such that R(arg2,φsafe)∆ is
the square with the black boundary and R(φsafe, 2∆) is the square with the dashed
black boundary.

In our experiment, the exploring motion planner generates goal points g1 − g10
(black crosses in Figure 8.9) for the drone to traverse, sequentially. For each goal
point, gi, Nac plans a path from the current position of the quadcopter, xt to the gi.
However, during exploration when gi satisfies ttf2∆, our RTA module detects the
wall at runtime, switches to SC (shown by dot in Figure 8.9) when the trajectory
leaves R(φsafe, 2∆) while still inside R(φsafe,∆). Nsc brings the trajectory back to φsafer
(shown by the broken trajectory). Once inside R(φsafer,∆), the DM hands back control
to the Nac (shown by dot) and the exploration process begins again.

169

8.6 related work

8.5.5 Rigorous Simulation

To demonstrate that runtime assurance helps build robust robotics systems, we con-
ducted rigorous stress testing of the RTA-protected drone software stack. We conducted
software in the loop simulations for 104 hours, where an autonomous drone is tasked
to visit randomly generated surveillance points in the Gazebo workspace (Figure 6.1)
repeatedly. In total, the drone flew for approximately 1505K meters in the 104 hours
of simulation. We found that there were 109 disengagements; these are cases where
one of the SC nodes took control from AC and avoided a potential failure. There
were 34 crashes during the experiments, and we found that in most of these cases the
potential danger was detected by the DM node, but the SC node was not scheduled in
time for the system to recover. Further study is required to analysis the root cause of
these failures, but we believe that some of these crashes can be avoided by running
the software stack on a real-time operating system. We also found that as the RTA
module is designed to return the control to AC after recovering the system, during
our simulations, AC nodes were in control for > 96% of the time. Thus, safety is
ensured without sacrificing the overall performance, and the optimal controller (AC)
is in control for the most part of the mission.

Evaluation Summary. We used the theory of well-formed RTA module to construct
three RTA modules: motion primitives, battery safety, and motion planner. We leverage
Theorem 8.3.1 to ensure that the modules individually satisfy the safety invariants
φmpr, φbat, and φplan respectively. The RTA-protected software stack (Figure 8.4) is a
composition of the three modules and using Theorem 8.4.1 we can guarantee that the
system satisfies the desired safety invariant φplan ∧φmpr ∧φbat.

8.6 related work

Runtime verification has been applied to robotics [48, 59, 103, 106, 124, 130, 155] where
online monitors are used to check the correctness (safety) of the robot at runtime. We
refer the reader to the articles [40] presenting detailed survey of runtime verification
and assurance techniques applied for safety of robotics and cyber-physical systems.

More recently, Schierman et al. [171] investigated how the RTA framework can be
used at different levels of the software stack of an unmanned aircraft system. In a
more recent work [156], Schierman proposed a component-based simplex architecture
(CBSA) that combines assume-guarantee contracts with RTA for assuring the runtime
safety of component-based cyber-physical systems. Note that most prior applications
of RTA do not provide high-level programming language support for constructing
provably-safe RTA systems in a compositional fashion while designing for timing and
communication behavior of such systems. They are all instances of using RTA as a design
methodology for building reliable systems in the presence of untrusted components. We

170

8.7 summary

take inspiration from them, and integrated these design methodologies into a practical
programming framework.

In [20], the authors apply simplex approach for sandboxing cyber-physical systems
and present automatic reachability based approaches for inferring switching conditions.
The idea of using an advanced controller (AC) under nominal conditions; while at
the boundaries, using optimal safe control (SC) to maintain safety has also been used
in [6] for operating quadrotors in the real world. In [16] the authors use a switching
architecture ([17]) to switch between a nominal safety model and learned performance
model to synthesize policies for a quadrotor to follow a trajectory (more examples in
the survey articles [40]). Our rigorous simulation results demonstrates that

8.7 summary

In this chapter, we have presented a new run-time assurance (RTA) framework for
programming safe robotics systems. In contrast with other RTA frameworks, Soter

provides (1) a programming language for modular implementation of safe robotics
systems by combining each advanced controller with a safe counterpart; (2) theoretical
results showing how to safely switch between advanced and safe controllers, and (3)
experimental results demonstrating Soter on drone platforms in both simulation and
in hardware.

171

Part IV

C O N C L U S I O N

172

9
C O N C L U S I O N

In this chapter, we conclude this dissertation by reflecting on the contributions of this
thesis and the lessons learned. We also discuss directions for future work.

9.1 closing thoughts

In this thesis, we considered the challenge of building a programming framework that
enables the developers to build safe event-driven asynchronous systems.

As a first contribution, we presented ModP, a programming framework that enables
assume-guarantee style compositional reasoning of event-driven asynchronous sys-
tems. Chapter 2 presented the novel theory of compositional refinement supported
by the ModP module system and Chapter 3 demonstrated the efficacy of using the
theory in practice for building a reliable distributed systems software stack. Our
results showed that compositional reasoning can help scale systematic testing to large
distributed systems. ModP is now being used for the compositional model-checking
of distributed services inside Amazon Web Services (AWS).

The second contribution of this thesis is the new approaches for scalable analysis
of event-driven asynchronous systems. In Chapter 4, we presented delaying explorer, a
programmable search prioritization technique for systematic testing of asynchronous
programs. Our results showed that delaying explorers beat most of the popular
approaches for concurrency testing and also led to the observation that no unique
search strategy wins (in terms of finding bugs faster) for all our benchmarks. This was
the inspiration for the P# [47] tool for using a portfolio approach where a collection
fo different search strategies are executed in parallel, each targetting a different part
of the search space. Developers use P# inside Microsoft Azure for implementing and
testing some of the core distributed services.

Next, we introduced approximate synchrony (Chapter 5), a sound abstraction for
verification of almost-synchronous systems. We presented an iterative algorithm for
computing this abstraction using model-checking. Using approximate synchrony, we
verified the correctness of the IEEE 1588 protocol and also in the process, found a
liveness bug that was well appreciated by the standards committee.

173

9.2 future work

Finally, we considered the problem of building autonomous robotics systems with
formal guarantees of correctness. We presented two frameworks, Drona (Chapter 7)
for programming distributed mobile robotics systems and Soter (Chapter 8) that
uses runtime assurance for guaranteeing safety of robotics systems in the presence
of untrusted software components. We implemented an autonomous drone software
stack using these frameworks and presented results both in simulation and on actual
drone platforms.

We share some of the lessons learned when trying to get ModP adopted for building
software both in academia and in industry (Microsoft and Amazon).

• “Connecting specifications to executable code is important”: Even when the goal is
less ambitious than full proof, it is still essential to have a connection between
high-level models/specifications and the executable code, and keep them in
synchrony.

• “It is not just about finding bugs”: Modeling and coding proceed together, verifi-
cation and testing tools must run every time code is checked in. Hence, these
frameworks must be designed with the goal of being integrated into continuous
integration or a build system.

• “Nondeterminism is pervasive in concurrent and distributed systems”: In order to
avoid the problematic sources of nondeterminism in systems considered in this
thesis, they must be designed in a principled way from the start with formal
methods used in design not just in verification.

9.2 future work

We conclude with a discussion of future research directions influenced by the work
presented in this thesis.
More applications. We presented three programming frameworks in this thesis: ModP
for compositional programming of asynchronous systems, Drona for programming
distributed mobile robotics systems, and Soter that integrates runtime assurance
into Drona for safe autonomy. An important subject of future work is to build more
real-world applications using these frameworks and further evaluate its efficacy; this
will, in turn, open up other directions of research.
A unified framework that supports both model-checking and deductive verification.
The Modular P (ModP) programming framework presented in this thesis supports a
model-checking backend for systematic testing of complex asynchronous programs.
These techniques are excellent for finding bugs in the protocol logic and perform high
coverage testing for a finite test-harness but cannot prove correctness.

As a next step, we would like to build a verifier that can perform deductive verifica-
tion of the high-level protocols implemented in ModP. The vision is to have a unified

174

9.2 future work

framework that provides a high-level programming language with an automated rea-
soning backend (based on model-checking), a verifier for proving correctness (based
on deductive verification), and finally, a compiler that generates executable code. We
imagine a world were developers will model the protocol design using a high-level
language (like P), write specifications, and use automated reasoning (model checking)
to validate the design for a finite scenarios. This has low overhead to adoption as
developers can use automated "push-button" tools that require limited expertise in
formal methods. If the component is more critical, then an expert can re-use the
models and specifications provided by the developer to do proofs using the backend
verifier. Having a unified framework can also enable leveraging the model-checker as
an aid to the deductive verifier, for falsifying the invariant or for synthesizing it by
leveraging the recent advances on algorithmic program synthesis [179].

Achieving assured autonomy. In Chapter 8, we presented a programming frame-
work that allows the programmers to build safe autonomous systems in the presence
of untrusted or hard-to-verify components. As autonomous systems become a reality,
their dependence on machine-learning and other data-driven techniques is bound to
increase. The solution for building these systems with formal guarantees, as verifying
such components is hard, is to use runtime assurance techniques. For future work, we
are investigating the role a system like Soter can play in the design and implemen-
tation of verified learning-based robotics, and more generally, for verified artificial
intelligence [63, 178], where we believe runtime assurance will play a central role.

175

B I B L I O G R A P H Y

[1] 802.15.4e 2012. “IEEE Standard for Local and metropolitan area networks-Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1:
MAC sublayer.” In: (2012).

[2] 3D Robotics. https://3dr.com/. 2017.

[3] Martín Abadi and Leslie Lamport. “Conjoining Specifications.” In: ACM Trans.
Program. Lang. Syst. (1995).

[4] Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra de Silva, and
Felix Ingrand. “Rigorous design of robot software: A formal component-based
approach.” In: Robotics and Autonomous Systems 60.12 (2012), pp. 1563 –1578.
issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2012.09.005. url:
http://www.sciencedirect.com/science/article/pii/S0921889012001510.

[5] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
Cambridge, MA, USA: MIT Press, 1986. isbn: 0-262-01092-5.

[6] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J.
Tomlin. “Reachability-based safe learning with Gaussian processes.” In: 53rd
IEEE Conference on Decision and Control. 2014, pp. 1424–1431. doi: 10.1109/CDC.
2014.7039601.

[7] Akka. Akka Programming Language. http://akka.io/. 2017.

[8] Rajeev Alur and David L Dill. “A theory of timed automata.” In: Theoretical
computer science 126.2 (1994), pp. 183–235.

[9] Rajeev Alur and Thomas A. Henzinger. “Reactive Modules.” English. In: Formal
Methods in System Design 15.1 (1999), pp. 7–48. issn: 0925-9856.

[10] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger,
P-H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.
“The algorithmic analysis of hybrid systems.” In: Theoretical computer science
(1995).

[11] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K.
Rajamani, and Serdar Tasiran. “MOCHA: Modularity in Model Checking.”
In: Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver,
BC, Canada, June 28 - July 2, 1998, Proceedings. 1998, pp. 521–525.

176

https://doi.org/https://doi.org/10.1016/j.robot.2012.09.005
http://www.sciencedirect.com/science/article/pii/S0921889012001510
https://doi.org/10.1109/CDC.2014.7039601
https://doi.org/10.1109/CDC.2014.7039601
http://akka.io/

bibliography

[12] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe
Castagna, Pierre-Malo Deniélou, Simon J Gay, Nils Gesbert, Elena Giachino,
Raymond Hu, et al. “Behavioral types in programming languages.” In: Founda-
tions and Trends R© in Programming Languages 3.2-3 (2016), pp. 95–230.

[13] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007. isbn: 193435600X, 9781934356005.

[14] Thomas Arts, Laura M Castro, and John Hughes. “Testing erlang data types
with quviq quickcheck.” In: Proceedings of the 7th ACM SIGPLAN workshop on
ERLANG. ACM. 2008, pp. 1–8.

[15] Astar Algorithm Cpp Github. https://github.com/justinhj/astar-algorithm-
cpp.git. 2017.

[16] Anil Aswani, Patrick Bouffard, and Claire Tomlin. “Extensions of learning-
based model predictive control for real-time application to a quadrotor heli-
copter.” In: 2012 American Control Conference (ACC). IEEE. 2012, pp. 4661–4666.

[17] Anil Aswani, Humberto Gonzalez, S. Shankar Sastry, and Claire Tomlin. “Prov-
ably Safe and Robust Learning-based Model Predictive Control.” In: Automatica
49.5 (May 2013), pp. 1216–1226. issn: 0005-1098. doi: 10.1016/j.automatica.
2013.02.003. url: http://dx.doi.org/10.1016/j.automatica.2013.02.003.

[18] PaulC. Attie and NancyA. Lynch. “Dynamic Input/Output Automata: A For-
mal Model for Dynamic Systems.” In: CONCUR 2001. Ed. by KimG. Larsen
and Mogens Nielsen. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2001.

[19] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha. “The
System-Level Simplex Architecture for Improved Real-Time Embedded System
Safety.” In: 2009 15th IEEE Real-Time and Embedded Technology and Applications
Symposium. 2009, pp. 99–107. doi: 10.1109/RTAS.2009.20.

[20] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo. “Sandboxing Controllers for
Cyber-Physical Systems.” In: 2011 IEEE/ACM Second International Conference on
Cyber-Physical Systems. 2011, pp. 3–12. doi: 10.1109/ICCPS.2011.25.

[21] Timothy D Barfoot. State Estimation for Robotics. Cambridge University Press,
2017.

[22] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. “Satisfiability Modulo
Theories.” In: Handbook of Satisfiability. Ed. by Armin Biere, Hans van Maaren,
and Toby Walsh. Vol. 4. IOS Press, 2009. Chap. 8.

[23] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan. “A
verifiable and correct-by-construction controller for robot functional levels.” In:
arXiv preprint arXiv:1309.0442 (2013).

177

https://doi.org/10.1016/j.automatica.2013.02.003
https://doi.org/10.1016/j.automatica.2013.02.003
http://dx.doi.org/10.1016/j.automatica.2013.02.003
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10.1109/ICCPS.2011.25

bibliography

[24] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.
Orleans: Distributed Virtual Actors for Programmability and Scalability. Tech. rep.
2014.

[25] Gérard Berry, S Ramesh, and RK Shyamasundar. “Communicating reactive
processes.” In: Proceedings of POPL. 1993.

[26] Colin Blundell, Dimitra Giannakopoulou, and Corina S. Pǎsǎreanu. “Assume-
guarantee Testing.” In: SIGSOFT Softw. Eng. Notes (2006).

[27] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André
Platzer. “VeriPhy: Verified Controller Executables from Verified Cyber-physical
System Models.” In: SIGPLAN Not. 53.4 (June 2018), pp. 617–630. issn: 0362-
1340. doi: 10.1145/3296979.3192406. url: http://doi.acm.org/10.1145/
3296979.3192406.

[28] Edwin Brady. “State Machines All The Way Down An Architecture for Depen-
dently Typed Applications.” In: (2016).

[29] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. 2016. arXiv: 1606.
01540 [cs.LG].

[30] David Broman, Patricia Derler, Ankush Desai, John C. Eidson, and Sanjit A. Se-
shia. “Endlessly Circulating Messages in IEEE 1588-2008 Systems.” In: Proceed-
ings of the 8th International IEEE Symposium on Precision Clock Synchronization
for Measurement, Control and Communication (ISPCS). 2014.

[31] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh
Nagarakatte. “A randomized scheduler with probabilistic guarantees of finding
bugs.” In: Proceedings of ASPLOS. 2010.

[32] Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and Jorgen
Thelin. Orleans: A Framework for Cloud Computing. Tech. rep. 2010.

[33] Michal Cáp, Peter Novák, Martin Seleckỳ, Jan Faigl, and Jiff Vokffnek. “Asyn-
chronous decentralized prioritized planning for coordination in multi-robot
system.” In: International Conference on Intelligent Robots and Systems. IEEE. 2013,
pp. 3822–3829.

[34] P. Caspi, C. Mazuet, and N. R. Paligot. “About the Design of Distributed
Control Systems: The Quasi-Synchronous Approach.” In: SAFECOMP. 2001.

[35] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca
Padovani. “Foundations of session types.” In: Proceedings of the 11th ACM
SIGPLAN conference on Principles and practice of declarative programming. ACM.
2009, pp. 219–230.

178

https://doi.org/10.1145/3296979.3192406
http://doi.acm.org/10.1145/3296979.3192406
http://doi.acm.org/10.1145/3296979.3192406
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

bibliography

[36] S. Chandra, B. Richards, and J. R. Larus. “Teapot: a domain-specific language for
writing cache coherence protocols.” In: IEEE Transactions on Software Engineering
(1999).

[37] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made
live: an engineering perspective.” In: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing. PODC ’07. Portland, Oregon,
USA: ACM, 2007, pp. 398–407.

[38] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. “Using Crash Hoare Logic for Certifying the FSCQ File
System.” In: Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP). 2015.

[39] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. “Flow*: An Analyzer
for Non-linear Hybrid Systems.” In: Computer Aided Verification. Ed. by Natasha
Sharygina and Helmut Veith. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 258–263.

[40] Matthew Clark, Xenofon Koutsoukos, Ratnesh Kumar, Insup Lee, George
Pappas, Lee Pike, Joseph Porter, and Oleg Sokolsky. Study on Run Time As-
surance for Complex Cyber Physical Systems. Tech. rep. ADA585474. Available at
https://leepike.github.io/pubs/RTA-CPS.pdf. Air Force Research Lab,
2013.

[41] Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley. “Bounded
partial-order reduction.” In: Proceedings of OOPSLA 2013.

[42] James C. Corbett et al. “Spanner: Google’s Globally-distributed Database.” In:
Proceedings of OSDI 2012.

[43] Véronique Cortier and Stéphanie Delaune. “A method for proving observational
equivalence.” In: Computer Security Foundations Symposium, 2009. CSF’09. 22nd
IEEE. IEEE. 2009, pp. 266–276.

[44] Conrado Daws and Sergio Yovine. “Two examples of verification of multirate
timed automata with Kronos.” In: Proceedings of RTSS. 1995.

[45] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver.” In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 2008,
pp. 337–340.

[46] Jonathan A. DeCastro, Javier Alonso-Mora, Vasu Raman, Daniela Rus, and
Hadas Kress-Gazit. “Collision-Free Reactive Mission and Motion Planning for
Multi-Robot Systems.” In: International Symposium on Robotics Research (ISRR).
Sestri Levante, Italy, 2015.

179

https://leepike.github.io/pubs/RTA-CPS.pdf

bibliography

[47] Pantazis Deligiannis, Alastair F Donaldson, Jeroen Ketema, Akash Lal, and
Paul Thomson. “Asynchronous programming, analysis and testing with state
machines.” In: ACM SIGPLAN Notices. Vol. 50. 6. ACM. 2015, pp. 154–164.

[48] Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia. “Combining Model
Checking and Runtime Verification for Safe Robotics.” In: Runtime Verification -
17th International Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017,
Proceedings. 2017, pp. 172–189. doi: 10.1007/978-3-319-67531-2_11. url:
https://doi.org/10.1007/978-3-319-67531-2_11.

[49] Ankush Desai and Shaz Qadeer. “P: Modular and Safe Asynchronous Program-
ming.” In: Runtime Verification - 17th International Conference, RV 2017, Seattle,
WA, USA, September 13-16, 2017, Proceedings. 2017, pp. 3–7. doi: 10.1007/978-
3-319-67531-2_1. url: https://doi.org/10.1007/978-3-319-67531-2_1.

[50] Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. “Systematic testing of asyn-
chronous reactive systems.” In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30
- September 4, 2015. 2015, pp. 73–83. doi: 10.1145/2786805.2786861. url:
https://doi.org/10.1145/2786805.2786861.

[51] Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. “Programming Safe Robotics
Systems: Challenges and Advances.” In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Verification - 8th International Symposium, ISoLA
2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part II. 2018, pp. 103–119.
doi: 10.1007/978-3-030-03421-4_8. url: https://doi.org/10.1007/978-3-
030-03421-4_8.

[52] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Raja-
mani, and Damien Zufferey. “P: Safe Asynchronous Event-Driven Program-
ming.” In: Proceedings of PLDI. 2013.

[53] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Raja-
mani, and Damien Zufferey. “P: safe asynchronous event-driven programming.”
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 2013, pp. 321–332. doi: 10.
1145/2491956.2462184. url: https://doi.org/10.1145/2491956.2462184.

[54] Ankush Desai, David Broman, John Eidson, Shaz Qadeer, and Sanjit A. Seshia.
Approximate Synchrony: An Abstraction for Distributed Time-Synchronized Systems.
Tech. rep. UCB/EECS-2014-136. University of California, Berkeley, 2014.

[55] Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman, and John C.
Eidson. “Approximate Synchrony: An Abstraction for Distributed Almost-
Synchronous Systems.” In: Computer Aided Verification - 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part

180

https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_1
https://doi.org/10.1007/978-3-319-67531-2_1
https://doi.org/10.1007/978-3-319-67531-2_1
https://doi.org/10.1145/2786805.2786861
https://doi.org/10.1145/2786805.2786861
https://doi.org/10.1007/978-3-030-03421-4_8
https://doi.org/10.1007/978-3-030-03421-4_8
https://doi.org/10.1007/978-3-030-03421-4_8
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1145/2491956.2462184

bibliography

II. 2015, pp. 429–448. doi: 10.1007/978-3-319-21668-3_25. url: https:
//doi.org/10.1007/978-3-319-21668-3_25.

[56] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A. Seshia.
“DRONA: a framework for safe distributed mobile robotics.” In: Proceedings
of the 8th International Conference on Cyber-Physical Systems, ICCPS 2017, Pitts-
burgh, Pennsylvania, USA, April 18-20, 2017. 2017, pp. 239–248. doi: 10.1145/
3055004.3055022. url: https://doi.org/10.1145/3055004.3055022.

[57] Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. “Com-
positional programming and testing of dynamic distributed systems.” In:
PACMPL 2.OOPSLA (2018), 159:1–159:30. doi: 10.1145/3276529. url: https:
//doi.org/10.1145/3276529.

[58] SOTER: A Runtime Assurance Framework for Programming Safe Robotics Systems.
IEEE Computer Society, 2019.

[59] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin,
Garvit Juniwal, and Sanjit A. Seshia. “Robust online monitoring of signal
temporal logic.” In: Formal Methods in System Design 51.1 (2017), pp. 5–30. issn:
1572-8102. doi: 10.1007/s10703-017-0286-7. url: https://doi.org/10.1007/
s10703-017-0286-7.

[60] Mariangiola Dezani-Ciancaglini and Ugo De’Liguoro. “Sessions and session
types: An overview.” In: International Workshop on Web Services and Formal Meth-
ods. Springer. 2009, pp. 1–28.

[61] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. “On the Minimal Syn-
chronism Needed for Distributed Consensus.” In: J. ACM 34.1 (Jan. 1987),
pp. 77–97. issn: 0004-5411. doi: 10.1145/7531.7533. url: http://doi.acm.
org/10.1145/7531.7533.

[62] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. “Compositional
Falsification of Cyber-Physical Systems with Machine Learning Components.”
In: NASA Formal Methods - 9th International Symposium, NFM 2017, Moffett Field,
CA, USA, May 16-18, 2017, Proceedings. 2017, pp. 357–372. doi: 10.1007/978-3-
319-57288-8_26. url: https://doi.org/10.1007/978-3-319-57288-8_26.

[63] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi
Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. “VerifAI: A
Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based
Systems.” In: 31st International Conference on Computer Aided Verification (CAV).
July 2019.

[64] Drona Website. https://drona-org.github.io/Drona/. 2019.

181

https://doi.org/10.1007/978-3-319-21668-3_25
https://doi.org/10.1007/978-3-319-21668-3_25
https://doi.org/10.1007/978-3-319-21668-3_25
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3276529
https://doi.org/10.1145/3276529
https://doi.org/10.1145/3276529
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1145/7531.7533
http://doi.acm.org/10.1145/7531.7533
http://doi.acm.org/10.1145/7531.7533
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
https://drona-org.github.io/Drona/

bibliography

[65] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew
Potok. “C2E2: a verification tool for stateflow models.” In: International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. Springer.
2015, pp. 68–82.

[66] Bruno Dutertre and Maria Sorea. “Modeling and Verification of a Fault-
Tolerant Real-Time Startup Protocol Using Calendar Automata.” In: Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Ed. by
Yassine Lakhnech and Sergio Yovine. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2004, pp. 199–214. isbn: 978-3-540-30206-3.

[67] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the
Presence of Partial Synchrony.” In: J. ACM (1988).

[68] John Eidson and Kang Lee. “IEEE 1588 standard for a precision clock synchro-
nization protocol for networked measurement and control systems.” In: Sensors
for Industry Conference, 2002. 2nd ISA/IEEE. Ieee. 2002, pp. 98–105.

[69] Ásgeir Th. Eiríksson. “The Formal Design of 1M-gate ASICs.” In: Form. Methods
Syst. Des. (2000).

[70] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. “CONCURRIT:
A domain specific language for reproducing concurrency bugs.” In: Proceedings
of PLDI. 2013.

[71] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. “Delay-bounded
scheduling.” In: Proceedings of POPL. 2011.

[72] Michael Erdmann and Tomas Lozano-Perez. “On Multiple Moving Objects.”
In: Algorithmica 2 (1986), pp. 1419–1424.

[73] Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J Pappas.
“Temporal logic motion planning for dynamic robots.” In: Automatica (2009).

[74] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. “On the relationship between
concurrent separation logic and assume-guarantee reasoning.” In: European
Symposium on Programming. Springer. 2007, pp. 173–188.

[75] C. Finucane, Gangyuan Jing, and H. Kress-Gazit. “LTLMoP: Experimenting
with language, Temporal Logic and robot control.” In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2010.

[76] Jasmin Fisher, Thomas A. Henzinger, Maria Mateescu, and Nir Piterman.
“Bounded Asynchrony: Concurrency for Modeling Cell-Cell Interactions.” In:
Formal Methods in Systems Biology. Ed. by Jasmin Fisher. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 17–32. isbn: 978-3-540-68413-8.

182

bibliography

[77] Jasmin Fisher, Thomas A. Henzinger, Dejan Nickovic, Nir Piterman, Anmol V.
Singh, and Moshe Y. Vardi. “Dynamic Reactive Modules.” In: CONCUR 2011 –
Concurrency Theory: 22nd International Conference, CONCUR 2011, Aachen, Ger-
many, September 6-9, 2011. Proceedings. Ed. by Joost-Pieter Katoen and Barbara
König. 2011.

[78] Robert W Floyd. “Assigning meanings to programs.” In: Program Verification.
Springer, 1993, pp. 65–81.

[79] Cédric Fournet and Georges Gonthier. “The Reflexive CHAM and the Join-
calculus.” In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 1996.

[80] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. “A Calculus of Mobile Agents.” In: Proceedings of the 7th International
Conference on Concurrency Theory. CONCUR ’96. 1996.

[81] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
“SpaceEx: Scalable Verification of Hybrid Systems.” In: Computer Aided Verifi-
cation. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 379–395.

[82] Ivan Gavran, Rupak Majumdar, and Indranil Saha. “ANTLAB: a multi-robot
task server.” In: ACM Transactions on Embedded Computing Systems (TECS) 16.5s
(2017), p. 190.

[83] Ivan Gavran, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor
Vafeiadis. “Rely/guarantee reasoning for asynchronous programs.” In: LIPIcs-
Leibniz International Proceedings in Informatics. Vol. 42. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2015.

[84] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Springer-Verlag, 1996.

[85] Patrice Godefroid. “Model Checking for Programming Languages using
Verisoft.” In: Proceedings of POPL. 1997, pp. 174–186.

[86] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016. isbn: 0262035618, 9780262035613.

[87] Jim Gray. “Notes on Data Base Operating Systems.” In: Operating Systems, An
Advanced Course. London, UK, UK, 1978, pp. 393–481.

[88] Jim Gray and Leslie Lamport. “Consensus on Transaction Commit.” In: ACM
Trans. Database Syst. 31.1 (Mar. 2006), pp. 133–160.

183

bibliography

[89] Jeremie Guiochet, Mathilde Machin, and Helene Waeselynck. “Safety-critical
advanced robots: A survey.” In: Robotics and Autonomous Systems 94 (2017),
pp. 43 –52. issn: 0921-8890. doi: https : / / doi . org / 10 . 1016 / j . robot .
2017.04.004. url: http://www.sciencedirect.com/science/article/pii/
S0921889016300768.

[90] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao
Zhang. “Practical software model checking via dynamic interface reduction.”
In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles 2011,
SOSP 2011, Cascais, Portugal, October 23-26, 2011. 2011, pp. 265–278.

[91] Yi Guo and L. E. Parker. “A distributed and optimal motion planning ap-
proach for multiple mobile robots.” In: International Conference on Robotics and
Automation (ICRA). Vol. 3. 2002, pp. 2612–2619.

[92] Nicolas Halbwachs and Louis Mandel. “Simulation and Verification of Asyn-
chronous Systems by Means of a Synchronous Model.” In: Proceedings of ACSD.
2006.

[93] David Harel. “Statecharts: A Visual Formalism for Complex Systems.” In: Sci.
Comput. Program. (1987).

[94] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths.” In: IEEE Transaction on Systems Science
and Cybernetics (1968).

[95] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. “Ironclad Apps: End-to-end Security via Auto-
mated Full-system Verification.” In: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation (OSDI). 2014.

[96] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. “IronFleet: Proving Practical
Distributed Systems Correct.” In: Proceedings of the 25th ACM Symposium on
Operating Systems Principles. 2015.

[97] Matthew Hennessy and James Riely. “Resource Access Control in Systems of
Mobile Agents.” In: Inf. Comput. 173.1 (Feb. 2002), pp. 82–120. issn: 0890-5401.
doi: 10.1006/inco.2001.3089. url: http://dx.doi.org/10.1006/inco.2001.
3089.

[98] Thomas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch.
“Giotto: A time-triggered language for embedded programming.” In: Interna-
tional Workshop on Embedded Software. Springer. 2001, pp. 166–184.

184

https://doi.org/https://doi.org/10.1016/j.robot.2017.04.004
https://doi.org/https://doi.org/10.1016/j.robot.2017.04.004
http://www.sciencedirect.com/science/article/pii/S0921889016300768
http://www.sciencedirect.com/science/article/pii/S0921889016300768
https://doi.org/10.1006/inco.2001.3089
http://dx.doi.org/10.1006/inco.2001.3089
http://dx.doi.org/10.1006/inco.2001.3089

bibliography

[99] Thomas A. Henzinger, Xiaojun Liu, Shaz Qadeer, and Sriram K. Rajamani.
“Formal Specification and Verification of a Dataflow Processor Array.” In: Pro-
ceedings of the 1999 IEEE/ACM International Conference on Computer-aided Design.
1999.

[100] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin. “FaSTrack:
A modular framework for fast and guaranteed safe motion planning.” In: 2017
IEEE 56th Annual Conference on Decision and Control (CDC). 2017, pp. 1517–1522.
doi: 10.1109/CDC.2017.8263867.

[101] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming.” In: Commu-
nications of the ACM (1969).

[102] C. A. R. Hoare. “Communicating Sequential Processes.” In: Communications of
the ACM (1978).

[103] Andreas G. Hofmann and Brian Charles Williams. “Robust Execution of Tem-
porally Flexible Plans for Bipedal Walking Devices.” In: Proceedings of the
Sixteenth International Conference on Automated Planning and Scheduling, ICAPS
2006, Cumbria, UK, June 6-10, 2006. 2006, pp. 386–389. url: http://www.aaai.
org/Library/ICAPS/2006/icaps06-047.php.

[104] G. Holzmann. “The Model Checker SPIN.” In: IEEE Transactions on Software
Engineering (1997).

[105] Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty Asyn-
chronous Session Types.” In: J. ACM 63.1 (Mar. 2016).

[106] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo, Aravind
Sundaresan, and Grigore Rosu. “ROSRV: Runtime Verification for Robots.” In:
Runtime Verification. Ed. by Borzoo Bonakdarpour and Scott A. Smolka. Cham:
Springer International Publishing, 2014, pp. 247–254. isbn: 978-3-319-11164-3.

[107] Xiaowan Huang, Anu Singh, and Scott A Smolka. “Using Integer Clocks to
Verify the Timing-Sync Sensor Network Protocol.” In: Proceedings of NFM. 2010.

[108] John Hughes, Benjamin C Pierce, Thomas Arts, and Ulf Norell. “Mysteries
of dropbox: property-based testing of a distributed synchronization service.”
In: Software Testing, Verification and Validation (ICST), 2016 IEEE International
Conference on. IEEE. 2016, pp. 135–145.

[109] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforce-
ment learning: A survey.” In: Journal of artificial intelligence research 4 (1996),
pp. 237–285.

[110] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal
motion planning.” In: The International Journal of Robotics Research 30.7 (2011),
pp. 846–894. doi: 10.1177/0278364911406761. eprint: https://doi.org/10.
1177/0278364911406761. url: https://doi.org/10.1177/0278364911406761.

185

https://doi.org/10.1109/CDC.2017.8263867
http://www.aaai.org/Library/ICAPS/2006/icaps06-047.php
http://www.aaai.org/Library/ICAPS/2006/icaps06-047.php
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761

bibliography

[111] Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat.
“Life, Death, and the Critical Transition: Finding Liveness Bugs in Systems
Code.” In: Symposium on Networked Systems Design and Implementation. 2007.

[112] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and
Amin Vahdat. “Mace: language support for building distributed systems.”
In: Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, June 10-13, 2007. 2007,
pp. 179–188.

[113] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel.” In: Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP).
2009.

[114] Nathan Koenig and Andrew Howard. “Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator.” In: In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. 2004, pp. 2149–2154.

[115] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. “Temporal logic
based reactive mission and motion planning.” In: IEEE Transactions on Robotics
(2009).

[116] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. “Temporal-
logic-based reactive mission and motion planning.” In: IEEE transactions on
robotics 6 (2009), pp. 1370–1381.

[117] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[118] Leslie Lamport. “The part-time parliament.” In: ACM Transactions on Computer
Systems 16.2 (1998), pp. 133–169.

[119] Leslie Lamport. “Paxos Made Simple.” In: ACM SIGACT News 32.4 (Dec. 2001).

[120] Kim G Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a nutshell.” In:
International journal on software tools for technology transfer 1.1-2 (1997), pp. 134–
152.

[121] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. “A Framework for State-
Space Exploration of Java-Based Actor Programs.” In: Automated Software Engi-
neering, 2009. ASE ’09. 24th IEEE/ACM International Conference on. 2009.

[122] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded systems: A
cyber-physical systems approach. MIT Press, 2017.

[123] K Rustan M Leino and Peter Müller. “A basis for verifying multi-threaded
programs.” In: European Symposium on Programming. Springer. 2009, pp. 378–
393.

186

bibliography

[124] Hui X. Li and Brian C. Williams. “Generative Planning for Hybrid Systems
Based on Flow Tubes.” In: Proceedings of the Eighteenth International Conference
on Automated Planning and Scheduling, ICAPS 2008, Sydney, Australia, September
14-18, 2008. 2008, pp. 206–213. url: http://www.aaai.org/Library/ICAPS/
2008/icaps08-026.php.

[125] Yixiao Lin and Sayan Mitra. “StarL: Towards a Unified Framework for Program-
ming, Simulating and Verifying Distributed Robotic Systems.” In: Languages,
Compilers and Tools for Embedded Systems (LCTES). 2015, 9:1–9:10.

[126] M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J.D. Gonzalez Cobas, A. Ru-
bini, and P. Moreira. “Performance results of the first White Rabbit installation
for CNGS time transfer.” In: Proceedings of ISPCS. 2012.

[127] Yanhong A Liu, Scott D Stoller, Bo Lin, and Michael Gorbovitski. “From clarity
to efficiency for distributed algorithms.” In: ACM SIGPLAN Notices. Vol. 47. 10.
ACM. 2012, pp. 395–410.

[128] Nancy A. Lynch and Mark R. Tuttle. “Hierarchical Correctness Proofs for
Distributed Algorithms.” In: Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing (PODC). 1987.

[129] Nancy A Lynch and Mark R Tuttle. “An introduction to input/output au-
tomata.” In: (1988).

[130] Lola Masson, Jérémie Guiochet, Hélène Waeselynck, Kalou Cabrera, Sofia
Cassel, and Martin Törngren. “Tuning Permissiveness of Active Safety Monitors
for Autonomous Systems.” In: NASA Formal Methods. Ed. by Aaron Dutle, César
Muñoz, and Anthony Narkawicz. Cham: Springer International Publishing,
2018, pp. 333–348. isbn: 978-3-319-77935-5.

[131] Caitie McCaffrey. “The Verification of a Distributed System.” In: Commun. ACM
59.2 (Jan. 2016).

[132] Kenneth L. McMillan. “A methodology for hardware verification using com-
positional model checking.” In: Sci. Comput. Program. 37.1-3 (2000), pp. 279–
309.

[133] Kenneth Lauchlin McMillan. “Symbolic Model Checking: An Approach to the
State Explosion Problem.” PhD thesis. Pittsburgh, PA, USA, 1992.

[134] Kenneth Lauchlin McMillan. SMV Model Checker. http://www.kenmcmil.com/
smv.html. 2017.

[135] Kenneth McMillan. “Modular specification and verification of a cache-coherent
interface.” In: Proceedings of the 16th Conference on Formal Methods in Computer-
Aided Design. FMCAD Inc. 2016, pp. 109–116.

187

http://www.aaai.org/Library/ICAPS/2008/icaps08-026.php
http://www.aaai.org/Library/ICAPS/2008/icaps08-026.php
http://www.kenmcmil.com/smv.html
http://www.kenmcmil.com/smv.html

bibliography

[136] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and
control for quadrotors.” In: International Conference on Robotics and Automation
(ICRA). 2011, pp. 2520–2525.

[137] R. Milner. A Calculus of Communicating Systems. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1982. isbn: 0387102353.

[138] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile
Processes, I.” In: Inf. Comput. 100.1 (Sept. 1992).

[139] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games.” In: IEEE
Transactions on Automatic Control 50.7 (2005), pp. 947–957. issn: 0018-9286. doi:
10.1109/TAC.2005.851439.

[140] Stefan Mitsch and André Platzer. “ModelPlex: verified runtime validation of
verified cyber-physical system models.” In: Formal Methods in System Design
49.1 (2016), pp. 33–74. issn: 1572-8102. doi: 10.1007/s10703-016-0241-z. url:
https://doi.org/10.1007/s10703-016-0241-z.

[141] Teodor Mihai Moldovan and Pieter Abbeel. “Safe Exploration in Markov Deci-
sion Processes.” In: CoRR abs/1205.4810 (2012). url: http://arxiv.org/abs/
1205.4810.

[142] Iulian Moraru, David G Andersen, and Michael Kaminsky. EPaxos Code. https:
//github.com/efficient/epaxos/. 2013.

[143] Iulian Moraru, David G. Andersen, and Michael Kaminsky. “There is More
Consensus in Egalitarian Parliaments.” In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP). 2013.

[144] Madan Musuvathi and Shaz Qadeer. Partial-order reduction for context-bounded
state exploration. Tech. rep. MSR-TR-2007-12. Microsoft Research, 2012.

[145] Madanlal Musuvathi and Shaz Qadeer. “Iterative Context Bounding for Sys-
tematic Testing of Multithreaded Programs.” In: Proceedings of PLDI. 2007.

[146] Madanlal Musuvathi and Shaz Qadeer. “Iterative context bounding for system-
atic testing of multithreaded programs.” In: Proceedings of PLDI. 2007.

[147] Santosh Nagarakatte, Sebastian Burckhardt, Milo M.K. Martin, and Madanlal
Musuvathi. “Multicore Acceleration of Priority-based Schedulers for Concur-
rency Bug Detection.” In: Proceedings of PLDI 2012.

[148] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and Lydia E
Kavraki. “SMT-based synthesis of integrated task and motion plans from plan
outlines.” In: International Conference on Robotics and Automation (ICRA). IEEE.
2014, pp. 655–662.

188

https://doi.org/10.1109/TAC.2005.851439
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
http://arxiv.org/abs/1205.4810
http://arxiv.org/abs/1205.4810
https://github.com/efficient/epaxos/
https://github.com/efficient/epaxos/

bibliography

[149] Peter W O’Hearn. “Resources, concurrency, and local reasoning.” In: Theoretical
computer science 375.1-3 (2007), pp. 271–307.

[150] P-GitHub. The P Programming Langugage. https://github.com/p-org/P. 2019.

[151] PX4 Autopilot. https://pixhawk.org/. 2017.

[152] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. “Ivy: Safety Verification by Interactive Generalization.” In: Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’16. 2016.

[153] Yash Vardhan Pant, Houssam Abbas, Rhudii A. Quaye, and Rahul Mangharam.
“Fly-by-logic: Control of Multi-drone Fleets with Temporal Logic Objectives.”
In: Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical
Systems. ICCPS ’18. Porto, Portugal: IEEE Press, 2018, pp. 186–197. isbn: 978-
1-5386-5301-2. doi: 10.1109/ICCPS.2018.00026. url: https://doi.org/10.
1109/ICCPS.2018.00026.

[154] Radia Perlman. “An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN.” In: Proceedings of SIGCOMM. 1985.

[155] Ola Pettersson. “Execution monitoring in robotics: A survey.” In: Robotics
and Autonomous Systems 53.2 (2005), pp. 73 –88. issn: 0921-8890. doi: https:
//doi.org/10.1016/j.robot.2005.09.004. url: http://www.sciencedirect.
com/science/article/pii/S092188900500134X.

[156] Dung Phan, Junxing Yang, Matthew Clark, Radu Grosu, John D Schier-
man, Scott A Smolka, and Scott D Stoller. “A Component-Based Simplex
Architecture for High-Assurance Cyber-Physical Systems.” In: arXiv preprint
arXiv:1704.04759 (2017).

[157] Dung Phan, Junxing Yang, Radu Grosu, Scott A. Smolka, and Scott D. Stoller.
“Collision avoidance for mobile robots with limited sensing and limited in-
formation about moving obstacles.” In: Formal Methods in System Design 51.1
(2017), pp. 62–86. url: https://doi.org/10.1007/s10703-016-0265-4.

[158] Benjamin C. Pierce and David N. Turner. “Proof, Language, and Interaction.”
In: ed. by Gordon Plotkin, Colin Stirling, and Mads Tofte. 2000. Chap. Pict: A
Programming Language Based on the Pi-Calculus.

[159] Benjamin Pierce and Davide Sangiorgi. “Typing and Subtyping for Mobile
Processes.” In: Mathematical Strustures In Computer Science. 1996, pp. 376–385.

[160] Amir Pnueli. “The Temporal Logic of Programs.” In: Proceedings of FOCS. 1977.

[161] Pony. Pony Programming Langugage. https://www.ponylang.org. 2017.

189

https://github.com/p-org/P
https://doi.org/10.1109/ICCPS.2018.00026
https://doi.org/10.1109/ICCPS.2018.00026
https://doi.org/10.1109/ICCPS.2018.00026
https://doi.org/https://doi.org/10.1016/j.robot.2005.09.004
https://doi.org/https://doi.org/10.1016/j.robot.2005.09.004
http://www.sciencedirect.com/science/article/pii/S092188900500134X
http://www.sciencedirect.com/science/article/pii/S092188900500134X
https://doi.org/10.1007/s10703-016-0265-4
https://www.ponylang.org

bibliography

[162] Stephen Ponzio and Ray Strong. “Semisynchrony and real time.” English.
In: Distributed Algorithms. Ed. by Adrian Segall and Shmuel Zaks. Vol. 647.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1992, pp. 120–
135. isbn: 978-3-540-56188-0. doi: 10.1007/3- 540- 56188- 9_9. url: http:
//dx.doi.org/10.1007/3-540-56188-9_9.

[163] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. “ROS: an open-source Robot Operating
System.” In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009,
p. 5.

[164] Basant Rajan and RK Shyamasundar. “Multiclock Esterel: a reactive framework
for asynchronous design.” In: IPDPS. 2000.

[165] Robbert van Renesse and Fred B. Schneider. “Chain replication for supporting
high throughput and availability.” In: Proc. 6th USENIX OSDI. San Francisco,
CA, Dec. 2004.

[166] James Riely and Matthew Hennessy. “A Typed Language for Distributed Mo-
bile Processes (Extended Abstract).” In: Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’98. 1998.

[167] John Rushby. “Systematic formal verification for fault-tolerant time-triggered
algorithms.” In: Software Engineering, IEEE Transactions on (1999).

[168] Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J Pappas, and
Sanjit A Seshia. “Automated composition of motion primitives for multi-robot
systems from safe LTL specifications.” In: IROS. IEEE. 2014, pp. 1525–1532.

[169] Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J Pappas, and
Sanjit A Seshia. “Automated composition of motion primitives for multi-robot
systems from safe LTL specifications.” In: International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2014, pp. 1525–1532.

[170] Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J Pappas, and
Sanjit A Seshia. “Implan: scalable incremental motion planning for multi-robot
systems.” In: International Conference on Cyber-Physical Systems (ICCPS). IEEE.
2016, pp. 1–10.

[171] John D Schierman, Michael D DeVore, Nathan D Richards, Neha Gandhi, Jared
K Cooper, Kenneth R Horneman, Scott Stoller, and Scott Smolka. Runtime
assurance framework development for highly adaptive flight control systems. Tech.
rep. Barron Associates, Inc. Charlottesville, 2015.

[172] Fred B. Schneider. “Implementing fault-tolerant services using the state ma-
chine approach: a tutorial.” In: ACM Comput. Surv. 22.4 (Dec. 1990), pp. 299–
319.

190

https://doi.org/10.1007/3-540-56188-9_9
http://dx.doi.org/10.1007/3-540-56188-9_9
http://dx.doi.org/10.1007/3-540-56188-9_9

bibliography

[173] Koushik Sen. “Effective Random Testing of Concurrent Programs.” In: Proceed-
ings of ASE, 2007.

[174] Koushik Sen. “Race directed random testing of concurrent programs.” In:
Proceedings of PLDI. 2008, pp. 11–21.

[175] Koushik Sen and Gul Agha. “Automated Systematic Testing of Open Dis-
tributed Programs.” In: Proceedings of the 9th International Conference on Funda-
mental Approaches to Software Engineering. 2006.

[176] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. “MultiSE: Multi-
path symbolic execution using value summaries.” In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM. 2015, pp. 842–
853.

[177] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. “Programming and Proving
with Distributed Protocols.” In: 45th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’18. ACM, 2018.

[178] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. “Towards Verified Artifi-
cial Intelligence.” In: ArXiv e-prints (2016). arXiv: 1606.08514.

[179] Sanjit A. Seshia and Pramod Subramanyan. “UCLID5: Integrating Modeling,
Verification, Synthesis, and Learning.” In: Proceedings of the 15th ACM/IEEE In-
ternational Conference on Formal Methods and Models for Codesign (MEMOCODE).
2018.

[180] Danbing Seto, Enrique Ferriera, and Theodore Marz. Case Study: Development of
a Baseline Controller for Automatic Landing of an F-16 Aircraft Using Linear Matrix
Inequalities (LMIs). Tech. rep. CMU/SEI-99-TR-020. Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University, 2000. url: http://resources.
sei.cmu.edu/library/asset-view.cfm?AssetID=13489.

[181] Lui Sha. “Using Simplicity to Control Complexity.” In: IEEE Softw. 18.4 (July
2001), pp. 20–28. issn: 0740-7459. doi: 10.1109/MS.2001.936213. url: https:
//doi.org/10.1109/MS.2001.936213.

[182] Yasser Shoukry, Pierluigi Nuzzo, Ayca Balkan, Indranil Saha, Alberto L.
Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, and Paulo Tabuada.
“Linear temporal logic motion planning for teams of underactuated robots using
satisfiability modulo convex programming.” In: 56th IEEE Annual Conference
on Decision and Control (CDC). 2017, pp. 1132–1137.

[183] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. “PENELOPE: Weav-
ing Threads to Expose Atomicity Violations.” In: Proceedings of FSE. 2010.

[184] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning
Library.” In: IEEE Robotics & Automation Magazine (2012).

191

https://arxiv.org/abs/1606.08514
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13489
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13489
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1109/MS.2001.936213

bibliography

[185] Alexander J. Summers and Peter Müller. “Actor Services.” In: Proceedings of the
25th European Symposium on Programming Languages and Systems - Volume 9632.
2016.

[186] Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani. “Clock synchro-
nization for wireless sensor networks: A Survey.” In: Ad Hoc Networks (Elsevier
(2005).

[187] Paul Thomson, Alastair F. Donaldson, and Adam Betts. “Concurrency Testing
Using Schedule Bounding: An Empirical Study.” In: ().

[188] Andrew Tinka, Thomas Watteyne, and Kris Pister. “A decentralized scheduling
algorithm for time synchronized channel hopping.” In: Second International
Conference on Ad-Hoc Networks (ADHOCNETS). Springer, 2010, pp. 201–216.

[189] Abhishek Udupa, Ankush Desai, and Sriram Rajamani. “Depth bounded
explicit-state model checking.” In: Proceedings of SPIN. 2011.

[190] Frits W Vaandrager and AL de Groot. “Analysis of a biphase mark protocol
with Uppaal and PVS.” In: Formal Aspects of Computing (2006).

[191] Viktor Vafeiadis and Matthew Parkinson. “A marriage of rely/guarantee and
separation logic.” In: International Conference on Concurrency Theory. Springer.
2007, pp. 256–271.

[192] Jur P Van Den Berg and Mark H Overmars. “Prioritized motion planning for
multiple robots.” In: Intelligent Robots and Systems (IROS). IEEE. 2005, pp. 430–
435.

[193] Robbert Van Renesse and Deniz Altinbuken. “Paxos Made Moderately Com-
plex.” In: ACM Comput. Surv. 47.3 (Feb. 2015).

[194] Prasanna Velagapudi, Katia Sycara, and Paul Scerri. “Decentralized prioritized
planning in large multirobot teams.” In: International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2010, pp. 4603–4609.

[195] Willem Visser and Peter C. Mehlitz. “Model Checking Programs with Java
PathFinder.” In: Proceedings of SPIN. 2005.

[196] Glenn Wagner and Howie Choset. “M*: A complete multirobot path planning
algorithm with performance bounds.” In: International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2011, pp. 3260–3267.

[197] Chao Wang, Mahmoud Said, and Aarti Gupta. “Coverage Guided Systematic
Concurrency Testing.” In: Proceedings of ICSE 2011.

[198] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. “Symbolic Predic-
tive Analysis for Concurrent Programs.” In: Proceedings of FM 2009.

192

bibliography

[199] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tat-
lock. “Jitk: A Trustworthy In-kernel Interpreter Infrastructure.” In: Proceedings
of the 11th USENIX Conference on Operating Systems Design and Implementation
(OSDI). 2014.

[200] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Tom Anderson. “Verdi: A Framework for Implement-
ing and Formally Verifying Distributed Systems.” In: 2015 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 2015.

[201] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. “Receding
horizon temporal logic planning.” In: IEEE Transactions on Automatic Control
57.11 (2012), pp. 2817–2830.

[202] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard
M Murray. “TuLiP: a software toolbox for receding horizon temporal logic plan-
ning.” In: International Conference on Hybrid Systems: Computation and Control
(HSCC). 2011.

[203] Qiwen Xu, Willem-Paul de Roever, and Jifeng He. “The rely-guarantee method
for verifying shared variable concurrent programs.” In: Formal Aspects of Com-
puting 9.2 (1997), pp. 149–174.

[204] Jianqiao Yang, Ankush Desai, and Koushik Sen. Multi-Path Symbolic Execution
for P Language. https://github.com/thisiscam/MultiPathP. 2017.

[205] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. “MODIST: Transparent
Model Checking of Unmodified Distributed Systems.” In: Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
2009.

193

https://github.com/thisiscam/MultiPathP

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Background: The P Programming Framework
	1.2 Primary Contributions
	1.3 Thesis Outline
	1.4 Previously Published Work and Formal Acknowledgment

	 Modular Programming of Event-Driven Systems
	2 A Module System for Compositional Reasoning of Event-Driven Systems
	2.1 Motivation and Overview
	2.2 ModP Module System
	2.3 Operational Semantics of ModP Modules
	2.4 Compositional Reasoning using ModP Modules
	2.5 Related Work

	3 Building Distributed Systems Compositionally
	3.1 From Theory to Practice
	3.2 Implementation of the ModP Tool Chain
	3.3 Evaluation
	3.4 Summary

	 Verification and Systematic Testing of Event-Driven Systems
	4 Systematic Testing of Asynchronous Event-Driven Programs
	4.1 Delaying Explorer
	4.2 Stratified Exhaustive Search
	4.3 Stratified Sampling
	4.4 Evaluation
	4.5 Related Work
	4.6 Summary

	5 Verifying Almost-Synchronous Event-Driven Systems using Approximate Synchrony Abstraction
	5.1 Almost-Synchronous Systems
	5.2 Approximate Synchrony Abstraction
	5.3 Model Checking with Approximate Synchrony
	5.4 Evaluation
	5.5 Related Work
	5.6 Summary

	 Assured Autonomy for Robotics Systems
	6 Assured Autonomy: Challenges and Advances
	6.1 Case Study: Autonomous Drone Surveillance System
	6.2 Challenges in Building Safe Robotics Systems
	6.3 Our Approach: The Drona Programming Framework
	6.4 Related Work

	7 Programming Safe Distributed Mobile Robotics Systems
	7.1 Overview
	7.2 Building Distributed Mobile Robotics (DMR) System
	7.3 Verification of DMR Systems
	7.4 Evaluation
	7.5 Related Work
	7.6 Summary

	8 Guaranteeing Safety using Runtime Assurance
	8.1 Overview
	8.2 Runtime Assurance (RTA) Module
	8.3 Correctness of an RTA Module
	8.4 Operational Semantics of an RTA Module
	8.5 Evaluation
	8.6 Related Work
	8.7 Summary

	 Conclusion
	9 Conclusion
	9.1 Closing Thoughts
	9.2 Future Work

	 Bibliography

