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ABSTRACT
We present a system, AutoRubric, for autograding template-

based student programs submitted on exams. AutoRubric automates
a particularly time-consuming aspect of the grading process: as-
signing partial credit via a rubric speci�cation. AutoRubric takes
as input a rubric and an exam question template, as well as a set of
programs to grade, and scores the programs. To address program
variability, AutoRubric checks for equivalences with respect to
rubric items by using SMT solvers. We present results on 1500 real
student exam programs, demonstrating that in less than two min-
utes AutoRubric automates 43.1% of the grading e�ort, achieving
95.8% recall and 100% precision.

1 INTRODUCTION
Due to tremendous enrollment growth in computer science

classes, computer science departments face the challenge of teach-
ing programming at scale. In this paper, we focus on automating
an important teaching task: grading student programs on exams.

Computer science exams frequently contain coding questions
that evaluate student understanding of programming. In this work,
we focus on grading coding questions that �t a pre-de�ned template.
An example of such a template, adapted from a past midterm prob-
lem fromUC Berkeley’s introductory CS61A class, is given in Figure
1a;1 we use this as a running example throughout our paper. The
template asks the student to write Python code in �ve blanks, such
that the completed program returns an integer that concatenates a
sequence of terms produced from the function term: term(1), . . .,
term(n). Figure 1c shows one possible student submission for the
template in Figure 1a. The exam writer prepares a reference solu-
tion, as in Figure 1b, that represents one possible correct solution
(there could be multiple reference solutions). Usually, several test
cases are presented to the student in order to demonstrate what
the program should emit; in Figure 1, several test cases are given
in the form of Python doctests. These test cases are not necessarily
exhaustive.

After the programs from an exam are collected, the course sta�
devises a grading scheme. One possible scheme is to grade each
program against a test suite: a set of input-output pairs. Then the
score would be computed according to how many tests pass. This
scheme could be easily implemented by transcribing each student
submission and verifying that the proper results are emitted upon
execution. However, in many cases, this scheme is too strict: con-
sider the student submission in Figure 1c. Although the student
submission only di�ers on the �rst blank (Line 11) from a reference
solution in Figure 1b, since the student submission causes the last
term in the sequence to never be concatenated, the submission fails
to pass any test cases. The student, however, has demonstrated

1https://cs61a.org/assets/pdfs/61a-fa18-mt1.pdf#page=5

insights that merit partial credit. We desire a grading scheme that
accounts for this partial correctness.

An alternative grading scheme is to use a rubric. We can evaluate
partial correctness based on what the student wrote for each blank
in the template. Each blank is scored individually according to
whether or not it satis�es a certain condition (typically, equivalence
with respect to some other program fragment). In this way, a more
�ne-grained set of criteria can be applied to score student programs.
Compared to the test suite, however, a disadvantage of the rubric is
that it is more di�cult to implement automatic scoring of a student
submission; more work needs to be done than simply transcribing
and then executing the program to check if it produces the right
result for a given test case.

After a rubric is developed, graders manually assign partial credit
to each student submission according to each item in the rubric.
For an introductory class with around 1800 students, we found that
grading an exam typically takes two full days, distributed across
course sta�. Furthermore, approximately 500 regrade requests were
�led on average for each exam, indicating that manual assessments
can be unreliable. This manual process is time-consuming and
error-prone.

We desire a rubric grading system that satis�es several require-
ments:

• The systemmust implement a rubric abstraction that graders
�nd convenient to use. This includes support for iteratively
changing the rubric as submissions are reviewed, to account
for new criteria or alternative solutions.

• For each rubric item, if the system is able to automatically
determine if the rubric item is satis�ed, the system should
score the rubric item with 100% precision. That is to say, the
system should not generate any false positives. In this grad-
ing context, a false positive means that the system awards
credit for a rubric item that should not actually receive credit.
Any rubric item that cannot be de�nitively handled by the
system should be reviewed by a human. This criterion is
necessary in order to prevent misgrading rubric items.

• The system should score the submissions quickly.

In this paper, we design and implement a system, AutoRubric,
that satis�es these requirements. To the best of our knowledge, we
are the �rst (in this paper) to design and implement an autograder
that interoperates with a rubric abstraction, for the purpose of
evaluating template-based student programs.

2 RELATEDWORK
In order to contextualize our contributions, we discuss, to our

knowledge, prior work that is most closely related to our system.
Existing techniques for evaluating student programs fall into three
main categories: 1. manual grading without any computer assis-
tance, 2. grading via test cases, and 3. semi-automated or fully
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(a) Template (b) A reference solution (c) A student submission

Figure 1: Figure 1a shows a template that a student must �ll out with Python code in order to return an integer that represents
the concatenation of a sequence of positive integers from the function term for term(1), . . ., term(n) (for a positive integer n).
Figure 1b is a reference solution, and Figure 1c is a student submission that di�ers only in the �rst blank (Line 11). If graded
against a test suite, the student submission in Figure 1cwould receive no credit, since it cannot pass any test cases; the resulting
integer always misses the last term.

automated systems that generate �xes for student programs, which
can be indirectly leveraged to assign a program score. As described
earlier, the �rst category, manual grading, is time-consuming and
often unreliable. Also established earlier, the second category of
grading via test cases is usually not su�ciently �ne-grained to
account for partial credit. Another drawback of test cases is that a
suite of test cases cannot generally prove that the student submis-
sion is truly correct: since the suite is �nite, a student submission
could pass all the tests in the suite but fail to cover other cases. In
our experience, these kinds of submissions commonly appear. For
a survey of prior work on autograding with test cases, refer to [3].

Regarding the third category, we refer to systems that provide
feedback for student programs [4, 10, 11]. These systems suggest
minimal repairs for student programs, attempting to �x student sub-
missions so that they match reference solutions. In this line of work,
the component that bears the strongest relation with AutoRubric
is the error model language in [10]; there, it is used to describe
a set of rewrite rules that captures the potential corrections for
mistakes that students might make in their solutions. AutoRubric’s
rubric speci�cation language, which we describe in Subsection 4.2,
instead speci�es a set of deterministic program fragments which
are checked against each student submission for equivalence.

All these systems generate repairs with some notion of cost,
and it is possible to leverage the repair cost to score the program.
Lower cost repairs, meaning fewer edits are needed to reach some
reference solution, would map to higher scores. We found, however,
that the precision and quality of repairs generated by these systems
are generally not high enough for our purposes. Furthermore, the
synthesized repairs and associated costs do not align well with
a consistent rubric abstraction that is convenient for a grader to
use and modify. These systems were not designed for program
assessment, but rather program repair, and hence do not exactly �t
our needs.

We remark that the exam setting we consider in this paper di�ers
from settings in most previous work, which focus on programs
that can be freely compiled and executed, often for submission
for projects and assignments for massive open online courses. In
a project or assignment setting, students are free to compile and
test their programs as many times as possible before submission.

In this setting, students can test their programs extensively and
inspect the program output. In contrast, for coding questions on
computer science exams, students do not have the ability to compile
or execute their programs, since most exams are handwritten.

Finally, wemention a line of complementary relatedwork [1, 5, 6]
that is relevant to our system: automatic syntax correction. In our
system, we require processing raw handwritten programs into
syntactically correct code, in order to invoke AutoRubric. In this
paper, we perform this syntax correction process manually, but we
could bene�t from work on automatic syntax correction tools to
alleviate this labor.

3 OVERVIEW
We now present an overview of the work�ow of the AutoRubric

system. The major phases are outlined in Figure 2: (1) Program
Transcription, (2) Program Translation, (3) Rubric Synthesis, and
(4) Equivalence Checking. At a high level, our strategy for assign-
ing partial credit to each student submission is to fragment the
program into individual components, each of which corresponds
to what the student wrote in each blank of the template, and then
to use these components to verify that rubric items are satis�ed.
In order to do this, we require (1) a representation of the student
submission suitable for veri�cation, (2) a representation of each
rubric item suitable for veri�cation, and (3) a back-end engine that
performs the veri�cation. These three requirements roughly corre-
spond to the three phases of program translation, rubric synthesis,
and equivalence checking.

(1) Program Transcription. The program transcription phase
converts raw handwritten programs, which may contain
syntax errors, into syntactically correct programs. Syntactic
correctness is a common requirement for program analy-
sis tools; this condition is needed in order to access the ab-
stract syntax tree for the program. The program transcription
phase rejects programs that either do not match the original
template or which are too di�cult to �x syntactically. These
syntactically incorrect submissions must be reviewed by a
human in order to receive partial credit. In our work, we do
not implement this phase automatically and instead review
each submission manually to �x syntax errors.
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Figure 2: Overall work�ow of AutoRubric

In our work, this manual process was performed in two
stages: �rstly, we requested that students transcribe their
own solutions to four exam problems, submitting them via a
form, and secondly, a single human reviewer cross-checked
the transcriptions against the actual student exams. Approx-
imately 1500 students submitted their transcriptions via the
form. Assuming a conservative estimate of 10 minutes for
each transcription (of four programs), the transcription time
would be 250 hours total for 1500 students. It took approxi-
mately 20 hours for the reviewer to cross-check 500 of these
student transcriptions. The reviewer checked every single
blank in each submission and applied �xes when needed to
ensure the transcription matched the original exam.

(2) ProgramTranslation.The program translation phase takes
each student submission and fragments the program into
individual components, each of which corresponds to what
the student wrote in each blank of the template. Each of
these components is translated into logical formulas that can
be passed into a satis�ability modulo theory (SMT) solver
during the equivalence checking phase. In order to imple-
ment this phase, we built a source-to-source compiler that
converts Python (the submission language) into Z3 [2] (the
SMT logical formula language).

(3) Rubric Synthesis. The rubric synthesis phase converts a
set of reference solutions into a speci�cation �le that repre-
sents a rubric. Initial rubric items are synthesized according
to the contents of the reference solutions that correspond
to template blanks. Listing 1 shows an example. After the
speci�cation �le is synthesized, the grader can modify the
rubric in custom ways. For instance, the grader could create
a rubric item that awards partial credit for the k < n answer
in Figure 1c, as in Line 3 of Listing 7. We designed a simple
speci�cation language that the grader can use to specify
the rubric, which supports Python fragments, boolean logic
operators, and references to prior rubric items.

(4) Equivalence Checking. The equivalence checking phase
takes each rubric item and converts it into a logical formula
that a SMT solver can use to check the equivalence of each

rubric item with the relevant portion of a student submis-
sion. If the rubric contains multiple reference solutions, the
student submission is checked against all reference solu-
tions, and ultimately, the student submission is assigned the
largest score from all the reference solutions. A human can
manually review submissions with particularly low scores
that pass a signi�cant number of test cases, identifying if the
submissions might be alternative solutions. If the submission
is an alternative solution, it should be added to the set of
reference solutions. The rubric synthesis and equivalence
checking phases can then be restarted. These phases can be
run iteratively till the graders are satis�ed with AutoRubric’s
results.

In later sections, we focus on details regarding the latter three
phases (program translation, rubric synthesis, and equivalence
checking), since they form the core of AutoRubric.

4 IMPLEMENTATION
Our system currently only handles Python programs, converting

them to logical formulas for the Z3 SMT solver. In the future, we
hope to extend our architecture to other front and back ends.

We chose to use a SMT solver because it can prove the validity
of �rst-order formulas in a large number of built-in logical theories.
In particular, we use the SMT solver to verify equalities in linear
arithmetic, which commonly appear when grading.

4.1 Program Translation
To translate a student program into a representation suitable for

veri�cation with rubric items, we implemented a source-to-source
compiler from Python to Z3. Z3 supports statements such as

prove(e1 == e2)

for some Z3 expressions e1 and e2. If the statement e1 == e2 is
true and if Z3 can verify it, then Z3 emits "proved"; otherwise,
it either hangs or emits a counterexample. For example, if e1 is
x + f(k + 0) and e2 is f(k) + x, then prove(e1 == e2) should
emit "proved". Here, x, k, and f are terms in Z3; speci�cally x is an
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Int, k is an Int, and f is an uninterpreted function mapping Int
to Int. Int is a type built into Z3.

In order to extract relevant portions of Python abstract syntax
trees, we used the Lark parser.2 We support translation of a subset
of the Python language, including numeric constants, variables,
comparisons, boolean logic, most arithmetic expressions, function
calls, assignment statements, return statements, and comma state-
ments. Notably, we do not yet support lambda expressions. In the
future, it may be possible to implement support for reasoning over
more sophisticated Python data structures like sets and lists. [7]

Most Python expressions are structurally very similar to their Z3
analogs, and so most translations are straightforward. We mention
some non-standard choices and simpli�cations we made. Python
assignment statements, such as k = 2, are translated into Z3 un-
interpreted function calls on the function SPECIAL_EQ such as
SPECIAL_EQ(k, 2), since there is no notion of assignment in Z3.
Python augmented arithmetic statements, such as m *= 10, are
translated into their expanded Z3 analogs such as m == m * 10.
The Python return statement is treated as a Z3 uninterpreted
function. Finally, we make the simpli�cation that all variables are
integers and all uninterpreted functions map their (integer) argu-
ments to integers. This leads to Z3 expressions that are not totally
semantically faithful, for instance, for Python programs involving
�oating point, but we found this simpli�cation mostly su�cient for
our purposes.

4.2 Rubric Synthesis
In order to implement a rubric abstraction, we designed a rubric

speci�cation language embedded inside YAML, a data serialization
language. In designing this rubric speci�cation language, we priori-
tized usability: the rubric interface should be convenient to use and
modify for a grader, not requiring knowledge of formal methods or
the underlying veri�cation processes.

We implemented a rubric synthesizer that takes as input a Python
reference solution and synthesizes an initial rubric in our speci�-
cation language. An example of an initial rubric, synthesized from
the reference solution in Figure 1b, is given in Listing 1. Examples
of more complex rubrics, which were modi�ed from the initially
synthesized ones, are given in Listings 6 and 8.

Each rubric item is speci�ed by three attributes. The �rst item at-
tribute is the Python fragment, possibly intermixed with operators
from the rubric speci�cation language. The second item attribute
de�nes rubric item parameters; currently two parameters are sup-
ported. The �rst (required) parameter is the blank number, used to
reference content from a particular template blank to match. The
second (optional) parameter is explicit speci�cation of a mode: a
mode is used to de�ne the way the match between the rubric code
fragment and student code fragment is performed. The third item
attribute is the score associated with the rubric item.

In aggregate, the �rst and second item attributes de�ne the
Python fragment, on a given blank, that the student submission
must match in order to receive credit for the rubric item correspond-
ing to the third item attribute, the score. The program translator
described in the previous subsection is used to convert Python
fragments in the �rst item attribute into Z3 logical formulas.

2https://github.com/lark-parser/lark

rubric1:
- [�k <= n�, �Blank 1�, �Score 1.0�]
- [�term ( k )�, �Blank 2�, �Score 1.0�]
- [�while�, �Blank 3�, �Score 1.0�]
- [�m *= 10�, �Blank 4�, �Score 1.0�]
- [�t * m + x�, �Blank 5�, �Score 1.0�]

Listing 1: Initially synthesized rubric corresponding to Fig-
ure 1b. The default assigned score is 1.0.

For the �rst rubric item attribute, we include support for several
operators. We use the || operator to denote multiple options for
code fragments that the student submission can match in order to
receive credit for the rubric item. The ordering matters: the options
are tested in the left-to-right order given in the �rst item attribute,
and if a particular Python fragment is matched, the evaluation short
circuits and no further options are tested. The rubric speci�cation
language also supports referencing truth values associated with
prior rubric items, using the ITEM_N_BOOL syntax to refer to rubric
item N (1-indexed). That is to say, for a given submission, if the
�rst rubric item is satis�ed, ITEM_1_BOOL would evaluate to true.
Furthermore, these truth values can be combined using boolean
logic operators (_AND and _OR), such as in Line 6 of Listing 8. These
boolean logic operators are useful in the event that the grader wants
to de�ne a rubric item dependent on truth values of other rubric
items.

Regarding the second parameter of the second item attribute,
the mode, four modes are supported. Mode.EXACT declares that
the rubric code fragment, verbatim, must exactly match the stu-
dent code fragment; Mode.CONTAIN declares that the rubric code
fragment, verbatim, should be contained within the student code
fragment; Mode.PARTIAL declares that the rubric code fragment
should be contained within the student code fragment (up to equiv-
alence); and Mode.EQUIV (the most common mode) declares that
the rubric code fragment should be equivalent to the student code
fragment, which the SMT solver can hopefully verify. If the sec-
ond parameter is left out, the mode is inferred: if the compiler
from the previous subsection can handle the rubric code fragment,
Mode.EQUIV is used by default; if not, Mode.CONTAIN is used.

4.3 Equivalence Checking
After the prior two phases are performed, we are left with Z3

statements of the form prove(r == s), where r denotes a rubric
code fragment and s denotes a student code fragment. Z3 evaluates
these statements, awarding credit according to each rubric item’s
truth value.

If the equivalence check passes for a rubric item, then a human
need not review it, because AutoRubric has produced a proof of
equivalence between the rubric and student code fragments. If the
equivalence check fails for a rubric item, the item must be manually
reviewed by a human to check that it is indeed false. This is because
AutoRubric does not provide a guarantee that the submission code
fragment is truly incorrect; it is possible that AutoRubric failed to
perform the veri�cation due to limitations of the implementation, or
the rubric item was under-speci�ed. At this point, when reviewing
submissions manually, alternative solutions can be �agged. An
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1 def sequence ( n , term ) :
2 t , k = 0 , 1
3 while k <= n :
4 m = 1
5 x = term ( k ) // 10
6 while m <= x :
7 m *= 10
8 t = t * m * 10 + term ( k )
9 k = k + 1
10 return t

Listing 2: Alternative solution for problem presented in Fig-
ure 1

rubric1:
- [�k <= n�, �Blank 1�, �Score 1.0�]
- [�term ( k ) // 10�, �Blank 2�, �Score 1.0�]
- [�while�, �Blank 3�, �Score 1.0�]
- [�m *= 10�, �Blank 4�, �Score 1.0�]
- [�t * m * 10 + term ( k )�, �Blank 5�, �Score 1.0�]

rubric2:
- [�k <= n�, �Blank 1�, �Score 1.0�]
- [�term ( k )�, �Blank 2�, �Score 1.0�]
- [�while�, �Blank 3�, �Score 1.0�]
- [�m *= 10�, �Blank 4�, �Score 1.0�]
- [�t * m + x�, �Blank 5�, �Score 1.0�]

Listing 3: Updated rubric for problem in Figure 1

example of a �agged alternative solution, for the problem in Figure
1, is shown in Listing 2.

In this alternative solution, the computation of m, representing
the number of digits needed to store the next concatenated term,
di�ers from the reference solution in Figure 1b in Lines 5 and 8.
Speci�cally, in the alternative solution, x is a factor of 10 below x
in Figure 1b, but the factor of 10 is ultimately included in Line 8.
After we convince ourselves this is an alternative solution, we can
add it to the set of reference solutions and re-synthesize a rubric,
presented in Listing 3, which can then be modi�ed as desired. In this
way, we may run AutoRubric iteratively till reaching a satisfactory
stopping point.

5 RESULTS
5.1 Performance on Real Student Programs

Weevaluate AutoRubric on actual student programs fromMidterm
1 of CS61A,3 an introductory computer science class at UC Berkeley,
from the Fall 2018 semester. From approximately 1800 students,
we selected a random subset of 500 students. For each of these
students, we used AutoRubric to autograde three midterm coding
problems, named rect, sequence, and repeat_digits,4 amounting
to 1500 programs in total. sequence was presented in Figure 1.
The templates for rect and repeat_digits are shown in Listings 4
and 5. This set of 1500 programs contains a number of syntactically
incorrect programs. 30, 60, and 43 programs were syntactically
incorrect for rect, sequence, and repeat_digits, respectively. Fur-
thermore, 6 and 1 programs caused our tool to crash or hang for
rect and repeat_digits, respectively. We believe these problematic
behaviors were caused by limitations of the Z3 SMT solver, which

3https://cs61a.org/
4https://cs61a.org/assets/pdfs/61a-fa18-mt1.pdf

Figure 3: rect
Predicted

True False

A
ct
ua
l True 1941 69

False 0 1702

Figure 4: sequence
Predicted

True False

A
ct
ua
l True 1661 90

False 0 889

Figure 5: repeat_digits
Predicted

True False

A
ct
ua
l True 1134 51

False 0 1551

Figure 6: aggregate
Predicted

True False

A
ct
ua
l True 4736 210

False 0 4142

Figure 7: Confusion matrices for rubric items for syntacti-
cally correct, unproblematic programs

occasionally is neither able to verify an equivalence nor produce a
counterexample for certain inputs. Our tool cannot handle these
programs, and so all these programs would need to be inspected
manually. We include these problematic programs in our �nal per-
formance results in order to accurately account for the amount of
labor that our tool would save.

In order to assess our tool, we required ground truth: we assumed
that the actual scores assigned by graders (after resolving all regrade
requests) were perfect. The actual rubrics for each of the three
problems, formatted on Gradescope [9], are presented in Figures 8, 9,
and 10. We transcribed each rubric as faithfully as possible, using
our rubric speci�cation language. The transcribed rubrics are shown
in Listings 6, 7, and 8, containing 8, 6, and 6 rubric items, respectively.
We than ran AutoRubric on the set of selected student programs.

We report AutoRubric’s performance on syntactically correct,
unproblematic programs, presenting a confusion matrix for the
rubric items for each problem in Figures 3, 4, and 5; we also present
a confusion matrix for the aggregate results in Figure 6. In this
grading setting, a true positive indicates that AutoRubric marked a
rubric item true that a grader also marked true.

The aggregate recall was 95.8%, and the aggregate precision was
100%. Note that the precision was 100%, since due to the nature
of the SMT solver, AutoRubric cannot mark a rubric item true
unless it can provide a proof of equivalence. Items that AutoRubric
marks true do not need to be reviewed by humans. Since there are
500*(8+8+6), or 11000, rubric items in total, and AutoRubric marks
4736 of them true, AutoRubric save about 43.1% of the total labor.
In practice, human graders would have to check the other 56.9% of
rubric items to determine if they are indeed false. This estimate is
conservative, since it does not take into account that certain rubric
item truth values are mutually exclusive (such as rubric items 1 and
2 in Listing 7.)

The total execution time for all 1500 programs was less than two
minutes.

AutoRubric produced false negatives due to limitations of the
current implementation. For example, for rect, some submissions
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included expressions involving �oating point numbers, and Au-
toRubric currently lack support for �oating point reasoning. Ad-
ditionally, AutoRubric cannot handle uninterpreted functions and
unusual expressions that are not included in the rubric. Iterating on
the rubric as alternative solutions are �agged, as presented earlier,
would improve performance. Also mentioned earlier, AutoRubric
lacks support for certain Python language features like lambda
expressions.

5.2 Rubric Transcription Discrepancies
Note that the rubrics were not transcribed perfectly.
For rect, we adapted expressions from the original rubric items

4 and 5. Speci�cally, we used the expressions
other == round(area / side) and
other == round (perimeter / 2 - side) in place of
area / side == round(area / side) and
perimeter /2 - side == round (perimeter / 2 - side), re-
spectively. We made these substitutions, because presently Au-
toRubric is unable to reason about transitive relationships between
variables. Furthermore, for rubric item 5, we included the expres-
sion 2*(side+other) == perimeter, since this was in the origi-
nal exam reference solution. We also omitted a rubric item “Fully
correct solution even though other is used in an unexpected way”,
not shown in Figure 8, that was applied very rarely (to 4 out of
approximately 1800 submissions), because it did not have a clear
de�nition we could transcribe.

For sequence, there was a very uncommonly used rubric item
“[Minor error] o� by one digit”, not shown in Figure 9, which was
applied to 41 out of approximately 1800 exam submissions. This
item could not be localized to any particular set of blanks, so we
did not transcribe it.

For repeat_digits, we did not transcribe the expressions involv-
ing lambda expressions from the �rst rubric item, since AutoRubric
does not yet support lambda expressions.

Finally, we did not implement the “forbid” feature, which forbids
certain expressions from appearing, as in rubric item 4 for Figure 8
and rubric item 6 for Figure 9.

6 LIMITATIONS AND FUTUREWORK
We were motivated to build AutoRubric in order to improve the

exam grading process for an introductory class we teach: CS61A
at UC Berkeley. The main pragmatic barrier that prevents us from
deploying our system for a real exam grading setting is that the
program transcription phase of our system is manually intensive
and time-consuming. In future work, in order to alleviate this labor,
we hope to invest in developing an optical character recognition
(OCR) system to automate the transcription process from scanned
handwritten programs into actual programs, possibly incorporating
a syntax correction module from prior work such as [1, 5, 6]. An
alternative, avoiding the OCR system, is to have students take exams
electronically; one such system is BlueBook [8].

We hope to further extend our source-to-source compiler from
Python to Z3, as well as our rubric speci�cation language. It should
be possible to easily implement features like transitive reasoning
and support for other Python expressions like lambda expressions.

We are interested in running user studies in order to observe how
graders use AutoRubric in a real-time grading setting. In particular,
we are interested in how graders would iteratively update the rubric.

In this work, we focused on template-based coding questions,
mainly because they are the format for coding questions for CS61A
at UC Berkeley. In future work, we are interested in considering
how to extend our system to grade programs with more variable
structure.

7 DISCUSSION
In this paper, we presented the AutoRubric system for autograd-

ing template-based exam programs. It employs the Z3 SMT solver
to verify equivalences regarding program fragments of interest.
We built a source-to-source compiler from Python to Z3 in order
to facilitate the Z3 theorem proving process. We also designed a
rubric speci�cation language that makes it convenient to specify
and modify rubrics. We have evaluated AutoRubric on 1500 real
student programs, demonstrating that it can automate 43.1% of the
grading e�ort and achieve 95.8% recall and 100% precision, while ex-
ecuting in less than two minutes. Our results show that AutoRubric
is e�ective and fast, and we believe that AutoRubric can provide
a basis for autograding template-based programs to thousands of
students.
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1 def rect(area, perimeter):
2 ���Return the longest side of a rectangle with area and perimeter

that has integer sides.
3
4 >>> rect(10, 14) # A 2 x 5 rectangle
5 5
6 >>> rect(5, 12) # A 1 x 5 rectangle
7 5
8 >>> rect(25, 20) # A 5 x 5 rectangle
9 5
10 >>> rect(25, 25) # A 2.5 x 10 rectangle doesn�t count because

sides are not integers
11 False
12 >>> rect(25, 29) # A 2 x 12.5 rectangle doesn�t count because

sides are not integers
13 False
14 >>> rect(100, 50) # A 5 x 20 rectangle
15 20
16 ���
17 side = 1
18 while side * side _____________ area:
19 other = round(_____________)
20 if _____________:
21 _____________
22 side = side + 1
23 return False

Listing 4: Template for rect

1 def repeat_digits(n):
2 ���Print the repeated digits of non-negative integer n.
3
4 >>> repeat_digits(581002821)
5 2
6 0
7 1
8 8
9 ���
10
11 f = _____________
12
13 while n:
14
15 f, n = _____________, _____________

Listing 5: Template for repeat_digits



J. Cai et al.

1 rubric1:
2 - [�<=�, �Blank 1, Mode.EXACT�, �Score 1.0�]
3 - [�<�, �Blank 1, Mode.EXACT�, �Score 0.5�]
4 - [�( perimeter / 2 ) - side || area / side�, �Blank 2�, �Score 0.5�]
5 - [�side * other == area || other == round(area / side) || area % side == 0�, �Blank 3, Mode.PARTIAL�, �Score 1.0�]
6 - [�side + other == perimeter / 2 || other == round ( perimeter / 2 - side) || 2*(side+other) == perimeter�, �Blank 3, Mode.PARTIAL�, �Score

1.0�]
7 - [�and�, �Blank 3, Mode.CONTAIN�, �Score 0.5�]
8 - [�return other || return max(side, other) || return max(other, side)�, �Blank 4�, �Score 1.0�]
9 - [�return side�, �Blank 4�, �Score 0.5�]

Listing 6: Transcribed rubric for rect

1 rubric1:
2 - [�k <= n�, �Blank 1�, �Score 1.0�]
3 - [�k < n�, �Blank 1�, �Score 0.5�]
4 - [�term ( k )�, �Blank 2�, �Score 1.0�]
5 - [�while�, �Blank 3�, �Score 1.0�]
6 - [�m *= 10�, �Blank 4�, �Score 1.0�]
7 - [�t * m + x || t*m +term(k)�, �Blank 5�, �Score 1.0�]

Listing 7: Transcribed rubric for sequence

1 rubric1:
2 - [�repeat || repeat(-1)�, �Blank 1�, �Score 1.0�]
3 - [�repeat( n % 10 )�, �Blank 1�, �Score 1.0�]
4 - [�f( n % 10 )�, �Blank 2�, �Score 0.5�]
5 - [�f((n // 10) % 10)�, �Blank 2�, �Score 0.5�]
6 - [�( ITEM_1_BOOL _AND ITEM_3_BOOL ) _OR ( ITEM_2_BOOL _AND ITEM_4_BOOL )�, �Multiple�, �Score 0.5�]
7 - [�n // 10�, �Blank 3�, �Score 1.0�]

Listing 8: Transcribed rubric for repeat_digits

Figure 8: Actual Gradescope rubric for rect

Figure 9: Actual Gradescope rubric for sequence
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Figure 10: Actual Gradescope rubric for repeat_digits


