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Abstract

Coded Hlumination for Multidimensional Quantitative Phase Imaging
by
Michael Chen
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley

Ted Van Duzer Associate Professor Laura Waller, Chair

Phase contrast microscopy reveals transparent objects under optical microscopes, and
has been widely used for biomedical imaging. Combining specially-designed optics and com-
putational post-processing of the raw acquisitions, quantitative phase imaging (QPI) can
convert qualitative phase contrast into physical quantities, such as optical phase delay or
refractive index (RI) of the object. A common way to achieve QPI is by creating interference
between the scattered light from the object and a reference wave, using coherent illumination.
However, the method suffers from low resolution and strong speckle noise, and it is difficult
to implement interferometry in off-the-shelf microscopes. In this work, we develop QPI
methods for commercial microscopes, with coded illumination. Using a programmable light
source (e.g. an LED array) that generates partially coherent illumination, many multidimen-
sional QPI techniques can be implemented on a commercially-available microscope without
the drawbacks mentioned above. First, differential phase contrast (DPC) microscopy using
wavelength-multiplexing is presented, which achieves real-time QPI up to the incoherent
resolution limit. Second, quantitative phase and system aberrations are simultaneously en-
coded in the measurements by alternating between spatially coherent and spatially partial
coherent illumination. Absorption and phase of the object, as well as the spatially varying
aberrations, can then be resolved computationally. Third, a through-focus DPC microscopy
is proposed in order to extend QPI to 3D. The 3D RI of the object is recovered after per-
forming a 3D deconvolution. Finally, most of the existing 3D QPI methods, including 3D
DPC, work under the weakly scattering assumption. Hence, they fail to reconstruct accurate
RI when multiply scattered light dominates in the captured data. To mitigate artifacts and
obtain accurate information of multiple-scattering objects, a new light scattering model is
introduced along with an algorithm that solves the non-linear phase retrieval problem. The
multiple-scattering model outperforms the traditional weakly scattering models while requir-
ing similar computation cost. As a result, high resolution Giga-voxel 3D phase imaging with
multiple-scattering objects is achieved.
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Chapter 1

Introduction

1.1 Optical Microscopy

Optical microscopes have been used for centuries to explore features at resolutions near the
wavelength of the light scattered by the objects. Nowadays, people rely on these tools in
many applications, such as wafer metrology and inspection in semiconductor industry, phase
contrast and fluorescence microscopy for biological research, and diseases diagnosis with his-
tology. Due to the diffraction of light and the finite wavelength (hundreds of nanometers),
optical microscopy has limited contrast, resolution and depth-of-field (DoF'), which prevent
us from directly perceiving complete information of the sample. However, it is possible
to manipulate the contrast, break the diffraction limit and achieve multidimensional imag-
ing by modifying the imaging system and digitally processing the acquired measurements.
By adding a phase mask or installing polarization optics, Zernike phase contrast (PhC) [1]
and differential interference contrast (DIC) [2] microscopy convert the phase delay into in-
tensity contrast, which is extremely useful when imaging transparent objects. To resolve
features smaller than the diffraction limit, super-resolution fluorescence imaging techniques
(i.e. PALM [3, 4], STORM [5], and SIM [6]) recover high frequency content of targeted
objects via image processing. Light field microscopy [7] uses a microlens array to encode
light signal outside the original DoF, and achieves 3D imaging computationally from single
2D capture. The above examples show how computational imaging, the image restoration
framework that jointly designs the optics and post-processing algorithms, enables applica-
tions that couldn’t be realized by tweaking hardware or software alone. Sharing the same
spirit, this dissertation provides several practical computational microscopy methods to re-
veal multidimensional quantitative phase information of broad types of objects.

Although the quality of optical components have drastically improved over time, due
to improved materials and optical designs, the basic design of microscope systems remains
similar to the original, as shown in Fig. 1.1. An optical microscope consists of a light
source, illumination path, objective lens, and magnifying optical system, in that order. This
generic design is a natural result of the physics of light scattering and wave propagation. In
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order to further improve the image quality or enable new capabilities on a microscope, it is
important to understand the theory behind the image formation process. In the following sub-
sections, we separate the imaging process into two parts: interactions with the sample (light
scattering), and imaging system components. We describe mathematically the propagation of
light from the source, through the sample, to the image plane at the end of the microscope.
This work focuses on partially coherent imaging, which uses a different image formation
model than incoherent imaging (e.g. fluorescence microscopy).

1Light

" il
Eyepiece i’”‘..
“ __ Condenser
A
i *  objective
\. Objective Lens”
Lens | |
! — —
& :_} g

Figure 1.1:  Evolution of optical microscopes since 1600s. (Left) Robert Hook’s micro-
scope [8]. (Right) Modern ZEISS Axio Observer 3 inverted microscope.

Light scattering

When light encounters change of refractive index (RI) in space, diffraction and reflection
phenomena result in light scattering from its original propagation direction. The physical
model of light scattering below helps us understand how light interact with an arbitrary 3D
object. Based on scalar wave theory, any coherent steady-state electromagnetic field obeys
the Helmholtz equation [9]. In an environment with uniform background RI, propagation of
the incident field (Uj,) in free-space is described by a homogeneous Helmholtz equation:

VUi, (7) + k2niUi(r) = 0, (1.1)

where V2 is the Laplacian operator, r represents the 3D spatial coordinates, k, = 27” is the
wave number, \ is the wavelength of the incident field, and ny, is a constant background RI
of the homogeneous medium distributed in the 3D space. When there exists an object with
spatially-varying RI, n(r), as shown in Fig. 1.2, perturbation of the incident field within the
object causes scattered light in all direction and the total complex field, Uiy, in 3D satisfies
the following equation:

VUi (7) + k2n? (1) Uses () = 0. (1.2)

To solve this differential equation, we move the second term in Eq. (1.2) to the right hand
side of the equation, add a common term, k2n?U,,, on both sides, and subtract Eq. (1.1).
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3D Object / Homogeneous Medium
™ bp
> > >
Np
l>

~

Incident Field=— Scattered Field —

Figure 1.2: Tllustration of 3D light scattering. Light is scattered in all directions by an
object with an inhomogeneous refractive index (RI) distribution.

As a result, the reorganized formula becomes an inhomogeneous Helmholtz equation:
VPUscat (1) + k2niUscar (1) = V(1) Upor (1), (1.3)

where U,.,; denotes the field scattered by the object under the coherent incident field and
V = k2 (n} — n?) is the scattering potential. From Eq. (1.3), the product of scattering po-
tential and total field serve as multiple coherent contrast sources that emit the scattered field
from the object. Each point source generates a spherical wave, G(r) = —e*oml"llz /(47|17 ||,),
which is the solution (Green’s function) to a special inhomogeneous Helmholtz equation:

V2G(r) + k2niG(r) = é(r). (1.4)

Therefore, the convolution result between those contrast sources and the Green’s function
gives rise to the scattered field. With the definitions of 3D convolution operator ®3p, the
total field can be written as the solution of the Lippmann-Schwinger equation [10]:

Uin(r) = Un(r) + Usear(r) = Unn(7) + G(r) @3 (V(r)Uiaa (7)) (L.5)

In consequence, the time-independent total field is an interference result between the incident
field and the scattered field, and it is non-linearly related to the 3D object represented by
the scattering potential. If the incident field is composed of multiple mutually temporally
or spatially incoherent modes, applying Eq. (1.5) on each mode independently extends the
light scattering model to the partially coherent regime.

Several weakly scattering assumptions can be made to construct linear relationships
between the scattering potential and measurable properties of the total field. For example,
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simplified light scattering models have been derived based on the 1% Born (single scattering)
and Rytov (smoothly varying phase) approximations [11]:

UL (r) = U (r) + G(r) @4p (V(r)Un(r)), and (1.6)

(1) = G(r) @ap (V(r)Uin(r)) (17)

where ®[" is the complex phase, Uy, In(UN' /Uy,). Although weakly scattering mod-
els make the inverse problems (Sec. 1.3) more tractable, they fail to provide an accurate
scattered field when imaging multiple-scattering objects. In this work, we aim to efficiently
account for the multiple-scattering effects while retaining computational efficiency, by adopt-
ing scattering models for scenarios between Eq. (1.5) and Eq. (1.6). Detailed discussion and
implementation can be found in Chapter 5.

Optical microscope imaging system model

Optical microscopes include two composite convex lenses (the objective lens and the tube
lens) and a pupil aperture. The two lenses are separated by a distance that equals the sum
of their focal lengths. In consequence, a 4f imaging condition is satisfied between the front
focal plane (FFP) of the objective lens and the back focal plane (BFP) of the tube lens,
where FFP (or BFP) is the plane one focal length in front of (or behind) the lens. With
a pupil between the lenses, the imaging system magnifies the object field and achieves a
spatially-invariant resolution across the field-of-view (FoV), as shown in Fig. 1.3.

To analyze the magnification and resolution analytically, Fourier optics can be applied.
A convex lens optically generates the 2D spatial Fourier transform of the complex field at
FFP and projects the output on the BFP [9]. Mathematically, the transformation can be
written as [12]:

.2
Ugrp(pprp) ~ X/ UFFP(PFFP)eilTR’prFP-pFFszpFFP = X-F{UFFP(pFFP)}‘u:"bi%a

(1.8)
where Ugpp and Ugpp are coherent complex fields at the FFP and BFP, respectively. pppp
and pprp are 2D spatial coordinates at the FFP and BFP, respectively. F{-} denotes Fourier
transform operator, w is 2D spatial frequency coordinate, y is a complex scalar, and R is the
radial propagating distance from the FFP of the objective lens (or tube lens) to the objective
lens (or tube lens). Note that the spatial frequency spectrum of the input field is mapped
to the scaled spatial coordinates at the objective’s BFP with a scaling factor ?I—R‘

When imaging an object under the microscope, non-evanescent forward scattering com-
ponents [9, 11], Ugpject, of the total field in Eq. (1.5) propagates through the microscope
and forms the imaged field, Uypage. Using Eq. (1.8), the 4f system equivalently performs a
Fourier transform twice on the object field with a low-pass filter determined by the pupil, P.
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pobject ppupil pimage
Objective Lens Tube Lens A
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R/ %
- £\ ____. I D Field of View
Object Field I
Imaged Field v
fi fi f2 f2

Figure 1.3: Imaging system of an microscope is known as a magnifying 4 f system, composed
of an objective lens, a pupil aperture, and a tube lens. f; and f5 are the focal lengths of the
two lenses, respectively. Axes of coordinates at each plane are shown on top.

Neglecting the constant, x, the optical imaging process is expressed as the following:

—Ry

Uimage (pirnage> - Uimage ( R2

povgct) = F{P(opun) F{Ugce(Popiee)} - (19)

Since the pupil has a finite diameter, D, the cut-off frequency of the imaging system is

2”/{’51 Replacing 22 with ny,sind (the numerlcal aperture (NA) of the objective lens), the
diffraction- hmlted resolutlon of the microscope with coherent illumination becomes x A)\b‘
obj

(i.e. Abbe’s resolution limit [13]). It is possible to maintain the quantitative information
of the object while improving the resolution beyond this limit by using partially coherent
illumination, followed by digital signal processing on the acquired images (see Sections 1.2
and 1.3). Meanwhile, the magnification of the microscope is ~ _f—]lc?, which only depends
on the ratio between the two focal lengths. To defocus the microscope, the objective lens
is moved toward or away from the object. Assuming that the defocus distance is Af, the
relationship between the imaged field and the defocused imaged field obeys the Angular

Spectrum propagation [9]:
27 \/ —b —|lw
l]image(pimage;Af) = { el A ” |2~F{Ulmage plmag€70)}}' (110)

Conceptually, we can treat defocus as introducing a specific radially-symmetric phase
aberration at the pupil plane (spatial frequency domain). More discussion about system
aberrations is in Chapter 3. With the basic knowledge of light scattering and the imaging
system mentioned above, we are ready to explore quantitative phase imaging (QPI).
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1.2 Quantitative Phase Imaging

Standard optical microscopes use incoherent illumination (e.g. LEDs or halogen lamps) for
better spatial resolution, higher light throughput and reduction of speckle artifacts, as com-
pared to coherent illumination (e.g. lasers). However, the human visual system and optical
sensors have integration time much longer than the oscillation frequency of light, which is
slightly below 1 petahertz in the visible spectrum. Hence, only absorption information is
directly visible under conventional illumination settings, not phase, which is a critical draw-
back for imaging transparent samples such as biological cells. Many imaging techniques have
been proposed to visualize the phase delay of light as it passes through a transparent sample.
PhC and DIC render phase effects visible; however, a single image is not quantitative, cannot
separate absorption and phase effects, and does not provide physical information about the
sample. In contrast to qualitative phase imaging methods, quantitative phase imaging (QPT)
methods recover the phase delay caused by the sample, decoupled from absorption.

2D QPI

Since only the energy of photons can be directly measured and the oscillation frequency
of visible light is much higher than the integration time of state-of-the-art image sensors,
what we have access to from the sensor is the time-averaged power or intensity. Hence,
phase information is either eliminated or coupled with the absorption of the object. There
are many methods computationally recover the complex field from intensity measurements;
here, we review several common approaches to realize QPI.

Phase-Shifting Interferometry

To extract the phase of the imaged field, Ujpage in Eq. (1.9), interferometric methods may
add a known reference field, U,er. Decoupling the real values amplitude (A) and phase (¢)
in the complex field, i.e. U = Ae'?, the phase contrast is reflected on the captured intensity,
I, as expressed below:

|Uref(p) + Uimage(p)|2
‘[]ref(p)‘2 + |l]image(p)‘2 + r*ef(p)Uimage(p) + Uref(p)(]itnage<p) (111)

= Ali(p) + Al (p) + 2Aref(p)Aimage(p)COS(¢image(p) — ¢ref(p)>,

I(p) =

where * is the complex conjugate operation. Assuming that the reference field is an on-axis
plane wave that has constant amplitude, A, = A.cr, and constant phase, @ref = @rer, ACrOSS
the FoV, the amplitude and phase of the imaged field can be recovered analytically. Based
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on Eq. (1.11), phase retrieval is accomplished via the following formulae:

\/IO(P) + In(p) — 24%;

Aimage (P ) =

, and
(1.12)

I:(p) _I?’;(P)>
Io(p) — I.(p) /’

where 4 intensity images, I, ., are captured with the phase of the reference field, ¢ €
0,%,m, 37”] Although it looks trivial from math to perform the phase-shifting interferom-
etry [14], the system is physically challenging to build. The incident field passing through
the object and the reference field need to be generated from the same quasi-monochromatic
source in order to observe interference effect. Since the light source has relatively long coher-
ence length, unwanted scattering along the beam path creates speckle noise. In addition, a
precise piezoelectric mirror or spatial light modulator is required to achieve sub-wavelength

phase stepping.

¢irrlage(p) = tan_l(

Off-Axis Interferometry

When an off-axis plane wave, i.e. U, = A2 P is used as the reference field, the
Fourier transform of the measured intensity can be derived using the convolution and cross-
correlation properties. And the spatial frequency spectrum of intensity in Eq. (1.11) becomes:

f(u) = Afefé(u) + ffimage(u) * ffimage(u) + ffimage *O (U — Uper) + U* % O(u—+ ). (1.13)

image

Here, & = F{x} represents the Fourier transform of z, x is the cross-correlation operator.
The first two terms in Eq. (1.13) are not modulated by the reference field while the spectra
of Ujmage and image 1€ shifted in opposite directions due to the modulation. In Sec. 1.1, it
is observed that the spatial frequency of the imaged field is band-limited due to the finite
aperture size at pupil plane and the Nyquist spatial frequency at the image plane is %.
This implies that all the terms in Eq. (1.13) are also band-limited. If the angle of the oblique
incident field is large enough, individual term can be separated in Fourier space without
overlapping with each other. Hence, digitally demodulating the interference intensity with
the reference field and applying a low-pass filter to the spectrum results in the complex
imaged field. Mathematically, when ||u¢||3 > W, the phase retrieval operations using

off-axis interferometry [15] is equivalent to the following expression:

Uinge(p) = FH{ P* (W) F{Uses(p)I(p)} } /A% (1.14)

While the technique allows us to reconstruct the amplitude and phase from single intensity
capture and enables high temporal resolution QPI, it sacrifices the FoV from dense image
sampling to prevent spectrum overlapping. Besides, off-axis interferometry shares the same
drawbacks as mentioned in Sec 1.2.
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Transport of Intensity Equation (TIE)

Phase information also appears in intensity measurements when the imaged field is defocused.
The Transport of Intensity Equation (TIE) [16] describes how intensity changes through-
focus with relation to the phase of the complex-field:

o 1(p.2) =~V T (p,2)V pDinese (9. 2), (1.15)
where V, is the 2D gradient operator over p, and z is the axial dimension perpendicular
to p. With intensity measurements at multiple focus positions, the phase is recovered by
solving the second-order differential equation [17, 18|. Unlike the interference methods above,
Eq. 1.15 is robust under temporally partial coherent illumination, which helps reduce speckle
noise and eliminate interference between the object and undesired scattered field due to
system imperfectness. However, using spatially coherent illumination still limits the spatial
resolution below £ A/\obj' Alternatively, many 2D QPI techniques have been proposed to use
spatially partial coherent illumination and manipulate the dispersion of the light source or the
aberrations at the pupil plane to retrieve quantitative phase with higher resolution [19, 20,
21, 22, 23, 24]. Although some of these methods work well, they require expensive hardware
and precise alignment, which makes them hard to implement on common microscopes.

Fourier Ptychographic Microscopy (FPM)

Fourier Ptychographic Microscopy (FPM) [25] achieves high resolution QPI with illumina-
tion coding, requiring no moving parts. In addition, system calibration was easily done
computationally [26, 27], which makes it easier to apply to off-the-shelf imaging systems. By
scanning the angles of incidence on-axis to off-axis and recording the corresponding intensi-
ties, different spatial frequency content of the object field is encoded in each measurement.
Mathematically, the forward imaging model from the object plane to the image plane is
similar to Eq. (1.9) except for an additional phase modulation from the illumination field,
ei2mUilu-p.

Lp,un) = |7~ { P) (e Uypsea(p)}} | (1.16)

Unlike the interferometry cases, the frequency spectrum of the complex field is always over-
lapped with itself in the spectrum of intensity without a reference field. As a result, there is
no analytic solution for phase using FPM. In order to perform phase retrieval, the complex
field is found iteratively by solving a non-linear optimization problem (see Sec. 1.3). Once
the phase of each measurement is resolved, the imaged fields are demodulated and stitched to-
gether in the spatial frequency domain. The final resolution attainable is m, where
NAilw = My max is the NA corresponds to the most oblique illumination. While FPM
has benefits of high resolution, long DoF, and wide FoV due to use of a low magnification
objective lens, it requires many measurements for single phase image reconstruction, which
limits the temporal resolution [28].
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Differential Phase Contrast (DPC)

Differential Phase Contrast (DPC) [29, 30, 31, 32] is another partially coherent QPI tech-
nique that uses asymmetric illumination to shift the sample’s spectrum in Fourier space,
revealing linear phase information in a weakly scattering object. While raw DPC measure-
ments provide phase contrast which is similar to DIC contrast, the DPC method provides
a linearization of the image formation model which can be inverted using a single-step de-
convolution process (see Sec. 1.3) [30, 32, 33]. Based on Rytov weakly scattering object
assumption, the forward model of DPC is derived in Appendix A.1.

Source Intensity Absorption/Phase Transfer Functions Object

sTop

SRight

SBottom '$ Bottom Hu,Bottom

- o

Figure 1.4: Under weakly scattering assumption, a linear relationship between DPC inten-
sity and object’s absorption and phase. The forward model of DPC QPI can be visualized
as matrix-vector multiplication.

The spatial frequency spectrum of DPC intensities can be written as:

L(u) = Hy(u)p(u) + iHy(u)d(u), (1.17)

where I, is the normalized intensity, u and ¢ are the absorption and phase of the object,
and H, and H, are the transfer functions for absorption and phase that can be calculated
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using the source shape, S, and the pupil function, P, in spatial frequency coordinates:

(1.18)

Figure 1.4 illustrates the linear imaging model. With as few as 3 DPC intensity mea-
surements using different source patterns (e.g. top, right, bottom half-circles), DPC QPI
recovers both absorption and phase with resolution up to the incoherent resolution limit, 7.e.
m. In Chapter 2 and 3, we explore a single-shot real-time DPC method via wavelength
multiplexing, and an algorithm to digitally calibrate the spatially-varying system aberrations
from images under both spatially coherent and DPC illuminations.

3D QPI

When the sample is thicker than the microscope’s DoF, we require 3D imaging methods. 2D
phase measures integrated optical path delay through the sample, so RI and thickness are
coupled. This ambiguity between shape and index is naturally removed in 3D QPI, which re-
covers the 3D RI distribution. Traditionally, 3D phase imaging is achieved tomographically
by capturing 2D projections at many angles [34, 35, 36]. In some cases, a ray-based model is
sufficient, e.g. low resolution X-ray tomography([34, 37, 38]. However, as diffraction effects
become prominent in optical microscopy, a diffraction tomography model [35, 39] is needed.
Generally, this assumes knowledge of the complex-field at each angle, requiring a two-step
reconstruction: 2D phase retrieval using methods mentioned in Sec. 1.2, followed by tomog-
raphy to recover 3D RI. As in the 2D case, a linear relationship between the 3D scattering
potential and measured fields can be developed based on the weakly scattering assumption.
The 1% Born and Rytov models in Eq. (1.6) and (1.7) have a common convolution term, and
the Fourier transform of the term is:

F{G(p.2) @up (V(p.2)Uun(p,2)) } = Glum) (V(wm) @20 Un(wm)),  (1.19)

where 7 is the axial spatial frequency coordinate. Similar to the 2D case, the spatial frequency
spectrum of the scattering potential experiences a shift when the object is illuminated using
plane waves. Let Up,(p, z) = ¢27(®inPtm2) he the incident field, where |luy,|? + 7?2 = ;‘—E»
The shifted spectrum can be expressed as:

V(“’a 77) ®3D ﬁin(ua 77) = V(’U; — Win, 1) — nin)- (120)
To further simplify Eq. (1.19), we can use the Fourier representation of the Green’s function:

127r| T (w)

47rI‘( T (1.21)

’LLZ / Gp, 127rup)d2p_
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where T'(u) = /(n,/))? — ||ul|3. If a transmission microscope is considered, where only
the field between the object and the objective lens is captured, i.e. |z| = z, the 3D Fourier
transform of G' becomes:

~ _ —i6(n —T'(u))

G = 1.22
As a result, the Green’s function kernel effectively samples on a 2D hemisphere, known
as the Ewald sphere [11, 40] of radius %, in the 3D shifted spectrum of scattering poten-

tial. Due to the limited pupil size, the imaged field only retains part of the information
on the Ewald sphere after the scattered field propagates through the microscope. From
Eq. (1.6), (1.7), (1.9) and (1.19)—(1.22), the 2D QPI result is related to the 3D object under
the weakly scattering assumption in the following way:

—iP(u)V(u — iy, I'(u) — F(Uin))'

~T1stBorn ‘i)_Rytov _

scat,image image

(1.23)

Figure 1.5 visualizes the above relationship between the spatial frequency spectra of the
weakly-scattered fields and the object. Only a portion of the scattered light marked by solid
lines on the Ewald spheres can be measured at the image plane due to the finite NA of the
objective lens. By scanning the illumination angles, different parts of the spatial frequency
spectrum are recovered. As a result, the highest lateral resolution achieves A\/(2NA.y;) as

1 = 0, and the highest axial resolution becomes A/(n,—/n? — NAZ ) when |Ju||z = NAgy;/A.

After phase retrieval, a 3D inverse Fourier transform reveals the scattering potential in real
space. Finally, the computations below convert V' into 3D RI:

Uscat \\\ n /'/
\ A /7
V \\ /I 2NAobj
\ / 7
j:‘{} N NAobj
NI IV A
N7
u

vV G A —>

A Q)
U' / AN
L p In ’ \

Figure 1.5: Weakly scattering models map the information of the scattered fields using
different plane wave illuminations onto different spheres in the 3D spatial frequency spectrum
of the object. Combining all possible angles of incidence within the NA of the objective lens,
the measurable region (colored in green) forms a donut shape in Fourier space.
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Mﬂ_¢@—wwW@+¢m@wmmmw+wywmg

2 (1.24)

i¢%wW%—@+W%—%wW@LHﬁMM§
g ,

where Vg, and Vi, are the real and imaginary parts of V', respectively. This builds the
foundation of Optical Diffraction Tomography (ODT) and enables many bio-imaging appli-
cations [Chowdhury2017:SI3DODT, 35, 41]. However, an area indicated by the cone
angle © around the origin in object’s spectrum is missing, which causes anisotropic resolu-
tion and distorted shape in the final reconstruction. In addition, the 2D phase projection
reconstructions may contain artifacts that propagate to the 3D reconstruction. Global re-
construction methods that relate all the measurements to the final estimate, without an
intermediate 2D phase retrieval step, can be more robust to experimental errors [42, 43].
In Chapter 4, quantitative DPC microscopy is extended to 3D, which eliminates the need
of interferometry. With a proposed 3D deconvolution algorithm, the RI of thick objects is
directly reconstructed from through-focus intensity measurements. At the same time, prior
knowledge of the objects is enforced in the algorithm to mitigate the missing cone artifacts.
On the other hand, multiple-scattering phenomenon occurs when RI contrast of the object
increases, and breaks the linear model in Eq. (1.23). To tackle this problem, an efficient and
accurate multiple-scattering 3D QPI method with intensity-only measurements is proposed
in Chapter 5 and compared against the other weakly and multiple-scattering models.

1.3 Phase Retrieval by Solving Inverse Problems

Although the forward model varies in Sec. 1.2 among different QPI methods, all of them
can potentially be solved by the same algorithm. This is due to the fact that phase retrieval
essentially solves an inverse problem, given the data acquired at the image plane. Hence, all
post-processing computations in QPI can be posed as trying to find the optimal solution of
the following type of optimization problem and objective function:

M 2
0 = argmin Y HIm—Hm(o)HerR(o). (1.25)
o m=1

Here, the total number of measurements is M, each of the captured intensity images is de-
noted as I,,,, o is the 2D complex field or 3D RI of the object, and H,, represents a known
forward model for specific QPI method. The /5 norm in the objective function, or data
fidelity term, measures the difference between the noisy measurements and the predictions
based on the estimated object. Therefore, a solution is found after the minimization process.
Often, the inverse problem is ill-posed because of low Signal-to-Noise Ratio (SNR) and lack
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of information. In those cases, we can incorporate a regularization term R, which imposes
a priori: knowledge about the object to mitigate reconstruction artifacts. In addition, more
than one variable can be optimized in Eq. (4.11) to improve the phase retrieval results. For
example, it is possible to computationally correct errors in system alignments and image
aberrations from the imperfect measurements [26, 27]. In Chapter 3, a self-calibration algo-
rithm with 4 DPC measurements is achieved using a similar idea. A few common algorithms
for solving such optimization problems are reviewed below and used in the Chapter 2-5.

Least-Squares method

When the forward model is linear with an ¢; or Tikhonov regularization, i.e. R(0) = 7,]||0||3,
there exists an analytic solution in Eq. (4.11). For instance, with regularization parameters
7, and 7, for absorption and phase, the quantitative DPC forward model in Eq. (1.17) turns
Eq. (4.11) into:

W = I... — H,f (,-ZL (1.26)
which leads to a global optimal solution using the least-squares method [32, 33]:
(Sl +20) S (B = 5 (FpuFon) S (3 Fo)
l],* — m m m m , (1.27>
(Sl 30 (Sl 400 ) = (B F23,.) S (8

o (Sl 30 3 (B o) = (FnF13,) 5 (2 o) (128
- <%j |H,, |2 + %) (%; |H )2 + 7¢> - %} <ﬁu,mﬂ<§,m> %; <ﬁﬁ,mﬁ¢,m> o

Since no iteration is involved and the Fourier transform operations are efficiently computed
with the Fast Fourier Transform (FFT), solutions using Eq. 1.27 and 1.28 are suitable for
real-time applications. However, this simple regularization method works only when SNR
is high and it is not robust to situations where some absorption and phase information are
missing in the measurements.

Alternating Direction Method of Multipliers (ADMM)

For 3D QPI on conventional optical microscopes, only a limited range of angles pass through
the optical system, set by the NA, which results in anisotropic resolution in the axial dimen-
sion. Direct 3D phase retrieval with Tikhonov regularization causes artifacts from high-
frequency noise and underestimated halo effects (see Chapter 4). A priori knowledge of the
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sample can be incorporated to achieve realistic 3D reconstructions. For example, we can
control the background RI surrounding the object such that n;, < n(r) or n, > n(r), Vr.
If the types of materials within the volume of interest is sparse, the object can be assumed
piece-wise smooth. In order to make adding priors straightforward, the inverse problem can
be formulated as a constrained optimization problem:

1 2
min §HA33 — bH + Za(z1) +7Hz2H , subject to [I* DTz = [2] 277, (1.29)
2 1

where A is a block-diagonal convolution matrix composed of transfer functions, « is the
vectorized scattering potential to be recovered, b is a vectorized concatenated 3D intensity
stack, I represents the identity matrix, D is discrete derivative matrix in all three dimensions,
T denotes matrix transpose and 7 is a regularization parameter. Here, two prior terms, Zq(21)
and ||zs]|1, are applied. Zg(z1) is either a positive or negative indicator function and ||zq|;
implements an anisotropic total variation (TV) regularizer.

Alternating Direction Method of Multipliers (ADMM) [44] provides an efficient way to
solve this non-smooth convex inverse problem. First, we need to find the augmented La-
grangian £ of Eq. (1.29),

p H T 1TIT T 117, Y

2T p _ L
1+2[ 'z — [z Z2]+ﬁ
which adds a quadratic function corresponding to the constraints with a tuning penalty
parameter, 5 > 0, and Lagrange multiplier, y. The ADMM form of the 3D deconvolution
problem can be written as the following iterative algorithm, containing alternating minimiza-
tion of the unconstrained £ followed by a dual update:

1 2 )
L:(CU,ZhZva) = §HAJ} —-b ) +ZQ(Z1) —|—T’ 7

Z9

(1.30)

2

Ty = arg min - L(x, 21k, Zo.k, Yi) (1.31a)
Z1gil = arngnin L(xki1, 21, Z2.k, Yk) (1.31b)
Zopi1 = argzinin L(Xk11, 21 6+1, 22, Yk) (1.31c)
Yrr1 = Yp + 0 ([IT DT]kaJrl - [le,k-i—l Z2T,k+1]T) ) (1.31d)

where £ indicates the iteration number, and z;, 220, and yy are set to 0 initially. Equa-
tion (1.31) is equivalent to the generalized LASSO problem [44] with a positive/negative
constraint. Hence, each sub-minimization can be solved efficiently, where (1.31a) finds a
pseudo-inverse solution of @, (1.31b) is the element-wise Euclidean norm projection onto
the set €2, and (1.31c) implements element-wise soft-thresholding with a threshold value %.
When the forward model is not linear or more constraints are added, the ADMM algorithm
needs more memory for storing the splitting variables and the Lagrange multiplier. Therefore,
alternative memory efficient algorithms are preferred, especially in 3D QPI.
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Proximal Gradient Descent Method

Unlike DPC microscopy, most of the forward models of 2D and 3D QPI methods are nonlinear.
Therefore, the least-squares algorithm does not apply and the memory requirement becomes
too high to make ADMM practical. The most generic algorithm for solving Eq. (4.11) is
then proximal gradient descent, which is also an iterative method. Assume the regularization
function R is non-smooth or non-differentiable, such as the TV norm. Each iteration of the
algorithm splits into two steps; In k" iteration, a gradient descent update with a step size
« is first performed using the Wirtinger derivative [45] of the data fidelity term, i.e.

ok — o —ai (m‘aLo(o))H(Hm(o) 1), (1.32)

where H represents Hermitian transpose. This process refines the estimation of the object
such that it ensures a better prediction of the intensity images. In order to account for the
regularization term, a proximal operator is applied to the updated object, in which another
optimization problem is solved:

1 2
! = prox_(0") = arg min 7R(z) + éHz - okH : (1.33)
zeN 2

Ok+

Here, the regularization parameter 7 is a constant adjusting the confidence level of the
imposed priors, and €2 constrains the bounds of potential solutions. And usually there exists
efficient computational methods to implement this proximal step [44, 46, 47]. By repeating
Eq. 1.32 and 1.33 several times, phase or RI values converge to a local minimum. Although
an initial guess using linear models, e.g. DPC QPI, can help reconstructions start close to
the global optimum [28], initialization with zero phase is often robust enough to find an
accurate solution as demonstrated in Chapter 5. Adopting Nesterov’s acceleration scheme
between the iterations, the convergence rate improves from sublinear result of O(1/k) to the
optimal result of O(1/k?) for first order methods. Combining proximal gradient descent and
Nesterov’s acceleration is also known as the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [48].

1.4 Coded Illumination Using an LED Array

In Sec. 1.2, we learn that it is possible to achieve 2D/3D QPI by purely controlling the
patterns of a light source [25, 32]. Most of these QPT methods share several benefits, includ-
ing high resolution compared to interferometry using coherent light, fast image acquisition
without moving parts, and high compatibility with off-the-shelf optical microscopy systems.

Since multiple measurements under various illumination settings are required to re-
cover quantitative phase, coded illumination techniques require a programmable light source.
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Figure 1.6: LED array microscope replaces conventional illumination path with a pro-
grammable LED array in a distance (zpgp) from the object plane. When the ratio between
FoV and the zpgp is small enough, each LED acts as a spatially coherent light source. And
simply switching the illumination patterns provide various kinds of image contrast, such as
brightfield, darkfield, DPC, and spatial coherent diffraction.

There are many devices that enable light manipulation, such as Galvo mirrors, Digital Mi-
cromirror Devices (DMD), and phase Spatial Light Modulators (SLM). However, the expen-
sive costs and bulky relay optics make them sub-optimal. In addition, limited tunable range
or small panel size prevents them from generating high angle oblique illuminations, which is
critical for reconstructing accurate and high resolution phase results, without adding another
4f system on top of the microscope. In the following Chapters, an LED array microscope in
Fig. 1.6 is used to serve as the active illumination device. It has been demonstrated that dif-
ferent image contrasts, including brightfield, darkfield, DPC, can be generated with coded
LED patterns without additional optics [49, 50]. By placing the planar array several em
away from the object plane on a Nikon TE300 inverted microscope, oblique illuminations up
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to 0.8NA or 53° can be produced in a compact system. Many QPI methods require spatially
coherent light sources to reveal phase contrast [16, 35, 51, 15], and forward models were
developed under Kohler illumination that decomposes the illumination into multiple mutu-
ally coherent or incoherent plane waves at the object plane for uniform contrast across the
FoV[25, 32, 52]. In order to adapt those QPI techniques, the arrangement of the LED array
should be carefully designed. A schematic of the illuminating module is drawn in Fig. 1.6,
where Dygp is the physical size of the LED and zpgp denotes the distance between the ob-
ject plane and the array. Each point on the LED emits a spherical wave that is incoherent
with others. Based on the Van Cittert—Zernike theorem [53, 54|, the far-field of a single
LED source is considered spatially coherent when each position in the FoV has a cone of
acceptance, ¥ ~ Dygp/zLEDp, smaller than A\/FoV. Given an LED with fixed size and central
wavelength as well as a specified FoV, the array distance should be adjusted as:

D FoV

In this work, each LED is about 300um wide and has a central wavelength of 0.514um,
and the FoV ranges from tens of um to over a hundred pm by using objective lenses with
various magnifications and an sCMOS camera (PCO.edge 5.5, 6.5um pixel size). Hence, the
LED array is placed 40 ~ 70mm away when spatial coherence is required. In addition, the
light propagates sufficiently far (compared to the FoV) that the wavefront close to the object
plane becomes flat like a plane wave. Thanks to fast switching electronics, source patterns
alternate within a small fraction of the exposure time, which enables camera-limited data
acquisition rates. All properties mentioned above imply that almost all QPI leveraging coded
illumination can be realized on the low-cost microscope.

1.5 Dissertation Outline

So far we have reviewed the basic knowledge of optical microscopy and underlying physics,
and introduced the LED array microscope that servers as a convenient platform to develop
novel QPI techniques using coded illumination. In the following chapters, detailed derivation,
discussion, analysis, and experimental results of the proposed multidimensional QPI methods
are presented. We will demonstrate that computational microscopy can be both practical
and powerful, hoping to attract more people to integrate QPI on their microscopes and push
science forward. From 2D phase imaging to 3D phase tomography, the rest of the thesis is
organized as follows:

o Chapter 2 implements DPC QPI with color-multiplexing for real-time multi-contrast
imaging. Most of the QPI methods, including conventional DPC, require multiple mea-
surements to achieve reliable phase retrieval. This sacrifices the temporal resolution,
which limits their applications in imaging moving objects. However, images formed
under different illumination patterns can be encoded and decoded simultaneously with
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an RGB LED array and a color camera. As a result, the proposed color-multiplexed
DPC provides camera-limited frame rate and minimizes motion blur.

o Chapter 3 shows an illumination design composing both spatially coherent and partially
coherent light, and develops an algorithm to jointly estimate absorption, phase and
system aberrations. Since only 4 measurements are required, temporal changes in
quantitative phase and pupil aberrations can be resolved. At the same time, spatially-
varying aberrations are calibrated by separately processing multiple regions within the
whole FoV.

o Chapter 4 demonstrates an intuitive way to gather 3D phase contrast using DPC for
3D RI recovery. When spatially partial coherent illumination is used, the DoF becomes
narrow and out-of-focus information cannot reach the image plane. By scanning foci
through the 3D object with DPC illuminations, 3D absorption and phase contrast
are captured. Based on a weakly scattering assumption, we derive a 3D linear for-
ward model and the corresponding deconvolution algorithm that reconstructs 3D RI
of various biological samples.

o Chapter 5 proposes an accurate and efficient 3D multiple-scattering model to image
an optically dense object. As phase contrast and thickness of the object increases, the
linear models used in previous chapters fail due to multiple-scattering effects. Hence,
a more rigorous light scattering model as well as the 3D phase tomography framework
are developed to achieve high-resolution large volume 3D QPI.

o Chapter 6 summarizes the contribution of this dissertation and lists a few potential
directions to improve 3D QPI with coded illumination.
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Chapter 2

Real-Time Quantitative Phase
Imaging with Color Multiplexing

2.1 Single-Shot DPC Quantitative Phase Imaging

Amongst the wide array of existing QPI methods, several are single-shot techniques. Off-axis
holography interferes the sample beam with a tilted reference beam, then recovers phase
by Fourier filtering [15]. Parallel phase-shifting can spatially multiplex several holograms
within a single exposure via an array of polarizers [55]. And single-shot QPI add-ons based
on amplitude gratings work with commercial microscopes, replacing the traditional camera
module [56, 57]. Another add-on option uses two cameras to capture defocused images
which can then be used to solve the TIE [58]. Alternatively, if chromatic aberrations are
large enough, they can enable single-shot color TIE [59] without any hardware changes. All
of these methods require the some spatial or temporal coherence, limiting resolution, but
provide camera-limited frame rates.

Our approach described in this chapter, termed color Differential Phase Contrast (cDPC),
requires only a single color image for multiplexing source patterns'. Three RGB source color
channels are used to display three different half-circle source patterns. This concept of color
multiplexing is similar to that used in photographic depth ranging [60]. A 4th image in
original DPC method [32] is not needed, since its information can be extracted by taking the
sum of two images acquired with opposite half-circle illuminations (a synthetic brightfield
image) and subtracting that of a 90 degree rotated half-circle source. Thus cDPC require
only 3 illumination patterns and 3 measurements, which are collected in a single shot using
a RGB Bayer filter sensor. One can achieve cDPC by implementing the source pattern in an
LED array microscope, which offers many imaging modalities in one platform [25, 31, 32, 49,
50, 61, 62]. However, the proposed configuration does not require a dynamic source, making
it possible to use a static multi-color filter placed in the condenser back focal plane, assuming

IThis work was performed in close collaboration with Zachary F. Phillips (Waller Lab, EECS, UC
Berkeley).
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Kohler illumination. Both configurations simplify hardware and reduce costs significantly
as compared to phase contrast or DIC, while providing quantitative phase, which is more
general and can be used to synthesize both of the aforementioned methods digitally [63].
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Figure 2.1:  Single-shot color Differential Phase Contrast (¢cDPC) microscopy. a) Optical
schematic of a brightfield microscope with a cDPC color filter placed at the back focal plane of
the condenser in Kohler configuration. b) Installation in Nikon TE300 microscope condenser
turret. ¢) Reconstruction: the captured color image is separated into its RGB components,
which are then used to recover two unknowns (absorption and phase) via a well-posed linear
deconvolution. The sample is a micro-lens array (Fresnel Technologies 605). d) CAD model
and image of fabricated cDPC insert.

Hardware design

As in conventional DPC, our method requires measurements of the sample illuminated by
known asymmetric sources. However, in our case the 3 half-circle sources are turned on
simultaneously (for example, in each of the three color channels of an LED array). Since
dynamic source patterning is no longer needed, it is not necessary to replace the entire
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illumination unit of the microscope with an LED array. Instead, we can make use of the
microscope’s existing condenser unit, which has a turret commonly used for phase contrast
inserts or DIC prisms. This intermediate plane can usually be accessed easily by removing
the mechanical inserts. Here, a simple 3D printed color filter that is placed in the condenser
turret of a Nikon TE300 microscope (Figure 2.1a).

The filter prototype consists of Polyethylene Terephthalate (PET) color filters (Lee Fil-
ter, Inc.) which were laser cut to size and installed into a 3D printed insert designed to fit
our microscope. Narrow bandwidth illumination filters, e.g. multi-layer coated glass, would
provide better spectral selectivity, but suffer from low light throughput and high cost. There-
fore, the inexpensive and easy-to-cut PET film filters were chosen; the resulting cross-talk
between color channels will be accounted for in post-processing, described below.

The total cost of raw materials is approximately $30 and filters were produced quickly
with a 3D printer and laser cutter. One filter is shown in Figure 2.1d; it was installed in
the condenser turret of an inverted microscope (Figure 2.1b), replacing one of the removable
phase contrast (Phl, Ph2 or Ph3) inserts.

Calibration

Ideally, the color filters would provide perfect separation of the three source patterns into the
three color channels. In reality, both the illumination and camera color channels have cross-
talk between the desired wavelengths. To account for this, system calibration is separated
into two separate steps: detection-side and illumination-side.

[llumination-side calibration corrects for the relative spectral transmittance of each of
the source color filters. The illumination pattern simultaneously encodes three half-circle
sources, one each for the RGB color channels. Red and green are opposite half-circles, and
blue is rotated by 90 degrees relative to the others. Where the blue and green patterns
overlap, a cyan filter (blue 4+ green) was used. Where the blue and red patterns overlap,
a purple filter (blue + red) was used. Hence, the final filter design actually contains four
quadrants having red, green, cyan and purple filters (see Fig. 2.2).

When filtered by the sensor Bayer pattern, the filters’ spectra are not orthogonal. This
can be seen in the spectra of each PET film after capture with a color camera (left column
of Fig. 2.2). The result is an undesirable loss of asymmetry in the source that reduces phase
SNR. However, the asymmetry is accounted for during the reconstruction by modeling the
source patterns as in Fig. 2.2.

Detection-side calibration accounts for spectral cross-talk of the camera color channels.
Standard RGB Bayer filters do not provide perfect discrimination between RGB wavelengths,
but coupling artifacts can be removed by calibration. Given the pixel values from the raw
color image with an RGGB Bayer filter (I, I, Iy, Iy), it is possible to solve for the
decoupled color image (I, Ig, Ig) that would be obtained if the sample were illuminated
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with a single color, according to the following equation,

I
! I
I,| R
=C|I|. (2.1)
I L
I,

The matrix C is a 4x 3 calibration matrix describing the coupling between each color channel.
It is generated by filtering the broadband source with each filter independently, then measur-
ing the relative red (Ig), green (Ig) and blue (Ig) read-outs to populate the corresponding
column vectors of the C matrix. The ratio between the intensities of each flat-field image
at each detection channel provides a linear weighting of the contribution of each source to
our color measurement. Once C has been measured once, it can be used to pre-process all
later measurements by solving Eq. (2.1). This step is important for reducing artifacts in the
phase results.

Another important step for ¢cDPC is to account for wavelength-dependent changes in
phase and spatial frequency. DPC recovers absorption (u) and phase (¢) information from
intensity measurements. These quantities are defined as:

27 27
=" ad =" nd 2.2

where )\ is a reference wavelength, d is the thickness of the sample, n represents RI and
« indicates absorption coefficient. Absorption and phase transfer functions are determined
by illumination NA, objective NA and illumination wavelength [32]. In the proposed ¢cDPC
method, the transfer functions must also consider the change in wavelength of each color
channel. Phase (¢) depends on which wavelength is used. By assuming no dispersion in
the sample, it is possible to use Eq. (2.2) to synthesize phase for any wavelength by simply
multiplying the optical path length (nd) by the wave number (22) of a desired reference

Ao
wavelength .

Forward model of cDPC

The forward model of ¢cDPC is the same as the monochromatic DPC image formation in
Eq. (1.17), except the transfer functions become wavelength dependent. Assume that I, is
the normalized color intensity measurement, and H,, and H are the wavelength-dependent
transfer functions for absorption and phase, it can be expressed in spatial frequency domain
as

Fu(w.A) = H,,(u, Nji(u) + 1 Hy(u, N plu), (2.3)
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Figure 2.2: Transfer functions for absorption and phase contrast in each cDPC color channel.
Left: Spectral contribution of each illumination filter as captured by the camera’s Bayer pat-
tern. The following columns show the source represented in each image, and the components
of the absorption and phase transfer functions in the spatial frequency domain. Bottom row:
sum of each column, representing the calibrated and scaled source and the total coverage of
absorption and phase transfer functions, respectively.

where w is 2D spatial frequency coordinates and * denotes Fourier transform. Given a known
source (.S), and pupil function (P) which we model as a circle with radius set by the objective
NA and A, the transfer functions are [32, 33]:

H,(u,)) = [P<u, 2) % (P(u, NS (u, )\)) + (P(u, NS (u, A)) « P(u, )\)] (2.4)

Hy(u, \) = % [Pl « (P S N) ~ (P )Sw )« Puy)].  (25)

where x denotes cross-correlation. Note that because spatial frequency is a function of
wavelength, the source shape S(\) and pupil function P()) also depend on wavelength.
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Specifically, the diameters of the source and transfer functions in Fourier space are inversely
proportional to the wavelength of the color channel. Hence, blue illumination provides larger
Fourier space coverage and better resolution than red. The forward model accounts for these
differences in the color channel’s transfer function. Figure 2.2 shows the absorption and phase
transfer functions for A = 0.450um, A = 0.546um and A = 0.670um, with top-left, top-right
and bottom-left half-circle sources, respectively.

Examining Fig. 2.2, it is clear that the absorption transfer functions for each color chan-
nel are symmetric low-pass filters. The phase transfer functions, on the other hand, are
asymmetric band-pass-like filters with a line of missing frequencies along the axis of asym-
metry. By rotating the blue half-circle by 90 degrees relative to the red and green ones,
the missing line is filled. The overall absorption and phase transfer functions for cDPC
are shown in the last row of Fig. 2.2, calculated by summing the absolute values of each
color transfer function. As with previous DPC implementations, absorption information
loses contrast at high spatial frequencies. Phase has a similar drop-off at high frequencies,
but also loses contrast in the low spatial frequency regions. Hence, SNR will be important
for accurately recovering low-frequency phase information. The maximum spatial frequency
range captured is 2x the NA of the blue color channel. However, the final resolution using
c¢DPC is set by the diffraction limit of green light, since total frequency coverage is set by the
maximum spatial frequency which is measured by two or more color channels. This comes
as an implication of trying to recover two unknowns, absorption and phase, thus requiring
at least two measurements.

Inverse problem

Using the forward model developed in Sec. 2.1, the cDPC inverse problem aims to minimize
the difference between the measured color image and that which would be measured, given
the estimate of the sample’s absorption and phase:

1) — HuOv)is — iHy )| + R, ), (2.6

where I, is the spatial frequency spectrum of the background-subtracted intensity, H, and
H, are transfer functions for absorption and phase, @t and ¢ are the spatial frequency
spectra of absorption and phase, m is the wavelength index and R(f, q~§) is a regularization
term (typically on the order of 1073). This problem is linear and can be solved with a
one-step least-squares solution (e.g. Wiener deconvolution [64]) or by an iterative algorithm
(e.g. gradient descent). The ideal choice of regularizer R(ft, ¢) depends on the sample and
noise. Basic /5 regularization should be tuned to suppress noise amplification in spatial
frequencies that are measured with low-contrast, without destroying sample information at
those frequencies. Alternatively, if the sample is sparse (only a few non-zero values), one

can use an ¢ regularizer [65]. Other types of a priori information may be incorporated by
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appropriate regularization. All experiments presented in this chapter make no assumptions
on the sample structure; However, {5 regularization is used to constrain the total energy of
the signal and make the problem well-posed. Equation (2.6) thus becomes,

3
min
n,P
m=1

~ 112 2 ~ 112
2O) = HuOw)i = iH O+l + . @7

which remains differentiable and allows us to find the global minimum solution for absorption
and phase with a single matrix inversion step. The final reconstruction for the absorption
and phase are obtained using Eq. (1.27) and Eq. (1.28).

2.2 Experimental Results and Discussion

To experimentally validate the proposed ¢cDPC method, results were compared with two
established QPI methods: monochromatic DPC and through-focus phase retrieval (Fig. 2.3).
For fair comparison, all are implemented on the same Nikon TE300 microscope using illumi-
nation generated by an RGB LED array (Adafruit). ¢cDPC uses a discretized version of the
cDPC color filter design displayed on the LED array. Monochromatic DPC uses 4 images
captured with each of 4 asymmetric source patterns [50]. Through-focus phase imaging uses
only the central green LED (for temporal and spatial coherence) while capturing 14 images
at different focus depths; phase is then recovered by a nonlinear optimization phase retrieval
method [66].

Because of the coherent illumination, through-focus phase imaging has 2x worse resolu-
tion than DPC methods. Thus, a 20x 0.4 NA objective lens was used for DPC methods, but
switched to a 60x 0.8 NA objective for through-focus phase, in order keep resolution equal
for all three. Spatial resolution is quantified using a spoke-pattern phase target [67].

As can be seen in Fig. 2.3, the RGB color channel images have similar contrast to the
left, right and top images of the monochromatic DPC, as expected. The phase results are
also similar, with equivalent spatial resolution. Because the ¢cDPC image is captured in
one shot with color filters, it has lower SNR than monochromatic DPC and deviates in its
low-frequency fluctuations, which have weaker transfer function values. Overall, however,
single-shot ¢cDPC performs comparably to multi-shot DPC.

Next, the LED array was removed and the microscope’s condenser unit was reinstalled
with an broadband arc lamp light source. Alternatively, a high-power blue-phosphor static
LED source could be used. The color filter was then inserted into the condenser turret, as
shown in Figs. 2.1b and 2.1d. Figure 2.4 shows amplitude and phase reconstructions from the
cDPC method with objectives of various magnification, as well as simulated phase contrast
and DIC images. This imaging method is compatible with any standard objective having
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Figure 2.3: Experimental comparison of single-shot ¢cDPC with monochromatic DPC and
through-focus phase retrieval methods. (Left) Source patterns. (Middle) Raw camera mea-
surements. (Right) Recovered optical field. DPC methods (partially coherent) were acquired
using a 20x 0.4NA objective lens, while through-focus images (spatially coherent) were cap-
tured using 60x 0.8NA, in order to ensure equal resolution in all cases.

NAgbjective < NAcondenser- The ratio of NAgpiective 10 NA ondenser is referred to as the spatial
coherence factor o [32], defined as:

NAillumination
o= —". 2.8
NAob jective ( )

In other words, o < 1 will result in reduced phase contrast as compared to the ¢ > 1 case,
as demonstrated in [32]. This is because low frequencies in phase are revealed only when
using high-angle illuminations. It is important to note that illumination with ¢ > 1 does
not improve resolution beyond the incoherent resolution limit, but also does not degrade
image quality, allowing us to fix the condenser NA and use any objective with NA piective <
NA condenser without changing the hardware. The Nikon TE300 microscope used in this study
was configured with a 0.53NA condenser lens. To Perform high resolution cDPC imaging
would require high-NA illumination, e.g. by using a domed LED array [62]. Temporal
coherence is set by the bandwidth of the color filters, since those have narrower bandwidth
than the camera filters. The full-width-half-maximum (FWHM) bandwidth for our filters
was approximately 50nm, which is similar to the emission spectrum of the LED array used
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previously [32].
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Figure 2.4: Raw data, phase and amplitude reconstructions, synthesized phase contrast
and DIC images for various samples and magnifications: (First column) micro-lens array
(4x 0.10NA). (Second column) wild-type C. elegans (10x 0.25NA). (Third column) HEK
293T cells (20x 0.40NA). (Fourth column) MCF7 cells (20x 0.40NA).
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Temporal resolution

Since cDPC is single-shot, temporal resolution is set by the camera’s frame rate, giving a
factor of 4 improvement over conventional DPC. Single-shot methods reduce artifacts due
to motion blur and image registration. This can be seen in Fig. 2.5, where we compare
cDPC and conventional DPC (4 images) results for a live C. elegans culture. Motion blur
is significantly reduced with ¢cDPC, since the sample changes rapidly between frames, even
at 12.5 frames per second (FPS). The camera-limited acquisition at 100 FPS was achieved
and capturing real-time quantitative phase videos becomes possible for applications, such as
imaging live C. elegans or floating cells in a microfluidic channel.

Raw Data Reconstruction

Amplitude

L--;--d

Green Blue

Figure 2.5: Experimental demonstration of motion blur reduction with cDPC vs. conven-
tional DPC. The cDPC method results in significantly reduced motion blur artifacts due to
its single-shot acquisition.

Synthesized PhC and DIC images

Differential Interference Contrast (DIC) and conventional Phase Contrast (PhC) microscopy
are widely used in medicine and biomedical research. Optical components required for their
implementation remain expensive, however, and alignment by an experienced user is required
for acceptable performance. Both DIC and phase contrast can be described by forward mod-
els which produce a qualitative mixture of amplitude and phase images [1, 68]. Quantitative
phase imaging methods can therefore be used to synthesize these contrast mechanisms dig-
itally, mimicking the physical optical system through numerical simulation. Synthesized
images from cDPC, as well as ground truth DIC and PhC images, are shown in Fig. 2.6 to
be comparable.

Synthesizing DIC and PhC may be useful for clinicians and researchers who have been
trained with them to make diagnoses or decisions. While all QPI methods can be used to
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Figure 2.6: Comparison of standard DIC and PhC images to their synthesized counterparts
from ¢cDPC. Ground truth DIC images were acquired using a 20x 0.75NA objective and
phase contrast images using a 20x 0.40NA PhC objective. ¢DPC images were acquired
using a 20x 0.40NA objective and the filter insert.

synthesize these images, cDPC is particularly well-suited since it is single-shot, allowing for
real-time digital synthesis. In addition to further providing quantitative phase, this method
is much cheaper to implement than either DIC or PhC, since it requires only the addition of
an inexpensive color filter insert or an LED array and no specialized objectives.

Stained and dispersive samples

The ¢cDPC method uses color multiplexing to recover complex-field, making an inherent
assumption that the sample is both non-dispersive and colorless. Non-dispersive means that
the RI does not change appreciably with wavelength:

d(n(N),d, ) = ¢(ng,d, \). (2.9)

This assumption implies that the optical path length (OPL = nd) will remain constant
for all measurements. The relative phase delay will always vary with A (Eq. (2.2)), but
this is accounted for in the ¢cDPC algorithm by scaling the transfer functions based on the
relative wavelength of each color channel. Unless the dispersion curve is known and the
material is assumed to be uniform, one cannot account for dispersive effects in the sample
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using the proposed algorithm. However, in practice these effects do not corrupt our phase
reconstructions results significantly due to relatively small dispersive effects of water across
optical wavelengths.

The second assumption is that the sample is colorless, meaning that the absorption does
not have chromatic dependence:

p(A) = po. (2.10)

This is generally valid for unstained biological samples, which are transparent. Color vari-
ations due to filter transmission coefficients at different wavelengths are present, but can
be removed by the calibration procedure described in Sec. 2.1. Color-dependent absorption,
such as that created by stained samples, cannot be recovered and will cause errors in the
phase result. In practice, these assumptions limit the applicability of the cDPC method to
unstained uncolored samples. However, quantitative phase reveals the mechanical structure
of the microenvironment with high contrast, which may eliminate the need for staining in
many applications.

2.3 Summary

A single-shot method for quantitative phase and amplitude imaging based on partially-
coherent multiplexed color illumination is presented. The inverse algorithm uses a linear
approximation to enable fast reconstruction by deconvolution. The hardware requirements
are simple, inexpensive and compatible with most commercial microscopes that only need
a color camera and a color filter insert placed at the back focal plane of the condenser lens.
Unlike phase contrast and DIC, the method does not require special objectives or prisms,
reducing hardware costs significantly. In addition, the recovered complex-field can be use
to synthesize phase contrast and DIC images digitally, matching the functionality of exist-
ing systems at a fraction of the cost. Since the samples are assumed non-dispersive and
unstained, this method should be used as an alternative, not in conjunction with, chemical
staining.
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Chapter 3

Quantitative DPC Microscopy with
Computational Aberration Correction

3.1 Algorithmic Aberration Calibration

The concept of algorithmic self-calibration — solving jointly for the reconstructed image and
the calibration parameters — has proven particularly useful in coherent computational imag-
ing. Examples include probe retrieval in Ptychography [69, 70, 71, 72|, source recovery
for through-focus phase imaging [73, 74|, pupil and source recovery for FPM [75, 76, 77|,
and calibration-invariant inverse scattering models [78]. The standard approach to self-
calibration uses alternating projections (AP), which optimizes multiple variables serially,
keeping other parameters fixed during each sub-iteration. The non-convexity of AP provides
no guarantee of global convergence, but in practice it works with sufficiently diverse data.
Self-calibration of aberrations has been demonstrated previously in an LED array microscope
for the cases of through-focus phase [79] and FPM [26, 28, 75, 80, 81], but required a large
number of images to be captured. For example, a typical FPM setup [82] uses approximately
5 times as many images as our system to achieve the equivalent resolution.

Here, we propose a method of algorithmic aberration calibration for DPC microscopy [30,
32, 33, 83], where we avoid the need for pre-calibration by jointly recovering both the sample’s
complex-field and the spatially-varying aberrations of the system, directly from raw images!.
We present an AP framework that uses 4 captured images for simultaneous phase retrieval
and digital correction of spatially-varying aberrations (Fig. 3.1). Three of the measurements
are partially-coherent conventional DPC images (with rotated half-circle sources); these pro-
vide good phase contrast, but poor aberration contrast. The fourth image uses single-LED
(spatially coherent) illumination; this provides aberration contrast, but alone cannot resolve
the ambiguity between complex-field and pupil aberration [84]. Using both partially-coherent
and coherent images together improves sensitivity to aberrations without sacrificing the ben-

IThis work was performed in close collaboration with Zachary F. Phillips (Waller Lab, EECS, UC
Berkeley).
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efits of partial coherence. We model the aberrations parametrically (with a Zernike basis [85,
79]) to dramatically reduce the number of unknowns. In addition, by segmenting the FoV,
we are able to recover and digitally correct for spatially-varying aberrations across the FoV.

LED Array
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Figure 3.1: Our LED array microscope captures 4 images with different illumination source
patterns (three half-circles and one single LED). The intensity images are used to simul-
taneously reconstruct both amplitude and phase of the sample, and to estimate the pupil
aberrations at each spatial location, which are then digitally corrected for. We show recon-
structions for 4 regions with different spatially-varying aberrations.

3.2 Joint Estimation of Complex-Field and
Aberrations

Our LED array microscope and data capture scheme is shown in Fig. 3.1. Quantitative
DPC (without aberration correction) requires a minimum of 3 intensity measurements to
reconstruct phase [86], though only two quantities (amplitude and phase) are reconstructed
at each pixel. Hence, there is significant redundancy in the data which may, in principle,
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be used to solve for aberrations. However, intensity images formed by partially-coherent
illumination do not exhibit significant aberration contrast. Hence, we modify the capture
scheme to add one additional measurement with spatially-coherent illumination (a single on-
axis LED). The example in Fig. 3.1 has a different aberration in each quadrant of the FoV,
and only the single-LED image displays visible differences in contrast for each region. An off-
axis LED would also provide the necessary coherent contrast, but the on-axis LED provides
higher intensity and better SNR. Having achieved both phase and aberration contrast with
1 on-axis and 3 half-circle sources, we use this dataset to jointly recover both spatially-
varying aberrations and the complex-field of the sample (with resolution set by the incoherent
diffraction limit).

The process of estimating the sample’s complex-field and the system’s aberrations simul-
taneously is a joint estimation large-scale nonlinear non-convex problem. To simplify, DPC
typically makes a weak scattering approximation which linearizes the forward model. This
approximation is generally valid for optically thin or index-matched samples, like biological
cells. Intensity measurements can then be related to absorption (@) and phase (¢) of the
sample by simple convolutions, which is described in Chapter 2. As derived in Appendix A.1,
the DPC forward model in matrix form is:

I, = F ' (diag(H,)Fu +i- diag(Hy)Fo) . (3.1)

Here, diag(x) denotes a diagonal matrix with diagonal values =, F and F~! represent the
DFT and inverse DFT matrices, I, is the vectorized normalized measured intensity (with the
DC term subtracted), and H,, and H are vectorized transfer functions for absorption and
phase. If the source satisfies the Kohler illumination configuration, the transfer functions can
be numerically evaluated based on Eq. (1.18) and the cross-correlation property of Fourier
transforms:

H, - Ii [F~'diag(O")F + F~diag(F* P*)Fdiag(S)] P (3.2)
H, - Ii [F~'diag(O")F — F~diag(F* P*)Fdiag(S)] P, (3-3)

where * is the complex conjugate operation, I, is the total intensity of the source passing
through the system, S and P are the vectorized source and pupil, and O = Fdiag(S)P.
Typically, the space-invariant exit pupil P is a circular function, Circ(Au/NA), with its
radius determined by system NA, and wavelength, A\. The phase of P is the pupil aberra-
tion we wish to recover, modeled as a weighted sum of Zernike modes on spatial frequency
coordinate (u) [85]:

P(c) = Circ(%) ﬁ elem@m (3.4)

m=0
where M is the total number of Zernike modes and ¢ contains the coefficients, ¢,,, of each
orthogonal mode Z,,. To recover spatially-varying aberrations, we solve for individual pupil
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aberrations at different disjoint spatial regions across the FoV and assume the aberrations
are locally space-invariant within each region. Given Egs. (3.1)-(3.4), an objective function
for the joint optimization of absorption, phase and pupil aberrations can be formulated as:

N
min
w,d,c

s=1

z—i-TR(u,qb) , (3.5)

‘FIM — diag (H,,,(c)) Fu — i - diag (H,,(c)) Féb

where s is the measurement index of each corresponding source pattern, N, is the total
number of measurements, ||-||2 represents an ¢, norm, 7 is a regularization parameter and R
is a regularization term that helps mitigate noise artifacts. It is inferred from Eq. (3.5) that
the aberration coefficients ¢ are coupled with both p and ¢, so simultaneously optimizing
all variables does not guarantee convergence. An alternating projections update strategy
instead provides a non-divergence guarantee, as was previously used for phase-from-focus
joint source recovery [74]. Similarly, we iteratively solve for both the complex object and
system aberrations as two sub-problems.

Our alternating projections algorithm initializes the Zernike coefficients, ¢, with zero. At
the start of one iteration, ¢ are fixed and a DPC deconvolution sub-procedure (Sec. 3.2) is
performed in order to update the estimates of amplitude, exp(u), and phase, ¢p. This new
complex-field estimate is then held fixed while an aberration estimation procedure (Sec. 3.2)
is performed. After updating the aberration estimate based on this procedure, a new iteration
begins. Eventually, the objective function converges to a stationary point, giving the final
estimates of amplitude, phase, and aberration coefficients. In general, this optimization
strategy works as long as there exist enough diversity and redundancy in the measurements.

DPC phase retrieval sub-procedure

The phase retrieval sub-procedure amounts to solving the conventional DPC inverse problem
as introduced in Sec. 1.3, except that it incorporates the current estimate of the Zernike
coefficients ¢;, at iteration k:

[FI,.. — diog (H, .(c¢)) Fiu— - ding (L, o(c)) Fo | + 7R (1. 6).
(3.6)

The regularization term, R, should be chosen based on a priori information about the sample.
For instance, Tikhonov regularization can mitigate noise, and the solution of Eq. (3.6) can
then be found using a non-iterative deconvolution [86]. If the gradients of the object are
relatively sparse, the TV regularizer can be used to reduce noise without degrading edges.
Since the regularization term for TV is not differentiable, iterative algorithms for solving
Eq. (3.6) are needed. In this paper, we use the ADMM to implement TV regularization [44],
typically requiring about 20 iterations.

N
Hi+1, Qi1 = arg min E
n,9 s=1
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Aberration recovery sub-procedure

The aberration recovery sub-procedure uses a nonlinear optimization algorithm to update
the aberration estimate based on the newly updated complex-field, which is held fixed. The
sub-procedure is initialized with the Zernike coeflicients estimate from the previous iteration,
c;. Mathematically, the sub-procedure problem is written as:

2

[FI,., — diag (Hj,.(e)) Fasr — i~ diag (Hyo(€) Py || - (37)

2

N,
Cip+1 = arg min E
c 1

Equation (3.7) may be solved by a gradient descent (first-order optimization) approach, or
more sophisticated second-order optimization routines (e.g. Newton’s method [74]). All of
these require computation of the gradient of the objective function with respect to e. If
we define the cost function as f = fo:l les||3, in which e, = FI,,, — diag(H,, )Fpgy1 —
i - diag(H,,)F¢py is the residual vector, the gradient becomes Vof = S [de,/dc]" e,
where H denotes Hermitian transpose. Using Eqgs. (3.2)-(3.4), the gradient can be calculated
analytically as:

N

1 . * —1 7 . * ok T * L%
Vef = I—Zleag(P )Z [F 1d1ag(Os)F [dlag(F M) — i diag(F ¢k+1)} +
o s=1
diag(S,)F~'diag(FP)F [diag(F ], ,) + i diag(F* ;)] }es .
(3.8)
In this gradient, T denotes transpose and the Zernike basis, ZT = [Z,, Z1, ..., Z)/]T, contains

a finite number of modes where Z, — Z,; are the vectorized Zernike modes. For efficient
computation, we adopt the L-BFGS algorithm [87] and use the gradient in Eq. (3.8) to solve
this nonlinear optimization problem, which generally takes ~ 10 iterations to converge.

3.3 Simulation Results

To verify the performance of our joint estimation framework, we show simulation results
in Fig. 3.2. The system parameters were chosen to match our experimental setup (0.4NA,
wavelength 0.514pum, 177 source LEDs), with the LED array placed sufficiently far away
from the sample such that the illumination from each LED is effectively spatially coherent
(plane wave) [26, 28, 88|.

We compare our results with joint phase and aberration recovery FPM in Fig. 3.2. FPM
captures a separate image for each of the 177 LEDs, whereas DPC requires only 4 images to
reconstruct the same quantities. FPM intensity images are simulated by using different tilted
plane wave illuminations corresponding to each single LED. All the intensity images contain
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Figure 3.2: Performance of joint phase and aberrations estimation on a simulated dataset.
(a) Simulated FPM and DPC measurements. Red dashed circles indicate the NA of the
objective lens. (b) Joint estimation of optical field and pupil aberrations, comparing ground
truth, FPM and DPC measurements. (c) Errors for complex-field and aberrations at each
iteration.

the same pupil aberration, which is a weighted sum of the first 18 Zernike modes excluding
piston and tilts. Our simulated DPC measurements are the sum of the intensity images from
half-circle blocks of LEDs on the top, bottom, or right regions of the LED array [32]. For
all measurements, we added synthesized noise using a Poisson distribution with a mean of
~3000 photons per pixel. Equation (3.5) was then solved with ¢y regularization using the
4 DPC images, while we implemented the same algorithm in [89] to recover complex-field
and aberrations using FPM with the full 177 image dataset. In this setup, FPM could use
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as few as 32 images (illuminations from the outer-most annular LEDs only) to achieve the
same spatial frequency coverage as our DPC method. Therefore, we also include the results
of FPM with 32 measurements for comparison.

Reconstructions from both FPM and our DPC algorithm match the ground truth as
shown in Fig. 3.2(b); however, our method only requires 4 measurements, reducing acquisi-
tion time and memory requirements. Figure 3.2(c) plots the normalized root-mean-square
error (|| — @iruel|2/||Toruel|2) at each iteration for both complex-field and pupil aberrations.
FPM incurs lower complex-field error than DPC, likely due to both the weak scattering
approximation and the larger dataset. As for the pupil aberration error, FPM performance
varies significantly with dataset size. While FPM with the full dataset outperforms the
proposed DPC framework, our method provides a better result than FPM with 32 images.
This is because FPM with fewer measurements has lower effective SNR, adding noise to
the recovered pupil aberration (inset of Fig. 3.2(b)). Our method requires significant com-
putation since it solves two optimization problems at each iteration, but the computation
time is comparable to a sequential FPM reconstruction. Both methods were implemented
in MATLAB on a desktop computer (Intel Core i7 CPU, Nvidia Tesla C2075 GPU). With
a 650x 584 pixel object, each iteration took 2.2s for FPM and 2.5s for our DPC algorithm.

3.4 Experimental Results

Experimentally, we use an LED array microscope with the illumination module replaced with
a custom-built LED array (A = 0.514um) [32, 28]. A phase target (Benchmark Technologies),
which contains periodic patterns of continuous spatial frequencies, is imaged by a 20x 0.4NA
objective lens (Nikon, CFI Plan Achro) in a Nikon TE300 microscope and images are recorded
by a PCO.edge 5.5 sCMOS camera on the front port of the microscope (which adds 2x
magnification). To test the weak phase gradient assumption, phase images of 6 resolution
targets of different heights are recovered using DPC. After validating the reconstructed phase
values against theoretical ones, we find that DPC provides accurate results when the phase
of the sample is below 0.64 radians, then underestimates the phase values due to breakdown
of the approximation. We collect 177 measurements by scanning individual LEDs within a
maximum 0.4NA illumination angle. To provide a fair comparison between FPM and DPC,
we use the same measurements to synthesize the 4 images for our method. As shown in
Fig. 3.3(a), DPC measurements with half-circle source patterns have high resolution and
qualitatively reveal the phase gradients of the sample, while measurements with single-LED
illumination have lower resolution. Two single-LED image zoom-ins that contain the same
structure at different orientations are shown in Fig. 3.3(a). One has high contrast, while
the other does not, because of directional aberrations. By processing the images using the
FPM algorithm and the proposed method with TV regularization, we recover the phase of
the sample as shown in Fig. 3.3(b). The FPM and DPC reconstructions are similar, and
can resolve features with period as small as A/ (2 x NA) = 0.643um. In addition, both
results provide reliable quantitative phase of the sample. The RI of the binary phase target
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is 1.52, with height of 100nm, resulting in ~0.64 radians peak-to-valley. Looking at the 1D
cut-lines (taken along dashed lines) in Fig. 3.3(b), after subtracting the mean of each, the
reconstructions show good agreement with the ideal height.

Pupil aberrations recovered by both FPM and DPC algorithms are in Fig. 3.3(c). While
we have no ground truth, aberrations estimated from FPM and DPC match well within the
4" radial degree of Zernike modes. The dominant aberration in the objective lens is the
8" Zernike mode (horizontal coma); this agrees with the evidence of directional aberrations
mentioned above and results in orientation-dependent resolution. Omne reason causing a
difference between the reconstructed pupils is the high-frequency fluctuation shown in the
pupil aberration from FPM, which does not exist in the low-order Zernike modes. Although
high-order aberrations might be estimated with more measurements to avoid overfitting, it’s
usually enough to improve image quality by correcting the low-order aberrations.
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Figure 3.3: (a) Experimental FPM and DPC measurements for different LED source pat-
terns. Zoomed regions at different orientations for coherent illumination are marked in cyan
and pink boxes, respectively. (b) Quantitative phase of a star target using FPM and DPC,
along with 1D cutlines for FPM (red) and DPC (blue) along the dashed lines. (c) Recon-
structed wavefront error function and the weights of each Zernike mode up to the 4™ radial
degree.

To quantify the performance of our method, we introduced known defocus aberrations
using an axial motion stage (Thorlabs, MZS500-E). We translated the phase test target
across a range of known axial steps over a total range of 40um. Each 2um of translation,
the 4 images for our method were acquired using a 10x 0.25NA objective lens (Nikon, CFI
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Plan Achro) at an acquisition rate of 20Hz. Quantitative phase reconstructions assuming
zero aberration, aberration-corrected phase images and the recovered aberrations are shown
in Fig. 3.4(a). With increased defocus, the uncorrected phase results degrade. Though
our method also suffers from resolution degradation at large defocus distances (£20um), it
provides better resolution than the uncorrected phase retrieval. For example, in Fig. 3.4(b)
the numbers in group 9 are resolved with pupil correction, while they are not readable in
the uncorrected result.

We can also recover the focus distances from the defocus term of the Zernike modes
and compare the estimated defocus values to known values (Fig. 3.4(c)). Since the Zernike
basis is normalized in a range from -1 to 1, the defocus value, d, at each time point, ¢, can
be evaluated as d(t) = cu(t) x A/m/(1 — (1 — NA?)?3). As expected, the predicted pupil
aberrations have quadratic form, which indicates that defocus dominates. Experimentally,
our method overestimates defocus values by a factor of 1.16. This discrepancy might originate
from mis-calibration of the experiment or parameters used in computation (e.g. wavelength,
NA of the objective lens, precision of the motion stage). This linear relationship between
the predicted positions and the true focus holds when the magnitude of defocus is less than
16 pm, ~2x DoF. However, the accuracy of aberration correction drops as the defocus value
exceeds 2x DoF, when the maximum phase difference in the pupil becomes larger than
21 and the algorithm becomes more likely to converge to a local minimum. From these
experiments, we conclude that our method accurately estimates time-varying aberrations,
which not only enables phase retrieval with digital focusing but can also be applied to
improve phase recovery with moving objects/background.

Our method is easily extended to account for spatially-varying aberrations, simply by
solving the joint estimation problem separately over different patches of the FoV. In order to
visualize spatially-varying aberrations, we prepared oil (Cargille, np = 1.58) immersed 10um
polystyrene beads (Sigma-Aldrich) as our sample, which is assumed to be nearly spatially
invariant. The sample was imaged by a 4x 0.2NA objective lens (Nikon, CFI Plan Apo
Lambda) that has a FoV of 1.7 x 2.1lmm. Four images were captured at 12.5Hz using the
same source patterns as in Fig. 3.3(a). Field-dependent aberrations are primarily caused by
two types of system imperfections. First, the incident angle of individual LEDs changes from
one FoV to another, since the relative position between the LEDs and the sample at each
FoV varies. Second, there exist spatially-varying aberrations native to the optical system.
To accommodate this spatial variance, we break the full FoV into small patches, and apply
the joint estimation algorithm on each patch independently. In this case, the incident angle
of individual LEDs and the aberrations are assumed invariant within the patch, which is
usually valid when the region is much smaller than the total FoV. In Fig. 3.5(a), the full FoV
is divided into 100 patches. Within each patch, the absorption, phase and pupil aberration
were recovered independently before being stitched together to form the full FoV images. In
practice, optimization for each patch converges in 20 — 30 iterations.

Looking at the aberrations recovered, the center of the FoV is essentially aberration-free,
which is consistent with the fact that optical systems are usually optimized there. Therefore,
the absorption and phase images with pupil recovery are similar to that without aberration
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Figure 3.4: (a) Quantitative phase reconstructions of a USAF 1951 resolution target at
various defocus distances with and without aberration correction, and the corresponding
recovered aberrations. (b) Zoomed-in reconstructions at defocus of 10um. (¢) Known and
experimentally-estimated defocus values from the 4" Zernike mode over time.

correction. Aberrations are much stronger along the edges of the FoV, where the field
curvature blurs the image. Consequently, obvious differences occur between the normal DPC
and aberration-corrected DPC reconstructions at those patches. The recovered amplitude
(absorption) at the bottom right corner is dramatically changed after applying aberration
correction. Qualitatively, the uncorrected absorption at the edge of the field appears to
contain some phase information, leading to a shadow-like appearance; these artifacts are
removed with pupil recovery. In addition, while aberrated phase evaluated with Tikhonov
deconvolution suffered from high-frequency noise, phase with pupil correction shows reduced
noise due to the use of TV regularization.

3.5 Summary

In computational imaging systems, aberrations can significantly degrade complex-field re-
constructions if not properly compensated for. In order to correct aberrations without
pre-calibration, we propose joint estimation of the sample and the pupil aberration. Our
DPC-based phase retrieval technique simultaneously recovers the system pupil aberration
and quantitative phase and absorption of the sample from only 4 intensity images. By
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Figure 3.5: (a) Reconstructed absorption, phase and spatially-varying aberrations (recov-
ered pupil wavefronts for different regions of the field-of-view). (b) Comparison of results
with and without pupil estimation for central and edge regions of the field-of-view.

combining 3 half-circle source pattern measurements and 1 made under spatially coherent
(single-LED) illumination, diffraction-limited complex-field and aberration Zernike coeffi-
cients were recovered through an alternating projections non-convex optimization. This
method not only reduces the data acquisition time, but also increases the SNR due to higher
light throughput compared to single-LED acquisition, which should aid in imaging dynamic
biological samples. The recovered system aberrations are general to the system, and may be
used for image correction in other subsequent imaging modalities on the same microscope,
such as deconvolution of fluorescence images [81].
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Chapter 4

3D Phase Imaging with Differential
Phase Contrast

4.1 3D Phase Imaging using Partial Coherent
Illumination

Although one can digitally back-propagate a measured 2D complex-field to refocus, this
does not provide the optical sectioning capabilities of true 3D imaging. Phase being a
projected quantity means that one cannot simply measure 2D phase at different focus planes
to reconstruct 3D phase with coherent illumination. Partially coherent imaging, however,
provides a distinct focus plane and optical depth sectioning. Hence, with partially coherent
light, one can use 2D phase retrieval at multiple focus planes to reconstruct 3D RI. Previous
3D phase imaging [52] used defocus with temporal partial coherence for sectioning. On
the other hand, spatial partial coherence also creates depth sectioning, and through-focus
measurements with spatial partial coherent illumination can then be used to solve the 3D
phase retrieval problem. In this chapter, a 3D DPC method is presented that recovers 3D
absorption and RI from intensity images taken at different focus planes with each of the 4 half-
circle source patterns (Fig. 4.1). In order to properly account for out-of-focus contributions,
a full 3D model is derived, rather than solving for 2D phase independently at each focus
plane. In order to formulate a linear inverse problem, we consider only weak scattering
(1** Born/Rytov approximation) [11, 90, 91, 92]. As a result, efficient inverse algorithms
that solves for 3D RI directly from the intensity measurements become possible, without an
intermediate phase retrieval step. Finally, we explore the use of priors for mitigating both
out-of-focus and halo artifacts. The resulting non-interferometric 3D quantitative phase
imaging method is simple to implement in a commercial microscope, achieves the incoherent
resolution limit (2x the coherent resolution limit) and is accurate for most biological samples.
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Figure 4.1: 3D Differential Phase Contrast (DPC) microscopy. The setup is a microscope
equipped with LED array illumination and an axial motion stage. Through-focus intensity
stacks are captured using 4 source patterns (top, bottom, right, and left half-circles). The
intensity data is related to the 3D RI distribution by illumination-dependent transfer func-
tions, according to the 15* Born approximation. A deconvolution algorithm then recovers
the 3D complex RI.

4.2 Principles of 3D DPC Microscopy

Forward model

A 3D sample can be characterized by its scattering potential V(r) = k2(n? — n?(r)) [11],
where ny, is the RI of the surrounding media and n = ng, +iny, is the sample’s complex RI.
The real part of the RI, ng,, describes how phase delays accumulate as light passes through
the sample, while the imaginary part, ny,, describes absorption. For weakly scattering
objects, multiple-scattering is negligible and the total field can be approximated by the sum
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of the incident field and the single-scattered field as in Eq. (1.6),

Uioi () / / / Ui (r G(r —r)d*r. (4.1)

Next, quasi-monochromatic (with wavelength \) spatially partial coherent illumination
from an extended source in Kéhler geometry is considered. Each point on the source generates
a distinct plane wave at the sample described by Ui, (p, 2) = e 27"+1"2) where u' and 7/
are frequencies determining the propagation direction in 3D space and ||u'[|3 + n? = \72
After passing through the sample, the field is low-pass filtered by the pupil function P(u) of
the microscope, corresponding to the 2D coherent point spread function h(p). The measured
intensity Iimg(p, 2) is the incoherent sum of intensities from each point source. With 1% Born

approximation and Eq. (4.1), the measured intensity is
2
Uin p’ ) + (Um(p, Z)V(p, Z)) &®3D G(p, Z)} X3D h(p)‘ dQu’,

sl 2) = [[ st
(4.2)

where ®3p is the 3D convolution operator, p denotes 2D transverse coordinates, and z the
axial coordinate, with its origin at the focal plane of the microscope. The 2D intensity
distribution of the source is described by S(w’). In practice, only 2D intensity can be
measured from a single image. Thus, scanning the sample through z and capture images at
many focus planes is needed in order to build up the 3D intensity measurement on the left
side of Eq. (4.2). Taking a 3D Fourier transform ~ of both sides of Eq. (4.2) shows a Fourier
space relation between the 3D measured intensity spectrum and the scattering potential,

I ( // 5(u+u/,7]+7]')+V(u+u’,n+n’)é(u,n)>]®3D
u> (6<u W= )+ V(= = )G (—u, ) )| du, (43)

where u denotes transverse spatial frequency variables and 7 represents the axial frequency
variable. Eq. (4.3) can be further expanded into the following three terms:

Fing(w,) = I + Ly + / / (—u)V*(—u, )G (—u — u, —n — 1) P*(~u — u)

+ P*(—u W, )G~ +u, —1 +n)P(—u + u)] 42,
(4.4)

where I, = [[S(w')|P(—u/)[?d*>w'd(u,n) is the DC term representing the background
intensity. I, is a nonlinear term describing 2°¢ order scattering interactions, involving
convolution between V and V*. If the sample has small RI contrast and weak absorption,
this 2°¢ order term becomes negligible. Hence, under the weak object approximation (WOA),
Eq. (4.4) is linearized by dropping I,,. The implication is that the linear relation only holds
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when a majority of the scattered energy is contributed from the interaction between the
scattered field and the illumination [32, 33, 90], as opposed to the interaction of the scattered
field with itself. This tends to be a valid approximation for transparent biological cells, which
provide a strong DC term and minimal scatter-scatter interactions.

To evaluate the phase and absorption effects separately, it is necessary to consider both
real and imaginary parts of the scattering potential, V' = Vie + iVi. Finally, the forward
model, relating the 3D intensity images under different illumination patterns to the 3D
scattering potential, becomes

jimg = I~o + HReVRe + HImf/Ima (45)

where the 3D phase transfer function Hpg, is

Hg (u,n) = // S(u) [P*(—u’)é(—u’ +u,—n +n)P(—u' + u)+
P(—u\G*(—u —u, — —n)P*(—u' —u)|d*u (4.6)

and the 3D absorption transfer function Hy,, is

Hy,(u,n) = 1// S(u') [P*(—u’)é(—u’ +u,—n' +n)P(—u +u)—
P(—u)G*(—u —u,—1 —n)P*(—u' —u)|d*u. (4.7)

Since phase and absorption transfer functions only depend on the source S and pupil P,
which are known, they can be pre-computed. The 15° Born approximation is applied; however,
the Rytov approximation could instead be used to arrive at the same result [93]. They are
equivalent here because a small phase assumption (i.e. |¢| < 1) is made in both cases to
build a linear relationship between the scattering potential of the sample and the measured
intensity. Note that the Weak Object Transfer Functions (WOTFs) in Eq. (4.6) and (4.7)
have been shown to be valid beyond the small-phase regime, for weakly scattering large-phase
samples that have slowly varying phase/RI (i.e. [V¢| < 1) [93, 94, 95]. Here, non-paraxial
WOTFs are considered to also go beyond the paraxial regime [90, 93].

3D renderings and orthogonal slices of the phase and absorption transfer functions in
Eq. (4.6) and (4.7) are shown in Fig. 4.2(a). For brightfield images, only the absorption
transfer function contains non-zero values (i.e. no phase information is encoded). This is
the familiar 3D incoherent transfer function in a wide-field microscope [90]. For DPC illumi-
nation, however, contrast comes mostly from phase [29] since the asymmetric illumination
converts information about the real part of the scattering potential into measured intensity.

The spatial resolution of 3D DPC method is determined by wavelength A and NA. The
transverse Fourier coverage of the DPC transfer function spans a bandwidth 2x larger than
the NA of the objective (NA | ax = 2 X NA), so phase and absorption may be recovered
with resolution that is 2x the coherent resolution limit. Axial bandwidth is also determined
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by NA, but is not directly proportional. It improves non-linearly as the illumination and

objective NAs increase (NA| max = 1 — /1 — NA?) [11, 39, 90], as shown in Fig. 4.2(b). For
instance, if an objective lens with 0.65 NA and a light source with A = 0.500um are used,
the Abbe diffraction-limited lateral and axial resolution are A\/(2 x NA) = 0.385um and

A/ (1 —+/1 = NA?) = 2.083um, respectively.
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Figure 4.2: (a) Absorption (Hp,) and phase (Hge) 3D transfer functions for the brightfield
and DPC stacks. The NA of both illumination and detection is 0.65. (b) Lateral and axial
resolution (measured by Fourier bandwidth normalized to units of NA) improve as the NA
increases. Gray circles indicate the case shown in (a).

Inverse problem

Inverse problem with the imaging model in Sec. 4.2 estimates the sample’s 3D complex RI
from the captured intensity measurements. In the following, two reconstruction algorithms
are compared: least squares (¢3) and TV regularized. The least squares algorithm minimizes
the fo-norm of the difference between the actual measurements and the predicted measure-
ments based on the current estimate and the forward model. In this problem, since both
the illumination and imaging optics only cover a limited range of angles, there is a ‘missing
cone’ along the axial dimension in both the phase and absorption transfer functions (see
Fig. 4.2). Direct inversion will therefore result in high-frequency artifacts due to the missing
information. ¢, (Tikhonov) regularization is a standard way to alleviate this problem [32]
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by imposing a minimum total energy constraint as described in Sec. 1.3,

~ ~ 2 - 2
'r,n - Hllie mVRe - Hllm m‘/lm VRe ‘/Im y (48)
’ ’ 2

2
9 + TRe + Vm

VRe,Vim m

where m indexes the illumination patterns corresponding to brightfield and DPC, yg, and 7y,
are regularization parameters, I’ denotes the Fourier transform of the normalized intensity
data stack and Hy, = Hg./|I,| and H}, = Hy,/|I,| are normalized transfer functions. The
brightfield image stack is computed by averaging the intensities from all DPC illumination
patterns (top, bottom, left, right). Each brightfield image is normalized by first subtracting
a background image, and then dividing it by the (scalar) DC term. The DPC images are
computed by taking the difference of the pairs of images from complimentary illumination
patterns, then normalized by the illumination intensity. Mathematically, these procedures
are written as:

Io +Io 0m+Iri +Ic I _jo Io rih_Ibo om /lef
Inp = top bott 5 ght 1ft7[]/3F: BFj| " ]/DPC: tp/gt|I~‘ tt /t. (4.9)

| Lo|

where ILiop, Ihottom, Iright and I represent measured intensities using top, bottom, right,
and left half-circle illumination, respectively, Igp is brightfield intensity and Ijp. is the
normalized DPC intensity. Omne can acquire the DC term by measuring the background
brightfield intensity without the sample. However, it can be approximated by the average
intensity of the brightfield images when the WOA holds, i.e. |I,| = (Igp).

Equation (4.8) has a closed-form solution that can be obtained by setting its derivative
with respective to Vg, and Vi, to zero, giving the least-squares solution:

o (Sl ) B (Hndn) = T (Bl Hn) S (B )
e (Zm |‘lq-1/:{e,m|2 + VRG) (Zm ‘Hllm m‘2 + VIm) - Z (Hﬁem Im m) Z (Hlliikem Im m)
~ (Zm ‘Hl/%e,mP + VRG) Z (HI,;;l mI;n> Z (Hllziem Irn m Zm < Rem )

(

e (Zm |IT[1/:{e,m|2 + ’YRB) (Zm |‘El—llm,m|2 + ,ylm) - Z (Hllzie mHI/;; m) Zm Hllzikem Im m) ‘
(4.10)

m

Hence, the scattering potential can be recovered using deconvolution with FFTs. The two
regularization parameters, vge and 7y, should scale with the magnitude of Vi, and Vi,
respectively. Overly large regularization parameters result in reduction of absorption and
phase values, while overly small regularization parameters result in high frequency noise.
Due to the missing cone problem, phase reconstructions suffer from halo artifacts (see
Fig. 4.3(c)). To mitigate this, two different priors are exploited. First, a piece-wise constant
approximation of the 3D scattering potential (i.e. the sample can be represented as multiple
regions of constant RI) is made by using a TV regularizer [38, 96]. Second, in the experiments,
the sample is immersed in a medium whose RI is always smaller than the sample’s. Thus,
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positivity constraint can be further imposed on the RI. Including both priors, the 3D phase
reconstruction solves the following minimization problem similar to Eq. (1.29):

j;n - Hlll{ VRe - H/ ﬁm

Im,m

VRe

2
+ TRe ‘/Im ‘ ‘ )
2 vV

min g ‘

+ TIm
VReJ/Im TV

s.t. Vire, Vim < 0, (4.11)

where Tge and 7, are the regularization coefficients. We adopt the anisotropic 3D TV
operator, || - [|[rv = [[V{-}|l1, in which V is the 3D gradient operator. Finally, ADMM
algorithm introduced in Sec. 1.3 is then applied to recover the 3D scattering potential.

4.3 Experimental Results

The experimental setup is a commercial microscope (Nikon TE300) with source patterning
achieved by a programmable LED array (32x32, 4 mm spacing, central A = 0.514pum). The
LED array is placed at 69 mm above the focal plane in order to provide illumination NA 0.65.
An automated piezo-stage (Thorlabs, MZS500-E) implements axial scanning while capturing
4 images at each position using the 4 half-circle illumination patterns shown in Fig. 4.1. In
order to avoid aliasing, the axial spacing between focus planes within the 3D intensity stack
should be smaller than the DoF, A\/(2 — 2y/1 — NA?). At the same time, it is required
to capture the full axial range of the sample’s intensity variations. Hence, for 10-20 pm
thick samples, data at 100 defocus planes equally spaced by 1 um are collected. Note that
the method requires similar amounts of data as compared to other diffraction tomography
schemes, which use 4 phase-shifted interferograms (or an off-axis hologram with 4x more
pixels) at each angle [97] or axial plane [52]. Both the LED array and the piezo-stage are
synchronized to the camera (PCO.Edge 5.5), so acquisition speed is limited by the axial
translation speed (~ 90 seconds for 400 images).

During the reconstruction process, the 4 images at each z are first used to synthesize a
brightfield and two DPC images along orthogonal directions [32]. These brightfield and DPC
image stacks provide complementary information. Direct solutions from inverse algorithms
are complex scattering potentials, which are converted to RI distributions. Using FFT-based
implementations, reconstruction of 512x512x100 voxels using Eq. (4.8) on a desktop com-
puter (Intel i7 CPU) with Matlab takes ~10 seconds, whereas implementation of Eq. (4.11)
typically requires about 30 iterations to converge (~13 minutes). Computation times could
be further reduced through parallel processing on Graphics Processing Units (GPUs).

Comparison between ¢/, and TV regularization

To compare reconstruction algorithms for a known test sample, a single polystyrene bead
(Sigma-Aldrich) immersed in index-matching fluid (Cargille, index 1.59) is imaged. This
sample is a pure phase object with piece-wise constant RI, so satisfies the TV constraint.
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Figure 4.3: 3D RI reconstructions of a 10um diameter polystyrene bead immersed in oil of
RI 1.59 (40x 0.65 NA objective lens). (a) Cross-sectional views of 3D brightfield and DPC
measurements. (b) Absorption and (c) phase reconstructions with ¢, and TV regularization.
(d) 1D cross-sections of recovered RI with TV regularization.

Two cross-sectional views of the 3D brightfield and DPC intensity stacks from Eq. (4.9) are
shown in Fig. 4.3(a). Brightfield images appear to have absorption at the edges of the bead,
where strong diffraction causes light to scatter outside the the objective’s collection aperture.
Since this loss is small, the recovered absorption map using ¢y (Tikhonov) regularization is
noisy (Fig. 4.3(b)).

Looking at the reconstructed 3D RI (Fig. 4.3(c,d)), significantly less halo artifacts are
observed in the TV regularization case, as compared to {5, as well as less noise. The recon-
struction with /5 regularization suffers from elongation along the axial direction - the axial
width is ~1.6x larger than the bead. This is due to the missing frequencies along the axial
direction (see Fig. 4.2(a)). In order to reduce the elongation, one can use higher NA, rotate
the object [93], or leverage prior knowledge similar to this case. Alternatively, nonlinear for-
ward models [43, 96] that accounts for multiple-scattering can be used to go beyond the 1°*
Born approximation and the WOA, potentially allowing recovery of higher frequency com-
ponents as well as missing cone information. However, such algorithms are not guaranteed
to find the global solution and require more computation power and time. Despite using
a weak object approximation, the reconstructed RI (~ 1.602) matches well with previous
experimental measurements [98], providing accurate quantitative phase results. In the rest
of experimental results, the TV regularization are adopted.

Effect of numerical aperture

To experimentally study the effects of NA on final 3D phase reconstructions, results from two
objective lenses (20x 0.40NA and 40x 0.65NA) are compared. The test sample is composed
of several polystyrene beads immersed in oil of RI 1.54. As expected, higher NA gives better
resolution in both lateral and axial dimensions, as shown in Fig. 4.4. Poor depth sectioning
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Figure 4.4: Comparison of recovered 3D RI (6 pum polystyrene beads) with 20x 0.4 NA
and 40x 0.65 NA objectives. Larger NA provides better lateral and axial resolution.

from the lower NA also causes slowly varying background artifacts, which are mitigated in the
high NA reconstructions. The improved axial resolution both reduces the axial elongation
and enables observation of finer structures within the large beads (indicated by the white
arrows). The diffraction-limited lateral and axial resolutions are 0.64 pm and 6.14 pm for
20x objective, and 0.39 pum and 2.14 pum for 40x objective, respectively. Figure 4.4 also
illustrates a caveat of 3D DPC. As the index difference between the surrounding media
and the beads becomes larger (An > 0.07 in this case), the WOA or slowly-varying phase
approximation does not hold but the model attempts to fit the measurements with those
assumptions. Hence, although the shape remains the same, the retrieved RI is lower than
the actual value.

Comparison between 2D and 3D phase reconstructions

To illustrate the differences between 2D and 3D phase imaging, two different 2D phase meth-
ods (2D DPC [32] and the transport of intensity equation (TIE) [18]) are also implemented.
Both use through-focus intensity stacks to recover the on-axis projected phase, ignoring sam-
ple thickness. A 40x 0.65 NA objective is used and fixed saline-immersed human mammary
epithelial MCF10A cell is imaged. To implement TIE, 15 images are recorded with exponen-
tial axial spacing from 1 ym to 64 pm, using coherent (single-LED) illumination. The phase
at the focal plane is recovered using a modified TIE algorithm [18]. Note that 2D DPC
provides 2x better lateral resolution than TIE (see Fig. 4.5(a)) because it uses partially
coherent illumination.

Since the 2D phase reconstructions are proportional to the total projected optical path
length of the sample, this quantity alone cannot distinguish features at different axial posi-
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Figure 4.5:  Comparison between 2D phase reconstructions (TIE and 2D DPC) and 2D
slices of 3D DPC RI reconstruction for a human mammary epithelial MCF10A cell. (a) TIE
and 2D DPC, next to three slices of the recovered RI from 3D DPC at three different depths.
(b) 3D view of the recovered index’s 3D Fourier spectrum. (c¢) 3D rendering of the recovered
RI distribution.

tions. The 3D DPC method, on the other hand, can clearly distinguish sub-cellular features
such as cytosol, cytoplasm and nucleus, which are located at different axial planes (see
Fig. 4.5). The sharper appearance of the reconstructed slices is a result of the axial section-
ing that removes out-of-focus features. 3D DPC provides the same lateral resolution as 2D
DPC and the reconstructed 3D Fourier spectrum (Fig. 4.5(b)) covers the same volume in
Fourier space as the transfer functions in Fig. 4.2(a). In Fig. 4.5(c), it shows the 3D rendered
RI reconstruction with different RI values mapping to different colors as in [36, 52].

3D DPC is also applied to image embryo cells (Fig. 4.6). These cells have diameter ~100
pum and are surrounded by zona pellucida (bottom arrow). The top arrow points to the polar
body of the oocyte. The nucleus as well as cytoplasm distribution along the axial direction
are clearly observed within the region in the orange box. The blue dashed box shows a 4-cell
stage embryo at three distinct focus planes, where two sets of two cells sit on top of each



CHAPTER 4. 3D PHASE IMAGING WITH DIFFERENTIAL PHASE CONTRAST 52

Figure 4.6: Reconstructed 3D RI of embryo cells. (Left) Full field-of-view at a single focus
plane. (Right) 3 axial slices for regions in the blue dashed and orange boxes.

other, with cleavage planes on the diagonal and off-diagonal directions. Recovering the 3D
information enables us to figure out the location of individual cells, providing a non-invasive
way to isolate sub-cellular features with high resolution and accuracy.

4.4 Summary

A novel quantitative 3D phase imaging technique is introduced, which captures images with
asymmetric partially coherent illumination at different focus planes. Under the 15* Born ap-
proximation, a linear 3D model can be derived that relates illumination-dependent intensity
to 3D RI and absorption. The reconstruction algorithm is fast and efficient, using either
Tikhonov (¢3) or TV regularization with a positivity constraint. The experimental setup
is simple and inexpensive (with an LED array add-on), enabling label-free and stain-free
single-cell imaging with sub-cellular feature specificity.
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Chapter 5

3D Phase Imaging with
Multiple-Scattering Objects

5.1 multiple-scattering Models for 3D Phase Imaging

While many 3D phase imaging methods like 3D DPC in Chapter 4 work with weakly scatter-
ing objects, they fail imaging the multiple-scattering objects due to their inaccurate forward
models. To perform 3D phase imaging with multiple-scattering objects or optically dense
samples, a scattering model that describes light-matter interaction beyond the single scatter-
ing regime is needed. As a result, Multi-Slice (MS) or beam propagation method scattering
model was adopted to account for multiple-scattering effects when light propagates through
the objects, and inverse problems were solved using MS propagation with both holography
and intensity only measurements [43, 96]. MS assumes each slice as an infinitesimally thin
transmission layer. However, it is no longer accurate in the case of oblique illuminations;
the off-axis light travels a longer distance compared to the on-axis light. Therefore, the
accuracy of MS lessens as the angle of incidence increases. Several heuristic approaches have
been proposed to mitigate the issue, but they rely on geometric optics within each slice and
are either not stable for high angle oblique illuminations or greatly increase computation
cost [99, 100]. In addition, MS only describes the forward scattering process and misses the
back-scattered light, which can potentially be used to solve the missing cone problems in
ODT. More quantitatively accurate scattering models have also been developed to generate
forward and backward scattering fields close to the analytic solution of the Helmholz equation
via series of convolutions with a 3D Green’s function. These include recursive Born [11, 101],
contrast source inversion method [102], coupled dipole method [103], hybrid method [104],
and series expansion with accelerated gradient descent on the Lippmann-Schwinger Equa-
tion (SEAGLE) [105]. Unlike the weakly scattering models or MS, they require orders of
magnitude more computation and memory due to 3D matrix operations, which limits their
application to 2D slice reconstructions or small volume 3D phase tomography [106, 107].
To conquer the issues mentioned above, a new efficient scattering model, Multi-Layer Born
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(MLB), is presented in this chapter. The model contains two major conceptual steps. First,
the 3D object is decomposed into multiple 3D slabs with finite thickness. Second, 15 Born
scattering process is sequentially applied to each slab. This new method not only removes
the paraxial assumption in MS, but is also capable of computing backward scattering light
from the samples.

5.2 Multi-Layer Born Light Scattering Model for 3D
Phase Tomography
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Figure 5.1: Proposed 3D phase imaging framework. Intensity measurements with spatially
coherent illuminations from different angles are captured on an optical microscope and fed
in as inputs to the 3D phase tomography algorithm. By solving a nonlinear optimization
problem with MLB scattering model, 3D RI of a multiple-scattering object can be recovered.
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Forward scattering model

Any 3D scattering object can be described by a spatial distribution of scattering potential,
V(x,y, z), which is related to its RI, n(x,y, z), in the following expression:

V(z,y, z) =k (nQb —n?(z,y, z)) , (5.1)

where (z,y, z) represents the 3D coordinates, k, = 27“, A is the wavelength of incident field,
and ny, denotes background RI of the surrounding media. As light propagates through the
object, the scattered field interferes with the incident field and forms the total field. Under
the 1% Born approximation, the scattered field is linearly related to the scattering potential
by a Green’s function, G(z,y, z) [11]. Consequently, given the incident field, U,,, the total
field, Uiy follows the expression in Eq. (1.6):

Utot(xa Y, Z) = Uin(xa Y, Z) + /// G(ZE - CL'/, Y= yla 2 Z,)Uin(xla y,> Z/)V(I,, ylv Z/)dfbldy/dzl .

(5.2)
This linear assumption only holds when the magnitude of V' is small (i.e. a weakly scat-
tering object). Note that Eq. (5.2) does not account for multiply scattering processes in
highly scattering objects. However, multiple-scattering is accounted for when the object is
divided into multiple weakly scattering pieces and each being sequentially applied the 15
Born scattering process. Intuitively, a 3D object can be viewed as layer-by-layer slabs, and
each layer has a thin finite thickness Az. Under this configuration, the field after wave
propagates through the n'!" layer is the total field after the n'® layer by Eq. (5.2), and serves
as the the incident field of the (n+ 1)*® layer. Therefore, by applying the 15 Born scattering
process on each layer recursively, the total field evaluated from the last layer becomes the
final multiply scattered field that will reach the imaging plane. Going forward, we will refer
to this method as the Multi-Layer Born (MLB) scattering model. Let U™ and U be the
incident field and the scattered field of the n'® layer, the recursive formula can be written as

U (p, (n+1)Az) = U"(p, (n + 1)Az) + U"(p, (n + 1)Az) , where (5.3)
Ul(p, (n+1)Az) = Z // G(p—p, Az = QU"(p',nAz+ )V (p',nAz + ()d*p'd¢
i (5.4)

where p = (x,y) is the 2D vector in real space coordinates.

The first term in Eq. (5.3) is the incident field at the center of n'!' layer propagating to
a distance Az away. Given the 2D Fourier transform operator F{-}, the spatial frequency
spectrum of the incident field U™(u) = F{U"(p,nAz)}, and the angular spectrum propa-

gation kernel K (u,z) = e?™V(w/ A?=lwll3 with the 2D spatial frequency space coordinates
vector u, we get

U™ (p, (n+ 1)Az) = F! {K(u, Az)ﬁn(u)} . (5.5)
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To simplify Eq. (5.4), it is useful to use the Fourier representation of the Green’s function in
Eq. (1.21). In addition, the scattering potential is assumed to not vary axially within each
layer because the thickness, Az, is small, i.e. V(p,nAz+() = V" (p) for ( € [-Az/2,Az/2].
Based on Egs. (5.4), (1.21) and the convolution theorem, the spatial frequency spectrum of
the scattered field, U™(u) = F{U(p, (n + 1)Az)}, becomes

/ / / _1K4::FAZ “ K GO @)V ), (56)

where V" (u) = F{V"(p)} denotes the 2D spatial frequency spectrum of the scattering po-
tential at the n' layer. The integration along the ¢ dimension only involves two propagation
kernels,

Az

D K(u,Ar — OK (W, O)d¢ = K (u, Az)sinc((F(u') - I‘(u))Az) Az (5.7)

—Az
2

where sinc(x) = sin(rx)/(rx). Plugging in the integration result into Eq. (5.6), we obtain

U (u) = G(u, Az) // sinc((F(u') — F(u))Az) U™ (u)V™(u —u)Azd®u' . (5.8)

Egs. (5.5) and (5.8) conclude the forward scattering part of MLB. Eq. (5.8) is computation
expensive; however, the sinc function is almost equal to 1 when a small Az is chosen and the
integration becomes a convolution, which can be efficiently evaluated via FFT. The major
difference between MLB and MS scattering models is that MLB considers non-paraxial 3D
scattering effect within each layer while MS simplifies it with a 2D field transmission. Hence,
MLB becomes more accurate as oblique light dominates in the object. Due to the nature
of 3D scattering, MLB is also capable of modelling the backward scattering field (detailed
derivation and simulation of backward scattering in Appendix A.2). Usually, the total field
after the light passes through all the layers is imaged by a low-pass imaging system, where the
spatial frequency bandwidth is determined by the NA of the imaging system. This process
is described by refocusing the total field to the image plane and applying a low-pass filter.
Typically, the objective lens focuses at the center plane of the object, where the refocusing
distance is Af = —NAz/2 from the last layer to the center. With the ideal circular low-pass
filter P(u) = Circ(uA/NA), the measured forward scattered field can be efficiently computed
using FFTs, as shown in Algorithm 1.

3D intensity-based phase tomography with MLB

An intuitive way to probe 3D structure of an object is by rotating the object around the
axis perpendicular to the optical axis [108, 109]. However, this is difficult to achieve on an
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Algorithm 1 Multi-Layer Born Forward Scattering

Input: Incident field at the 15 layer U'(p,Az), N layers of 3D scattering potential
{V”(p)}ivzl, layer thickness Az, and the refocusing distance Af.
: for n < 1to N do > MLB scattering
U"(p,(n+1)Az) « FH{K(u, Az) F{U"(p,nAz)}}
U™ (p, (n+1)Az) « F! {é(u, A2)F{U"(p, nAz)V”(p)Az}}

1
2
3
L U™ p,(n+ 1)Az) « Ulp, (n+ 1)Az) + U(p, (n + 1)Az)
5
6

. end for

t Unnage(p) < FH{P(u)K (u, Af)F{U " (p,(N + 1)Az)}} > refocus and image
Return: Total field on the image plane Ujyage and incident fields at each layer
{Un(pv TLAZ) g:l'

optical microscope without additional hardware and limits the types of objects that can be
imaged [93, 110]. In contrast, illuminating the object at various angles also reveals the 3D
information of objects. This technique is widely adopted in ODT systems using either Galvo
mirrors or spatial light modulators [35, 41, 111]. For intensity-based 3D phase tomography
techniques, the requirement of spatial and temporal coherence of the light source is less
stringent, and the illumination scanning process can be realized using an inexpensive LED
array [50, 88, 112, 113]. Combining the illumination scanning scheme and the proposed MLB
scattering model, a 3D intensity-based phase tomography algorithm that applies to multiple-
scattering objects is complete. Similar to those previously proposed multiple-scattering
methods [43, 96, 105], an iterative algorithm is needed to recover the 3D RI of the sample
because the measurements are nonlinearly related to the scattering potential. First, the
3D intensity-based phase tomography is formulated as an optimization problem with an
objective function £(V') as shown in Eq. (5.9):

NLED

min £(V) = 3 [[Uiniages (V)] = v/ Tncasnes > + 7RIV . (5.9)
j=1

where Nrgp is the total number of LED used which determines the number of illuminations.
Equation (5.9) consists of two terms. The first term is the data fidelity term that measures
the Euclidean distance between the estimated amplitudes and the square root of measured
intensities Ieasure from MLB prediction. The second term is a regularization term that
enforces prior knowledge on the 3D scattering potential. To balance the strength of data
fidelity and regularization, 7 is introduced as a tunable parameter. Because the minimum
of Eq. (5.9) cannot be computed analytically, an iterative algorithm is required. Due to
the large scale nature of 3D tomography problems, the proximal gradient method is chosen
for minimizing Eq. (5.9) which has relatively lower memory requirements and computation
complexity compared to ADMM or 2°¢ order Newton’s method. To implement the inverse
algorithm, gradient of the data fidelity term with respect to V/, {‘fgﬁad(p)}ﬁyzl, is required
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Algorithm 2 Gradient Computation
Input: Measured intensity Ineasure, Predicted total field on the image plane Ujpage, incident
fields at each layer {U™(p,nAz)}N_,, current estimated 3D scattering potential {V"(p)}.

n=1» n=1?
layer thickness Az, and the refocusing distance Af.
1. R(p) < |Uimage(P)| — \/Imeasure(P) > residual
2 Ulhnage(P) ¢ (Uinage (P)/|Uinage(P)]) R(p)

UM (p, (N +1)A2) = FH{ P(u) K (u, ~AN)F {UL(0)} |
: for n <+ N to1do > MLB back-propagation
U™(p,nAz) « FH{K(u,—Az)F{U"™(p,(n+ 1)Az)}}
Q"(p,nAz) « F! {G (u, A)F {U™1(p, (n + 1)Az)}} Az
Via(p) < U™ (p,nA2)Q" (p, nAz2)
U™ (p.nAAz) + U™ (p.nA2) + V7 (0)Q"(p.nA2)
end for

Y X > gk

N
n=1"

Return: Gradient at each layer {V1,4(p)

at each iteration. Steps to evaluate the gradient are listed in Algorithm 2, where o* stands
for the complex conjugate of o. Typically the algorithm converges faster if V' is sequentially
updated over different angles of incidence [43, 96, 114], as opposed to summing the gradients
computed from all measurements and refining V. The penalty function helps regularize
the updated V' to avoid over-fitting due to high degree of nonlinearity of the model. The
following proximal operator is applied after the gradient steps

prox, (V) = arg min 7R(x) + %Haz - V3. (5.10)
xr

In this chapter, TV is used as the penalty function because it has an efficient proximal
operator and provides reasonable regularization [47]. Finally, the Nesterov’s acceleration
method is used at the end of every iteration to further speed up the convergence [115].
In addition, the momentum restarting mechanism [116] is also adopted, which makes the
accelerated gradient method stable by preventing it from diverging. Detailed implementation
of the 3D intensity-based phase tomography with MLB is summarized in Algorithm 3. Note
that MLB also applies to holographic phase tomography with complex field measurements by
simply changing the data fidelity term in Eq. (5.9). At the same time, the inverse Algorithm 3
is compatible with other scattering models by switching to their own Algorithms 1-2. In
both simulations and experiments, step size « is set within a range from 0.5 to 5 and 7 is
manually chosen to be around 1072 for the 15 Born, Rytov, and MLB models. In contrast,
these two parameters are 2 to 3 orders of magnitude smaller when MS is applied. This is
due to the large local Lipschitz constant of the objective function when using MS, in which
RI is solved instead of the scattering potential. Based on Algorithms 1-3, the proposed 3D
phase imaging framework using MLB is summarized in Fig. 5.1.
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Algorithm 3 3D intensity-based phase tomography with MLB

Input:  Measured intensities {Imeasured(p)}jy;?D, incident fields at the 15 layer

{U}(p, Az)}jy:LiED, layer thickness Az, refocusing distance Af, step size «a, regularization
parameter 7, and max number of iteration Nii.

Initialization: 3D scattering potentials {V;"(p)})_, = { prox()( N =0and ty =1
1: for k <+ 1 to Nj do
2: for j < 1 to Npgp do > sequential gradient descent
3: (Ulmagej( ), U} (p, nAz) N ) <+ run Algorithm 1
4: {V2a(p) o, « run Algorlthm 2
s AV e (VP (o)} — a{ V(o)
6: end for
7 if L{V,"(p)})) > LHV,(p)},) then > momentum restart
8: Vi)l A Vitowro1tn
9: t, — 1
10: Start k -+ 1 iteration
11: end if
2 (VI e prox e (VE(e) ) > regularization

13: ty +— % (1 +4/1+ 482 ) > Nesterov’s acceleration

14: V(e ) o Voo (P) i 1+tk — ({ proxk( o — Vv, o k—1(P )}gﬂ)
15: end for

Return: Reconstructed 3D scattering potential {V3 . (p)})

n=1"

5.3 Simulation Results

Comparison of scattering models

From Eq. (5.9), notice that a scattering model evaluating accurate amplitude images is
required in order to recover quantitative 3D RI. It is especially important for oblique illumi-
nation, where the amplitude contains more high spatial frequency information and stronger
phase contrast. To analyze the accuracy of common scattering models used in 3D phase
imaging, including 1% Born, Rytov, and MS, and the proposed MLB method, the amplitude
images of a 3D cell phantom with different methods are simulated. Then, their results are
compared with those generated by SEAGLE, which is considered to be the ground truth.
The RI of the cell phantom is set large enough such that it is not a weakly scattering object.
Specifically, it has a 15 x 15 x 7.5um? ellipsoid body, which contains cytoplasm (RI n = 1.35),
a nucleus (n = 1.33), two nucleoli (n = 1.36), several small organelles (n = 1.39), and a
thin plasma membrane (n = 1.37) enclosing the body. In addition, the 3D cell phantom is
surrounded by medium of n = 1.33, resulting in a volume of 450 x 450 x 150 voxels with
0.05um resolution. Assuming the illumination wavelength is 0.532um and NA of the objec-
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Figure 5.2: Accuracy of image formation with a 3D cell phantom using the 15 Born, Rytov,
MS, and MLB scattering models. (a) Ground truth of forward and backward scattered
amplitude (first row) with on-axis and off-axis illuminations, and the error maps for all
models (bottom rows). (b) Accuracy of each model when the maximum phase within each
layer increases.

tive lens is NAg,; = 0.8, the amplitude images are calculated using forward and backward
scattered light under on-axis (NA;;, = 0.00) and off-axis (NAy, = 0.75) illumination scenar-
ios. Ground truth of the amplitudes are shown in the top row of Fig. 5.2(a), while the errors,
evaluated by subtracting the ground truths from the amplitudes generated by each model,
are listed in the bottom 4 rows. Since the weakly scattering approximation does not hold,
both 1% Born and Rytov methods produce high errors in amplitude. In contrast, MS and
MLB scattering models account for multiple light scattering within the object, which greatly
increase the accuracy. However, the error of MS becomes obvious in the off-axis illumination
setting due to paraxial approximation, and the method does not model backward scattering.
As a result, MLB is the most accurate model among the four mentioned above. There is a
trade-off between the model accuracy and the maximum phase within each layer when using
MLB. This is the fact that 1% Born approximation might fail between layers as the phase in
each slice becomes too large to satisfy the weak object assumption. Figure 5.2(b) visualizes
this trade-off by plotting the evolution of mean squared error (MSE) over the maximum
phase value in each layer. By binning the neighboring layers and adapting a larger Az along
z-axis, the maximum phase in each layer is effectively increased. MSE of the 1°* Born results
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is not displayed because its value is order of magnitude larger than the others. In the forward
scattering case, MSE of the MLB results grow linearly when the phase in each layer becomes
higher, while the MSEs of Rytov and MS remain similar. Meanwhile, MLB provides more
accurate amplitude images in oblique illumination settings when the phase within each layer
is smaller than 0.047 for the cell phantom. For backward scattering, MSEs using all models
are smaller due to weaker back-scattered light, but the error quickly increases as the phase
in each layer grows. Similarly, MLB is expected to have significant accuracy improvement
over the others when the weakly scattering assumption is valid within each layer. All the
processing was done on a NVIDIA TITAN X GPU installed on a desktop computer (Intel
i7-5960X CPU), and the forward computation time of 1% Born, Rytov, MS, and MLB were
0.22, 0.22, 0.25, and 0.32 seconds respectively for the 150-layer phantom.

Comparison of 3D RI reconstructions

Subsets of Simulated Measurements
0, = 34.47° 6, = 37.27°
6, = —28.21° 0, = 24.85°

Figure 5.3: Comparison of 3D RI reconstructions using the 1% Born, Rytov, MS, and MLB
scattering models and the proposed inverse Algorithm 3. (Top row) Simulated measurements
correspond to 5 distinct angles of incidence. (Bottom rows) x —y and x — z cross sections of
true RI distribution of the cell phantom as well as the 3D reconstruction results. The MSEs
are labeled at the lower right corner of each x — y cross section.
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To understand how the accuracy of the forward scattering model used in Algorithm 3
affects 3D RI reconstructions, phase tomography results with 4 different models described
in 5.3 are compared. SEAGLE was used to simulate ground truth measurements, where
104 forward scattered amplitudes were generated with illuminations (NAjy, ~ 0.75) from an
annular region on the source plane. And the rest of the imaging parameters, i.e. NA, pixel
size and wavelength, for image formation simulation remain the same as listed in Sec. 5.3.
Similar to Differential Phase Contrast (DPC), measurements contain high spatial frequency
contents and rich phase information when the object is illuminated by oblique light with
NAj, close to NAy,; [32], as shown in the first row of Fig. 5.3. Hence, high resolution
3D RI of the object can be recovered with those measurements. Comparing the ground
truth RI of the cell phantom to results computed using different models, obvious differences
among them are observed. And the accuracy is quantified by the MSE of each reconstruction,
which are 0.0159, 0.0076, 0.0088, and 0.0054 for the 1%* Born, Rytov, MS, and MLB methods,
respectively. Since 15 Born method overestimate the amplitude values on the image plane
(see Fig. 5.2(a)), the RI retrieved using it becomes underestimated. On the other hand, Rytov
scattering model results in a more accurate reconstruction due to a less strict approximation.
However, it suffers from incorrect background RI, and RI is less uniform inside the object
especially on the middle plane of the object (x — y cross section). This suggests that the
forward modelling error of Rytov is non-negligible for this multiple-scattering object. In
contrast, MS and MLB recover Rls with more uniform background, which are similar to
the ground truth. However, the 3D phantom recovered using MS has features elongated in
axial direction, which gives rise to a less accurate shape and introduces undesired contrast
on the x — y cross section, as indicated in Fig. 5.3. This is also the main reason that
MSE with MS is slightly higher than with Rytov model, though the RI reconstruction using
MS provide better visual appearance in this simulation. Despite suffering from the missing
cone problem as in other cases and sacrificing the axial resolution of low spatial frequency
content, the proposed algorithm adopting MLB recovers the most quantitative 3D RI because
of the high accuracy of the scattering model. All the computations were performed on the
same computer described in 5.3, and the total reconstruction times using Algorithm 3 with
100 iterations were 0.67, 1.19, 1.50 and 1.67 hours, respectively. The computation time
grows linearly with the product of number of layers, number of iterations and number of
measurements, but barely changes as the number of pixels in each layer increases. This
comes from the fact that the most computationally expensive operation in each layer, the
FFT, can be efficiently parallelized on a GPU.

5.4 Experimental Results

In the following experiments, an LED array microscope is used to realize the 3D intensity-
based phase tomography described in Sec. 5.2. A planar 32 x 32 programmable LED array
is mounted on a Nikon TE300 inverted microscope, which generates 0.514um light from
different angles of incidence [43]. Since the LEDs are placed far away from the object
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compared to the FoV, the incident light from each LED can be treated as a plane wave whose
propagating direction is determined by the position of the LED. The distance between the
LED array and the object plane is 68mm when using the 40x, 0.65NA objective lens. And
it is adjusted to 46mm when the 20x, 0.50NA and 60x 0.80NA objective lenses are used
for higher illumination intensity and larger angle of incidence. All the images are captured
by a monochrome sCMOS camera (PCO.edge 5.5, 6.5um pixel size) at the front port of
the microscope, where an additional 2x magnification is provided. For each illumination,
two intensity images are recorded, with and without the object in the FoV. By dividing the
former by the latter, the normalized intensity, I casure, S€rves as the input when solving the
inverse problem in Algorithm 3.

Quantitative comparison between different scattering models

N
1 (a) \e (b) Low Index Contrast An = 0.0113 1.602 - )
6, = -11.26°, 0,= +19.52° Rytov MS MLB 1600/
H x
1.60 g 1.598 1
£
v 5 1,596
2
5 15941
o
5 1592
[ ‘ ‘ o~
1.588

0 2 4 6 8 10 12 14
position, um

, \
6, = —38.08", 6, = —10.66} (c) v High Ipdex Contrast An = 0.0452 1.605 .
: 1 Born Rytov MS MLB 1.597
: 3 1589
T » ‘ ‘ 16181
i ‘o 1581
Lox S 2
— T 1573
e
% 1.565
2
0.2 ' . . 151 1557
z
I A 13997753 6 8 10 12 14

position, um

Figure 5.4:  Quantitative comparison of recovered RI using different scattering models.
(a) Two examples of the normalized transmitted amplitude of both low and high contrast
polystyrene beads. (b)—(c) Comparison between orthogonal slices of 3D RI reconstructions
of low /high contrast polystyrene beads from different scattering models. 1-D cross sections
along the black dotted lines are plotted on the right.

To quantify the accuracy between 3D RI reconstructions from different scattering models
in practice, ground truth phantoms are needed. Hence, two ~ 5um polystyrene beads
(Sigma-Aldrich, n = 1.6010 @\ = 0.514um) are prepared as the samples by immersing
them into two different index-matching oils (Cargille), resulting in RI contrasts of An =
0.0113 and An = 0.0452, respectively. A 40x, 0.65 NA objective lens (Nikon CFI Plan
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Achromat) was used, whose front focal plane was aligned with the center of the polystyrene
beads. 100 images with angles of incidence ranging from 22.77° to 44.09° were captured
at 6.66 frame-per-second (FPS) to recover each bead. During the iterative reconstructions,
a positivity constraint and TV regularization were incorporated in the proximal step. As
shown in Fig. 5.4(b), both single and multiple-scattering models yield similar results as RI
contrast is low, since all of them are valid in the weakly scattering regime. In contrast, the
recovered Rls drastically changes among different models when the RI contrast increases
by a factor of 4, as shown in Fig. 5.4(c). The 1% Born approximation completely fails by
underestimating the RI value and missing content in the center region of the bead. Using the
Rytov scattering model mitigates the RI underestimation due to less stringent assumptions,
but results in a corrupted shape on x — z plane. While reconstructions with MS and MLB
methods both accounts for multiple-scattering events, the reconstructed bead using MS has
a elongated shape and slightly less quantitative contrast, similar to the simulations. On
the other hand, the recovered polystyrene bead using MLB has higher quantitative accuracy
and more isotropic resolution. This indicates that MLB best describes the scattering process
compared to the other 3 models when imaging objects of high RI contrast.

MLB on weakly scattering object

To see if the proposed algorithm with MLB works with weakly scattering object, we prepare
a fixed 3T3 cell as our sample. In this case, a 60x, 0.80 NA objective lens (Nikon CFI Achro-
mat) is used to capture 100 intensity measurements at 2 FPS; and the angles of incidence of
LED illuminations were ranging from 49.40° to 51.43°. Since the NA of illuminations is set to
be close to the NA of the objective lens, both high frequency content and low frequency phase
contrast of the 3D sample are simultaneously encoded in the measurements. This is critical
as it is desired to achieve high resolution phase tomography with realistic 3D structure. By
using the 60x objective lens, the images formed on the camera plane is over-sampled due
to the additional magnification provided by the tube lens at front port. Hence, all the im-
ages are down-sampled by a factor of 4 (2 in each dimension) before serving as the inputs
of the reconstruction algorithm, which helps reducing the number of unknowns, increasing
SNR, and saving computation time. Specifically, the measurements are down-sampled to
size 612 x 612 and set Az be 5x as large as the demagnified pixel size when solving 3D RI
within a 612 x 612 x 120 volume, whose voxel size is 0.108 x 0.108 x 0.540um3. In this result,
neither the positivity constraint nor TV regularization was used. Figure 5.5(a) shows the
orthonormal views of the recovered 3D RI of 3T3 cell. Although the reconstruction suffers
from minor anisotropic resolution, the components within the cell can be identified, such as
nucleus indicated by the arrows. The physical thickness of the cell is also identified to be
~ 17um. Besides providing quantitative density of the sample, it is also observed that a slice
of RI actually provides better contrast compared to conventional 2D phase (contrast) imag-
ing methods. Figure 5.5(c) provides a comparison between DPC using bottom-half circular
illumination [30, 32|, quantitative phase from DPC with four measurements, and the recov-
ered RI of two regions within the cell at two different depths. While all of them theoretically
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Figure 5.5: 3D RI reconstruction of a 3T3 cell using the MLB scattering model. (a)
Orthonormal views of the recovered 3T3 cell. (b) 3D rendering of RI reconstruction. (c)
Zoomed-in comparison between DPC, quantitative phase, and slice of 3D RI of the 3T3 cell
at two different depths within green and blue boxes in (a).

have similar DoF ~ 0.64um, which helps reveal different structures at each plane as those
vesicles indicated by the arrows, their contrasts vary dramatically. Out-of-focus information
is integrated with in-focus cell content in the phase image, making it hard to distinguish
one from the other. Although the DPC images highlight the in-focus components of the cell,
it is non-intuitive to interpret the actual structure from the qualitative directional gradient
appearance. In contrast, 3D RI reconstruction naturally displays optical density at each
depth and builds up high contrast contours that separates distinct organelles.

3D phase imaging of multiple-scattering object

Since MLB model considers multiple-scattering events as opposed to other simplified weakly
scattering models, there are improvements in RI reconstructions of an optically thick object
when comparing MLB against other models. Here, a 4-cell stage embryo harvested from
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Intensity measurements and frequency spectrum
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Figure 5.6: (Top) Two examples of measured intensities and their spatial frequency spectrum
of a 4-cell stage mouse embryo under the LED array microscope, showing the existence of
multiple-scattering event. (Bottom) Two layers of 3D RI reconstruction of a 4-cell stage
mouse embryo using the 1% Born, Rytov, MS, and MLB scattering models, respectively.

B6J mice and immersed in KSOM media is imaged, which spans a spherical volume of
~ 100pum diameter. The embryo is relatively large and it can drift during the data capture,
so a 20x, 0.5NA objective lens is used to trade-off spatial resolution for large FoV, high
light throughput, and fast acquisition. With this system adjustment, 132 brightfield images
are recorded at 50 FPS to achieve single volume 3D phase tomography within 3s. The
first row in Fig. 5.6 shows intensity measurements using on-axis (NAj, = 0) and off-axis
(NAj, ~ 0.5) illuminations and their corresponding Fourier spectra. Green circles on the
power spectra indicate the spatial frequency coverage of the weak object transfer functions
based on the illumination angles [32, 33|, in which single scattering signals exist. And some
strong signals pointed by green arrows appear outside those regions, indicating that non-
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negligible multiple-scattering events happen when light propagates through the embryo. As
mentioned in Sec. 5.4, the measurements are down-sampled before sending to Algorithm 3,
and the volume of reconstruction is set to be 600 x 600 x 50 voxels, where the voxel size
is 0.244 x 0.244 x 2.44um?. As a result, 3D Rls of the embryo are recovered with each
forward scattering model. The bottom rows in Fig. 5.6 compare RI slices focusing at the
lower two cells (aligned horizontally) and the upper two cells (aligned vertically), respectively.
When observing the weakly scattering components, e.g. zona pellucida (red arrows), both
weakly scattering and multiple-scattering methods give rise to similar results. However,
obvious differences can be found around the center of the FoV, where the bottom cells
are occluded by the top cells. For instance, nucleoli reconstructed using the 15 Born and
Rytov approximation either vanish or degrade while the results with MS and MLB provide
greater contrast compared to the surrounding cytoplasm, as indicated by the orange arrows.
This explains why a multiple-scattering model is necessary for 3D phase tomography with
optically dense objects. Here, not much difference between RI results from MS and MLB is
observed, since the illumination angles and the objective’s NA are both small and paraxial
assumption holds in MS propagation. In order to explore the benefit of MLB over MS in
reconstructions, high resolution optical microscopes should be used as demonstrated in the
next Section.

High resolution 3D phase Imaging of multiple-scattering objects

15t Born

z=+3.63um @:
1
130 [T 1.39 I

Figure 5.7: 3D RI reconstructions of an entire adult hermaphrodite C. elegans worm. The
insets show zoomed-in comparison between orthonormal cross-sections of recovered Rls using
the 15 Born, MS, and MLB methods, indicated in the white box region that includes the
mouth and pharynx of the C. elegans.
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MLB describes the multiple light scattering process based on scalar wave theory in the
object space without any assumptions on the imaging system. Hence, it naturally applies to
different microscopic setups in addition the LED array microscopes. Moreover, unlike the
Multi-Slice (MS) or beam propagation method, MLB considers non-paraxial wave interaction
with 3D objects. To demonstrate these features, the aforementioned intensity-based phase
tomography is applied to a custom built high resolution optical microscope [117]. Instead of
using an LED array as the light source, a fiber-coupled LED (Thorlabs M530F2, A = 0.530um
center wavelength) is combined with a mirror mounted on a motorized kinematic mount
(Thorlabs KS1-Z8) to achieve a programmable angle-scanning illumination module. Two
high-NA oil-immersion objective lenses (Nikon, CFI Plan Apo Lambda 100x, NA = 1.45)
serve as the condenser and the imaging lens respectively, which enables a sub-wavelength
resolution phase imaging system. To avoid severe aberrations from steep-angle illuminations,
both the illumination and the detection NA are limited up to 1.1 by placing a physical
aperture in the pupil plane. A fixed C. elegans sandwiched between two coverslips is treated
as the multiple-scattering object, and the magnified intensity image corresponds to each
illumination is captured by a CMOS camera (FLIR BFS-U3-200S6M). For this specific setup,
120 images are collected with the illumination angles scanned on a spiral-shaped trajectory
for 3D RI reconstruction. Since the angle of incidence is mechanically controlled by tilting the
mirror, it has lower precision compared to motion-free scanning using the LED array. In order
to get robust reconstructions, a self-calibration process is adopted that uses the raw intensity
measurements to estimate correct illumination angles computationally [27]. Algorithm 3 can
then be applied and provides quantitative RI within a volume of 1200 x 1200 x 100 voxels,
whose voxel size is 0.12 x 0.12 x 0.35um?. However, the length of the C. elegans is too long
(~ 1mm) to fit in single FoV of the high resolution microscopic system. Therefore, 12 phase
tomography dataset at different regions are measured, and the 3D RlIs from all FoVs are
digitally registered and stitched to visualize the entire worm. In Fig. 5.7, drastic differences
between RI results using the 15 Born, MS, and MLB models can be observed. As expected,
the RI contrast of body of C. elegans is large and the sample is thick so that the weakly
scattering approximation fails. Hence, the recovered RI from 1% Born method only shows
outlines of the sample but loses most of the low frequency content. Moreover, structures on
the y — 2z cross-section do not look similar to those recovered with multiple-scattering models.
On the other hand, the RI values recovered using MS are slightly higher than Rls in the
MLB case. This agrees well with the simulation results, where the physical accuracy of the
forward scattering models mirrors the accuracy of the final reconstructions. In addition, the
unrealistic halo artifacts pointed by the arrows in Fig. 5.7 are mitigated by simply changing
the scattering model from MS to MLB. All facts mentioned above support that MLB works
with high-NA imaging system. And the intensity-based phase tomography using MLB has
superior performance in terms of accuracy as imaging multiple-scattering objects. At the
same time, the computation and memory cost of MLB is similar to MS, which is an efficient
method to evaluate 3D scattering. As a result, it is possible to achieve 2 Giga-voxels 3D RI
retrieval of the whole C. elegans, shown at the bottom in Fig. 5.7, on a desktop computer
with GPUs.
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5.5 Summary

MLB scattering model is introduced, which fundamentally removes the paraxial approxima-
tion as used in MS and is able to compute the backward scattering field simultaneously. MLB
shows superior accuracy in far-field simulations using multiple-scattering objects compared
to widely used 1% Born, Rytov and MS methods. As a result, the 3D RI reconstruction
using MLB has better quantitative accuracy and higher fidelity in geometric shape as imag-
ing strongly scattering samples. The LED array microscope has no moving part during
data acquisition, which helps achieving fast 3D imaging capability that is only limited to
the power of the LEDs or frame rate the of camera. Meanwhile, thanks to moderate com-
putation complexity and highly parallelizable operations, the inverse algorithm with MLB
achieves large volume 3D phase imaging in practice. The 3D phase tomography scheme also
applies to optical microscopes with high NA and enables nearly isotropic high resolution 3D
RI reconstructions. Since MLB provides a computationally efficient way to model the light
scattering process, it helps push the limits of existing methods and inspire new optical design
to further improve the performance of 3D phase tomography.



70

Chapter 6

Conclusion and Future Work

In this work, we have proposed several quantitative phase imaging methods in optical micro-
scopes using a computational imaging framework. In conventional microscopes, the phase
or refractive index of objects cannot be directly measured and single phase contrast im-
age does not contain enough information for QPI. Hence, we need to modify the optics of
the imaging system, design the data acquisition to operate in tandem with programmable
modules, and develop a post-processing algorithm to accomplish phase retrieval. However,
introducing additional hardware other than existing optics not only increases the cost, but
also makes QPI less feasible on conventional microscopes. Moreover, techniques that involve
spatial light modulations at the pupil plane might result in artifacts if the system is not
perfectly calibrated. In this work, several multidimensional phase reconstruction methods
are proposed using purely coded illumination. By replacing the conventional light source
with a low-cost programmable LED array, different 2D and 3D QPI schemes are realized on
a commercially available microscope. Object movement during data acquisition is minimized
thanks to the fast speed of illumination coding via LEDs, which provides descent temporal
resolution and enhances the robustness of object reconstruction. The main contributions of
this dissertation include a novel coded illumination strategy for real-time QPI, joint phase
recovery and high-dimensional pupil aberration calibration in a low-dimensional space, accu-
rate 3D scattering modelling for both weakly and multiple-scattering objects, and efficient
algorithms for solving the inverse problems.

In Chapter 2, a real-time QPI method is demonstrated based on DPC microscopy. To
further improve the temporal resolution and increase the frame rate, 3 DPC measurements
for phase retrieval are captured simultaneously by a RGB camera using color-multiplexing
(¢cDPC). This relies on a coded illumination that splits 3 half-circular source patterns into
different color channels, which can be easily generated via a RGB LED array or a color
filter insert with broadband light source. Typically, the color camera has wide band Bayer
filters on top of its pixels, so we implement a demosaic process to extract DPC images
from the raw measurement. By solving a least-squares problem, a single-shot reveals 2D
quantitative absorption and phase, and camera-limited speed QPI is achieved. In addition,
multiple contrasts, such as PhC and DIC, can also be synthesized since they have well-
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defined forward models using the phase reconstruction. Hence, cDPC offers multi-contrast
high-speed imaging with fast moving objects, e.g. C. elegans and floating cells in microfluidic
channel.

In Chapter 3, it is shown that a computational method simultaneously solves for the com-
plex field and calibrates spatially-varying aberrations with as less as 4 measurements. While
DPC images are not sensitive to system aberrations, intensity measured with spatially coher-
ent illuminations contains rich information of the aberrated point spread function. Therefore,
combining both DPC and coherent intensity images enables joint estimation of absorption,
phase, and pupil aberrations. If no assumption is applied during aberration recovery, the
number of unknowns are comparable to the size of each image, which requires many data to
calculate accurate results. However, it is well-known that the aberrations of circular imaging
lenses in optical microscopes can be decomposed using Zernike polynomials. In consequence,
a few parameters in a low-dimensional space are able to represent the pupil function, which
greatly reduces data requirement of the technique. Furthermore, when the aberrations slowly
varies across the FoV, the pupil functions and objects at different locations can be resolved
in parallel by splitting the FoV into multiple regions with spatially-invariant aberrations.

In Chapter 4, we extend the DPC microscopy to 3D QPI. Since DoF is narrow compared
to the thickness of objects when using spatially partial coherent illumination, through-focus
DPC images are measured to gather phase contrasts at multiple depths. Similar to 2D DPC
QPI, a linear relationship between the scattering potential of the object and the captured
intensity stacks is derived based on weakly scattering assumptions. With our proposed
analytic 3D linear transfer functions for absorption and phase, the RI of the objects are
reconstructed via a 3D deconvolution algorithm. Instead of using Tikhonov regularization,
incorporating a priori knowledge (i.e. piece-wise smoothness and non-negativity constraints)
of the objects mitigates halo artifacts and anisotropic resolution due to the missing cone in
3D spatial frequency spectrum. As a result, the quantitative optical density and volumetric
structures of biological samples are visualized under the LED array microscope.

In Chapter 5, a computationally efficient and accurate MLB scattering model is pro-
posed for 3D QPI with multiple-scattering objects. The entire volume containing the object
of interest is decomposed into cascaded thin 3D slabs, and the incident light sequentially
propagates through each layer. Since the phase in each slab is small, the 15* Born scatter-
ing stays valid within individual layer and the multiple-scattering phenomenon becomes a
series of single scattering process. Unlike beam propagation or MS method, MLB does not
make paraxial assumption and improves the quantitative accuracy, especially for oblique
illuminations. At the same time, multiple backward scattering light is also modeled. By
illuminating the object with spatially coherent plane waves at various angles and capturing
the intensity images, 3D phase information can be rapidly recorded. The proposed iterative
algorithm is then used to recover 3D RI of multiple-scattering objects. In addition, the 3D
QPI framework is compatible to high NA optical microscopes, where it achieves Giga-voxel
C. elegans reconstruction at sub-wavelength resolution.

While many 2D QPI methods have been explored and optimized, 3D QPI techniques are
relatively new and desire both hardware and software solutions to improve performance in
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practice. The following are several interesting potential extensions of this work:

o Isotropic high resolution 3D QPI using back-scattering: To essentially solve
the missing cone problem as described in Sec. 1.2, a sample could be physically ro-
tated to perform phase retrieval at multiple projected views [93, 110]. However, these
approaches increase the complexity of imaging systems and are not trivial to apply for
every object. An alternative method is to measure the transmitted as well as reflected
light simultaneously. In this case, spatial frequency spectrum of the object can be
uniformly sampled and 3D QPI with isotropic resolution becomes possible even in the
weakly scattering regime. [118, 119]. To completely fill the missing cone in Fourier
spectrum and achieve high resolution phase tomography, high NA objective lenses and
an accurate forward /backward scattering model, e.g. MLB, must be used.

o Self-calibration algorithm in 3D QPI: Similar to DPC with aberration correction
in Chapter 3, other computational self-calibration methods [26, 76, 27] for 2D QPI
using coded illumination have been demonstrated. Since 3D QPI is even more sensitive
to modelling errors, system calibration becomes inevitable in order to reconstruct the
object with extreme resolution. Precise incident waves and pupil aberrations need to
be recovered to get back the accurate quantitative results. This also applies to 3D QPI
beyond optical microscopy, such as electron tomography, where it requires tilt angles,
lateral and axial displacements, and system aberrations to be well calibrated for 3D
reconstructions at atomic scale [120, 121].

« Data-driven optical system/priors design for 3D QPI: The illumination pat-
terns used in this work are heuristically designed based on physical intuitions, which
might not be optimal for QPI. Since most phase retrieval problems are non-linear and
involves iterative reconstruction, the optimal system cannot be determined analyti-
cally. Alternatively, physics-based unrolled algorithm has been demonstrated to pro-
vide source coding that results in the best performance given a 2D QPI method [122].
While the iterative algorithms solving Eq. (1.3) is viewed as a deep neural network,
physical system parameters like angle and intensity distribution of the light source
or phase at the pupil plane are learned. With accurate light scattering models that
generate phase contrasts measurements of various kinds of objects as the training data,
it is possible to design the most efficient optical system for 3D QPI. At the same time,
the post-processing algorithms are developed based on existing regularization schemes,
which might not be ideal for the objects being imaged. Similarly, priors for specific
type of objects can also be learned [123, 124] along with the system parameters and
improve the 3D QPI results.
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Appendix

A.1 Derivation of DPC forward model

Any 2D optical field at the sample plane can be written as exp(®). Therefore, the output
field passed through the imaging system becomes a convolution between exp(®) and h, where
h is the point spread function or the inverse Fourier transform of a shifted pupil P(u + u'),
which depends on illumination angle (u') on 2D spatial frequency coordinate (w). Hence,
intensity I at the image plane can be expressed as:

I(p,w) = S@)[e™®) @ h(p, )2 (7.1)

Here, ®sp is 2D convolution operator and S is the intensity of the incident plane wave.
Eq. (7.1) can also be represented in an integral form:

Tp,w') = S() //// eé(pl,ul)ﬂ)*(pz’ul)h(/) —p1,u)h (p — po,u ) p1dPpy (7.2)

When the absorption and phase gradient are small enough, the exponential term in Eq. (7.2)
is approximately the same as its first order Taylor series expansion, i.e. exp(x) ~ 1+ x. As
a result, Eq. (7.2) becomes a combination of convolutions and multiplications:

I(p,u) =S(u') (1 @2p h(p, ) (1 ®ap h*(p,u’)) +
S(u') (®(p,u') @2p h(p,u’)) (1 ®p h*(p,u')) + (7.3)
S(u') (2" (p, u') ®ap h*(p,u')) (1 ®ap h(p,u)) .

Assuming Koéhler illumination, the output intensity under partially coherent illumination is
an incoherent sum of coherent intensity, i.e. an integration of Eq. (7.3) over u’. By taking
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Fourier transform (%) of the final intensity, the spatial frequency spectrum becomes:

o s

/ / S(u’) q>(u, u)P(u +u') @op P*(—u + u')a(u)} A2+ (7.4)
// S(u —u, v )P*(—u + u') ®p P(u + u’)é(u)] d*u’ .

Since Eq. (7.4) satisfies slowly varying phase, ®(u,w’) of 2D samples can be expressed
as —iV(u)/(47(A"2 — ||u + w'[|3)*®) based on Rytov approximation [11], where V is the
scattering potential and A is the wavelength of light. Let ®(w,0) = fi(u) + 1¢( ), and
express the spatial frequency of complex phase under different illumination as @(u u') =
D (u,0) (A2 = |ul|2) /(A2 = |lu+u]3))"®. By substituting this expression of ®(u,w’) into
Eq. (7.4), subtracting and divided by the DC term I, (first term in Eq. (7.4)), the spectrum
of the normalized intensity I, is related to the absorption (f&) and phase (¢) by:

. \ﬁ ful? wrW)PW) | PP usw) |
hlw) = [ st IWQ furwll VAT —urwp) “PT
\/7 2 Wt d)P) PP (Cutw) |

[ st [¢A2 urwls o —T—wrwp) O
(7.5)

If the NA of the objective lens is small, the oblique factors (A2 — [|u||%)%?, (A ™2 — || —
u+u']3)%° and (A2 — ||lu+/||3)*® in Eq. (7.5) become 1/), and the DPC forward model
using partially coherent illumination can be written as Eqs. (1.17)-(1.18).

A.2 Modelling backward scattering using MLB

Recall the 1° born approximation in Eq. (5.2), the total field at a given coordinate is the
sum of incident field and the scattered field. Similarly, in the MLB model, the back incident
field UL at the n'™ layer can be expressed in (7.6) as

Ul?i_1<pa (n - ]_)AZ) = UIZ(pa (n - ]_)AZ) + Ul?i,scattered(pv (TL - ]‘)AZ) : (76)

When a 3D object is treated as multiple connected layers, the backward scattering field,
second term in (7.6), within each layer has two components, as shown in Fig. A.2.1. One
comes from the ”forward” scattering of back incident field in —z direction, denoted by U} ¢,
due to the back-scattered light from layers behind. And the other is a portion of incident
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(n—1)™ layer n'h layer (n+ 1)™ layer
(n — l)lh
back incident field

th th

n n
incident field back incident field

%z

Figure A.2.1: MLB backward scattering model. In each layer, the scattered light from both
forward incident field and backward incident field in —z direction serves as the backward
incident light to the previous layer.

field reflected, denoted by UL, because of the inhomogeneous refractive index (RI) in the
layer. In this case, the 15" Born scattering model can be applied in each layer to achieve the
backward scattering version of MLB. Then, the recursive relationship of backward scattering
field between the layers shown in (7.6) can be expanded to be:

Ui (p. (n — 1)Az) = Ui(p, (n — 1)Az) + Ui (p, (n — 1)Az) + Up(p, (n — 1)Az), (7.7)

Notice that the first two terms on the right hand side of Eq. (7.7) is identical to the forward
scattering process described in Eq. (5.3), except with the propagating direction negated.
Therefore, only the back-scattered light, U}, need to be figured out to complete the backward
scattering model of MLB. Based on the 1% Born approximation, the back-scattered field
follows the following expression

UL (p. (n — 1)Az) = / / / Glp—p—Az — QU™p,nAz + OV (o ynAz + ()d2pldC

(7.8)
Note that the only difference between the back-scattered field and the forward-scattered field
(Eq. (5.4)) of the incident field is the sign of Az in Green’s function’s coordinate. Hence, b
using Eq. (7.8) and following the same derivation in Egs. (1.21)-(5.8), the Fourier transform
of U/, is obtained

U (u) = G(u, Az) // sinc((I‘(’u,’) + I‘(u))Az) U™ (u)V"(u —u)Azd®u . (7.9)

As expected, the difference between Eq. (7.9) and Eq. (5.8) is only a sign change in ar-
gument of the sinc function. However, this makes the sinc(x) ~ 1 assumption invalid in
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Algorithm 4 Multi-Layer Born Backward Scattering

Input: Spectra of incident fields at each layer {U"(u )}V, from Algorithm 1, N layers of
3D scattering potential {V”(p)}n 1» layer thickness Az the refocusing distance Af, and
highest order of Taylor expansion ¢.
Initialization: Back incident field at N*® layer UY (p, NAz) =0
1: forn <+ N to1ldo > MLB scattering
2: Ul(p,(n— 1)Az) «— K(u, A2)F{U%(p,nAz)}
3 Ula(p (n— DA2) « Glu, A2)F {Ug(p,nA2) V7 (p) Az}
4: Ul (p, (n —1)Az) <0
5: for j <~ 0 to ¢ do > Taylor expansion
6 UkT)Ls(p7( )AZ) <_Ubs<p7(

Glu,Az) ft( ){ HQ/ o) | vi(p)az]

7: end for
s Up(p.(n—1)Az) « F {be < m )+ Ul (n = 1)A2) +
Ubs }
9: end for
10: Uinage(p) < F H{P(u) K (u, Af)F{U(p,0)}} > refocus and image

Return: Total back-scattered field on the image plane Ujpage-

back scattering evaluation. And the integration in Eq. (7.9) cannot be treated as a convo-
lution, and thus computationally expensive. One way to save the computation burden of
MLB backward scattering calculation is approximating the sinc function with polynomials
of Q(u') = mAzI'(v') and Q(u) = 7AzI'(u) using Taylor expansion up to some order ¢.
Take t = 2 as an example, the second order expansion is sinc(x) &~ 1 + (7x)?/6, hence,

sine((Q() + Q) /r) =1+ £Q°(w) + ;QIQ) + Q). (110)
which can be written in the form

t

sine((Q(w) + Q) /r) =~ (Q(w) ) Q' (w), (7.11)

Jj=0

where f/ (Q(u)) is a polynomial in terms of Q(u) associated with Q(u’) to the j™ power

in order ¢ Taylor expansion of a sinc function. By substituting Eq. (7.11) into Eq. (7.9), the
frequency spectrum of U} becomes

U (u ZG w, Az)f] (Q(u)) / Q’ (v U™ (V" (u — u)Azd®u’ . (7.12)
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As a result, the backward scattering term can be viewed as a weighted sum of convolutions
and be efficiently computed using Fast Fourier Transform (FFT). Starting from the last
layer of the object, the back scattering field is accumulated at each layer when light travel-
ing in —z direction. At the end of the recursive process, U (p,0) is the total back-scattered
field that one is able to measure via an reflective imaging system. Similar to imaging in
the forward scattering case, U(p, 0) is refocused to the imaging plane and passes through
the imaging optics with an aperture P(u) = Circ(uA/NA) in the pupil plane. Based on
Egs. (5.3), (5.8), (7.7) and (7.12), the detailed implementation of backward scattering us-
ing MLB is summarized in Algorithm 4. For all backward scattering simulation shown in
section 5.3, the order of Taylor expansion is set to be 8 7.e. t = 8, so that the model is
accurate enough compared to the ground truth. Although it is not demonstrated here, im-
plementation of intensity-based phase tomography with backward scattering measurements
requires the gradient of Uip.ge With respect to {V”(p)}ﬁlzl. The analytic gradient can be
derived with the same procedure as in the forward scattering case and written in a similar
form as Algorithm 2, or it can be evaluated using auto-differentiation packages embedded
in machine learning tools, such as TensorFlow and PyTorch.
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