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Abstract

Fourier ptychography captures intensity images

with varying source patterns (illumination an-

gles) in order to computationally reconstruct

large space-bandwidth-product images. Accurate

knowledge of the illumination angles is necessary

for good image quality; hence, calibration meth-

ods are crucial, despite often being impractical

or slow. Here, we propose a fast, robust and

accurate self-calibration algorithm that uses only

experimentally-collected data and general knowl-

edge of the illumination setup. First, our algo-

rithm makes a fast direct estimate of the bright-

field illumination angles based on image pro-

cessing. Then, a more computationally-intensive

spectral correlation method is used inside the iter-

ative solver to further refine the angle estimates of

both brightfield and darkfield images. We demon-

strate our method for correcting large and small

misalignment artifacts in both 2D and 3D Fourier

ptychography with di↵erent source types: an LED

array, a galvo-steered laser, and a high-NA quasi-

dome LED illuminator.

1 Introduction

Computational imaging leverages the power of both op-
tical hardware and computational algorithms to recon-
struct images from indirect measurements. In optical
microscopy, programmable sources have been used for
computational illumination techniques including multi-
contrast [1, 2], quantitative phase [3, 4, 5, 6] and super-
resolution [3, 7, 8, 9, 10]. Implementation is simple, re-
quiring only an inexpensive source attachment for a com-
mercial microscope. However, these methods are also sen-
sitive to experimental misalignment errors and can su↵er
severe artifacts due to model mismatch. Extensive system
calibration is needed to ensure that the inverse algorithm
is consistent with the experimental setup, which can be

time- and labor-intensive. This often requires significant
user expertise, making the setup less accessible to repro-
duction by non-experts and undermining the simplicity
of the scheme. Further, pre-calibration methods are not
robust to changes in the system (e.g. bumping the setup,
changing objectives, sample-induced aberrations) and re-
quire precise knowledge of a ground-truth test object.

Algorithmic self-calibration methods [11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25] eliminate the need for
pre-calibration and precise test objects by making calibra-
tion part of the inverse problem. These methods jointly
solve two inverse problems: one for the reconstructed im-
age of the object and the other for the calibration pa-
rameters. By recovering system calibration information
directly from captured data, the system becomes robust
to dynamic changes in the system.

Here, we focus on illumination angle self-calibration
for Fourier Ptychographic Microscopy (FPM) [3]. FPM
is a coherent computational imaging method that recon-
structs high-resolution amplitude and phase across a wide
field-of-view (FoV) from intensity images captured with
a low-resolution objective lens and a dynamically-coded
illumination source. Images captured with di↵erent illu-
mination angles are combined computationally in an iter-
ative phase retrieval algorithm that constrains the mea-
sured intensity in the image domain and pupil support in
the Fourier domain. This algorithm can be described as
stitching together di↵erent sections of Fourier space (syn-
thetic aperture imaging [26, 27]) coupled with iterative
phase retrieval. FPM has enabled fast in vitro capture
via multiplexing [9, 10], fluorescence imaging [25], and
3D microscopy [28, 29]. It requires significant redundancy
(pupil overlap) in the dataset [8, 30], making it suitable
for joint estimation self-calibration.

Self-calibration routines have previously been devel-
oped to solve for pupil aberrations [11, 12, 13], illumi-
nation angles [14, 15, 16, 17, 18], LED intensity [19],
sample motion [20], and auto-focusing [21] in FPM. The
state-of-the-art self-calibration method for illumination
angles is simulated annealing [14, 15], a joint estima-
tion solution which (under proper initialization) removes
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Figure 1: Illumination angles are calibrated by analyzing Fourier spectra. (a) A cheek cell is illuminated at angle ↵

and imaged with NAobj . (b) Brightfield images contain overlapping circles in their Fourier spectra; darkfield images
do not. (c) We perform a fast and e�cient brightfield calibration in pre-processing, then extrapolate the correction
to darkfield images and, finally, iteratively calibrate angles inside the FPM algorithm using a spectral correlation
calibration.

LED misalignment artifacts that usually manifest as low-
frequency noise. Unfortunately, because the simulated
annealing procedure operates inside the FPM algorithm
iterative loop, it slows the run-time of the solver by an
order of magnitude or more. For 3D FPM (which is par-
ticularly sensitive to angle calibration [28]), the compu-
tational costs become infeasible.

Moreover, most self-calibration algorithms require a
relatively close initial guess for the calibration parame-
ters. This is especially true when the problem is non-
convex or if multiple calibration variables are to be solved
for (e.g. object, pupil, and angles of illumination). Of
the relevant calibration variables for FPM, illumination
angles are the most prone to error, due to shifts or rota-
tions of the LED array [31], source instabilities [32, 22],
non-planar illuminator arrangements [33, 34, 35, 36], or
sample-induced aberrations [37, 38]. Sample-induced
aberrations can also change the e↵ective illumination an-
gles dynamically, such as when the sample is in a moving
aqueous solution.

We propose here a two-pronged angle self-calibration
method that uses both pre-processing (brightfield cali-

bration) and iterative joint estimation (spectral correla-
tion calibration) that is quicker and more robust to sys-
tem changes than state-of-the-art calibration methods.
A circle-finding step prior to the FPM solver accurately
identifies the angles of illumination in the brightfield (BF)

region. A transformation between the expected and BF
calibrated angles extrapolates the correction to illumina-
tions in the darkfield (DF) region. Then, a local grid-
search-based algorithm inside the FPM solver further re-
fines the angle estimates, with an optional prior based on
the illuminator geometry (Fig. 1). Our method is object-
independent, robust to coherent noise, and time-e�cient,
adding only seconds to the processing time. We demon-
strate on-line angle calibration for 2D and 3D FPM with
3 di↵erent source types: an LED array, a galvanometer-
steered laser, and a high-NA (maxNAillum = 0.98) quasi-
dome illuminator [36].

2 Methods

The image formation process for a thin sample under o↵-
axis spatially coherent plane wave illumination can be
described by:

Ii(r) = |O(r)e�i2⇡kir ⇤ P (r)|2 = |F�1(Õ(k� ki)P̃ (k))|2,
(1)

where ki is the spatial frequency of the incident light,
P̃ (k) is the system pupil function, Õ(k) is the object
Fourier spectrum, and F is the 2D Fourier transforma-
tion operation, valid for shift-invariant systems. Intensity
images are captured at the sensor plane, corresponding to
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auto-correlation in the Fourier domain:

Ĩi(k) = F (|O(r)e�i2⇡kir ⇤ P (r)|2)

= Õ(k� ki)P̃ (k) ? Õ(k� ki)P̃ (k),
(2)

where ⇤ denotes convolution and ? denotes auto-
correlation. Õ(k � ki)P̃ (k) corresponds to the shifted

spectrum of the object within the circle |k|  NAobj

� and
0 everywhere else. The auto-correlation operation essen-
tially scans two copies of Õ(k�ki)P̃ (k) across each other,
coherently summing at each shift to give Ĩi(k). Typically,
the object spectrum has a large zero-order (DC) term that
decays sharply towards higher frequencies. In the bright-
field region, when the DC term at ki is within the pupil’s
passband, the auto-correlation e↵ectively scans this DC
term across the conjugate spectrum, giving high values
where the DC term overlaps with the conjugate pupil and
negligible signal elsewhere. This interference between the
DC term and pupil in the auto-correlation creates two
distinct circles centered at ki and �ki in the intensity
spectrum amplitude (Fig. 1). Hence, we can calibrate
the illumination angle by finding these circle centers. For

darkfield images, the DC term is outside
NAobj

� and so

we do not observe clearly defined circles in |Ĩi| (Fig.1b),
making calibration more complicated.

Our algorithm relies on analysis of the raw intensity
Fourier transform to recover illumination angles. Fourier
domain analysis of intensity images has been used previ-
ously to deduce aberrations [39] and determine the center
of di↵raction patterns [40, 41] for system calibration. We
show here that the individual Fourier spectra can be used
to accurately determine illumination angles in both the
brightfield and darkfield regime.

2.1 Brightfield Calibration

Locating the center of the circles in the amplitude of a
Fourier spectrum is an image processing problem. Pre-
vious work in finding circles in images uses the Hough
transform, which relies on an accurate edge detector as
an initial step [42, 43]. In practice, however, we find that
edge detectors do not function well on our datasets due
to speckle noise, making the Hough transform an unreli-
able tool for our purpose. Therefore, we propose a new
method which we call circular edge detection.

Intuitively, circular edge detection can be understood
as performing edge detection (i.e. calculating image gra-
dients) along a circular arc around a candidate center
point in k-space (the Fourier domain). To first approx-
imation, we assume |Ĩi| is a binary function that is 1
inside the two circles and 0 everywhere else. Our goal
is to find the strong binary edge in order to locate the
circle center. We need only consider one of the circles,
since the intensity image is real-valued and so its Fourier
transform is symmetric. Based on information we have
about our illumination set-up, we expect the illumination
spatial frequency (and therefore circle center) for spec-
trum Ĩi to be at ki,0 = (kx,i,0, ky,i,0) (polar coordinates
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Figure 2: Circular edge detection on brightfield images
finds circle centers, giving illumination angle calibration.
(a,b) Comparison of uncalibrated (red) and calibrated
(black) illumination ki. The blue box in (b) indicates the
search range for ki. (c,d) Ĩi along radial lines, f(r,�n),
and derivatives with respect to r. (e,f) E1 and E2, sums
of the derivatives at known radii R and R+ �, peak near
the correct center. Boxes show uncalibrated (red) and
calibrated (black) ki centers.

ki,0 = (di,0, ✓i,0)) (Fig. 2a). If this is the correct center
k
0
i, we expect there to be a sharp drop in |Ĩi| at radius R

along any radial line f(r,�n) out from k
0
i (Fig. 2b). This

amplitude edge will appear as a peak at r = R in the first
derivative of each radial line with respect to r, f 0(r,�n)
(Fig. 2d). Here (r,�n) are the polar coordinates of the
radial line with respect to the center ki, considering the
n
th of N radial lines.
We identify the correct k0

i by evaluating the summation
of the first derivative around the circular arc at r = R

from several candidate ki = (di, ✓i) positions:

E1(R, di, ✓i) =
NX

n=1

f
0(r = R,�n, di, ✓i). (3)

When ki is incorrect, the edges do not align and the
derivative peaks do not add constructively at R (Fig. 2c).
The derivatives at R are all maximized only at the correct
center k0

i (Fig. 2d), creating a peak in E1 (Fig. 2e). This
is analogous to applying a classic edge filter in the radial
direction from a candidate center and accumulating the
gradient values at radius R.
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In order to bring our data closer to our binary im-
age approximation, we divide out the average spectrum
meani(|Ĩi|) across all i spectra. Because the object re-
mains constant across images while the angles of illumi-
nation change, the average spectrum is similar in form
to the object’s auto-correlation spectrum, with a sharp
central peak decaying towards higher frequencies. The
resulting normalized spectra contain near-constant circles
on top of background from higher-order terms. We then
convolve with a Gaussian blur kernel with standard de-
viation � to remove speckle noise (Alg. 1.1-2). Experi-
mentally, we choose � = 2 pixels, which balances blurring
speckle noise and maintaining the circular edge. Under
this model, the radial line f(r,�n) from our correct center
k
0
i can be modeled near the circular edge as a binary step

function convolved with a Gaussian:

f(r,�n, d
0
i, ✓

0
i) = rect(

r

2R
) ⇤ 1p

2⇡�
e

�r2

2�2 . (4)

By di↵erentiating through f
000(r,�n) and setting equal to

zero, we find the peak of f 0(r,�n) still occurs at r = R.
Additionally, we find that the second derivative f

00(r,�n)
has a maximum at r = R + �. Experimentally, we have
found that considering both the first and second deriva-
tives increases our accuracy and robustness to noise across
a wide variety of datasets. We therefore calculate a sec-
ond derivative metric,

E2(R+ �, di, ✓i) =
NX

n=1

f
00(r = R+ �,�n, di, ✓i), (5)

which is jointly considered with Eq. 3. We identify can-
didate centers ki that occur near the peak of both E1 and
E2 (Fig. 2e-f), then use a least-squares error metric to de-
termine the final calibrated k

0
i (Alg. 1.5-9). In practice,

we also only consider the non-overlapping portion of the
circle’s edge, bounding �.

Until now, we have assumed that the precise radius
R of the pupil is known. However, in pixel units, R is
dependent on the pixel size of the sensor, ps, and the
system magnification, mag:

R =
NAobj

�

ps ⇤M
mag

, (6)

as well as NAobj and �, where Ĩi is dimension M ⇥ M .
Given that mag and NAobj are often imprecisely known
but are unchanged across all images, we calibrate the ra-
dius by finding the R

0 which gives the maximum gradi-
ent peak E1 across multiple images before calibrating k

0
i

(Alg. 1.3). A random subset of images may be used to
decrease computation time.

Finally, once all images are calibrated, we want to
remove outliers and extrapolate the correction to the
darkfield images. Outliers occur due to: 1) little high-
frequency image content and therefore no defined circular
edge; 2) strong background; or 3) shifts such that the
conjugate circle center �ki is identified as k

0
i. In these

Algorithm 1 Brightfield Calibration

1: Ĩf  |Ĩ|/meani(|Ĩi|). Divide out mean spectrum
2: Ĩf  gauss(Ĩf ,�) . Smooth speckle
3: R0  argmaxR E1(R, di, ✓i), subset (Ĩf,i)

. Calibrate radius
4: for i image do . Circular edge detection
5: ki,1  (di, ✓i) where E1 near max

(within 0.1 std)
6: ki,2  (di, ✓i) where E2 near max
7: ki  ki,1 \ ki,2 . Consider both metrics
8: k0

i  argminki
||Ii �F (Ĩi · P̃ (k� ki))||2

. Evaluate ki

9: end for
10: A, ioutliers  RANSAC(A = k0

i/ki,0)
. Identify outliers

11: k(0)
inliers  k0

inliers . Initialize for FPM

12: k(0)
outliers  Akoutliers,0

13: k(0)
darkfield  Akdarkfield,0

cases, we cannot recover the correct center based on a sin-
gle image and must rely on the overall calibrated change
in the illuminator’s position. We find outliers based on
an illuminator-specific transformation A (e.g., rigid mo-
tion) between the expected initial guess of circle centers
ki,0 (e.g., the LED array map) and the calibrated centers
k
0
i using a RANSAC-based method [44]. This transfor-

mation is used to correct outliers and darkfield images
(Alg. 1.10-13), serving as an initialization for our spectral
correlation (SC) method.

2.2 Spectral Correlation Calibration

While the brightfield (BF) calibration method localizes il-
lumination angles using intrinsic contrast from each mea-
surement, this contrast is not present in high-angle (dark-
field) measurements (Fig. 1b). Therefore, we additionally
solve a more general joint estimation problem to refine
the initialization provided by BF calibration, where the
object O(r), pupil P (k), and illumination angles ki are
optimized within the FPM algorithm. At each inner itera-
tion, we estimate the ith illumination angle by minimizing
the FPM objective function with respect to illumination
angle (Fig. 3a). This step finds the relative k-space lo-
cation of the current spectrum Ĩi relative to the overall
object, providing an estimate k

(m)
i relative to the other

illuminator angles k
(m)
j , j 6= i. We call this the spectral

correlation method because this optimization implicitly
finds k

(m)
i which best aligns the i

th spectrum with the
estimated object spectrum Õ(k)(m).

Unlike previous joint estimation methods [14, 15], we
constrain ki to exist on the k-space grid defined by the our
image sampling. Our k-space resolution is band-limited
by the size of the image patch, s = (sx, sy), across which
the illumination can be assumed coherent. This coherent
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Figure 3: BF calibration uses a fast pre-processing step to estimate illumination angles, then SC calibration it-
eratively refines them within the FPM solver. (a) Algorithm block diagram, (b) uncalibrated (red) and BF + SC
calibrated (green) illumination angle map. Insets are example search spaces, showing local convexity. (d) FPM
convergence plot for di↵erent methods.

area size is determined by the van Cittert-Zernike theo-
rem, which can be simplified [45] to show that the co-
herence length lc of illumination with mean source wave-
length �̄ produced by a source of size ⇢ at a distance R is
determined by:

lc =
0.61R�̄

⇢
. (7)

For example, a 300µm wide LED placed 50mm above the
sample with �̄ = 530nm gives lc = 53.8µm, which pro-
vides an upper bound on the size of image patch used in
the FPM reconstruction, (sx, sy)  lc. This limitation
imposes a minimum resolvable discretization of illumina-
tion angles �k = 2

s due to the Nyquist criterion. Since we
cannot resolve finer angle changes, we need only perform
a local grid search over integer multiples of �k, which
makes our joint estimation SC method much faster than
previous methods.

SC calibration is cast as an iterative optimization of
discrete perturbations of the estimated angle using a lo-
cal grid search. At each FPM iteration, we solve for the
optimal perturbation of illumination angle k

(m)
i over in-

teger multiples n = (nx, ny) of k-space resolution-limited
steps �k such that the updated illumination position
k
(m+1)
i = k

(m)
i + n · �k minimizes the `2 distance be-

tween the object and illumination angle estimates and
measurements,

argmin
n

||Ii � |O(m+1)
e
�i2⇡(k

(m)
i +n�k)r̃ ⇤ P (m+1)|2||22

subject to n = (nx, ny), (nx, ny) 2 [�1, 0, 1].
(8)

This grid search is performed iteratively within each se-
quential iteration of an FPM reconstruction until ki con-
verges, giving a lower reconstruction cost than BF cali-
bration alone (Fig. 3b-c).

The choice of n = (nx, ny) to search can be tuned to
match the problem. In most experimental cases, we find
that a search of the immediate locality of the current es-
timate ((nx, ny) 2 [�1, 0, 1]) gives a good balance be-
tween speed and gradient performance when paired with

the close initialization from our BF calibration. A larger
search range (e.g. (nx, ny) 2 [�2,�1, 0, 1, 2]) may be re-
quired in the presence of noise or without a close initial-
ization, but the number of points searched will increase
with the square of the search range, causing the algorithm
to slow considerably.

Including prior information about the design of the il-
lumination source can make our calibration problem more
well-posed. For example, we can include knowledge that
an LED array is a rigid, planar illuminator in our ini-
tial guess of the illumination angle map, ki,0. By forcing

the current estimates k
(m)
i to fit a transformation of this

initial angle map at the end of each FPM sub-iteration,
we can use this knowledge to regularize our optimization
(Fig. 3a). The transformation model used depends on the
specific illuminator. For example, our quasi-dome LED
array is composed of five circuit boards with precise LED
positioning within each board but variable board position
relative to each other. Thus, imposing an a�ne transfor-
mation from the angle map of each board to the current
estimates k

(m)
i significantly reduces the problem dimen-

sionality and mitigates noise across LEDs, making the
reconstruction more stable.

3 Results

3.1 Planar LED Array

We first show experimental results from a conventional
LED array illumination system with a 10⇥, 0.25 NA
and a 4⇥, 0.1 NA objective lens at � = 514nm and
NAillum  0.455 (Fig. 4). We compare reconstructions
with simulated annealing, our BF pre-processing alone,
and our combined BF+SC calibration method. All meth-
ods were run in conjunction with EPRY pupil reconstruc-
tion [12]. We include results with and without the SC cal-
ibration to illustrate that the BF calibration is su�cient
to correct for most misalignment of the LED array since
we can accurately extrapolate LED positions to the dark-
field region when the LEDs fall on a planar grid. How-
ever, when using a low NA objective (NAobj  0.1), as in
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Figure 4: Experimental results with an LED array microscope, comparing reconstructions with no calibration
(average reconstruction time 132 seconds), simulated annealing (3453 s), our BF calibration (156 s), and our BF +
SC calibration (295 s). (a) Amplitude reconstructions of a USAF target in a well-aligned system. (b) Amplitude
reconstructions of the same USAF target with a drop of oil placed on top of the sample to simulate sample-induced
aberrations. (c) Phase reconstructions of a human cheek cell with computationally misaligned illumination, and (d)
a Siemens star phase target with experimentally misaligned illumination.

Fig. 4d, the SC method becomes necessary because the
BF calibration is only able to use 9 images (compared to
69 brightfield images with a 10⇥, 0.25 NA objective, as
in Fig. 4a-c).

Our method is object-independent, so can be used for
phase and amplitude targets as well as biological sam-
ples. All methods reconstruct similar quality results for
the well-aligned LED array with the USAF resolution tar-
get (Fig. 4a). To simulate an aqueous sample, we place
a drop of oil on top of the resolution target. The drop
causes uneven changes in the illumination, giving low-
frequency artifacts in the uncalibrated and simulated an-
nealing cases which are corrected by our method (Fig. 4b).
Our method is also able to recover a 5� rotation, 0.02
NA shift, and 1.1⇥ scaled computationally-imposed mis-
alignment on well-aligned LED array data for a cheek cell
(Fig. 4c), and gives a good reconstruction of an experi-
mentally misaligned LED array for a phase Siemens star
(Benchmark Technologies, Inc.) (Fig. 4d). In contrast to
simulated annealing, which on average takes 26⇥ as long
to process as FPM without calibration, our brightfield
calibration only takes an additional 24 seconds of pro-
cessing time and the combined calibration takes roughly
only 2.25⇥ as long as no calibration.

3.2 Steered Laser

Laser illumination can be used instead of LED arrays to
increase the coherence and light e�ciency of FPM [32, 33].
In practice, laser systems are typically less rigidly aligned
than LED arrays, making them more di�cult to calibrate.
To verify the performance of our method, we constructed
a laser-based FPM system using a dual-axis galvanome-
ter to steer a 532 nm, 5 mW laser, which is focused on
the sample by large condenser lenses (Fig. 5a). This laser
illumination system allows finer, more agile illumination
control than an LED array, as well as higher light through-
put. However, the laser illumination angle varies from the
expected value due to o↵sets in the dual-axis galvonome-
ter mirrors, relay lens aberrations, and mirror position
misestimations when run at high speeds. Our method
can correct for these problems in a fraction of the time of
previous methods (Fig. 5b).

3.3 Quasi-Dome

Since the FPM resolution limit is set by NAobj +
NAillum, high-NA illuminators are needed for large space-
bandwidth product imaging [46, 36]. To achieve high-
angle illumination with su�cient signal-to-noise ratio in
the darkfield region, the illuminators must become more
dome-like, rather than planar [34]. We previously de-
veloped a novel programmable quasi-dome array made of
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Figure 5: Experimental angle calibration in laser and high-NA quasi-dome illumination systems. (a) Laser illumi-
nation is steered by a dual-axis galvanometer. The angled beam is relayed to the sample by 4”, 80 mm focal length
lenses. (b) Our calibration method removes low-frequency reconstruction artifacts. (c) The quasi-dome illuminator
enables up to 0.98 NAillum using programmable LEDs. (d) Our 1.23 NA reconstruction provides isotropic 425 nm

resolution with BF + SC calibration.

five separate planar LED arrays that can illuminate up to
0.98 NA [36]. This device uses discrete LED control with
RGB emitters (�̄ = [475nm, 530nm, 630nm]) and can be
easily attached to most commercial inverted microscopes
(Fig. 5c).

As with conventional LED arrays, we assume that the
LEDs on each board are rigidly placed as designed. How-
ever, each circuit board may have some relative shift, tilt,
or rotation since the final mating of the 5 boards is per-
formed by hand. LEDs with high-angle incidence are both
harder to calibrate and more likely to su↵er from mises-
timation due to the dome geometry, so the theoretical
reconstruction NA would be nearly impossible to reach
without self-calibration. Using our method, we obtain the
theoretical resolution limit available to the quasi-dome
(Fig. 5d). The SC calibration is especially important in
the quasi-dome case since it usually has many darkfield
LEDs.

3.4 3D FPM

Calibration is particularly important for 3D FPM. Even
small changes in angle become large when they are prop-
agated to large defocus depths, leading to reduced reso-
lution and reconstruction artifacts [28, 22]. For example,
using a well-aligned LED array, [28] was unable to re-

construct high-resolution features of a resolution target
defocused beyond 30 µm due to angle misestimation; us-
ing the same dataset, our method allows us to reconstruct
high-resolution features of the target even when it is 70
µm o↵-focus (Fig. 6).

Since iterative angle estimation (including our SC cali-
bration) unfeasibly increases the computational complex-
ity of 3D FPM, we use BF calibration only. While we
do not attain the theoretical limits for all defocus depths,
we o↵er significant reconstruction improvement. Our cal-
ibration only slightly changes the angles of illumination
(Fig. 6c), highlighting that small angular changes have
a large e↵ect on 3D reconstructions. Experimental res-
olution was determined by resolvable bars on the USAF
resolution target in Fig. 6c, where we declare a feature as
”resolved” when there is a ¿20% dip between Imax and
Imin.

4 Discussion

Our calibration method o↵ers significant gains in speed
and robustness as compared to previous methods. BF
calibration enables these capabilities by obtaining a good
calibration that needs to be calculated only once in pre-
processing, reducing computation. Since an estimation of
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Figure 6: Even small calibration errors degrade 3D FPM
resolution severely when defocus distances are large. (a)
Experiment schematic for a USAF target placed at vary-
ing defocus distances. (b) Measured reconstruction reso-
lution degrades with defocus distance; our calibration al-
gorithm reduces this error significantly. (c) Amplitude re-
constructions for selected experimental defocus distances,
with and without calibration of the illumination angles.

a global shift in the illuminator based only on the bright-
field images provides such a close initialization for the rest
of the illumination angles, we can use a quicker, easier
joint estimation computation in our SC calibration than
would be otherwise possible. Jointly, these two methods
work together to create fast and accurate reconstructions.

3D FPM algorithms are slowed an untenable amount
by iterative calibration methods, since they require the
complicated 3D forward model to be calculated multiple
times during each iteration. Combined with 3D FPM’s
reliance on precise illumination angles to obtain a good
reconstruction, it has previously been di�cult to obtain
accurate reconstruction of large volumes with 3D FPM.
However, since BF calibration occurs outside the 3D FPM
algorithm, we can now correct for the angle misestima-
tions that have degraded these reconstructions in the past,
allowing 3D FPM to be applied to larger volumes.

We analyze the robustness of our method to illumi-
nation changes by simulating an object illuminated by a
grid of LEDs with NAillum < 0.41, with LEDs spaced
at 0.041NA intervals. We define the system to have
� = 532nm, with a 10⇥, 0.25 NA objective, a 2⇥ system

-50 0 50

rotation,  (degrees)

0

0.05

0.1

rm
se

 (
N

A
)

Rotated Illumination

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

shift, NA (NA)

0

0.05

0.1

rm
se

 (
N

A
)

Shifted Illumination

0 0.5 1 1.5 2

scale, m

0

0.05

0.1

rm
se

 (
N

A
)

Scaled Illumination

No calibration BF calibration BF+SC calibration

!

!"#$%& ≈
!(
)

!(

*+,

*+-

*+,

.
*+-

*+,

Δ01

Δ01
*+-

(a)

(b)

(c)

Figure 7: Our calibration methods are robust to large
mismatches between estimated and actual LED array po-
sition. Simulation of misaligned illumination by (a) rota-
tion, (b) shift, and (c) scale. Our calibration recovers the
illumination with ¡0.005 NA error for rotations of �45�

to 45�, shifts of -0.1 to 0.1 NA, and scalings of 0.5⇥ to
1.75⇥ before diverging.

magnification, and a camera with 6.5µm pixels. While
the actual illumination angles in the simulated data re-
main fixed, we perturb the expected angle of illumination
in typical misalignment patterns for LED arrays: rota-
tion, shift, and scale (analogous to LED array distance
from sample). We then calibrate the unperturbed data
with the perturbed expected angles of illumination as our
initial guess.

Our method recovers the actual illumination angles
with error less than 0.005 NA for rotations of �45� to
45� (Fig. 7a); shifts of -0.1 to 0.1 NA, or approximately
a displacement of +/- 2 LEDs (Fig. 7b); and scalings
of 0.5⇥ to 1.75⇥ (or LED array height between 40-140
cm if the actual LED array height is 70 cm) (Fig. 7c).
In these ranges, the average error is 0.0024 NA, less than
the k-space resolution of 0.0032 NA. Hence, our calibrated
angles are very close to the actual angles even when the
input expected angles are extremely far o↵. This result
demonstrates that our method is robust to most misalign-
ments in the illumination scheme.

5 Conclusion

We have presented a novel two-part calibration method
for recovering the illumination angles of a computational
illumination system for Fourier ptychography. We have
demonstrated how this self-calibrating method makes
Fourier ptychographic microscopes more robust to sys-
tem changes and aberrations introduced by the sample.
The method also makes it possible to use high-angle illu-
minators, such as the quasi-dome, and non-rigid illumina-
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tors, such as laser-based systems, to their full potential.
Our pre-processing brightfield calibration further enables
3D multislice Fourier ptychography to reconstruct high-
resolution features across larger volumes than previously
possible. These gains were all made with minimal ad-
ditional computation, especially when compared to cur-
rent state-of-the-art methods. E�cient self-calibrating
methods such as these are important to make compu-
tational imaging methods more robust and available for
broad use in the future. Open source code is available at
www.laurawaller.com/opensource.
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