
Comparing Game Planners

Sherman Luo
Anca Dragan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-44
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-44.html

May 12, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
First and foremost I'd like to give thanks to my research advisor Professor
Anca Dragan for her valuable guidance. She was extremely helpful and
available, and was generally a fantastic mentor who gave me direction
during difficulty. This project would not have been possible without her
continuous advice and co-authorship. I'd also like to extend thanks to the
members of the InterACT Lab, the incredibly supportive environment in
which I have had the honor of conducting my research. In particular I am
grateful towards Gokul Swamy and Lawrence Chan, who helped me
formulate my ideas and generally assisted me with the writing portion of
this thesis. Lastly, thank you to Professor Alistair Sinclair, who was the
second reader of this thesis and provided suggestions to improve the
writing.



Comparing Game Planners

by

Sherman Andrew Luo

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Anca D. Dragan, Chair
Professor Alistair Sinclair

Spring 2020



The thesis of Sherman Andrew Luo, titled Comparing Game Planners, is approved:

Chair Date

Date

Date

University of California, Berkeley



Anca Dragan
May 12, 2020



Comparing Game Planners

Copyright 2020
by

Sherman Andrew Luo



1

Abstract

Comparing Game Planners

by

Sherman Andrew Luo, Anca D. Dragan

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anca D. Dragan, Chair

What makes interactions challenging for robots that navigate around people in general, and
autonomous cars in particular, is the need to account for the mutual influence between the
robot’s actions and the human’s. These interactions are best modeled by dynamic game
theory, which in turn motivates the use of game-theoretic planners for autonomous cars.
Recent work proposed a number of such planners that leverage trajectory optimization and
Model Predictive Control, but adapt them to account for the strategic, multi-agent structure
of the problem. In this work, we provide a quantitative and qualitative empirical analysis of
the performance of these planners, with the goal of gaining a deeper understanding of their
advantages and limitations in challenging interactive driving situations.
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Chapter 1

Introduction

Whenever a human and a robot navigate around each other in the same space, what is
optimal for the robot to do depends on what the human ends up doing as well. Much work
in robotics, including social navigation and autonomous driving, has focused on how a robot
might be able to anticipate what the human will do, and plan its actions accordingly [2, 7,
16, 22, 10].

Imagine a car trying to merge in heavy traffic. Anticipating what the humans will do
seems easy: they will continue driving at their current speed. Unfortunately, that leaves the
car thinking there is no way for it to complete the merge, and it gets stuck waiting for a
large enough gap in traffic. In contrast, humans in that situation would manage to make
their way in. This is because we, the humans, know very well that when we attempt the
maneuver the person behind will have to slow down. Much as human actions affect other
human actions, we should expect that robot actions too will affect human actions [12, 19].
Our robots need to leverage this effect in order to seamlessly navigate the world around us
[16].

Unfortunately, it gets a bit more complicated. When someone merges in front, most of
the times people do slow down. But, not too often, they do the opposite: they accelerate
and deter the car in front from completing the merge. So, not only do robot actions affect
human actions, but humans too might try to affect the robot’s actions.

This mutual influence between the robot and the human is best captured by a dynamic
general-sum game [7]. The robot has an objective, and the human can have a slightly
different objective – they both want to avoid collisions with each other, be efficient, obey
traffic rules, drive comfortably, etc, but may have different goals in mind.

This realization presents a big challenge for cars today: cars live in continuous state and
action spaces, where non-strategic planning is complex enough. Prior work has started tack-
ling this challenge by introducing several approaches for computing approximate solutions,
all in the context of Model Predictive Control[14]: the robot would find a plan, execute a first
step, and replan after observing the new state of the world, including the new human state.
Engwerda et al. [6] explores the existence of solutions when the game is Linear-Quadratic.
Sadigh et al. [16] proposed to turn the dynamic game into a static Stackelberg [17] game



CHAPTER 1. INTRODUCTION 2

where actions are full trajectories: the robot plans a trajectory, and the human computes
a best response. Wang et al. [21] proposed a solution based on Iterated Best Response:
the planner initializes one of the player’s trajectories, computes the other player’s best re-
sponses, and iterates. Fisac et al. [7] proposed the addition of a value function computed
by a coarse approximation as a terminal cost, which can benefit any such approach, but also
anecdotally reported that a “coordinate ascent” (one gradient step at a time instead of a full
best response performed better).

Overall, there are different ways to slice and dice the general sum game, all in the context
of Model Predictive Controllers for autonomous cars. What we seek in this thesis is to shed
some light on how these approaches compare in terms of the solutions they produce, so that
we can make more informed choices about what to deploy on our robots, and so that we can
learn what we should build on and what remains to be improved with these algorithms.

The key challenge with making such a comparison is that each algorithm comes up not
only with a different solution for the robot’s plan, but also for the human’s plan. A solution
might look very good, but because it is perhaps making a strong assumption about what
the human will do. To address this, we compare the solutions both with human behavior
that follows each planner’s assumption, as well as when the behavior deviates, looking at
different ways people might be approximating the game for themselves.

Overall, we find coordinate ascent methods to appear to perform well but actually be
unreliable, the static Stackelberg approach to be robust but too aggressive with people
who are trying to influence the robot, and we find Iterated Best Response to require clever
initialization; these methods will be described in detail in Chapter 2. We hope our results
can serve to inform practitioners about which choice makes the most sense for their settings
and requirements.
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Chapter 2

Game-Theoretic Planners

2.1 Problem Statement

We study the general-sum game formulation of interaction between an autonomous agent
R and a human H. We consider fully observable continuous states x which in our driving
application consist of positions, orientations, and velocities for both agents. Over discrete
time-steps, each agent can apply continuous controls uR and uH which change state via the
dynamics xt+1 = f(xt, utR, u

t
H). Given a horizon of N such that uA = u1:NA , each agent’s

objective is to maximize their own cumulative reward over the horizon

RR(x0,uR,uH) and RH(x0,uR,uH)

In driving, the human and the robot are mutually interested in avoiding collisions, but
each is selfishly interested in their own efficiency, which is what makes this a general-sum
game. In this work, we engineer multiple versions of RR and assume we have access to RH

(which we explain later).

2.2 Planning Algorithms

Crosscutting technique: MPC

Planners in this domain typically used Model Predictive Control [1, 3, 9], where they iter-
atively generate a u∗R (and, implicitly or explicitly, a prediction u∗H for the human), take a
first step, and replan after observing the human’s actual action. We will differentiate in this
thesis between plans at every time-step produced for a time horizon but never fully executed,
and MPC rollouts which happen as the planners are run at each time-step and only their
first action executed.

Originally, planners would not consider the game-theoretic interaction and split the prob-
lem into 1) predicting the human actions uH , and 2) computing a plan uR for the robot that
assumes the human actions are fixed and unchangeable [13, 5, 8]. For instance, the robot
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might predict for the human:

u∗H = arg max
uH

R′H(x0,−,uH)

where R′ eliminates any collision cost with the robot, modeling that the person ignores the
robot’s existence as they plan what to do. The robot would then compute its own best
response to this,

u∗R = arg max
uR

RH(x0,uR,u
∗
H)

Unfortunately, without accounting for the influence that the robot can have on the hu-
man, certain maneuvers like merging in heavy traffic proved impossible – in reality, people do
take the robot into account when planning. However, solving the game exactly is intractable
in continuous state and action spaces, and several approximations have been proposed.

Nested

One approach to approximating the game and capturing the robot’s influence on the person’s
plan is to model the person as computing a best response to the robot [16]. With this, the
robot’s prediction of what the person will do becomes a function of the robot’s plan:

u∗H(uR) = arg max
uH

RH(x0,uR,uH)

The robot then solves the nested optimization problem of computing a plan for itself that,
when coupled with the human’s best response plan, yields the largest reward possible:

u∗A = arg max
uA

RA(x0,uA,u
∗
H(uA)))

We solve this optimization problem using the quasi-Newton optimizer L-BFGS 1 that
computes an approximate inverse Hessian using the gradient. We compute the gradient via
implicit differentiation, as in [16].

Note that the Nested planner computes the solution to a Static Stackelberg game in
which actions are full trajectories, and in which the robot leads.

Iterated Best Response (IBR)

The Iterated Best Response Planner [21] initializes one of the players’ trajectory, then iterates
though the players computing each trajectory as a best response to the other player. If it
converges, the two trajectories are best responses to each other, corresponding to a Nash
equilibrium [15]. The algorithm begins by initializing one of the players – assume for now

1To clarify, we actually use L-BFGS-b [4, 20] instead of vanilla L-BFGS to constrain the controls of our
final plan to a bounding box.
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we initialize the human to u0
H . We then iteratively compute a best response for the robot

and then for the human:

ui
R(ui

H) = arg max
uR

RA(x0,uR,u
i
H)

ui+1
H (ui

R) = arg max
uH

RH(x0,ui
R,uH)

We use L-BFGS-b to do each optimize subroutine, which means our responses are only locally
optimal and convergence reaches a local Nash. Although here we started with a human
initialization, the algorithm can choose either the robot or the human to initialize. In our
experiments, we also test the algorithm’s sensitivity to both which player gets initialized and
how.

Coordinate Ascent (CA)

Even though this algorithm has never been formally proposed in prior work, some recent
thesiss anecdotally mention seeing good performance out of a “coordinate ascent” version of
IBR– rather than computing full best responses, each agent only takes a gradient step on
their maximization at each iteration:

ui+1
R = ui

R + α∇uR
RR(x0,ui

R,u
i
H)

ui+1
H = ui

H + α∇uH
RH(x0,ui

R,u
i
H)

Interestingly, unlike IBR, CA requires initializing both the robot and the human’s tra-
jectory. This will prove to be an important detail in our experiments.
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Chapter 3

Methods and Experiments

We designed an experiment to help us better understand the performance of these algorithms
for highly interactive driving situations, and under different hypothetical behaviors for the
human.

3.1 Driving Environment

We conduct experiments in a two-lane driving simulator1 with one robot vehicle, one human
vehicle, and potentially a large truck obstacle moving at constant speed. Both controls
and states are continuous, and the discretized time-step is 0.1 seconds. A state in our
world represents the joint state of both cars. Each car’s state [w, h, θ, v]ᵀ encodes their 2D
position, velocity, and heading (orientation). Controls [u1, u2]

ᵀ encode the steering and linear
acceleration along the heading of the car. Both cars use the Bicycle dynamics model [11] for
motion, running for 50 time-steps or 5 seconds.

[ẇ, ḣ, θ̇, v̇] = [v cos(θ), v sin(θ), vu1, u2 − γv]

Rewards for both cars include features that encode safety, efficiency, and a goal incentive.
Safety features include penalties in the form of elliptical Gaussians around the position of
other cars and obstacles, Gaussian reward for being in the center of a lane, and sigmoids
for both sides of the highway for being on the road. Efficiency features include quadratic
penalties for controls of high magnitude and sigmoids for staying within control bounds, and
goal features encode a higher weighting for being in the left lane, quadratic penalties for
deviating from a target velocity, and a sigmoid for either a bonus for being in front of the
human or for not being behind the human.

1The environment is heavily adapted from [16] and [7]
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Figure 3.1: From left to right: Upcoming Obstacle, Gap Opening, Merge, Deter. Each
task requires the robot to position itself above the human in the left lane. Each task’s goal
region of the current world state is shown by the yellow area. In Gap Opening especially,
it is immediately apparent that it will be impossible to achieve the goal without forcing the
human to slow down.

3.2 Scenarios and Test Cases

We designed four scenarios for driving, shown in Fig 3.1, and introduced three variations
of each scenario to vary the difficulty level for the robot. We chose these scenarios to be
highly interactive, where in order for the robot to do well it does need to influence the
behavior of the human-driven vehicle. Our scenarios consist of different initial conditions,
and different reward functions for the human and the robot which give rise to the notion of
what a “successful” maneuver for the robot would be.

Upcoming Obstacle

The human car starts in the left lane and the robot in the right lane with a penalty for the
robot being behind the human. The robot must speed up and overtake the human car, but
there is a large truck obstacle in the right lane that is slowing down and limiting the space
that the robot has to merge.

Gap Opening

Gap Opening is a scenario in which the robot must squeeze itself between the human and
the truck in the left lane. There is a bonus for the robot for being in front of the human. It is
impossible to do this maneuver without the human slowing down, and the robot is successful
if it is able to merge into the left lane in front of the human.
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Merge

This is the same as Upcoming Obstacle except without a truck. The robot successfully does
the maneuver by speeding up and merging into the human’s lane. Again, there is a robot
penalty for being stuck behind the human.

Deter

The robot starts in the left lane and the human in the right lane ahead of the robot, with a
robot bonus for being in front of the human. The human wants to merge left, but the robot
must speed up quickly enough to convince the human not to merge into the left lane in front
of it. The robot succeeds if it is able to speed past the human.

We introduced three test cases for Upcoming Obstacle and Gap Opening, and two test
cases for Merge and Deter. We created these by varying the robot’s reward function in the
weight for crashing, the spread of the collision Gaussians, the bonus for being in the left
lane, and the bonus for being in front of the human when applicable.

3.3 Independent Variables

We do not only manipulate which planner we use, but also look at initialization, and more
importantly, at different human behaviors that we can test the planner against. Note that
each planner also produces a plan for the human, uH , implicitly assuming this is what the
human intends to execute: while it is interesting to look at the combination of the robot’s
and the human’s plans and the corresponding MPC rollouts, the reality is that we do not
control human behavior, and it is just as important to understand the robustness of the
robot’s planner. We thus manipulate three factors.

Main Robot Planner

This is the planner that the robot is running. The planners used include Nested, Iterated
Best Response (IBR), and Coordinate Ascent (CA).

Initialization

The Nested algorithm can be thought about as one optimization for the robot (in an “un-
deractuated” system where the reward depends on what the human does, but this is simply
a function of what the robot does) – it is a static Stackelberg solution in which the human
does not attempt to influence the robot. On the other hand, IBR and CA are qualitatively
different because the solutions for the human and the robot are constructed from each other,
allowing the robot to influence the human, but also the human to influence the robot. For
IBR, each player runs at each step a full optimization to convergence. Therefore, when we
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talk about initialization, we differentiate the initialization to a local optimizer for a player
(which we handle by running multiple initializations in parallel2), from the initialization
of IBR and CA (initial plans e.g. u0

H) which can influence the equilibrium to which the
algorithm converges. We focus on the latter kind, seeking to understand the influence of
the initial conditions on which equilibrium the planner finds. For the most part, we ignore
the former notion of initialization and assume our local optimization techniques are globally
optimal.

For Iterated Best Response, we compare initializing the human vs. initializing the robot.
For the human initialization, we differentiate between a heuristically chosen “defensive”
initialization, IBR-hDef, that is preferable for the robot, and an “aggressive” initialization
IBR-hAgg.3,4 For the robot initialization of IBR, we initialize the robot to ignore the
human and maximize its reward in isolation – we call this IBR-rIgn.

CA, unlike IBR, requires initializing both the robot and the human trajectories. We
take the aggressive and defensive human initializations for IBR, compute the robot’s best
response to them, and use those as initializations for CA for an apples-to-apples comparison.
These result in what we call CA-Def and CA-Agg. But in addition, what is perhaps nice
about CA is that it does not require the two trajectories, for the robot and the human,
to be “compatible” in any way. We thus also experiment with CA-Ign, which initializes
the robot to the same “ignore the human” initialization from IBR-rIgn, but initializes the
human additionally to a “defensive” initialization. We do this instead of the human best-
responding to the ignoring robot, because we have found those responses to be unstable,
with e.g. the human having to go off-road to avoid the robot. As we will see in the analysis,
by having a defensive but not extreme initialization, the algorithm produces better solutions.

Ground Truth Human Behavior

We manipulate the planner that the actual simulated human is running. We test the Obe-
dient human, who steps along the plan computed by the robot at every time-step – note

2We run optimizations using L-BFGS-b, which is a local optimization algorithm. Unfortunately, rewards
in our system are non-convex functions, and this often resulted in sub-optimal behavior. To combat this
issue, we run L-BFGS four times from four different initial guesses: maximum left steering, maximum right
steering, maintaining speed, and the agent’s plan at the previous time-step, giving our algorithms sufficient
consistency and stability.

3For the first three scenarios which require lane changes, we heuristically choose these such that the
defensive human slows down, while the aggressive human accelerates. For the Deter scenario, finding such
heuristics is more difficult, and we actually found it easier to compute them by responding to a heuristic robot
behavior: the defensive human responds to a robot that ignores the human, and the aggressive initialization
responds to a robot that speeds up.

4Note that our goal here is merely to test sensitivity of the algorithms to different kinds of initializations,
which is why we get to create these heuristically/manually. In real life, the robot would have to produce
them autonomously – if these planners are sensitive to initialization, and if initializations are hard to pro-
duce autonomously, it might suggest that sacrificing some performance for more initialization robustness is
preferable.
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that as a result, this human is different for different planners. But we also simulate human
behavior that deviates from these planners.

• A human that runs IBR themselves, initializing the robot first, with a neutral initial-
ization that maintains speed. We call this IBR-Neutral.

• An aggressive human who tries to influence the robot by running the Nested planner,
with the human and robot roles flipped : now the human expects the robot to compute
a best response to its plan. With this, we test to what extent the solutions produced
by these planners can handle very aggressive human driving.

• An unrealistically aggressive human who ignores the robot, solving their optimization
problem without any collision costs with the robot. We call this the Ignore human.

3.4 Dependent Measures

We measure performance by the reward the robot accrues in the MPC rollout. We also an-
notate the resulting behavior’s success: whether the intended maneuver (merging, going in
front of the human) succeeded without collisions (success), whether it failed without collisions
(fail), or whether it resulted in a collision (critical). Lastly, we measure the computation
time it takes for these algorithms to produce solutions.
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Chapter 4

Results and Analysis

We split our analysis into two parts: when the human acts according to the robot’s prediction
(Obedient human planner) and when the human deviates from the robot’s plan.

4.1 When the Robot’s Assumptions are Correct

We first examine experiment results in which the robot’s predictions are completely correct
and the human is Obedient: the human is simulated as an agent that acts exactly as the
robot predicts. This gives us an understanding of how these planners compare via the
different assumptions they are implicitly making about the human. Even though in reality
we care most about how our planners do against real, unknown humans, understanding the
assumptions each planner makes make will give us insight on their performance on humans
that may break said assumptions.

Overall performance

Fig 4.1 plots the (normalized) reward each planner gets across all test cases. We immediately
notice quite a bit of difference among the planners and initializations. CA-Ign performs best,
followed by CA-Def and Nested, then followed by IBR-hDef and IBR-rIgn, with IBR-hAgg
and CA-Agg performing the worst (and often failing at the maneuver). The figure also shows
example MPC rollouts for each for the Upcoming Obstacle scenario, and we can see how
CA-Ign merges the most aggressively and earliest, causing the person to slow down the most.
Ca-Def is slightly later, with a bit less reaction from the human. Nested has a later merge,
and IBR-Def even later. In this case, IBR-Ign completely fails the merge and stays behind
the truck.

Note that initialization has a large effect over the final solution, and we discuss this
next. But also note that for the same defensive initialization, IBR-hDef is worse than CA-
Def. We’ve found the reason for this to be somewhat unsatisfying: by not taking full best
responses, CA ends up with a solution closer to the initialization compared to IBR. CA,
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initialized with the defensive human and the robot responding by merging, ends up with
a solution in which the robot merges. This solution is at the control bounds of the robot,
which counter the gradient that would push the robot to accelerate and get further from
the human. IBR sometimes does not find that merge solution through best responses, and
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Figure 4.1: Top: The left bar represents the normalized reward accrued over the 50 time-
steps in the case when the human is Obedient – executes the robot’s prediction. Each task’s
results were normalized by subtracting the minimum response then dividing by the difference
between the maximum and minimum responses for that task. The right bar examines all the
cases in which the human is not obedient by normalizing

∑49
t=0 ûH

t(accel)−uH
t(accel) for

each task + human planner joint in the same manner. The more an algorithm’s prediction
deviates on average from our human planners through slowing the human, the better the
performance when predictions are correct. Bottom: seven figures represent each algorithm’s
final rollout in Upcoming Obstacle. We plot the positions of the cars relative to the truck
obstacle, which is moving at a constant velocity over time.
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instead converges to a non-merge solution that in fact has higher reward. We can see an
example of this in Fig 4.3. Despite the CA solutions being worse than the IBR solutions
for the planning horizon with respect to reward, they end up leading to higher cumulative
reward in the MPC rollout by completing a closer merge earlier.

                                                                                       CA-Def, t = 18, success                                                CA-Agg, t = 18, fail

                                                                                        IBR-hDef, t = 28, success                                            IBR-hAgg, t = 28, fail

Figure 4.2: IBR-hDef (Success), IBR-hAgg (Fail), CA-Def (Success), CA-Agg (Fail) at a
certain time-step of a version of Upcoming Obstacle – note that the truck is also moving.
This shows how each algorithm iterates upon their plans during a certain timestep. The last
iteration for each planner visually almost equivalent to the final solution returned. For algo-
rithms that succeeded (CA-Def, IBR-hDef), we investigated the first time-step they decide
to do the maneuver. For the others we show a time-step when the successful initialization
decided to first maneuver. We can see that initialization can directly affect the solution that
a planner converges to.

Fig 4.2 (bottom) showcases the difference for IBR between the defensive and aggressive
human initialization. When the human is initialized aggressively, the robot’s best response is
to keep going behind the truck (remember the truck is moving at constant velocity). Then,
the human’s best response is almost the same – the human accelerates a bit less compared to
the initialization. From there, the robot responds as before, and an equilibrium is reached.
The same happens for CA (top right): we start from the aggressive human and the robot’s
response, and then the gradients adjust the trajectories slightly, but there is nothing that
pushes the robot to do the merge.
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Figure 4.3: At t = 25 for Upcoming Obstacle using the Nested Planner and Obedient
human, we run IBR-hDef, CA-Agg, CA-Def, and CA-Ign. This plots the progression of their
iterations, comparing the magnitude of the robot plan and the mean acceleration of the
human plan (note that CA-Def and IBR-hDef are initialized at the same place). CA-Agg,
IBR-Def, and Nested converge to the same solution and do not attempt to merge. CA-Def
and CA-Ign converge to a solution that sub-optimally attempts the maneuver due to the
gradient pointing towards the edge of the control bounds (note lower robot reward). IBR-
hDef approaches this solution initially, but escapes and converges at a better solution. Note
that the truck is moving at a constant velocity.

Initialization

On the other hand, when we initialize with defensive humans – our heuristic for that is to
have the person slow down – this is enough for the robot’s best response to be going in front
of the person. Then, the person’s best response to that adjusts their speed to actually go
a bit faster, the robot responds, etc. The solution reached like this is a successful merge in
which the human slows down.
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Figure 4.4: The progression of CA-Ign over time in Gap Opening (note the truck is moving
at constant velocity). We can see that even though the initialization plans are near collision,
CA-Ign slowly adjusts the two plans until the maneuver is much more reasonable. Note that
the truck moves at constant velocity.

The “Ign” initialization for both IBR and CA is more interesting, and actually different
between the two. In IBR, we heuristically initialize a defensive robot to ignore the human1.
However, we find that this heuristic is a lot tougher to get consistent results from. Because
some rewards involve being in front of the robot, ignoring the human is not as simple as
removing it, thus our robot’s initial merge plan was sometimes slower or faster than expected.
This ultimately makes this more procedural initialization both perform worse than IBR-Def
and more inconsistently. In contrast, CA is not restricted to the human best responding
to the robot’s aggressive maneuver. We initialize the human to be defensive (heavily slow
down) as well as the robot to ignore the human, seeming to work effectively with the robot
initialization. Often, this could be a colliding pair of plans! It seems like an advantage of CA
is this flexibility of initialization, as it can take this pair and slowly de-collide them as shown
in Fig 4.4. Because the situation already starts with the robot merging and the human
slowing down, this results in the robot making the maneuver earliest and accumulating the
most reward.

Optimism Leads to Better Performance

Overall, the pattern we found is that via the way they solve the game and via initialization,
the planners are making more or less optimistic assumptions about human behavior, and
that this in turn affects how well they can do with humans that match the assumption. The
more optimistic we are about the human’s plan – the more we can bully the human – the
better we do!

1Ignore doesn’t actually remove the human completely from RR. We actually optimized RR assuming
the human’s h position was extremely negative so it be incentivized to merge and get reward for being ’in
front’ of the human.
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-------------- Upcoming Obstacle ----------------

------------------- Gap Opening -------------------- ------------ Deter -----------

------------ Merge -----------

Figure 4.5: Left: The mean of the normalized performance in reward of each robot planner
against each human planner. We normalized each response over tasks, by subtracting the
minimum response and dividing by the difference between the maximum and minimum
performance on that task. As the human becomes more and more aggressive (rightwards in
the figure), the robot loses more and more reward, as evident by the negative gradient from
left to right (barring CA-Agg). Right: The outcomes of the maneuver. Green for success,
Pink for failure, and Red for a collision. We can see that as we move from left to right in a
particular grid we generally transition from green to pink or green to red.

For instance, Nested is more optimistic than IBR in that it assumes the human will
compute a best response rather than try to influence the robot. The defensive initializations
are more optimistic than the aggressive ones because they imbue in the final equilibrium
reached a notion of the person reacting to the robot and making space.

Although quantifying optimism is challenging, we created one proxy for it: the amount
of deviation of the assumed human plans from the other human plans we introduced in
our design: the IBR-Neutral, the Nested human who tries to influence the robot, and the
Ignore human who simply ignores the robot. All these other human planners are much more
aggressive, so by measuring how much the assumption deviates from them on average, we
can capture to what extent the assumption is optimistic. This is essentially vtH − v̂H

t, which
is positive when we assume the human is defensive (slow), and negative when we assume the
human is aggressive.

From Fig 4.1, we can see that indeed optimism seems to lead to higher reward: as our
planner deviates more from our non-obedient humans (i.e. assuming the human accelerate
less than they actually do), it gains more reward during the obedient rollouts. When a
robot predicts the human will act defensively, and it actually does, this gives the robot more
opportunity to perform a successful maneuver.
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Summary

Overall, we found Coordinate Ascent when properly initialized to be very aggressive, in
large part because it is taking smaller steps than IBR and can thus be more influenced by a
defensive human and aggressive robot initialization. One challenge for CA, however, is how
to reliably find such initializations autonomously. The Nested optimizer also performs well,
as expected when tested with humans that follow its predictions. The final test for all the
algorithms is their performance with “non-obedient” humans who do not conveniently play
by their assumptions.

4.2 When the Robot’s Assumptions are Incorrect

We now analyze the algorithms’ performance with increasingly aggressive human behavior,
from IBR-Neutral to Nested to Ignoring the robot altogether.

Reward

From Fig 4.5(left), we can see that as the humans become more and more aggressive, the
robot loses more and more reward: as we move to the right on every algorithm, the cells
get darker, meaning lower reward for the robot. In the merge scenarios for instance, this
happens because the robot expects to be able to complete the merge, but the person does
not slow down as expected. In general, the better an algorithm performed under correct
assumptions, the worse it degrades with more aggressive humans. An exception is CA-Ign
and CA-Def, which degrade less: here, they still complete relatively dangerous maneuvers,
but do so early such that the total reward is higher. It’s also interesting to note that CA-Agg
assumes such an aggressive human and performs so poorly with Obedient human, that it
actually improves against IBR-neutral

Success

The human becoming more aggressive naturally affects reward, but it also qualitatively
affects what happens underneath: as Fig 4.5(right) shows, we start seeing more failed ma-
neuvers (pink), and sometimes we start seeing collisions – these are situations in which the
robot keeps stubbornly pretending like the person will slow down, and gets itself into a
situation where it cannot escape a collision.

From a pure safety perspective, the only algorithm that never collides is CA-Agg, but
this is also the algorithm that fails the maneuver most times (our worst performer under
correct assumptions). If we do not consider the “Ignore” human, who completely ignores
the robot’s existence, and instead are worried in the worst case about the Nested human,
who tries to influence the robot, IBR-hAgg never collides, IBR-hDef, IBR-Ign, and CA-Def
collide once, Nested collides twice, and CA-Agg collides thrice. All algorithms remain safe
with IBR-Neutral.
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Note that we do not have a perfect mapping between reward and safety. In fact, some-
times CA-Ign would have higher reward than another algorithm, but be in a collision. This
is because the reward functions we used for the robot are inevitably imperfect and can fail
to capture our exact preferences between any two trajectories. What we find interesting,
however, is that a very aggressive planner like CA-Ign will push the boundaries of this type
of misspecification, exposing behavior that has higher reward but is undesirable.

Summary

From a pure reward perspective, CA-Ign remains remarkably good even with aggressive
humans. It does however push the boundaries of safety, where CA-Def or Nested seem like
a better middle ground.

4.3 Runtime

Using the Theano [18] framework, we implemented CA to step 100,000 times, IBR 50 times,
and ran everything on an Intel i7-9700k CPU. Runtime is relatively consistent from task
to task, averaging approximately 13.54 seconds per time-step for CA, 3.11 seconds for IBR,
and 5.56 seconds for Nested. Nested takes approximately 607.58 seconds to initialize the
gradients, while CA and IBR have the same gradient initialization and take only 12.37
seconds 2. CA takes significantly longer to converge than IBR because the objectives are
more of a moving target. Compared to IBR, which computes a best response to a static
objective and uses second order methods such as L-BFGS to converge quickly, CA is forced
to take small gradient steps. Lastly, Nested’s initialization is extremely slow due to the
usage of the Hessian term in the gradient and ultimately bottle-necked the horizon in our
experiments. Though we did not do so, we would ultimately require all the algorithms to be
optimized for use for real-time planning.

2We timed and averaged several runs of each algorithm, which didn’t vary much from task to task
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Chapter 5

Discussion

5.1 Takeaways

In this work we compared the different planning algorithms in a one robot, one human
driving dynamic game across different initializations, human planners, and tasks. Now we
take a step back to try to answer the question that prompted this work: Which planner do
we choose and when?

Overall, we found the behavior from Fig 4.1 to be illustrative: with optimistic initializa-
tions, CA can be incredibly aggressive, even more so than Nested. But this should be taken
with caution: the underlying reason this is happening is that CA is much more local, and
has a hard time escaping the aggressive initialization it is in – it is finding merge solutions
that have lower reward than even not merging at all because it gets so close to the human,
but ends up with higher MPC rollout reward because it does that merge earlier.

In contrast, IBR initialized optimistically manages to always succeed when the human
follows its assumptions, and requires a less strong reaction from the human. IBR-hDef is also
relatively safe with more aggressive humans compared to Nested or CA. The main challenge
with IBR-hDef in practice however is finding the “Def” autonomously – IBR is very sensitive
to initialization, with both IBR-rIgn but especially IBR-hAgg performing worse. The human
slowing down was a convenient heuristic for merge scenarios, but how can a robot find such
an initialization reliably as the situations and the reward functions become more nuanced?

Overall, Nested seems to be reliably aggressive, IBR is effective when we know how to
initialize it, and CA will vary wildly from ultra-aggressive to ultra-defensive as a function of
how we initialize.

5.2 Limitations and Future Work

This work is merely a step towards understanding game-theoretic planners for human-robot
interaction generally, and for autonomous driving scenarios specifically. We are limited by
the scenarios we tested and reward we defined, by the human behavior we simulated, and by
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the initializations we tried. Without human data, we also do not know how these algorithms
would perform in interaction with real people, both on average and as a function of the
specific person’s driving style, what they are paying attention to, etc. – instead, what we
focused on providing is an apples-to-apples comparison of what the planners would do in
the exact same situation, also as a function of interacting with increasingly assertive drivers.
Finally, we do not consider planners that hold uncertainty over the human’s intentions or
plans, or that look at multiple humans that the robot is interacting with simultaneously.
While all these directions are important, we are excited to have shed a little more light
on the differences between these options we have when our robots need to solve dynamic
general-sum games in continuous state and action spaces.
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