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Abstract

Geometric Sampling Theory, Triangulations, and Robust Machine Learning

by

Marc Kzhaya Khoury

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jonathan Richard Shewchuk, Chair

Manifold triangulation is the problem of, given a set of points V sampled densely from some known
manifold Σ, output a set of simplices T that is topologically identical to Σ and geometrically close
to Σ. In the first part of this thesis we study a variant of this problem with one additional constraint.
In addition to a set of points V densely sampled from a known Σ we are also given a finite set of
line segments S , whose endpoints are in V , which must appear as edges in the output triangulation
T . To solve this problem we introduce restricted constrained Delaunay triangulations (restricted
CDTs), which combine ideas from constrained Delaunay triangulations and restricted Delaunay
triangulations to enable the enforcement of constraining edges on triangulations of smooth surfaces.
We prove several combinatorial properties of restricted CDTs, including conditions under which
the restricted CDT contains every constraining segment, conditions under which the restricted
CDT is homeomorphic to the underlying surface Σ, and a characterization of which vertices
must be considered to compute the triangles near a segment. The restricted CDT has immediate
practical applications in surface meshing and geometric modeling. Along the way we improve many
commonly used supporting results in geometric sampling theory.

In the second part of this thesis we apply the geometric tools and high-dimensional intuition
developed in the previous chapters to problems in machine learning. We study the problem of
adversarial examples, a pervasive phenomenon of machine learning models where perturbations of
the input that are imperceptible to humans reliably lead to confident incorrect classifications. We
study robustness to adversarial examples under the “Manifold Hypothesis”: the observation that
‘real’ data often exhibits low-dimensional structure. Our results highlight the role of codimension,
the difference between the dimension of the data manifold and the dimension of the embedding
space, in adversarial robustness. We prove a tradeoff between robustness in different norms, show
that adversarial training is sample inefficient, and that robustness requires larger models.

Lastly we study the relationship between robustness and optimization in the linear regression setting.
We show an example of a learning problem for which the solution found by adaptive optimization
algorithms exhibits qualitatively worse robustness properties against both L2- and L∞-adversaries
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than the solution found by non-adaptive algorithms. Then we fully characterize the geometry of the
loss landscape of L2-adversarial training in least-squares linear regression. The geometry of the loss
landscape is subtle and has important consequences for optimization algorithms.
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Chapter 1

Introduction

In the first part of this thesis we study a fundamental problem in computational geometry. Manifold
triangulation is the problem of, given a set of points V sampled densely from some known manifold
Σ, output a set of simplices T that is topologically identical to Σ and geometrically close to Σ. By
“topologically identical” we mean that there exists a homeomorphism h (a continuous bijection with
continuous inverse) between T and Σ. If such a homeomorphism exists, T and Σ have the “same
shape” up to topology. However just because two spaces are topologically identical does not mean
that they have similar geometry. (A tea cup is topologically identical to a coffee cup but they look
very different.) By “geometrically close” we mean that T is everywhere close to Σ in Euclidean
distance and the normal spaces of T well approximate those of Σ. The first requirement can be
expressed by a condition on the homeomorphism h that ‖h(x) − x‖ ≤ ε for all x ∈ T , h(x) ∈ Σ; the
second by a similar condition on the normal spaces.

In Chapter 3 we study a variant of this problem with one additional constraint. In addition to
a set of points V densely sampled from a known Σ we are also given a finite set of line segments
S , whose endpoints are in V , which must appear as edges in the output triangulation T . We study
this problem in the case where Σ is a surface (2-manifold) embedded in R3. To solve this problem
we introduce restricted constrained Delaunay triangulations (restricted CDTs), which combine
ideas from constrained Delaunay triangulations and restricted Delaunay triangulations to enable
the enforcement of constraining edges on triangulations of smooth surfaces. We prove several
combinatorial properties of restricted CDTs, including conditions under which the restricted CDT
contains every constraining segment, conditions under which the restricted CDT is homeomorphic
to the underlying surface Σ, and a characterization of which vertices must be considered to compute
the triangles near a segment. The restricted CDT has immediate practical applications in surface
meshing and geometric modeling.

To prove many of the properties of restricted CDTs, we needed to improve many commonly
used supporting results in geometric sampling theory. In Chapter 2 we present several results which
can be used to bound the normal error between T and Σ. Consider a triangle τ ∈ T whose vertices
are in V . Let x ∈ τ be any point on the triangle, not necessarily a vertex, and let x̂ = h(x). Then
the error between the normal vector of τ and the normal vector to Σ at x̂ can be decomposed as
∠(nτ, nx̂) ≤ ∠(nτ, nv) + ∠(nv, nx̂) where v is the vertex of τ with largest plane angle. (Note that all
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three angles are measured as the acute angle between the relevant vectors.) The first term, ∠(nτ, nv),
is called the triangle normal error, the error of the normal vector of the triangle to the normal vector
to Σ at v. We prove a sharp bound on ∠(nτ, nv) in terms of the size and shape of τ. Our proof is very
intuitive and is sharp, meaning that the bound is tight including constants and an example exists that
attains the bound. The second term, ∠(nv, nx̂) is called the normal variation, the error incurred as
the normal varies along the surface of Σ. The rate at which the normal varies is dependent upon the
curvature of Σ. When v and x̂ are close in Euclidean distance, relative to the local curvature, we can
bound the normal variation. Unlike our Triangle Normal Lemma which only applies to triangles,
our Normal Variation Lemmas apply to k-dimensional smooth manifolds embedded Rd, for any
choice of k < d.

In the second part of this thesis we apply the geometric tools and high-dimensional intuition
developed in the previous chapters to problems in machine learning. We study the problem of
adversarial examples, a pervasive phenomenon of machine learning models where perturbations
of the input that are imperceptible to humans reliably lead to confident incorrect classifications.
Given a labeled training set, the goal of classification is to output a classifier f that performs well on
the underlying distribution from which the training set was sampled. The existence of adversarial
examples implies that there exists a small perturbation δ such that f (x) , f (x + δ). Geometrically,
starting at a correctly classified point, there is a direction in which if we walk a small distance we
cross the decision boundary.

The classifier f induces a decision boundary in the input space. A classifier is robust to
adversarial examples if the decision boundary it induces is as far from the data distribution as
possible, with respect to a relevant distance metric. In Chapter 4 we study robustness to adversarial
examples under the “Manifold Hypothesis”: the observation that ‘real’ data often exhibits low-
dimensional structure. We model data as being sampled from class-specific low-dimensional
manifolds embedded in a high-dimensional space. We consider a threat model wherein an adversary
may choose any point on the data manifold to perturb by ε in order to fool a classifier. To be robust
to such an adversary, a classifier must be correct everywhere in an ε-tube around the data manifold.
We highlight the role of codimension, the difference between the dimension of the data manifold and
the dimension of the embedding space, in adversarial robustness. Furthermore we prove a tradeoff
between robustness in different norms, show that adversarial training is sample inefficient, and that
robustness requires larger models. We also present adversarial training with Voronoi constraints, a
modification to the standard adversarial training paradigm which we show improves robustness in
high-codimension settings.

In Chapter 5 we study the relationship between robustness and optimization in the linear
regression setting. We show an example of a learning problem for which the solution found by
adaptive optimization algorithms exhibits qualitatively worse robustness properties against both
L2- and L∞-adversaries than the solution found by non-adaptive algorithms. The robustness of the
adaptive solution decreases rapidly as the dimension of the problem increases, while the robustness
of the non-adaptive solution is stable as the dimension increases. Then we fully characterize the
geometry of the loss landscape of L2-adversarial training in least-squares linear regression. The
L2-adversarial training objective is convex everywhere; moreover, it is strictly convex everywhere
except along either 0, 1, or 2 line segments, depending on the value of ε. Furthermore for nearly
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all choices of ε, these line segments along which the objective is convex, but not strictly convex,
lie outside of the rowspace and the gradient along these line segments is nonzero. Surprisingly
the solution is almost always unique, and thus common optimization algorithms are guaranteed to
converge to the robust solution.



4

Chapter 2

Approximation Bounds for Normals on
Triangulated Surfaces and Manifolds

2.1 Introduction
Triangulations of surfaces are used heavily in computer graphics, visualization, and geometric
modeling; they also find applications in scientific computing. Also useful are triangulations of
manifolds in spaces of dimension higher than three—for example, as a tool for studying the topology
of algebraic varieties. A surface triangulation (sometimes called a surface mesh) replaces a curved
surface with flat triangles—or in higher dimensions, simplices—which are easy to process and
suitable for graphics rendering engines; but they introduce error. How good is a triangulation as an
approximation of a curved surface?

The two criteria most important in practice are the interpolation error, the error in the position
of the surface, and the normal error, the error in the normal vectors of the surface. Let Σ be a
surface or manifold embedded in a Euclidean space Rd, and let Λ be a piecewise linear surface or
manifold formed by a triangulation that approximates Σ. The interpolation error can be quantified
as the distance from an arbitrary point on Λ to the nearest point on Σ, or vice versa. The normal
error can be quantified by choosing two nearby points x ∈ Λ and y ∈ Σ—a natural choice of y is
the point on Σ nearest x—and measuring the angle separating the vector normal to Λ at x from the
vector normal to Σ at y. (The vector normal to Λ is usually undefined if x lies on a boundary where
simplices meet, but our results will treat simplices individually rather than treat Λ as a whole.)

Some notation: we employ a correspondence between the two surfaces called the nearest-point
map1 ν, which maps a point x ∈ Rd to the point ν(x) nearest x on Σ (if that point is unique). We
will frequently use the abbreviation x̃ to denote ν(x). Given two points p, q ∈ Rd, pq denotes a line
segment with endpoints p and q, and |pq| denotes its Euclidean length ‖p − q‖2. For a point p on a
surface Σ ⊂ R3, np denotes a vector normal to Σ at p (whose magnitude is irrelevant). For a triangle
τ ⊂ R3, nτ denotes a vector normal to τ. Let ∠(nτ, np) denote the angle separating nτ from np. In

1We follow the convention of Cheng et al. [20] and use the Greek letter nu, which unfortunately is hard to distinguish
from the italic Roman letter v.
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higher-dimensional Euclidean spaces, the normal vectors may be replaced by normal subspaces; see
Section 2.2.

The goal of this chapter is to provide strong bounds on the normal errors for triangles, based on
assumptions about the sizes of medial balls (defined in Section 2.2). Specifically, given a triangle τ
whose vertices lie on Σ and a point x ∈ τ, we bound the angle ∠(nτ, nx̃). Besides the normal errors,
we also study the normal variation, the angle separating the normal vectors (or normal spaces) at
two different points on Σ. (We need to understand the normal variation to study the normal error; it
is also used to prove that certain triangulations are homeomorphic to a surface [20, 28].) Bounds
on both of these quantities— the normal error and the normal variation—have been derived in
prior works [2, 6, 5, 19, 20, 28] and form a foundation for the correctness and accuracy of many
algorithms in surface reconstruction [2, 6, 4, 5, 10, 19, 31, 28, 58] and mesh generation [13, 11, 21,
20, 32, 69, 74] based on Delaunay triangulations. Our improved bounds directly imply improved
sampling bounds for all of those algorithms. By “sampling bounds,” we mean how densely points
must be sampled on a surface to guarantee that the reconstructed surface or the surface mesh has a
good approximation accuracy and the correct topology.

A second goal of this chapter is to generalize our bounds to manifolds in higher dimensions.
Our bounds on the normal error apply only to triangles, albeit on a manifold of any dimension
(greater than 1) in a space of any dimension. (We would like to study normal errors for simplices of
higher dimension, but the interaction between the shape of, say, a tetrahedron in R4 and the stability
of its normal space is complicated. It deserves more study.)

Our bounds on the normal variation also apply in higher dimensions, but with a twist. The codi-
mension of a k-manifold Σ ⊂ Rd is d − k. We have two normal variation lemmas (Section 2.4): one
for codimension 1, which bounds an angle ∠(np, nq) ∈ [0◦, 180◦] between two normal vectors, and
one for higher codimensions, which bounds an angle ∠(NpΣ,NqΣ) ∈ [0◦, 90◦] between two normal
spaces (see Section 2.2 for definitions of normal spaces and the angles between them). The reason
for two separate lemmas is that the codimension 1 bound is stronger; codimension 2 introduces
configurations that weaken the bound and cannot occur in codimension 1. As a consequence, some
of our bounds on the normal errors also depend on the codimension.

One of our results on the normal error improves a prior bound by a factor of about 1.9 (see
Section 2.3). Even small constant-factor improvements in the bounds are valuable; for example, the
number of triangles necessary for a surface mesh to guarantee a specified accuracy in the normals is
reduced by a factor of 1.92 = 3.61, helping to substantially speed up the application using the mesh.
In dimensions higher than three, we are not aware of prior bounds with explicitly stated constants,
but there are asymptotic results [19]; part of our contributions is to give strong explicit bounds. Our
bound on the interpolation error is sharp, meaning that it cannot be improved (without making
additional assumptions). We conjecture that our bound on the normal variation in codimension 1 is
sharp, meaning that it cannot be improved (without making additional assumptions). (We use sharp
to mean that not even the constants can be improved, as opposed to tight, which is sometimes used
in an asymptotic sense.)

The bounds help to clarify the relationship between approximation accuracy, the sizes and
shapes of the simplices in a surface mesh, and the geometry of the surface itself. Reducing the
sizes of the simplices tends to reduce both the interpolation and normal errors; unsurprisingly, finer
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meshes offer better approximations than coarser ones. The interpolation errors on a simplex scale
quadratically with the size of the simplex. This is good news: shrinking the simplices reduces the
interpolation error quickly. The normal errors scale linearly (not quadratically) with the size of the
simplex. Roughly speaking, both types of error scale linearly with the curvature of the manifold,
measured at a selected point; more precisely, they scale inversely with the radii of selected medial
balls (defined in Section 2.2), which we use to impose appropriate bounds on both the curvature
and the proximity of different parts of a manifold. Therefore, portions of a manifold with greater
curvature require smaller simplices.

Normal errors are very sensitive to the shape of a simplex. Skinny simplices underperform
simplices that are close to equilateral, and really skinny simplices can yield catastrophically wrong
normals. As a rough approximation, the worst-case normal error on a triangle is linearly proportional
to the triangle’s circumradius, defined in Section 2.2. (See Sections 2.3 and 2.5 and Amenta, Choi,
Dey, and Leekha [6]). For triangles with a fixed longest edge length, the worst normal errors are
suffered by triangles with angles close to 180◦, because the circumradius approaches infinity as
the largest angle approaches 180◦. We give several bounds on the normal error for a triangle: the
simplest one depends on the triangle’s circumradius, whereas a stronger bound depends on one
of triangle’s angles as well, giving us a more nuanced understanding of the relationship between
triangle shape and normal errors.

2.2 A Tour of the Bounds
To create a surface mesh that meets specified constraints on accuracy, one must consider the
geometry of Σ and the size and (sometimes) the shape of each simplex. Our bounds use three
parameters to measure a simplex τ: the min-containment radius of τ and, for triangles only, the
circumradius of τ and (optionally) one of τ’s plane angles.

For a simplex τ ⊂ Rd, the smallest enclosing ball of τ (also known as the min-containment ball)
is the smallest closed d-dimensional ball Bτ ⊇ τ, illustrated in Figure 2.1. The min-containment
radius of τ is the radius of τ’s smallest enclosing ball; we write it as r (though sometimes r will
be the radius of any arbitrary enclosing ball). The diametric ball of τ is the smallest closed d-ball
B such that all τ’s vertices lie on B’s boundary, also illustrated in Figure 2.1. The circumcenter
and circumradius of τ are the center and radius of τ’s diametric ball, respectively; we write the
circumradius as R. For every simplex, r ≤ R; but if τ is “badly” shaped, R can be arbitrary large
compared to r. (Recall that for a triangle, R → ∞ as the largest angle approaches 180◦ and the
longest edge remains fixed.) A simplex τ always contains the center of its smallest enclosing ball,
but frequently not its circumcenter. The center of τ’s smallest enclosing ball is the point on τ closest
to τ’s circumcenter. (See Rajan [73, Lemma 3] for an algebraic proof based on quadratic program
duality, or Shewchuk [82, Lemma 24] for a geometric proof.) Hence, r = R if and only if τ contains
its circumcenter.

The circumcircle (circumscribing circle) of a triangle τ ⊂ Rd is the unique circle that passes
through all three vertices of τ. The circumcircle has the same center and radius R as τ’s diametric
ball (i.e., τ’s circumcenter and circumradius). A plane angle of a triangle τ is one of the usual three
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r R

Figure 2.1: The smallest enclosing ball of a triangle, with radius r, and the triangle’s diametric ball, with
radius R.

angles we associate with a triangle, though τ might be embedded in a high-dimensional space. A
triangle contains its circumcenter (and has r = R) if and only if it has no plane angle greater than
90◦.

There are two salient aspects to the geometry of Σ. One is curvature: a surface with greater
curvature needs smaller triangles. (Nonsmooth phenomena like sharp edges can make the triangle
normals inaccurate no matter how small the triangles are, and are best addressed by matching the
triangle edges to the surface discontinuities. We don’t address that problem here.) A more subtle
aspect is that a surface can “double back” and come close to itself in Euclidean space: for example,
if a mesh of a hand has a triangle connecting the pad of the thumb to a knuckle of the index finger,
the triangle misrepresents the surface badly.

The early literature on provably good surface reconstruction identified the medial axis—more
specifically, the sizes of medial balls—as an effective way to gauge the triangle sizes required as a
consequence of both curvature and the proximity of parts like fingers. Let Σ be a bounded, smooth
k-manifold embedded in Rd. Let B ⊂ Rd be an open ball. We call B surface-free if B ∩ Σ = ∅. We
say B touches Σ if B ∩ Σ = ∅ but B’s boundary intersects Σ; that is, B is surface-free but its closure
is not. In that case, B is tangent to Σ at the intersection point(s). There are two types of medial ball;
both types are surface-free balls that touch Σ, as illustrated in Figure 2.2. Every surface-free ball
whose boundary touches Σ at more than one point is a medial ball; most medial balls are of this first
type. Let W ⊂ Rd be the set containing the center of every medial ball of this first type; these are
the points w ∈ W where the nearest-point map ν(w) is not uniquely defined. (Recall that ν maps a
point x ∈ R3 to the point x̃ = ν(x) nearest x on Σ.) The medial axis M ∈ Rd is the closure of W, as
illustrated. Each point added to M by taking the closure is the center of a medial ball of the second
type, which touches Σ at just one point.

We will often refer to the medial balls tangent to Σ at a point p ∈ Σ. In codimension 1, there are
typically two such balls (but sometimes just one), one enclosed by Σ and (optionally) one outside Σ.
In higher codimensions, there are infinitely many. All their centers lie in the normal space NpΣ. A
useful construction we will use later is to choose a point q ∈ NpΣ \ {p} and imagine an open ball
tangent to Σ at p whose radius is initially zero; then the ball grows so that its center moves along
the ray ~pq while its boundary remains touching p. Typically, at some point the ball will not be able
to grow further without intersecting Σ. At the last instant when the ball is still surface-free, it is a
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Σ

M

M

Figure 2.2: Left: A 1-manifold Σ and its medial axis M. Right: Some of the medial balls that define M.
Those with black centers are medial balls of the first type; those with white centers are of the second type.

p

Σ

M

q

Figure 2.3: The medial ball tangent to Σ at p whose center lies on the ray ~pq.

medial ball, and its center is a point in the medial axis M. Typically the ball cannot grow further
because it touches a second point on Σ (producing a medial ball of the first type), but sometimes it
is constrained solely by the curvature of Σ at p itself (producing a medial ball of the second type).
In some cases when p lies on the boundary of the convex hull of Σ, the ball can grow to infinite
radius and degenerate into an open halfspace while remaining surface-free. It is occasionally useful
to refer to such a degenerate medial ball, although it does not contribute a point to M.

For any p ∈ Σ, the empty ball size ebs(p) is the radius of the smallest medial ball tangent to Σ at
p. The local feature size lfs(p) is the distance from p to the medial axis (i.e., from p to the nearest
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point on M). Formally,

lfs(p) = min
m∈M
|pm|; ebs(p) = min

m∈M∩NpΣ
|pm|.

This definition makes clear that lfs(p) ≤ ebs(p). Both measures simultaneously constrain the
curvature of Σ at p (the principle curvatures cannot exceed 1/ebs(p)) and the proximity of other
“parts” of the manifold (recall the example of fingers of a hand). The empty ball size has the
advantage that it is more local in nature than the local feature size, so bounds expressed in terms
of ebs(p) are more generally applicable (which is why we are introducing ebs here). The local
feature size lfs(p) constrains the curvature not only at p, but also at nearby points, permitting the
proof of stronger conclusions. The local feature size is 1-Lipschitz, meaning that for all p, q ∈ Σ,
lfs(p) ≤ lfs(q) + |pq|; whereas the empty ball size can vary rapidly over Σ.

One of the main contribution of the early literature on provably good surface reconstruction
was to recognize that the local feature size (scaled down by a constant factor) is a good guide to
how closely points need to be spaced on Σ to ensure that surface reconstruction algorithms will
produce a correct output that approximates Σ well [2, 3]. Subsequently, provably good surface mesh
generation algorithms also adopted these observations [12, 11, 18].

The normal errors are (approximately) inversely proportional to ebs(p) or lfs(p) for some
relevant point p. That is, the errors increase with a decreasing radius of curvature (i.e., an increasing
curvature). If Σ is not smooth, each point p where Σ is not smooth has ebs(p) = lfs(p) = 0, and p
lies on the medial axis M. Our bounds do not apply at such points (the bounds are infinite). The
bounds still apply at points where ebs is positive.

Before we discuss normal errors, we must discuss our Normal Variation Lemmas (Section 2.4).
The smoothness of a manifold Σ implies that if two points are close to each other, their normal
spaces differ by only a small angle, and likewise for their tangent spaces. Given two points p, q ∈ Σ,
a normal variation lemma gives an upper bound on the angle between their normal vectors (in
codimension 1) or their normal spaces (in codimension 2 or higher).

What are tangent spaces and normal spaces? A k-flat, also known as an k-dimensional affine
subspace, is a k-dimensional space that is a subset of Rd. It is essentially the same as a k-dimensional
subspace (from linear algebra), but whereas a subspace must contain the origin, a flat has no such
requirement. Given a smooth k-manifold Σ ⊂ Rd and a point p ∈ Σ, the tangent space TpΣ is
the k-flat tangent to Σ at p, and the normal space NpΣ is the (d − k)-flat through p that is entirely
orthogonal (complementary) to TpΣ; that is, every line in NpΣ is perpendicular to every line in TpΣ.

Recall that the codimension of Σ is d − k. In the special (but common) case of codimension 1,
a (d − 1)-manifold without boundary divides Rd into an unbounded region we call “outside” and
one or more bounded regions we call “inside.” Hence for codimension 1 we use the convention
that any normal vector np is directed outward. The normal space NpΣ is a line parallel to np, but
np is directed and NpΣ is not. In codimension 2 or higher, the normal space has dimension 2 or
higher (matching the codimension of Σ) and Σ might not even be orientable, so we don’t assign NpΣ

a direction.
Let F,G ⊆ Rd be two flats, and suppose that the dimension of F is less than or equal to the
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dimension of G. We define the angle separating F from G to be

∠(F,G) = ∠(G, F) = max
`F⊂F

min
`G⊂G

∠(`F , `G)

where `F and `G are lines. Note that if F and G are of different dimensions, the “max” must
apply over the lower-dimensional flat and the “min” over the higher-dimensional flat. This angle
is always in the range [0◦, 90◦]; we use angles greater than 90◦ only for directed vectors. If F⊥
denotes a flat complementary to F, it is well known that ∠(F,G) = ∠(G⊥, F⊥); hence, for two
points p, q ∈ Σ, ∠(NpΣ,NqΣ) = ∠(TpΣ,TqΣ). Note that there is more than one way to define “angles
between subspaces.” The best-known way originates with an 1875 paper of Jordan [52]; by this
reckoning, one needs multiple angles to fully characterize the angular relationships between two
high-dimensional flats. Our definition corresponds to the greatest of these angles (including the 90◦

angles, which are not included in Jordan’s canonical angles), so our upper bound holds for all the
angles.

It is convenient to specify our bounds on ∠(NpΣ,NqΣ) = ∠(TpΣ,TqΣ) in terms of a parameter
δ = |pq|/lfs(p). The worst-case value of ∠(NpΣ,NqΣ) is δ + O(δ3) radians for small δ. Hence, the
worst-case normal variation is approximately linear in |pq| and approximately inversely proportional
to lfs(p).

We give two Normal Variation Lemmas that, collectively, apply to smooth k-manifolds embedded
in Rd for every d and k < d. They are stronger than the best prior bounds, especially for d > 3. There
are two separate lemmas because we obtain a better bound for codimension 1 than for codimension
2 and higher. Our main result in codimension 1 is that for δ ≤ 0.9717, ∠(np, nq) ≤ η1(δ) ∈ [0◦, 180◦]
where

η1(δ) = arccos
(
1 −

δ2

2
√

1 − δ2

)
≈ δ +

7
24
δ3 +

123
640

δ5 +
1,083
7,168

δ7 + O(δ9).

Our main result for general codimensions is that for δ ≤ 0.7861, ∠(NpΣ,NqΣ) = ∠(TpΣ,TqΣ) ≤
η2(δ) ∈ [0◦, 90◦] where

η2(δ) = arccos

√
1 −

δ2

√
1 − δ2

≈ δ +
5

12
δ3 +

57
160

δ5 +
327
896

δ7 + O(δ9).

We conjecture that our bound for codimension 1 is sharp, meaning that it cannot be improved
without imposing additional restrictions. Our bound for codimension 2 is not sharp and leaves room
for improvement. See Section 2.4 for additional bounds (and plots thereof) that are stronger when
the distance from q to p’s tangent plane is known.

Figure 2.4 compares our two bounds and two prior bounds for surfaces in R3, both by Amenta
and Dey [5]. The stronger prior bound is ∠(np, nq) ≤ − ln(1 − δ) radians for δ ≤ 0.9567. (A
derivation of both bounds can also be found in Cheng et al. [20]. Amenta and Bern [2] gave an early
normal variation lemma with a weaker bound, but the proof was erroneous.) This bound fades to
90◦ at δ ≈ 0.7921 and to 180◦ at δ ≈ 0.9567, whereas our bound for codimension 1 fades to 90◦ at
δ ≈ 0.9101 and to 180◦ at δ ≈ 0.9717. Our bound for higher codimensions fades to 90◦ at δ ≈ 0.7861
and stops there (because we do not assign directions to normal spaces of dimension 2 or higher).
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Figure 2.4: Upper bounds in degrees for ∠(NpΣ,NqΣ) as a function of δ = |pq|/lfs(p), provided by several
normal variation lemmas. The brown curve is the bound − ln(1−δ) radians proved by Amenta and Dey [5] for
surfaces without boundary in R3. The purple curve is the weaker but better-known bound δ/(1 − δ) radians,
also by Amenta and Dey [5]. The green curve is our bound for codimension 1—that is, for (d − 1)-manifolds
without boundary in Rd. The red curve is our bound for codimension 2 or greater—that is, for k-manifolds
without boundary in Rd with d − k ≥ 2. Bounds between 90◦ and 180◦ are meaningful for manifolds without
boundary in codimension 1. The red curve stops at 90◦ because we do not assign directions to normal spaces
of dimension 2 or higher.

Amenta and Dey [5] also proved a bound of δ/(1 − δ) radians, which has become better known. We
include it in Figure 2.4 (in purple) to show how much is lost by using the well-known bound instead
of the stronger bounds. The Amenta–Dey bounds are of the form ∠(NpΣ,NqΣ) ≤ δ + O(δ2) radians,
whereas our bounds show that ∠(NpΣ,NqΣ) ≤ δ + O(δ3) radians.

Cheng, Dey, and Ramos [19] prove a general-dimensional normal variation lemma for k-
manifolds in Rd, showing that in the worse case, ∠(NpΣ,NqΣ) grows linearly with δ for small δ;
but they express their bound in an asymptotic form with an unspecified constant coefficient, which
makes a comparison with our bounds difficult. We think it is a useful and practical contribution
to provide explicit numerical bounds η1(δ) and η2(δ) for d > 3. Although our bound η2(δ) is not
sharp, for δ ≤ 0.7 it is not much bigger than η1(δ), which we conjecture is a lower bound for all
codimensions.

Finally, our results include several Triangle Normal Lemmas (Sections 2.3 and 2.5). For a
triangle τ whose vertices lie on a k-manifold Σ, let ν(τ) be the image of τ under the nearest-point
map. We derive bounds on how well τ’s normal vector locally approximates the vectors normal
to Σ on ν(τ). For a j-simplex τ ⊂ Rd, τ’s tangent space is its affine hull, a j-flat denoted aff τ. For
convenience, we define a particular normal space for simplices: let Nτ denote the set of points in
Rd that are equidistant to all the vertices of τ. Nτ is a (d − j)-flat complementary to aff τ. The
intersection of Nτ and aff τ is τ’s circumcenter.
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Figure 2.5: Upper bounds in degrees for ∠(Nτ,NvΣ) = ∠(aff τ,TvΣ), where τ is a triangle whose vertices lie
on a manifold Σ and v is a vertex of τ. We assume ebs(v) = 1. Left: three bounds on ∠(Nτ,NvΣ) for the case
where v is the vertex at τ’s largest plane angle (or any angle 60◦ or greater), as a function of the circumradius
R of τ. The blue curve is our new bound (2.2). The green curve is the best (albeit little-known) prior bound
we are aware of, arcsin(2R), due to Cheng, Dey, Edelsbrunner, and Sullivan [18]. The brown curve is a much
better-known prior bound, due to Amenta, Choi, Dey, and Leekha [6] (see Lemma 2). Right: isocontour plot
of our bound (2.1) as a function of the circumradius R (on the horizontal axis) and the angle φ at the vertex
v (on the vertical axis). For small φ, the lemma does not provide a bound (unless R is very small), but see
Section 2.5.

Our basic Triangle Normal Lemma applies only at the vertices of τ. Let R be τ’s circumradius.
Let v be a vertex of τ and let φ be τ’s plane angle at v. Then

∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) ≤ arcsin
(

R
ebs(v)

max
{
cot

φ

2
, 1

})
. (2.1)

Note that the argument cot φ2 dominates if φ is acute and the argument 1 dominates if φ is obtuse. If
v is the vertex at τ’s largest plane angle (so φ ≥ 60◦), then

∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) ≤ arcsin

√
3R

ebs(v)
. (2.2)

Figure 2.5 plots both bounds, (2.2) at left and (2.1) at right. Note that ebs(v) can be replaced by
lfs(v). It is interesting that the worst case preventing the bound (2.2) from being better is incurred by
an equilateral triangle (rather than a triangle with a very large or small angle, as one might expect).

These bounds vary approximately linearly with the circumradius of τ, and inversely with the
empty ball size or local feature size at v. Whereas the interpolation error varies quadratically
with the radius of τ’s smallest enclosing ball, and is therefore very sensitive to τ’s size but nearly
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Figure 2.6: Upper bounds for ∠(Nτ,Nx̃Σ) = ∠(aff τ,T x̃Σ) as a function of the circumradius R of τ, where τ
is a triangle whose vertices lie on a manifold Σ and x is any point on τ. We assume all three vertices w of τ
satisfy lfs(w) ≥ 1. The blue curve is the upper bound in codimension 1 (with the choice φ = 49◦) and the
brown curve is the upper bound in higher codimensions (with the choice φ = 48.5◦), for which the Normal
Variation Lemma is weaker.

insensitive to its shape, the normal error varies (linearly) with τ’s circumradius, which can be much
larger than τ if τ has a large angle (close to 180◦). It is well known that in surface meshes, triangles
with large angles are undesirable and sometimes even crippling to applications, not because of
problems with interpolation error, but because of problems with very inaccurate normals.

Given a triangulation of Σ, one would like to have a triangle normal lemma that applies to every
point on Σ, not just at the vertices. Moreover, the Triangle Normal Lemma bounds are weak or
nonexistent at the vertices where the triangles have small plane angles. Hence, we use the Normal
Variation Lemmas to extend the Triangle Normal Lemma bounds over the rest of ν(τ)—that is,
for every x ∈ τ, we bound ∠(Nτ,Nx̃Σ). Thus, a finely triangulated smooth manifold accurately
approximates the normal spaces of all the points on the manifold. We call these results extended
triangle normal lemmas. Suppose that R ≤ κ lfs(w) for every vertex w of τ. Then for every point
x ∈ τ,

∠(Nτ,Nx̃Σ) ≤ max
{
η(
√

2κ) + arcsin
(
κ cot

φ

2

)
, η(2κ) + arcsin

(
κ cot

(
45◦ −

φ

4

))}
where η(δ) = η1(δ) in codimension 1, or η(δ) = η2(δ) in higher codimensions; and φ is a “proof
parameter” that can be set to any angle in the range (0◦, 60◦]. We recommend choosing φ = 49◦ in
codimension 1, and φ = 48.5◦ in higher codimensions. Figure 2.6 graphs the bound for both cases.
We give an alternative version of this bound tailored for restricted Delaunay triangles in an ε-sample
of Σ. (See Section 2.5.)

Beyond the improved approximation bounds and their extensions to higher dimensions, we
think that some of the proof ideas in this chapter are interesting in their own right. Our proof of the
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Triangle Normal Lemma is strongly intuitive and reveals a lot about why the bound is what it is. Our
proofs of the Normal Variation Lemmas exploit properties of medial balls and medial-free balls in
ways that allow us to obtain stronger bounds than prior proofs, which were based on integration of
the curvature along a path on Σ. These properties also find application in sequel work that improves
the sampling bounds needed to guarantee that a triangulation is homeomorphic to an underlying
2-manifold.

In many applications (such as mechanical modeling of stress), the interpolation error in the
gradient, ‖∇ f (p) − ∇g(p)‖, is even more important than | f (p) − g(p)|. The pointwise gradient
interpolation error ‖∇ f (p) − ∇g(p)‖ at the worst point p in a simplex scales linearly with the size of
the simplex, and is very sensitive to the shape of the simplex. An early analysis by Bramble and
Zlámal [15] for R2 seemed to implicate triangles with small angles (near 0◦), but a famous paper by
Babuška and Aziz [8] vindicated small angles and placed the blame on large angles (near 180◦).
A triangle’s circumradius alone suffices to produce a reasonable rough bound on the pointwise
gradient interpolation error over the triangle, but a stronger bound can be obtained by taking into
account additional information about the triangle’s shape [83]. Similarly, in this chapter we show
that a triangle’s circumradius alone suffices to produce a reasonable rough bound (2.2) on the normal
error, but a stronger bound (2.1) can be obtained by taking into account more information about
shape.

2.3 Triangle Normal Lemmas
Given a triangle τ whose vertices lie on a k-manifold Σ, we derive bounds on how well τ’s normal
space locally approximates the spaces normal to Σ in the vicinity of τ. In this section, we derive a
bound on ∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) where v is a vertex of τ. (In codimension 1, we can interpret
this as the angle between normal vectors, albeit a nonobtuse angle—we do not distinguish between
a vector nv and its negation −nv.) We first consider surfaces embedded in R3, then we show that the
same bound applies to k-manifolds embedded in Rd for all d > k ≥ 2. In Section 2.5, we give a
bound on ∠(Nτ,Nx̃Σ) = ∠(aff τ,T x̃Σ) applicable to every point x ∈ τ, not just at the vertices. Hence,
it applies to the normal spaces of all the points in ν(τ). Note that in the lemma, each occurrence of
ebs(v) can be replaced by lfs(v), as lfs(v) ≤ ebs(v).

Lemma 1 (Triangle Normal Lemma for R3). Let Σ be a smooth 2-manifold without boundary
embedded in R3. Let τ be a triangle whose vertices lie on Σ. Let R be τ’s circumradius. Let v be a
vertex of τ and let φ be τ’s plane angle at v. Then

∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) ≤ arcsin
(

R
ebs(v)

max
{
cot

φ

2
, 1

})
.

(Note that the argument cot φ2 dominates if φ is acute and the argument 1 dominates if φ is obtuse.) In
particular, if v is the vertex at τ’s largest plane angle (so φ ≥ 60◦) and R < ebs(v)/

√
3 � 0.577 ebs(v),

then

∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) ≤ arcsin

√
3R

ebs(v)
.
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Proof. Let θ = ∠(Nτ,NvΣ). Consider the two balls of radius ebs(v) tangent to Σ at v. The plane aff τ
intersects these two balls in two circles of radius ρ = ebs(v) sin θ, as Figure 2.7 shows. We consider
these two circles C1 and C2 in the plane aff τ. Notice that since C1 and C2 are cross sections of
surface-free balls, their insides are surface-free. In particular, u and w cannot lie strictly inside C1

or C2. We will use this fact to establish a relationship between the radius ρ of these circles and the
circumradius R of τ.

a↵ ⌧a↵ ⌧
ebs(v)ebs(v)

Tv⌃Tv⌃ ✓✓

✓✓

Figure 2.7: The affine hull aff τ intersects the surface-free balls of radius ebs(v) in two circles of radius
ebs(v) sin θ.

Let c1 and c2 be the centers of C1 and C2, respectively. Imagine that as θ increases, and aff τ
tilts further, C1 grows in the direction ~vc1 while remaining in contact with v, and C2 grows in the
opposite direction. We distinguish two cases: (1) either ~vc1 or ~vc2 points into τ or (2) both ~vc1 and
~vc2 point to the exterior of τ. See Figures 2.8 and 2.9.

a↵ ⌧a↵ ⌧

c2c2
c1c1

C2C2
C1C1

vv

uu

ww

CC

RR

⇢⇢
cc

⌧⌧

Figure 2.8: Case 1, where one of the two circles grows into the interior of τ. In this case, the radius of C1 is
at most R.
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Let τ = 4uvw. Let C be the circumcircle of τ in the plane aff τ, and let c be the center of
C. In case 1, illustrated in Figure 2.8, one of vc1 or vc2 points into τ; suppose it is vc1. C1

cannot grow indefinitely; eventually it intersects u or w. The maximum angle is achieved when
C1 = C, whereupon u and w prevent further growth. Thus R ≥ ρ = ebs(v) sin θ which implies that
θ ≤ arcsin R

ebs(v) .

a↵ ⌧a↵ ⌧

RR

CC
C1C1

C2C2

c1c1

c2c2

vv

uu

ww

cc
��

WW

Figure 2.9: Case 2, where both circles grow into the exterior of τ. In this case, the bound depends on the
angle φ at v.

In case 2, the line segment c1c2 does not intersect τ except at v, as Figure 2.9 shows. The
bisectors of vu and vw divide the plane into four wedges with apex c; let W be the closed wedge
that contains v. As vu and vw meet at v at an angle φ, the wedge angle where the bisectors meet at c
is 180◦ − φ, as illustrated in Figure 2.10.

u

w

c

A1

φ

180◦ − φ

C1

C2

C

v

c1

c2

180◦ − φ

q1

C2

C1

q2

c2
A2

v

c1

180◦ − φ

v
q1

c2
A1A2

q2 ``

C1

C2

τ

A1

ρ ρ

ρ
φ/2

ρ

c1

Figure 2.10: Left: the triangle angle of φ induces a wedge angle of 180◦ − φ. Center: the circumcenter c
cannot lie inside the region enclosed by arcs A1 and A2, here illustrated for an acute φ. Right: For an obtuse
φ.

As u is not inside the circle C1, |uc1| ≥ |vc1|. Similarly, |wc1| ≥ |vc1|. It follows that c1 ∈ W.
Similarly, c2 ∈ W. Therefore, ∠c1cc2 ≤ 180◦−φ. By circle geometry, this inequality implies that we
can draw two circular arcs with endpoints c1 and c2 such that c cannot be strictly inside the region
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enclosed by the arcs. Specifically, let ` be the line that bisects c1c2. Let q1 and q2 be the two distinct
points on ` such that ∠c1q1c2 = 180◦ − φ and ∠c1q2c2 = 180◦ − φ, as illustrated in Figure 2.10.
Both of these angles are bisected by `; that is, ∠ciq jv = 90◦ − φ/2 for i ∈ {1, 2}, j ∈ {1, 2}. Thus we
have four similar right triangles adjoining v of the form 4civq j with ∠q jciv = φ/2.

Observe that |vc1| = |vc2| = ρ = ebs(v) sin θ, hence |vq1| = |vq2| = ρ tan(φ/2). Consider the
unique circular arc A1 having endpoints c1 and c2 and passing through q1, and its mirror image arc
A2 passing through q2, as illustrated. By circle geometry, for every point q on A1 or A2 (except c1 or
c2), ∠c1qc2 = 180◦ − φ, and for every point q enclosed between the two arcs, ∠c1qc2 > 180◦ − φ. It
follows that the circumcenter c cannot lie in the region enclosed by A1 and A2.

As sin θ ≤ ρ/ebs(v), our goal is to determine the maximum possible value of ρ for a fixed value
of R. Equivalently, we wish to determine the minimum value of R = |vc| for a fixed ρ. In other words,
with ρ fixed, what is the closest that c can get to v? If φ ≤ 90◦, then the distance |vc| is minimized
for c = q1 or c = q2 (see Figure 2.10, center), in which case R = |vq1| = ρ tan(φ/2). If φ ≥ 90◦, then
|vc| is minimized for c = c1 or c = c2 (see Figure 2.10, right), in which case r = |vc1| = ρ. It follows
that r ≥ ρmin{tan(φ/2), 1}, hence sin θ ≤ ρ/ebs(v) ≤ R max{cot(φ/2), 1}/ebs(v). �

Compare Lemma 1 with two prior versions of the Triangle Normal Lemma. The following
lemma gives the best known bound, which was proven by Amenta, Choi, Dey, and Leekha [6]. (The
derivation can also be found in Dey [28] and Cheng et al. [20].)

Lemma 2. Let Σ be a smooth 2-manifold without boundary embedded in R3. Let τ be a triangle
whose vertices lie on Σ. Let R be τ’s circumradius. Let v be the vertex of τ at τ’s largest plane angle.
If R ≤ 0.433 lfs(v), then

∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) ≤ arcsin
(

R
lfs(v)

)
+ arcsin

(
2
√

3
sin

(
2 arcsin

(
R

lfs(v)

)))
.

The year before, Cheng, Dey, Edelsbrunner, and Sullivan [18] derived a stronger bound of
arcsin 2R

lfs(v) , but it seems to have escaped notice. All three bounds are plotted in Figure 2.5 (left).
Lemma 1 improves upon both prior results in three ways: it is tighter for the case covered by
Lemma 2 (improving the Cheng et al. bound by a factor of 1.15 and the Amenta et al. bound by a
factor of 1.91 for small values of R/lfs(v)), it applies to any vertex v of τ, and it takes into account
τ’s angle at v.

Lemma 1 extends straightforwardly to higher-dimensional manifolds embedded in higher-
dimensional Euclidean spaces (but not to higher-dimensional simplices). Given a triangle τ whose
vertices lie on a k-manifold Σ ⊂ Rd, we wish to know the worst-case angle deviation ∠(aff τ,TvΣ)
between τ’s affine hull and the tangent space at a vertex v of τ.

Lemma 3 (Triangle Normal Lemma for Rd). Let Σ be a smooth k-manifold without boundary
embedded in Rd, with k ≥ 2. Let τ be a triangle whose vertices lie on Σ. Let R be τ’s circumradius.
Let v be a vertex of τ and let φ be τ’s plane angle at v. Then

∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) ≤ arcsin
(

R
ebs(v)

max
{
cot

φ

2
, 1

})
.
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Proof. The dimension of NvΣ is less than or equal to the dimension of Nτ (which is d − 2), so by
definition,

∠(Nτ,NvΣ) = max
`v⊂NvΣ

min
`N⊂Nτ

∠(`N , `v)

where `v and `N are lines. Let `v ⊂ NvΣ and `N ⊂ Nτ be lines such that ∠(Nτ,NvΣ) = ∠(`N , `v),
translated so they pass through v (without loss of generality). If ∠(`N , `v) = 0 the result follows
immediately, so suppose that ∠(`N , `v) > 0. Let Π be the plane (2-flat) that includes both `v and
`N . Let `τ ⊂ Π be the line through v perpendicular to `N in Π. As `N is chosen from the flat Nτ to
minimize its angle with `v, the line `τ is orthogonal to Nτ, and therefore `τ lies in the complementary
flat aff τ. Let Ξ ⊂ Rd be the unique 3-flat that includes τ and `N . As Ξ includes aff τ, `τ ⊂ Ξ; and as
Ξ also includes `N , Π ⊂ Ξ, hence `v ⊂ Ξ.

We reiterate the proof of Lemma 1 to bound ∠(`N , `v), with Ξ replacing R3 and `v replacing NvΣ

in the proof. The proof of Lemma 1 relies entirely on the fact that τ’s vertices cannot be inside the
two open balls of radius ebs(v) that are centered on `v and touching v. In the present setting in Rd,
every open ball of radius ebs(v) tangent to Σ at v is surface-free; two of those balls have centers on
`v. The intersections of these balls with Ξ are surface-free 3-balls of radius ebs(v), so the constraints
harnessed by the proof of Lemma 1 hold in the subspace Ξ. Therefore, the bound of Lemma 1 holds
for k-manifolds in Rd as well. �

2.4 Normal Variation Lemmas
Recall that, given two nearby points p, q ∈ Σ, we seek an upper bound on the normal variation,
the angle ∠(np, nq) separating their normal vectors (in codimension 1) or the angle ∠(NpΣ,NqΣ)
separating their normal spaces (in codimension 2 or higher).

Lemma 4 (Normal Variation Lemma for Codimension 1). Let Σ ⊂ Rd be a bounded, smooth
(d − 1)-manifold without boundary. Consider two points p, q ∈ Σ and let δ = |pq|/lfs(p). Let np and
nq be outward-directed vectors normal to Σ at p and q, respectively.

If δ <
√

4
√

5 − 8 � 0.9717, then ∠(np, nq) ≤ η1(δ) where

η1(δ) = arccos
(
1 −

δ2

2
√

1 − δ2

)
≈ δ +

7
24
δ3 +

123
640

δ5 +
1,083
7,168

δ7 + O(δ9). (2.3)

Moreover, if δN is the component of δ parallel to p’s normal line NpΣ—that is, δN is the distance
from q to the tangent space TpΣ divided by lfs(p)—we have the bound (which is stronger when
δN , 0)

∠(np, nq) ≤ arccos

1 − δ2 − δ4/2 − 2δ2
N√

(1 − δ2)
(
(2 − δ2)2 − 4δ2

N

)
 . (2.4)

Recall that the right-hand side of Inequality (2.3) is plotted in green in Figure 2.4. Two isocontour
plots of the right-hand side of Inequality (2.4) appear in Figure 2.11. In most circumstances where
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Figure 2.11: Left: The upper bound (in degrees) for ∠(np, nq) as specified by Inequality (2.4), as a function
of δ = |pq|/lfs(p) (on the horizontal axis) and the normal component δN of δ (on the vertical axis); i.e., δN is
the distance from q to the tangent space TpΣ divided by lfs(p). Right: A similar plot with one change: the
horizontal axis is the tangential component δT of δ; i.e., the distance from q to the normal line NpΣ divided
by lfs(p). This plot reflects the Euclidean geometry of the space, with p at the origin, TpΣ on the horizontal
midline, q somewhere in the colored region, and the two surface-free balls of radius lfs(p) (white) blocking q
from occupying certain regions (compare with Figure 2.12).

a normal variation lemma is applied, |pq| is known but the normal component δN is not. It is
clear from the plot on the left that for any given value of δ, the bound (2.4) is weakest at δN = 0;
this substitution yields the bound (2.3). Hence the green curve in Figure 2.4 also represents the
horizontal midline of the isocontour plot.

Proof. Let F be the open ball with center p and radius lfs(p). By the definition of lfs, F does not
intersect the medial axis M of Σ. The line NpΣ normal to Σ at p intersects the boundary of F at two
opposite poles o and o′. By assumption, |pq| < lfs(p), so q ∈ F and the normal line NqΣ intersects
the boundary of F at two points z and z′.

Let B and B′ be the two open balls of radius lfs(p) tangent to Σ at p, illustrated in Figure 2.12;
the centers of these balls are o and o′, respectively. Neither ball intersects Σ nor contains q. Let Z
be the open ball centered at z with its boundary passing through q, and define Z′ likewise with its
center at z′. Each of Z and Z′ is a subset of a medial ball tangent to Σ at q, so neither ball intersects
Σ nor contains p. Without loss of generality, suppose that B′ and Z′ are enclosed by Σ, whereas B
and Z are outside the region enclosed by Σ. Therefore, B is disjoint from Z′, and B′ is disjoint from
Z. (However, B may intersect Z, and B′ may intersect Z′.) This property is the key to obtaining a
bound on ∠(np, nq).
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Figure 2.12: The medial-free ball F and surface-free balls B and B′ associated with a point p ∈ Σ.

We create a d-axis coordinate system with p at the origin. For simplicity, we will scale the
coordinate system so that lfs(p) = 1; hence B, B′, and F all have radius 1. The x2-axis is the
normal line NpΣ, which passes through o, p, and o′ and is directed so that o = (0, 1, 0, . . . , 0),
o′ = (0,−1, 0, . . . , 0), and p = (0, 0, . . . , 0), as illustrated in Figure 2.12. The remaining axes span
the tangent space TpΣ. We choose an x1-axis on TpΣ such that its positive branch passes through
the orthogonal projection of q onto TpΣ; that is, q1 ≥ 0 and q3 = q4 = . . . = qd = 0. We choose an
x3-axis on TpΣ such that the normal line NqΣ lies in the x1-x2-x3-space (which is now the affine hull
of NpΣ ∪ NqΣ). Hence, z4 = z5 = . . . = zd = 0 and z′4 = z′5 = . . . = z′d = 0. All the important features
of the problem lie on the three-dimensional cross-section of Rd specified by these three coordinates.

Let ` = |qz| and `′ = |qz′| be the radii of Z and Z′, respectively. The unit ball F has a diameter e
that passes through q (and through the origin p, like all diameters of F). The point q subdivides e
into a line segment of length 1 + ‖q‖ and a line segment of length 1 − ‖q‖. As this diameter and the
line segment zz′ intersect each other at q, they are both chords of a common circle on the boundary
of F, illustrated in Figure 2.13. By the well-known Intersecting Chords Theorem,

``′ = (1 + ‖q‖) (1 − ‖q‖) = 1 − ‖q‖2, (2.5)

where ‖q‖2 = q2
1 + q2

2 (as q’s other coordinates are zero). Note that ‖q‖ is the distance from p to q.
The balls Z and B′ (with centers z and o′ and radii ` and 1) are disjoint and z lies on the unit
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q

Figure 2.13: The Intersecting Chords Theorem: ``′ = (1 + ‖q‖) (1 − ‖q‖).

sphere, so

` + 1 ≤ |zo′|

=

√
z2

1 + (z2 + 1)2 + z2
3

=
√

2 + 2z2. (2.6)

Symmetrically, Z′ and B are disjoint, so

`′ + 1 ≤
√

2 − 2z′2. (2.7)

If one of the inequalities (2.6) or (2.7) holds with equality, we call this event a tangency. A
tangency between Z and B′ implies that

z2 =
(` + 1)2

2
− 1, (2.8)

whereas a tangency between Z′ and B implies that

z′2 = 1 −
(`′ + 1)2

2
. (2.9)

Our goal is to find an upper bound on ∠(np, nq). This angle is the tilt of the line segment zq
relative to the x2-axis, so

cos∠(np, nq) =
z2 − q2

|zq|
=

z2 − q2

`
.

To find a bound, we seek to determine the configuration(s) in which the angle is maximized—
hence, the cosine is minimized—subject to Inequalities (2.6) and (2.7). We will see that the
maximum is obtained when both inequalities hold with equality, a configuration we call a dual
tangency, illustrated in Figure 2.14.

In a configuration where neither tangency is engaged (i.e., both inequalities are strict), we can
increase ∠(np, nq) and decrease its cosine by freely tilting the line segment zz′ while maintaining
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Figure 2.14: Dual tangency configurations for δ = 0.5 (top two images) and δ = 0.9101 (bottom two
images). In the former configuration, ∠(np, nq) � 31.17◦, and in the latter configuration, ∠(np, nq) � 90◦.
The orange balls are B and B′, with p at their point of tangency, and the blue balls are Z and Z′, with q at
their point of tangency. The manifold Σ passes through p and q but does not intersect the interior of any of
these balls.
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the constraints that zz′ passes through q, and both z and z′ lie on the boundary of F. (Note that
in our coordinate system, q, p, B, B′, F, and np are all fixed, but we can adjust nq subject to the
inequalities.) Therefore, if the maximum possible angle is not 180◦, a configuration that maximizes
the angle must engage at least one tangency. As Z and Z′ play symmetric roles, we can assume
without loss of generality that Z is tangent to B′ and Equation (2.8) holds, giving

cos∠(np, nq) = 1 +
`2 − 1 − 2q2

2`
. (2.10)

The derivative ∂
∂`

cos∠(np, nq) = (`2 + 1 + 2q2)/(2`2) is positive for all q2 ≥ −1/2; we have
q2 ∈ (−1/2, 1/2) because q ∈ F, q < B′, and q < B. Therefore, the cosine (2.10) increases
monotonically with `. We see from Equation (2.5) that ` increases monotonically as `′ decreases.
Inequality (2.7) places an upper bound on `′, which together with (2.5) places a lower bound on `,
which places a lower bound on the cosine (2.10) and an upper bound on the angle ∠(np, nq) itself. A
configuration attains this upper bound on ∠(np, nq) when Inequality (2.7) holds with equality—in a
dual tangency, where Z′ is tangent to B in addition to Z being tangent to B′,

A dual tangency uniquely determines the values of ` and `′. As q ∈ zz′, we can write

`(z′2 − q2) = `′(q2 − z2). (2.11)

The identities (2.5), (2.8), (2.9), and (2.11) form a system of four (nonlinear) equations in the four
variables `, `′, z2, and z′2. According to Mathematica (and verified by substitution), these equations
are simultaneously satisfied by

` =

√
(1 − ‖q‖2) (2 + 2q2 − ‖q‖2)

2 − 2q2 − ‖q‖2
and `′ =

√
(1 − ‖q‖2) (2 − 2q2 − ‖q‖2)

2 + 2q2 − ‖q‖2
. (2.12)

As this configuration places a lower bound on `, substituting the identity (2.12) into (2.10)
shows that

cos∠(np, nq) ≥ 1 −
‖q‖2 − ‖q‖4/2 − 2q2

2√
(1 − ‖q‖2)

(
(2 − ‖q‖2)2 − 4q2

2

) . (2.13)

Recall the parameter δ = |pq|/lfs(p). As we chose and scaled our coordinate system so that p is the
origin and lfs(p) = 1, ‖q‖ = δ and q2 = δN . Inequality (2.4) follows.

This expression provides a strong upper bound when the value of q2 (the distance from q to
TpΣ) is known, but q2 is not usually available in circumstances where the Normal Variation Lemma
is invoked. To find a bound independent of q2, we seek the value of q2 ∈ (−‖q‖2/2, ‖q‖2/2) that
minimizes the right-hand side of (2.13). The left plot in Figure 2.11 makes it clear that for all
‖q‖ < 1, this value is q2 = 0. To verify this formally, observe that (2.13) is symmetric about q2 = 0
(as it is a function of q2

2) and

∂

∂q2
cos∠(np, nq) = 2q2

3(1 − ‖q‖2)2 + 4(1 − ‖q‖2) + (1 − 4q2
2)√

1 − ‖q‖2
(
(2 − ‖q‖2)2 − 4q2

2

)3/2 .
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The numerator and denominator are positive for all ‖q‖ < 1 and q2 ∈ (−0.5, 0.5), so the derivative is
zero at q2 = 0, positive for q2 > 0, and negative for q2 < 0, showing that the cosine is minimized at
q2 = 0. Setting q2 = 0 shows that

cos∠(np, nq) ≥ 1 −
‖q‖2

2
√

1 − ‖q‖2
,

proving Inequality (2.3). �

We conjecture (but are not certain) that Inequality (2.3) is sharp: for every legal δ, there exists a
surface Σ and points p, q ∈ Σ for which the bound holds with equality. Proving this conjecture would
entail finding a surface Σ that is compatible with the four balls B, B′, Z, and Z′ in the dual tangency
described in the proof of Lemma 4 and illustrated in Figure 2.14—meaning that Σ intersects none
of the four balls but passes through the four points of tangency p, q, z, and z′—such that no point of
Σ’s medial axis lies in the ball F.

Figure 2.14 reveals that in the worst-case configuration, nq is tilted along the x3-axis (so
z3 = −z′3 , 0), but not along the x1-axis (i.e., z1 = z′1 = q1). In other words, Σ undergoes a helical
twisting as one walks from p to q. By contrast, a tilt along the x1-axis cannot be as large.

The proof of the Normal Variation Lemma for higher codimensions is similar in many respects,
but it takes a different turn because adding an extra dimension to the normal space enables a novel
configuration (not possible in codimension 1) such that the largest angle no longer occurs when
q ∈ TpΣ.

Lemma 5 (Normal Variation Lemma for Codimension 2 and Higher). Let Σ ⊂ Rd be a bounded,
smooth k-manifold without boundary for any k < d. Consider two points p, q ∈ Σ and let
δ = |pq|/lfs(p).

If δ <
√(√

5 − 1
)
/2 � 0.7861, then ∠(NpΣ,NqΣ) = ∠(TpΣ,TqΣ) ≤ η2(δ) where

η2(δ) = arccos

√
1 −

δ2

√
1 − δ2

≈ δ +
5

12
δ3 +

57
160

δ5 +
327
896

δ7 + O(δ9). (2.14)

Moreover, if δN is the component of δ parallel to p’s normal space NpΣ—that is, δN is the
distance from q to the tangent space TpΣ divided by lfs(p)—we have the (stronger) bound

∠(NpΣ,NqΣ) ≤ arccos

√(
1 −

δ2

2
√

1 − δ2

)2

−
δ2

N

1 − δ2 . (2.15)

In the special case where q ∈ TpΣ (that is, δN = 0), this bound reduces to the codimension-1 bound
η1(δ) from Lemma 4.

An isocontour plot of the right-hand side of Inequality (2.15) appears in Figure 2.15. For any
given value of δ, the bound (2.15) is weakest along the upper (or lower) boundary of the plot, at
δN = δ2/2; this substitution yields the bound (2.14). The upper boundary is also plotted as the red
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Figure 2.15: Left: Upper bound in degrees for ∠(NpΣ,NqΣ) as specified by Inequality (2.15), as a function
of δ = |pq|/lfs(p) (on the horizontal axis) and the normal component δN of δ (on the vertical axis); i.e., δN is
the signed distance from q to the tangent space TpΣ divided by lfs(p). Right: A similar plot with one change:
the horizontal axis is the tangential component δT of δ; i.e., the distance from q to the normal space NpΣ

divided by lfs(p). Hence, this plot reflects the Euclidean geometry of the space, with p at the origin, TpΣ on
the horizontal midline, q somewhere in the colored region, and the smallest possible medial torus (white)
blocking q from certain regions.

curve in Figure 2.4. Interestingly, the horizontal midline of this plot is the green curve in Figure 2.4:
when δN = 0, the symmetry of the configuration yields the codimension-1 bound η1(δ). The bound
gets worse from there as δN increases.

We are certain that this bound can be tightened for larger values of δN (but not for δN = 0),
but we have not been able to derive a better explicit bound. It would be nice if the codimension 1
bound held for all δN , but we think it very unlikely; we know a configuration in R4 that defies the
codimension 1 bound and which we think (but don’t know for sure) can be realized by a 2-manifold
fitting the specified constraints.

Proof. Let F be the open ball with center p and radius lfs(p). F does not intersect the medial axis.
As in the proof of Lemma 4, we choose a coordinate system with p at the origin and scale the
coordinate system so that lfs(p) = 1, so F is the unit ball centered at the origin.

Let Ḃ be the intersection of p’s normal space NpΣ with the unit hypersphere ∂F (the boundary
of F); Ḃ is a unit (d− k− 1)-sphere. For every point c ∈ Ḃ, the open unit ball with center c is tangent
to Σ at p and does not intersect Σ. Let B be the union of these (infinitely many) open unit balls
(which constitute all the unit balls tangent to Σ at p). The boundary of B is a torus with inner radius
zero (a horn torus). We call B itself the (open) solid torus and Ḃ the torus skeleton. Geometrically,
B is the Minkowski sum of Ḃ and an open d-ball. Topologically, B is the d-dimensional product of
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a (d − k − 1)-sphere and an open (k + 1)-ball. Like the balls it is composed of, B does not intersect
Σ nor contain q.

By assumption, |pq| < lfs(p), so q ∈ F and q’s normal space NqΣ intersects ∂F in a (d − k − 1)-
sphere S (like Ḃ, but smaller). Consider an open ball Z with center z ∈ S such that Z’s boundary
passes through q. Z is a subset of a medial ball tangent to Σ at q, so Z does not intersect Σ nor
contain p.

The key property for obtaining a bound is that Z cannot intersect every open unit ball centered
on Ḃ. If it did, then it would effectively block the hole in the solid torus B, so that Σ cannot thread
through B at q without somewhere intersecting Z or B. This property applies to every ball Z centered
on S and just touching q. To obtain a tractable proof, we focus on two particular balls that help
determine the angle ∠(NpΣ,NqΣ). (Unfortunately, these two balls do not suffice to give a sharp
bound, but we have not been able to derive better closed-form bounds that take advantage of the
other balls.)

We choose a d-axis coordinate system with p at the origin such that the x1-axis lies on p’s
tangent space TpΣ, the x2-axis lies on p’s normal space NpΣ, and q lies in the upper right quadrant
of the x1-x2-plane; that is, q1 > 0, q2 ≥ 0, and q3 = q4 = . . . = qd = 0. Each remaining axis lies in
TpΣ or NpΣ, so every axis can be categorized as tangential or normal with respect to p. Let z2

T be
the sum of squares of the tangential components of z except z1, and let z2

N be the sum of squares of
the normal components of z except z2; thus ‖z‖2 = z2

1 + z2
2 + z2

T + z2
N . (The signs of zT and zN are

irrelevant.)
By definition, ∠(NpΣ,NqΣ) = max`q⊂NqΣ min`p⊂NpΣ ∠(`p, `q). Let `q ⊂ NqΣ be a line through

q that satisfies ∠(NpΣ,NqΣ) = ∠(NpΣ, `q). Let z and z′ be the two points where `q intersects ∂F,
and observe that z, z′ ∈ S (as S = NqΣ ∩ ∂F). Let Z and Z′ be the open balls centered on z and z′,
respectively, with the boundaries of both balls passing through q. Let ` = |qz| and `′ = |qz′| be their
radii.

As qN = 0, we can determine the angle ∠(NpΣ,NqΣ) from the identity

cos∠(NpΣ,NqΣ) = cos∠(NpΣ, `q) =

√
(z2 − q2)2 + z2

N

`
, (2.16)

because the denominator is the length of the line segment qz and the numerator is the length of
the projection of qz onto NpΣ. To find an upper bound on ∠(NpΣ,NqΣ), we seek a lower bound
on the cosine (2.16); to find that, we will search for legal values of z2, zN , and ` that minimize the
right-hand side (i.e., a worst-case configuration). First, we must understand the constraints on these
values.

Let o be the point on the torus skeleton Ḃ farthest from z. What is the distance |zo|? First
consider the projection z̄ of z onto NpΣ. The origin lies between z̄ and the farthest point on Ḃ, so the
distance from z̄ to the farthest point is ‖z̄‖ + 1. With Pythagoras’ Theorem we add the tangential
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component:

|zo|2 = |zz̄|2 + (‖z̄‖ + 1)2

= z2
1 + z2

T +

(√
z2

2 + z2
N + 1

)2

= z2
1 + z2

T + z2
2 + z2

N + 2
√

z2
2 + z2

N + 1

= 2 + 2
√

z2
2 + z2

N .

The last step follows because z lies on ∂F.
As Z has radius ` and is disjoint from the unit ball centered at o, ` + 1 ≤ |zo|. We rewrite this

constraint as

z2
2 + z2

N ≥

(
(` + 1)2

2
− 1

)2

. (2.17)

If Inequality (2.17) holds with equality, we call this event a tangency between Z and B. Likewise,
the ball Z′ entails the following inequality, and a tangency between Z′ and B means that it holds
with equality.

z′2
2

+ z′N
2
≥

(
(`′ + 1)2

2
− 1

)2

. (2.18)

Recall from the proof of Lemma 4 that, by the Intersecting Chords Theorem, ``′ = 1 − ‖q‖2

where ‖q‖ = q2
1 + q2

2 is the distance from p to q. As q ∈ zz′, we write two more useful identities:

`z′N = −`′zN , (2.19)
`(z′2 − q2) = `′(q2 − z2). (2.20)

Thus we have a system of three equations and two inequalities in six variables: `, `′, z2, z′2, zN , and
z′N . Among the multiple solutions of this system, we seek one that minimizes the objective (2.16).

In a configuration where neither tangency is engaged, we can increase ∠(NpΣ,NqΣ) and decrease
its cosine (2.16) by freely tilting the line segment zz′ while maintaining the constraints that zz′

passes through q and z, z′ ∈ ∂F. Therefore, if there is a meaningful bound at all, an optimal (i.e,
worst-case) configuration must engage at least one tangency. As Z and Z′ play symmetric roles,
we can assume without loss of generality that Z is tangent to B and Inequality (2.17) holds with
equality. Substituting that identity into (2.16) yields

cos∠(NpΣ,NqΣ) =

√(
(`+1)2

2 − 1
)2

+ q2
2 − 2q2z2

`
=

√(
1 −

`2 − 1
2`

)2

+
q2

2 − 2q2z2

`2 . (2.21)

As in the proof of Lemma 5, symmetry will play a role: the “optimal” (i.e., worst-case) solution
will turn out to have ` = `′. To expose this symmetry, we define a parameter

γ =
`′

`
.
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By Identities (2.19) and (2.20), we can eliminate the primed variables with the substitutions `′ = γ`,
z′N = −γzN and z′2 = q2 + γ(q2 − z2). (A solution with γ = 1 would imply that ` = `′ and z′N = −zN .)
Inequality (2.18) becomes

(q2 + γ(q2 − z2))2 + γ2z2
N ≥

(
(γ` + 1)2

2
− 1

)2

. (2.22)

To eliminate the variable zN , we multiply Inequality (2.17) by γ2 (recalling that the inequality is
now assumed to be an equality) and subtract Inequality (2.22) (which is still an inequality), giving

(2γ2 + 2)q2z2 − (γ + 1)2q2
2 ≤ ω where ω = γ2

(
(` + 1)2

2
− 1

)2

−

(
(γ` + 1)2

2
− 1

)2

. (2.23)

Rearranging, we have

q2z2 ≤
(γ + 1)2q2

2 + ω

2γ2 + 2
. (2.24)

Substituting this into (2.21) gives

cos∠(NpΣ,NqΣ) ≥

√(
1 −

`2 − 1
2`

)2

−
2γq2

2 + ω

(γ2 + 1) `2 . (2.25)

The right-hand side is a function of γ, `, and the point q. However, the definition γ = `′/` and
Equation (2.5) together imply that ` =

√
(1 − ‖q‖)2/γ, so we can write the right-hand side as a

function f (γ, q). We claim that for all valid q, f (γ, q) is minimized at γ = 1. It is straightforward
but tedious (and best done with Mathematica) to verify that f (γ, q) = f (1/γ, q) and that ∂

∂γ
f (γ, q)

is zero at γ = 1, positive for γ > 1, and negative for γ ∈ (0, 1). Specifically, with the abbreviation
q̊ = 1 − ‖q‖2, we have

∂

∂γ
f (γ, q) = (γ − 1)

(γ + 1)3q̊2 +
(
(2γ2 + 8γ + 2)q̊ + 4γ

) √
γq̊

4γ(γ + 1)2
√
γq̊

√
γ(1 − 4q2

2) + 2γq̊ + (1 − γ + γ2)q̊2 +
4((γ2+1)q̊−2γ)

√
γq̊

γ+1

.

The numerator and denominator are positive for γ > 0, q̊ > 0, and q2 ∈ [0, 0.5], so the sign of ∂
∂γ

f
depends solely on the sign of γ − 1, confirming that the right-hand side of (2.25) is minimized at
γ = 1.

For γ = 1, we have ` = `′ =
√

1 − ‖q‖2 and ω = 0, so Inequality (2.25) becomes

cos∠(NpΣ,NqΣ) ≥

√√1 − ‖q‖2

2
√

1 − ‖q‖2

2

−
q2

2

1 − ‖q‖2
, (2.26)

Recall the parameter δ = |pq|/lfs(p). As we chose and scaled our coordinate system so that p is the
origin and lfs(p) = 1, ‖q‖ = δ. Inequality (2.15) follows.
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Clearly, larger values of q2
2 make the right-hand side smaller (and the bound weaker). It is

smallest when q2 reaches its maximum allowable value of ‖q‖2/2. (This maximum is imposed by
the fact that q < B.) Hence, the following bound holds for all valid values of q2.

cos∠(NpΣ,NqΣ) ≥

√
1 −

‖q‖2√
1 − ‖q‖2

,

proving Inequality (2.14). �

2.5 Extended Triangle Normal Lemmas
The Triangle Normal Lemmas in Section 2.3 bound ∠(Nτ,NvΣ) = ∠(aff τ,TvΣ) only at a vertex v
of τ. Moreover, for vertices where τ has a small plane angle, the bound is poor. Here, we derive a
bound on ∠(Nτ,Nx̃Σ) for every x ∈ τ. The method to accomplish this is not new: a triangle normal
lemma establishes a strong bound at a vertex where a triangle has a large plane angle, and a normal
variation lemma extends the bound from that anchor over the rest of the triangle. We improve on
this formulation a bit by taking advantage of the fact that our Triangle Normal Lemma’s bound
varies with the plane angle at a vertex: we choose τ’s vertex nearest x̃ as the anchor if its angle is at
least 49◦; otherwise, we choose the vertex with the largest plane angle as the anchor.

We begin with several technical lemmas that help us obtain better bounds. Both lemmas help to
constrain where x̃ can lie.

Lemma 6. Let Σ ⊂ Rd be a smooth k-manifold. Let τ be a simplex (of any dimension) whose
vertices lie on Σ. Let Bτ be a closed d-ball such that Bτ ⊇ τ (e.g., τ’s smallest enclosing ball or a
circumscribing ball). Let r be the radius of Bτ, let v be a vertex of τ, and suppose that r ≤ lfs(v)/2.
Then for every point x ∈ τ that is not a vertex of τ, x̃ = ν(x) is in the interior of Bτ.

Proof. Consider a point x ∈ τ that is not a vertex of τ. As τ’s vertices lie in Bτ, x is in the interior
of Bτ. If x̃ = x the lemma follows immediately, so suppose that x̃ , x and thus x < Σ. Let B be the
open medial ball tangent to Σ at x̃ such that x lies on the line segment x̃m, where m is the center of
B, as illustrated in Figure A.2. As B is a medial ball, m lies on the medial axis of Σ.

Recall that B is open and Bτ is closed. If the entire closure of B is in the interior of Bτ, then
x̃ is in the interior of Bτ and the lemma follows immediately; so assume it is not. Let C be the
intersection of the boundaries of B and Bτ. C cannot be the boundary of B, because we have just
assumed that Bτ does not include the closure of B. We show that C , ∅ by ruling out the alternatives:
we cannot have B and Bτ disjoint because x ∈ B and x is in the interior of Bτ; we cannot have
Bτ ⊂ B, as τ’s vertices are not in B; and we have already ruled out closure(B) ⊂ Bτ. Hence C is
either a (d − 2)-sphere (e.g., a circle in R3) or a single point (with B and Bτ tangent to each other at
that point, one inside the other).

If C is a (d − 2)-sphere, let Π be the unique hyperplane that includes that (d − 2)-sphere, as
illustrated; if C contains a single point, let Π be the hyperplane tangent to Bτ and B at that point.
Let Π̄τ be the closed halfspace bounded by Π that includes Bτ \ B, and let Πτ be the open version of
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Figure 2.16: For every point x ∈ τ except τ’s vertices, x̃ is in the interior of Bτ.

Figure 2.17: For the triangle τ at left, the dark lens-shaped region is the intersection of τ’s two enclosing
balls of radius lfs(v)/2, where v is any vertex of τ. For every point x ∈ τ, x̃ lies in this lens. Likewise, for the
segment at right, the lemon-shaped region is the intersection of its infinitely many enclosing balls of radius
lfs(v)/2; this lemon contains x̃ for every point x on the segment.

the same halfspace. The portion of B in Π̄τ is in the interior of Bτ, and the portion of B’s boundary
in Πτ is in the interior of Bτ. The portion of Bτ in the open halfspace complementary to Π̄τ is a
subset of B. Every vertex of τ lies in Bτ but not in B, hence τ’s vertices lie in Π̄τ. Therefore, τ ⊂ Π̄τ

and x ∈ Π̄τ.
By assumption, the radius of Bτ satisfies r ≤ lfs(v)/2, so |vm| ≥ lfs(v) ≥ 2r. As v lies in Bτ and

|vm| is at least twice the radius of Bτ, it follows that m is not in the interior of Bτ. But m ∈ B, so
m < Π̄τ.

Given the facts that x lies on the line segment mx̃, m < Π̄τ, x ∈ Π̄τ, and x̃ , x, it follows that
x̃ ∈ Πτ. As x̃ is also on B’s boundary, x̃ is in the interior of Bτ. �

Lemma 52 implies that x̃ is in every ball Bτ ⊇ τ with radius lfs(v)/2 (or less). The intersection
of these balls, illustrated in Figure 2.17, is typically a narrow region, especially if τ is small. The
next lemma also places a restriction on the position of x̃.

Lemma 7. Let Σ ⊂ Rd be a smooth k-manifold. Let τ be a simplex (of any dimension) whose
vertices lie on Σ. Let r be the min-containment radius of τ (i.e., the radius of τ’s smallest enclosing
ball). Then for every point x ∈ τ, the distance from x̃ to the nearest vertex of τ is at most

√
2r.

Moreover, if r < ebs(x̃), the distance from x̃ to the nearest vertex of τ is at most√
2 ebs(x̃)

(
ebs(x̃) −

√
ebs(x̃)2 − r2

)
∈ [r,

√
2r). (2.27)
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Figure 2.18: Given a simplex τ with min-containment radius r and a point x ∈ τ, the distance from
x̃ to the nearest vertex of τ is at most

√
2r.

Proof. Let y ∈ τ be the point nearest x̃ on τ. As x is also on τ, |yx̃| ≤ |xx̃|. Let σ be the unique
face of τ (i.e., a vertex, edge, triangle, etc.) whose relative interior contains y. Observe that
the line segment yx̃ is orthogonal to σ, as Figure 2.18 illustrates. (If σ is a vertex, it is a trivial
“orthogonality.”) Let w be the vertex of σ nearest y; yx̃ is orthogonal to yw. By Pythagoras’ Theorem,
|wx̃|2 = |yw|2 + |yx̃|2 ≤ |yw|2 + |xx̃|2.

As τ’s smallest enclosing ball has radius r, |yw| ≤ r. Likewise, let z be the vertex of τ nearest
x; then |xz| ≤ r. As z lies on Σ and x̃ is the point nearest x on Σ, |xx̃| ≤ |xz| ≤ r. Hence
|wx̃| ≤

√
r2 + r2 =

√
2r, and the distance from x̃ to the nearest vertex of τ (which may or may not

be w) is at most
√

2r as claimed.
Alternatively, if r < ebs(x̃), we can substitute the bound for |xx̃| from the Surface Interpolation

Lemma [57], yielding the bound
√

r2 +
(
ebs(x̃) −

√
ebs(x̃)2 − r2

)2
, which is equal to (2.27). �

This brings us to the main result of this section.

Lemma 8 (Extended Triangle Normal Lemma). Let Σ be a bounded k-manifold without boundary
in Rd with k ≥ 2. Let τ = 4vv′v′′ be a triangle whose vertices lie on Σ. Let R be τ’s circumradius.
Suppose that R ≤ κ lfs(v), R ≤ κ lfs(v′), and R ≤ κ lfs(v′′) for some κ ≤ 1/2. Let x be any point on τ,
and let x̃ be the point nearest x on Σ. Then for any angle φ ∈ (0◦, 60◦],

∠(Nτ,Nx̃Σ) ≤ max
{
η(
√

2κ) + arcsin
(
κ cot

φ

2

)
, η(2κ) + arcsin

(
κ cot

(
45◦ −

φ

4

))}
, (2.28)

where η(δ) = η1(δ) as defined in Lemma 1 if d − k = 1, or η(δ) = η2(δ) as defined in Lemma 3 if
d − k ≥ 2.

Lemma 8 is unusual because it has a parameter φ; the right-hand side of Inequality (2.28) varies
a bit with φ. The parameter φ is a threshold that determines which vertex of τ is used as an anchor.
In codimension 1, a good choice of φ is 49◦, because it balances the two expressions in (2.28)
reasonably well and delivers a bound below 90◦ over the range κ ∈ [0, 0.3734]. For a specific
value of κ, one can tune φ to obtain a slightly better bound, but the improvement is marginal. In
codimension 2 or greater, the bound (2.28) is weaker because η2 is weaker than η1. A good choice
is φ = 48.5◦, which delivers a bound below 90◦ over the range κ ∈ [0, 0.3527]. Figure 2.6 graphs
the bound (2.28) both for codimension 1 and for higher codimensions.
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Proof. Suppose without loss of generality that v is the vertex of τ nearest x̃. Let w ∈ {v, v′, v′′} be
the vertex at τ’s largest plane angle. Let Bτ be τ’s smallest enclosing ball and observe that its radius
is r ≤ R ≤ lfs(v)/2. By Lemma 52, x̃ ∈ Bτ, so |wx̃| ≤ 2r ≤ 2κ lfs(w). By Lemma 7, |vx̃| ≤

√
2r ≤√

2κ lfs(v). By the Normal Variation Lemma, ∠(NwΣ,Nx̃Σ) ≤ η(2κ) and ∠(NvΣ,Nx̃Σ) ≤ η(
√

2κ).
If τ’s plane angle at the vertex v is φ or greater, then by the Triangle Normal Lemma (Lemma 1

or 3), sin∠(Nτ,NvΣ) ≤ R
lfs(v) cot φ2 ≤ κ cot φ2 . Then ∠(Nτ,Nx̃Σ) ≤ ∠(Nx̃Σ,NvΣ) + ∠(Nτ,NvΣ) ≤

η(
√

2κ) + arcsin(κ cot φ2 ).
Otherwise, τ’s plane angle at v is less than φ, so τ’s plane angle at w (τ’s largest plane angle) is

greater than (180◦ − φ)/2. By the Triangle Normal Lemma, sin∠(Nτ,NwΣ) ≤ R
lfs(w) cot(45◦ − φ/4) ≤

κ cot(45◦ − φ/4). Then ∠(Nτ,Nx̃Σ) ≤ ∠(Nx̃Σ,NwΣ) + ∠(Nτ,NwΣ) ≤ η(2κ) + arcsin(κ cot(45◦ −
φ/4)). �
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Chapter 3

Restricted Constrained Delaunay
Triangulations

3.1 Introduction
The constrained Delaunay triangulation (CDT) in the plane [62, 23, 79] is a popular geometric
construction that shares some of the advantages and mathematical properties of the Delaunay
triangulation, but also permits users to constrain specified edges to be part of the triangulation.
CDTs are used in applications such as computer graphics, geographical information systems, and
guaranteed-quality mesh generation algorithms [20]. Our goal here is to offer a mathematically
rigorous way to define a Delaunay-like triangulation on a curved surface embedded in three-
dimensional space, with the same ability to constrain edges.

Another variant of the Delaunay triangulation, called the restricted Delaunay triangulation
(RDT), has become a well-established way of generating triangulations on curved surfaces [36].
RDTs have equipped theorists to rigorously prove the correctness of algorithms for surface re-
construction [28] and surface mesh generation [20]. Here we introduce restricted constrained
Delaunay triangulations (restricted CDTs), which combine ideas from CDTs and RDTs to enable
the enforcement of constraining edges in RDTs. With restricted CDTs, it will be possible to improve
algorithms for guaranteed-quality mesh generation on surface patches.

Think of the restricted CDT as a function that takes in three inputs: a compact, smooth surface
Σ ⊂ R3 without boundary; a finite set V ⊂ Σ of sample points (called sites or vertices); and a finite
set S of line segments whose endpoints are in V . If certain conditions on the density of V and
the lengths of the segments are met then, as illustrated in Figure 3.1, the output is a simplicial
complex T such that the set of vertices of T is V , the set of edges of T is a superset of S , and
T is a triangulation of Σ. By the last phrase, we mean that the underlying space of T , written
|T | =

⋃
τ∈T τ, is homeomorphic to Σ.

Although Delaunay triangulations in the plane can be constrained to include arbitrary edges,
the same is not true of three-dimensional Delaunay triangulations; consider the fact that not all
nonconvex polyhedra can be tetrahedralized [77]. Nor is it always possible to constrain arbitrary
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Figure 3.1: Given a set of points sampled from Σ and a set of segments, red, we wish to compute a
triangulation of Σ that contains all of the red segments.

edges to be part of a surface triangulation. Our challenge is to establish conditions on the input that
guarantee that a suitable triangulation exists.

We follow the example of the RDT, which is defined by dualizing a restricted Voronoi diagram.
Given inputs Σ and V (but no segments), the restricted Voronoi cell of a site v ∈ V , denoted Vor |Σv,
is the set of all points on Σ for which v is the closest site in V (possibly tied for closest), as measured
by the Euclidean distance in R3. Equivalently, Vor |Σv = Vor v ∩ Σ, where Vor v is v’s standard
Voronoi cell in R3. The name “restricted Voronoi cell” arises because Vor |Σv is the restriction of
Vor v to the surface Σ.

A restricted Voronoi face is any nonempty set of points found by taking the intersection of one
or more restricted Voronoi cells. A restricted Voronoi edge (which is a curve on Σ) or a restricted
Voronoi vertex (a one-point face) usually “belongs to” two or three equidistant closest sites in V .
The restricted Voronoi diagram Vor |ΣV is the cell complex containing all the restricted Voronoi
cells and faces.

The restricted Delaunay triangulation Del |ΣV is the simplicial complex dual to Vor |ΣV . That is,
a simplex is in Del |ΣV if and only if its vertices’ restricted Voronoi cells have a nonempty mutual
intersection. Roughly speaking, the RDT is found by drawing a triangle for each restricted Voronoi
vertex on Σ; the triangle connects the three sites whose restricted Voronoi cells touch the restricted
Voronoi vertex.

To modify RDTs so that we can constrain edges, we borrow from Seidel [79] the idea of an
extended Voronoi diagram, which is the natural dual of the CDT. Seidel performs a topological
surgery on the plane in which each segment in S becomes a slit cut in the plane; upon these slits he
glues topological extensions called “secondary sheets” on which additional portions of the extended
Voronoi diagram are drawn. Likewise, we perform surgery by cutting slits in the surface Σ and
grafting independent new surfaces called extrusions onto Σ at these slits. We think of these slits
as portals: an ant crawling on the surface across a constraining segment finds itself transported by
the portal to an alternative space where the extended surface continues along an infinite extrusion.
These extrusions are not merely topological; their geometry also requires careful definition.

Our main contribution is the definition of the restricted constrained Delaunay triangulation,
which we define as the dual of the Voronoi diagram restricted to this surgically modified surface.
We prove several combinatorial properties of restricted CDTs, including conditions under which the
restricted CDT contains every constraining segment, conditions under which the restricted CDT
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is homeomorphic to the underlying surface Σ, and a characterization of which vertices must be
considered to compute the triangles near a segment. The restricted CDT has immediate practical
applications in surface meshing and geometric modeling, such as meshing trimmed splines.

An alternative approach sometimes suggested is to define a Voronoi diagram based on an intrinsic
(geodesic) distance metric, then obtain a triangulation by duality. While this idea is mathematically
elegant, it is not practical; computing a geodesic Voronoi diagram requires complicated and
slow numerical discretization algorithms. That is why RDTs have been preferred for practical
mesh generation applications: they are much easier to compute. We emphasize that although
our mathematical construction of restricted CDTs may seem complicated, it is in the service of
producing simple algorithms. In particular, computing the restricted Delaunay triangles near a
segment on one “side” of the segment (specifically, triangles whose dual Voronoi vertices lie on a
particular extrusion) is usually just a simple matter of ignoring the sites on the other “side.” We
do not have space to discuss algorithms here, but we think that the most practical algorithm for
constructing a restricted CDT will first construct the RDT of V and Σ, then incrementally insert the
segments of S one by one.

3.2 Portals and Topological Surgery
Informally, a portal P is a subset of a topological space X that acts as a doorway between subsets of
X. We define X by starting with disjoint subsets Y and Z and then gluing them together by specifying
an equivalence relationship between a subset of points P ⊂ Y and a subset P′ ⊂ Z. For clarity,
we explain Seidel’s construction of portals in the plane [79] before explaining our construction of
portals on surfaces.

Portals in the Plane
Let X = R2 and let S be a finite set of line segments in the plane; the segments may intersect each
other only at their endpoints. Consider a segment s ∈ S . The relative interior of s, which by a
slight abuse of notation we denote by Int s, consists of all points of s except its two endpoints. Let
the slitted plane Xs = X − Int s be the plane with the interior of s removed. The affine hull of s,
denoted aff s, has two “sides.” Our goal is to augment Xs by gluing it to two additional topological
spaces, one for each side of aff s, along the slit created by removing Int s. The three spaces are
glued together along two portals, each of which is topologically a copy of s. Thus an ant crawling
on the augmented space that enters s from one side finds itself in a secondary branch; and an ant
that enters s from the other side finds itself in a different secondary branch. After repeating this
augmentation for every segment in S , we can draw on the augmented space an extended Voronoi
diagram whose dual is the CDT.

Let p and q be the endpoints of s. Topologically, Xs has a hole such that Xs is almost an open
set, except that Xs has two boundary points, p and q. We want to glue two additional spaces to
Xs—one for each side of s—so we augment Xs with additional points that serve as two portals
to those additional spaces. We define a closed topological space Xs by augmenting Xs with two
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connected curves ζ+ and ζ−, called portals, that together serve as the boundary of the hole. Each
of ζ+ and ζ− has p and q as its endpoints, but the two curves share no other points. In essence, the
portals are copies of s with shared endpoints. Xs is the completion of the incomplete metric space
Xs with respect to the shortest-path metric in Xs.

The points in Xs inherit Cartesian coordinates from the plane, and the points on the portals ζ+

and ζ− inherit Cartesian coordinates from the segment s. Two points in Xs—one on ζ+ and one on
ζ−—can have the same (x, y)-coordinate values yet be topologically distinct.

Let R2
− and R2

+ be two copies of R2. We treat Xs, R2
−, and R2

+ as three distinct topological spaces
that all inherit the Cartesian coordinate system—so two points in two different spaces can have the
same coordinate values yet be topologically distinct.

Informally, we glue R2
+ to Xs along ζ+ and glue R2

− to Xs along ζ−. Formally, we write x ≡ y if x
and y have the same coordinate values, even though they may lie in different spaces. Let p and q be
the endpoints of s. Define an equivalence relation ∼ as

x ∼ y ⇐⇒


x = y x, y ∈ Xs or x, y ∈ R2

+ or x, y ∈ R2
−,

x ≡ y x ∈ R2
+ and y ∈ ζ+,

x ≡ y x ∈ R2
− and y ∈ ζ−,

x ≡ p ≡ y or x ≡ q ≡ y x ∈ R2
+ and y ∈ R2

−.

With ∼ we construct the quotient space X̃ = (Xs t R2
+ t R2

−)/ ∼. We refer to Xs as the principal
branch and refer to R2

+ and R2
− as secondary branches. Figures 3.2 and 3.3 illustrate this construction.

Note that the endpoints of the segment s in the quotient space are present in, and shared by, all three
of the original spaces.

R2R2

R2
�R2
�R2

+R2
+

pp

qq

�� e�e�

Figure 3.2: The completion of the slitted plane has a topological hole bounded by two portals,
marked in blue and orange. (Geometrically, the two portals are straight line segments that occupy
exactly the same coordinates.) The equivalence relation ∼ identifies the blue path in the principal
branch with the blue path in R2

−; likewise the two orange paths become one. A path in the principal
branch (bottom) that enters a portal continues in the appropriate secondary branch.
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Figure 3.3: A one-segment CDT and its dual extended Voronoi diagram. The blue and orange
regions show the portions of the Voronoi diagram on the secondary branches.

The construction works for any finite number m = |S | of non-crossing segments. We remove the
segment interiors from X, XS = X −

⋃
s∈S Int s, then we add two portals for each segment (taking

the completion of XS ) to yield XS . Then we construct a quotient space X̃ composed of XS and 2m
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copies of R2 glued along the 2m portals bounding the m holes in XS .
For the sake of defining the Voronoi diagram of a finite set of sites in X̃, Seidel [79] defines a

distance function on X̃ which is essentially the Euclidean distance, except that the distance between
two points is infinite if they are not visible from each other. (Note that this distance function is not
a metric.) Consider a continuous, injective curve γ : [0, 1] → X̃. The curve γ may pass through
portals and visit secondary branches, but because of the slits we have cut in XS , γ cannot cross the
interior of a segment without being transported by a portal. We call a curve straight if its Cartesian
embedding is a straight line segment. Two points p, q ∈ X̃ are visible from each other if there is
a straight curve γ ⊂ X̃ with endpoints p and q. The distance d̂(p, q) from p to q is the Euclidean
distance if p and q are visible from each other; otherwise, d̂(p, q) = ∞.

The extended Voronoi diagram assigns each point in X̃ to (the Voronoi cells of) one or more
sites in V . Those sites must be visible from the point; no site can claim a point it cannot see. If a
point on a secondary branch is claimed by a site other than the branch’s portal’s endpoints, the site
must be visible from the point through the portal. Seidel gives an algorithm for constructing the
extended Voronoi diagram, and by duality the CDT.

Portals on Surfaces Embedded in R3

A similar construction works for a smooth surface Σ ⊂ R3. However, whereas in the plane we
build one new topological space, here we will require two. We surgically augment the surface Σ by
cutting slits along portal curves, one for each segment, and gluing two extrusions onto each portal
curve, yielding an extended surface Σ̃. The purpose of this extended surface is to serve as a canvas
upon which we can draw an extended restricted Voronoi diagram, which we can dualize to define a
restricted CDT of Σ and S .

However, to define a Voronoi diagram we need a distance function, and Σ̃ alone does not suffice
to define a useful distance function. Recall that while an intrinsic (geodesic) distance might be
ideal in principle, it is not practical for fast computation. For the sake of speed and practicality, we
wish to use the Euclidean distance in R3 as RDTs do, but the Euclidean distance must be modified
so that the restricted Voronoi diagram respects the input segments. Hence most of our work will
be to construct a surgically modified three-dimensional space X̃ in which we embed Σ̃ ⊂ X̃. Like
Seidel’s augmented space in Section 3.2, X̃ obstructs (and supports) visibility in a manner suitable
for defining a restricted Voronoi diagram on Σ̃, and does so in a way that makes it easy to compute
restricted CDTs.

To define X̃, we specify portals in R3 where points will be removed, analogous to cutting slits in
the plane. Each portal is a two-dimensional ruled surface with boundary (not generally flat) which is
a union of line segments. Each portal curve is the intersection of a portal with Σ. Each line segment
is perpendicular to Σ where it intersects Σ, on a portal curve. Each portal has two “sides,” and on
each side we glue an additional copy of R3 in which we embed an extrusion. The extended Voronoi
diagram assigns each point in Σ̃ to one or more sites in V that are visible from the point along a
straight path in X̃.

Let Σ ⊂ R3 be a compact, smooth surface without boundary. The medial axis M of Σ is the
closure of the set of all points in R3 for which the closest point on Σ is not unique. Intuitively, the
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medial axis of Σ is meant to capture the “middle” of the region bounded by Σ. A medial ball is a
ball whose center lies on M and whose boundary intersects Σ (tangentially), but the interior of the
ball does not. For any point x ∈ Σ, there are one or two medial balls that have x on their boundaries,
called medial balls at x. If there are two, there is one on each side of Σ.

For x ∈ Σ, the normal segment `x at x is a line segment or ray that passes through x, is orthogonal
to Σ at x, and has its endpoints on M. If there are two medial balls at x, the endpoints of `x are the
centers of those medial balls. If there is only one medial ball at x, then `x is a ray originating at the
medial ball’s center.

The local feature size function is lfs : Σ→ R, x 7→ d(x,M) where d(x,M) denotes the Euclidean
distance from x to M. We require that Σ is smooth in the sense that infx∈Σ lfs(x) > 0. A finite point
set V ⊂ Σ is an ε-sample of Σ if for every point x ∈ Σ, d(x,V) ≤ ε lfs(x). That is, the ball with center
x and radius ε lfs(x) contains at least one sample point. See Figure 3.4.

✏ lfs(x)✏ lfs(x)

MM

⌃⌃

Figure 3.4: The medial axis M (blue) of a curve Σ embedded in the plane (as three-dimensional
examples are hard to draw or understand). The medial axis is unbounded; both depicted components
extend infinitely far away. The set of black vertices is a 0.5-sample of Σ. The point x ∈ Σ, shown in
red, has at least one sample point in the ball centered at x with radius ε lfs(x).

Let S be a finite set of line segments whose endpoints lie on Σ. Let s ∈ S be a segment with
endpoints p, q ∈ Σ. Let Bs be the diametric ball of s—the smallest closed ball such that s ⊂ Bs,
so that s is a diameter of Bs. Suppose that d(p, q) ≤ ρ lfs(p) for some ρ ∈ (0, 1); that is, s is short
relative to the local feature size. Then one can prove that Bs ∩Σ is a topological disk (see Lemma 40
in Appendix A.1).

Suppose that we know or can approximate the unit vector np normal to Σ at any site p. We
choose a cutting plane hs ⊃ s that is locally orthogonal to the surface Σ at p or q (or perhaps
somewhere between p and q). We use hs to specify a portal curve ζs = hs ∩ Bs ∩ Σ, which is a
single connected curve from p to q on Σ. There is not a canonical choice of cutting plane (and thus
portal curve) for s, and the user might be presented with a range of choices, but for our presentation
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here, we choose hs = Span{np, ~pq}. We require that the portal curves do not cross each other. More
precisely, the relative interior of a portal curve may not intersect another portal curve nor a site in V .

Our requirement that each portal curve must lie on a plane has both a theoretical motivation
and a practical one. Our proof that every constraining segment is an edge in the restricted CDT
(Theorem 19) depends on the fact that each portal curve lies in a plane and its extrusions are
orthogonal to that plane. The requirement simplifies algorithms for computing a restricted CDT,
because the Voronoi cells on an extrusion are solely influenced by sites on the other side of the
cutting plane—plus p and q. (See Theorem 18.)

Figure 3.5 illustrates our portal construction. For each segment s, the portal Ps =
⋃

x∈ζs
`x is the

union of the normal segments of the points on the portal curve ζs. Hence a portal is a ruled surface,
topologically two-dimensional but not lying in a plane. Each portal reaches to the medial axis,
thereby obstructing visibility so that sites on one “side” of a segment do not affect the restricted
Delaunay triangles on the other “side.”

We construct the augmented space X̃ as we did in Section 3.2, with Ps replacing s and R3

replacing R2. We first let X = R3. We construct the space Xs = X − Int Ps, which is R3 with the
relative interior of Ps removed. We construct Xs (the completion of Xs) by augmenting the slit with
two portals, one for each side of Ps. Each portal is a topological copy of Ps, but both copies share a
single boundary ∂Ps with each other and with Xs. Then we construct X̃ by gluing two secondary
branches (copies of R3) to Xs, one along each portal.

The construction works for any finite number of segments, so long as no portal curve intersects
the relative interior of another portal curve, which implies that no portal intersects the relative
interior of another portal. If two segments share an endpoint p, then their portals share a boundary
segment `p; and two portals’ boundaries may also intersect each other at the medial axis; and
these boundary points are considered equivalent in the quotient space. However, no portal interiors
intersect each other.

For a finite number of segments, the construction removes the slits for all segments from X,
XS = X −

⋃
s∈S Int Ps, then creates two portals for each segment to yield the completion XS . Then

we construct the quotient space X̃ with 2m copies of R3 glued along the 2m portals bounding the m
holes in XS .

Our next step is to surgically modify Σ to create an extended surface Σ̃ embedded in X̃, as
illustrated at bottom in Figure 3.5. Let bs be a unit vector normal to the cutting plane hs. We
extrude the portal curve ζs into each of the two secondary branches connected to the portal Ps,
in the two directions normal to hs. For each point x ∈ ζs we extrude a ray in the direction of bs

into R3
+, and another in the direction of −bs into R3

−. More precisely, we define the ruled surfaces
Σ+

s = {x + ωbs ∈ R3
+ : x ∈ ζs, ω ∈ [0,∞)} and Σ−s = {x − ωbs ∈ R3

− : x ∈ ζs, ω ∈ [0,∞)}. Let
ΣS = Σ −

⋃
s∈S Int(ζs) be the surface with the portal curve interiors removed, and let ΣS be its

completion. Define an equivalence relation ∼ that identifies points along ζs on ΣS , each Σ+
s , and

each Σ−s . Our extended surface is Σ̃ =
(
ΣS t

⊔
s∈S Σ+

s t
⊔

s∈S Σ−s

)
/ ∼.
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Figure 3.5: (1) The plane hs intersects Σ in a curve; the portal curve ζs (red) is the portion of this
curve in the diametric ball Bs of the segment s. (2) Our portal Ps, shown in green, is the union
of the normal segments (locally orthogonal to Σ) of the points on the portal curve ζs. The normal
segments terminate on the medial axis M. (3) We extrude the portal curve ζs into R3

+ in the direction
bs orthogonal to hs, thus defining Σ+

s . (4) We glue the extrusion Σ+
s to Σ along ζs at the entrance to

the portal Ps.

3.3 The Geometry of Portal Curves
In this section we derive some facts about the geometry of portal curves that we use to prove this
chapter’s main results, including Theorems 18, 20, and 23.

Some Facts About Plane Geometry and Curvature
Let s be a line segment in the plane with endpoints p and q, let C be the circle whose diameter is s,
let c be the center of C (the midpoint of s), and let v be a vector normal to s. The bisector of s is the
line l = {c + λv : λ ∈ R}. Let P(s) denote the pencil of circles that pass through both p and q. All
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these circles have their centers on l.
Without loss of generality, we choose a coordinate system so that c (the midpoint of s/center of

C) is the origin and s lies on the x-axis. C is the unique smallest circle in the pencil P(s), and its
radius is d(p, q)/2. For every value r > d(p, q)/2, there are two circles Cr,C−r ∈ P(s) with radius r;
here we define Cr to have its center above s (i.e., with positive y-coordinate) and C−r to have its
center below s, as illustrated in Figure 3.6.

pp qq

CC
BB

C�rC�r

yy
xx

rr

��

Figure 3.6: The circles C and C−r are members of the pencil of circles P(pq) induced by the segment
pq. We define a coordinate system whose origin is the center of C−r and whose x-axis is parallel to
pq.

Lemma 9. Let p, q ∈ R2 be two points and let C be the circle with diameter pq. Let C−1/κ ∈ P(pq)
be a circle with radius 1/κ (curvature κ). Then the distance from the north pole of C−1/κ to the line
segment pq is

1 −
√

1 − κ2 d(p, q)2/4
κ

.

By symmetry, the same bound holds for the south pole of C1/κ.

Proof. Let c = (0,∆) be the center of C−1/κ. As C−1/κ passes through p and q, its radius is
1/κ = d(c, p) = d(c, q) =

√
d(p, q)2/4 + ∆2. Solving for ∆ gives

∆ = ±

√
1 − κ2 d(p, q)2/4

κ
.

The negative solution is the relevant one. (The positive solution provides the symmetric result for
the south pole of C1/κ.) The distance between the north pole of C−1/κ and the line segment pq is∣∣∣∣∣∆ +

1
κ
− 0

∣∣∣∣∣ =

∣∣∣∣∣∣∣1 −
√

1 − κ2 d(p, q)2/4
κ

∣∣∣∣∣∣∣ =
1 −

√
1 − κ2 d(p, q)2/4

κ
.
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�

Given a circle C, let B(C) denote the closed disk whose boundary is C. The following lemma
states that if the curvature of a portal curve ζs is bounded, then ζs ⊂ B(C1/κ) ∩ B(C−1/κ). Intuitively,
ζs cannot stray far from the line segment s = pq. This result allows us to bound the distance between
ζs and s on a portal Ps.

Lemma 10. Let p, q ∈ R2 be two points and let C be the circle with diameter pq. Let γ : [0, 1]→ R2

be a regular curve in R2 with γ(0) = p and γ(1) = q and with curvature everywhere at most κ.
Suppose that γ ⊂ B(C). Then γ ⊂ B(C1/κ) ∩ B(C−1/κ).

Proof. First we show that γ ⊂ B(C−1/κ); suppose for the sake of contradiction that γ 1 B(C−1/κ).
Let γ(t′) be a point on γ that maximizes the distance from γ(t′) to the center of C−1/κ; then
γ(t′) < B(C−1/κ). Let C′ be a circle of radius 1/κ tangent to γ at γ(t′) with the center of C′ lying on
the line segment connecting γ(t′) to the center of C−1/κ. As C′ has the same radius as C−1/κ (which is
greater than the radius of C) but passes through a point in C \C−1/κ, the circle C′ must enclose either
p or q (possibly both). But γ is a curve in C whose curvature nowhere exceeds κ, and it is tangent to
C′ at a point, so no part of γ can be inside C′. By contradiction, it follows that γ ⊂ B(C−1/κ). By a
symmetrical argument, γ ⊂ B(C1/κ). �

For any point in B(C1/κ)∩B(C−1/κ), we can bound the distance between that point and the nearest
endpoint of pq. The bound is at its worst on the boundary of B(C1/κ) ∩ B(C−1/κ) so we compute the
maximum distance to one of the endpoints for every point along the relevant arcs of C1/κ,C−1/κ.

For the next lemma, we find it convenient to define a coordinate system different from the one
used in the previous two lemmas. Consider a coordinate system where the center of C−r is the
origin, the center of C lies on the positive y-axis, and the segment pq is parallel with the x-axis, as
in Figure 3.6. In this coordinate system, p = (−d(p, q)/2,∆) and q = (d(p, q)/2,∆).

Lemma 11. Let p, q ∈ R2 be two points and let C denote the circle with diameter pq. Parameterize
C as

C(θ) =

(
−

d(p, q)
2

cos θ,∆ +
d(p, q)

2
sin θ

)
.

For each value of θ ∈ [0, π], the line segment from the center of C to C(θ) intersects a unique point
on C−r. The distance from this point on C−r to p or q (whichever is closest) can be expressed in
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terms of θ as

min{d(C−r(θ), p), d(C−r(θ), q)} =



[r2 +
d(p,q)2

4 −
d(p,q)

2

√
r2 sec2 θ − ∆2

− cos 2θ(∆2 +
d(p,q)

2

√
r2 sec2 θ − ∆2)

− ∆ sin 2θ(−d(p,q)
2 +

√
r2 sec2 θ − ∆2]1/2 θ ∈ [0, π/2),√

r2 + ∆2 − 2r∆ +
d(p,q)2

4 θ = π/2,

[r2 +
d(p,q)2

4 −
d(p,q)

2

√
r2 sec2 θ − ∆2

− cos 2θ(∆2 +
d(p,q)

2

√
r2 sec2 θ − ∆2)

+ ∆ sin 2θ(−d(p,q)
2 +

√
r2 sec2 θ − ∆2)]1/2 θ ∈ (π/2, π].

(3.1)
A symmetric result holds for Cr.

Proof. C−r can be parameterized as

C−r(ϕ) = (−r cosϕ, r sinϕ).

Then the squared distance from a point on C−r to p is

d(C−r(ϕ), p)2 = r2 + ∆2 +
d(p, q)2

4
− rd(p, q) cosϕ − 2r∆ sinϕ.

Similarly, the squared distance from a point on C−r to q is

d(C−r(ϕ), q)2 = r2 + ∆2 +
d(p, q)2

4
+ rd(p, q) cosϕ − 2r∆ sinϕ.

We wish to reparameterize these two distances in terms of θ; that is, for each θ ∈ [0, π] we need
an expression for the corresponding value of ϕ. It follow from basic trigonometry that

tan θ =
|r sinϕ − ∆|

|r cosϕ|
. (3.2)

We’ll consider the solutions to this equation in two steps; first for ϕ ∈ [arcsin(∆/r), π/2) and second
for ϕ ∈ (π/2, π − arcsin(∆/r)]. In both of these intervals, r sinϕ − ∆ ≥ 0, so we can remove
the absolute value from the numerator in Equation 3.2. In the case where ϕ ∈ [arcsin(∆/r), π/2),
r cosϕ > 0 so we can also remove the absolute values in the denominator. In this case,

ϕ = arctan
∆ + tan θ

√
r2 sec2 θ − ∆2

−∆ tan θ +
√

r2 sec2 θ − ∆2
.

In the second case, ϕ ∈ (π/2, π − arcsin ∆
r ], r cosϕ < 0. Thus we replace the absolute value in

the denominator with a negative sign, and

ϕ = arctan
∆ − tan θ

√
r2 sec2 θ − ∆2

∆ tan θ +
√

r4 sec2 θ − ∆2
.
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However, we’re interested in the angle that the hypotenuse makes with the negative x-axis. Thus
the correct value of ϕ is

ϕ = π − arctan
∆ − tan θ

√
r2 sec2 θ − ∆2

∆ tan θ +
√

r4 sec2 θ − ∆2
.

Plugging our two solutions for ϕ into our two distance equations respectively, we have

r2 +
d(p, q)2

4
−

d(p, q)
2

√
r2 sec2 θ − ∆2

− cos 2θ
(
∆2 +

d(p, q)
2

√
r2 sec2 θ − ∆2

)
− ∆ sin 2θ

(
−

d(p, q)
2

+
√

r2 sec2 θ − ∆2

)
and

r2 +
d(p, q)2

4
−

d(p, q)
2

√
r2 sec2 θ − ∆2

− cos 2θ
(
∆2 +

d(p, q)
2

√
r2 sec2 θ − ∆2

)
+ ∆ sin 2θ

(
−

d(p, q)
2

+
√

r2 sec2 θ − ∆2

)
.

The first equation holds in the range [0, π/2), while the second holds in the range (π/2, π].
Taking square roots gives Equation 3.1.

The point corresponding to θ = ϕ = π/2 is equidistant from both p and q. Its value can be
computed by considering the left and right hand limits and confirming that they are identical. Indeed
the limits are equal and have value

d(C−r(θ), p) = d(C−r(θ), q) =

√
r2 + ∆2 − 2r∆ +

d(p, q)2

4
.

�

Curvature Bounds
For a segment s and plane hs, defined as in Section 3.2, we wish to bound the curvature κ of the
curve ζs. Using the fact that ζs is defined as the intersection of hs with Σ, we bound the curvature κ
in terms of the maximum principal curvatures of Σ along ζs.

Lemma 12. Let Σ ⊂ R3 be a smooth surface and let p, q ∈ Σ be points on Σ. Let h = Span{np, ~pq}
be a plane and define bh =

np× ~pq
‖np× ~pq‖ , the unit vector normal to h. Define a curve γ : [0, 1] → Σ as

the intersection h ∩ Σ such that γ(0) = p and γ(1) = q. Let κ be the curvature along γ. Then the
geodesic curvature is κg = κ〈bh, n〉.
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Proof. Let T denote the tangent field along γ and N denote the principal normal along γ. Then the
geodesic curvature is

κg = κ〈N, n × T 〉
= κ〈bh × T, n × T 〉

= κ

∣∣∣∣∣∣〈bh, n〉 〈bh,T 〉
〈T, n〉 1

∣∣∣∣∣∣
= κ(〈bh, n〉 − 〈bh,T 〉〈T, n〉).

The third identity uses the scalar quadruple product. Notice that 〈bh,T 〉 = 0, since T always lies in
h, and 〈T, n〉 = 0, since T is also a tangent field along a curve in Σ. The result follows. �

Lemma 13. Let Σ ⊂ R3 be a smooth surface and let p, q ∈ Σ be points on Σ. Let h = Span{np, ~pq}
be a plane and define bh =

np× ~pq
‖np× ~pq‖ , the unit vector normal to h. Define a curve γ : [0, 1] → Σ as

the intersection h ∩ Σ such that γ(0) = p and γ(1) = q. Suppose that, for every t ∈ [0, 1], the angle
∠(np, nγ(t)) ≤ α in radians. Then the curvature κ of the curve γ is bounded by

max{κ1, κ2}√
1 − sin2 α

where κ1, κ2 are the principal curvatures of Σ.

Proof. The angle ∠(np, nγ(t)) ≤ α for all t, which implies that the the angle ∠(bh, nγ(t)) ∈
[
π
2 − α,

π
2 + α

]
.

It follows that the cosine of the angle is in the range [− sinα, sinα].
Define θ up to sign by 〈bh, n〉 = cos θ. Then κg = κ cos θ and κn = κ sin θ [70]. So

κ =
κn

sin θ

=
|κn|√

1 − (〈bh, n〉)2

≤
max{κ1, κ2}√

1 − sin2 α
.

The inequality in the last line follows from the fact that the normal curvature is bounded by the
maximum of the principal curvatures. �

Bounds in Terms of Local Feature Size
A normal plane Π at a point x ∈ Σ is a plane containing the normal vector nx. It follows that Π must
necessarily contain a unique unit tangent vector of TxΣ. The plane Π cuts Σ in a plane curve. The
curvature of this plane curve is defined as the reciprocal of the radius of the osculating circle at x.
Notice that the radius of the osculating circle is at least lfs(x) since there is an empty ball of radius
lfs(x) tangent to Σ at x. This holds for any normal plane at x. In particular it holds for the planes of
principal curvature. Thus the maximum principal curvature at x is at most 1

lfs(x) . Combining this
observation with Lemma 13 we derive an upper bound on the curvature κ of the plane curve γ.
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Lemma 14. Let Σ ⊂ R3 be a smooth surface and let p, q ∈ Σ be points on Σ such that d(p, q) ≤
ρ lfs(p) for ρ < 1/2. Let h = Span{np, ~pq} be a plane and define bh =

np× ~pq
‖np× ~pq‖ , the unit vector normal

to h. Define a curve ζ : [0, 1]→ Σ as the intersection h ∩ Σ such that ζ(0) = p and ζ(1) = q and ζ
is included in the ball B = B((p + q)/2, d(p, q)/2). Then the curvature κ of the curve ζ is at most

1

lfs(p)
√

1 − 2ρ
.

Proof. For any point r on Σ, the medial balls at r impose a lower bound on the radius of any
osculating circle generated by the intersection of Σ with a plane normal to Σ at r. In particular, the
radii of the osculating circles that define the principal curvatures are also at least the local feature
size. Applying the bound in Lemma 13, we have

κ ≤
max{κ1, κ2}√

1 − sin2 α

≤
1

minr∈ζ lfs(r)
1√

1 − sin2 α
.

Suppose that r∗ = arg minr∈ζ lfs(r), minimizes the local feature size along ζ. Since ζ is entirely
included in the ball B, d(p, r∗) ≤ ρ lfs(p). Then, by the Feature Translation Lemma (Lemma 38),
we have that

lfs(p) ≤
1

1 − ρ
lfs(r∗)

(1 − ρ)lfs(p) ≤ lfs(r∗).

Thus we make the bound weaker by writing it as

κ ≤
1

(1 − ρ)lfs(p)
1√

1 − sin2 α
.

Finally, by the Normal Variation Lemma (Lemma 4), ∠(np, nq) ≤ ρ

1−ρ . Furthermore, sin ρ

1−ρ ≤
ρ

1−ρ

for ρ < 1. (The values are essentially identical for ρ < 2
5 .) Our final bound is

κ ≤
1

(1 − ρ)lfs(p)
√

1 −
(

ρ

1−ρ

)2

=
1

(1 − ρ)lfs(p)
√

1−2ρ
(1−ρ)2

=
1

lfs(p)
√

1 − 2ρ
.

�
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Figure 3.7: The circles C1/κ and C−1/κ, and the disks B(C1/κ) and B(C−1/κ) bounded by these
circles, all have radius 1/κ. By Lemma 10, if the curvature of ζpq is at most κ, ζpq lies in the lune
B(C1/κ)∩B(C−1/κ). At each point z in the lune, we place a circle whose radius is min{d(p, z), d(q, z)}.
Three such circles are drawn in red. The union of all these circles is included in the green circle,
centered at the midpoint of pq.

Recall Lemma 10, which states that γ is included in B(C1/κ) ∩ B(C−1/κ), shown pictorially in
Figure 3.7. We call this region the lune. One important feature of the lune is its width, the distance
from the midpoint of pq to the north pole of C−1/κ (or equivalently to the south pole of C1/κ). This
distance was derived in terms of κ in Lemma 9. Using the bound in Lemma 14, we derive an upper
bound on the width in terms of the local feature size.

Lemma 15. Let Σ ⊂ R3 be a smooth surface and let p, q ∈ Σ be points on Σ such that d(p, q) ≤
ρ lfs(p) for ρ < 1/2. Let h = Span{np, ~pq} be a plane and define bh =

np× ~pq
‖np× ~pq‖ , the unit vector normal

to h. Define a curve γ : [0, 1]→ Σ as the intersection h ∩ Σ such that γ(0) = p and γ(1) = q and γ
is included in the ball B = B((p + q)/2, d(p, q)/2). Then the width of the lune B(C1/κ) ∩ B(C−1/κ) is
at most √

1 − 2ρ

1 −
√

1 −
ρ2

4(1 − 2ρ)

 lfs(p).

Proof. The result follows by substituting the bounds for κ and d(p, q) into the expression for the
width of the lune given by Lemma 9. This expression is an upper bound because increasing the
radius (equivalently, decreasing κ) decreases the width of the lune. �
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The proof of Lemma 9 gives an expression for ∆. The following lemma gives a lower bound on
∆ in terms of the local feature size.

Lemma 16. Let Σ ⊂ R3 be a smooth surface. Let p, q ∈ Σ be points such that d(p, q) ≤ ρ lfs(p) for
some ρ < 2

√
5 − 4 � 0.472136. Let h = Span{np, ~pq} be a plane. Parameterize the curve h ∩ Σ as

γ : [0, 1]→ Σ such that γ(0) = p, γ(1) = q, and γ is a bijection from [0, 1] to h ∩ Σ. Let B be the
diametric ball of the segment pq, and suppose that γ ⊂ B. Let κ be the maximum curvature of γ.
Let C1/κ and C−1/κ be the circles on h defined in Lemma 10, both of which enclose γ. Let ∆ be the
distance from the center of C1/κ (or the center of C−1/κ) to the center of B. Then

∆ ≥

√
1 − 2ρ −

ρ2

4
lfs(p).

Proof. Substituting the upper bound on κ derived in Lemma 14 into the expression for ∆ derived in
Lemma 9 gives

∆ =

√
1 − κ2 d(p, q)2/4

κ

≥
√

1 − 2ρ

√
1 −

1
lfs(p)2(1 − 2ρ)

ρ2lfs(p)2

4
lfs(p)

=

√
1 − 2ρ −

ρ2

4
lfs(p).

�

Combining Lemmas 11, 14, and 16 gives an upper bound on the distance between any point on
γ and the nearest endpoint of the segment pq.

Lemma 17. Let Σ ⊂ R3 be a smooth surface. Let p, q ∈ Σ be points on Σ such that d(p, q) ≤ ρ lfs(p)
for some ρ < 2

√
5 − 4 � 0.472136. Let h = Span{np, ~pq} be a plane. Parameterize the curve h ∩ Σ

as γ : [0, 1]→ Σ such that γ(0) = p, γ(1) = q, and γ is a bijection from [0, 1] to h ∩ Σ. Let B be the
diametric ball of the segment pq, and suppose that γ ⊂ B. Let κ be the maximum curvature of γ. Let
C1/κ and C−1/κ be the circles on h defined in Lemma 10, both of which enclose γ. Then for every
point x ∈ γ,

min{d(x, p), d(x, q)} ≤ β lfs(p), where β =

√
2 − 4ρ −

√
(1 − 2ρ)(4 − 8ρ − ρ2).

Proof. By Lemma 10, γ ⊂ B(C1/κ) ∩ B(C−1/κ), so x ∈ B(C1/κ) ∩ B(C−1/κ). The maximum distance
between any point y ∈ B(C1/κ) ∩ B(C−1/κ) and the nearest of p or q is achieved where the bisector
of pq intersects the boundary of B(C1/κ) ∩ B(C−1/κ). By Lemma 11 (with θ = π/2), this distance
is

√
r2 + ∆2 − 2r∆ + d(p, q)2/4, where r = 1/κ and ∆ is the distance from the center of C1/κ (or

the center of C−1/κ) to the center of B. By Lemma 14, κ ≤ 1/
( √

1 − 2ρ lfs(p)
)
. By Lemma 16,

∆ ≥
√

1 − 2ρ − ρ2/4 lfs(p). The result follows by substitution. �



CHAPTER 3. RESTRICTED CONSTRAINED DELAUNAY TRIANGULATIONS 50

3.4 Restricted Constrained Delaunay Triangulations
To define the restricted constrained Delaunay triangulation, we first define the extended restricted
Voronoi diagram (or just extended Voronoi diagram for short) on the extended surface Σ̃. As in
Section 3.2, we define a distance function d̂(p, q) that is the Euclidean distance in R3 if p and q are
visible to each other along a straight path in X̃, or∞ if they cannot see each other. For any v ∈ V ,
the extended restricted Voronoi cell of v is

Vor |Σ̃v = {x ∈ Σ̃ : d̂(x, v) ≤ d̂(x, u), ∀u ∈ V}.

An extended restricted Voronoi face is any nonempty set of points found by taking the intersec-
tion of one or more extended restricted Voronoi cells. The extended Voronoi diagram Vor |Σ̃V is the
cell complex containing all the extended restricted Voronoi cells and faces.

We define the restricted constrained Delaunay triangulation (restricted CDT) Del |Σ̃V to be the
simplicial complex dual to the extended Voronoi diagram. That is, a simplex is in Del |Σ̃V if its
vertices’ extended restricted Voronoi cells have a nonempty mutual intersection.

Although in principle Del |Σ̃V could contain a tetrahedron, we will assume that we can perturb Σ̃

infinitesimally so that it does not pass through the tetrahedron’s circumcenter; then Del |Σ̃V contains
no tetrahedra. Similarly, just as a standard Delaunay triangulation in the plane can be ambiguous if
four vertices lie on a common circle, if V has four or more cocircular vertices then Del |Σ̃V might
have triangles with intersecting interiors that are trying to cover the same area, but an infinitesimal
perturbation of V can fix this problem. We omit further details of these “degenerate” configurations,
as standard remedies work well in this context. Where necessary, we assume every extended Voronoi
vertex has degree three.

In this section, we discuss several combinatorial properties of extended Voronoi diagrams and
restricted CDTs. A primary assumption is that no segment is too long. Specifically, for each segment
s ∈ S with endpoints p, q ∈ Σ, we assume that d(p, q) ≤ ρ lfs(p) for some sufficiently small value
of ρ.

The following theorem shows that the sites whose extended restricted Voronoi cells lie in part
on an extrusion Σ+

s must lie on the side of the cutting plane hs opposite Σ+
s (excepting the endpoints

of s, which lie on hs). Thus the restricted Voronoi vertices on Σ+
s dualize to restricted Delaunay

triangles that are also on the side of hs opposite Σ+
s . This theorem simplifies computing the restricted

CDT, because an algorithm only needs to look at sites in one halfspace when computing the portion
of Vor |Σ̃V that lies on Σ+

s .

Theorem 18 (Cutting Plane Theorem). Let s ∈ S be a segment with endpoints p, q ∈ V such that
d(p, q) ≤ ρ lfs(p) for ρ ≤ 0.47. Consider a point x ∈ Σ+

s and a site r ∈ V \{p, q} such that x ∈ Vor |Σ̃r.
Then r is strictly on the side of hs opposite Σ+

s . (The symmetric claim also holds for any x ∈ Σ−s .)

Proof. Recall that s’s cutting plane hs induces a portal curve ζs ⊂ hs and a unit vector bs normal to
hs, with bs determining the direction of the extrusions. For any point z, let z⊥ ∈ R denote the signed
distance from z to hs, being positive if z is on the same side of hs as Σ+

s and negative if z is on the
same side as Σ−s . As x lies on an extrusion Σ+

s , we can write x = x̄ + x⊥bs for some point x̄ ∈ ζs and
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Figure 3.8: Left: side view of a cutting plane hs with the extrusion Σ+
s extending to the right (with

x̄x ⊂ Σ+
s ). For a point x ∈ Σ+

s to lie in the Voronoi cell of a site r, the line segment rx must pass
through the portal Ps at a point c, which lies on a line segment mm̃ connecting the center m of a
medial ball Bm to a tangency point m̃ ∈ Σ. (This figure is drawn so that c, m, and m̃ lie on the plane
of the paper and hs is orthogonal to the paper. However, r, x, and x̄ do not generally lie on the
plane of the paper.) As r < Bm and r⊥ ≥ 0 (that is, r is not left of hs), the angle between the line
←→xcr and the plane hs is at most θ. Therefore, x⊥ cannot be large. Right: another view of the same
configuration; here hs is the plane of the paper.

some scalar x⊥ ≥ 0. (To apply this proof to x ∈ Σ−s , simply reverse the direction of bs.) Observe that
x̄ is both the point on hs closest to x and the point on ζs closest to x. By assumption, no site lies on
ζs except p and q, so r cannot lie on ζs nor anywhere else on the portal Ps (as r ∈ Σ).

Suppose for the sake of contradicting Theorem 18 that r⊥ ≥ 0 (i.e., r is on the same side of
hs as Σ+

s or r ∈ hs). Our proof has two parts: first we show that x⊥ ≤ 0.17 lfs(p); then we show
by different means that x⊥ ≥ 0.48 lfs(p). The theorem holds by contradiction. Both parts work by
identifying a medial ball that touches ζs (a different ball for each part) that constrains the location
of r, thereby constraining the location of x.

As x ∈ Vor |Σ̃r, there is a line segment rx ⊂ X̃ that intersects the portal Ps at some point
c ∈ rx ∩ Ps (because x lies on the extrusion Σ+

s and r is in the principal branch), illustrated in
Figure 3.8. If there is more than one such intersection point, let c be the intersection point nearest r.
Observe that c⊥ ≥ 0 because r⊥ ≥ 0 and x⊥ ≥ 0. Recall that Ps is the union of the normal segments
of the points on ζs. Let m̃ ∈ ζs be the point whose normal segment `m̃ contains c. Let m be the
endpoint of `m̃ such that c ∈ m̃m. Recall that m (like every normal segment endpoint) lies on Σ’s
medial axis M and is the center of an open medial ball Bm whose boundary is tangent to the surface
Σ at m̃. As Bm ∩ Σ = ∅, r cannot lie in Bm.

(Note that sometimes a medial “ball” is degenerate, effectively having infinite radius, thus being
an open halfspace whose boundary is tangent to Σ at m̃. In this case, `m̃ is a ray rather than a line
segment, and although the point m is not defined, we can replace m̃m with a ray originating at m̃
and lying on `m̃. However, we note that a degenerate ball Bm cannot arise in this circumstance,
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because that would place the site r in the halfspace Bm. We won’t prove that, because a degenerate
Bm causes no difficulty for the rest of this proof.)

Let Bc be the open ball centered at c with m̃ on its boundary, and let rc = d(c, m̃) be the radius
of Bc, as illustrated in Figure 3.8. Observe that Bc ⊆ Bm, so Bc also does not intersect Σ nor contain
r. Let θ be the angle at which the normal segment `m̃ meets the cutting plane hs, and observe that
c⊥ = rc sin θ. As r < Bc, d(c, r) ≥ rc = c⊥/ sin θ.

As x ∈ Vor |Σ̃r, d̂(x, r) ≤ min{d(x, p), d(x, q)}. As p, q, and x̄ all lie on hs, we have by Pythagoras’
Theorem that d(x, p)2 = x2

⊥ + d(x̄, p)2 and d(x, q)2 = x2
⊥ + d(x̄, q)2. As x̄ ∈ ζs, we have by Lemma 17

that min{d(x̄, p), d(x̄, q)} ≤ β lfs(p) where β =

√
2 − 4ρ −

√
(1 − 2ρ) (4 − 8ρ − ρ2). Hence

d(x, r)2 ≤ min{d(x, p)2, d(x, q)2}

= x2
⊥ + min{d(x̄, p)2, d(x̄, q)2}

≤ x2
⊥ + β2 lfs(p)2. (3.3)

We consider two cases: one for r⊥ ≤ c⊥ ≤ x⊥ and one for r⊥ ≥ c⊥ ≥ x⊥.
In the case where r⊥ ≤ c⊥ ≤ x⊥ as illustrated in Figure 3.8, the angle between the vector bs and

the vector ~cr is at least 90◦. As r⊥ ≥ 0 and r < Bc, the angle between bs and ~cr cannot exceed 90◦+θ.
Thus the angle between the line←→xcr and the plane hs cannot exceed θ. So x⊥ − c⊥ ≤ d(x, c) sin θ and

β2 lfs(p)2 ≥ d(x, r)2 − x2
⊥

= (d(x, c) + d(c, r))2 − x2
⊥

≥

( x⊥ − c⊥
sin θ

+
c⊥

sin θ

)2
− x2

⊥

=
x2
⊥

sin2 θ
− x2

⊥

= x2
⊥ cot2 θ.

In the case where r⊥ ≥ c⊥ ≥ x⊥,

β2 lfs(p)2 ≥ d(x, r)2 − x2
⊥

≥ d(c, r)2 − c2
⊥

≥
c2
⊥

sin2 θ
− c2

⊥

= c2
⊥ cot2 θ

≥ x2
⊥ cot2 θ.

In either case, x⊥ ≤ β tan θ lfs(p). As d(p, m̃) ≤ d(p, q) ≤ ρ lfs(p), the Normal Variation
Lemma (Lemma 21) implies that θ ≤ ∠(np, nm̃) ≤ η(ρ) where η(δ) = arccos

(
1 − δ2/(2

√
1 − δ2)

)
.

Hence x⊥ ≤ β tan η(ρ) lfs(p). (Note that β is a function of ρ.) From this inequality, it follows that
x⊥ ≤ 0.17 lfs(p) for all ρ ∈ (0, 0.47], which completes the first part of our claim.

For the second part, we will show that x⊥ ≥ 0.48 lfs(p), yielding a contradiction.
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Figure 3.9: Left: side view of a cutting plane hs. The paper is the plane Π orthogonal to the portal
curve ζs at r̃, where r̃ is the point on ζs closest to the site r. Assuming that r ∈ Π, r must lie in the
shaded region W \ Br \ y. Note that x and x̄ do not necessarily lie on the plane of the paper, but
the other points do. For x to be in r’s Voronoi cell rather than p’s or q’s, x⊥ must be large. Right:
another view of the same configuration; here the paper is the plane hs, and we see side views of Π

and Ξ.

Let r̃ be the point on ζs closest to r. As ζs is a smooth curve, there is a unique plane Π through r̃
that is locally orthogonal to ζs at r̃. As ζs ⊂ hs, Π is also orthogonal to the plane hs. If r̃ is not an
endpoint of ζs (p or q), then r ∈ Π, as rr̃ is orthogonal to ζs at r̃. However, if r̃ is an endpoint of ζs,
then r might or might not lie on Π. If r < Π, then Π separates r from ζs.

Let `r̃ ⊂ Ps be the normal segment through r̃, and let the line Lr̃ be the affine hull of `r̃. Let
y ⊂ Lr̃ be the ray that originates at r̃ and is half of Lr̃, on the positive side of hs (the same side as
Σ+

s ), as illustrated in Figure 3.9. As y is orthogonal to ζs at r̃, y ⊂ Π. Let the ray ȳ be the orthogonal
projection of y onto hs. As the projection direction lies in Π, ȳ ⊂ Π. The rays y and ȳ bound an
infinite wedge W ⊂ Π that has apex r̃, as illustrated.

As x ∈ Vor |Σ̃r, the site r is positioned so that the sightline rx enters the portal Ps from the correct
side to access the extrusion Σ+

s . Therefore, if r ∈ Π, then r lies in the wedge W because r⊥ ≥ 0 (by
assumption) but r lies on the same side of y as W. Note that r , r̃ and r < y because r < Ps. On the
other hand, if r < Π, let w be the point where the line segment rx intersects Π. Observe that w⊥ ≥ 0
because r⊥ ≥ 0 and x⊥ ≥ 0. Hence, w lies in the wedge W.

The ray y passes through an endpoint m of the normal segment `r̃, and m ∈ M is the center of
an open medial ball Br that is tangent to Σ at r̃. As Br ∩ Σ = ∅, r cannot lie in Br. (Note that the
medial ball Br cannot degenerate to a halfspace because then Br would include W \ {r̃}, contradicting
r ∈ W \ Br \ y.)

Let rr = d(m, r̃) be the radius of Br. Observe that lfs(r̃) ≤ rr. The rays y and ȳ each intersect
the boundary of Br at two points: they both enter the ball at the ray origin r̃ and they each exit at
another point. Let z be the point where y exits, and let z̄ be the point where ȳ exits, as illustrated in
Figure 3.9. By circle geometry, ∠zz̄r̃ = 90◦, so z̄ is the point closest to z on hs. Let θ be the wedge
angle at which y meets ȳ. Then d(r̃, z) = 2rr and d(r̃, z̄) = 2rr cos θ.
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As x̄ and r̃ both lie on ζs, d(x̄, r̃) ≤ d(p, q) ≤ ρ lfs(p) and d(p, r̃) ≤ d(p, q) ≤ ρ lfs(p). The
Feature Translation Lemma (Lemma 38) implies that lfs(p) ≤ lfs(r̃)/(1−ρ) and the Normal Variation
Lemma (Lemma 21) implies that θ ≤ ∠(np, nr̃) ≤ η(ρ).

Consider the open disk D = Br ∩ hs, illustrated at right in Figure 3.9. The line segment r̃z̄ is a
diameter of D with length 2rr cos θ. D and x̄ both lie on the cutting plane hs but x̄ < D, as D does
not intersect Σ. Hence we have by circle geometry that ∠r̃ x̄z̄ ≤ 90◦ and by Pythagoras’ Theorem
that d(x̄, r̃)2 + d(x̄, z̄)2 ≥ d(r̃, z̄)2 = 4r2

r cos2 θ.
Let Ξ be the plane that bisects r̃z̄; note that m ∈ Ξ and Ξ cuts both Br and D in half. We claim

that r̃, x, and x̄ all lie on the same side of Ξ; that is, d(r̃, x) < d(z̄, x) and d(r̃, x̄) < d(z̄, x̄). This
claim holds because for all ρ ∈ [0, 0.53], ρ <

√
2(1 − ρ) cos η(ρ) and therefore d(r̃, x̄) ≤ d(p, q) ≤

ρ lfs(p) <
√

2(1 − ρ) lfs(p) cos η(ρ) ≤
√

2 lfs(r̃) cos θ ≤
√

2rr cos θ = d(r̃, z̄)/
√

2. This means that x̄
is in the open ball with center r̃ and radius equal to

√
2 times the radius of D (see the dotted sphere

at right in Figure 3.9). The boundary of this open ball intersects the boundary of D at two points
that lie on Ξ, as illustrated. As x̄ < D, x̄ must lie on the same side of Ξ as r̃. Furthermore, x must lie
on the same side of Ξ as x̄, because x̄ is defined by projecting x in a direction parallel to Ξ.

We consider two cases, depending on whether r ∈ Π. For the case where r ∈ Π, r lies in the
region W \ Br \ {r̃}, which is shaded in Figure 3.9. The boundary of W \ Br \ {r̃} consists of three
curves: a circular arc connecting z to z̄, a ray that originates at z and is a subset of the ray y, and a
ray ȳz̄ that originates at z̄ and is a subset of the ray ȳ. Let r̄ be the point on hs closest to r. As the
figure makes clear, r̄ ∈ ȳz̄. We see that d(x̄, r̄) ≥ d(x̄, z̄), because z̄ is the point in ȳz̄ that is closest to
Ξ (which is orthogonal to ȳz̄) and x̄ is on the other side of Ξ.

From Inequality (3.3) we have

x2
⊥ ≥ d(x, r)2 − β2 lfs(p)2

= d(x̄, r̄)2 + (x⊥ − r⊥)2 − β2 lfs(p)2

≥ d(x̄, z̄)2 − β2lfs(p)2;
≥ d(r̃, z̄)2 − d(x̄, r̃)2 − β2 lfs(p)2

≥ 4r2
r cos2 θ − ρ2 lfs(p)2 − β2 lfs(p)2

≥ 4 lfs(r̃)2 cos2 θ − (ρ2 + β2) lfs(p)2

≥
(
4(1 − ρ)2 cos2 η(ρ) − ρ2 − β2

)
lfs(p)2.

From this inequality, it follows that x⊥ ≥ 0.74 lfs(p) for all ρ ∈ (0, 0.47].
Now consider the case where r < Π. In this case, the point closest to r on the portal curve ζs

is an endpoint of ζs; suppose without loss of generality that it is r̃ = q. Recall that the plane Π is
orthogonal to ζs at q. The site r and the curve ζs are on opposite sides of Π (otherwise, q could not
be the point closest to r). Hence, r and x are on opposite sides of Π or x ∈ Π.

Let `q be q’s normal segment, let Bq be the open medial ball tangent to Σ at q whose center m
satisfies m⊥ ≥ 0, and let rq = d(q,m) be the radius of Bq. (Note that as r̃ = q, `q is the same normal
segment we have already been calling `r̃, and Bq is the same ball we have been calling Br.) We
define W, z, z̄, y, and ȳ as before; see Figure 3.10. As Bq ∩ Σ = ∅, r cannot lie in Bq.
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Figure 3.10: The circumstances of this figure are similar to those of Figure 3.9, but r does not lie
on the plane Π (so it is not necessarily restricted to the region shaded in Figure 3.9).

Let the line ` ⊃ `q be the affine hull of `q. The line ` cuts Π into two halfplanes; let Π+ be the
open halfplane on the positive side of `, where the extrusion goes, and let Π− be the closed halfplane
on the negative side, so that ȳ ⊂ Π− and W ⊂ Π−.

Define a coordinate system with q at the origin, such that for any point p ∈ R3, p⊥ is p’s signed
distance from hs (as we have already defined), pΠ is p’s signed distance from Π, with the sign
defined so that rΠ > 0 and xΠ ≤ 0, and p‖ is the coordinate in the direction ȳ (the vertical axis in
Figure 3.10). As x ∈ Vor |Σ̃r, d(x, r) ≤ d(x, q). Therefore, ‖r‖2 − 2x · r ≤ ‖q‖2 − 2x · q. We have
chosen q as the origin, so we can write this as ‖r‖2/2 ≤ x · r = x⊥r⊥ + x‖r‖ + xΠrΠ. As xΠrΠ ≤ 0, we
can shorten this to ‖r‖2/2 ≤ x⊥r⊥ + x‖r‖. As r , q, this implies that 0 < x⊥r⊥ + x‖r‖.

As r < Bq, d(m, r) ≥ rq. Therefore, ‖m‖2 − 2m · r + ‖r‖2 ≥ r2
q. But ‖m‖ = rq, so we can write

‖r‖2/2 ≥ m · r = m⊥r⊥ + m‖r‖. Combining this with an inequality from the previous paragraph gives
m⊥r⊥ + m‖r‖ ≤ x⊥r⊥ + x‖r‖, or equivalently, 0 ≤ (x⊥ − m⊥)r⊥ + (x‖ − m‖)r‖.

Let x̊ be the point closest to x on Π, and let r̊ be the point closest to r on Π. (Hence x̊ sets x̊Π = 0
while retaining the coordinates x̊⊥ = x⊥ and x̊‖ = x‖.) We claim that x̊ ∈ Π+. (That is, with respect to
the figure, x̊ is to the right of y.) To see this, suppose for the sake of contradiction that x̊ ∈ Π−. This
implies that x̊ lies on or left of the ray ~qm; equivalently, m⊥x‖ ≥ m‖x⊥. We know that x⊥ ≥ 0, m‖ > 0,
and m⊥ > 0, so it follows that x‖ ≥ 0. Hence we can transform the inequality at the end of the last
paragraph to 0 ≤ (x⊥x‖ −m⊥x‖)r⊥ + (x‖ −m‖)x‖r‖, and then to 0 ≤ (x‖ −m‖)x⊥r⊥ + (x‖ −m‖)x‖r‖. As
m ∈ Ξ and x lies on the same side of Ξ as q, we have x‖ − m‖ < 0, so it follows that 0 ≥ x⊥r⊥ + x‖r‖.
But this contradicts the fact that 0 < x⊥r⊥ + x‖r‖ (from two paragraphs ago).

By this contradiction, we establish our claim that x̊ ∈ Π+. But the point w = rx ∩ Π must lie in
Π−; if it did not, the sightline from x to r would not exit the secondary space and enter the principal
branch. Observe that w lies on the line segment r̊ x̊, which implies that at least one of x̊ or r̊ is in Π−.
As x̊ is not, we must have r̊ ∈ Π−. Equivalently, m⊥r‖ ≥ m‖r⊥. As r+ ≥ 0, r̊ lies in the wedge W and
thus r‖ ≥ 0. Moreover, it is not possible that r̊ = q, because then we would have d(x, q) < d(x, r)
and x could not be in r’s Voronoi cell. Therefore, r̊ lies in W \ {q} and thus r‖ > 0.

As m‖ > 0, we can transform the inequality from three paragraphs ago to 0 ≤ (x⊥−m⊥)m‖r⊥+(x‖−
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m‖)m‖r‖, and then to 0 ≤ (x⊥−m⊥)m⊥r‖+ (x‖−m‖)m‖r‖, and then to 0 ≤ (x⊥−m⊥)m⊥+ (x‖−m‖)m‖ =

x · m − ‖m‖2. (The last identity follows because mΠ = 0.)
In this coordinate system with origin q, z = 2m. We claim that d(x, z) ≤ d(x, q). To see this,

observe that d(x, z)2 − d(x, q)2 = ‖z‖2 − 2x · z = 4‖m‖2 − 4x · m ≤ 0.
Therefore,

0 ≥ d(x, z)2 − d(x, q)2

= d(x̄, z̄)2 + (x⊥ − z⊥)2 − d(x̄, q)2 − x2
⊥

≥ d(r̃, z̄)2 − d(x̄, r̃)2 − 2x⊥z⊥ + z2
⊥ − ρ

2 lfs(p)2

≥ 4r2
q cos2 θ − ρ2 lfs(p)2 − 4rqx⊥ sin θ + 4r2

q sin2 θ − ρ2 lfs(p)2

= 4r2
q − 2ρ2 lfs(p)2 − 4rqx⊥ sin θ

≥ 4r2
q − 2ρ2 lfs(p)2 − 4rqx⊥ sin η(ρ).

Therefore,

x⊥ ≥
1

sin η(ρ)

(
rq −

ρ2

2rq
lfs(p)2

)
≥

1
sin η(ρ)

(
lfs(r̃) −

ρ2

2 lfs(r̃)
lfs(p)2

)
≥

1
sin η(ρ)

(
1 − ρ −

ρ2

2(1 − ρ)

)
lfs(p).

From this inequality, it follows that x⊥ ≥ 0.48 lfs(p) for all ρ ∈ (0, 0.5]. �

The next theorem shows that the restricted CDT Del |Σ̃V contains every edge in S .

Theorem 19. Let s ∈ S be a segment with endpoints p, q ∈ V such that d(p, q) ≤ ρ lfs(p) for
ρ ≤ 0.47. Then Vor |Σ̃ p ∩ Vor |Σ̃q , ∅. Hence pq is an edge in Del |Σ̃V .

Proof. We will show that Vor |Σ̃ p meets Vor |Σ̃q on the extrusion Σ+
s , as Figure 3.3 shows. (The same

is true for Σ−s .) Let Π be the plane bisecting s. Consider the point x̄ = Π ∩ ζs on the portal curve and
the ray ~x = Π ∩ Σ+

s , whose origin is x̄. Let x be a point on ~x, and note that x̄ is the point closest to x
on the portal plane hs, and xx̄ is perpendicular to x̄p. We will show that for all x ∈ ~x sufficiently far
from x̄, x ∈ Vor |Σ̃ p ∩ Vor |Σ̃q.

Suppose that x lies in the Voronoi cell Vor |Σ̃r of a site r ∈ V \ {p, q}. Theorem 18 states that r is
on the side of hs opposite x. Therefore, there exists some δ > 0 such that d(x, r) ≥ d(x, x̄) + δ for
every site r (besides p and q) whose extended restricted Voronoi cell intersects ~x. By Pythagoras’
Theorem, d(x, p)2 = d(x, x̄)2 + d(x̄, p)2. So x ∈ Vor |Σ̃ p if

d(x, p) ≤ d(x, x̄) + δ

↔ d(x, x̄)2 + d(x̄, p)2 ≤ (d(x, x̄) + δ)2 = d(x, x̄)2 + 2δ d(x, x̄) + δ2

↔
d(x̄, p)2 − δ2

2δ
≤ d(x, x̄).
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For any x that makes d(x, x̄) sufficiently large, the last inequality holds, and hence x ∈ Vor |Σ̃ p.
As d(x, p) = d(x, q), it also follows that x ∈ Vor |Σ̃q. Hence Vor |Σ̃ p ∩ Vor |Σ̃q , ∅. �

The shape of our extrusions Σ+
s and Σ−s is motivated in part by Theorem 19, which justifies the

word “constrained” in “restricted constrained Delaunay triangulation.”
The following theorem shows that the sites whose extended restricted Voronoi cells lie in part

on an extrusion Σ+
s must lie in a ball centered on the midpoint of the segment s. The ball’s radius

is a little larger than the radius of s. This is a boon for efficiently computing the restricted CDT,
because an algorithm needs to look only at sites near s when computing the portion of Vor |Σ̃V that
lies on Σ+

s .

Theorem 20 (Possession Theorem). Let s ∈ S be a segment with endpoints p, q ∈ V such that
d(p, q) ≤ ρ lfs(p) for ρ ≤ 0.47. Let c be the midpoint of s. Let x ∈ Σ+

s (or x ∈ Σ−s ). Let r ∈ X̃ be
a point that is not on the same side of the cutting plane hs as x (though either point may lie on
hs) such that d(x, r) ≤ min{d(x, p), d(x, q)}. (Note that by Theorem 18, these conditions hold for
any site r ∈ V such that x ∈ Vor |Σ̃r). Then r lies in the ball B(c, λ lfs(p)) with center c and radius
λ lfs(p), where

λ =
√

1 − 2ρ

1 −
√

1 −
ρ2

4 (1 − 2ρ)

 +

√√√√
(2 − 4ρ)

1 −
√

1 −
ρ2

4 (1 − 2ρ)

.
Proof. Let x̄ be the point nearest to x on hs, and observe that x̄ ∈ ζs. Consider a closed ball Bx

centered at x with radius d(x, r). As d(x, r) ≤ min{d(x, p), d(x, q)}, neither p nor q is in the interior
of Bx. The intersection of Bx with hs is a closed disk with center x̄. As p, q ∈ hs, the radius of the
disk Bx ∩ hs is at most min{d(x̄, p), d(x̄, q)}. As r and x are not on the same side of hs, r lies in the
ball centered at x̄ with the same radius as Bx ∩ hs.

It follows that r must be included in the union of balls constructed by centering a ball at each
point w ∈ ζs with radius min{d(w, p), d(w, q)}. Lemma 10 states that ζs is a subset of the lune
B(C1/κ) ∩ B(C−1/κ), where κ is the curvature of ζs. (See Figure 3.7.) Let B be the union of all balls
centered at every point in the lune. B is included in a ball centered at the midpoint c of pq with
radius λ. To see this, we show that the point farthest from c in B is at most distance λ lfs(p) away.
To find the farthest point, we focus on the balls centered at points on the boundary of the lune. By
symmetry we need consider only one of the two arcs of the lune, and only the portion from p to the
point directly above c in Figure 3.7.

We define a local coordinate system as shown in Figure 3.7, with the origin at the center of
C−1/κ, c = (0,∆), and p = (−d(p, q)/2,∆). In this coordinate system, we can parameterize C−1/κ as
C−1/κ(θ) =

√
d(p, q)2/4 + ∆2(− cos θ, sin θ). The distance from c to the farthest point of each ball

along the lune can be expressed as the sum of two distances, the distance from c to C−1/κ(θ) plus the
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radius of the ball at C−1/κ(θ).

d(c,C−1/κ(θ)) + d(C−1/κ(θ), p) =

√
d(p, q)2

4
+ 2∆2 − 2∆

√
d(p, q)2

4
+ ∆2 sin θ

+

√
d(p, q)2

2
+ 2∆2 − d(p, q)

√
d(p, q)2

4
+ ∆2 cos θ − 2∆

√
d(p, q)2

4
+ ∆2 sin θ.

The first derivative of this sum with respect to θ is

−
∆

√
d(p,q)2

4 + ∆2 cos θ√
d(p,q)2

4 + 2∆2 − 2∆

√
d(p,q)2

4 + ∆2 sin θ

+

1
2d(p, q)

√
d(p,q)2

4 + ∆2 sin θ − ∆

√
d(p,q)2

4 + ∆2 cos θ√
d(p,q)2

2 + 2∆2 − d(p, q)
√

d(p,q)2

4 + ∆2 cos θ − 2∆

√
d(p,q)2

4 + ∆2 sin θ

.

By symmetry, we are interested in the zeros of the derivative in the range θ ∈ [π/2 −
arctan (d(p, q)/(2∆)), π/2]. The derivative has a zero at θ = π/2 − arctan (d(p, q)/(2∆)), where
C−1/κ(θ) = p, and no others in the range [π/2 − arctan (d(p, q)/(2∆)), π/2]. Furthermore, the func-
tion is at a minimum at θ = π/2 − arctan (d(p, q)/(2∆)), with value d(p, q)/2. The derivative is
positive at every other point in the range [π/2 − arctan (d(p, q)/(2∆)), π/2]. Thus the maximum is
achieved at one of the limits of the range, when θ = π/2.

All that remains is to bound the sum of the distances when θ = π/2. At θ = π/2, Lemma 15
states that

d(c,C−1/κ(π/2)) ≤
√

1 − 2ρ

1 −
√

1 −
ρ2

4(1 − 2ρ)

 lfs(p).

With the bound d(c, p) = d(p, q)/2 ≤ ρ lfs(p)/2, Pythagoras’ Theorem implies that

d(C−1/κ(π/2), p) =

√
d(c, p)2 + d(c,C−1/κ(π/2))2

≤

√√√√
ρ2

4
+ (1 − 2ρ)

1 −
√

1 −
ρ2

4 (1 − 2ρ)


2

lfs(p)

=

√√√√
(2 − 4ρ)

1 −
√

1 −
ρ2

4 (1 − 2ρ)

 lfs(p).

So B is a subset of a ball centered at c with radius d(c,C−1/κ(π/2)) + d(C−1/κ(π/2), p) ≤ λ lfs(p). �
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The Taylor series expansion around ρ = 0 gives λ ≈ ρ/2 + ρ2/8 + 9ρ3/64 + O(ρ4). Thus the set
of vertices whose extended Voronoi cells can intersect Σ±s is included in a ball that is only somewhat
larger than the diametric ball of s.

The next theorem shows that the 1-skeleton of the portion of the extended restricted Voronoi
diagram on an extrusion Σ+

s is a tree. This implies several good things: the extrusion is subdivided
into topological disks, and the combinatorial triangulation dual to that portion of the Voronoi
diagram has the topology of a disk with s on its boundary. The theorem requires the following
standard lemma with a recently improved bound.

Lemma 21 (Normal Variation Lemma [57]). Let Σ ⊂ R3 be a bounded, smooth 2-manifold without
boundary. Consider two points p, q ∈ Σ and let δ = d(p, q)/lfs(p). Let np and nq be outward-directed

vectors normal to Σ at p and q, respectively. If δ <
√

4
√

5 − 8 � 0.9717, then ∠(np, nq) ≤ η(δ)
where

η(δ) = arccos
(
1 −

δ2

2
√

1 − δ2

)
≈ δ +

7
24
δ3 + O(δ5).

Theorem 22. Consider a segment s with endpoints p, q ∈ Σ such that d(p, q) ≤ ρ lfs(p) for
ρ ≤ 0.3368 (implying λ < 0.1957, for λ defined as in Theorem 20). Let T be the 1-skeleton of
Vor |Σ+

s V (or Vor |Σ−s V), the extended Voronoi diagram restricted to Σ+
s (or Σ−s ). T is a tree.

Proof. Suppose for the sake of contradiction that T contains a cycle. All the points inside and on
the cycle lie on the extrusion Σ+

s . Let v be a site whose extended Voronoi cell Vor |Σ̃v has points
inside the cycle. Let Lv be the line normal to Σ at v. Among all the points of Vor |Σ̃v that are on
or inside the cycle, let x ∈ Σ+

s be the one that is closest to Lv (breaking ties arbitrarily). Let hs be
the cutting plane for s, and let ζs ⊂ hs ∩ Σ be the portal curve for s. Let x̄ ∈ ζs be the orthogonal
projection of x onto hs. Let nx be a vector normal to Σ+

s at x. Let Tx be the plane tangent to Σ+
s at x;

thus nx is normal to Tx. The ray ~x originating at x̄ and passing through x is a subset of the extrusion
Σ+

s and a subset of Tx.
Let W ⊆ V be the set of sites (including v) whose extended Voronoi cells contain x. Every site

in W is equidistant from x. Consider the standard, three-dimensional Voronoi diagram of W and let
Pv be v’s Voronoi cell in that diagram; Pv is an unbounded convex polyhedron. If we treat x as if it
were in R3 (rather than in a secondary branch), then x lies in every Voronoi cell of that diagram,
including Pv.

Let B, B′ ⊂ R3 be the two open balls of radius lfs(v) tangent to Σ at v, and let o, o′ ∈ R3 be
their centers, respectively. Neither ball intersects Σ, so neither ball contains any site in W. Hence
d(v, o) ≤ d(w, o) and d(v, o′) ≤ d(w, o′) for all w ∈ W, hence o ∈ Pv and o′ ∈ Pv. As Pv is convex,
4oo′x ⊂ Pv (again treating x as if it were in R3). As v is strictly in the interior of Pv and v ∈ oo′, the
relative interior of 4oo′x is a subset of the interior of Pv.

Let c be the center of the segment s. By Theorem 20, d(v, c) ≤ λ lfs(p), so d(v, p) ≤ d(v, c) +

d(c, p) ≤ (λ + ρ/2) lfs(p). Likewise, d(v, x̄) ≤ (λ + ρ/2) lfs(p). By the Feature Translation Lemma
(Lemma 38), d(v, x̄) ≤ (λ + ρ/2) lfs(v)/(1 − λ − ρ/2). Also by the Feature Translation Lemma and
the fact that d(p, x̄) ≤ ρ lfs(p), d(v, x̄) ≤ (λ + ρ/2) lfs(x̄)/(1 − ρ). By the Normal Variation Lemma
(Lemma 21), ∠(nv, np) ≤ η(λ + ρ/2) and ∠(nv, nx̄) ≤ η((λ + ρ/2)/(1 − ρ)).
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To establish an upper bound on ∠(nv, nx), we divide the variation into portions transverse to hs

and orthogonal to hs. The former portion is equal to the transverse portion of ∠(nv, nx̄). The latter
portion is equal to the orthogonal portion of ∠(nv, np). Therefore, ∠(nv, nx) ≤ ∠(nv, nx̄)+∠(nv, np) ≤
η((λ + ρ/2)/(1 − ρ)) + η(λ + ρ/2).

The ball centers o and o′ lie on opposite sides of Tx, by the following reasoning. The upper
bound on d(v, x̄) given above implies an upper bound on the angles ∠vox̄ and ∠vo′ x̄. Specifically,
let θ = ∠vox̄; as v, x̄ < B, we have d(v, x̄) ≥ 2 lfs(v) sin(θ/2), so θ ≤ 2 arcsin(d(v, x̄)/(2 lfs(v))).
Symmetrically, as v, x̄ < B′, the same inequality holds with θ replaced by θ′ = ∠vo′ x̄. Recall
that Tx passes through x̄ with normal vector nx, and that nv is parallel to vo and vo′. Therefore, if
∠(nv, nx) < 90◦−2 arcsin(d(v, x̄)/(2 lfs(v))), then o and o′ lie on opposite sides of Tx. This inequality
must hold if η((λ + ρ/2)/(1 − ρ)) + η(λ + ρ/2) < 90◦ − 2 arcsin((λ + ρ/2)/(2 − 2λ − ρ)), and the
latter inequality holds for all ρ ∈ [0, 0.3368], so o and o′ lie on opposite sides of Tx.

By Theorem 18, the site v is on the side of hs opposite from Σ+
s . We claim that x < Lv. To see

that, observe that d(x, x̄) < d(x, v), as x̄ is the point closest to x on hs whereas v is on the opposite
side of hs. Recall that x̄ ∈ Σ. Hence x does not lie on v’s normal segment `v (if it did, that would
imply that d(x, v) ≤ d(x, x̄)). Observe that o, o′ ∈ `v ⊂ Lv. As o and o′ lie on opposite sides of Tx, x
cannot lie on any other part of Lv either. Hence x < Lv and 4oo′x is a nondegenerate triangle.

By Lemma 46, the line segment vx intersects no portal boundary; therefore, there is an open
neighborhood N of x in Σ+

s sufficiently small that every point in N is visible from v. Moreover,
Lemma 46 implies that every extended Voronoi cell restricted to Σ+

s is closed; hence, there is an
open neighborhood of x in Σ+

s that intersects no extended Voronoi cell of a site not in W. Let N ⊂ Σ+
s

be an open neighborhood of x that satisfies both properties. Every point in Pv ∩ N is in Vor |Σ̃v, and
every such point in the interior of Pv is in the relative interior of Vor |Σ̃v. Recall that 4oo′x ⊂ Pv and
the relative interior of 4oo′x is a subset of the interior of Pv. As N is smooth and the line segments
ox and o′x are on opposite sides of the plane Tx tangent to N at x, 4oo′x ∩ N includes a path that
begins at x and immediately enters the relative interior of 4oo′x, and therefore enters the interior of
Pv, and therefore enters the relative interior of Vor |Σ̃v. As o, o′ ∈ Lv, every point on the path except
x is closer to Lv than x is. This contradicts the assumption that x is the point of Vor |Σ̃v on or inside
the cycle that is closest to Lv. Hence, by contradiction, T does not contain a cycle. �

3.5 Topological Guarantees
Here we introduce some conditions in which a restricted CDT is homeomorphic to the original
surface Σ, with a view to applications in guaranteed-quality surface mesh generation. The nearest
point map ν maps a point x ∈ Rd \ M to the point ν(x) nearest x on Σ. We show that the nearest
point map, with its domain restricted to the underlying space of the restricted CDT Del |Σ̃V , is a
homeomorphism from the underlying space to the surface Σ.

Our proof that ν is a homeomorphism has three conditions: a segment length condition, that
each segment s ∈ S with endpoints p and q satisfies d(p, q) ≤ 0.3368 lfs(p); a sampling condition
requiring the sites V to be sufficiently dense; and an encroachment condition that prevents vertices
in V from being too close to a segment, to prevent the possibility of very skinny triangles. All three
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conditions could be enforced without difficulty by a mesh generation algorithm that inserts new
vertices on Σ (sometimes subdividing segments).

To understand the sampling condition, consider a surface Σ without boundary, a finite vertex set
V ⊂ Σ, a set of segments S whose endpoints are in V , and a set Z of portal curves containing one
curve ζs for each s ∈ S . Recall the slitted surface ΣS , defined in Section 3.2 to be the completion of
Σ −

⋃
s∈S Int(ζs). We say that V is a constrained ε-sample of (Σ, S ,Z) if V contains every endpoint

of every segment in S and for every point x ∈ ΣS , there is a site v ∈ V such that d̂(x, v) ≤ ε lfs(x).
That is, the ball centered at x with radius ε lfs(x) contains at least one sample point visible from x.
Here, visibility and d̂ are as defined in Section 3.2, and they are what differentiates a constrained
ε-sample from a standard ε-sample. (If S is empty, the two are the same.) Our homeomorphism
proof requires that V be a constrained 0.3202-sample of (Σ, S ,Z).

The encroachment condition applies only to restricted Delaunay triangles whose dual extended
Voronoi vertices lie on an extrusion. Let τ be such a triangle. The circumradius r of τ is the radius
of the unique circle that passes through τ’s three vertices. Let v be the vertex of τ at τ’s largest plane
angle. We require that r ≤ 0.3606 lfs(v). The purpose of this restriction is to prevent the existence
of “inverted” triangles in Del |Σ̃V , which create “foldovers” in the map from Del |Σ̃V to Σ. With
foldovers, the nearest point map is not injective and therefore not a homeomorphism.

The sampling and encroachment conditions both rule out triangles with circumradii that are
excessively large relative to the local feature size. A large circumradius implies either that the
triangle is large, or that it has a large plane angle (close to 180◦). Imposing these conditions is
consistent with a mesh generator’s goal of producing only well-shaped triangles, so the conditions
are not onerous. Nevertheless, there are other applications such as surface reconstruction where the
encroachment condition is not a natural condition. The restricted CDT may nevertheless still be
useful in that context; see the Conclusions for speculations.

Our main result is the following theorem. Unfortunately, the proof is fifteen pages long, so
we delay it to Appendix A.3. To keep the proof from being even longer, we impose a nondegen-
eracy condition that every extended Voronoi vertex has degree three, which can be enforced by
infinitesimal perturbations of Σ and V (but isn’t necessary in practice).

Theorem 23. Let V be a constrained ε-sample of (Σ, S ,Z) for some ε ≤ 0.3202. Suppose that
for every segment pq ∈ S , d(p, q) ≤ 0.3368 lfs(p). Suppose that every extended Voronoi vertex in
Vor |Σ̃V has degree three. Suppose that for every extended Voronoi vertex that lies on an extrusion,
its dual restricted Delaunay triangle satisfies r ≤ 0.3606 lfs(v), where r is τ’s circumradius and
v is the vertex of τ at τ’s largest plane angle. Then the nearest point map ν : |Del |Σ̃V | → Σ is a
homeomorphism.

We sketch the main ideas of the proof. We call ΣS the principal surface; recall from Section 3.2
that ΣS is the topological space we obtain by cutting slits in Σ and completing the space, but before
gluing on the extrusions. Each site v ∈ V has a principal Voronoi cell Vor |ΣS

v = ΣS ∩Vor |Σ̃v, which
excludes the portion of the extended restricted Voronoi cell on the extrusions. We call an extended
restricted Voronoi vertex a principal vertex if it lies on ΣS , or a secondary vertex otherwise (i.e., it
lies on an extrusion but not on a portal curve).
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In Appendix A.3 we show that, as V is a constrained 0.3202-sample, each principal vertex
dualizes to a triangle whose circumradius is not large (relative to the local feature size). The
encroachment condition implies that each secondary vertex dualizes to a triangle whose circumradius
is not large. The bounds on circumradii allow us to prove that the nearest point map restricted to
any single restricted Delaunay triangle is a homeomorphism. Moreover, there is a sense in which
the map preserves orientation: for any extended Voronoi vertex u whose dual extended Delaunay
triangle is τ = 4pp′p′′ the sites p, p′, and p′′ are in counterclockwise order around ν(τ) if and
only if the cells Vor |Σ̃ p, Vor |Σ̃ p′, and Vor |Σ̃ p′′ adjoin u in counterclockwise order around u (as
seen from outside Σ). From this, we argue that along each of its edges, each restricted Delaunay
triangle adjoins another restricted Delaunay triangle with a consistent orientation, and therefore the
restricted Delaunay triangles must cover the whole surface Σ—that is, the nearest point map is a
surjection from |Del |Σ̃V | to Σ.

Given a constrained 0.44-sample V , for any site v ∈ V that does not adjoin a segment, its
principal Voronoi cell Vor |ΣS

v is homeomorphic to a closed disk. Theorem 22 implies that each
portion of Vor |Σ̃v on an extrusion is also homeomorphic to a closed disk (if we add a “point at
infinity” to each extrusion to make it closed). It follows that the complete extended Voronoi cell
Vor |Σ̃v is a topological disk, because it is a disk with other disks glued along portions of its boundary.
Because the boundary of Vor |Σ̃v is a simple loop, the restricted Delaunay triangles adjoining v form
a fan of triangles around v whose union is a topological disk. The argument is just a little more
complicated for a site w that adjoins one or more segments: those segments may cut w’s principal
Voronoi cell into several disks, but still the restricted Delaunay triangles adjoining w form a fan
around w. From that we prove that the nearest point map is an injection from |Del |Σ̃V | to Σ (there
are no “foldovers” that cause any part of Σ to be covered by multiple triangles), and therefore a
homeomorphism.
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Chapter 4

On the Geometry of Adversarial Examples

4.1 Introduction
Deep learning at scale has led to breakthroughs on important problems in computer vision [60],
natural language processing [96], and robotics [63]. Shortly thereafter, the interesting phenomena of
adversarial examples was observed. A seemingly ubiquitous property of machine learning models
where perturbations of the input that are imperceptible to humans reliably lead to confident incorrect
classifications [87, 41]. What has ensued is a standard story from the security literature: a game
of cat and mouse where defenses are proposed only to be quickly defeated by stronger attacks [7].
This has led researchers to develop methods which are provably robust under specific attack models
[66, 94, 85, 72]. As machine learning proliferates into society, including security-critical settings
like health care [38] or autonomous vehicles [24], it is crucial to develop methods that allow us to
understand the vulnerability of our models and design appropriate counter-measures.

This chapter discusses a geometric framework for analyzing the phenomenon of adversarial
examples. We leverage the observation that datasets encountered in practice exhibit low-dimensional
structure despite being embedded in very high-dimensional input spaces. This property is colloqui-
ally referred to as the “Manifold Hypothesis”: the idea that low-dimensional structure of ‘real’ data
leads to tractable learning. We model data as being sampled from class-specific low-dimensional
manifolds embedded in a high-dimensional space. We consider a threat model where an adversary
may choose any point on the data manifold to perturb by ε in order to fool a classifier. In order
to be robust to such an adversary, a classifier must be correct everywhere in an ε-tube around the
data manifold. Observe that, even though the data manifold is a low-dimensional object, this tube
has the same dimension as the entire space the manifold is embedded in. Our analysis argues that
adversarial examples are a natural consequence of learning a decision boundary that classifies all
points on a low-dimensional data manifold correctly, but classifies many points near the manifold
incorrectly. The high codimension, the difference between the dimension of the data manifold and
the dimension of the embedding space, is a key source of the pervasiveness of adversarial examples.

This chapter makes the following contributions.

• A geometric framework, inspired by the manifold reconstruction literature, that formalizes
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the manifold hypothesis described above and our attack model.

• We highlight the role codimension plays in vulnerability to adversarial examples. As the
codimension increases, there are an increasing number of directions off the data manifold
in which to construct adversarial perturbations. Prior work has attributed vulnerability to
adversarial examples to input dimension [40].

• We apply this framework to prove the following results: (1) we show that the choice of norm
to restrict an adversary is important in that there exists a tradeoff between being robust to
different norms: we present a classification problem where improving robustness under the L∞
norm requires a loss of Ω(1−1/

√
d) in robustness to the L2 norm; (2) we show that a common

approach, training against adversarial examples drawn from balls around the training set, is
insufficient to learn robust decision boundaries with realistic amounts of data; and (3) we
show that nearest neighbor classifiers do not suffer from this insufficiency, due to geometric
properties of their decision boundary away from data, and thus represent a potentially robust
classification algorithm.

• A modification to the standard paradigm of adversarial training. We replace the Lp-ball
constraint with the Voronoi cells of the training data, which have several advantages detailed
in Section 4.8. In particular, we need not set the maximum perturbation size ε as part of
the training procedure. The Voronoi cells adapt to the maximum allowable perturbation size
locally on the data distribution. We show how to construct adversarial examples within the
Voronoi cells and how to incorporate Voronoi constraints into standard adversarial training. In
Section 4.10 we show that adversarial training with Voronoi constraints gives state-of-the-art
robustness results on MNIST and competitive results on CIFAR10.

4.2 Related Work
This chapter approaches the problem of adversarial examples using techniques and intuition from
the manifold reconstruction literature. Both fields have a great deal of prior work, so we focus on
only the most related papers here.

Adversarial Examples
There has been a long line of work on the theory of adversarial examples. Schmidt et al. [76]
explore the sample complexity required to produce robust models. They demonstrate a simple
setting, a mixture of two Gaussians, in which a linear classifier with near perfect natural accuracy
can be learned from a single sample, but any algorithm that produces any binary classifier requires
Ω(
√

d) samples to produce a robust classifier. Followup work by Bubeck et al. [16] suggests that
adversarial examples may arise from computational constraints. They exhibit pairs of distributions
that differ only in a k-dimensional subspace, and are otherwise standard Gaussians, and show
that while it is information-theoretically possible to distinguish these distributions, it requires
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exponentially many queries in the statistical query model of computation. We note that both
of these constructions produce distributions whose support is the entirety of Rd. The work of
Gilmer et al. [40] experimentally evaluated the setting of two concentric under-sampled 499-spheres
embedded in R500, and concluded that adversarial examples occur on the data manifold. In contrast,
we present a geometric framework for proving robustness guarantees for learning algorithms,
that makes no assumptions on the decision boundary. We carefully sample the data manifold
in order to highlight the importance of codimension; adversarial examples exist even when the
manifold is perfectly classified. Additionally we explore the importance of the spacing between
the constituent data manifolds, sampling requirements for learning algorithms, and the relationship
between model complexity and robustness. Shafahi et al. [80] suggest that adversarial examples
may be an unavoidable consequence of the high-dimensional geometry of data. Their result depends
upon the use of an isopermetric inequality. The main drawback of these prior works is that they
assume that the support of the data distribution has full or nearly full dimension. We do not believe
this to be the case in practice, instead we believe that the data distribution is often supported on a
very low-dimensional subset of Rd.

Wang et al. [91] explore the robustness of k-nearest neighbor classifiers to adversarial examples.
In the setting where the Bayes optimal classifier is uncertain about the true label of each point,
they show that k-nearest neighbors is not robust if k is a small constant. They also show that if
k ∈ Ω(

√
dn log n), then k-nearest neighbors is robust. Using our geometric framework we show a

complementary result: in the setting where each point is certain of its label, 1-nearest neighbors is
robust to adversarial examples.

The decision and medial axes defined in Section 4.3 are maximum margin decision boundaries.
Hard margin SVMs define define a linear separator with maximum margin, maximum distance
from the training data [26]. Kernel methods allow for maximum margin decision boundaries that
are non-linear by using additional features to project the data into a higher-dimensional feature
space [81]. The decision and medial axes generalize the notion of maximum margin to account for
the arbitrary curvature of the data manifolds. There have been attempts to incorporate maximum
margins into deep learning [86, 65, 64, 37], often by designing loss functions that encourage large
margins at either the output [86] or at any layer [37]. In contrast, the decision axis is defined on the
input space and we use it as an analysis tool for proving robustness guarantees.

Adversarial training, the process of training on adversarial examples generated in Lp-balls
around the training data, is a very natural approach to constructing robust models and was originally
proposed by Goodfellow et al. [41]. Madry et al. [66] formalized the adversarial training objective
and highlighted the importance of a strong adversary for constructing adversarial examples in the
inner training loop. Their approach to adversarial training, which utilized a projected gradient
descent adversary, produced some of the first empirically robust models which were not later
broken by stronger attacks. There’s was the only approach surveyed by Athalye et al. [7] which
was not either fully circumvented by [7] or in a later paper [51]. More recently, the celebrated
algorithm TRADES [97] has been proposed, which attempts to provide a principled way to trade
off between robustness and natural accuracy. The analysis that inspires TRADES decomposes
the robust error into two terms: natural error and error near the decision boundary. The yields an
objective function with two terms, one which encourages accuracy and another which pushes the
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decision boundary away from the data distribution. Constructing a decision boundary that is far
from the data distribution is explored in other heuristic works such as [33, 50, 47]. The approach we
describe in Section 4.9 falls into this class of defenses and so we will compare exclusively against
such defenses.

The frequency with which heuristic defenses have been defeated by stronger attacks has led to a
line of work on certifiable robustness, which can guarantee that there exists no perturbation within
an Lp-ball of radius ε which causes the classifier to change its classification. One of the first works
by Wong et al. [94] proposed to approximate the set of possible activations of every L∞-bounded
perturbation by propagating upper and lower bounds for each activation through the network. These
upper and lower bounds are used to construct a convex outer approximation to the set of possible
activations in the final layer, and a linear program is used to certify that this convex approximation
does not intersect the decision boundary. This initial work had several notable drawbacks, and
several subsequent works have attempted to improve upon these initial results [92, 67, 39, 95, 84].
However the fundamental problems have remained: (1) these approaches do not scale to larger
networks despite considerable effort, (2) they often depend crucially on the specific details of the
architecture, and (3) the size of ε which can be certified is often considerably smaller than what we
observe to be empirically robust. A different approach to certified robustness which addresses some
of these concerns, called randomized smoothing [61, 25], has recently been proposed. Randomized
smoothing leverages the ability of any classifier f to perform well on Gaussian noise to construct
a new classifier g which is certifiably robust under adversarial L2 perturbations. Unlike prior
approaches to certified robustness, randomized smoothing is a simple approach which does not
depend on the architecture details of the classifier. Its main drawback is that it is currently limited
to L2. We also note that more recent work has combined randomized smoothing with adversarial
training to produce even more certifiably robustness classifiers in L2 [75]. Since the goal and
limitations of these method are often different from heuristic approaches we do not compare our
method against these approaches.

Manifold Reconstruction
Manifold reconstruction is the problem of discovering the structure of a k-dimensional manifold
embedded in Rd, given only a set of points sampled from the manifold. A large vein of research
in manifold reconstruction develops algorithms that are provably good: if the points sampled
from the underlying manifold are sufficiently dense, these algorithms are guaranteed to produce
a geometrically accurate representation of the unknown manifold with the correct topology. The
output of these algorithms is often a simplicial complex, a set of simplices such as triangles,
tetrahedra, and higher-dimensional variants, that approximate the unknown manifold. In particular
these algorithms output subsets of the Delaunay triangulation, which along with their geometric
dual the Voronoi diagram, have properties that aid in proving geometric and topological guarantees
[36].

The field first focused on curve reconstruction in R2 [3] and subsequently in R3 [30]. Soon after
algorithms were developed for surface reconstruction in R3, both in the noise-free setting [2, 6]
and in the presence of noise [29]. We borrow heavily from the analysis tools of these early works,
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including the medial axis and the reach. However we emphasize that we have adapted these tools to
the learning setting. To the best of our knowledge, our work is the first to consider the medial axis
under different norms.

In higher-dimensional embedding spaces (large d), manifold reconstruction algorithms face
the curse of dimensionality. In particular, the Delaunay triangulation, which forms the bedrock of
algorithms in low-dimensions, of n vertices in Rd can have up to Θ(ndd/2e) simplices. To circumvent
the curse of dimensionality, algorithms were proposed that compute subsets of the Delaunay
triangulation restricted to the k-dimensional tangent spaces of the manifold at each sample point
[10]. Unfortunately, progress on higher-dimensional manifolds has been limited due to the presence
of so-called “sliver” simplices, poorly shaped simplices that cause in-consistences between the local
triangulations constructed in each tangent space [19, 10]. Techniques that provably remove sliver
simplices have prohibitive sampling requirements [22, 10]. Even in the special case of surfaces
(k = 2) embedded in high dimensions (d > 3), algorithms with practical sampling requirements
have only recently been proposed [58]. Our use of tubular neighborhoods as a tool for analysis is
borrowed from [31] and [58].

In this chapter we are interested in learning robust decision boundaries, not reconstructing the
underlying data manifolds, and so we avoid the use of Delaunay triangulations and their difficulties
entirely. In Section 4.5 we present robustness guarantees for two learning algorithms in terms of
a sampling condition on the underlying manifold. These sampling requirements scale with the
dimension of the underlying manifold k, not with the dimension of the embedding space d.

4.3 The Geometry of Data
We model data as being sampled from a set of low-dimensional manifolds (with or without boundary)
embedded in a high-dimensional space Rd. We use k to denote the dimension of a manifoldM ⊂ Rd.
The special case of a 1-manifold is called a curve, and a 2-manifold is a surface. The codimension
of M is d − k, the difference between the dimension of the manifold and the dimension of the
embedding space. The “Manifold Hypothesis” is the observation that in practice, data is often
sampled from manifolds, usually of high codimension.

In this chapter we are primarily interested in the classification problem. Thus we model data
as being sampled from C class manifoldsM1, . . . ,MC, one for each class. When we wish to refer
to the entire space from which a dataset is sampled, we refer to the data manifoldM = ∪1≤ j≤CM j.
We often work with a finite sample of n points, X ⊂ M, and we write X = {X1, X2, . . . , Xn}. Each
sample point Xi has an accompanying class label yi ∈ {1, 2, . . . ,C} indicating which manifoldMyi

the point Xi is sampled from.
Consider a Lp-ball B centered at some point c ∈ Rd and imagine growing B by increasing its

radius starting from zero. For nearly all starting points c, the ball B eventually intersects one, and
only one, of theMi’s. Thus the nearest point to c onM, in the norm Lp, lies onMi. (Note that the
nearest point onMi need not be unique.)

The decision axis Λp ofM is the set of points c such that the boundary of B intersects two
or more of theMi, but the interior of B does not intersectM at all. In other words, the decision
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axis Λp is the set of points that have two or more closest points, in the norm Lp, on distinct class
manifolds. See Figure 4.1. The decision axis is inspired by the medial axis, which was first proposed
by Blum [9] in the context of image analysis and subsequently modified for the purposes of curve
and surface reconstruction by Amenta et al. [3, 6]. We have modified the definition to account for
multiple class manifolds and have renamed our variant in order to avoid confusion in the future.

The decision axis Λp can intuitively be thought of as a decision boundary that is optimal in the
following sense. First, Λp separates the class manifolds when they do not intersect. Second, each
point of Λp is as far away from the class manifolds as possible in the norm Lp. As shown in the
leftmost example in Figure 4.1, in the case of two linearly separable circles of equal radius, the
decision axis Λ2 is exactly the line that separates the data with maximum margin. For arbitrary
manifolds, Λp generalizes the notion of maximum margin to account for the arbitrary curvature of
the class manifolds.

M1M1

M1M1

M1M1

M2M2

M2M2

M2M2

⇤2⇤2
⇤2⇤2

⇤2⇤2

rch2 ⇤2rch2 ⇤2

rch2 ⇤2rch2 ⇤2

rch2 ⇤2rch2 ⇤2

Figure 4.1: Examples of the decision axis Λ2, shown here in green, for different data manifolds.
Intuitively, the decision axis captures an optimal decision boundary between the data manifolds. It’s
optimal in the sense that each point on the decision axis is as far away from each data manifold as
possible. Notice that in the first example, the decision axis coincides with the maximum margin
line.

Let T ⊂ Rd be any set. The reach rchp (T ;M) ofM is defined as infx∈M,y∈T ‖x − y‖p. WhenM
is compact, the reach is achieved by the point onM that is closest to T under the Lp norm. We will
dropM from the notation when it is understood from context.

Finally, an ε-tubular neighborhood ofM is defined asMε,p = {x ∈ Rd : infy∈M ‖x − y‖p ≤ ε}.
That is,Mε,p is the set of all points whose distance toM under the metric induced by Lp is less
than ε. Note that whileM is k-dimensional,Mε,p is always d-dimensional. Tubular neighborhoods
are how we rigorously define adversarial examples. Consider a classifier f : Rd → [C] forM.
An ε-adversarial example is a point x ∈ Mε,p

i such that f (x) , i. A classifier f is robust to all
ε-adversarial examples when f correctly classifies not onlyM, but all ofMε,p. Thus the problem of
being robust to adversarial examples is rightly seen as one of generalization. In this chapter we will
be primarily concerned with exploring the conditions under which we can provably learn a decision
boundary that correctly classifiesMε,p. When ε < rchp Λp, the decision axis Λp is one decision
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boundary that correctly classifiesMε,p. Throughout the remainder of this chapter we will drop the
p inMε,p from the notation, instead writingMε; the norm will always be clear from context.

The geometric quantities defined above can be defined more generally for any distance metric
d(·, ·). In this chapter we will focus exclusively on the metrics induced by the norms Lp for p > 0.
The decision axis under L2 is in general not identical to the decision axis under L∞. In Section 4.4
we will prove that since Λ2 is not identical to Λ∞ there exists a tradeoff in the robustness of any
decision boundary between the two norms.

4.4 A Provable Tradeoff in Robustness Between Norms
Schott et al. [78] explore the vulnerability of robust classifiers to attacks under different norms.
In particular, they take the robust pretrained classifier of [66], which was trained to be robust to
L∞-perturbations, and subject it to L0 and L2 attacks. They show that accuracy drops to 0% under
L0 attacks and to 35% under L2. Here we explain why poor robustness under the norm L2 should be
expected.

We say a decision boundaryD f for a classifier f is ε-robust in the Lp norm if ε < rchpD f . In
words, starting from any point x ∈ M, a perturbation ηx must have p-norm greater than rchpD f

to cross the decision boundary. The most robust decision boundary to Lp-perturbations is Λp. In
Theorem 24 we construct a learning setting where Λ2 is distinct from Λ∞. Thus, in general, no
single decision boundary can be optimally robust in all norms.

Theorem 24. Let S 1, S 2 ⊂ Rd+1 be two concentric d-spheres with radii r1 < r2 respectively. Let
S = S 1 ∪ S 2 and let Λ2,Λ∞ be the L2 and L∞ decision axes of S . Then Λ2 , Λ∞. Furthermore
rch2 Λ∞ ∈ O(rch2 Λ2/

√
d).

Proof. The decision axis under L2, Λ2, is just the d-sphere with radius (r1 + r2)/2. However, Λ∞ is
not identical to Λ2 in this setting; in fact most Λ∞ of approaches S 1 as d increases.

The geometry of a L∞-ball B∆ centered at m ∈ Rd with radius ∆ is that of a hypercube centered
at m with side length 2∆. To find a point on Λ∞ we place B∆ tangent to the north pole q of S 1 so
that the corners of B∆ touch S 2. The north pole has coordinate representation q = (0, . . . , 0, r1),
the center m = (0, . . . , 0, r1 + ∆), and a corner of B∆ can be expressed as p = (∆, . . . ,∆, r1 + 2∆).
Additionally we have the constraint that ‖p‖2 = r2 since p ∈ S 2. Then we can solve for ∆ as

r2
2 = ‖p‖22 = (d − 1)∆2 + (r1 + 2∆)2 = (d + 3)∆2 + 4r1∆ + r2

1;

∆ =
−2r1 +

√
r2

1 + 3r2
2 + d(r2

2 − r2
1)

d + 3
,

where the last step follows from the quadratic formula and the fact that ∆ > 0. For fixed r1, r2, the
value ∆ scales as O(1/

√
d). It follows that rch2 Λ∞ ∈ O(rch2 Λ2/

√
d). �

From Theorem 24 we conclude that the minimum distance from S 1 to Λ∞ under the L2 norm is
upper bounded as rch2 Λ∞ ∈ O(rch2 Λ2/

√
d). If a classifier f is trained to learn Λ∞, an adversary,
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Figure 4.2: As the dimension increases, the rch2 (Λ∞; S 1 ∪ S 2) decreases, and so an L∞ robust
classifier is less robust to L2 attacks. The dashed lines are placed at 1/

√
d, where our theoretical

results suggest we should start finding L2 adversarial examples. We use the robust L∞ loss of [94]

starting on S 1, can construct an L2 adversarial example for a perturbation as small as O(1/
√

d).
Thus we should expect f to be less robust to L2-perturbations. Figure 4.2 verifies this result
experimentally.

We expect that Λ2 , Λ∞ is the common case in practice. For example, Theorem 24 extends
immediately to concentric cylinders and intertwined tori by considering 2-dimensional planar cross-
sections. In general, we expect that Λ2 , Λ∞ in situations where a 2-dimensional cross-section with
M has nontrivial curvature.

Theorem 24 is important because, even in recent literature, researchers have attributed this
phenomena to overfitting. Schott et al. [78] state that “the widely recognized and by far most
successful defense by Madry et al. (1) overfits on the L∞ metric (it’s highly susceptible to L2 and L0

perturbations)” (emphasis ours). We disagree; the Madry et al. [66] classifier performed exactly
as intended. It learned a decision boundary that is robust under L∞, which we have shown is quite
different from the most robust decision boundary under L2.

Interestingly, the proposed models of Schott et al. [78] also suffer from this tradeoff. Their
model ABS has accuracy 80% to L2 attacks but drops to 8% for L∞. Similarly their model ABS
Binary has accuracy 77% to L∞ attacks but drops to 39% for L2 attacks.

We reiterate, in general, no single decision boundary can be optimally robust in all norms.

4.5 Provably Robust Classifiers
Adversarial training, the process of training on adversarial examples generated in a Lp-ball around
the training data, is a very natural approach to constructing robust models [41, 66]. In our notation
this corresponds to training on samples drawn from Xε for some ε. While natural, we show that
there are simple settings where this approach is much less sample-efficient than other classification
algorithms, if the only guarantee is correctness in Xε .
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Define a learning algorithm L with the property that, given a training set X ⊂ M sampled
from a manifold M, L outputs a model fL such that for every x ∈ X with label y, and every
x̂ ∈ B(x, rchp Λp), fL(x̂) = fL(x) = y. Here B(x, r) denotes the ball centered at x of radius r in
the relevant norm. That is, L learns a model that outputs the same label for any Lp-perturbation
of x up to rchp Λp as it outputs for x. L is our theoretical model of adversarial training [41, 66].
Theorem 25 states that L is sample inefficient in high codimensions.

Theorem 25. There exists a classification algorithmA that, for a particular choice ofM, correctly
classifiesMε using exponentially fewer samples than are required for L to correctly classifyMε .

Theorem 25 follows from Theorems 26 and 27. In Theorems 26 and 27 we will prove that a
nearest neighbor classifier fnn is one such classification algorithm. Nearest neighbor classifiers are
naturally robust in high codimensions because the Voronoi cells of X are elongated in the directions
normal toM when X is dense [28].

Before we state Theorem 26 we must introduce a sampling condition onM. A δ-cover of a
manifoldM in the norm Lp is a finite set of points X such that for every x ∈ M there exists Xi such
that ‖x − Xi‖p ≤ δ. Theorem 26 gives a sufficient sampling condition for fL to correctly classify
Mε for all manifoldsM. Theorem 26 also provides a sufficient sampling condition for a nearest
neighbor classifier fnn to correctly classifyMε , which is substantially less dense than that of fL.
Thus different classification algorithms have different sampling requirements in high codimensions.

Theorem 26. LetM ⊂ Rd be a k-dimensional manifold and let ε < rchp Λp for any p > 0. Let fnn

be a nearest neighbor classifier and let fL be the output of a learning algorithm L as described
above. Let Xnn, XL ⊂ M denote the training sets for fnn and L respectively. We have the following
sampling guarantees:

1. If Xnn is a δ-cover for δ ≤ 2(rchp Λp − ε) then fnn correctly classifiesMε .

2. If XL is a δ-cover for δ ≤ rchp Λp − ε then fL correctly classifiesMε .

Proof. Here we use d(·, ·) to denote the metric induced by the Lp norm. We begin by proving (1).
Let q ∈ Mε be any point inMε . Suppose without loss of generality that q ∈ Mε

i for some class i.
The distance d(q,M j) from q to any other data manifoldM j, and thus any sample onM j, is lower
bounded by d(q,M j) ≥ 2 rchp Λp − ε. See Figure 4.3. It is then both necessary and sufficient that
there exists a x ∈ Mi such that d(q, x) < 2 rchp Λp − ε for fnn(q) = i. (Necessary since a properly
placed sample onM j can achieve the lower bound on d(q,M j).) The distance from q to the nearest
sample x onMi is d(q, x) ≤ ε + δ for some δ > 0. The question is how large can we allow δ to be
and still guarantee that fnn correctly classifiesMε? We need

d(q, x) ≤ ε + δ ≤ 2 rchp Λp − ε ≤ d(q,M j)

which implies that δ ≤ 2(rchp Λp − ε). It follows that a δ-cover with δ = 2(rchp Λp − ε) is sufficient,
and in some cases necessary, to guarantee that fnn correctly classifiesMε .
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Figure 4.3: Proof of Theorem 26. The distance from a query point q toM2, and thus the closest
incorrectly labeled sample, is lower bounded by the distance necessary to reach the medial axis Λp

plus the distance from Λp toM2.

Next we prove (2). As before let q ∈ Mε
i . It is both necessary and sufficient for q ∈ B(x, rchp Λp)

for some sample x ∈ Mi to guarantee that fL(q) = i, by definition of L. The distance to the nearest
sample x onMi is d(q, x) ≤ ε + δ for some δ > 0. Thus it suffices that δ ≤ rchp Λp − ε. �

The bounds on δ in Theorem 26 are sufficient, but they are not always necessary. There exist
manifolds where the bounds in Theorem 26 are pessimistic, and less dense samples corresponding
to larger values of δ would suffice.

Next we will show a setting where bounds on δ similar to those in Theorem 26 are necessary. In
this setting, the difference of a factor of 2 in δ between the sampling requirements of fnn and fL
leads to an exponential gap between the sizes of Xnn and XL necessary to achieve the same amount
of robustness.

Define Π1 = {x ∈ Rd : ` ≤ x1, . . . , xk ≤ µ and xk+1 = . . . = xd = 0}; that is Π1 is a subset of
the x1-. . .-xk-plane bounded between the coordinates [`, µ]. Similarly define Π2 = {x ∈ Rd : ` ≤
x1, . . . , xk ≤ µ and xk+1 = . . . = xd−1 = 0 and xd = 2}. Note that Π2 lies in the subspace xd = 2; thus
rch2 Λ2 = 1, where Λ2 is the decision axis of Π = Π1 ∪ Π2. In the L2 norm we can show that the
gap in Theorem 26 is necessary for Π = Π1 ∪ Π2. Furthermore the bounds we derive for δ-covers
for Π for both fnn and fL are tight. Combined with well-known properties of covers, we get that the
ratio |XL|/|Xnn| is exponential in k.

Theorem 27. Let Π = Π1 ∪ Π2 as described above. Let Xnn, XL ⊂ Π be minimum training sets
necessary to guarantee that fnn and fL correctly classifyMε . Then we have that

|XL|
|Xnn|

≥ 2k/2 (4.1)

Proof. Let q ∈ Πε
1. Since Π1 is flat, the distance from q to the nearest sample x ∈ Π1 is bounded as

‖q− x‖2 ≤
√
ε2 + δ2. For fnn(q) = 1 we need that ‖q− x‖2 ≤ 2−ε, and so it suffices that δ ≤ 2

√
1 − ε.

In this setting, this is also necessary; should δ be any larger a property placed sample on Π2 can
claim q in its Voronoi cell.
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Similarly for fL(q) = 1 we need that ‖q − x‖2 ≤ 1, and so it suffices that δ ≤
√

1 − ε2. In this
setting, this is also necessary; should δ be any larger, q lies outside of every L2-ball B(x, 1) and so
L is free to learn a decision boundary that misclassifies q.

Let N(δ,M) denote the size of the minimum δ-cover ofM. Since Π is flat (has no curvature)
and since the intersection of Π with a d-ball centered at a point on Π is a k-ball, a standard volume
argument can be applied in the affine subspace aff Π to conclude that N(δ,Π) ∈ Θ

(
volk Π/δk

)
. So

we have

N(
√

1 − ε2,Π)

N(2
√

1 − ε,Π)
= 2k

(
1

1 + ε

)k/2

≥ 2k/2

Since Π is constant in both settings, the factor volk Π as well as the constant factors hidden by
Θ(·) cancel. (Note that we are using the fact that Π1,Π2 have finite k-dimensional volume.) The
inequality follows from the fact that the expression (1 + ε)−k/2 is monotonically decreasing on the
interval [0, 1] and takes value 2−k/2 at ε = 1. �

We have shown that both L and nearest neighbor classifiers learn robust decision boundaries
when provided sufficiently dense samples ofM. However there are settings where nearest neighbors
is exponentially more sample-efficient than L in achieving the same amount of robustness. We
experimentally verify these theoretical results in Section 4.10.

4.6 Xε is a Poor Model ofMε

Madry et al. [66] suggest training a robust classifier with the help of an adversary which, at each
iteration, produces ε-perturbations around the training set that are incorrectly classified. In our
notation, this corresponds to learning a decision boundary that correctly classifies Xε = {x ∈
Rd : ‖x − Xi‖2 ≤ ε for some training point Xi}. We believe this approach is insufficiently robust in
practice, as Xε is often a poor model forMε . In this section, we show that the volume vol Xε is often
a vanishingly small percentage of volMε . These results shed light on why the ball-based learning
algorithm L defined in Section 4.5 is so much less sample-efficient than nearest neighbor classifiers.
In Section 4.10 we experimentally verify these observations by showing that in high-dimensional
space it is easy to find adversarial examples even after training against a strong adversary. For the
remainder of this section we will consider the L2 norm.

Theorem 28. LetM ⊂ Rd be a k-dimensional manifold embedded in Rd such that volkM < ∞.
Let X ⊂ M be a finite set of points sampled fromM. Suppose that ε ≤ rch2 Ξ where Ξ is the medial
axis ofM, defined as in [28]. Then the percentage ofMε covered by Xε is upper bounded by

vol Xε

volMε
≤
πk/2Γ( d−k

2 + 1)

Γ( d
2 + 1)

εk

volkM
|X| ∈ O

( 2π
d − k

)k/2
εk

volkM
|X|

 . (4.2)

As the codimension (d − k)→ ∞, Equation 4.2 approaches 0, for any fixed |X|.
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Figure 4.4: To construct an δ-cover we place sample points, shown here in black, along a regular
grid with spacing ∆. The blue points are the furthest points of Π from the sample. To cover Π we
need ∆ = 2δ/

√
k.

Proof. Assuming the balls centered on the samples in X are disjoint we get the upper bound

vol Xε ≤ vol Bε |X| =
πd/2

Γ(d
2 + 1)

εd|X|. (4.3)

This is identical to the reasoning in Equation 4.5.
The medial axis Ξ ofM is defined as the closure of the set of all points in Rd that have two

or more closest points onM in the norm L2. The medial axis Ξ is similar to the decision axis Λ2,
except that the nearest points do not need to be on distinct class manifolds. For ε ≤ rch2 Ξ, we have
the lower bound

volMε ≥ vold−k Bd−k
ε volkM =

π(d−k)/2

Γ
(

d−k
2 + 1

)εd−k volkM. (4.4)

Combining Equations 4.3 and 4.4 gives the result. To get the asymptotic result we apply
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Stirling’s approximation to get

Γ(d−k
2 + 1)

Γ( d
2 + 1)

≈ (2e)k/2 (d − k)(d−k+1)/2

d(d+1)/2

= (2e)k/2

(
d−k

d

)(d+1)/2

(d − k)k/2

= (2e)k/2

(
1 − k

d

)(d+1)/2

(d − k)k/2

≈

(
2

d − k

)k/2

.

The last step follows from the fact that limd→∞(1 − k/d)(d+1)/2 = e−k/2, where e is the base of the
natural logarithm. �

In high codimension, even moderate under-sampling ofM leads to a significant loss of coverage
of Mε because the volume of the union of balls centered at the samples shrinks faster than the
volume ofMε . Theorem 28 states that in high codimensions the fraction ofMε covered by Xε goes
to 0. Almost nothing is covered by Xε for training set sizes that are realistic in practice. Thus Xε is
a poor model ofMε , and high classificaiton accuracy on Xε does not imply high accuracy inMε .

Note that an alternative way of defining the ratio vol Xε/ volMε is as vol (Xε ∩Mε)/ volMε .
This is equivalent in our setting since X ⊂ M and so Xε ⊂ Mε .

For the remainder of the section we provide intuition for Theorem 28 by considering the special
case of k-dimensional planes. Define Π = {x ∈ Rd : ` ≤ x1, . . . , xk ≤ µ and xk+1 = . . . = xd = 0};
that is Π is a subset of the x1-. . .-xk-plane bounded between the coordinates [`, µ]. Recall that a
δ-cover of a manifoldM in the norm ‖ · ‖2 is a finite set of points X such that for every x ∈ M there
exists Xi such that ‖x − Xi‖2 ≤ δ. It is easy to construct an explicit δ-cover X of Π: place sample
points at the vertices of a regular grid, shown in Figure 4.4 by the black vertices. The centers of
the cubes of this regular grid, shown in blue in Figure 4.4, are the furthest points from the samples.
The distance from the vertices of the grid to the centers is

√
k∆/2 where ∆ is the spacing between

points along an axis of the grid. To construct a δ-cover we need
√

k∆/2 = δ which gives a spacing

of ∆ = 2δ/
√

k. The size of this sample is |X| =
( √

k(µ−`)
2δ

)k
. Note that |X| scales exponentially in k,

the dimension of Π, not in d, the dimension of the embedding space.
Recall that Πδ is the δ-tubular neighborhood of Π. The δ-balls around X, which comprise Xδ,

cover Π and so any robust approach that guarantees correct classification within Xδ will achieve
perfect accuracy on Π. However, we will show that Xδ covers only a vanishingly small fraction of
Πδ. Let Bδ denote the d-ball of radius δ centered at the origin. An upper bound on the volume of Xδ

is

vol Xδ ≤ vol Bδ|X| =
πd/2

Γ( d
2 + 1)

δd

 √k(µ − `)
2δ

k

=
πd/2

Γ(d
2 + 1)

δ(d−k)

 √k(µ − `)
2

k

. (4.5)
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Figure 4.5: An illustration of the lower bound technique used in Equation 4.6. The volume vol Πδ

shown in the black dashed lines, is bounded from below by placing a (d − k)-dimensional ball
of radius δ at each point of Π, shown in green. In this illustration, a 1-dimensional manifold is
embedded in 2 dimensions, so these balls are 1-dimensional line segments.

Next we bound the volume vol Πδ from below. Intuitively, a lower bound on the volume can be
derived by placing a (d − k)-dimensional ball in the normal space at each point of Π and integrating
the volumes. Figure 4.4 (Right) illustrates the lower bound argument in the case of k = 1, d = 2.

vol Πδ ≥ vold−k Bd−k
δ volk Π =

π(d−k)/2

Γ
(

d−k
2 + 1

)δd−k(µ − `)k. (4.6)

Combining Equations 4.5 and 4.6 gives an upper bound on the percentage of Πδ that is covered
by Xε .

vol Xδ

vol Πδ
≤
πk/2Γ

(
d−k

2 + 1
)

Γ
(

d
2 + 1

)  √k
2

k

. (4.7)

Notice that the factors involving δ and (µ − `) cancel. Figure 4.6 (Left) shows that this expression
approaches 0 as the codimension (d − k) of Π increases.

Suppose we set δ = 1 and construct a 1-cover of Π. The number of points necessary to cover Π

with balls of radius 1 depends only on k, not the embedding dimension d. However the number of
points necessary to cover the tubular neighborhood Π1 with balls of radius 1 increases depends on
both k and d. In Theorem 29 we derive a lower bound on the number of samples necessary to cover
Π1.

Theorem 29. Let Π be a bounded k-flat as described above, bounded along each axis by ` < µ.
Let n denote the number of samples necessary to cover the 1-tubular neighborhood Π1 of Π with
L2-balls of radius 1. That is let n be the minimum value for which there exists a finite sample X of
size n such that Π1 ⊂ ∪x∈X B(x, 1) = X1. Then

n ≥
π−k/2Γ

(
d
2 + 1

)
Γ
(

d−k
2 + 1

) (µ − `)k ∈ Ω

(d − k
2π

)k/2

(µ − `)k

 . (4.8)
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Proof. We first construct an upper bound by generously assuming that the balls centered at the
samples are disjoint. That is

vol Xδ

vol Πδ
≤

n vol Bδ

vol Πδ
. (4.9)

To guarantee that Π1 ⊂ ∪x∈X B(x, 1) = X1 we set the left hand side of Equation 4.9 equal to 1 and
solve for n.

1 =
vol Xδ

vol Πδ
≤

n vol Bδ

vol Πδ

n ≥
vol Πδ

vol Bδ

≥
π−k/2Γ

(
d
2 + 1

)
Γ
(

d−k
2 + 1

) (
µ − `

δ

)k

The last inequality follows from Equation 4.6. Setting δ = 1 gives the result. The asymptotic result
is similar to the argument in the proof of Theorem 28. �

Theorem 29 states that, in general, it takes many fewer samples to accurately modelM than to
modelMε . Figure 4.6 (Right) compares the number of points necessary to construct a 1-cover of Π

with the lower bound on the number necessary to cover Π1 from Theorem 29. The number of points
necessary to cover Π1 increases as Ω

(
(d − k)k/2

)
, scaling polynomially in d and exponentially in

k. In contrast, the number necessary to construct a 1-cover of Π remains constant as d increases,
depending only on k.

Our lower bound of Ω
(
(d − k)k/2

)
samples is similar to the work of [76] who prove that, in the

simple Gaussian setting, robustness requires as much as Ω(
√

d) more samples. Their arguments are
statistical while ours are geometric.

Approaches that produce robust classifiers by generating adversarial examples in the ε-balls
centered on the training set do not accurately modelMε , and it will take many more samples to do
so. If the method behaves arbitrarily outside of the ε-balls that define Xε , adversarial examples will
still exist and it will likely be easy to find them. The reason deep learning has performed so well on
a variety of tasks, in spite of the brittleness made apparent by adversarial examples, is because it is
much easier to perform well onM than it is to perform well onMε .

4.7 A Lower Bound on Model Expressiveness

A Simple Example
Consider the case of two concentric circles C1,C2 with radii r1 < r2 respectively, as illustrated in
Figure 4.7. Each circle represents a different class of data. Suppose that we train a parametric model
f (x; θ) with p parameters so that for x ∈ C1, f (x; θ) > 0 and for x ∈ C2, f (x; θ) < 0. How does the
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Figure 4.6: We plot the upper bound in Equation 4.7 on the left. As the codimension increases, the
percentage of volume of Π1 covered by 1-balls around the 1-sample approaches 0. On the right we
plot the number of samples necessary to cover Π, shown in blue, against the number of samples
necessary to cover Π1, shown in orange, as the codimension increases.

number of parameters p necessary to ensure that such a decision boundary can be expressed by
f (·; θ) increase as the gap between C1 and C2 decreases?

Suppose that we first lift C1 and C2 to a parabola in R3 via map φ(x1, x2) = (x1, x2, x2
1 + x2

2). That
is, we construct the sets C+

1 = {φ(x1, x2) : (x1, x2) ∈ C1} and similarly for C+
2 . After applying φ, C+

1
and C+

2 are linearly separable for any r2 − r1 > 0. The linear decision boundary in R3 maps back
to a circle in R2 that separates C1 and C2. This is not the case for deep networks; the number of
parameters necessary to separate C1 and C2 will depend on the gap r2 − r1.

In the important special case where f is parameterized by a fully connected deep network with `
layers, h hidden units per layer, and ReLU activations, Raghu et al. [71] prove that f subdivides the
input space into convex polytopes. In each convex polytope, f defines a linear function that agrees
on the boundary of the polytope with its neighbors. They showed that, when the inputs are in R2,
the number of polytopes in the subdivision is at most O(h2`) [71][Theorem 1].

Let S f denote the subdivision of space into convex polytopes induced by f . Consider the
decision boundary D f = {x ∈ Rd : f (x; θ) = 0} of f . D f can be constructed by examining each
polytope P ∈ S f and solving the linear equation fP(x) = 0 where fP is the linear function defined
on P by f . Since fP is linear the solution is either (1) the empty set, (2) a single line segment, or
(3) all of P. Case (3) is a degenerate case and there are ways to perturb f by an infinitesimally
small amount such that case (3) never occurs and the classification accuracy is unchanged. Thus we
conclude thatD f is a piecewise-linear curve comprised of line segments. (In higher dimensionsD f

is composed of subsets of hyperplanes.) See Figure 4.7.
Suppose thatD f separates C1 from C2 and let s ∈ D f be a line segment of the decision boundary.

Since s lies in the space between C1 and C2, the length |s| ≤ 2
√

r2
2 − r2

1, which is tight when s is
tangent to C1 and touches C2 at both of its endpoints. For D f to separate C1 from C2, D f must
make a full rotation of 2π around the origin. The portion of this rotation that s can contribute is
upper bounded by 2 arccos r1

r2
. Thus the number of line segments that compriseD f is lower bounded
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by π

arccos r1
r2

.

As r2 → r1, the minimum number of segment necessary to separate C1 from C2
π

arccos r1
r2

→ ∞.

Since each polytope P ∈ S f can contribute at most one line segment toD f , the size of the model
necessary to represent a decision boundary that separates C1 from C2 also increases as the circles
get closer together.

Now consider Cε
1 and Cε

2 under the L2 norm, defined as Cε
i = {x ∈ R2 : ‖x −Ci‖2 ≤ ε}. Suppose

that a fully connected network f described as above has sufficiently many parameters to represent
a decision boundary that separates C1 from C2. Is f also capable of learning a robust decision
boundary that separates Cε

1 from Cε
2?

✏✏✏✏

C1C1

C2C2

r1r1

r2r2

DfDf DfDf DfDf

C✏
1C✏
1

C✏
2C✏
2

✏✏✏✏

Figure 4.7: Separating two classes of data sampled from C1 and C2 may require a decision bound-
ary D f with only a few linear segments. However a decision boundary D f that is robust to
ε-perturbations must lie in gap between Cε

1 and Cε
2. Learning a robust decision boundary may

require more linear segments and thus a more expressive model. As we increase ε, demanding a
more robust decision boundary, the gap between Cε

1 and Cε
2 decreases, and so the number of linear

segments increases towards∞.

ForD f to separate Cε
1 from Cε

2 it must lie in the region between Cε
1 and Cε

2. In this setting each
segment can contribute at most 2 arccos r1+ε

r2−ε
to the full 2π rotation around the origin. The minimum

number of line segments that comprise a robust decision boundaryD f is lower bounded by π

arccos r1+ε

r2−ε
.

As ε → r2−r1
2 this quantity approaches ∞. Even if f is capable of separating C1 from C2 we can

choose ε such that π

arccos r1+ε

r2+ε

∈ ω(h2`).

This simple example shows that learning decision boundaries that are robust to ε-adversarial
examples may require substantially more powerful models than what is required to learn the original
distributions. Furthermore the amount of additional resources necessary is dependent upon the
amount of robustness required.
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An Exponential Lower Bound
We present an exponential lower bound on the number of linear regions necessary to represent a
decision boundary that is robust to L2-perturbations of at most ε ≤ rch2 Λ2 − τ, in the simple case of
two concentric (d − 1)-spheres.

Theorem 30. Let S 1, S 2 ⊂ Rd be two concentric (d − 1)-spheres with radii r1 < r2 respectively
and let S = S 1 ∪ S 2. Let f : Rd → R be a fully connected neural network with ReLU activations.
Suppose that f correctly classifies S rch2 Λ2−τ for some τ ∈ [0, rch2 Λ2]. Said differently, the decision
boundary of f lies in a τ-tubular neighborhood of the decision axis,D f ⊂ Λτ

2. Then the number of
linear regions N into which f subdivides Rd is lower bounded as

N ≥ 2
√
π

Γ( d+1
2 )

Γ( d
2 )

(
r1 + rch2 Λ2

4τ

) d−1
2

. (4.10)

Written asymptotically, N ∈ Ω

( √
d

2d

(
r1+rch2 Λ2

τ

) d−1
2
)

Proof. For f to be robust to ε-adversarial examples for ε ≤ rch2 Λ2 − τ the decision boundary
D f ⊂ Λτ. The boundary of Λτ is comprised of two disjoint (d − 1)-spheres, which we will denote as
∂Λτ

1 and ∂Λτ
2 with radii r1 + rch2 Λ2 − τ and r1 + rch2 Λ2 + τ respectively. (It is standard in topology

to use the ∂ symbol to denote the boundary of a topological space.)
The isoperimetric inequality states that a (d − 1)-sphere minimizes the (d − 1)-dimensional

volume (thought of as “surface area”) across all sets with fixed d-dimensional volume (thought of
as “volume”). SinceD f ⊂ Λτ, the d-dimensional volume enclosed byD f is at least as large as that
of ∂Λτ

1 and so we have that surf ∂Λτ
1 ≤ surfD f .

Now consider any (d − 1)-dimensional linear facet Π of the decision boundaryD f . The normal
space of Π is 1-dimensional; let n denote a unit vector orthogonal to Π. (There are two possible
choices n and −n.) Due to the spherical symmetry of Λτ and the fact that Π ⊂ Λτ, the diameter
of Π is maximized when Π is tangent to ∂Λτ

1 at (r1 + rch2 Λ2 − τ)n (or −(r1 + rch2 Λ2 − τ)n)
and intersects ∂Λτ

2. In pursuit of an upper bound, we will assume without loss of generality
that Π has these properties. Let o denote the origin, x = (r1 + rch2 Λ2 − τ)n, and y ∈ Π ∩ ∂Λτ

2.
We consider the right triangle 4oxy with right angle at x. By basic properties of right triangles,
diam Π

2 ≤ ‖x − y‖2 =
√

(r1 + rch2 Λ2 + τ)2 − (r1 + rch2 Λ2 − τ)2 =
√

4τ(r1 + rch2 Λ2). It follows
that Π is contained in a (d − 1)-dimensional ball of radius

√
4τ(r1 + rch2 Λ2). In particular the

(d − 1)-dimensional volume of Π is bounded as vold−1(Π) ≤ vold−1 B(0,
√

4τ(r1 + rch2 Λ2)). The
(d − 1)-dimensional volume ofD f (again thought of as “surface area”), is equal to the sum of the
(d − 1)-dimensional volumes of the linear facets that compriseD f . Combining these inequalities
gives the result.
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2π
d
2

Γ( d
2 )

(r1 + rch2 Λ2)d−1 = surf ∂Λτ
1 ≤ surfD f

≤ N vold−1 B(0,
√

4τ(r1 + rch2 Λ2))

≤ N
π

d−1
2

Γ( d+1
2 )

(4τ(r1 + rch2 Λ2))
d−1

2

2
√
π

Γ( d+1
2 )

Γ( d
2 )

(
r1 + rch2 Λ2

4τ

) d−1
2

≤ N

�

Prior work has experimentally verified that increasing the size of deep networks improves
robustness [66]. Theorem 30 proves that there are settings in which robustness requires larger
models.

4.8 Adversarial Examples from Voronoi Cells
Goodfellow et al. [41] originally proposed adversarial training where adversarial examples were
constructed inside of an Lp-ball of radius ε. The use of the Lp-ball was meant to represent a simple
notion of similarity between two images, delaying the complicated question of what is an adversarial
image in favor of a tractable research problem. However it was never meant to be the final say on
the threat model of the adversary and recent work has begun to explore alternative adversaries [53,
46].

In the previous sections we described a number of issues associated with the use of Lp-balls.
Specifically we showed that the L2-balls centered on a dense sample of M covers a negligible
fraction of the neighborhood aroundM. Thus, when constructing adversarial examples in the inner
training loop, the adversary is restricted to constructing adversarial examples in a negligible fraction
of the neighborhood around the data manifold. This vulnerability increases with the codimension
d − k of M. Furthermore, for any p, a nearest neighbor classifier more effectively covers the
neighborhood aroundM than a robust empirical risk minimization oracle, which outputs a classifier
that is guaranteed to be correct in the Lp-balls centered on the data.

To remedy these shortcomings, we replace the Lp-ball constraint with a different geometric
constraint, namely the Voronoi cell at each sample x, defined as

Vorp x = {x′ ∈ Rd : ‖x − x′‖p ≤ ‖z − x′‖p ∀z ∈ X\{x}}. (4.11)

In words, the Voronoi cell Vorp x of x is the set of all points in Rd that are closer to x than to any
other sample in X. The Voronoi diagram is defined as the collection of Voronoi cells, and their
lower dimensional faces, for each sample in X. Figure 4.8 shows the Voronoi diagram for a dense
sample from a dataset with two classes of data.
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Figure 4.8: The Voronoi diagram for a dense sample drawn from a low-dimensional distribution
with two classes, one in red and one in black. The Voronoi cells, shown in green, vary in size
depending on how close a sample is to samples in the other class. The Voronoi edges that are
adjacent to two samples from two different classes are shown in solid green, and approach a decision
boundary which is as far from the data distribution as possible.

The Voronoi cell constraint has many advantages over the Lp-ball constraint. First the Voronoi
cells partition the entirety of Rd and so the interiors of Voronoi cells generated by samples from
different classes do not intersect. This is in contrast to Lp-balls which may intersect for sufficiently
large ε. In particular the Voronoi cells partition the neighborhood aroundM and, for dense samples,
are elongated in the directions normal to the data manifold [28]. Thus the Voronoi cells are well
suited for high codimension settings. Second, the size of the Voronoi cells adapts to the data
distribution. A Voronoi cell generated by a sample which is close to samples from a different class
manifold is smaller, while those further away are larger. See Figure 4.8. Thus we do not need to set
a value for ε in the optimization procedure. The constraint naturally adapts to the largest value of ε
possible locally on the data manifold. Note that the maximum perturbation size possible will often
vary as we move along the data manifold, and cannot be captured by a single number which, by
necessity, is upper bounded by the smallest distance to a different class. In summary, the Voronoi
constraint gives the adversary the freedom to explore the entirety of the neighborhood aroundM.

At each iteration of standard adversarial training, we must solve the inner optimization problem
maxδ∈B(0,ε) L(x+δ, y; θ) to generate an adversarial example. Goodfellow et al. [41] solve this problem
using the fast gradient sign method (FGSM), while Madry et al. [66] use projected gradient descent.
To incorporate Voronoi constraints, at each iteration of the outer training loop we must solve the
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inner optimization problem

maximize
x̂

L(x̂, y; θ)

subject to ‖x − x̂‖p − ‖z − x̂‖p ≤ 0 ∀z ∈ X − {x}.
(4.12)

When p = 2 the Voronoi cells are convex and so we can project a point onto a Voronoi cell by
solving a quadratic program. Thus we can solve Problem 4.12 using projected gradient descent, as
in [66]. When p , 2 the Voronoi cells are not necessarily convex. In this setting there are many
approaches, such as barrier and penalty methods, one might employ to approximately solve Problem
4.12 [14].

However we found that the following heuristic is both fast and works well in practice. At each
iteration of the outer training loop, for each training sample x in a batch, we generate adversarial
examples by taking iterative steps in the direction of the gradient starting from x. Instead of
projecting onto a constraint after each iterative step, we instead check if any of the Voronoi
constraints of x shown in Equation 4.11 are violated. If no constraint is violated we perform the
iterative update, otherwise we simply stop performing updates for x. Figure 4.9 illustrates the
procedure.

Figure 4.9: To construct an adversarial example within a Voronoi cell, we repeatedly take steps in
the direction of the gradient of the loss, shown in blue. After each iteration we check if any of the
Voronoi constraints are violated. We take the last iteration before a constraint is violated as our
adversarial example.

Problem 4.12 has n − 1 constraints, one for each sample in X\{x}. In practice however very
few samples contribute to the Voronoi cell of x. Even fewer contribute to the faces of the Voronoi
cell that are shared by samples in different classes, as shown in Figure 4.8. At each iteration, we
perform a nearest neighbor search query to find the m nearest samples to x in each other class. That
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is we search for m(C − 1) samples where C is the number of classes. We do not impose constraints
from samples in the same class as x; there is no benefit to restricting the adversary’s movement with
the neighborhood around the class manifold of x. In our experiments we set m = 10.

4.9 Adversarial Training with Voronoi Constraints
Madry et al. [66] formalize adversarial training by introducing the robust objective

min
θ

E(x,y)∈D

[
max

x̂∈B(x,ε)
L(x̂, y; θ)

]
(4.13)

where D is the data distribution and B is a Lp-ball centered at x with radius ε. Their main
contribution was the use of a strong adversary which used projected gradient descent to solve the
inner optimization problem.

To incorporate Voronoi constraints, we replace the Lp-ball constraint in Equation 4.13 with the
Voronoi cell at x. That is, we formalize the adversarial training objective as

min
θ

E(x,y)∈D

[
max

x̂∈Vorp x
L(x̂, y; θ)

]
, (4.14)

where we use the optimization procedure described in Section 4.8 to solve the inner optimization
problem.

4.10 Experiments
Datasets Section 4.6 suggests that as the codimension increases it should become easier to find
adversarial examples. To verify this, we introduce two synthetic datasets, Circles and Planes, which
allow us to carefully vary the codimension while maintaining dense samples. The Circles dataset
consists of two concentric circles in the x1-x2-plane, the first with radius r1 = 1 and the second
with radius r2 = 3, so that rch2 Λ2 = 1. We densely sample 1000 random points on each circle for
both the training and the test sets. The Planes dataset consists of two 2-dimensional planes, the first
in the xd = 0 and the second in xd = 2, so that rch2 Λ2 = 1. The first two axis of both planes are
bounded as −10 ≤ x1, x2 ≤ 10, while x3 = . . . = xd−1 = 0. We sample the training set at the vertices
of the grid described in Section 4.6, and the test set at the centers of the grid cubes, the blue points
in Figure 4.4. Both planes are sampled so that the 1-tubular neighborhood X1 covers the underlying
planes, where X is the training set. The codimension for both datasets is d − 2. We also evaluate on
MNIST and CIFAR10.

Models Our controlled experiments on synthetic data consider a fully connected network with
1 hidden layer, 100 hidden units, and ReLU activations. We set the learning rate for Adam [59]
as α = 0.1. Our experimental results are averaged over 20 retrainings. For a fair comparison to
adversarial training, our experiments on MNIST and CIFAR10 use the same model architectures
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as in [66]. We train the MNIST model using Adam for 100 epochs and the CIFAR10 model using
SGD for 250 epochs.

Attacks On MNIST we apply 300-step projected gradient descent (PGD), with step sizes
{0.05, 0.07, 0.1, 0.15, 0.17, 0.2}. On CIFAR10 we apply 20-step PGD with step sizes {2.0, 3.0, 4.0}.
For both datasets we also apply the fast gradient sign method (FGSM) [41] to uncover possible
gradient masking as recommended in [7].

Accuracy measures We plot the robust classification accuracy as a function of ε, for each of our
datasets. Since one of the primary advantages of Voronoi constraints is that we do not need to set ε,
we need a measure of robustness that considers the total robustness of the model. Thus we report
the normalized area under the curve (NAUC) defined as

NAUC(acc) =
1
εmax

∫ εmax

0
acc(ε) dε, (4.15)

where acc : [0, εmax]→ [0, 1] measures the classification accuracy and εmax is the largest perturbation
considered. Note that NAUC ∈ [0, 1] with higher values corresponding to more robust models.

Implementation Details Constructing adversarial examples within the Voronoi cells, as described
in Section 4.8, requires a nearest neighbor search query to find the m nearest samples to x in each
other class. When the dataset remains constant throughout the course of training, this search can be
performed once before training begins and reused at each iteration. However when the dataset is
augmented during training, as in the case of data augmentation on CIFAR10, the nearest neighbor
search query must be computed at each iteration. Since this computation is performed on the
CPU, we create 16 threads, each with a copy of a k-d tree, which constantly pull mini-batches of
samples from a queue and perform nearest neighbor queries. With 16 threads running in parallel,
the bottleneck for training became the construction of adversarial examples on the GPU, and so
adversarial training with Voronoi constraints ran in time similar to standard adversarial training.

High Codimension Reduces Robustness
Figure 4.10 (Left) shows the robustness of naturally trained networks on the Circles dataset as we
increase the codimension. We see a steady decrease in robustness as we increase the codimension,
on average.

Madry et al. [66] propose training against a projected gradient descent (PGD) adversary to
improve robustness. Section 4.6 suggests that this should be insufficient to guarantee robustness, as
Xε is often a poor model forMε . We follow the adversarial training procedure of [66] by training
against a PGD adversary with ε = 1 under L2-perturbations on the Planes dataset. Figure 4.10
(Right) shows that it is still easy to find adversarial examples for ε < 1 and that as the codimension
increases we can find adversarial examples for decreasing values of ε.
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Figure 4.10: Left: As the codimension increases the robustness of decision boundaries learned
by naturally trained networks on Circles decreases steadily. Right: Training using the adversarial
training procedure of [66] is no guarantee of robustness; as the codimension increases it becomes
easier to find adversarial examples for Planes.

In contrast, a nearest neighbor classifier achieves perfect robustness for all ε on both Circles
and Planes. Nearest neighbors is robust even when the codimension is high, as long as the low-
dimensional data manifold is well sampled. This is a consequence of the fact that the Voronoi cells
of the samples are elongated in the directions normal to the data manifold when the sample is dense
[28].

The Planes dataset is sampled so that the training set is a 1-cover of the underlying planes, which
requires 450 sample points. Figure 4.11 shows the results of increasing the sampling density to a 0.5-
cover (1682 samples) and a 0.25-cover (6498 samples). Increasing the sampling density improves
the robustness of adversarial training at the same codimension and particularly in low-codimension.
However adversarial training with a substantially larger training set does not produce a classifier as
robust as a nearest neighbor classifier on a much smaller training set. Nearest neighbors is much
more sample efficient than adversarial training, as predicted by Theorem 26.

Adversarial Perturbations are in the Directions Normal to the Data Manifold
Let ηx be an adversarial perturbation generated by FGSM with ε = 1 at x ∈ M. Note that the
adversarial example is constructed as x̂ = x + ηx. In Figure 4.12 we plot a histogram of the
angles ∠(ηx,NxM) between ηx and the normal space NxM for the Circles dataset in codimensions
1, 10, 100, and 500. In codimension 1, 88% of adversarial perturbations make an angle of less than
10◦ with the normal space. Similarly in codimension 10, 97%, in codimension 100, 96%, and in
codimension 500, 93%. As Figure 4.12 shows, nearly all adversarial perturbations make an angle
less than 20◦ with the normal space. Our results are averaged over 20 retrainings of the model using
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Figure 4.11: Adversarial training of [66] on the Planes dataset with a 1-cover (left), consisting of
450 samples, a 0.5-cover (center), 1682 samples, and a 0.25-cover (right), 6498 samples. Increasing
the sampling density improves robustness at the same codimension. However even training on a
significantly denser training set does not produce a classifier as robust as a nearest neighbor classifier
on a much sparser training set.

SGD.
Throughout this chapter we’ve argued that high codimension is a key source of the pervasiveness

of adversarial examples. Figure 4.12 shows that, when the underlying data manifold is well sampled,
adversarial perturbations are well aligned with the normal space. When the codimension is high,
there are many directions normal to the manifold and thus many directions in which to construct
adversarial perturbations.
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Figure 4.12: Histograms of the angle deviations of FGSM perturbations from the normal space for
the Circles dataset in, from right to left, codimensions 1, 10, 100, and 500. Nearly all perturbations
make an angle of less than 20◦ with the normal space.

Adversarial Training in High Codimensions
We showed that as the codimension of the Planes dataset increases, the adversarial training approach
of Madry et al. [66] with training ε = 1 became less robust. We believe that this is because the L2-
balls with radius 1 around the dataset covered an increasingly smaller fraction of the neighborhood
around the data manifold.
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Figure 4.13 shows that replacing the L2 ball constraint with the Voronoi cells improves robustness
in high codimension settings, on average. In codimension 10 (Figure 4.10 (Left)), our approach
achieves NAUC of 0.99, while Madry’s approach achieves NAUC of 0.94. In codimension 500
(Figure 4.13 (Right)), our approach achieves NAUC of 0.92, while Madry’s approach achieves
NAUC of 0.87.
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Figure 4.13: Adversarial training Voronoi constraints offers improved robustness in high codimen-
sion (10, 500) over standard adversarial training, on average.

MNIST and CIFAR10
To explore the performances of adversarial training with Voronoi constraints on more realistic
datasets, we evaluate on MNIST and CIFAR10 and compare against the robust pretrained models of
[66].1,2. We include the recently proposed Jacobian regularization algorithm of [47] with λjr = 1.0
as an additional baseline.

Figure 4.14 (Left) shows that our model maintains near identical robustness to the Madry model
on MNIST up to ε = 0.3, after which our model significantly outperforms the Madry model. The
Madry model was explicitly trained for ε = 0.3 perturbations. We emphasize that one advantage of
our approach is that we did not need to set a value for the maximum perturbation size ε. The Voronoi
cells adapt to the maximum size allowable locally on the data distribution. Our model maintains
76.3% accuracy at ε = 0.4 compared to 2.6% accuracy for the Madry model. Furthermore our
model achieves NAUC of 0.81, while the Madry model achieves NAUC of 0.67, an improvement of
20.8% and over the baseline. To our knowledge, this is the most robust MNIST model to L∞ attacks.

1https://github.com/MadryLab/mnist_challenge
2https://github.com/MadryLab/cifar10_challenge

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
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Figure 4.14 (Right) shows the results of our approach on CIFAR10. Both our model and the
Madry model achieve NAUC of 0.29. However our approach trades natural accuracy for increased
robustness against larger perturbations. This tradeoff is well-known and explored in [90, 48].
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Figure 4.14: Left: Adversarial training with Voronoi constraints on MNIST. Our model has NAUC
0.81 and high classification accuracy after ε = 0.3. In particular, our model maintains 76.3%
accuracy at ε = 0.4, compared to 2.6% accuracy for the Madry model. Right: On CIFAR10,
both models achieve NAUC of 0.29, but our model trades natural accuracy for robustness to larger
perturbations.

Increasing the Radius of the Norm Ball Constraint
A natural approach to improving the robustness of models produced by the adversarial training
paradigm of [66] is to simply increase the maximum allowable perturbation size ε of the norm ball
constraint. As shown in Figure 4.15, increasing the size of ε to 0.4, from the 0.3 with which [66]
originally trained, and training for only 100 epochs produces a model which exhibits significantly
worse robustness in the range [0, 0.3] than the pretrained model. If we increase the number of
training epochs to 150, the approach of [66] with ε = 0.4 produces a model with improved robustness
in the range [0.3, 0.4], but that still exhibits the sharp drop in accuracy after 0.4. Additionally the
model trained with ε = 0.4 for 150 epochs performs worse than both the pretrained model and our
model in the range [0, 0.3]. Our model achieves NAUC 0.81, while the model trained with ε = 0.4
for 150 epochs achieves NAUC 0.76. We emphasize that our approach does not require us to set ε,
which is particularly important in practice where the maximum amount of robustness achievable
may not be known a-priori.
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Figure 4.15: The adversarial training of [66] with ε = 0.4 (shown in green) produces a model
with significantly reduced robustness in the range [0, 0.3]. Increasing the number of epochs to 150,
the resulting model (shown in red) does exhibit improved robustness in the range [0.3, 0.4], at the
expense of some robustness in the range [0, 0.3] and still exhibits a sharp drop in accuracy after 0.4.
The purple model achieves NAUC of 0.76, while our model achieves NAUC 0.81.
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Chapter 5

Adaptive versus Standard Descent Methods
and Robustness Against Adversarial
Examples

5.1 Introduction
Adversarial examples are a pervasive phenomenon of machine learning models where perturbations
of the input that are imperceptible to humans reliably lead to confident incorrect classifications [87,
41]. Since this phenomenon was first observed, researchers have attempted to develop methods
which produce models that are robust to adversarial perturbations under specific attack models [94,
85, 72, 67, 66, 97]. As machine learning proliferates into society, including security-critical settings
like health care [38] or autonomous vehicles [24], it is crucial to develop methods that allow us to
understand the vulnerability of our models and design appropriate counter-measures.

Additionally there is a growing literature on the theory of adversarial examples. Many of these
results attempt to understand adversarial examples by constructing examples of learning problems
for which it is difficult to construct a classifier that is robust to adversarial perturbations. This
difficulty may arise due to sample complexity [76], computational constraints [16, 27], or the
high-dimensional geometry of the initial feature space [80, 56]. We expand upon these results in
Section 5.2.

Currently less well-understood, and to our knowledge not addressed by the theoretical literature
on adversarial examples, is how our algorithmic choices effect the robustness of our models. With
respect to optimization and generalization, but importantly not robustness, the success of standard
(or non-adaptive) gradient descent methods, including stochastic gradient descent (SGD) and SGD
with momentum, is starting to be better understood [34, 1, 43, 42]. However, as an increasing
amount of time has been spent training deep networks, researchers and practitioners have heavily
employed adaptive gradient methods, such as Adam [59], Adagrad [35], and RMSprop [88], due to
their rapid training times [54]. Unfortunately the properties of adaptive optimization algorithms
are less well-understood than those of their non-adaptive counterparts. Wilson et al. [93] provide
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theoretical and empirical evidence which suggests that adaptive algorithms often produce solutions
that generalize worse than those found by non-adaptive algorithms.

In this chapter, we study the robustness of solutions found by adaptive and non-adaptive
algorithms to adversarial examples. Furthermore we study the effect of adversarial training on
the geometry of the loss landscape and, consequently, on the solutions found by adaptive and
non-adaptive algorithms for the adversarial training objective. This chapter makes the following
contributions.

• We show an example of a learning problem for which the solution found by adaptive opti-
mization algorithms exhibits qualitatively worse robustness properties against both L2- and
L∞-adversaries than the solution found by non-adaptive algorithms. Furthermore the robust-
ness of the adaptive solution decreases rapidly as the dimension of the problem increases,
while the robustness of the non-adaptive solution is stable as the dimension increases.

• We fully characterize the geometry of the loss landscape of L2-adversarial training in least-
squares linear regression. The L2-adversarial training objective L2 is convex everywhere;
moreover, it is strictly convex everywhere except along either 0, 1, or 2 line segments,
depending on the value of ε. Furthermore for nearly all choices1 of ε, these line segments
along which L2 is convex, but not strictly convex, lie outside of the rowspace and the gradient
along these line segments is nonzero. It follows that any reasonable optimization algorithm
finds the unique global minimum of L2.

• We conduct an extensive empirical evaluation to explore the effect of different optimization
algorithms on robustness. Our experimental results suggest that non-adaptive methods
consistently produce more robust models than adaptive methods.

• We provide a dataset consisting of 190 pretrained models on MNIST and CIFAR10 with vari-
ous hyperparameter settings. Of these 190 pretrained models, 150 were used to find the best
hyperparameter settings for our experiments and evaluated on a validation set. The remaining
40 pretrained models were evaluated on the test set. Of the 150 validation models, 88 were
trained using natural training and 62 were trained using adversarial training. Of the 40 test
models, 20 were trained using natural training and 20 were trained using adversarial training.
They can be downloaded at https://www.dropbox.com/s/edfcnb97lzxl19z/models.zip.

5.2 Related Work
There has been a long line of work on the theory of adversarial examples. Schmidt et al. [76] explore
the sample complexity required to produce robust models. They demonstrate a simple setting, a
mixture of two Gaussians, in which a linear classifier with near perfect natural accuracy can be
learned from a single sample, but any algorithm that produces any binary classifier requires Ω(

√
d)

samples to produce a robust classifier. Followup work by Bubeck et al. [16] suggests that adversarial
1For all ε , 1/‖X†y‖2

https://www.dropbox.com/s/edfcnb97lzxl19z/models.zip
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examples may arise from computational constraints. They exhibit pairs of distributions that differ
only in a k-dimensional subspace, and are otherwise standard Gaussians, and show that while it is
information-theoretically possible to distinguish these distributions, it requires exponentially many
queries in the statistical query model of computation. We note that both of these constructions
produce distributions whose support is the entirety of Rd.

Bubeck et al. [16] further characterize five mutually exclusive “worlds” of robustness, inspired
by similar characterizations in complexity theory [49]. A learning problem must fall into one of the
following possibilities:

World 1: No robust classifier exists, regardless of computational considerations or sample
efficiency.

World 2: Robust classifiers exists, but they are computationally inefficient to evaluate.

World 3: Computationally efficient robust classifiers exist, but learning them requires more
samples.

World 4: Computationally efficient robust classifiers exist and can be learned from few
samples, but learning is inefficient.

World 5: Computationally efficient robust classifiers exists and can be learned efficiently
from few samples.

While learning problems can be constructed that fall into each possible world, the question for
researchers is into which world are problems from practice most likely to fall? Every theoretical
construction, such as those by [76] and [16], can be thought of as providing evidence for the
prevalence of one of the worlds. In the language of Bubeck et al. [16], the sampling complexity
result of Schmidt et al. [76] provides evidence for World 3, by constructing an example of a problem
that falls into world three. The learning problem constructed by Bubeck et al. [16] provides evidence
for World 4. Subsequent work by Degwekar et al. [27] provides evidence for Worlds 2 and 4. Under
standard cryptographic assumptions, Degwekar et al. [27] construct an a learning problem for which
a computationally efficient non-robust classifier exists, no efficient robust classifier exists, but an
inefficient robust classifier exists. Similarly, assuming the existence of one-way functions, they
construct a learning problem for which an efficient robust classifier exists, but it is computationally
inefficient to learn a robust classifier. Finally, in an attempt to understand how likely World 4 is in
practice, they show that any task where an efficient robust classifier exists but is hard to learn in
polynomial time implies one-way functions.2

Additionally there is a line of work that attempts to explain the pervasiveness of adversarial
examples through the lens of high-dimensional geometry. Gilmer et al. [40] experimentally evaluated
the setting of two concentric under-sampled 499-spheres embedded in R500, and concluded that
adversarial examples occur on the data manifold. Shafahi et al. [80] suggest that adversarial
examples may be an unavoidable consequence of the high-dimensional geometry of data. Their

2Thus at least one community will be happy.
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result depends upon the use of an isopermetric inequality. The main drawback of these results, as
well as the constructions of Schmidt et al. [76] and Bubeck et al. [16], is that they assume that the
support of the data distribution has full or nearly full dimension. We do not believe this to be the case
in practice. Instead we believe that the data distribution is often supported on a very low-dimensional
subset of Rd. This case is addressed in Khoury et al. [56], who consider the problem of constructing
decision boundaries robust to adversarial examples when data is drawn from a low-dimensional
manifold embedded in Rd. They highlight the role of co-dimension, the difference between the
dimension of the embedding space and the dimension of the data manifold, as a key source of
the pervasiveness of adversarial vulnerability. Said differently, it is the low-dimensional structure
of features embedded in high-dimensional space that contributes, at least in part, to adversarial
examples. This idea is also explored by Nar et al. [68], but with emphasis on the cross-entropy loss.

We believe that problems in practice are most likely to fall into World 5, the best of all
worlds. Problems in this class have robust classifiers which are efficient to evaluate and can be
learned efficiently from relatively few samples. We simply haven’t found the right algorithm for
learning such classifiers. The goal of this chapter is to explore the effect of our algorithms on
robustness. Specifically we wish to understand the robustness properties of solutions found by
common optimization algorithms. To our knowledge no other work has explored the robustness
properties of solutions found by different optimization algorithms.

5.3 Adaptive Algorithms May Significantly Reduce
Robustness

Wilson et al. [93] explore the effect of different optimization methods on generalization both in
a simple theoretical setting and empirically. For their main theoretical result, they construct a
learning problem for which the solution found by any adaptive method, denoted wada, has worse
generalization properties than the solution found by non-adaptive methods, denoted wSGD. We
recall their construction in the next subsection. We describe the adaptive solution wada and the
non-adaptive solution wSGD.

Generalization and robustness are different properties of a classifier. A classifier can generalize
well but have terrible robustness properties, as we often see in practice. On the other hand, a
constant classifier generalizes poorly, but has perfect robustness [97]. Wilson. et al. [93] study
the generalization properties of wada and wSGD, but not their robustness properties. In the fourth
subsection we study the robustness properties of wada and wSGD. Specifically, we show that wSGD

exhibits superior robustness properties to wada against both L2- and L∞-adversaries.

A Simple Learning Problem
Let X ∈ Rn×d be a design matrix representing a dataset with n sample points and d features and
let y ∈ {±1}n be a vector of labels. Wilson et al. [93] restrict their attention to binary classification
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problems of this type, and learn a classifier by minimizing the least-squares loss

min
w
L(X, y; w) = min

w

1
2
‖Xw − y‖22. (5.1)

They construct the following learning problem for which they can solve for both the adaptive and
non-adaptive solutions in closed form. Their construction uses an infinite-dimensional feature space
for simplicity, but they note that 6n dimensions suffice. For i ∈ 1 . . . n, sample yi = 1 with probability
p, and yi = −1 with probability 1 − p for some p > 0.5. Then set xi to be the infinite-dimensional
vector

xi j =



yi j = 1
1 j = 2, 3
1 j = 4 + 5(i − 1)
(1 − yi)/2 j = 5 + 5(i − 1), . . . , 8 + 5(i − 1)
0 otherwise.

(5.2)

For example, a dataset with three sample points following Equation 5.3 is 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
−1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 . . .
1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 . . .

 . (5.3)

The first feature encodes the label, and is alone sufficient for classification. Note that this trick
of encoding the label is also commonly used in the robustness literature to construct examples of
hard-to-learn-robustly problems [16, 27]. The second and third feature are identically 1 for every
sample. Then there is a subset of five dimensions which are identified with xi and contain a set of
features which are unique to xi. If yi = 1 then there is a single 1 in this subset of five dimensions
and xi is the only sample with a 1 in any of these five positions. If yi = −1 then all five dimensions
are set to 1 and again xi is the only sample with a 1 at these five positions.

While this problem may seem contrived, it contains several properties that are common in
machine learning problems and that are particularly important for robustness. It contains a single
robust feature that is strongly correlated with the label. However it may not be easy for an optimiza-
tion algorithm to identify such a feature. Additionally there are many non-robust features which
are weakly or not at all correlated with the label, but which may appear useful for generalization
because they are uniquely identified with samples from specific classes. Wilson et al. [93] show that
both adaptive and non-adaptive methods find classifiers that place at least some weight on every
nonzero feature.

The Adaptive Solution wada

Let (X, y) be generated by the generative model in Section 5.3. When initialized at the origin, Wilson
et al. [93] show that any adaptive optimization algorithm – such as RMSprop, Adam, and Adagrad –
minimizing Equation 5.1 for (X, y) converges to wada ∝ v where
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v j =


1 j = 1
1 j = 2, 3
yb( j+1)/5c j > 3 and xb( j+1)/5c, j = 1
0 otherwise.

(5.4)

Thus we can write wada = τv for some positive constant τ > 0. On a test example (xtest, ytest),
that is distinct from all the training examples, 〈wada, xtest〉 = τ(ytest + 2) > 0. Thus wada labels every
unseen example as a positive example.

The Non-adaptive Solution wSGD

For (X, y), let P,N denote the sets of positive and negative samples in X respectively. Let n+ =

|P|, n− = |N| and note that n = n+ + n−. When the weight vector is initialized in the row space
of X, Wilson et al. [93] show that all non-adaptive methods – such as gradient descent, SGD,
SGD with momentum, Nesterov’s method, and conjugate gradient – converge to wSGD = X†y,
where X† denotes the pseudo-inverse of X. That is, among the infinitely many solutions of the
underdetermined system Xw = y, non-adaptive methods converge to the solution which minimizes
‖w‖2, and thus maximizes the L2-margin. Specifically wSGD =

∑
i∈P α+xi +

∑
j∈N α−x j where

α+ =
4n− + 5

15n+ + 3n− + 8n+n− + 5
, α− = −

4n+ + 1
15n+ + 3n− + 8n+n− + 5

.

Note that these values for α+, α− differ slightly from those presented in [93]. In Appendix C
we discuss in detail two errors in their derivation that lead to this discrepancy. These errors do not
qualitatively change their results. Furthermore, in the proof of Theorem 33 we carefully discuss
under what conditions 〈wSGD, xtest〉 is positive and negative for ytest = ±1. For now, we simply state
that for all n+, n− ≥ 1, wSGD correctly classifies every test example.

Analyzing the Robustness of wada and wSGD

In this section we analyze the robustness properties of wada and wSGD against L2- and L∞-adversaries.
We show that wSGD exhibits considerably more robustness against both L2- and L∞-adversaries than
wada. A priori this is surprising; one may have expected wada, which is a small L∞-norm solution,
to be more robust to L∞-perturbations, while wSGD, which is a small L2-norm solution, to be
robust to L2-perturbations. However this expectation is wrong. Interestingly the robustness of wada

against both L2- and L∞-adversaries decreases as the dimension increases, whereas the robustness
of wSGD does not. Finally, neither method recovers the “obvious” solution w∗ = (1, 0, . . . , 0), which
generalizes well and is optimally robust against both L2- and L∞-perturbations.

Theorems 31 and 33 are our main results of this section. We start by computing the robustness
of wada against L2- and L∞-adversaries.
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Theorem 31. Let (xtest, ytest) be a test sample that is correctly classified by wada and let δ ∈ Rd be a
perturbation. The adaptive solution wada is robust against any L2-perturbation for which

‖δ‖2 <

√
9n+ + 1125n− + 27

25n− + n+ + 3
(5.5)

and any L∞-perturbation for which

‖δ‖∞ <
3

3 + n+ + 5n−
. (5.6)

Furthermore these bounds are tight, meaning that a closed L2- or L∞-ball with these radii
centered at xtest intersects the decision boundary.

Proof. Let δ be an adversarial perturbation and let xtest be a test sample. Then

〈wada, xtest + δ〉 = 〈wada, xtest〉 + 〈wada, δ〉

= τ(ytest + 2) + 〈wada, δ〉

= τ(ytest + 2) + τ

δ1 + δ2 + δ3 +
∑
i∈P

δi − 5
∑
j∈N

δ j


= 3τ + τ

δ1 + δ2 + δ3 +
∑
i∈P

δi − 5
∑
j∈N

δ j


= τ(ytest + 2) − τδ (3 + n+ + 5n−)

The second last equality follows from the fact that xtest is correctly classified by wada, and so ytest = 1.
Notice that to flip the sign of the classifier using the smallest L∞-perturbation, it is optimal to
distribute the magnitude of the perturbation equally to each δi, where the signs of each δi are −1 for
i ∈ {1, 2, 3} ∪ P and +1 for i ∈ N . It follows that to flip the sign of the classifier requires

δ (3 + n+ + 5n−) > 3

δ >
3

3 + n+ + 5n−
.

To find the smallest L2-perturbation we must instead solve the constrained optimization problem

min
δ

∑
i

δ2
i

s.t.

δ1 + δ2 + δ3 +
∑
i∈P

δi − 5
∑
j∈N

δ j

 < −3
(5.7)

where R2 =
∑

i δ
2
i is the squared-radius of the smallest L2-ball that crosses the decision boundary.

The Lagrangian for this problem is

L(δ, λ) =
∑

i

δ2
i + λ

δ1 + δ2 + δ3 +
∑
i∈P

δi − 5
∑
j∈N

δ j + 3

 .
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The partial derivatives are

∂L

∂δi
=

2δi + λ i = 1, 2, 3 or i ∈ P
2δi − 5λ i ∈ N

∂L

∂λ
= δ1 + δ2 + δ3 +

∑
i∈P

δi − 5
∑
j∈N

δ j + 3.

Setting the first set of partial derivatives to 0 gives

δi =

−λ2 i = 1, 2, 3 or i ∈ P
5λ
2 i ∈ N

, (5.8)

which can then be used to solve the last equation ∂L
∂λ

= 0 yielding

λ =
6

25n− + n+ + 3
.

Substituting the expression for λ back into Equation 5.8 gives

δi =

 −3
25n−+n++3 i = 1, 2, 3 or i ∈ P

15
25n−+n++3 i ∈ N

. (5.9)

Then the minimum L2-perturbation R is derived from

R2 =
∑

i

δ2
i

= (3 + n+)
(

−3
25n− + n+ + 3

)2

+ 5n−

(
15

25n− + n+ + 3

)2

=
9(n+ + 3) + 1125n−

(25n− + n+ + 3)2

R =

√
9n+ + 1125n− + 27

25n− + n+ + 3
.

�

Corollary 32. Asymptotically, the L2- and L∞-robustness of wada are, respectively,

Θ

(
1

√
n+ + n−

)
and Θ

(
1

n+ + n−

)
.

In particular both the L2- and L∞-robustness go to 0 as the number of samples n+, n− → ∞.
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Corollary 32 makes clear, qualitatively, the result in Theorem 31. The rate at which the L2- and
L∞-robustness of wada decrease reflects a dependence on dimension. The number of dimensions on
which wada puts nonzero weight increases as we increase the number of samples, which reduces
robustness. We also find it interesting that, despite classifying every test point as a positive example,
wada’s predictions on correctly classified test samples are brittle. In summary, wada exhibits nearly
no robustness against L2- or L∞-adversaries.

Next we show that wSGD exhibits significant robustness against both L2- and L∞-adversaries.

Theorem 33. Let (xtest, ytest) be a test sample that is correctly classified by wSGD and let δ ∈ Rd be a
perturbation. The SGD solution wSGD is robust against any L2-perturbation for which

‖δ‖2 ≤


15n++8n+n−−n−√

64n2
+n2
−+160n2

+n−+75n2
++32n+n2

−+60n+n−+70n++3n2
−+5n−

ytest = 1
−5n++8n+n−+3n−√

64n2
+n2
−+160n2

+n−+75n2
++32n+n2

−+60n+n−+70n++3n2
−+5n−

ytest = −1
(5.10)

and any L∞-perturbation for which

‖δ‖∞ ≤

 15n++8n+n−−n−
20n++32n+n−+4n−

ytest = 1
−5n++8n+n−+3n−
20n++32n+n−+4n−

ytest = −1.
(5.11)

Furthermore these bounds are tight, meaning that a closed L2- or L∞-ball with these radii centered
at xtest intersects the decision boundary.

Proof. It is worth taking a moment to understand 〈wSGD, xtest〉 when ytest = 1 and when ytest = −1.
In particular, it will be important in our proofs to understand the signs of each term.

First, we have α+ > 0 and α− < 0 by definition. When ytest = 1 we have

〈wSGD, xtest〉 = (n+α+ − n−α−) + 2(n+α+ + n−α−)

=
5n+ + n− + 8n+n−

15n+ + 3n− + 8n+n− + 5
+

2(5n+ − n−)
15n+ + 3n− + 8n+n− + 5

=
15n+ + 8n+n− − n−

15n+ + 3n− + 8n+n− + 5
.

The denominator is clearly positive, so wSGD correctly classifies xtest so long as 15n+ + 8n+n− −
n− > 0, which is true for any n+, n− ≥ 1.

When ytest = −1 we have

〈wSGD, xtest〉 = −(n+α+ − n−α−) + 2(n+α+ + n−α−)

= −
5n+ + n− + 8n+n−

15n+ + 3n− + 8n+n− + 5
+

2(5n+ − n−)
15n+ + 3n− + 8n+n− + 5

=
5n+ − 8n+n− − 3n−

15n+ + 3n− + 8n+n− + 5
.
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In this case, wSGD correctly classifies xtest so long as 5n+−8n+n−−3n− < 0, which is true for any
n+, n− ≥ 1. Thus wSGD correctly classifies every test example so long as there at least one training
example from each class.

We will also be interested in the signs of the individual terms in 〈wSGD, xtest〉. Note that
5n+ + n− + 8n+n− > 0 for any n+, n− ≥ 1, and so (n+α+ − n−α−) is positive. Lastly 5n+ − n− > 0 so
long as n+ > n−/5, and so (n+α+ + n−α−) > 0 if and only if n+ > n−/5. For convenience we will
assume that n+ > n−/5 from here onward which will allow us to consider fewer cases.

Let δ be an adversarial perturbation and let xtest be a test sample. Then

〈wSGD, xtest + δ〉 = 〈wSGD, xtest〉 + 〈wSGD, δ〉

where
〈wSGD, xtest〉 = ytest(n+α+ − n−α−) + 2(n+α+ + n−α−)

and

〈wSGD, δ〉 = (n+α+ − n−α−)δ1 + (n+α+ + n−α−)(δ2 + δ3) + α+

∑
i∈P

δi + α−
∑
j∈N

(
δ j,1 + . . . + δ j,5

)
.

There are two cases to consider corresponding to ytest = ±1.
Suppose that ytest = 1. To flip the sign we need 〈wSGD, δ〉 < −〈wSGD, xtest〉. For brevity’s sake,

we define

C ≡ (n+α+ − n−α−)δ1 + (n+α+ + n−α−)(δ2 + δ3) + α+

∑
i∈P

δi + α−
∑
j∈N

(
δ j,1 + . . . + δ j,5

)
+ 〈wSGD, xtest〉.

The constraint C < 0 is equivalent to 〈wSGD, δ〉 < −〈wSGD, xtest〉. We can ensure the sign of
〈wSGD, δ〉 is negative by choosing each δi opposite in sign to the term by which it is multiplied in C.
Note that, by our assumptions on n+, n−, (n+α+ − n−α−), (n+α+ + n−α−), α+ > 0 and α− < 0. Thus
we choose sign(δ j,1...,5) = 1 for all j ∈ N and sign(δi) = −1 otherwise.

For a perturbation in the L∞-norm, the optimal solution sets each δi to the same magnitude, and
so to change the sign the perturbation δ must be at least

δ >
〈wSGD, xtest〉

(n+α+ − n−α−) + 2(n+α+ + n−α−) + n+α+ − 5n−α−

=
〈wSGD, xtest〉

4(n+α+ − n−α−)

=
3n+α+ + n−α−

4(n+α+ − n−α−)

=
15n+ + 8n+n− − n−

20n+ + 32n+n− + 4n−
.

Now suppose that ytest = −1. In this case to flip the sign we need 〈wSGD, δ〉 > −〈wSGD, xtest〉,
(equivalently C > 0). Note that in this case 〈wSGD, xtest〉 is negative, and so we choose the signs of
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each δi to match the signs of the terms by which δi is multiplied. We choose sign(δ j,1...,5) = −1 and
sign(δi) = 1 otherwise. Thus to change the sign the perturbation δ must satisfy

δ >
−〈wSGD, xtest〉

(n+α+ − n−α−) + 2(n+α+ + n−α−) + n+α+ − 5n−α−

=
−〈wSGD, xtest〉

4(n+α+ − n−α−)

=
−n+α+ − 3n−α−
4(n+α+ − n−α−)

=
−5n+ + 8n+n− + 3n−
20n+ + 32n+n− + 4n−

.

To find the smallest L2-perturbation, in the case where ytest = 1, we must solve the constrained
optimization problem

min
δ

∑
i

δ2
i

s.t. C ≤ 0
(5.12)

where R2 ≡
∑

i δ
2
i is the squared-radius of the smallest L2-ball that touches the decision boundary.

The Lagrangian for this problem is

L(δ, λ) =
∑

i

δ2
i + λC.

The partial derivatives are

∂L

∂δi
=


2δi + λ(n+α+ − n−α−) i = 1
2δi + λ(n+α+ + n−α−) i = 2, 3
2δi + λα+ i ∈ P
2δi, j + λα− i ∈ N , j ∈ [5]

∂L

∂λ
= C.

Setting the first set of partial derivatives to 0 gives

δi =


−λ2 (n+α+ − n−α−) i = 1
−λ2 (n+α+ + n−α−) i = 2, 3
−λ2α+ i ∈ P
−λ2α− i ∈ N , j ∈ [5]

, (5.13)

which can then be used to solve the last equation ∂L
∂λ

= C = 0 yielding

λ =
〈wSGD, xtest〉

1
2 (n+α+ − n−α−)2 + (n+α+ + n−α−)2 + 1

2n+α
2
+ + 5

2n−α2
−

.
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Substituting the expression for λ back into Equation 5.13 and solving for R gives

R2 =
∑

i

δ2
i

=
λ2

4

(
(n+α+ − n−α−)2 + 2(n+α+ + n−α−)2 + n+α

2
+ + 5n−α2

−

)
=
λ2

2

(
1
2

(n+α+ − n−α−)2 + (n+α+ + n−α−)2 +
1
2

n+α
2
+ +

5
2

n−α2
−

)
=

〈wSGD, xtest〉
2

(n+α+ − n−α−)2 + 2(n+α+ + n−α−)2 + n+α
2
+ + 5n−α2

−

R =
〈wSGD, xtest〉√

(n+α+ − n−α−)2 + 2(n+α+ + n−α−)2 + n+α
2
+ + 5n−α2

−

=
3n+α+ + n−α−√

(n+α+ − n−α−)2 + 2(n+α+ + n−α−)2 + n+α
2
+ + 5n−α2

−

=
15n+ + 8n+n− − n−√

64n2
+n2
− + 160n2

+n− + 75n2
+ + 32n+n2

− + 60n+n− + 70n+ + 3n2
− + 5n−

The case with ytest = −1 is similar, but with the constraint −C ≤ 0, which yields a similar
solution for λ, except that the numerator is −〈wSGD, xtest〉 > 0. Subsequently

R =
−5n+ + 8n+n− + 3n−√

64n2
+n2
− + 160n2

+n− + 75n2
+ + 32n+n2

− + 60n+n− + 70n+ + 3n2
− + 5n−

.

�

Corollary 34. Asymptotically, the L2- and L∞-robustness of wSGD are both Θ (1). In particular
the L2-robustness approaches 1 and the L∞-robustness approaches 1

4 as the number of samples
n+, n− → ∞.

Unsurprisingly, wSGD, which maximizes the L2-margin, exhibits near-optimal robustness against
L2-adversaries. As the number of samples increases, the L2-robustness of wSGD approaches 1.
Perhaps surprisingly, wSGD also exhibits moderate robustness to L∞-perturbations. As the number of
samples increases, the L∞-robustness of wSGD approaches 1

4 . Unlike wada, the amount of robustness
exhibited by wSGD does not decrease as the dimension increases, instead asymptotically approaching
a constant.

However the L2-robustness of wSGD is not exactly 1 for any finite sample. One class (ytest = 1)
approaches 1 from above, while the other class (ytest = −1) approaches 1 from below. To maximize
the margin, wSGD places a small amount of weight on every other nonzero feature, even though all
but the first are useless for classification. This lack of sparsity is also what causes the L∞-robustness
to drop from a possible maximum of 1 to 1

4 . In contrast, w∗ = (1, 0, . . . , 0) generalizes perfectly, has
L2-robustness equal to 1 for both classes, and, as an added benefit, has L∞-robustness equal to 1 for
both classes. Thus we have an example of a problem for which the max L2-margin solution could
reasonably be considered to not be the best classifier against L2-perturbations.
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Furthermore, w∗ is not in the row space of X. (wSGD is the projection of w∗ onto the row space.)
Thus non-adaptive methods, when restricted to the row space, are incapable of recovering w∗,
irrespective of sample complexity [76] or computational considerations [16]. This is simply the
wrong algorithm for the desired objective. In the next section we study the effect that adversarial
training has on the loss landscape and on the solutions found by various optimization algorithms.

5.4 Adversarial Training (Almost) Always Helps
In the previous section we presented a learning problem for which adaptive optimization methods
find a solution with significantly worse robustness properties against both L2- and L∞-adversaries
compared to non-adaptive methods. In this section we consider a different algorithm, adversarial
training, for finding robust solutions to Equation 5.1. We are interested in two questions. First,
does adversarial training sufficiently regularize the loss landscape so that adaptive and non-adaptive
methods find solutions with identical or qualitatively similar robustness properties? Second, are
the solutions to the robust objective qualitatively different than those found by natural training or
does adversarial training simply choose a robust solution from the space of solutions to the natural
problem? We address the first question in the following two subsections for L2-adversarial training
and the second question in the third subsection for the learning problem defined in Section 5.3.

The Adversarial Training Objective
Madry et al. [66] formalize adversarial training by introducing the robust objective

min
w

E(x,y)∈D

[
max
δ∈∆
L(x + δ, y; w)

]
(5.14)

whereD is the data distribution, ∆ is a perturbation set meant to enforce a desired constraint, and L
is a loss function. The goal then is to find a setting of the parameters w of the model that minimize
the expected loss against the worst-case perturbation in ∆.

Take L as in Equation 5.1 and ∆ to be an Lp-ball of radius ε > 0. In the linear case, we can
solve the inner maximization problem exactly.

max
{δi}i∈[n]∈∆n

L(x + δi, y; w) = max
{δi}i∈[n]∈∆n

1
2

n∑
i=1

(〈xi + δi,w〉 − yi)2 (5.15)

= max
{δi}i∈[n]∈∆n

1
2

n∑
i=1

(
(〈xi,w〉 − yi)2 + 2〈δi,w〉(〈xi,w〉 − yi) + 〈δi,w〉2

)
=

1
2

n∑
i=1

(
(〈xi,w〉 − yi)2 + 2ε‖w‖∗ sign(〈xi,w〉 − yi)(〈xi,w〉 − yi) + ε2‖w‖2∗

)
=

1
2
‖Xw − y‖22 + ε‖w‖∗‖Xw − y‖1 +

ε2n
2
‖w‖2∗. (5.16)
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The third identity follows from the definition of the dual norm, where ‖ · ‖∗ denotes the norm
dual to the Lp norm that defines ∆. As a technical note, it is important that sign(0) = 1 (or −1) and
not equal to 0. This choice represents the fact that the solution to the inner maximization problem
for each individual squared term (〈xi + δi,w〉 − yi)2 is nonzero even if x>i w − yi = 0.

At first glance the objective looks similar to ridge regression or Lasso, particularly when we
consider L2- and L∞-adversarial training for which the dual norms are L2 and L1 respectively.
However the solutions to this objective are not, in general, identical to the ridge regression or Lasso
solutions. In Section 5.4 we will show how the second term ε‖w‖∗‖Xw− y‖1 influences the geometry
of the loss landscape when ‖ · ‖∗ = ‖ · ‖2.

The Geometry of the Loss Landscape
For the remainder of the chapter we will exclusively analyze the case where ∆ is an L2-ball, leaving
the case of L∞ for future work. We define the loss of interest

L2(X, y; w) =
1
2
‖Xw − y‖22 + ε‖w‖2‖Xw − y‖1 +

ε2n
2
‖w‖22. (5.17)

To build intuition, suppose that Xw = y is an underdetermined system. (Our results will not
depend on this assumption.) The set of solutions is given by the affine subspace S = {X†y + u : u ∈
nullspace(X)}, where X† is the pseudo-inverse. The first thing to notice about ε‖w‖2‖Xw−y‖1 is that,
on its own, it is non-convex, having local minima both at the origin and in S . Along any straight
path starting at the origin and ending at a point in S , the loss landscape induced by ε‖w‖2‖Xw − y‖1
is negatively curved.

The second thing to notice about ε‖w‖2‖Xw− y‖1 is that it is non-smooth. To understand the loss
landscape of Equation 5.17, it is crucial to understand where ‖Xw − y‖1 is non-smooth. The term
‖Xw − y‖1 =

∑
i |x>i w − yi| is non-smooth at any point w where some x>i w − yi = 0. Geometrically,

x>i w − yi = 0 is the equation of a hyperplane hi with normal vector xi and bias yi. The hyperplane
hi partitions Rd into two halfspaces h+

i , h−i such that every point w ∈ h+
i has sign(x>i w − yi) = 1

and w ∈ h−i has sign(x>i w − yi) = −1. The set of hyperplanes {hi : i ∈ [n]} define a hyperplane
arrangement H , a subdivision of Rd into convex cells. See Figure 5.1. Let C ∈ H be a cell of the
hyperplane arrangement. (We use “cell” to refer to a d-dimensional faceH . When considering a
lower dimensional face ofH we will refer to the dimension explicitly.) Every point w in the interior
IntC of C lies on the same side of every hyperplane hi as every other point in IntC. Thus we can
identify each C with a signature s = sign(Xw − y) for any w ∈ IntC.

Theorem 35, our main result of this section, fully characterizes the geometry of Equation 5.17.

Theorem 35. L2 is always a convex function, whose optimal solution(s) always lies in rowspace(X).
There are four possible cases, three of which depend on the value of ε.

1. If Xw = y is an inconsistent system, then L2 is a strictly convex function.

2. If Xw = y is a consistent system and ε ∈ (0, 1/‖X†y‖2) then L2 is a convex function. Moreover,
L2 is strictly convex everywhere except along two line segments, both of which have one
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Figure 5.1: The top leftmost figure shows a hyperplane arrangement with two lines that subdivide
R2 into four convex cells. The top center left figure shows the isocontours of ‖Xw − y‖1. Within
each convex cell, the isocontours behave as the linear function s>(Xw − y), where s is the signature
of the cell. The isocontours are non-smooth along the two black lines. The top center right figure
shows the isocontours of ε‖w‖2‖Xw − y‖1, which are clearly non-convex. The top rightmost figure
shows the isocontours of the function L2 = 1

2‖Xw − y‖22 + ε‖w‖2‖Xw − y‖1 + ε2n
2 ‖w‖

2
2. Notice how

these isocontours are convex and non-smooth along the two black lines and the asymmetry of the
isocontours caused by the ε‖w‖2‖Xw − y‖1 term. The bottom row shows the graphs of the functions
in the top row.

endpoint at the origin and terminate at X†y±u respectively, for some nonzero u ∈ nullspace(X).
Thus both line segments lie outside of rowspace(X). The gradient at every point on these line
segments is nonzero, and so the optimal solution is unique and found in rowspace(X) at a
point of strict convexity.

3. If Xw = y is a consistent system and ε = 1/‖X†y‖2, then L2 is a convex function. Moreover,
L2 is strictly convex everywhere except along a single line segment with one endpoint at the
origin and the other endpoint at X†y. The optimal solution(s) may or may not lie along this
line.

4. If Xw = y is a consistent system and ε > 1/‖X†y‖2, then L2 is a strictly convex function.

Furthermore, L2 is subdifferentiable everywhere.
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Proof. Lemma 67 states that L2 is convex and that transitions between cells are strictly convex. The
cases in the theorem statement correspond to the cases in Lemma 66 which describe the geometry
of the cell containing the origin. Finally Lemma 65 states that any optimal solution must be in the
rowspace of X. Lemma 68 states that L2 is subdifferentiable everywhere. �

The proof of Theorem 35 first characterizes the geometry of L2 restricted to the interior of
each convex cell C ∈ H . We denote this function by L2|IntC. If the signature s of C is not equal to
−y, meaning that C does not contain the origin, then L2|IntC is always strongly convex. The cell
C with signature s = −y is the only cell in which L2 might not be strongly convex. The cases
in Theorem 35 correspond to the cases that characterize the geometry of L2|IntC for s = −y. The
transitions between cells are strictly convex and the subdifferential is non-empty at these transitions.

We find it very interesting that L2 is strictly or strongly convex almost everywhere. For
ε ∈ (0, 1/‖X†y‖2), L2 is convex, but fails to be strictly convex only along two line segments which
lie outside of the rowspace of X. The gradient along these line segments is nonzero, and so this
particular type of convexity does not prevent an optimization algorithm from finding the unique
solution, which is in the rowspace of X. For ε = 1/‖X†y‖2, L2 is convex, but not strictly convex,
only along a single line segment in the rowspace of X. However the condition ε , 1/‖X†y‖2 can be
ensured by an infinitesimal perturbation. The following remark is immediate.

Corollary 36. Suppose ε , 1/‖X†y‖2. Then any optimization algorithm which is guaranteed to find
or converge to the global minimum for a strictly convex subdifferentiable function and which does
not prematurely terminate at a point with nonzero gradient finds the unique global minimum of L2.

Corollary 36 states that, in the linear case, any reasonable optimization algorithm finds the
unique global optimum of L2, almost always.3 We conclude that, in the linear case, L2-adversarial
training does indeed sufficiently regularize the loss landscape so that any optimization algorithm
finds the same solution.

Unfortunately Theorem 35 does not give a closed-form expression for the solution(s) of L2. In
Lemma 68 we characterize the subdifferential ∂L2(w) at every point. However solving for w where
0 ∈ ∂L2(w) is similar to solving a linear program, and so we suspect that no closed-form solution
exists. In Section 5.4 we discuss the solution for L2 in the particular case of the learning problem
defined in Section 5.3 and show that the max-margin solution is often not the solution recovered by
adversarial training.

The Solutions to the Learning Problem of Section 5.3
While we know of no technique to characterize the set of solutions for L2 in general, we can
still make some statements about the solution in specific instances, such as the learning problem

3The condition on “premature termination” in Corollary 36 is meant to rule out the following case. One could
construct an optimization algorithm that is guaranteed to converge for strictly convex functions, but terminates early
upon detecting a point at which there exists a direction in which the function is convex but not strictly convex, even
if the gradient is nonzero and the global minimum is at a point of strict convexity. We doubt any commonly used
optimization algorithm would have difficulty with the geometry of L2.
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described in Section 5.3. First, since the minimizer(s) of L2 must lie in the rowspace, the “obvious”
solution w∗ to the learning problem in Section 5.3 is not recovered by L2-adversarial training. A
priori, one might guess that the minimum L2-norm solution X>α is the solution to L2 . However
this is only true under specific conditions which depend on the class imbalance.

Theorem 37. Let (X, y) be the learning problem defined in Section 5.3. X>α is a solution to L2 if
and only if

ε ≤

√
64n2

+n2
− + 160n2

+n− + 75n2
+ + 32n+n2

− + 60n+n− + 70n+ + 3n2
− + 5n−

max
{
4n2
− + 4n−n+ + 5n+ + 5n−, 4n2

+ + 4n−n+ + n+ + n−
} . (5.18)

Let c > 0 be a constant such that n+ = cn−. If ε ≤ min
{

2c
1+c ,

2
1+c

}
then X>α is a solution to L2.

Proof. The gradient at the minimum L2-norm solution X>α is

∇L2(X>α) = X>(XX>α − y) + ε‖X>α‖2X>s + ε‖XX>α − y‖1
X>α
‖X>α‖2

+ ε2nX>α

= ε‖X>α‖2X>s + ε2nX>α.

Setting ∇L2 = 0 gives

−X>s = εn
X>α
‖X>α‖2

(5.19)

−

n∑
i=1

sixi =
εn

‖X>α‖2

∑
i∈P

α+xi +
∑
j∈N

α−x j

 .
Lemma 68 states that, at X>α, there exists a subgradient for every choice of s ∈ [−1, 1]n. To prove
the result we must show that there exists some choice of s that satisfies Equation 5.19, which we
will do by showing that, under the condition on ε, the coefficient of each xi on the right-hand side of
Equation 5.19 is in the range [−1, 1].

Since si ∈ [−1, 1] the negative sign on the left-hand side of Equation 5.19 is inconsequential. It
is sufficient to show that εnα+

‖X>α‖2
and εnα−

‖X>α‖2
are in the range [−1, 1]. Necessity follows from the fact

that the rows of X are linearly independent.

εnα+

‖X>α‖2
= ε

(n+ + n−)α+√
(n+α+ − n−α−)2 + 2(n+α+ + n−α−)2 + n+α

2
+ + 5n−α2

−

= ε
4n2
− + 4n−n+ + 5n+ + 5n−√

64n2
+n2
− + 160n2

+n− + 75n2
+ + 32n+n2

− + 60n+n− + 70n+ + 3n2
− + 5n−

≤ 1

where the last inequality follows from the condition on ε. Note also that εnα+

‖X>α‖2
≥ 0 by definition.

The case for α− is similar.
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Now assume that n+ = cn−. The right hand side of Equation 5.18 becomes√
64c2n4

− + 160c2n3
− + 75c2n2

− + 32cn3
− + 60cn2

− + 70cn− + 3n2
− + 5n−

max
{
4n2
− + 4cn2

− + 5cn− + 5n−, 4c2n2
− + 4cn2

− + cn− + n−
} . (5.20)

The maximum evaluates as

max
{
4n2
− + 4cn2

− + 5cn− + 5n−, 4c2n2
− + 4cn2

− + cn− + n−
}

=

4n2
− + 4cn2

− + 5cn− + 5n− if c < 1+n−
n−

4c2n2
− + 4cn2

− + cn− + n− if c ≥ 1+n−
n−
.

Within each of these ranges it can be checked, using Mathematica, that the gradient of Equation 5.20
is negative. Thus we can consider the limit as n− → ∞, which gives the lower bound√

64c2n4
− + 160c2n3

− + 75c2n2
− + 32cn3

− + 60cn2
− + 70cn− + 3n2

− + 5n−
max

{
4n2
− + 4cn2

− + 5cn− + 5n−, 4c2n2
− + 4cn2

− + cn− + n−
} ≥ min

{
2c

1 + c
,

2
1 + c

}
.

Taking ε ≤ min
{

2c
1+c ,

2
1+c

}
is a sufficient condition, but not necessary due to the gap in the lower

bound. �

While we need the first condition, which is both necessary and sufficient, to draw our forthcoming
conclusion, the second, merely sufficient, condition provides greater intuition. The first condition
states that X>α is a solution if and only if ε is sufficiently small, as a function of n+, n−. For the
learning problem in Section 5.3, we know that ε = 1 is achievable, so it is natural to ask how large
an ε is allowable by Equation 5.18. This relationship depends on the class imbalance, and so we set
n+ = cn− and derive the condition in the second part of the proof of Theorem 37, which is a lower
bound on the right-hand side of Equation 5.18. The term min

{
2c

1+c ,
2

1+c

}
is at most 1 when c = 1, but

can be arbitrarily less than 1 depending on c; see Figure 5.2. We note also that the gap between the
lower bound min

{
2c

1+c ,
2

1+c

}
and the right-hand side of Equation 5.18 is already small for n− ≈ 20

and vanishes as n− → ∞. Thus we conclude that if ε is close to 1 and the dataset is even moderately
imbalanced, X>α, which maximizes the L2-margin, is not a solution for L2.

5.5 Experiments
In this section we experimentally explore the effect of different optimization algorithms on robust-
ness for deep networks. We are interested in the following questions. (1) Do different optimization
algorithms give qualitatively different robustness results? (2) Does adversarial training reduce or
eliminate the influence of the optimization algorithm? (3) Do adaptive or non-adaptive methods
consistently outperform the others for both L2- and L∞-adversarial attacks, even if the difference is
small?
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Figure 5.2: The bound min
{

2c
1+c ,

2
1+c

}
as a function of the class imbalance c. If the classes are

perfectly balanced (c = 1), then we can take ε up to 1 and recover the minimum L2-norm solution
X>α. As the class imbalance increases the maximum allowable ε for which we recover X>α
decreases rapidly.

Models For MNIST our model consist of two convolutional layers with 32 and 64 filters respec-
tively, each followed by 2 × 2 max pooling. After the two convolutional layers, there are two fully
connected layers each with 1024 hidden units. For CIFAR10 we use a ResNet18 model [45]. We
use the same model architectures for both natural and adversarial training. These models were
chosen because they are small enough for us to run a large hyperparameter search.

Parameters for Adversarial Training For adversarial training we use the approach of Madry
et al. [66], and train against a projected gradient descent (PGD) adversary. For MNIST with
L∞-adversarial training, we train against a 40-step PGD adversary with step size 0.01 and maximum
perturbation size of ε = 0.3. For L2-adversarial training we train against a 40-step PGD adversary
with step size 0.05 and maximum perturbation size of ε = 1.5. For CIFAR10 with L∞-adversarial
training, we train against against a 10-step PGD adversary with step size 0.007 (= 2/255) and
maximum perturbation size of ε = 0.031 (= 8/255). For L2-adversarial training we train against
a 10-step PGD adversary with step size 0.039 (= 10/255) and a maximum perturbation size of
ε = 0.117 (= 30/255).

Attacks for Evaluation On MNIST we apply 100-step PGD with 10 random restarts. For L∞
we apply PGD with step sizes {0.01, 0.05, 0.1, 0.2}, and for L2 we apply PGD with step sizes
{0.05, 0.1, 105, 109}. On CIFAR10 we apply 20-step PGD with 5 random restarts. For L∞ we
apply PGD with step sizes {2/255, 3/255, 4/255} and for L2 we apply PGD with step sizes
{10/255, 20/255, 105}. We also apply the gradient-free BoundaryAttack++ [17]. We evaluate
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these attacks per sample, meaning that if any attack successfully constructs an adversarial example
for a sample x at a specific ε, it reduces the robust accuracy of the model at that ε.

Metrics We plot the robust classification accuracy for each attack as a function of ε ∈ [0, εmax].
We are interested in both natural and adversarial training. Usually when heuristic methods for
adversarial training are evaluated, they are compared at the specific ε for which the model was
adversarially trained. Such a comparison is arbitrary for naturally trained models and is also
unsatisfying for adversarially trained models. To compare the robustness of different optimization
algorithms we instead consider the area under the robustness curve. Following Khoury et al. [55],
we report the normalized area under the curve (NAUC) defined as

NAUC(acc) =
1
εmax

∫ εmax

0
acc(ε) dε, (5.21)

where acc : [0, εmax]→ [0, 1] measures the classification accuracy. Note that NAUC ∈ [0, 1], with
higher values corresponding to more robust models.

Hyperparameter Selection We perform an extensive hyperparameter search over the learning
rate and (if applicable) momentum parameter(s) of each optimization algorithm to identify parameter
settings that produce the most robust models. For each dataset we set aside a validation set of size
5000 from the training set. We then train models, with the architecture described above, for each
of the hyperparameter settings described below for 100 epochs. All optimization algorithms are
started from the same initialization. We evaluate the robustness of each model as described above
on the validation set. The hyperparameter settings for each optimization algorithm that achieve the
largest NAUC are then used to train new models and then evaluated on the full test set. These final
results are the ones we report in this section. The hyperparameters we explored were influenced by
the hyperparameter search of Wilson et al. [93].

The following search space is defined for MNIST. For SGD we consider the learning rates
{2, 1, 0.5, 0.1, 0.01, 0.001, 0.003, 0.0001}. For SGD with momentum we consider the set of learning
rates for SGD for each of the momentum settings {0.9, 0.8, 0.7}. For Adam, Adagrad, and RMSprop
we consider initial learning rates {0.1, 0.01, 0.001, 0.003, 0.0001}.

The following search space is defined for CIFAR10. For SGD we consider the learning rates
{2, 1, 0.5, 0.25, 0.1}. For SGD with momentum we consider the set of learning rates for SGD for
each of the momentum settings {0.9, 0.8, 0.7}. For both SGD and SGD with momentum we reduce
the learning rate using the REDUCELRONPLATEAU scheduler in PyTorch. For Adam and RMSprop
we consider the initial learning rates {0.005, 0.001, 0.0005, 0.0003, 0.0001, 0.00005}. For Adagrad
we consider initial learning rates {0.1, 0.05, 0.01, 0.0075, 0.0005}.

Unfortunately adversarially training takes an order of magnitude longer than natural training,
since in the innermost loop we must perform an iterative PGD attack to construct adversarial
examples. Due to our limited resources, we consider only a subset of the hyperparameters above for
adversarial training.
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MNIST
Figure 5.3 (Top) shows the robustness of naturally trained models to L∞- and L2-adversarial attacks
on MNIST. Against L∞-adversarial attacks, RMSprop produce the most robust model with NAUC
0.33, followed by Adam (0.27), SGD with momentum (0.26), and SGD and Adagrad (0.22). Against
L2-adversarial attacks, SGD produces the most robust model with NAUC 0.49, followed by SGD
with momentum (0.48), Adam (0.43), and Adagrad and RMSprop (0.41).

Against L∞-adversarial attacks, RMSprop produces a model that appears qualitatively more
robust than the next best performing model. This difference can be large at specific ε; for example
at ε = 0.2, the RMSprop model maintains a robust accuracy of 22%, while the Adam model has
robust accuracy 7%. This is the only instance across all of our experiment in which we observe a
notable qualitative difference between different algorithms.

Figure 5.3 (Bottom) shows the robustness of adversarially trained models. Training adversarially
improves the robustness over naturally trained models regardless of the optimization algorithm
and all optimization algorithms give qualitatively similar results. For L∞-adversarial training, SGD
produces the most robust model with NAUC 0.66, followed by SGD with momentum (0.65), Adam
(0.64), RMSprop (0.63), and Adagrad (0.61). For L2-adversarial training SGD with momentum and
RMSprop produce models with NAUC 0.56, followed by SGD (0.54), Adam (0.53), and Adagrad
(0.51). For adversarial training on MNIST, either SGD or SGD with momentum were among the
top performers, with Adagrad always producing the worst performing model.

Adversarial training does seem to reduce the dependence on the choice of optimization algorithm,
though does not completely remove it. Against L∞-adversarial attacks at ε = 0.3, the SGD model
maintains robust accuracy of 91.5%, while the Adagrad model maintains robust accuracy 83.5%. We
consider this difference noteworthy for MNIST. The difference is less pronounced for L2-adversarial
training.

SGD and SGD with momentum consistently outperform other optimization algorithms, yielding
the best models in three out of four experiments. (Or one of the most robust models in the case of
ties.) While the difference is qualitatively small, we believe that the consistency with which SGD
or SGD with momentum produces the most robust model is noteworthy. Furthermore Adagrad
seems to consistently under-perform other optimization algorithms. (Though this may depend on
the domain [89].)

CIFAR10
Figure 5.4 (Top) shows the robustness of naturally trained models to L∞- and L2-adversarial attacks
on CIFAR10. Against L∞-adversarial attacks, SGD with momentum produces the most robust
model with NAUC 0.06, followed by RMSprop (0.05), Adam and Adagrad (0.04), and SGD (0.02).
Against L2-adversarial attacks Adagrad produces the most robust models with NAUC 0.19, followed
by SGD, Adam, and RMSprop (0.17), and SGD with momentum (0.15).

Figure 5.4 (Bottom) shows the robustness of adversarially trained models. For L∞-adversarial
training, SGD with momentum produced the most robust model with NAUC 0.26, followed by
SGD (0.24), Adam (0.23), and Adagrad and RMSprop (0.22). For L2-adversarial training, SGD
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Figure 5.3: Top: Robust accuracy for naturally trained MNIST models against L∞- and L2-
adversarial attacks. Bottom: Robust accuracy for adversarially trained MNIST models. Left,
L∞-adversarially trained models evaluated against L∞-adversarial attacks; right L2-adversarially
trained models evaluated against L2-adversarial attacks.

produces the most robust model with NAUC 0.51, followed by SGD with momentum (0.50), Adam
and RMSprop (0.49), and Adagrad (0.47).

Adversarial training lessens the dependence on the choice of optimization algorithm. Against
L∞-adversarial attacks at ε = 0.031 (= 8/255), the SGD with momentum model maintains robust
accuracy of 45%, while the RMSprop model maintains robust accuracy 34%. The difference is less
pronounced for L2-adversarial training.

SGD or SGD with momentum consistently outperform other optimization algorithms, yielding
the best models in three out of four experiments. Again while the difference is qualitatively small,
we believe that the consistency with which SGD or SGD with momentum produces the most robust
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model is noteworthy.
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Figure 5.4: Top: Robust accuracy for naturally trained CIFAR10 models against L∞- and L2-
adversarial attacks. Bottom: Robust accuracy for adversarially trained CIFAR10 models. Left,
L∞-adversarially trained models evaluated against L∞-adversarial attacks; right L2-adversarially
trained models evaluated against L2-adversarial attacks.



114

Bibliography

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence Theory for Deep Learning
via Over-Parameterization”. In: ICML. 2019.

[2] Nina Amenta and Marshall W. Bern. “Surface Reconstruction by Voronoi Filtering”. In:
Discrete & Computational Geometry (1999).

[3] Nina Amenta, Marshall W. Bern, and David Eppstein. “The Crust and the beta-Skeleton:
Combinatorial Curve Reconstruction”. In: Graphical Models and Image Processing (1998).

[4] Nina Amenta, Sunghee Choi, and Ravi Kolluri. “The Power Crust”. In: Proceedings of the
Sixth Symposium on Solid Modeling. Association for Computing Machinery, 2001, pp. 249–
260.

[5] Nina Amenta and Tamal Krishna Dey. Normal Variation with Adaptive Feature Size. 2007.

[6] Nina Amenta et al. “A Simple Algorithm for Homeomorphic Surface Reconstruction”. In:
International Journal of Computational Geometry and Applications (2002).

[7] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated Gradients Give a False
Sense of Security: Circumventing Defenses to Adversarial Examples”. In: ICML. 2018.
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Appendix A

Proofs for Chapter 3

A.1 Useful Known Results
Lemma 38 (Feature Translation Lemma). Let Σ ⊂ R3 be a smooth surface and let p, q ∈ Σ be
points on Σ such that |pq| ≤ ε lfs(p) for some ε < 1. Then

lfs(p) ≤
1

1 − ε
lfs(q) and |pq| ≤

ε

1 − ε
lfs(q).

Proof. By the definition of the local feature size, there is a medial axis point m such that |qm| = lfs(q).
By the Triangle Inequality, lfs(p) ≤ |pm| ≤ |pq| + |qm| ≤ ε lfs(p) + lfs(q). Rearranging terms gives
lfs(p) ≤ lfs(q)/(1 − ε). The second claim follows immediately. �

Lemma 39 (Feature Ball Lemma [28]). If a geometric closed d-ball B intersects a k-manifold
Σ ⊂ Rd without boundary at more than one point and either (i) B ∩ Σ is not a topological k-ball or
(ii) ∂(B ∩ Σ) is not a topological (k − 1)-sphere, then B contains a medial axis point.

Lemma 40. Let s be a line segment with endpoints p, q ∈ Σ where Σ ⊂ Rd is a k-manifold without
boundary. Let Bs be the diametric ball of s, the smallest closed d-ball such that Bs ⊃ s (for which s
is a diameter of Bs). If d(p, q) ≤ ρ lfs(p) for some ρ < 1, then Bs ∩ Σ is a topological (k − 1)-ball.

Proof. Let Bs be the diametric ball of s. Suppose that Bs ∩ Σ is not a topological 2-ball. As Bs ∩ Σ

contains more than one point (p and q), by the Feature Ball Lemma (Lemma 39), there exists
a medial axis point m ∈ Bs. This implies that lfs(p) ≤ d(p,m) ≤ d(p, q) ≤ ρ lfs(p), which is a
contradiction. �

Lemma 41 (Small Circumradius Lemma [28]). Let V be an ε-sample of a smooth surface Σ ⊂ R3

for ε < 1. Let τ ∈ Del |ΣV be a restricted Delaunay triangle and let x = τ∗ ∩ Σ be the intersection of
τ’s dual Voronoi edge with Σ. Then the circumradius of τ is at most ε lfs(x).
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A.2 Extended Voronoi Cell Boundaries
There are only three phenomena that can determine the boundary of an extended Voronoi cell.
(1) Portions of a cell’s boundary may be determined by hyperplanes, each hyperplane being
equidistant from two sites. For example, a point on the boundaries of two cells Vor |Σ̃S

v and Vor |Σ̃S
w

might lie on the hyperplane that orthogonally bisects the line segment vw. (2) A cell’s boundary
may include some of the rays that bound the extrusions. The boundary of Vor |Σ̃S

v includes two such
rays for each segment in S that adjoins v. (3) Portions of a cell’s boundary may be determined by
a shadow cast by a portal. For example, consider a point x ∈ Vor |Σ̃S

v such that the line segment
vx intersects the boundary of a portal. The boundary of a portal does not block visibility, but the
relative interior of a portal does block visibility in the principal branch. Suppose that the portal
hides some points arbitrarily close to x (i.e., some points in every open neighborhood of x on Σ)
so they are not visible from v. Typically, each of those shadowed points belongs to one or more
other extended Voronoi cells (even if v is the closest site), so x can be on the boundary of a cell
Vor |Σ̃S

w without being in Vor |Σ̃S
w. In that case, w’s cell is not a closed point set and portal shadows

are responsible for the open portions of its boundary.
In this section, we establish that under suitable sampling conditions, the third phenomenon

cannot happen, so the boundaries of all the extended Voronoi cells are determined solely by bisecting
hyperplanes and extrusion boundary rays, and all the extended Voronoi cells are closed point sets.
The following theorem states those sampling conditions.

Theorem 42 (Shadow Theorem). Let Σ ⊂ R3 be a smooth surface without boundary. Define a set
of segments S and a set of portal curves Z as described in Section 3.5 such that for every segment
s = pq ∈ S , d(p, q) ≤ 0.47 lfs(p). Let V ⊂ Σ be a constrained ε-sample of (Σ, S ,Z) for some ε ≤ 1.

Then for every site v ∈ V and every point x in the extended Voronoi cell Vor |Σ̃v, the relative
interior of the line segment xv does not intersect the boundary of a portal. Hence, for every site
v ∈ V and every point x on the boundary of Vor |Σ̃v, x lies on a hyperplane that bisects a line segment
vw for some w ∈ V or on a ray that bounds an extrusion.

Proof. Follows from Lemmas 44 and 46 below. �

The proof of the Shadow Theorem divides into two parts: we prove it first for the case where x
is in the principal branch (the Principal Shadow Lemma, Lemma 44), then for the case where x lies
on an extrusion (the Extrusion Shadow Lemma, Lemma 46).

Lemma 43. Let Σ ⊂ R3 be a point set and let M be its medial axis. Consider three points x ∈ R3

and y, z ∈ R3 \ M. Suppose that ỹ , z̃ and y lies on the line segment xz. Then d(x, ỹ) < d(x, z̃).

Proof. Let Π be the plane that bisects the line segment ỹz̃. As ỹ is the unique point nearest y on Σ,
d(y, ỹ) < d(y, z̃), so y lies on the same side of Π as ỹ. Symmetrically, z lies on the same side of Π as
z̃. As y ∈ xz, x lies on the same side of Π as ỹ. Therefore, d(x, ỹ) < d(x, z̃). �

Lemma 44 (Principal Shadow Lemma). Let Σ ⊂ R3 be a smooth surface without boundary. Let
V ⊂ Σ be a finite set of sites. Consider a site v ∈ V and a point x in v’s principal Voronoi cell
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Vor |ΣS
v. If d(x, v) ≤ lfs(x), then the relative interior of the line segment xv does not intersect the

boundary of a portal.

Proof. Suppose for the sake of contradiction that the relative interior of xv intersects one or more
portal boundaries. Let y1 be the intersection point closest to x. Observe that x is visible from y1

(because x is visible from v). As d(x, y1) < d(x, v) ≤ lfs(x), y1 does not lie on the medial axis. But
y1 lies on a portal boundary, so y1 must lie on the normal segment of a site in V , and that site is
located at the point ỹ1 , v. By Lemma 43, d(x, ỹ1) < d(x, v).

Although x is closer to the site at ỹ1 than it is to v, x is in v’s principal Voronoi cell rather than
ỹ1’s cell, so x is not visible from the site at ỹ1, even though x is visible from y1. Let z1 be the point
nearest ỹ1 on the line segment y1ỹ1 that can see x. Observe that z̃1 = ỹ1 (all three points y1, ỹ1, and z1

lie on the normal segment of ỹ1). The relative interior of the line segment xz1 intersects one or more
portal boundaries (because as you slide from y1 to ỹ1, z1 is the last point that can see x). Let y2 be
the intersection point closest to x. Then x is visible from y2, and y2 lies on the boundary of a portal.

As d(x, y2) < d(x, z1) ≤ max{d(x, y1), d(x, ỹ1)} < d(x, v) ≤ lfs(x), y2 does not lie on the medial
axis. But y2 lies on a portal boundary, so y2 must lie on the normal segment of a site in V , and that site
is located at the point ỹ2 , z̃1. By Lemma 43, d(x, ỹ2) < d(x, z̃1); hence d(x, ỹ2) < d(x, ỹ1) < d(x, v).

As x ∈ Vor |ΣS
v (rather than ỹ2’s cell), x is not visible from the site at ỹ2, even though x is visible

from y2. By inductively repeating the argument we can construct an infinite sequence of sites not
visible from x such that each successive site is closer to x than the previous site. But V contains
finitely many sites. The result follows by contradiction. �

Next, we prove another Shadow Lemma for any point x on an extrusion. The proof of the
Extrusion Shadow Lemma is almost the same as the proof of the Principal Shadow Lemma, but
there is one major complication: that proof uses the fact that no point in the sequence y1, y2, . . . lies
on the medial axis. This fact is more difficult to prove when x lies on an extrusion (rather than on
Σ).

Consider a segment s ∈ S with endpoints p, q ∈ V such that d(p, q) ≤ ρ lfs(p) for some ρ ≤ 0.47.
Let F be the open ball with center p and radius lfs(p). By the definition of lfs, F does not intersect
the medial axis of Σ. Let c be the midpoint of s. Let Bλ be the closed ball with center c and radius
λ lfs(p), where λ is the function of ρ defined in Theorem 20. Observe that Bλ ⊂ F, as the distance
from p to any point in Bλ is at most (ρ/2 + λ) lfs(p) < 0.705 lfs(p).

Let hs be the cutting plane for s, let ζs ⊂ hs ∩ Σ be the portal curve for s, and let bs be a unit
vector normal to hs. Let Σ+

s be the extrusion of s’s portal curve in the direction bs. Recall that by
Theorem 20, every site whose extended Voronoi cell intersects Σ+

s must lie in Bλ.
Let W be the set of all points {x + ωbs : x ∈ Bλ and ω ≥ 0}; that is, every point that is in Bλ or

in the direction bs from a point in Bλ. The set W has the shape of a wiener that is infinite in one
direction. The premise of W is that it is a convex point set that encloses both the ball Bλ and the
extrusion Σ+

s . However, W is defined with respect to the space R3 whereas Σ+
s is embedded in a

secondary branch of X̃. If Σ+
s were in R3 (but the point coordinates were unchanged), we could

write Σ+
s ⊂ W.
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Lemma 45. Define s, p, q, F, Bλ, hs, and W as above. Let h−s be the closed halfspace on the side
of hs opposite from Σ+

s . Consider a point z ∈ Σ ∩ Bλ ∩ h−s and let `z be its normal segment. Then
W ∩ `z ⊂ F.

Proof. Suppose for the sake of contradiction that there is a point u ∈ W ∩ `z such that u < F. Then
d(p, u) ≥ lfs(p) and u < Bλ. Let Bu be the open ball with center u whose boundary passes through z.
As u lies on z’s normal segment, Bu does not intersect Σ.

Let B and B′ be the two open balls of radius lfs(p) tangent to Σ at p; neither ball intersects Σ. As
Σ is a surface without boundary that passes through p, it partitions R3 into two disjoint components,
with B included in one and B′ in the other. One component must include Bu too; suppose without
loss of generality that B′ is in the same component as Bu. It follows that Bu is disjoint from B.

Let o and o′ be the centers of B and B′, respectively. As Bu and B are disjoint, d(u, o) ≥
d(u, z) + lfs(p). Let u⊥ denote the distance from u to the cutting plane hs. Whereas z ∈ h−s ,
u ∈ W \ F must lie on the positive side of hs (opposite from h−s ). Therefore, d(u, z) ≥ u⊥ and
d(u, o) ≥ u⊥ + lfs(p).

As the cutting plane hs is parallel to p’s normal, o, o′ ∈ hs. Let ū be the orthogonal projection of
u onto hs. By Pythagoras’ Theorem, d(u, o)2 = u2

⊥ + d(ū, o)2. Combining this with the last inequality
gives d(ū, o)2 ≥ 2u⊥ lfs(p) + lfs(p)2. Therefore, u⊥ ≤ (d(ū, o)2/lfs(p) − lfs(p))/2.

The fact that u ∈ W implies that ū ∈ Bλ, so we can write d(ū, o) ≤ d(ū, c) + d(c, o) ≤
λ lfs(p)+d(c, o). To find an upper bound for d(c, o), consider a coordinate system that places the site
p at the origin, the cutting plane hs in the x-y plane, the point o at the coordinate (0, lfs(p), 0), and
the point o′ at the coordinate (0,−lfs(p), 0). Then we write q = (qx, qy, 0) and c = (qx/2, qy/2, 0).
With this notation, d(q, o′)2 = q2

x + (qy + lfs(p))2 = ‖q‖2 + 2 lfs(p)qy + lfs(p)2 and d(c, o)2 = (qx/2)2 +

(qy/2−lfs(p))2 = ‖q‖2/4−lfs(p)qy +lfs(p)2. Adding half the first equation to the second (to eliminate
qy) gives d(q, o′)2/2 + d(c, o)2 = 3‖q‖2/4 + 3 lfs(p)2/2. Observe that ‖q‖ = d(p, q) ≤ λ lfs(p). As
q < B′ (because q ∈ Σ), d(q, o′) ≥ lfs(p). Hence d(c, o)2 ≤ (3λ2/4 + 1) lfs(p)2.

Therefore, d(ū, o) ≤ (λ+
√

3λ2/4 + 1) lfs(p) < 1.55 lfs(p) and u⊥ < 0.702 lfs(p). Thus d(p, u)2 =

d(p, ū)2 + u2
⊥ ≤ (d(p, c) + d(c, ū))2 + u2

⊥ < (ρ lfs(p)/2 + λ lfs(p))2 + 0.7022 lfs(p)2 < 0.99 lfs(p)2. But
this contradicts the fact that u < F. Hence there is no point u ∈ W ∩ `z such that u < F. �

Lemma 46 (Extrusion Shadow Lemma). Let Σ ⊂ R3 be a smooth surface without boundary. Let
V ⊂ Σ be a finite set of sites. Let s ∈ S be a segment with endpoints p, q ∈ V , and suppose that
d(p, q) ≤ 0.47 lfs(p). Consider a site v ∈ V and a point x in v’s extended Voronoi cell Vor |Σ̃v such
that x lies on the extrusion Σ+

s (or Σ−s ). Consider the line segment xv ⊂ X̃. The relative interior of xv
does not intersect the boundary of a portal (including the boundary of Ps).

To clarify the interpretation of Lemma 46, note that xv lies partly in a secondary space and partly
in the principal branch. The portion of xv that is solely in the secondary space cannot intersect any
portal (regardless of matching point coordinates). The lemma focuses on the portion in the principal
branch.

Proof. The proof is identical to that of Lemma 44, except that we employ an entirely different
argument to establish that no point in the sequence y1, y2, . . . lies on the medial axis.
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If v is a vertex of s then the result follows immediately, so assume that v ∈ V \ {p, q}. Define F,
Bλ, hs, ζs, and W as in the preamble before Lemma 45. Let h−s be the closed halfspace on the side of
hs opposite from Σ+

s . By Theorem 18, v ∈ h−s . By Theorem 20, v ∈ Bλ ⊂ W ∩ F.
Although the wiener W is defined in the Euclidean space R3, we say that W encloses a point set

A if for every point a ∈ A there is a point in W with the same coordinates as a, regardless of whether
a is in the principal branch or a secondary branch. Observe that W encloses Σ+

s and Bλ. As x ∈ Σ+
s ,

v ∈ Bλ, and W is convex, it follows that W encloses xv.
Suppose for the sake of contradiction that the relative interior of xv intersects one or more portal

boundaries. Let y1 be the intersection point closest to x. Let u = xv∩ Ps be the point in the principal
branch where the line segment xv exits the portal Ps. (If there is more than one such point, let u
be the one nearest x. Usually uv lies entirely in the principal branch, but sometimes it does not
because it intersects Ps or another portal in multiple points.) As y1 is in the principal branch, y1 ∈ uv.
Observe that W encloses y1 and u, and u lies on the normal segment `ũ of a point ũ on the portal
curve ζs. By Lemma 45, W ∩ `ũ ⊂ F, so u ∈ F. Recall that F is a medial-free open ball and v ∈ F,
so F encloses uv and y1 ∈ F. This confirms that y1 is not a medial axis point.

As y1 is on a portal boundary but not on the medial axis, there is a site at ỹ1. We claim that
ỹ1 ∈ h−s ; suppose for the sake of contradiction that ỹ1 < h−s . Observe that as uv does not intersect
the medial axis, the nearest point map ν is continuous over uv and ν(uv) is a connected path on
Σ. As ỹ1 is in the principal branch and lies on ν(uv), the path ν(uy1) must somewhere (on the way
from ũ ∈ ζs to ỹ1) exit h−s , without entering the portal Ps, to reach ỹ1. Let w ∈ ν(uy1) ∩ hs be a point
where the path crosses hs without entering Ps. Hence w ∈ Σ ∩ hs but w is not in the relative interior
of the portal curve ζs. Let x̄ be the orthogonal projection of x onto hs, and recall that x̄ ∈ ζs. As
w is not in the relative interior of ζs, d(x̄,w) ≥ min{d(x̄, p), d(x̄, q)}. As xx̄ is orthogonal to hs and
x̄,w, p, q ∈ hs, we also have d(x,w) ≥ min{d(x, p), d(x, q)}. But by Lemma 43, d(x,w) < d(x, v);
and as x ∈ Vor |Σ̃v, d(x,w) < d(x, v) ≤ min{d(x, p), d(x, q)}. This is a contradiction; hence ỹ1 ∈ h−s
as claimed.

As ỹ1 ∈ h−s , by Theorem 20, ỹ1 ∈ Bλ ⊂ W ∩ F. As y1 ∈ W ∩ F, ỹ1 ∈ W ∩ F, and W and F are
convex, it follows that the point z1 ∈ y1ỹ1 discussed in the proof of Lemma 44 is also in W ∩ F.
By repeating the argument of the previous two paragraphs with v replaced by z1, we show that
y2 ∈ W ∩ F, and hence y2 is not a medial axis point. We repeat the argument inductively for y3, y4,
etc. The rest of the proof proceeds as in the proof of Lemma 44. �

A.3 The Nearest Point Map Is a Homeomorphism
Here we prove that for a sufficiently dense sample V of a smooth surface Σ ⊂ R3 without boundary,
with a suitable encroachment condition, the nearest point map (restricted to the restricted CDT)
is a homeomorphism from the underlying space of the restricted CDT Del |Σ̃V to Σ. (Recall that
the nearest point map ν maps any point x ∈ R3 \ M to the point ν(x) nearest x on Σ. In this
section, we use the abbreviation x̃ to denote ν(x).) Specifically, we suppose V is a constrained
0.3202-sample of (Σ, S ,H) and the encroachment condition described in Section 3.5 holds. We note
that in the unconstrained case (i.e., for classical restricted Delaunay triangulations), our sampling
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constant is substantially better than those in the classical proofs from the literature on provably
good surface reconstruction [28]: we prove homeomorphism for a 0.3202-sample instead of merely
for a 0.08-sample. This reduces the number of samples required by a factor of about 16 (the square
of 0.32/0.08).

Unlike the classical proofs that the restricted Delaunay triangulation is homeomorphic to the
underlying manifold, our proof does not use the Topological Ball Theorem of Edelsbrunner and
Shah [36]. The Topological Ball Theorem cannot be applied to the restricted constrained Delaunay
triangulation because it depends on the barycentric subdivision of the Delaunay triangulation in
R3, but we know no subdivision of space into a three-dimensional triangulation that conforms
to a restricted CDT. (Note also that the homeomorphism that Edelsbrunner and Shah use is not
the nearest point map; it is a different map based on the barycentric subdivision of the restricted
Delaunay triangles. As the nearest point map is a natural way to connect a triangulation to the
surface it represents—e.g., for the purpose of texture mapping—our result is interesting even just
for restricted Delaunay triangulations.)

Our main new idea is a direct proof that, under the right sampling conditions, each restricted
Voronoi cell is a “star-shaped” topological disk (Lemma 48 and Theorem 49). Another interesting
part of this result is a proof that, under the right conditions, the nearest point map over any single
restricted Delaunay triangle is an orientation-preserving homeomorphism from the triangle to its
image on Σ (Theorem 57).

For the sake of brevity, we use the notation |pq| to denote d(p, q) throughout this section.

Restricted Voronoi Cells Are Topological Disks
Recall that for a site v ∈ V , v’s principal Voronoi cell Vor |ΣS

v = ΣS ∩Vor |Σ̃v excludes the portion of
the extended restricted Voronoi cell on the extrusions. This section investigates sampling conditions
that guarantee that each principal Voronoi cell has the topology of a closed disk. Corollary 50
shows that a constrained 0.44-sample suffices, whereas Theorem 49 gives a sampling condition
more suitable for mesh generation algorithms. We begin with a simple circumstance in which an
orthogonal projection is a homeomorphism.

Lemma 47. Let Σ be a smooth surface without boundary in R3. Let C ⊂ R3 be a convex point set,
let D = C ∩ Σ, and suppose that D is connected. Let Γ be a plane in R3, and let ϕ be the continuous
map that orthogonally projects R3 onto Γ. Suppose that for every point u ∈ D, the vector nu normal
to Σ at u is not parallel to Γ. Then the restricted projection ϕ|D is a homeomorphism from D to its
image ϕ(D) on Γ.

Proof. First we show that ϕ|D is injective. Suppose for the sake of contradiction that two points
x, z ∈ D have ϕ(x) = ϕ(z). All the points in D that map to ϕ(x), including x and z, lie on a common
line `, perpendicular to Γ and passing through x. Let y be the point in Σ ∩ xz that is nearest x but is
not x. (The point y might be z, or there might be a point closer to x.) As D = C ∩ Σ for a convex C,
y ∈ D. No point in D is between x and y; that is, among the points in D ∩ `, x and y are successive
along `.
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As Σ is a 2-manifold without boundary in R3, it divides R3 into a bounded component and an
unbounded, “outside” component. Let nx and ny be outward-facing vectors normal to Σ at x and y,
respectively. Let nΓ be a vector normal to Γ (and parallel to `), directed so that ∠(nΓ, nx) < 90◦. As
we walk along `, if x represents a transition from inside to outside, then y represents a transition
from outside to inside (and vice versa), so ∠(nΓ, ny) > 90◦.

As D is connected, there is a path γ ⊂ D connecting x to y. As Σ is smooth, the outward-facing
vector nu normal to Σ at u varies continuously for u ∈ γ. Therefore, there is a point v ∈ γ for which
∠(nΓ, nv) = 90◦, which contradicts the assumption that for every u ∈ D, nu is not parallel to Γ.
Hence ϕ|D is injective.

Clearly ϕ is continuous. To see that the inverse ϕ|−1
D is continuous, consider the set L of all lines

that are perpendicular to Γ and intersect a point in D. As Σ is smooth and no line in L intersects Σ

tangentially at a point in D, the intersection D ∩ ` varies continuously with ` ∈ L. Therefore, ϕ|−1
D is

continuous and ϕ|D is a homeomorphism from D to ϕ(D). �

The following two results establish a “star-shaped” disk property that every principal Voronoi
cell possesses in a constrained 0.44-sample. Consider a site p ∈ V and its principal Voronoi cell
Vor |ΣS

p. Let Fλ be the open ball centered at p with radius λ lfs(p), and let F = F1. By the definition
of lfs(·), F does not intersect the medial axis of Σ. By the Feature Ball Lemma (Lemma 39), Fλ ∩ Σ

is a topological disk for every λ < 1.
Let np be a vector normal to Σ at p and let TpΣ be the plane tangent to Σ at p. Let ϕ be the

continuous map that orthogonally projects R3 onto TpΣ (with the projection direction being parallel
to np). By the Normal Variation Lemma (Lemma 21), for every point x ∈ Σ with |px| ≤ 0.9101 lfs(p),
∠(np, nx) < 90◦. Therefore by Lemma 47, for λ ≤ 0.9101, the orthogonal projection ϕ|Fλ∩Σ is a
homeomorphism from Fλ ∩ Σ to its image on TpΣ.

Suppose that Vor |ΣS
p ⊂ Fλ for some λ ≤ 0.9101. Let Ip be the image of Vor |ΣS

p under ϕ; so
ϕ|Vor |

ΣS
p is a homeomorphism from Vor |ΣS

p to Ip. Note that ϕ(p) = p (because p lies on TpΣ) and p
lies in the interior of Ip (where the “interior” is defined with respect to the tangent plane TpΣ). The
forthcoming Lemma 48 shows that for λ ≤ 0.786151, Ip is star-shaped: for every point y ∈ Ip, the
line segment connecting y to p is a subset of Ip. Moreover, every point on yp except possibly y lies
in the interior of Ip. The subsequent Theorem 49 uses Lemma 48 to show that Ip is homeomorphic
to a disk, and thus so is Vor |ΣS

p,
Consider a point x ∈ Vor |ΣS

p, where x , p and x ∈ Fλ (hence p, x ∈ Fλ ∩ Σ). Consider the line
segment pϕ(x) on TpΣ. Let γ = ϕ|−1

Fλ∩Σ
(pϕ(x)) be the unique curve on Fλ ∩ Σ that projects to the

line segment pϕ(x); γ’s endpoints are the site p and the point x.

Lemma 48. Consider a site p ∈ V and a point x ∈ Vor |ΣS
p, where x , p. Suppose that |px| <

ξ lfs(p), where ξ =

√
√

5−1
2 � 0.786151. Define the orthogonal projection ϕ, the image Ip =

ϕ(Vor |ΣS
p), and the curve γ ⊂ Σ as described above. Then γ ⊂ Vor |ΣS

p; moreover, every point in
γ \ {x} is in the interior of Vor |ΣS

p (where the “interior” is defined relative to Σ). Equivalently (by
the homeomorphism ϕ), pϕ(x) ⊂ Ip and every point in pϕ(x) \ {ϕ(x)} is in the interior of Ip (where
the “interior” is defined relative to TpΣ).
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Figure A.1: In this figure, Π is the plane of the page and p, x, y, o, o′ ∈ Π. The surface Σ and the
curve γ ⊂ Σ cannot intersect the open balls B, B′, and Bm, so B and Bm are disjoint. Note that the
center m of the medial ball Bm does not necessarily lie on Π (the page), and m cannot lie in the
open ball F. The dashed circle is the boundary of Bm ∩ Π. The line labeled Λ ∩ Π shows where
pq’s bisecting plane Λ intersects Π (the page), but Λ is not necessarily orthogonal to Π and q is not
necessarily on Π. Neither Λ ∩ Π nor the line ` tangent to γ at y can separate o, o′, and p from each
other.

Furthermore, no point in γ \ {x} is in any other site’s restricted Voronoi cell, and for every other
cell Vor |ΣS

q that contains x, γ is not tangent at x to the plane bisecting the line segment pq (hence
Σ also is not tangent at x to the bisector).

Proof. Suppose for the sake of contradiction that one of the following is true: γ 1 Vor |ΣS
p, or a

point in γ \ {x} is on the boundary of Vor |ΣS
p, or a point in γ \ {x} is shared with another site’s

principal Voronoi cell, or for some site q such that x ∈ Vor |ΣS
q, γ is tangent at x to the plane

bisecting the line segment pq.
In the first case (γ 1 Vor |ΣS

p), while we slide along γ from x to p, we encounter a point y ∈ γ
where γ leaves Vor |ΣS

p. By Lemma 44, the cell boundary is not caused by a portal shadow, so it
must be caused by a bisector between sites. That is, there is a site q ∈ V such that, letting Λ be
the bisector of pq, γ crosses Λ at y (entering q’s side of Λ), as illustrated in Figure A.1. If the first
case does not apply (γ ⊂ Vor |ΣS

p) but one of the other three cases does apply, there is a point y ∈ γ
where γ intersects a bisector tangentially; that is, there is a q ∈ V such that, letting Λ be the bisector
of pq, γ intersects Λ tangentially at y. In all cases, let Λp be the closed halfspace that is bounded by
Λ and contains p.

Let B and B′ be the two open balls of radius lfs(p) tangent to Σ at p, and let o and o′ be their
centers, respectively. Neither ball intersects Σ, hence neither ball contains any site. Therefore, p is a
closest site to o and o′, so o ∈ Λp and o′ ∈ Λp, as illustrated.

Let Π be the plane that contains p and x and is parallel to np (and thus orthogonal to TpΣ) and
observe that Ip ⊂ Π and γ ⊂ Π. (Π is the plane of the page in Figure A.1.) The plane Π contains
the points p, o, o′, x, and y (but not necessarily q). Let Πp = Π ∩ Λp, a closed halfplane that also
contains p, o, o′, x, and y, with y on its boundary Π ∩ Λ.
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Let ` ⊂ Π be the line that is tangent to γ at y. Let the vertical axis be the line through o, p, and
o′. We have seen that either γ intersects Λ tangentially at y, in which case ` = Π ∩Λ, or γ leaves
Λp at y, in which case ` is closer to being vertical (parallel to the vertical axis; vertical from the
perspective of Figure A.1) than Π ∩ Λ is. More precisely, ` intersects the vertical axis farther from
p than Π ∩ Λ does. Let `p be the closed halfplane with boundary ` that contains p; it follows that
o ∈ `p and o′ ∈ `p, just as o, o′, and p are all in Πp.

There are two open medial balls that are tangent to Σ at y. Call them Bm and Bm′ and let m and
m′ be their centers. (Note that m and m′ do not necessarily lie on Π.) As γ ⊂ Σ and γ is a smooth
curve, Bm and Bm′ are also tangent to γ and ` at y, and the line segment mm′ is perpendicular to γ
and ` at y. As y lies in the relative interior of mm′, ∠pym + ∠pym′ = 180◦. Choose the labels m
and m′ so that ∠pym < 90◦ and ∠pym′ > 90◦. (The inequalities are strict because p < `, so we can
have ∠pym = 90◦ only if ym is perpendicular to Π, but that is not possible as ∠(np, ny) < 90◦ for all
y ∈ γ ⊂ Fξ by the Normal Variation Lemma (Lemma 21). Note that Bm′ can degenerate to an open
halfspace, but Bm cannot because ∠pym < 90◦ and p < Bm.)

Let Γ be the plane through y orthogonal to ym, and observe that ` ⊂ Γ. As ∠pym < 90◦, p and
m are on the same side of Γ. As p and o are in the halfplane `p, either o ∈ Γ or o is on the same
side of Γ as p and m, and thus ∠oym ≤ 90◦. By Pythagoras’ Theorem, |oy|2 + |my|2 ≥ |om|2 and
|py|2 + |my|2 > |pm|2. Observe that m < F, as m lies on the medial axis, which is disjoint from F.
Hence |pm| ≥ lfs(p) and thus |py|2 + |my|2 > lfs(p)2.

The surface Σ intersects none of the open balls B, B′, or Bm, but it passes between B and B′ at p.
As Σ has no boundary and divides space into two pieces, one containing B and one containing B′,
the ball Bm must lie in one of those two pieces. Suppose without loss of generality that Bm lies in the
same piece as B′, as illustrated; then Bm must be disjoint from B. The radii of B and Bm are lfs(p)
and |my| respectively, so |om| ≥ lfs(p)+ |my|. Combining this with the inequality |oy|2 + |my|2 ≥ |om|2

gives |oy|2 ≥ lfs(p)2 + 2 lfs(p) |my|. Combining this with the inequality |my|2 > lfs(p)2 − |py|2 gives
|oy|2 > lfs(p)2 + 2 lfs(p)

√
lfs(p)2 − |py|2.

Create a coordinate system with p at the origin such that yv is the vertical coordinate of y
(parallel to the vertical axis; vertical in Figure A.1) and yh is the horizontal coordinate of y (the
axis in Π perpendicular to the vertical axis; horizontal in Figure A.1). Then |oy|2 + |o′y|2 =

y2
h + (yv − lfs(p))2 + y2

h + (yv + lfs(p))2 = 2y2
h + 2y2

v + 2 lfs(p)2 = 2 |py|2 + 2 lfs(p)2. As y < B′,
|o′y|2 ≥ lfs(p)2. Combining these with the inequality |oy|2 > lfs(p)2 + 2 lfs(p)

√
lfs(p)2 − |py|2 gives

|py|2 = (|oy|2 + |o′y|2 − 2 lfs(p)2)/2 > lfs(p)
√

lfs(p)2 − |py|2. Recall that y ∈ Fξ because y ∈ γ; thus
|py| < ξ lfs(p). It follows that ξ2 >

√
1 − ξ2, which is equivalent to ξ4 + ξ2 − 1 > 0, which implies

that ξ >
√
√

5−1
2 . The result follows by contradiction. �

Theorem 49. Let p ∈ V be a site. Suppose that for every point x ∈ Vor |ΣS
p, |px| < ξ lfs(p), where

ξ =

√
(
√

5 − 1)/2 � 0.786151. Then Vor |ΣS
p is homeomorphic to a closed disk. Moreover, no

other restricted Voronoi cell intersects the interior of Vor |ΣS
p.

Proof. For every point x ∈ Vor |ΣS
p, there is a path in Vor |ΣS

p connecting x to p by Lemma 48, so
Vor |ΣS

p is connected. Vor |ΣS
p is the intersection of a smooth manifold Σ with a finite number of
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closed halfspaces, so Vor |ΣS
p is closed (both with respect to the manifold Σ and with respect to

the ambient metric space R3). The site p does not lie on the boundary of Vor |ΣS
p, as no bisector

between p and another site can touch p.
Let F̄ξ be the closed ball centered at p with radius ξ (whereas Fξ is the open ball), and let IF be

the image of F̄ξ ∩ Σ under ϕ (the orthogonal projection onto TpΣ). Recall that ϕ is injective over
F̄ξ ∩ Σ; we can define an inverse ϕ−1 over IF , and the inverse is continuous. Recall Ip, the image
of Vor |ΣS

p under ϕ. As Vor |ΣS
p ⊆ Fξ ∩ Σ, it follows that Ip ⊂ IF , ϕ is injective over Vor |ΣS

p, and
the inverse ϕ−1 is defined and continuous over Ip. As ϕ (restricted to Vor |ΣS

p) is a homeomorphism
from Vor |ΣS

p to Ip, we will show that the Voronoi cell is a topological disk by showing that Ip is a
topological disk.

By continuity, Ip is closed and connected like the Voronoi cell, and it is bounded (hence compact)
as well. By Lemma 48, Ip is star-shaped and for every point y ∈ Ip, every point on the segment yp
except possibly y lies in the interior of Ip. As p lies in the interior of Ip, every radial line segment
pz ⊂ IF connecting p to a point z on the boundary of IF intersects one and only one point on the
boundary of Ip. Thus we can define a function f that maps points on the boundary of IF to points
on the boundary of Ip. For convenience, we also define fR to map each point z on the boundary of
IF to the distance |p f (z)|. If fR is continuous, then Ip is homeomorphic to a unit disk (and we can
construct an explicit homeomorphism by stretching or shrinking each line segment radiating out
from p), and the theorem follows.

We now show that fR is continuous. Let z be a point on the boundary of IF; we show that fR
is continuous at z by showing that for every sufficiently small δ > 0, there is an open arc a on the
boundary of IF with z in its relative interior such that every point y ∈ a has fR(y) ∈ ( fR(z)−δ, fR(z)+δ).
Let x = f (z), which lies on the boundary of Ip at a distance of fR(z) from p in the direction of z. Let
x− be the point at a distance of fR(z) − δ from p in the direction of z, and let x+ be the point at a
distance of fR(z)+δ from p in the direction of z. (We must take δ sufficiently small that fR(z)−δ > 0
and fR(z) + δ is small enough that x+ ∈ I f .) By Lemma 48, x− is in the interior of Ip. As Ip is
star-shaped with x on its boundary, x+ < Ip. As Ip is closed, the circle of radius fR(z) + δ centered
at p includes an open arc a+ that has x+ in its relative interior and does not intersect Ip. As x− is
in the interior, the circle of radius fR(z) − δ centered at p includes an open arc a− that is entirely
in the interior of Ip and has x− in its relative interior. By comparing the angle intervals of a− and
a+ and taking their intersection (the common angles), we produce a curve a on the boundary of IF

with z in its relative interior such that every point y ∈ a has f (y) trapped between a+ and a−, hence
fR(y) ∈ ( f (z)− δ, f (z) + δ). Therefore fR is continuous, f is continuous, and Vor |ΣS

p is a topological
closed disk.

To prove the second claim—that no other restricted Voronoi cell intersects the interior of
Vor |ΣS

p—observe that for any point y in the interior, ϕ(y) lies in the interior of Ip, and we can
extend the line segment pϕ(y) to a point ϕ(x) on the boundary of Ip. Define γ = ϕ|−1

Fλ∩Σ
(pϕ(x)). By

Lemma 48, no point in γ \ {x} is in the restricted Voronoi cell of any site besides p. Hence y is not
in any other restricted Voronoi cell. �

It is notable that the condition |px| < ξ lfs(p) of Lemma 48 and Theorem 49 implies, by the
Normal Variation Lemma (Lemma 21), that ∠(np, nx) < η(ξ) = 60◦. The sixty-degree bound is
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exact. (We do not have any intuition for why that number comes out so cleanly.)
We now determine which constrained ε-samples satisfy the condition.

Corollary 50. Let V be an constrained ε-sample of (Σ, S ,Z) for ε < ξ

ξ+1 � 0.440137. Every
principal Voronoi cell in Vor |ΣS

V is homeomorphic to a closed disk. Moreover, no restricted
Voronoi cell intersects the interior of another restricted Voronoi cell. Moreover, there is no point
y ∈ Vor |ΣS

p ∩ Vor |ΣS
q at which Σ is tangent to the bisector between two sites p and q.

Proof. Consider any site p ∈ V and any point x ∈ Vor |ΣS
p. As V is a constrained ε-sample,

|px| ≤ ε lfs(x). By the Feature Translation Lemma (Lemma 38), |px| ≤ (ε/(1 − ε)) lfs(p) < ξ lfs(p).
The first two claims follow by Theorem 49. The third claim follows from Lemma 48. �

The following corollary shows that if we extend the condition of Theorem 49 to all principal
Voronoi cells (or impose the condition of Corollary 50), every connected component of Σ has at
least six sites on it.

Corollary 51. Let V ⊂ Σ be a nonempty, finite set of points (sites) on Σ. Suppose that for every

site p ∈ V and every point x ∈ Vor |ΣS
p, |px| < ξ lfs(p), where ξ =

√
(
√

5 − 1)/2 � 0.786151.
(Alternatively, suppose that V is a constrained ε-sample of (Σ, S ,Z) for ε < ξ

ξ+1 � 0.440137.)
Then every connected component of Σ has at least six sites and at least six principal Voronoi

cells on it.

Proof. By Theorem 49 (or Corollary 50), every principal Voronoi cell in Vor |ΣS
V is homeomorphic

to a closed disk. Therefore, every principal Voronoi cell lies on just one connected component of Σ.
By the Normal Variation Lemma (Lemma 21), for every site p ∈ V and every point x ∈ Vor |ΣS

p,
∠(np, nx) < η(ξ) = 60◦.

Let Σ̊ be a connected component of Σ. For any unit vector u on the unit sphere, let y be a point
on Σ̊ that is most extreme in the direction u. As Σ̊ is a smooth surface without boundary, u is normal
to Σ̊ at y and oriented to the outside of Σ̊; that is, the unit vector ny = u is an outward-facing normal
vector at y. It follows that the outside-facing unit normal vectors on Σ̊ constitute the entire sphere
of directions. A principal Voronoi cell Vor |ΣS

p can contain only points on Σ whose outside-facing
normals are less than 60◦ from np. At least six sites are required on a sphere so that every point on
the sphere is less than 60◦ from one of the sites; five do not suffice [44]. (The six points where the
coordinate axes intersect the unit sphere suffice.) Hence there are at least six sites and six principal
Voronoi cells on Σ̊.

The same reasoning applies to every connected component of Σ. �

The Nearest Point Map and Circumscribing Spheres
Recall that the nearest point map ν maps any point x ∈ R3 \ M to the point x̃ = ν(x) nearest x on
Σ. The following lemma helps to constrain where x̃ can lie. We will use it later for two purposes:
to prove conditions under which a mapped triangle ν(τ) does not intersect any site other than τ’s
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Figure A.2: For every point x ∈ τ except τ’s vertices, x̃ is strictly inside S .

vertices, and to help prove conditions under which ν defines a homeomorphism from τ to its image
ν(τ) on Σ.

Lemma 52. Consider three non-collinear points p, p′, p′′ ∈ Σ and the triangle τ = 4pp′p′′. Let S
be a sphere that passes through p, p′, and p′′. Let r be the radius of S , and suppose that r ≤ lfs(p)/2.
Then for every point x ∈ τ \ {p, p′, p′′}, x̃ = ν(x) is strictly inside S .

Proof. Consider a point x ∈ τ \ {p, p′, p′′}. As τ’s vertices lies on S , x is inside S . If x̃ = x the
lemma follows immediately, so suppose that x̃ , x and thus x < Σ. There are two open medial balls
tangent to Σ at x̃; let B be the one that contains x, as illustrated in Figure A.2. Let m be the center of
B; m lies on the medial axis of Σ. Observe that x lies on the line segment mx̃.

If the entire closure of B is strictly inside S , the lemma follows immediately; so assume it is
not. The entirety of B cannot be outside S , as x ∈ B and x is inside S . Nor is S ⊂ B possible, as τ’s
vertices are not in B. Hence the intersection of S with B’s boundary is a circle or a point. If it is a
circle, let Π be the affine hull of that circle, as illustrated; if it is a point, let Π be the plane tangent to
S and B at that point. Let Π̄S be the closed halfspace bounded by Π that includes S \ B, and let ΠS

be the open version of the same halfspace. The portion of B’s boundary in ΠS is entirely enclosed
by S . The portion of S in the open halfspace complementary to Π̄S is entirely included in B. Every
vertex of τ lies on S but not in B, hence τ’s vertices lie in Π̄S . Therefore, τ ⊂ Π̄S and x ∈ Π̄S .

Let c be the center of S . Observe that the plane Π is orthogonal to the line segment cm. By
assumption, r ≤ lfs(p)/2, so |pm| ≥ lfs(p) ≥ 2r. As p lies on S and |pm| is at least twice the radius
r of S , it follows that m lies outside of S or on S . Hence m < Π̄S .

Given the facts that x lies on the line segment mx̃, m < Π̄S , x ∈ Π̄S , and x̃ , x, it follows that
x̃ ∈ ΠS . As x̃ is also on B’s boundary, x̃ is strictly inside S . �

A corollary of Lemma 52 is that if the vertices of a restricted Delaunay triangle τ are sufficiently
close to τ’s dual restricted Voronoi vertex, then the image of τ under the nearest point map ν does
not intersect any site other than τ’s vertices.

Corollary 53. Let V be a finite set of points on Σ. Let p, p′, p′′ ∈ V be three sites that generate a
restricted Voronoi vertex u ∈ Vor |Σ̃V and its dual restricted Delaunay triangle τ = 4pp′p′′. Suppose
that |pu| ≤ lfs(p)/2. (Note that |pu| = |p′u| = |p′′u|.) Then ν(τ) intersects no site in V \ {p, p′, p′′}.
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Proof. Suppose for the sake of contradiction that for some site w ∈ V \ {p, p′, p′′}, w ∈ ν(τ). Let
x ∈ τ be the point for which ν(x) = w. As τ is a restricted Delaunay triangle dual to u, τ’s vertices
lie on a sphere S that has center u and encloses no site, particularly not w. The radius of S is |pu|.
By Lemma 52, w is strictly inside S . The result follows by contradiction. �

The Nearest Point Map on a Triangle is a Homeomorphism
The forthcoming Theorem 57 establishes conditions under which the nearest point map, restricted
to a restricted Delaunay triangle, is a homeomorphism; so there are no foldovers within a single
triangle’s map.

Assuming Σ is a 2-manifold, we define a restricted Voronoi vertex to be a point in the intersection
of three distinct extended Voronoi cells. However, without suitable sampling conditions, such an
intersection might include one or more line segments. Theorem 57 also establishes conditions
that guarantee that a restricted Voronoi vertex is isolated from any other points in the intersection,
thereby justifying the name “vertex.” We start with a technical lemma.

Lemma 54. Let u be a point on Σ. Let τ ⊂ R3 be a simplex. Let x ∈ τ be a point that does not lie on
the medial axis of Σ. Let x̃ be the point on Σ nearest x. There is a vertex p of τ such that |px̃| ≤ |pu|,
and such that |px̃| < |pu| if x̃ , u.

Proof. If x̃ = u then the result follows immediately, so assume that x̃ , u. As x does not lie on the
medial axis, x̃ is the unique point on Σ nearest x. As u also lies on Σ, |xx̃| < |xu|. Let Π be the plane
that bisects the line segment x̃u, and observe that x lies on the same side of Π as x̃. As x ∈ τ and τ
is a simplex, some vertex p of τ lies on the same side of Π as x̃, thus |px̃| < |pu|. �

Given an extended restricted Voronoi vertex u and its dual restricted Delaunay triangle τ, the
following two lemmas relate the normal vectors nu and nx̃ at any point x̃ ∈ ν(τ), showing that all
these normals point to the same side of τ. Recall that a principal vertex is an extended restricted
Voronoi vertex that lies on ΣS . A secondary vertex is an extended restricted Voronoi vertex that is
not principal; it lies on an extrusion but not on a portal curve.

Lemma 55. Let u be a principal vertex and let τ = 4pp′p′′ be its dual restricted Delaunay triangle.
Let x be any point on τ, and let x̃ = ν(x) be the point on Σ nearest x. Let nu be an outward-facing
vector normal to Σ at u, let nx̃ be an outward-facing vector normal to Σ at x̃, and let nτ be a vector
normal to τ. Let R = |pu| = |p′u| = |p′′u|, and suppose that R ≤ 0.3202 lfs(u).

Then the angles ∠(nu, nτ) and ∠(nx̃, nτ) are either both less than 90◦ or both greater than 90◦

(depending on which way nτ is directed). Equivalently, the dot products nu · nτ and nx̃ · nτ are either
both positive or both negative.

Proof. Let r be τ’s circumradius. Let S be the sphere with center u and radius R, which passes
through all three vertices of τ. As τ’s circumcircle is a cross section of S , r ≤ R.

Suppose without loss of generality that p is the vertex of τ nearest x̃. Let q ∈ {p, p′, p′′} be the
vertex at τ’s largest plane angle. As |pu| = |qu| = R ≤ 0.3202 lfs(u), by the Feature Translation
Lemma (Lemma 38), lfs(u) ≤ lfs(p)/(1 − 0.3202) and likewise lfs(u) ≤ lfs(q)/(1 − 0.3202), so
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r ≤ R ≤ 0.3202
0.6798 lfs(p) < 0.48 lfs(p) and likewise r ≤ 0.3202

0.6798 lfs(q). By Lemma 52 (with S as defined
above), |x̃u| ≤ R; hence |x̃u| ≤ 0.3202 lfs(u). By Lemma 54, there is a vertex ṗ of τ such that
| ṗx̃| ≤ | ṗu|; hence |px̃| ≤ | ṗx̃| ≤ | ṗu| = R ≤ 0.3202

0.6798 lfs(p). By the Normal Variation Lemma
(Lemma 21), ∠(np, nu) ≤ η(0.3202), ∠(nq, nu) ≤ η(0.3202), ∠(nx̃, nu) ≤ η(0.3202), and ∠(np, nx̃) ≤
η(0.3202/0.6798), where η(δ) = arccos

(
1 − δ2

2
√

1−δ2

)
, η(0.3202) < 18.94◦, and η(0.3202/0.6798) <

29.05◦.
If τ’s plane angle at the vertex p is 56.653◦ or greater, then by the Triangle Normal Lemma

(Lemma 1), sin∠(np, nτ) ≤ r cot 28.3265◦/lfs(p) < (0.3202/0.6798) · 1.8552 < 0.8739. Therefore,
either ∠(np, nτ) < 60.92◦ or ∠(np, nτ) > 119.08◦, depending on which way nτ is directed. Suppose
without loss of generality that nτ is directed so that ∠(np, nτ) < 60.92◦. Then ∠(nu, nτ) ≤ ∠(np, nu) +

∠(np, nτ) < 18.94◦ + 60.92◦ = 79.86◦ and ∠(nx̃, nτ) ≤ ∠(np, nx̃) + ∠(np, nτ) < 29.05◦ + 60.92◦ =

89.97◦, so both angles are less than 90◦ as claimed.
Otherwise, τ’s plane angle at p is less than 56.653◦, so τ’s plane angle at q (τ’s largest plane

angle) is greater than (180◦ − 56.653◦)/2 = 61.6735◦. By the Triangle Normal Lemma (Lemma 1),
sin∠(nq, nτ) ≤ r cot 30.83675◦/lfs(q) < (0.3202/0.6798) · 1.6751 < 0.7891. Therefore, either
∠(nq, nτ) < 52.11◦ or ∠(nq, nτ) > 127.89◦, depending on which way nτ is directed. Suppose without
loss of generality that nτ is directed so that ∠(nq, nτ) < 52.11◦. Then ∠(nu, nτ) ≤ ∠(nq, nu) +

∠(nq, nτ) < 18.94◦ + 52.11◦ = 71.05◦ and ∠(nx̃, nτ) ≤ ∠(nx̃, nu) + ∠(nq, nu) + ∠(nq, nτ) < 18.94◦ +

18.94◦ + 52.11◦ = 89.99◦, confirming that both angles are less than 90◦. �

The following lemma applies to all extended restricted Voronoi vertices, both principal and
secondary. Although a secondary vertex u does not lie on Σ, but rather on an extrusion, we still
speak of an “outward-facing” normal vector nu consistent with the outward-facing normal vectors
on Σ, as we can extend Σ’s orientation onto the extrusions.

Lemma 56. Let u be an extended Voronoi vertex (principal or secondary) and let τ = 4pp′p′′ be
the restricted Delaunay triangle dual to u, where p is the vertex of τ at τ’s largest plane angle. Let
µ be the positive root of 4µ4 = (1 − 4µ2)(1 −

√
3µ)2, with approximate value µ � 0.3606001. Let

R = |pu| = |p′u| = |p′′u| and suppose that R < µ lfs(p). If u is a secondary vertex on an extrusion
of a segment s, suppose also that the length of s is at most ρ lfs(a), where ρ ≤ 0.47 and a is an
endpoint of s. Let x be any point on τ, and let x̃ = ν(x) be the point on Σ nearest x. Let nu be an
outward-facing vector normal to Σ̃ at u, let nx̃ be an outward-facing vector normal to Σ at x̃, and let
nτ be a vector normal to τ.

Then the angles ∠(nu, nτ) and ∠(nx̃, nτ) are either both less than 90◦ or both greater than 90◦

(depending on which way nτ is directed). Equivalently, the dot products nu · nτ and nx̃ · nτ are either
both positive or both negative.

Proof. Let r be τ’s circumradius. Let S be the sphere with center u and radius R, which passes
through all three vertices of τ. As τ’s circumcircle is a cross section of S , r ≤ R.

By the Triangle Normal Lemma (Lemma 1), sin∠(np, nτ) ≤
√

3r/lfs(p) <
√

3µ. Suppose
without loss of generality that nτ is directed so that ∠(np, nτ) is acute; then ∠(np, nτ) < 38.652◦.

By Lemma 52 (with S as defined above), |ux̃| ≤ R; hence |px̃| ≤ |pu| + |ux̃| ≤ 2R < 2µ lfs(p).
By the Normal Variation Lemma (Lemma 21), ∠(np, nx̃) < η(2µ) where η(δ) = arccos

(
1 − δ2

2
√

1−δ2

)
.
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Therefore, ∠(np, nx̃) < arccos
(
1 − 2µ2
√

1−4µ2

)
= arccos

(
1 − (1 −

√
3µ)

)
= arccos(

√
3µ) and ∠(nx̃, nτ) ≤

∠(np, nx̃) + ∠(np, nτ) < arccos(
√

3µ) + arcsin(
√

3µ) = 90◦.
If u is a principal vertex, then as |pu| = R < µ lfs(p), by the Normal Variation Lemma ∠(np, nu) <

η(µ) < 21.52◦. Therefore, ∠(nu, nτ) ≤ ∠(np, nu) + ∠(np, nτ) < 21.52◦ + 38.652◦ = 60.172◦. So
∠(nu, nτ) and ∠(nx̃, nτ) are both less than 90◦, and the lemma holds.

If u is a secondary vertex, let s be the segment on whose extrusion u lies, let hs be the cutting
plane for s, and let ζs ⊂ hs ∩ Σ be the portal curve for s. Let ū ∈ ζs be the point nearest u on hs,
and note that ū ∈ ζs and ū ∈ Σ. It follow from Theorem 18 that the plane hs separates τ from u;
therefore, |pū| < |pu|.

As |pū| < |pu| = R < µ lfs(p), by the Normal Variation Lemma ∠(np, nū) < η(µ) < 21.52◦. As
the length of s is at most ρ lfs(a), we have |aū| ≤ ρ lfs(a) and, by the Normal Variation Lemma,
∠(na, nū) ≤ η(ρ) ≤ η(0.47) < 28.971◦. As the site u lies on an extrusion from ζs, the vector nu

normal to the extrusion at u is the projection of nū onto hs. As hs is parallel to na, ∠(nu, nū) ≤
∠(na, nū) < 28.971◦.

Therefore, ∠(nu, nτ) ≤ ∠(nu, nū) +∠(np, nū) +∠(np, nτ) < 28.971◦ + 21.52◦ + 38.652◦ = 89.143◦.
Hence, ∠(nu, nτ) and ∠(nx̃, nτ) are both less than 90◦ as claimed. �

Theorem 57. Consider Vor |Σ̃V , where Σ ⊂ R3 is a smooth 2-manifold without boundary, V ⊂ Σ

is a finite sample, and each segment s ∈ S has length at most 0.47 lfs(a) for some endpoint a of s.
Consider three distinct sites p, p′, p′′ ∈ V and the triangle τ = 4pp′p′′, where p is the vertex of τ
at τ’s largest plane angle. Let U = Vor |Σ̃ p ∩ Vor |Σ̃ p′ ∩ Vor |Σ̃ p′′ (which is the extended Voronoi
face dual to τ) and suppose that U , ∅ (so τ is a restricted Delaunay triangle). Let u be a point in
U and let R = |pu| = |p′u| = |p′′u|. Suppose that at least one of the following holds: either u is a
principal vertex and R ≤ 0.3202 lfs(u), or R ≤ 0.3606 lfs(p).

Then the nearest point map ν restricted to τ, denoted ν|τ, is a homeomorphism from τ to its
image ν(τ) on Σ. Moreover, no normal segment of Σ that intersects τ is parallel to τ. Moreover, u is
isolated from the other points in U.

Proof. First we show that τ does not intersect the medial axis M of Σ, so the (restricted) nearest
point map ν|τ is defined and continuous over τ. If the condition R ≤ 0.3202 lfs(u) holds, then the
distance from u to any point in τ is at most 0.3202 lfs(u), whereas the distance from u to M is lfs(u),
so τ is disjoint from M. If the condition R ≤ 0.3606 lfs(p) holds, then the distance from p to any
point in τ is at most 2R ≤ 0.7212 lfs(p), whereas the distance from p to M is lfs(p); again τ is
disjoint from M. In either case, ν|τ is continuous over τ.

By Lemma 55 (if R ≤ 0.3202 lfs(u)) or Lemma 56 (if R ≤ 0.3606 lfs(p)), for every point x ∈ τ,
∠(nx̃, nτ) , 90◦; therefore, the unique normal segment `x̃ that passes through x is not parallel to τ.
This proves our claim that no normal segment that intersects τ is parallel to τ. It follows that the
nearest point map ν|τ is injective: if two distinct points x, x′ ∈ τ could map to the same point x̃ ∈ Σ,
then x̃’s normal segment `x̃ would intersect both x and x′ and thus be parallel to τ, but that is not
possible.

The nearest point map ν|τ is a continuous bijection between a compact set τ and its image ν(τ) on
a bounded manifold. Its inverse ν−1 is also continuous over ν(τ), as the normal lines are a continuous
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function of the points on Σ, and the intersection of a line with τ’s affine hull Π is a continuous
function over the domain of lines that are not parallel to Π. Hence ν|τ is a homeomorphism (proving
our first claim).

To address our third claim, let `τ be the line composed of all the points in the augmented
three-dimensional space X̃ that are equidistant to the sites p, p′, and p′′, and observe that U ⊂ `τ.
By Lemma 55 or Lemma 56, ∠(nu, nτ) , 90◦. As `τ is parallel to the normal vector nτ, `τ does not
intersect Σ tangentially at u, so u is isolated from the other points in U. �

Extended Voronoi Edges Are Topological Line Segments
Theorem 49 and Corollary 50 give conditions under which the principal Voronoi cells are topological
closed disks, and no cell intersects the interior of another cell. Theorem 57 gives conditions under
which the intersection of any three distinct extended Voronoi cells is composed of isolated points,
which we call “extended Voronoi vertices.” What about an intersection of two distinct extended
Voronoi cells? We call such an intersection an extended Voronoi edge if it contains a connected
curve (and thus it is not merely a set of isolated points). The following lemma helps to justify this
name.

Lemma 58. Consider an extended Voronoi diagram Vor |Σ̃V . Suppose that every extended Voronoi
cell is a topological closed disk and every intersection of three distinct extended Voronoi cells is a
set of isolated points (i.e., no two distinct points are path-connected). Suppose also that no extended
Voronoi cell intersects the interior of another extended Voronoi cell. Then for every pair of distinct
sites p, q ∈ V , Vor |Σ̃ p ∩ Vor |Σ̃q is either a topological circle containing no extended Voronoi vertex
or a union of disjoint topological closed 1-balls and isolated points, where each isolated point is an
extended Voronoi vertex and each 1-ball contains exactly two extended Voronoi vertices which are
its endpoints.

Moreover, if at least three sites in V lie on each connected component of Σ, then the possibility
that Vor |Σ̃ p ∩ Vor |Σ̃q is a topological circle is eliminated, every extended Voronoi cell has at least
two extended Voronoi vertices on its boundary, and every connected component of Σ has at least
two extended Voronoi vertices on it.

Proof. As ˜̃
Σ is a surface without boundary and ˜̃

Σ is also a union of extended Voronoi cells, which
are topological closed disks, each point on the boundary of each extended Voronoi cell is shared
with at least one other extended Voronoi cell. By assumption, no interior point of a cell is shared
with another cell.

Consider a site p, its extended Voronoi cell Vor |Σ̃ p, and the cell’s boundary C, which is a
topological circle. If two or more extended Voronoi vertices lie on C, they subdivide C into two
or more topological closed 1-balls (as extended Voronoi vertices are isolated points). Let I be one
of these topological 1-balls, or let I = C if C contains fewer than two extended Voronoi vertices.
The subset of I obtained by removing its extended Voronoi vertices is path-connected, so the points
in that subset are all shared with one and only one other site q; hence I ⊆ Vor |Σ̃ p ∩ Vor |Σ̃q. It
follows that for every p, q ∈ V , Vor |Σ̃ p ∩ Vor |Σ̃q is either a topological circle or a union of 1-balls
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and extended Voronoi vertices. The intersection of two cells cannot include two 1-balls that are not
disjoint—that is, two 1-balls that share a extended Voronoi vertex—because the shared vertex lies
on the boundary of a third cell, which implies that at least one of the three cells is not a topological
closed disk.

For the same reason, if the intersection of two cells is a topological circle, no extended Voronoi
vertex can lie on the circle. This establishes the lemma’s first claim.

If the intersection of two cells is a topological circle (with no extended Voronoi vertex), then as
the two cells are topological disks, their union is a topological sphere covering an entire connected
component of Σ. Hence, if at least three sites in V lie on each connected component of Σ, then no
two cells have a circle as their intersection. The lemma’s second claim follows. �

The Nearest Point Map Is Surjective
Theorem 57 and the forthcoming Lemmas 59, 60, and 62 use the idea of assigning an orientation to
Σ, which manifests as both a normal vector direction and a rotary spin in the tangent space. There
are two directions in which a normal vector nu can point; let us choose the normal vectors so they all
point to the same side of Σ. (Note: we don’t actually need Σ to be orientable; it suffices to examine
one patch that is orientable in isolation, such as a restricted Voronoi cell Vor |Σ̃w.) Then we define a
counterclockwise ordering of the restricted Voronoi cells adjoining a restricted Voronoi vertex u
according to a right-hand rule: with the thumb of your right hand pointing in the direction of nu,
your fingers curl in a direction that defines the counterclockwise ordering of cells adjoining u.

We can extend this notion of orientation to all the points on the normal segments. Each point
y ∈ R3 \ M lies on the normal segment `x of a point x = ν(y) ∈ Σ. The point y inherits both aspects
of x’s orientation: the orientation direction nx, parallel to `x, and the counterclockwise ordering
around `x, derived from nx by the right-hand rule.

Let τ ⊂ R3 \ M be a triangle whose vertices lie on Σ. Theorem 57 guarantees (under the stated
conditions) that the nearest point map ν is a homeomorphism from τ to ν(τ). By Lemma 55 and 56,
the orientations of the points on τ are all mutually consistent; their orientation directions all point to
the same side of τ. Let nτ be a unit vector orthogonal to τ that points to the same side as well. The
right-hand rule induces a counterclockwise ordering of τ’s vertices around τ’s boundary, which is
also a counterclockwise ordering of ν(τ)’s vertices around ν(τ)’s boundary.

Consider a restricted Voronoi vertex u ∈ Vor |Σ̃V generated by three sites p, p′, p′′ ∈ V and its
dual restricted Delaunay triangle τ = 4pp′p′′. Let `τ be the line comprising the points equidistant
from p, p′, and p′′; `τ passes through both τ’s circumcenter and u. (However, `τ is not necessarily
parallel to nu.) Imagine the three-site Voronoi diagram Vor {p, p′, p′′}: it subdivides R3 into three
wedges Wp, Wp′ , and Wp′′ whose mutual intersection is `τ. The restricted Voronoi cells in Vor |Σ̃V
satisfy the inclusions Vor |Σ̃ p ⊂ Wp, Vor |Σ̃ p′ ⊂ Wp′ , and Vor |Σ̃ p′′ ⊂ Wp′′ . Therefore, the cyclical
ordering of τ’s vertices around `τ is consistent with the cyclical ordering of their restricted Voronoi
cells around `τ where they touch u. You might expect that if the former is counterclockwise, then so
is the latter. However, if the surface is twisted enough that the angle between nu and nτ exceeds 90◦,
this expectation is violated: if τ’s vertices p, p′, and p′′ occur in counterclockwise order around τ’s
perimeter, then Vor |Σ̃ p, Vor |Σ̃ p′, Vor |Σ̃ p′′ are in clockwise order around u. Intuitively, this causes a
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nasty “foldover” in the restricted Delaunay triangulation, which may prevent ν from being injective
over the triangulation. We shall show that such foldovers can be prevented by use of a sufficiently
dense sample.

Lemma 59. Let u be a principal vertex and let τ = 4pp′p′′ be its dual restricted Delaunay
triangle. Let R = |pu| = |p′u| = |p′′u| and suppose that at least one of the following holds:
either R ≤ 0.3202 lfs(u) or R ≤ 0.3606 lfs(q) for each q ∈ {p, p′, p′′}. Then p, p′, and p′′

are in counterclockwise order around τ if and only if Vor |Σ̃ p, Vor |Σ̃ p′, and Vor |Σ̃ p′′ adjoin u in
counterclockwise order around u.

Proof. By Lemma 55 (if R ≤ 0.3202 lfs(u)) or Lemma 56 (if R ≤ 0.3606 lfs(q) for each q), the
outward-facing normal nu at u and the outward-facing normals nx̃ for every point x ∈ τ are all
directed to the same side of τ. Therefore, we can assign a counterclockwise orientation to every
point on τ that is consistent over τ and induces a counterclockwise ordering of τ’s vertices.

Consider the wedges Wp, Wp′ , and Wp′′ and their line `τ of mutual intersection, defined above.
Recall that `τ is parallel to nτ and passes through u. Recall that Vor |Σ̃ p ⊂ Wp, Vor |Σ̃ p′ ⊂ Wp′ , and
Vor |Σ̃ p′′ ⊂ Wp′′ . The ordering of the sites p, p′, and p′′ around τ (counterclockwise or clockwise) is
determined by the orientation of the normals nx̃ relative to τ; in turn, this ordering determines the
ordering of the wedges around `τ. The ordering of the cells Vor |Σ̃ p, Vor |Σ̃ p′, and Vor |Σ̃ p′′ around u
is determined by the ordering of the wedges around `τ and the orientation of the normal nu relative
to τ. As the normals nu and nx̃ point to the same side of τ, the result follows. �

Consider two restricted Delaunay triangles τ1 = 4pp′w1 and τ2 = 4p′pw2 that satisfy the
requirements of Theorem 57; hence ν|τ1 is a homeomorphism and so is ν|τ2 . The two triangles
share an edge pp′. The next lemma shows that their images under ν do not overlap each other; in
particular, their images fall on opposite “sides” of the image of pp′.

Lemma 60. Let e ∈ Vor |Σ̃V be a restricted Voronoi edge with vertices u1 and u2, whose dual
restricted Delaunay triangles are τ1 = 4pp′w1 and τ2 = 4p′pw2, with p, p′,w1,w2 ∈ V . Suppose
that the restricted Voronoi cells of p, p′, and w1 adjoin u1 in counterclockwise order around u1, and
the cells of p′, p, and w2 adjoin u2 in counterclockwise order around u2. Let R1 = |pu1| = |p′u1| =

|w1u1| and R2 = |pu2| = |p′u2| = |w2u2|. Suppose that at least one of the following holds: either
R1 ≤ 0.3202 lfs(u1) or R1 ≤ 0.3606 lfs(q) for each q ∈ {p, p′,w1}. Moreover, suppose that at least
one of the following holds: either R2 ≤ 0.3202 lfs(u2) or R2 ≤ 0.3606 lfs(q) for each q ∈ {p, p′,w2}.
Let Q = τ1 ∪ τ2. Then ν|Q is a homeomorphism from Q to its image ν(Q) on Σ.

Proof. By Theorem 57, ν|τ1 is a continuous bijection with a continuous inverse that preserves the
orientation of every projected point, and so is ν|τ2 . Hence it remains only to show that ν|Q is injective.

Suppose for the sake of contradiction that there are two distinct points x ∈ τ1\pp′ and y ∈ τ2\pp′

such that ν(x) = ν(y). Let x̃ = ν(x) = ν(y). Let T x̃Σ be the plane tangent to Σ at x̃. Let `x̃ be the
normal segment of x̃, which passes through x̃, x, and y and is perpendicular to T x̃Σ. For any point
p ∈ R3, let p̄ denote the orthogonal projection of p onto T x̃Σ. (The projection direction is parallel
to `x̃.) By Theorem 57, neither τ1 nor τ2 is parallel to `x̃, so the orthogonal projections of τ1 and
τ2 onto T x̃Σ are triangles (rather than line segments). As x̃ lies in both orthogonal projections but
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not on the orthogonal projection of pp′, it follows that if p, p′, and w1 occur in counterclockwise
order on T x̃Σ, then p′, p, and w2 occur in clockwise order on T x̃Σ; and if the former sites occur in
clockwise order, then the latter sites occur in counterclockwise order. Therefore, the orientation of
p, p′, and w1 is opposite to the orientation of p′, p, and w2.

By Lemma 59, p, p′, and w1 occur in counterclockwise order around the boundary of τ1;
likewise, p′, p, and w2 occur in counterclockwise order around the boundary of τ2. But this
contradicts the conclusion of the previous paragraph.

Hence ν|Q is an injection; hence ν|Q is a bijection from Q to ν(Q). As ν|τ1 is continuous and has
a continuous inverse over ν(τ1), and ν|τ2 is continuous and has a continuous inverse over ν(τ2), ν|Q
is continuous and has a continuous inverse over ν(Q). Therefore ν|Q is a homeomorphism from Q to
ν(Q). �

Lemma 61. Consider Vor |Σ̃V , where Σ ⊂ R3 is a smooth 2-manifold without boundary and V ⊂ Σ

is a nonempty, finite sample. Suppose that for every site p ∈ V and every point x ∈ Vor |ΣS
p,

|px| < ξ lfs(p), where ξ =

√
(
√

5 − 1)/2 � 0.786151. Moreover, suppose that for every principal
vertex u ∈ Vor |ΣS

V , at least one of the following holds: u is a principal vertex and R ≤ 0.3202 lfs(u)
or R ≤ 0.3606 lfs(v), where τ is the restricted Delaunay triangle dual to u, R is the distance from u
to each vertex of τ, and v is the vertex of τ at τ’s largest plane angle. Suppose that every restricted
Voronoi vertex in Vor |Σ̃V has degree three. Let T be the set of triangles in the restricted Delaunay
triangulation Del |Σ̃V . Then the nearest point map ν : |T | → Σ is a surjection.

Proof. Suppose for the sake of contradiction that some point x ∈ Σ is not in ν(|T |). Let Σ̊ be
the connected component of Σ that contains x. By Corollary 51, there are at least six sites on Σ̊,
so there is at least one principal vertex on Σ̊; let τ0 ∈ T be its dual restricted Delaunay triangle.
By Theorem 57, for every triangle τ ∈ T , ν|τ is a homeomorphism from τ to ν(τ), so ν(τ0) is a
topological disk that is closed with respect to Σ. Let y be a point in the interior of ν(τ0) that is not in
V (not a site). As Σ̊ is a connected 2-manifold, there exists a directed path γ ⊂ Σ̊ from y to x that
does not intersect any site in V (except x if x is a site).

As ν(τ) is closed with respect to Σ for every τ ∈ T , ν(|T |) is closed with respect to Σ. Let z ∈ |T |
be a point such that γ leaves ν(|T |) for the last time at ν(z), never to re-enter. By supposition, z , x
and z is not a site. Let τ1 ∈ T be a triangle that contains z. As γ leaves ν(|T |) at ν(z), γ leaves ν(τ1)
at ν(z) and z lies on the relative interior of an edge e′ of τ1. As every restricted Voronoi vertex has
degree three, there is a restricted Voronoi edge e dual to e′. One of e’s vertices is dual to τ1; let
τ2 ∈ T be the restricted Delaunay triangle dual to the other vertex. Let Q = τ1 ∪ τ2. By Lemma 60,
ν|Q is a homeomorphism from Q to ν(Q), so ν(z) is in the interior of ν(Q). Therefore, where the
path γ leaves ν(τ1) for the last time at ν(z), γ enters the interior of ν(τ2). This contradicts the claim
that γ leaves ν(|T |) for the last time at ν(z). Therefore, for every point x ∈ Σ, x ∈ ν(|T |). �

The Nearest Point Map Is Injective
Lemma 62. Let V be a nonempty, finite sample of Σ. Let p be a site in V . Let W be the set of
restricted Voronoi vertices in Vor |Σ̃ p. Let Ṫ ⊆ Del |Σ̃V be the set of restricted Delaunay triangles that
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have vertex p—that is, the set of restricted Delaunay triangles dual to the vertices in W. Suppose

that for every point x ∈ Vor |ΣS
p, |px| < ξ lfs(p) where ξ =

√
(
√

5 − 1)/2 � 0.786151. Moreover,
suppose that for each principal vertex u ∈ W, at least one of the following holds: s ≤ 0.3202 lfs(u)
or s ≤ 0.3606 lfs(q) for each vertex q of τ, where τ ∈ Ṫ is the restricted Delaunay triangle dual to u
and R is the distance from u to each vertex of τ. Lastly, suppose that every vertex in W has degree
three.

Then |Ṫ | is a topological closed disk with p in its interior. Moreover, there exists an open
neighborhood N ⊂ |Ṫ | of p such that ν|N is a homeomorphism from N to its image ν(N) on Σ.

Proof. By Theorem 49, Vor |ΣS
p is homeomorphic to a closed disk. By Lemma 48, the orthogonal

projection of Vor |ΣS
p onto the tangent space TpΣ is star-shaped.

Choose an arbitrary axis on TpΣ with origin p such that each point in TpΣ \ {p} can be assigned
an angle counterclockwise from the axis in the range [0◦, 360◦). The rotary direction deemed
“counterclockwise” is consistent with p’s orientation. For convenience, we use a rotary equivalence
class of angles in which θ and θ+360◦ denote the same angle; so, for instance, the range [350◦, 370◦]
denotes a 20◦ interval of angles, proceeding counterclockwise from 350◦ and stopping at 10◦. We
extend these assigned angles to R3: we assign any point in R3 the same angle as its orthogonal
projection onto TpΣ, unless the projected point is p (in which case its angle is undefined). The
star-shaped property implies that no two principal vertices of Vor |ΣS

p have the same angle, and that
the principal vertices of Vor |ΣS

p sorted by increasing angle match their counterclockwise ordering
around the boundary of Vor |ΣS

p.
Each Voronoi vertex u of Vor |Σ̃ p has a dual triangle τ ∈ Ṫ such that, by Theorem 57, ν|τ is an

orientation-preserving homeomorphism from τ to ν(τ) and p’s normal segment `p is not parallel
to τ. Therefore, there is an angle ψ > 0◦ such that ∠(np, nτ) ≤ 90◦ − ψ for every τ ∈ Ṫ . For any
τ ∈ Ṫ , let τ̄ be the orthogonal projection of τ onto TpΣ, and observe that τ̄ is also a triangle with
straight edges. As ∠(np, nτ) < 90◦, if the vertices p, p′, and p′′ of τ occur in counterclockwise order
around the boundary of τ, then their projections p̄, p̄′, and p̄′′ on TpΣ occur in counterclockwise
order around the boundary of τ̄. (Intuitively, projecting τ onto TpΣ does not “invert” the triangle.)
If the angle assigned to p′ and p̄′ (both angles are the same) is φ, then the angle of p′′ and p̄′′ is
φ + ∠ p̄′′ p̄p̄′, where ∠ p̄′′ p̄ p̄′ ∈ (0◦, 180◦).

These facts hold not only for TpΣ, but also if TpΣ is replaced by any plane whose normal vector
n satisfies ∠(n, np) < ψ, because any such n also satisfies ∠(n, nτ) < 90◦ for every τ ∈ Ṫ .

Hence the counterclockwise ordering of the principal vertices around Vor |ΣS
p implies a counter-

clockwise ordering of the corresponding projected triangles around p. However, it does not imply
that the triangles wind only once around p; we must eliminate the possibility that the triangles wind
around p two or more times.

Observe that if a restricted Voronoi vertex u is assigned an angle θ, the range of angles spanned
by its dual restricted Delaunay triangle τ cannot include θ + 180◦, because if it did, the sphere with
center u that passes through p could not enclose τ. Let θ0, θ1, . . . , θ j−1 be the sorted angles of the
j restricted Voronoi vertices on the boundary of Vor |Σ̃ p. For each such angle θi, let φi and φi+1

(where the subscript i + 1 is interpreted modulo j) be the angles of the vertices (except p) of the
corresponding dual restricted Delaunay triangle. For the triangles in Ṫ to wind around p two or
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more times, there must be an i such that θi + 180◦ ∈ [φi, φi+1]. As this is impossible, the triangles
wind around p only once.

Each projected triangle is confined to its own range of angles [φi, φi+1], and the only points it
shares with other triangles lie on the shared edges at angles φi and φi+1 and on the shared vertex p.
Therefore, the projection of |Ṫ | onto TpΣ is an injection, and |Ṫ | is a topological closed disk with p
in its interior.

To show that ν restricted to some open neighborhood N ⊂ |Ṫ | of p is a homeomorphism, we
take advantage of the fact that for every plane Π whose normal vector n satisfies ∠(n, np) < ψ,
the orthogonal projection of |Ṫ | onto Π is an injection. Therefore, every line ` ⊂ R3 such that
∠(`, np) < ψ intersects |Ṫ | in at most one point. We choose N = |Ṫ | ∩ B where B is an open
ball centered at p and small enough that for every point q ∈ ν(N), ∠(nq, np) < ψ. A sufficiently
small ball satisfies this condition, because ν is continuous over |Ṫ | and nq is continuous for q ∈ Σ,
so their composition is continuous. The condition guarantees that ν|N is injective; hence ν|N is a
bijection from N to ν(N). As ν|N is continuous and has a continuous inverse over ν(N), ν|N is a
homeomorphism from N to ν(N). �

Lemma 63. Consider Vor |Σ̃V , where Σ ⊂ R3 is a smooth 2-manifold without boundary and V ⊂ Σ

is a nonempty, finite sample. Suppose that for every site p ∈ V and every point x ∈ Vor |ΣS
p,

|px| < ξ lfs(p), where ξ =

√
(
√

5 − 1)/2 � 0.786151. Moreover, suppose that for every principal
vertex u ∈ Vor |Σ̃V , at least one of the following holds: u is a principal vertex and s ≤ 0.3202 lfs(u),
or s ≤ 0.3606 lfs(v), where τ is the restricted Delaunay triangle dual to u, R is the distance from u
to each vertex of τ, and v is the vertex of τ at τ’s largest plane angle. Suppose that every restricted
Voronoi vertex of Vor |Σ̃V has degree three. Then the nearest point map ν : |Del |Σ̃V | → Σ is an
injection.

Proof. Suppose for the sake of contradiction that there are two distinct points x, y ∈ |Del |Σ̃V |
such that ν(x) = ν(y). By Corollary 51, there are at least six sites on each connected component
of Σ, so there are at least two restricted Voronoi vertices in each restricted Voronoi cell; hence
every restricted Delaunay vertex and every restricted Delaunay edge is a subset of some restricted
Delaunay triangle. It follows that x lies on some restricted Delaunay triangle, and likewise for y.

Let T be the set of triangles in the restricted Delaunay triangulation Del |Σ̃V . Let τx, τy ∈ T be
triangles containing x and y, respectively. Theorem 57 implies that no triangle in T contains both
x and y; one implication is that τx , τy. By Corollary 53, no site intersects ν(τx) except the three
vertices of τx; hence y is not a site. Symmetrically, x is not a site.

Let p be a vertex of τx not shared by τy. Let Tp ⊂ T be the set of restricted Delaunay triangles
that have p for a vertex (including τx). Let γ ⊂ ν(τx) be a directed path on Σ from ν(x) = ν(y) to
p such that γ \ {ν(x), p} lies in the relative interior of ν(τx). By Lemma 62, there exists an open
neighborhood N ⊂ |Tp| of p such that the nearest point map ν|N is a homeomorphism from N to its
image ν(N) on Σ. By Corollary 53, p does not intersect ν(τ) for any restricted Delaunay triangle
τ ∈ T \Tp, so we can assume without loss of generality that N is sufficiently small that ν(N) does not
intersect ν(τ) for any triangle τ ∈ T \ Tp. Let w ∈ τx be a point such that ν(w) ∈ γ ∩ ν(N) \ {ν(x), p}.
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Observe that w is in the relative interior of τx, because γ \ {ν(x), p} is a subset of the relative interior
of ν(τx).

Let T¬x = T \ {τx}, the set containing all the restricted Delaunay triangles except τx. We claim
that there is a point w′ ∈ |T¬x| such that ν(w′) = ν(w). We establish the claim with essentially
the same method used to prove Lemma 61. Suppose for the sake of contradicting this claim that
ν(w) < ν(|T¬x|). Observe that the path γ starts at ν(y), which is a subset of ν(|T¬x|) because τy ∈ T¬x.
Hence there exists a point z ∈ |T¬x| such that γ leaves ν(|T¬x|) at ν(z) for the last time before reaching
ν(w). Let τ1 ∈ T¬x be a triangle that contains z. As γ leaves ν(|T¬x|) at ν(z), γ leaves ν(τ1) at ν(z), so
z lies on the relative interior of an edge e′ of τ1. Let e be the restricted Voronoi edge dual to e′. One
of e’s vertices is dual to τ1; let τ2 ∈ T be the restricted Delaunay triangle dual to the other vertex.
As ν(z) lies on γ in the relative interior of ν(τx) and ν(z) also lies on ν(e′), e′ is not an edge of τx.
Therefore, τ2 , τx and τ2 ∈ T¬x. By Lemma 60, there is an open neighborhood Nz ⊂ τ1 ∪ τ2 of z
such that ν(Nz) is a neighborhood of ν(z) that is open with respect to Σ. Therefore, where the path γ
leaves ν(τ1) for the last time at ν(z), γ remains in ν(Nz) a little further, so it enters the interior of
ν(τ2). This contradicts the fact that γ leaves ν(|T¬x|) for the last time at ν(z). Hence, ν(w) ∈ ν(|T¬x|);
that is, there is a triangle τw′ ∈ T¬x and a point w′ ∈ τw′ such that ν(w′) = ν(w).

As ν(w′) ∈ ν(N) ∩ ν(τw′) and ν(N) does not intersect ν(τ) for any restricted Delaunay triangle
τ < Tp, τw′ ∈ Tp. But τw′ , τx. The triangles in Tp intersect only at p and along their shared
edges (because they are triangles in a three-dimensional Delaunay triangulation), so τw′ does not
intersect the relative interior of τx. As w′ ∈ τw′ and w is in the relative interior of τx, w′ , w.
Hence there exist two distinct points w,w′ ∈ N such that ν(w) = ν(w′), contradicting the fact that
ν|N is a homeomorphism. By this contradiction, we conclude that there are no two distinct points
x, y ∈ |Del |Σ̃V | such that ν(x) = ν(y), and therefore ν : |Del |Σ̃V | → Σ is an injection. �

Theorem 64. Consider Vor |Σ̃V , where Σ ⊂ R3 is a smooth 2-manifold without boundary and V ⊂ Σ

is a nonempty, finite sample. Suppose that for every site p ∈ V and every point x ∈ Vor |ΣS
p,

|px| < ξ lfs(p), where ξ =

√
(
√

5 − 1)/2 � 0.786151. Suppose that every restricted Voronoi
vertex in Vor |Σ̃V has degree three. Moreover, suppose that for every principal vertex u ∈ Vor |Σ̃V ,
R ≤ 0.3202 lfs(u), and for every secondary vertex u ∈ Vor |Σ̃V , u’s dual restricted Delaunay triangle
τ satisfies R ≤ 0.3606 lfs(q) for each vertex q of τ, where R is the distance from u to each vertex of
τ. Then the nearest point map ν : |Del |Σ̃V | → Σ is a homeomorphism.

Proof. By Lemma 61, ν : |Del |Σ̃V | → Σ is a surjection. By Lemma 63, it is an injection too. Hence
it has an inverse defined over Σ. Both the nearest point map and its inverse are continuous, so it is a
homeomorphism. �

This brings us to our main result, Theorem 23. Recall its statement:
Let V be a constrained ε-sample of (Σ, S ,Z) for some ε ≤ 0.3202. Suppose that for every

segment pq ∈ S , |pq| ≤ 0.3368 lfs(p). Suppose that every extended Voronoi vertex in Vor |Σ̃V has
degree three. Suppose that for every extended Voronoi vertex that lies on an extrusion, its dual
restricted Delaunay triangle satisfies r ≤ 0.3606 lfs(v), where r is τ’s circumradius and v is the vertex
of τ at τ’s largest plane angle. Then the nearest point map ν : |Del |Σ̃V | → Σ is a homeomorphism.
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Proof. For every point x ∈ ΣS , the nearest site p ∈ V satisfies |px| ≤ 0.3202 lfs(x) by the definition
of constrained ε-sample. By the Feature Translation Lemma (Lemma 38), |px| ≤ 0.3202/(1 −
0.3202) lfs(p) < 0.48 lfs(p). Therefore, for every site p ∈ V and every point x ∈ Vor |ΣS

p, |px| <
ξ lfs(p), satisfying one of the conditions of Theorem 64.

Let u ∈ Vor |Σ̃V be a restricted Voronoi vertex and let τ ∈ Del |Σ̃V be the restricted Delaunay
triangle dual to u. If u lies on the principal surface ΣS , let s be the distance from u to any vertex
of τ. As τ’s vertices are the sites closest to u (that are visible from u), for every vertex q of τ,
s = |qu| < 0.3202 lfs(u), which satisfies a condition of Theorem 64. If u lies on an extrusion,
let r be τ’s circumradius and let v be the vertex of τ at τ’s largest plane angle. By assumption,
r ≤ 0.3606 lfs(v), which satisfies the remaining condition of Theorem 64.

By Theorem 64, ν : |Del |Σ̃V | → Σ is a homeomorphism. �
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Appendix B

Proofs for Chapter 5

B.1 Proof of Theorem 35
The proof of Theorem 35 is the combination of the following lemmas.

Lemma 65. Let w ∈ Rd be any vector and let w‖ be the orthogonal projection of w onto rowspace(X).
Then, for the objective function

L2(X, y; w) =
1
2
‖Xw − y‖22 + ε‖w‖2‖Xw − y‖1 +

ε2n
2
‖w‖22.

we have that L2(X, y; w) ≥ L2(X, y; w‖), with equality if and only if w = w‖. Hence for any optimal
solution w∗ of L2, w∗ ∈ rowspace(X).

Proof. Let w = w‖ + w⊥ be any vector Rd where w‖ ∈ rowspace(X) and w⊥ ∈ nullspace(X).

L2(X, y; w) =
1
2
‖Xw − y‖22 + ε‖w‖2‖Xw − y‖1 +

ε2n
2
‖w‖22

=
1
2
‖X(w‖ + w⊥) − y‖22 + ε‖w‖ + w⊥‖2‖X(w‖ + w⊥) − y‖1 +

ε2n
2
‖w‖ + w⊥‖22

=
1
2
‖Xw‖ − y‖22 + ε‖w‖ + w⊥‖2‖Xw‖ − y‖1 +

ε2n
2
‖w‖ + w⊥‖22

=
1
2
‖Xw‖ − y‖22 + ε

√
‖w‖‖22 + ‖w⊥‖22‖Xw‖ − y‖1 +

ε2n
2

(
‖w‖‖22 + ‖w⊥‖22

)
≥

1
2
‖Xw‖ − y‖22 + ε‖w‖‖2‖Xw‖ − y‖1 +

ε2n
2
‖w‖‖22

with equality if and only if ‖w⊥‖ = 0. The third equality follows from the fact that w⊥ is in
nullspace(X), the fourth from the fact that w‖ ⊥ w⊥. This proves the first statement. The second
statement regarding w∗ follows immediately. �
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Lemma 66. Let C ∈ H be a convex cell with signature s. The restriction of L2 to the interior of
C, denoted L2|IntC, is a convex function. Furthermore, if s , −y then L2|IntC is a strongly convex
function.

Suppose that s = −y, meaning that C contains the origin. There are four possible cases, three of
which depend on the value of ε.

1. If Xw = y is an inconsistent system, then L2|IntC is a strongly convex function.

2. If Xw = y is a consistent system and ε ∈ (0, 1
‖X†y‖2

) then L2|IntC is a convex function. Specifi-
cally, L|IntC is convex but not strongly convex along two line segments both of which have one
endpoint at the origin and terminate at X†y ± u for some u ∈ nullspace(X) respectively. The
gradient at every point on these line segments is nonzero, and so the optimal solution is found
in the rowspace(X) at a point of strong convexity.

3. If Xw = y is a consistent system and ε = 1
‖X†y‖2

, then L2|IntC is a convex function. Specifically
L|IntC is convex but not strongly convex along a single line segment with one endpoint at the
origin and the other endpoint at X†y. The optimal solution may lie along this line.

4. If Xw = y is a consistent system and ε > 1
‖X†y‖2

, then L2|IntC is a strongly convex function.

Proof. Let C be any cell in the hyperplane arrangement induced by ‖Xw − y‖1 and let s ∈ ±1n

denote the signature of C. We will show that the Hessian matrix within C is positive semi-definite.
The Hessian matrix H(w) at a point w ∈ IntC is

X>X+
ε

‖w‖2

(
X>sw> + ws>X

)
+
ε2n
‖w‖22

ww>−
ε

‖w‖32
s>(Xw−y+ε‖w‖2s)ww>+

ε

‖w‖2
s>(Xw−y+ε‖w‖2s)I.

This form of the Hessian comes from twice differentiating Equation 5.15 and is equivalent to twice
differentiating Equation 5.16. Note that it is crucial in the third term that the sign function is always
±1 and not defined as 0 when the input is 0; this is from where the factor of n is derived. At a high
level, we examine the curvature induced by H(w) in each unit direction v ∈ Sd−1 at w and show
that it is everywhere non-negative. It is worth taking a moment to examine how each term of H(w)
affects the curvature of the objective at w.

The term X>X is a positive semi-definite matrix and induces a quadratic form with positive
curvature in each eigen-direction whose corresponding eigenvalue is positive, and zero curvature in
every eigen-direction corresponding to a zero eigenvalue.

The term 1
‖w‖2

(
X>sw> + ws>X

)
is a sum of outer-product matrices. Note that this matrix is

symmetric, since (X>sw>)> = ws>X. This matrix has a (d−2)-dimensional nullspace, corresponding
to the intersection nullspace(w) ∩ nullspace(X>s). On the 2-dimensional subspace spanned by
{ w
‖w‖2

, X>s}, and with respect to that basis, the outer-product has the matrix( w
‖w‖2
· X>s w

‖w‖2
· w
‖w‖2

X>s · X>s w
‖w‖2
· X>s

)
.
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The eigenvalues, within this subspace, are

w
‖w‖2

· (X>s) ±

√(
w
‖w‖2

·
w
‖w‖2

)
((X>s) · (X>s)) =

w
‖w‖2

· (X>s) ± ‖X>s‖2.

By triangle inequality, one of these eigenvalues is always positive while the other is always negative.
Thus there is one direction of positive curvature and one direction of negative curvature. The
eigenvectors are

1√
1 + ‖X>s‖22

X>s ±
‖X>s‖2√

1 + ‖X>s‖22

w
‖w‖2

.

The term ε2n
‖w‖22

ww> induces positive curvature in the direction w with eigenvalue ε2n and 0
curvature in every direction orthogonal to w.

The term − ε
‖w‖32

s>(Xw − y + ε‖w‖2s)ww> induces negative curvature in the direction w with
eigenvalue − ε

‖w‖2
s>(Xw − y + ε‖w‖2s). However the negative curvature in the direction w is exactly

undone by the positive curvature induced by the term ε
‖w‖2

s>(Xw − y + ε‖w‖2s)I which induces
positive curvature in every direction with eigenvalues all equal to ε

‖w‖2
s>(Xw − y + ε‖w‖2s). The

result of the sum of these two terms is a quadratic form which induces 0 curvature in the direction w
and positive curvature in every direction orthogonal to w with eigenvalue ε

‖w‖2
s>(Xw − y + ε‖w‖2s).

Note that the value ε
‖w‖2

s>(Xw − y + ε‖w‖2s) is positive by definition, since w is in the convex cell
with signature s, and so

ε

‖w‖2
s>(Xw − y + ε‖w‖2s) =

ε

‖w‖2
(‖Xw − y‖1 + ε‖w‖2n) > 0.

Let v ∈ Sd−1 be a unit vector. The curvature in the direction v is proportional (with positive
constant of proportionality) to

v>H(w)v = v>X>Xv +
ε

‖w‖2

(
v>(X>sw> + ws>X)v

)
+
ε2n
‖w‖22

v>ww>v

−
ε

‖w‖32
s>(Xw − y + ε‖w‖2s)v>ww>v +

ε

‖w‖2
s>(Xw − y + ε‖w‖2s)v>v

= ‖Xv‖22 +
2ε
‖w‖2

(w>v)(s>Xv) +
ε2n
‖w‖22

(w>v)2 + ε

(
‖Xw − y‖1
‖w‖2

+ εn
) 1 − (

w
‖w‖2

· v
)2

= ‖Xv‖22 +
2ε
√

n
‖w‖2

(w>v)‖Xv‖2 cosϕ +
ε2n
‖w‖22

(w>v)2︸                                                        ︷︷                                                        ︸
term 1

+ ε

(
‖Xw − y‖1
‖w‖2

+ εn
) (

1 − cos2 θ
)

︸                                   ︷︷                                   ︸
term 2

where ϕ = ∠(s, Xv) and θ = ∠(w, v). It’s easy to see that term 2 is always greater than or equal to 0,
since cos2 θ ∈ [0, 1], with equality when cos2 θ = 1. By the quadratic formula, term 1 is also always
greater than or equal to 0, with equality when cosϕ = ±1 and sign(cosϕ) , sign(w>v); otherwise
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the zeros given by the quadratic formula have an imaginary component that depends on sinϕ. Thus,
at this point, we see that H(w) is at least positive semi-definite in IntC.

We wish to derive under which conditions this inequality is strict, implying that H(w) is positive-
definite in C. First we will show that if w is in a cell of the hyperplane arrangement whose signature
is s , −y, then H(w) is positive definite. The conditions which must be true for v>H(w)v = 0 imply
that s = −y; w must be in the cell that contains the origin.

For v>H(w)v = 0 we need both term 1 and term 2 to be equal to 0. Term 2 is equal to 0 if and
only if cos θ = ±1, which implies that v ‖ w. Since v is a unit vector, we have v = ± w

‖w‖2
. For term 1

to be equal to 0 we need cosϕ = ±1 and sign(cosϕ) , sign(w>v). The first of these two conditions
implies that s ‖ Xv. Suppose that v = w

‖w‖2
; then Xv = −αs for some α > 0. So we have that

Xv
‖Xv‖2

= −
s
‖s‖2

Xw
‖Xw‖2

=

Xw = −
‖Xw‖2
‖s‖2

s

x>i w = −
‖Xw‖2
‖s‖2

si

Now, w ∈ C, which implies that sign(x>i w − yi) = si. If si = 1, then

x>i w − yi > 0
x>i w > yi

−
‖Xw‖2
‖s‖2

si > yi

0 > −
‖Xw‖2
‖s‖2

si > yi

which implies that yi = −1. The case where si = −1 is similar, as is the case where v = − w
‖w‖2

. All
together, we have that s = −y.

Thus the necessary (not sufficient) conditions for v>H(w)v = 0 can only be satisfied if s = −y.
If s , −y then H(w) is defined and positive-definite everywhere in IntC.

We now turn our attention toward a necessary condition, which when combined with our other
necessary conditions, give a set of sufficient conditions for H(w) to be positive semi-definite but not
positive-definite. Suppose that cos θ = ±1, cosϕ = ±1 and sign(cosϕ) , sign(w>v). By the above
discussion s = −y. Suppose v = w

‖w‖2
and, thus, cosϕ = −1. Under these conditions we have that
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v>H(w)v = ‖Xv‖22 −
2ε
√

n
‖w‖2

(w>v)‖Xv‖2 +
ε2n
‖w‖22

(w>v)2 + ε

(
‖Xw − y‖1
‖w‖2

+ εn
) (

1 − cos2 θ
)

=

(
‖Xv‖2 −

ε
√

n
‖w‖2

w>v
)2

=
(
‖Xv‖2 − ε

√
n
)2
.

Note that when any one of the conditions detailed in the previous paragraph do not hold, the first
equality is instead a lower bound on v>H(w)v. From this we see that the final necessary condition
for v>H(w)v = 0 is for ‖Xv‖2 = ε

√
n. Since cosϕ = −1, we must have Xv = −εs = εy which

implies v = εX†y + u for u ∈ nullspace(X). Recall that v is a unit vector, so ‖v‖22 = ‖εX†y + u‖22 =

ε2‖X†y‖22 + ‖u‖22 = 1, from which it follows that ε =

√
1−‖u‖22
‖X†y‖2

.

The relationship ε =

√
1−‖u‖22
‖X†y‖2

gives three intervals for ε in which the curvature of L2 behaves
qualitatively differently. For ε ∈ (0, 1/‖X†y‖2) the equation has two solutions ±u in the nullspace(X)
with ‖u‖2 < 1. Since w ‖ v this ray of 0 curvature lies outside of rowspace(X), and, by Lemma 65,
the gradient cannot be 0 along this ray. For ε = 1/‖X†y‖2, the solution is given by u = 0 and so there
is a single ray in the direction of X†y in the rowspace(X). This ray is parameterized by αX†y for
α ∈ (0, 1). The gradient may or may not be zero along this ray. Finally for ε > 1/‖X†y‖2 there is no
solution to the relationship and L2 is strongly convex within C with signature s = −y.

Before concluding we must address the fact that the Hessian H is not defined at w = 0. Let {Oi}i

be the set of 2d closed orthants of Rd. We further subdivide C with signature s = −y as Ci = C ∩ Oi.
Within the relative interiors of each Ci, L2|Int Ci is twice differentiable everywhere with Hessian as
described above. Thus L2|Int Ci is convex for all i.

Let w ∈ BdCi ∩ IntC and w , 0. Then the subdifferential ∂L2|Ci(w) is nonempty and, in
particular, contains the gradient ∇L2(w), which is defined at w since w ∈ IntC and w , 0. The
intersection ∂L2|Ci(w) ∩ ∂L2|C j(w) = {∇L2(w)} for w ∈ BdCi ∩ BdC j ∩ IntC, since L2 is actually
differentiable at w.

Now let w ∈ IntCi and w′ ∈ IntC j for i , j and such that the line segment ww′ does not intersect
the origin in its relative interior. Further suppose that Ci and C j are adjacent along the line segment
ww′, meaning that there is a single point w′′ at which the line segment ww′ leaves IntCi and enters
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IntC j. Note that w,w′′,w′ are collinear. Then

〈∇L2(w),w′ − w〉 = 〈∇L2(w),w′ − w′′〉 + 〈∇L2(w),w′′ − w〉

=
‖w′′ − w‖2
‖w′ − w′′‖2

〈∇L2(w),w′′ − w〉 + 〈∇L2(w),w′′ − w〉

≤
‖w′′ − w‖2
‖w′ − w′′‖2

〈∇L2(w′′),w′′ − w〉 + 〈∇L2(w),w′′ − w〉

= 〈∇L2(w′′),w′ − w′′〉 + 〈∇L2(w),w′′ − w〉
≤ L2|IntC j(w

′) − L2|IntC j(w
′′) +L2|IntCi(w

′′) − L2|IntCi(w)
= L2|IntC j(w

′) − L2|IntCi(w)
= L2(w′) − L2(w).

The second equality follows from collinearity and the first inequality follows from convexity of
L2|IntCi from which we can derive 〈∇L2(w′′) − ∇L2(w),w′′ − w〉 ≥ 0. The remaining steps are
straightforward. This argument can be extended to a line segment ww′ for w and w′ in two cells that
only intersect at the origin in a straightforward manner using induction. Thus it follows that L2|Int C

is convex along ww′. All that remains is the case where ww′ intersects the origin.
Suppose that ww′, parameterized by `(t) = (1 − t)w + tw′ for t ∈ [0, 1], intersects the origin.

Choose any unit vector v such that v is not parallel to ww′. Then consider the perturbed line segment
˜̀(t, ε) = (1 − t)(w + εv) + t(w′ + εv) = `(t) + εv for ε > 0. Let t0 be such that `(t0) = 0. As
ε → 0, ˜̀(t, ε) → `(t) and, in particular, ˜̀(t0, ε) → 0. Since v is not parallel with ww′, ˜̀(t, ε) does
not intersect the origin for ε > 0, and so L2|IntC( ˜̀(t, ε)) ≤ (1 − t)L2|IntC( ˜̀(0, ε)) + tL2|IntC( ˜̀(1, ε)).
Taking ε → 0 convexity follows from continuity of L2|IntC. Note that this approach only applies
when d ≥ 2; however the d = 1 for L2 case is straightforward.

�

Lemma 67. L2 is a convex function. If L2|IntC for C with signature s = −y is a strongly convex
function, then L2 is a strictly convex function. Furthermore transitions between two cells are strictly
convex.

Proof. Let w,w′ ∈ Rd be any two points. The line segment ww′ with endpoints w and w′ is
parameterized by wt = (1 − t)w + tw′ for t ∈ [0, 1]. If ww′ ⊂ IntC for some C then Lemma 66 gives
the results. Suppose that w ∈ C and w′ ∈ C′ are in distinct cells of the hyperplane arrangement and
that ww′ intersect the boundaries of these cells at t1, . . . , tm. This partitions the interval [0, 1] into
m + 1 subintervals [0, t1] ∪ [t1, t2] ∪ . . . ∪ [tm, 1], in each of which the function L2 is convex along
wtiwti+1 by Lemma 66.

Consider the base case where m = 1. The point w1 ∈ C ∩ C
′, where the line segment ww′ leaves

C and enters C′. The facet f = C ∩ C′ is a (d − k)-dimensional facet, where k is the number of
hyperplanes that intersect at w1. Said differently, at w1 the signs of k hyperplane equations x>i w − yi

flip.
Imagine removing these k hyperplanes, then w and w′ lie in the same cell of the induced

hyperplane arrangement, and, by Lemma 66, the objective function L(−k)
2 with these k hyperplanes

removed is convex. (Simply repeat the argument for n − k samples.) Thus we have
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L2(wt1) = L
(−k)
2 (wt1) +

1
2

∑
i

(
〈xi,wt1〉 − yi + ε sign(〈xi,wt1〉 − yi)‖wt1‖2

)2

= L
(−k)
2 (wt1) +

1
2

∑
i

(
ε sign(〈xi,wt1〉 − yi)‖wt1‖2

)2

= L
(−k)
2 (wt1) +

1
2

∑
i

ε2‖wt1‖
2
2

≤ (1 − t1)L(−k)
2 (w) + t1L

(−k)
2 (w′) + (1 − t1)

1
2

∑
i

ε2‖w‖22 + t1
1
2

∑
i

ε2‖w′‖22

< (1 − t1)L(−k)
2 (w) + t1L

(−k)
2 (w′)

+ (1 − t1)
1
2

∑
i

(
(〈xi,w〉 − yi)2 + 2ε‖w‖2 sign(〈xi,w〉 − yi) (〈xi,w〉 − yi) + ε2‖w‖22

)
+ t1

1
2

∑
i

((
〈xi,w′〉 − yi

)2
+ 2ε‖w′‖2 sign(〈xi,w′〉 − yi)

(
〈xi,w′〉 − yi

)
+ ε2‖w′‖22

)
= (1 − t1)L(w) + t1L(w′)

The second equality follows from the crucial fact that, at wt1 , each hyperplane constraint
x>i w − yi = 0. The first inequality follows from the convexity of L(−k)

2 and ‖w‖2. The second
inequality follows from adding strictly positive terms. The final equality follows by definition. With
this fact we are ready to show the convexity of L2 along the entire segment ww′.

L2(wt) ≤

(1 − α(t))L2(w) + α(t)L2(wt1) t ∈ [0, t1]
(1 − β(t))L2(wt1) + β(t)L2(w′) t ∈ [t1, 1]

<

(1 − α(t))L2(w) + α(t) ((1 − t1)L2(w) + t1L2(w′)) t ∈ [0, t1]
(1 − β(t)) ((1 − t1)L2(w) + t1L2(w′)) + β(t)L2(w′) t ∈ [t1, 1]

=

(1 − t)L2(w) + tL2(w′) t ∈ [0, t1]
(1 − t)L2(w) + tL2(w′) t ∈ [t1, 1]

= (1 − t)L2(w) + tL2(w′).

The first inequality follows from the fact that L2 is convex along each sub-segment. The
functions α : [0, t1] → [0, 1], β : [t1, 1] → [0, 1] are the reparameterization functions defined as
α(t) = t

t1
, β(t) = t−t1

1−t1
. The second inequality follows from the statement we proved about L2(wt1).

The final equality follows from the definitions of α, β. Thus L2 is convex along the line segment
ww′ when m = 1.

Repeating the argument inductively gives that L is convex along ww′ for any m. We have proven
that the transitions between cells are strictly convex. When L2 restricted to each cell C is strongly
convex, then the whole function L2 is strictly convex, otherwise L2 is convex. �
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Lemma 68. L2 is subdifferentiable everywhere. Let w ∈ Rd. If w ∈ IntC for some C ∈ H and
w , 0, then L2 is differentiable at w with

∇L2(w) = X>(Xw − y) + ε‖w‖2X>s + ε‖Xw − y‖1
w
‖w‖2

+ ε2nw. (B.1)

If w = 0, then the subdifferential ∂L2(0) is parameterized by replacing w
‖w‖2

in Equation B.1 with
any g such that ‖g‖2 ≤ 1.

Otherwise w ∈ BdC, meaning that w ∈ f for some (d − k)-dimensional face f of C. Let
{i1, . . . , ik} ⊂ [n] be the k indices for which w ∈ hi j (x>i j

w − yi j = 0). The subdifferential ∂L2(w) is
non-empty and is parameterized by every setting of si j ∈ [−1, 1] in Equation B.1.

Proof. By Lemma 67, the epigraph of L2 is a convex set. The Separating Hyperplane Theorem
implies the existence of a supporting hyperplane at every point (w,L2(w)). If w ∈ IntC for some
cell C in the hyperplane arrangement, then L2 is differentiable at w and there is a single supporting
hyperplane at (w,L2(w)). Otherwise, w is on the boundary ∂C of some C, and the existence of a
supporting hyperplane implies the existence of a subgradient of L2 at w.

The gradient of L2, where defined, is

∇L2(w) = X>(Xw − y) + ε‖w‖2X>s + ε‖Xw − y‖1
w
‖w‖2

+ ε2nw.

Suppose that w = 0. Let v ∈ S d−1 be a unit vector and δ > 0 sufficiently small. Then convexity
of L2|Int C for C with signature s = −y (Lemma 66) and a standard limit argument gives

〈−X>y + ε‖y‖1v,w′〉 = lim
δ→0+
〈∇L2(δv),w′ − δv〉

≤ lim
δ→0+
L2(w′) − L2(0)

= L2(w′) − L2(0)

where the inequality holds for all δ > 0 by continuity. Thus v induces a subgradient at w = 0.
Let g be a vector such that ‖g‖2 ≤ 1. g can be written as g = (1−α)v+α(−v) for α = (1−‖g‖2)/2

for subgradients v,−v ∈ ∂L2(0). Since ‖g‖2 ≤ 1, α ∈ [0, 1]. So

〈−X>y + ε‖y‖1g,w′〉 = 〈−X>y + ε‖y‖1 ((1 − α)v + α(−v)) ,w′〉
= (1 − α)

(
〈−X>y + ε‖y‖1v,w′〉

)
+ α

(
〈−X>y + ε‖y‖1(−v),w′〉

)
≤ (1 − α)(L2(w′) − L2(0)) + α(L2(w′) − L2(0))
= L2(w′) − L2(0),

and so g induces a subgradient at w = 0 as well.
To find the subdifferential ∂L2(w) for w , 0, we consider w ∈ f for some (d − k)-dimensional

facet f of C, and proceed by induction over k.
In the base case, k = 1. Since f is (d−1)-dimensional, there is only one tight hyerplane equation

x>i w − yi = 0 at w. Let h = {w ∈ Rd : x>i w − yi = 0} denote the hyperplane and let h+, h− denote the
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halfspaces in which sign(x>i w − yi) = ±1 respectively. The limit of the gradient as approach w by a
sequence in h+ is ∇L2(w) where si = 1; similarly approaching w by a sequence in h− gives ∇L2(w)
where si = −1. These vectors define two supporting hyperplanes of the epigraph at (w,L2(w)).

Note that only ε‖w‖2X>s and ε‖Xw − y‖1 w
‖w‖2

in ∇L2 depend upon s, and when x>i w − yi = 0,
‖Xw − y‖1 is identical regardless of the setting of si, so we need only consider ε‖w‖2X>s. Let
si ∈ [−1, 1], then

ε‖w‖2〈X>s,w′ − w〉 = ε‖w‖2〈

∑
j,i

s jx j

 + sixi,w′ − w〉

= ε‖w‖2

〈∑
j,i

s jx j,w′ − w〉 + 〈sixi,w′ − w〉


= ε‖w‖2

〈∑
j,i

s jx j,w′ − w〉 + (1 − α)〈−xi,w′ − w〉 + α〈xi,w′ − w〉


where α = 1+si

2 . Then we can express ∇L2(w)|si , where si ∈ [−1, 1], as a convex combination of the
terms L2(w)|si=−1,L2(w)|si=1.

〈∇L2(w)|si ,w
′ − w〉 = 〈X>(Xw − y) + ε‖w‖2X>s + ε‖Xw − y‖1

w
‖w‖2

+ ε2nw,w′ − w〉

= 〈X>(Xw − y) + ε‖Xw − y‖1
w
‖w‖2

+ ε2nw,w′ − w〉

+ ε‖w‖2

〈∑
j,i

s jx j,w′ − w〉 + (1 − α)〈−xi,w′ − w〉 + α〈xi,w′ − w〉


= (1 − α)〈∇L2(w)|si=−1,w′ − w〉 + α〈∇L2(w)|si=1,w′ − w〉
≤ (1 − α)

(
L2(w′) − L2(w)

)
+ α

(
L2(w′) − L2(w)

)
= L2(w′) − L2(w)

where the inequality follows from the fact that ∇L2(w)|si=−1,∇L2(w)|si=1 are subgradients. Thus
L2(w)|si is a subgradient for any si ∈ [−1, 1] at w.

Now suppose that w ∈ f is a (d − k)-dimensional facet and the statement holds for all 1 ≤ j < k.
Let {i1, . . . , ik} index the hyperplane equations x>i j

w− yi j = 0 at w. Consider the subset of hyperplane
equations {i1, . . . , ik−1} along which subgradients exist for any setting of si j ∈ [−1, 1] by the inductive
hypothesis. An identical limit argument as above implies the existence of two subgradients at w
with sik = ±1. Then an identical calculation to those above imply that ∇L2(w)|sik

is a subgradient
for any sik ∈ [−1, 1]. Thus at w ∈ f there exists a subdifferential parameterized by si j ∈ [−1, 1] for
every 1 ≤ j ≤ k. �
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Appendix C

Corrections

[93] derive the minimum norm solution using the kernel trick. The optimal solutions wSDG = X>α
where α = K−1y for K = XX>. They compute

Ki j =


4 if i = j and yi = 1
8 if i = j and yi = −1
3 if i , j and yiy j = 1
1 if i , j and yiy j = −1

and positing, correctly, that αi = α+ if yi = 1 and αi = α− if yi = −1 they derive the system of
equations

(3n+ + 1)α+ + n−α− = 1
n+α+ + (3n− + 3)α− = −1

which gives

α+ =
4n− + 3

9n+ + 3n− + 8n+n− + 5
, α− = −

4n+ + 1
9n+ + 3n− + 8n+n− + 5

.

[93] mistakenly dropped the negative in α−. Unfortunately there is an additional minor mistake in
the linear system. The system is derived by computing

(Kα)i =

4αi +
∑

j∈P−i 3α j +
∑

j∈N α j if yi = 1
8αi +

∑
j∈P α j + 3

∑
j∈N−i α j if y j = 1

=

αi +
∑

j∈P 3α j +
∑

j∈N α j if yi = 1
5αi +

∑
j∈P α j + 3

∑
j∈N α j if y j = 1

.

Subtracting equations we reach the conclusion that αi = α+ if yi = 1 and αi = α− if yi = −1. Then
it’s clear that there are really only two equations in this system

(3n+ + 1)α+ + n−α− = 1
n+α+ + (3n− + 5)α− = −1



APPENDIX C. CORRECTIONS 153

which gives

α+ =
4n− + 5

15n+ + 3n− + 8n+n− + 5
, α− = −

4n+ + 1
15n+ + 3n− + 8n+n− + 5

.
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