
QFAST: Quantum Synthesis Using a Hierarchical
Continuous Circuit Space

Abdullah Younis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-53
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-53.html

May 21, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by the DOE under contract DE-5AC02-
05CH11231, through the Office of Advanced Scientific Computing Research
(ASCR) Quantum Algorithms Team and Accelerated Research in Quantum
Computing programs.

QFAST: Quantum Synthesis Using a Hierarchical Continuous Circuit
Space

by Ed Younis

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Katherine Yelick
Research Advisor

(Date)

* * * * * * *

Professor Koushik Sen
Second Reader

(Date)

yelick
Kathy Sig

yelick
Pencil

yelick
Pencil

yelick
Pencil

yelick
Pencil

yelick
Pencil

yelick
Pencil

QFAST: Quantum Synthesis Using a Hierarchical Continuous Circuit Space

Ed Younis
Department of Electrical Engineering and Computer Science

University of California Berkeley
Berkeley, CA

Abstract—We present QFAST, a quantum synthesis tool de-
signed to produce short circuits and to scale well in practice.
Our contributions are: 1) a novel representation of circuits
able to encode placement and topology; 2) a hierarchical ap-
proach with an iterative refinement formulation that combines
“coarse-grained” fast optimization during circuit structure
search with a good, but slower, optimization stage only in
the final circuit instantiation stage. When compared against
state-of-the-art techniques, although not optimal, QFAST can
generate much shorter circuits for “time dependent evolution”
algorithms used by domain scientists. We also show the com-
posability and tunability of our formulation in terms of circuit
depth and running time. For example, we show how to generate
shorter circuits by plugging in the best available third party
synthesis algorithm at a given hierarchy level. Composability
enables portability across chip architectures, which is missing
from the available approaches.

1. Introduction

Quantum computing has the potential to provide trans-
formational societal impact at the decade threshold. As
quantum programming is subtle and with a very steep
learning curve, one of the important prerequisites for success
is the ability to generate programs from high level prob-
lem descriptions. Quantum synthesis (or compilation1) is
perhaps the most powerful approach available to assist in
algorithm discovery, hardware exploration or quantum pro-
gram optimization. Ideally for adoption, synthesis will need
to generate short circuits fast, in a hardware/topology spe-
cialized manner. Synthesis has a distinguished history [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14] but practical adoption has been hampered by perceived
shortcomings in most requirements: 1) generated circuits
are long; 2) algorithms are slow; and 3) techniques are not
topology-aware, hence generate long circuits or are hard to
specialize for a different gate set. In this work we present a
tunable synthesis approach able to generate reasonably short
circuits in time acceptable for practical purposes: our design

This work was done jointly with Koushik Sen, Katherine Yelick, and Costin
Iancu.

1. Originally synthesis was referred to as quantum compiling within the
Quantum Information Science community.

metrics are circuit quality and speed to solution. In order to
make synthesis usable and to enable scientific discovery, we
aim to generate circuits that are shorter than those produced
by state-of-the-art fast techniques [1], [15], [16], [17] while
closer to the depth generated by optimal slow techniques.

Currently, an executable quantum program is described
by a circuit as a space-time evolution of gates/operators on
qubits/wires. This model of computation is likely to survive
for the foreseeable future. Synthesis takes as input a high
level description of the computation as a unitary matrix and
produces a circuit executable on hardware. As programs are
circuits that use hardware resources, the first goal of synthe-
sis is to minimize resource consumption, equated with the
total number of gates or circuit depth. This is true long term,
but even more important in the current (and near-future)
stage where we deploy Noisy Intermmediate-Scale Quantum
devices. NISQ devices are characterized by high error rates,
in particular on multi-qubit operations, and the general ex-
pectation is that running meaningful algorithms will require
a painstaiking depth optimization process to eliminate multi-
qubit operations. For existing superconducting architectures
with two-qubit CNOT gates, our first optimality target is
minimizing their count in the generated circuit. This metric
is exhaustively [15], [18], [19], [20] used by other existing
work. In particular, Davis et al [21] very recently introduced
a technique able to generate minimal length circuits in a
topology-aware manner, but they do so at the expense of
running time. Their approach gives us a first threshold: we
aim to generate circuits faster while close to optimal depth.

The second design criteria for our approach is speed:
we aim to provide a solution within an acceptable and
usable time interval. To our knowledge, the fastest existing
techniques are based on linear algebra matrix decomposition
as illustrated by the work of Iten et al [1], [2], [17]. This
gives us a second threshold: we want to generate circuits
shorter than theirs.

Intuitively, our Quantum Fast Approximate Synthesis
Tool (QFAST) succeeds by embracing and combining the
strengths behind the design principles of these state-of-
the-art synthesis techniques. Fast algorithms employ coarse
grained multi-qubit fixed function building blocks. The only
optimal approach [21] known to work at three qubits or more
uses continuous representations of hardware native gates and
combines numerical optimization with the proven optimal

A* search algorithm. In its attempt to reach optimal depth,
QFAST uses a continuous representation of multi-qubit gen-
eral operators and numerical optimization. In its attempt to
run fast, QFAST tunes the operator granularity in qubits
and instead of combinatorial search it performs a single
combined step of structural and functional optimization.

For a n qubit unitary, the algorithm starts by trying
to determine the structure of a circuit that uses m < n
generic qubit operators using numerical optimization. The
optimization criteria is the “distance” between the solution
and the original unitary matrix. The first stage is decom-
position where the circuit is broken down into m-sized
blocks. At each decomposition level, we first use coarse-
grained optimization called exploration to determine block
placements on qubits, followed by fine-grained optimization
called refinement to finalize the functions computed by each
block. After building a circuit using m qubit blocks, we
expand each block into finer grained blocks. This stops when
we reach two qubit generic gates, where we apply optimal
KAK [22] decomposition. The QFAST program is made
available on GitHub at github.com/edyounis/qfast.

The main contributions of QFAST are:

1) A novel representation of multi-qubit circuits able
to encode placement and topology.

2) A hierarchical approach with a iterative refinement
formulation that combines “coarse-grained” fast op-
timization during circuit structure search with a
good, but slower, optimization stage only in the
final instantiation stage.

3) A composable, retargetable and tunable methdology
able to exploit third party synthesis algorithms at
the qubit granularity deemed necessary for depth
optimality or speed purposes.

QFAST has been evaluated on a collection of circuits
including depth optimal [20] circuits, fixed lengh parame-
terized circuits that appear in VQE [23] and QAOA [24]
formulations and circuits for time dependent Hamiltoni-
ans [25], [26] (TFIM). The results indicate that while sub-
optimal, QFAST scales much better than the optimal syn-
thesis formulation. When compared directly with the state-
of-the-art UniversalQ [17] fast approach based on numerical
decomposition, QFAST is slower but can generate circuits
that are shorter by a factor of 5.7× on average and up to
46.7×. We also show the composability and tunability of
our formulation in terms of circuit depth and running time.
For example, we can plug in at any step of decomposition
the best known optimizer for the given granularity.

Overall we find these results to be very promising and
to bode well for the future adoption of synthesis in the
quantum software development toolkit. In particular, none
of the existing solutions, either synthesis or optimizing
compilers, reduce the depth of VQE and TFIM circuits.
QFAST was able to reduce their depth by a factor of 6.3×
on average and up to 30×. QFAST provides a practical
and tunable approach that generates short enough circuits
in an acceptable amount of time. The composability enables
easy retargeting to architectures with different gate sets. It

is enough to plug in the specialized synthesis module for
small scale, such as a KAK implementation for the given
target.The scalability of our method is likely to be sufficient
for practical impact within the NISQ era forecast.

The rest of this paper is structured as follows. In the next
section, we review the necessary background on quantum
computation. In section 3 we introduce our novel continuous
structure of the circuit space, which we use in the section
4 to build and analyze a synthesis algorithm. We include
an in-depth evaluation of this method compared to both the
UniversalQ and Search Compilers in sections 5. We end with
a discussion in section 6 and comment on related works in
section 7.

2. Background

A qubit is an element of the Hilbert space C2 of 2-
dimensional complex vectors. Typically, a qubit’s state is
represented in Dirac’s notation |ψ〉 which is a column-vector(
a0
a1

)
of C2. We refer to the basis states as |0〉 =

(
1
0

)
and

|1〉 =

(
0
1

)
. The qubit state |ψ〉 =

(
a0
a1

)
can be represented

as |ψ〉 = a0 |0〉+ a1 |1〉 using the basis states. We can join
multiple qubit’s state into one quantum system with an outer
product or tensor product of the states of the individual
qubits. For example, the three qubit state |ψ〉 resulting from
joining the qubits |ψ0〉, |ψ1〉 and |ψ2〉 is |ψ0〉 ⊗ |ψ1〉 ⊗ |ψ2〉
or equivalently |ψ0ψ1ψ2〉. When context is clear we will
refer to multiple qubit states simply by |ψ〉. It follows that
the state space for an n-qubit system is C2n . A pure state
is a state |ψ〉 =

(
a0 a1 . . . a2n−1

)T
that satisfies the

constraint
∑2n

i |ai|2 = 1. Quantum programs operate on
pure states; in the rest of the paper will use the term state
to mean a pure state.

2.1. Quantum Operators

Quantum operators transform a state |ψ〉 to another state
|ψ′〉. Each such operator could be denoted by a unitary 2n×
2n matrix, where n is the number of qubits that the operator
takes as input. Note that a matrix U is unitary if its conjugate
transpose U† is its inverse, i.e. UU† = U†U = I . Some
basic quantum operators are often referred to as gates. The
application of a quantum operator U on a quantum state is
denoted by U |ψ〉. A few examples of common operator are
X,Y, Z,CNOT whose corresponding unitary matrices are
the following:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

A couple of examples applying a gate on a concrete state

and the resulting state is shown below:

X |0〉 =

(
0 1
1 0

)
.

(
1
0

)
=

(
0
1

)
= |1〉

X(a0 |0〉+a1 |1〉) =

(
0 1
1 0

)
.

(
a0
a1

)
=

(
a1
a0

)
= a0 |1〉+a1 |0〉

The X, Y, and Z gates are single qubit Pauli operators
[27]. The controlled-not, CNOT, is an example of a two
qubit gate. CNOT performs an X gate on the second qubit
only if the first qubit is in state |1〉. It is well-known that
every single-qubit operation can be expressed in terms of
the parameterized U3 gate.

U3(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)
sin(θ/2) eiφ+iλ cos(θ/2)

)
2.2. Quantum Programs

A quantum program can be expressed as a single op-
erator on an arbitrary number of qubits, while hardware
implements a very small set of single- and two-qubit2 gates.

A quantum program is a finite sequence of unitary
operators of the form U1

Q1
U2
Q2
. . . UdQd

applied to a system
of qubits. Here UQi

is a unitary operator applied to the
subset of qubits Qi. For example, a quantum program
that prepares a bell state, 1√

2
(|00〉 + |11〉), is given by

{H{0}, CNOT{0,1}}. Graphically, we represent quantum
programs as circuits where the wires represent qubits evolv-
ing through time from left to right. See Figure 1 for an
example.

A quantum program is an operator, so it can be rep-
resented as a unitary matrix. The unitary representation of
a quantum program written as a sequence of gates can be
obtained as follows: First, all gates are lifted to the number
of qubits involved in the program. For example, the single-
qubit gate H{0} in Figure 1 can be lifted to a two-qubit gate
by taking the tensor product of the gate with the identity
gate that is denoted by the 2 × 2 identity matrix I2. That
is the lifted two-qubit gate is H{0} ⊗ I2. The order here
implies that the Hadamard gate (i.e. H{0}), is applied to the
first qubit and the identity or no-op is applied to the second
qubit. Once all gates in the program have been lifted to the
same dimension, the product of the lifted matrices yields
the unitary representation of the program. We will use the
notation Compose(U1

Q1
U2
Q2
. . . UdQd

) to denote the unitary
matrix for the program U1

Q1
U2
Q2
. . . UdQd

.

2.2.1. Distinguishability. Distinguishability is centered on
determining closeness for quantum states or operators. State
fidelity is a measure of similarity between two quantum
states. It will return a probability that one state can pass a
test to identity as the other. Given two quantum pure states,
|ρ〉 and |ψ〉, their state fidelity is defined by | 〈ρ | ψ〉 |2,
where 〈ρ | ψ〉 is the standard inner product between |ρ〉 and

2. Superconducting qubits have two qubit gates currently, trapped ion
qubits can implement small degree all-to-all gates.

Figure 1. A circuit diagram for a Bell State Preparation program. The
qubits, q0 and q1, are both prepared in the |0〉 state. A Hadamard operation
is applied to q0 resulting in q0 being in the |+〉 = 1√

2
(|0〉 + |1〉) state.

This is followed by a controlled-not operation from q0 to q1. The final state
is 1√

2
(|00〉+ |11〉) often referred to as a Bell state.

|ψ〉. A fidelity of 1 corresponds to equal states, where as a
fidelity of 0 corresponds to opposite states.

For distinguishability between quantum operators (or
quantum programs or gates), a measure of unitary distance
is used. Recently, most synthesis tools have been using the
Hilbert-Schmidt inner product to compute closeness [18],
[21]. Given two unitary operations U1 and U2, the Hilbert-
Schmidt inner product is defined as 〈U1, U2〉 = Tr(U†1U2).
Tr here is the matrix trace function which is defined as
Tr(X) =

∑d
i Xii, where X is a d× d matrix.

2.2.2. Synthesis. Given a quantum program as a unitary
matrix U , how can we come up with a quantum program
U1
Q1
U2
Q2
. . . UdQd

such that:

1) each U iQi
is a quantum gate,

2) Compose(U1
Q1
U2
Q2
. . . UdQd

) = U , and
3) d is minimal.
The U iQi

s are picked from a fixed and finite set of
gates. The set of gates are determined by the underlying
hardware. Furthermore, effective synthesis tools produce
short circuits. This is because longer circuits accumulate
more noise resulting in a larger error in the final output.

2.2.3. Topology. Performing quantum operations on hard-
ware can involve more compilation steps than synthesis.
After synthesis, a target quantum operation has been broken
down into a sequence of gates. However, not every two-
qubit operation can be directly executed on the hardware.
The device’s coupling map or topology defines a graph of
qubit interactions, see Figure 3 for an example. The nodes
in this graph represent physical or device qubits, and the
edges represent possible interactions. If a quantum operation
requires a two-qubit gate between two qubits not connected
by an edge, routing operations will need to be inserted to
perform the gate. This process is called mapping and has
significant overhead on circuit depth. However, a synthesis
algorithm can be topology-aware: all gates produced are
directly executable on the device without need for extra
routing operations.

3. Continuous Representation of a Circuit

QFAST relies heavily on the encoding that captures the
application of a unitary to an arbitrary subset of qubits
within a circuit. This uses Pauli matrices and the Lie Group
Structure of U(n), the group of n× n unitary matrices.

3.1. Lie Group Structure of U(n)

The group of U(2) is the Lie group of unitary 2 × 2
matrices. It’s Lie algebra u(2) is the set of 2 × 2 skew-
Hermitian matrices. The Lie algebra u(2) is spanned by the
set {iσi, iσx, iσy, iσz}, where i is the imaginary number,
σi is the 2 × 2 identity matrix, and σx, σy, σz are the
Pauli matrices X,Y, Z, respectively from Section 2. The
infinitesimal generators of U(2) can be given by the set
{iσi, iσx, iσy, iσz}. We are interested in these generators
because any one-qubit operator can be written as the matrix
exponential of a linear combination of the generators:

U(2) = {ei(~α·~σ) | ~α ∈ R4}

In other words, each one-qubit gate can generated by picking
a suitable value for ~α. Alternatively, one can see U(2) as a
parametric representation of any single-qubit gate.

In the following discussion, let ~σ = {σi, σx, σy, σz}.
The construction of U(2) generalizes to the group of 2n×2n

unitary matrices U(2n) as follows. The Lie algebra u(2n)
is the set of 2n × 2n skew-Hermitian matrices. Similarly,
we can generate all 2n × 2n Hermitian matrices with the
nth-order Pauli matrices:

~σ⊗n = {σj ⊗ σk | σj ∈ ~σ, σk ∈ ~σ⊗n−1}

Consequently, we get a similar construction of U(2n):

U(2n) = {ei(~α· ~σ⊗n) | ~α ∈ R4n}

U(2n) provides us a continuous representation of all
quantum operators on n-qubits. While there are many ways
to represent the unitary group, we choose this representation
because of its operational meaning. We can characterize a
quantum operator by its corresponding element in the Lie
algebra u(2n) decomposed in the Pauli basis σ⊗n.

In order to produce a continuous representation of a
circuit, we need to be able to structure gates that are only
applied to a subset of qubits. We can use this idea to quickly
produce n-qubit operators that only act on a subset of the
n-qubits. We simply restrict the elements of the nth-order
Pauli basis to those elements that have σi, the identity
matrix, in all the positions where those qubits should be
left untouched. For example, a two-qubit quantum operator
generated only by σx ⊗ σi acts only on the first qubit.
Furthermore, this operator can be rewritten as a single-qubit
operator generated by σx with the same coefficient:

ei(αx∗(σx⊗σi)) = ei(αx∗σx) ⊗ σi
For another example, suppose we want to produce a

general 4-qubit gate that is applied only to qubits 0 and
2. To accomplish this, we restrict the 4th-order Pauli basis
to those which have σi at positions 1 and 3:

{σiiii, σiixi, σiiyi, σiizi, σxiii, σxixi, σxiyi, σxizi,

σyiii, σyixi, σyiyi, σyizi, σziii, σzixi, σziyi, σzizi}

where we use σjklm to denote σj ⊗ σk ⊗ σl ⊗ σm

These 16 Pauli matrices are a subset of the 4th-order
Pauli matrices. Any operator that is produced by exponen-
tiating a real linear combination of these, after multiplying
i throughout, will only affect qubits 0 and 2. There are 16
real parameters. The operator produced is a 16× 16 unitary
since this was constructed from 4th-order Pauli’s. However,
we can quickly extract the 2-qubit operator by copying the
coefficients similar to the previous example. With this in
mind, we can construct a general n-qubit gate that acts only
on m-qubits where m ≤ n. If we fix the qubits we wish
to operate on, this produces a continuous construction of a
gate on these qubits.

We can now generalize this construct to gates of size
m in an n-qubit system, with m ≤ n. To start, we show
how we can restrict the n-th order Pauli basis. We define
the set P⊗nl , which contains all the nth order Pauli’s with
the identity matrix in the lth position in tensor order:

P⊗nl = {σj ⊗ σi ⊗ σk | σj ∈ ~σ⊗l, σk ∈ ~σ⊗(n−1−l)}

Using this we can restrict the Pauli basis by a set of
qubits Q:

~σ⊗nQ = {σk | σk ∈ ~σ⊗n and ∀j /∈ Q : σk ∈ P⊗nj }

The above notation is parametric with respect to a set
of qubits Q. How can we generalize the construct to any
subset of qubits where the cardinality of each subset is
m? For this we introduce a vector of indicator variables
~l. Exactly one element in the vector should be 1 and the
rest should be 0. If an element, say lQ, of ~l is 1, then we
get a parametric operator that is applied to the qubits in
Q. We can define a continuous, generic gate in terms of
all subsets of m qubits from an n-qubit system using the
indicator variables as follows:

G⊗nm (~α,~l) = e
i
∑
|Q|=m

e
lQ∑
i eli

(~α·~σ⊗n
Q)

Note that the outer sum ranges over all subsets of m-
qubits. G⊗nm (~α,~l) is a 2n×2n unitary matrix that represents
a generic quantum operator affecting only m-qubits. We
apply exponent to each element of ~l so that the space of
values assumed by each element is continuous. G⊗nm (~α,~l)
is parametric with respect to ~α,~l. An assignment to ~α,~l
gives a single instance of a gate operating on a set of m
qubits.

The generic representation of an arbitrary gate can be
generalized to a circuit as follows. All n-qubit circuits com-
posed of d m-qubit gates can be described by the product
of the generic gates:

d∏
i=1

G⊗nm (~α(i),~l(i))

Finally, we introduce another notation which fix the
location of a generic gate by choosing the active qubits Q
and removing the other terms:

F⊗nm (~α,Q) = ei(~α·~σ⊗n
Q)

4. QFAST Hierarchical Synthesis

We propose a hierarchical approach to synthesis that
uses iterative refinement. As low depth is of importance and
best published methods [18], [21], [22], [28] use numerical
optimization we have decided apriori for this formulation.
These techniques build up a circuit layer-by-layer [18], [21],
[22], [28]. At each step, a layer is added using two-qubit
building blocks composed of single- and two- qubit native
gates: single qubit gates are parameterized (e.g. generic U3
gate), but two-qubit gates are non-parameterized functions
(e.g. CNOT). When a layer is added, multiple placements
for a single block are evaluated. The process continues to
the net effect of building a tree of partial solutions, where
each node is a partial solution, each edge is the placement
of an additional building block and each node is evaluated
individually.

The algorithms differ in the structure of the basic build-
ing block and the strategy to expand the partial solution
tree. However, since the basic building blocks are limited
in the function they can perform and multiple placements
need to be evaluated, these algorithms seem to be slow due
to the combinatorial number of evaluated partial solutions.
Exploiting parallelism in walking the tree has been explored
as a solution to improve execution time, but a more intrinsic
scalability challenge may still remain. As any partial solu-
tion can be the final solution, a very stringent numerical
optimization is employed at each step: the constraint is that
each partial solution has to be numerically optimized with
a minuscule distance from target. Rephrased in Quantum
Information Science (QIS) terminology, at each step they
attempt to make the partial solution indistinguishable from
the target. This is compounded by the fact that the search
may descend very deep in the tree before backtracking or
moving laterally in a “breadth-first” direction. Deep partial
solutions have a large number of parameters and work is
wasted if backtracking or “lateral” (breadth-first) moves
occur.

QFAST tries to address these shortcomings through very
simple intuitive principles:

1) As small two-qubit building blocks may lack “com-
putational power”, we use generic blocks spanning
a configurable number of qubits.

2) As the number of partial solutions and their evalua-
tion may hamper scalability, we conflate the numer-
ical optimization and frontier expansion. At each
step, the circuit is expanded by one layer. Given
a n qubit circuit, a layer encodes an “arbitrary”
operation on any m qubits, with m < n. Thus, our
formulation solves only O(d) optimization prob-
lems, where d is the solution depth. Note that dur-
ing this process, once a block is placed at a certain

depth, the algorithm has the liberty of choosing and
reassigning the subset of qubits it operates on. We
refer to this stage as decomposition.

3) As numerical optimization speed is proportional
with the “quality” of the solution, we built the
algorithm to solve less constrained problems. This
translates into having most of each decomposition
step look for a “large” value for the distance to
solution. This computes an approximation of the
structure and the depth of circuit that gets close
enough to the solution. This results in easier and
faster-to-solve problems for optimizers. Once struc-
ture is fixed, we then refine the “function” and
attempt optimization with a stringent distance.

4.1. QFAST Algorithm

Starting with a n qubit unitary, the algorithm breaks
down a unitary into a product of smaller unitaries in a
hierarchical manner. It starts by solving for a circuit in
terms of n

2 -qubit operators, G⊗nn
2

. Then it expands each n
2 -

qubit operator into n
4 -qubit operators, and so on. During

this decomposition process, we maintain the association
between blocks and qubits. Decomposition produces circuits
composed of generic building blocks. At some point, the
algorithm has to switch into a mode where these blocks
are further specialized using single- and two-qubit gates
native to the quantum processor. This stage is referred to
as instantiation. In instantiation, all the generated “small”
blocks are transformed into circuits composed of native
gates directly executable on the quantum processor. The
final stage, recombination stitches all the executable blocks,
walking back the hierarchy generated during decomposition
and places the native gates on right qubits at the right time
sequence.

Algorithm 1 QFAST Algorithm

Input: Ut ∈ C2
n×2n ,K

Output: P
Variables: Ut target unitary, K the native synthesis tool, P
quantum program

1: k ← native block size(K)
2: A,LF ← Decomposition(Ut, k)
3: (P (i))di=1 ← Instantiation(A,K)
4: P ← Recombination((P)i0, LF)
5: return P

4.1.1. Decomposition. Decomposition expans the circuit
into smaller blocks layer by layer, until its distance is close
enough to the target input unitary. This decomposition phase
works by first exploring circuit structure and then, once
a candidate solution is found, refining the result. This is
done hierarchically until the block sizes are small enough
for instantiation.

Exploration is responsible for the growing of the circuit.
This determines an initial structure and function. Each invo-
cation of exploration starts with the result from the previous

L1

expansion

L1 L1 L2 L1 L2 L1 L2

expansion Refinement

Figure 2. An example walk though of QFAST’s decomposition stage. Initially, the empty circuit is expanded to the first generic gate. Here there are 6
qubits, and the target block size is 3. The first invocation of an optimization initializes parameters for the gate, and then the second expansion occurs.
Again the optimizer is invoked on the entire circuit initializing the variables. Once a candidate solution is found, refinement fixes the location of the
generics, producing F-type gates, and reducing the final solution distance.

Algorithm 2 Decomposition

Input: Ut ∈ C2
n×2n , k

Output: A = (~α(i))di=1, Lf = (Q(i))di=1
Variables: A list of gate’s function values, Lf list of fixed
locations

1: blocks ← {(Ut, {1..n})}
2: while ∃b ∈ blocks s.t. sizeof(b) > k do
3: new blocks ← {}
4: for all b ∈ blocks do
5: m← decomposition size(b)
6: A,L← exploration(fst(b),m)
7: Lf ← fix locations(L)
8: A← refinement(fst(b),m,A,Lf)

9: (U (i))d
‘

i=1 ← convert to unitary(A)

10: (Q(i))d
‘

i=1 ← compose locations(snd(b), Lf)

11: new blocks ← zip((U (i))d
‘

i=1, (Q
(i))d

‘

i=1)
12: end for
13: blocks ← new blocks
14: end while

invocation with an additional unbound operator G⊗nm and
tries to solve for all variables. This is how we conflate search
for structure and function3 with numerical optimization.
Refinement is responsible for reducing the distance to a final
acceptable level.

4.1.2. Exploration. In exploration we instantiate an opti-
mizer with a large learning rate. This serves an important
purpose. At this stage both structure and function are un-
determined and we need to solve an optimization problem
with a large number of parameters. A fast moving opti-
mizer will quickly search over many possible configura-
tions. Furthermore, having a coarse success criteria reduces
execution time. A candidate solution can then be sent to

3. In this case, structure means the application of gates to qubits, rather
than the values of our parameters.

refinement to be made acceptable. The target criteria or
distance exploration_distance is a customizable parameter
that is optimizer specific.

Algorithm 3 Exploration

Input: Ut ∈ C2
n×2n ,m

Output: A = (~α(i))di=1, L = (~l(i))di=1
Variables: A list of gate’s function values, L list of gate’s
location values

1: d← 0 . Initialize empty circuit
2: A← ()
3: L← ()
4: while True do
5: d← d+ 1 . Expansion
6: A,L← add layer(A,L))
7: while True do
8: loss← ∆(

∏d
i=1G

⊗n
m (~α(i),~l(i)), Ut)

9: A,L← Minimizer(loss)
10: if loss ≤ exploration distance then
11: return A, L
12: else if plateau then
13: Break
14: end if
15: end while
16: end while

During exploration, optimizer progress is of concern and
we need to preclude performing a large number of iterations
that do not improve the quality of the solution. Every 20
optimizer steps we record the value of the loss function. If
the last 100 recorded loss values haven’t changed much, we
determine that we have plateaued and stop the optimizer. We
record the values of all variables, add another layer of gates
to the circuit and reinstantiate the variables we have seen
with the values recorded. This process is done in a loop until
we observe a loss value below the exploration_distance.
At this point we refine the circuit.

4.1.3. Refinement. Exploration produces a sequence of
G⊗nm ’s and produces the numerical value of all parameters.
Their solutions are numerically instantiated for both func-
tion and structure. On the other hand, due to the coarse
criteria, the function is just a coarse approximation of the
target computation. Thus, we need to further refine our
result to provide a more acceptable error/distance value. To
accomplish this, we use the F⊗nm encoding of the circuit.
The structure parameters are seeded and fixed using the
exploration numerical result. We then pass the circuit back
into the optimizer with a much smaller learning rate. The
optimizer is now enabled to refine the solution down to a
much lower distance, denoted by refinement distance.

Algorithm 4 Refinement

Input: Ut ∈ C2
n×2n ,m,A,Lf

Output: A = (~α(i))di=1
Variables: A list of gate’s function values, Lf list of fixed
locations

1: while True do
2: loss← ∆(

∏d
i=1 F

⊗n
m (~α(i), Q(i)), Ut)

3: A← Minimizer(loss)
4: if loss ≤ refinement distance or plateau then
5: return A
6: end if
7: end while

4.1.4. Instantiation. The decomposition stage produces a
candidate circuit composed of generic blocks. While these
can perform any computation, they are not directly exe-
cutable on hardware. Thus, we need a stage where blocks
are transformed and rewritten into hardware native gates. At
this stage, we can leverage previous approaches. KAK [22]
decomposition is an ubiquitous technique deployed in com-
mercial compilers, and it generates depth optimal circuits for
two qubit unitaries. Thus, after exploration reaches the two
qubit level, QFAST applies KAK on all blocks. Furthermore,
the hierarchical nature of QFAST gives us an opportunity to
compose with other synthesis algorithms at any granularity.
For example, we have QFAST instantiations that apply
UniversalQ [17] on arbitrary block sizes.

4.2. Loss Function and Solution Distance

The goal of synthesis is to find UC such that it minimizes
∆(UC , UT), where the UC is the operation implemented by
the encoded circuit, UT is the target input, and ∆ is some
unitary distance function. Ideally, we find ∆(UC , UT) = 0.
However, due to numerical floating point arithmetic con-
straints and optimizer limitations we attempt to find UC that
satisfies ∆(UC , UT) < ε for some acceptable threshold ε.

We use the Hilbert-Schmidt inner product in our distance
function:

〈UC , UT 〉 = Tr(U†CUT)

The closer that UC and UT become, the closer the
product U†CUT is to the identity matrix. As the product ap-
proaches identity, its trace becomes closer to the dimension,
d, of the matrix. Our completed distance function normalizes
the value of the inner product to be within the range of
(0, 1). Lastly, we invert it, so that a value of 0 correspondes
to an exact match and a value of 1 implies the opposite.
This allows us to treat ∆ as a loss function and invoke
an optimizer’s minimize routine on it. The final function is
given by:

∆(UC , UT) =

√
1−
|Tr(U†CUT)|2

d2

During the exploration stage we use a fast optimization
scheme designed to quickly find the circuit structure. The
exploration distance threshold for this stage is opti-
mizer specific and it has been determined empirically to
provide a good combination of speed and quality of solution.
As optimizers are very unpredictable, there is probably no
procedure to determine this value from first principles. Our
default setting is exploration distance = 0.01. We note
that contrary to intuition, lowering this value results in
longer circuits. The optimizer reaches the solution but it
requires more iterations to compute the parameters. Since
we try to detect and avoid plateaus, we give preference to
adding another layer instead of slow convergence.

The refinement step fixes circuit structure and uses
a better but slower optimizer to reduce the error down
as low as possible, stopping if it falls below the
refinement threshold. Again, this value needs to be
determined empirically and in our experiments we use a
stopping criteria refinement threshold = 10−5. As in-
dicated by the results, the final value is in practice much
lower, which indicates that tighter values are possible.

4.3. Topology Awareness

The QFAST formulation allows for topology-aware syn-
thesis. As shown by Davis et al [21], this is required to
obtain short circuits as third party compilers, optimizers,
and mappers cannot offset the loss of quality when topology
awareness is missing.

Topology is easily incorporated into QFAST using the
continuous gate/circuit representation, which encodes struc-
ture, i.e. the qubits the gate operates on. Assuming all-to-
all connectivity, the the G⊗nm representation will have

(
n
m

)
parameters to encode all possible placements. For restricted
connectivity all we have to do is generate only the terms that
correspond to all strongly connected components of size m
in the n target device’s coupling graph. Figure 3 illustrates
this for an example where a four qubit gate (n = 4) is
expanded into two qubit (m = 2) blocks. With all-to-
all connectivity we will have to generate six li variables,
while after pruning for topology we generate only three,
corresponding to the links (q0, q1), (q1, q2) and (q1, q3).

q0

q1

q2

q3

Figure 3. An Example 4-qubit topology. We can make QFAST topology-
aware by restricting the possible placements to all strongly connected
components in the topology.

4.4. Complexity Analysis

For a n qubit target unitary, m qubit block size, with
m < n, and an all-to-all topology, the space complexity
of our variable-location generic gate encoding is given by
O(
(
n
m

)
+ 4m). While for other topologies, T , we’ll have

O(SCC(T ,m)+4m) space complexity, where SCC(T ,m)
denotes the number of strongly connected components of
size m within the larger n-graph topology. When we fix
structure, our space complexity shrinks to O(4m). Finally,
the space complexity of a circuit of depth d adds d as a
factor.

5. Evaluation

5.1. Software Implementation

We implemented QFAST in Python 3.6 using Tensor-
Flow 1.13.1 for encoding the circuit structure and loss
function. We call the ADAMOptimizer package from Ten-
sorFlow to minimize the loss function. QFAST experiments
ran on a single node of the Cori supercomputer hosted at
the National Energy Research Scientific Computing Center
(NERSC), where nodes contain two Intel Xeon E5-2698 v3
(”Haswell”) processors at 2.3 GHz (32 cores total). The
software is made available on our github repository at:
https://github.com/edyounis/qfast. We use the IBM QISkit
software to perform the KAK 2-qubit decomposition during
the instantiation stage of QFAST.

5.2. Benchmarks

Our benchmark suite contains small to medium circuits
and algorithms appropriate for the NISQ era, used previ-
ously by other researchers [21], [29], [30]. There are several
classes of circuits. First are optimal depth, some taken from
literature (Peres, Fredkin, multi-qubit control gates), some
generated by specialized domain generators [31] (Grover,
QFT).

The second class include Variational Quantum Eigen-
solver (VQE) [23] circuits generated for chemistry by Open-
Fermion [32]. VQE is currently perceived as one of the most
promising algorithms to deliever on the transformational
promise of quantum computing. VQE circuits are parameter-
ized and the algorithm variationally updates the parameters.

The circuit executes, the result is passed into a classical
optimizer which recomputes the circuit parameterization, the
circuit is updated and the cycle continues until the chemistry
solution is found. VQE circuits are fixed depth and there
are no first principle approaches (domain generators) to
specialize for the intermmediate results/circuits.

The third class of circuits are generated for problems
that study the time evolution of chemical systems, such as
Transverse Field Ising Model (TFIM) [25], [26]. TFIM is
an exponent of chemical simulations using time dependent
Hamiltonians. In this case, domain generators append a fixed
function block per step and circuit depth grows linearily.
Domain generators concentrate in reducing “block” depth
and can’t avoid linear growth.

On all classes of circuits, traditional compilers fail [23],
[26] to reduce circuit depth. The apriori optimal circuits
are a worst case test scenario for synthesis, as it can only
match or increase depth. The other two, one fixed depth,
other ever increasing are good candidates to showcase the
value of synthesis tools.

5.3. Evaluation Criteria

The criteria we are most interested in is the depth
of the generated circuit. To place QFAST in context, we
evaluate against the compiler presented by Davis et al [21],
referred to as the SearchCompiler. SearchCompiler claims
to produces depth optimal circuits, but execution does not
seem to scale above four qubits. We also evaluate against
UniversalQ [17] (UQ), the state-of-the-art compiler based
on linear algebra approaches. SearchCompiler is topology-
aware, while for UniversalQ topology seems to increase the
circuit depth.

To even the comparison, we assume in all experiments
all-to-all chip connectivity. As discussed in Section 4.4 this
is the worst case running time for QFAST. It is also the best
case for UQ in depth and performance.

While interested in the running time of QFAST, we note
that none of its implementation is tuned for performance.
We execute on Intel CPUs, while TensorFlow can run much
faster on GPUs. Furthermore, we did not attempt to exploit
distributed memory parallelism in TensorFlow.

Results are summarized in Figures 4, 5, 6.

5.4. Circuit Depth and Solution Quality

When applied to circuits where an optimal depth im-
plementation is known, QFAST is clearly sub-optimal and
increases depth on average by 4.3× and up to 10×. Search-
Compiler matched the optimal depth for most three qubit
circuits, but we could not obtain any results for any of the
four or greater qubit benchmarks due to numerical errors
or timeouts after 24 hours of execution. When applied on
optimal circuits UniversalQ increases depth on average by
12× and up to 60×.

When applied to VQE and TFIM circuits QFAST im-
proves depth on average by 6.3× and up to 30×. On the
same circuits, UniversalQ improves depth on average by

Benchmark QFAST + KAK UniversalQ Search Compiler
Name n Depth Depth Distance Time (s) Depth Distance Time (s) Depth Distance Time (s)
ccx 3 6 42 1.4× 10−6 1395.1 15 2.6× 10−8 0.2 8 2.4× 10−7 576.1

fredkin 3 8 33 2.2× 10−6 1163.5 14 0 0.2 8 5.8× 10−6 433.8
grover s01 3 7 14 8.1× 10−7 97.6 20 0 0.2 7 5.5× 10−7 315.5

or 3 6 15 6.5× 10−7 171.3 15 2.6× 10−8 0.2 8 5.8× 10−7 587.9
peres 3 5 18 6.8× 10−7 688.1 13 2.1× 10−8 0.2 7 2.3× 10−7 309.6
qft3 3 6 6 3.0× 10−7 50.0 15 3.0× 10−8 0.2 6 4.9× 10−7 202.5

Figure 4. Summary of results for 3-qubit benchmarks. QFAST compiled the 3-qubit benchmarks down to blocks of 2-qubits and then instantiated with
KAK. QFAST is compared against Search Compiler and UniversalQ. The depth columns denote the number of CNOTs in the circuit.

Benchmark QFAST + KAK QFAST + UQ UniversalQ
Name n Depth Depth Distance Time (s) Depth Distance Time (s) Depth Distance Time (s)

TFIM-1 4 6 8 6.0× 10−7 67.3 80 5.5× 10−7 60.3 82 2.1× 10−8 0.6
TFIM-10 4 60 24 9.5× 10−4 1286.4 80 3.7× 10−3 78.3 95 3.0× 10−8 0.6
TFIM-22 4 126 21 1.0× 10−5 1187.5 100 5.4× 10−3 231.1 85 4.2× 10−8 0.7
TFIM-35 4 210 16 8.8× 10−7 225.4 80 3.4× 10−6 461.2 97 4.2× 10−8 0.6
TFIM-60 4 360 55 1.5× 10−6 1529.7 80 6.2× 10−7 148.6 93 2.6× 10−8 0.6
TFIM-80 4 480 40 1.7× 10−6 1248.4 80 6.9× 10−7 126.0 89 2.1× 10−8 0.6
TFIM-95 4 570 17 7.1× 10−7 280.2 80 9.3× 10−7 169.4 91 2.1× 10−8 0.7
TFIM-100 4 600 17 9.2× 10−7 277.4 80 9.9× 10−7 142.3 91 6.1× 10−8 0.6

Ethy-1 4 64 37 8.8× 10−6 1226.2 100 1.0× 10−6 1473.7 99 4.7× 10−8 0.6
Ethy-2 4 64 30 4.5× 10−3 2192.7 39 3.6× 10−3 225.6 97 2.7× 10−8 0.6
H2-1 4 56 5 7.2× 10−3 42.9 20 7.3× 10−3 38.7 92 2.1× 10−8 0.6
H2-2 4 56 39 1.5× 10−3 2280.3 80 9.3× 10−3 963.5 98 4.2× 10−8 0.6
qft4 4 12 21 7.9× 10−7 385.9 80 8.5× 10−7 108.4 85 3.9× 10−8 0.6
bv 4 3 18 5.8× 10−7 287.4 60 7.1× 10−7 111.9 91 3.0× 10−8 0.6

cccx 4 20 47 2.2× 10−5 2138.5 120 1.3× 10−6 562.0 70 2.1× 10−8 0.6
Figure 5. Summary of results for 4-qubit benchmarks. QFAST compiled the 4-qubit benchmarks down to blocks of 2-qubits and then instantiated with
KAK. Additionally, QFAST compiled the 4-qubit benchmarks to blocks of 3-qubits and then instantiated with UQ. The depth columns denote the number
of CNOTs in the circuit.

Benchmark QFAST + UQ UniversalQ
Name n Depth Depth Distance Time (s) Depth Distance Time (s)

TFIM-10 5 80 120 1.2× 10−4 3994.2 429 3.0× 10−8 2.7
TFIM-40 5 320 180 1.3× 10−6 1387.4 425 4.9× 10−8 2.7
TFIM-60 5 480 180 1.5× 10−6 1409.8 425 7.7× 10−8 2.8
TFIM-80 5 640 218 5.4× 10−5 3894.6 425 7.4× 10−8 2.7
TFIM-100 5 800 280 1.6× 10−6 1264.9 429 4.2× 10−8 2.7
TFIM-1 6 10 120 9.2× 10−7 1107.2 1794 3.7× 10−8 11.8
TFIM-10 6 100 180 3.7× 10−3 7283 1809 8.7× 10−8 11.2
TFIM-24 6 240 180 4.0× 10−3 7627.7 1803 7.6× 10−8 11.7
TFIM-31 6 310 220 1.5× 10−3 12350.1 1797 4.9× 10−8 11.4
TFIM-51 6 510 278 3.9× 10−3 10124 1819 5.2× 10−8 12.1
Hubbard 6 256 40 8.7× 10−4 532.8 1868 8.0× 10−8 12.6

qft5 5 20 137 3.5× 10−6 5943.3 407 0 2.7
Grover s011 5 48 216 2.4× 10−6 3888.3 444 4.7× 10−8 2.7

qft6 6 30 294 1.0× 10−6 19326 1777 5.6× 10−8 12.6
Figure 6. Summary of results for 5-qubit and 6-qubit benchmarks. QFAST compiled the benchmarks down to blocks of 3-qubits and then instantiated with
UQ. The depth columns denote the number of CNOTs in the circuit.

1.5× and up to 6.6×. For any circuit of four qubits or more,
QFAST generated shorter solutions than UniversalQ.

Tables 4, 5, and 6 shows that QFAST produces circuits
at a distance from the target unitary ranging from 10−3

to 10−7, SearchCompiler roughly at 10−7 and UniversalQ
roughly at 10−8. To test the quality of the circuits we have
run simulations with inputs set to all the standard basis state
vectors and 1000 random state vectors. For all circuits with
a distance less than 10−3, the average output state fidelity
is in the range 0.9999..., with ULP difference of 10−5 digit.
UniversalQ fidelities are in the range 0.9999999999999...,
with ULP 10−13 difference of digit.

6. Discussion

Overall, we find the QFAST results encouraging for
the future practical use of synthesis in quantum algorithm
exploration in the NISQ era. While not-optimal, we do im-
prove upon previous synthesis techniques in either quality of
solution or scalability. The VQE and TFIM results show that
QFAST can significantly reduce the depth of circuits used
by domain scientists. These circuits are the result of domain
specific generators [26], [31], [32] and QFAST can either
displace efforts to optimize their functionality or provide
much tighter bounds to guide their development. Currently
these circuits cannot be simplified by existing optimizing
compilers, or by other synthesis packages. The QFAST
results indicate that synthesis on larger qubit blocks can
be very useful inside the compiler optimization chain. Due
to its composability and ability to use third party synthesis
tools during instantiation we believe that QFAST is trivially
portable to any new architecture and native gate set.

The data indicates that QFAST can generate shorter
circuits provided the availability of third party optimal syn-
thesis packages. We are communicating with the authors of
SearchCompiler and are experimenting with a more robust
pre-release of their software. We have been able to generate
even shorter circuits and the results motivate further devel-
opment of optimal synthesis techniques specialized up to a
low number of qubits.

We show scalability up to six qubits and as stated, we
did not attempt to parallelize or accelerate the optimizer
with GPUs. Without parallelization, scalability is limited by
single node memory capacity. Our six qubit benchmarks
ran on a server with 32 GB of memory, while a seven
qubit benchmark ran out of memory on a server with 128
GB. We know how to reduce the memory footprint of
the algorithm and furthermore, parallelization will alleviate
these constraints, as well as improve the execution speed.
Since we are relying on the ADAMOptimizer package
within TensorFlow we expect parallelization to be somewhat
painless.

During one step of decomposition, a n-qubit block is
broken down into multiple m-qubit blocks with m ≤ n.
During the previous experiments, we selected m to be the
ceiling of half of n. This worked out well, however, we
did experiment with different strategies for selecting the m
parameter. There is a trade-off between time-to-solution and

solution quality. With large values of m, where m is close to
n, a solution is found quickly, however, the resulting circuit
is longer. With smaller values of m, the opposite is true.

7. Related Work

A foundational result is provided by the Solovay Kitaev
(SK) theorem which relates circuit depth to the quality of
the approximation [4], [33], [34]. Different approaches [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14] have been
introduced since, with the goal of generating shorter depth
circuits. These can be coarsely classified based on several
criteria: 1) target gate set; 2) algorithmic approach; and 3)
solution distinguishability.

7.1. Target Gate Set

Some algorithms target gates likely to be used only when
fault tolerant quantum computing materializes. Examples
include synthesis of z-rotation unitaries with Clifford+V
approximation [35] or Clifford+T gates [36], [37], [38].
While these efforts propelled the field of synthesis, they
are not used on NISQ devices, which offer a different gate
set (e.g. U3, Rx, Rz, CNOT and Mølmer-Sørensen all-to-
all). Several [15], [19], [21], [28] algorithms, discussed
below target these gates directly. From our perspective, since
QFAST is composable and can invoke any synthesizer for
instantiation, the existence of these algorithms indicates that
QFAST is portable across gate sets.

7.2. Algorithmic Approaches

Most earlier attempts inspired by Solovay Kitaev use a
recursive (or divide-an-conquer) formulation. More recent
search based approaches are illustrated by the Meet-in-the-
Middle [7] algorithm. Several approaches [10], [11] use
techniques from linear algebra for unitary/tensor decompo-
sition, but there are open questions as to the suitability for
hardware implementation because algorithms are expressed
in terms of row and column updates of a matrix rather than
in terms of qubits.

The state-of-the-art upper bounds on circuit depth are
provided by techniques [15], [19] that use Cosine-Sine de-
composition. The Cosine-Sine decomposition was first used
by [16] for compilation purposes. In practice, commercial
compilers ubiquitously deploy only KAK decompositions
for two qubit unitaries. Khaneja and Glaser have applied the
KAK Decomposition to more than just 2-qubit systems [39].
For a 3-qubit system, it originally required 64 CNOTs [40],
which was later reduced to 40 CNOTs [41]. We have shown
above that this can be beaten by any of the three synthesis
tools tested in this work. UniversalQ is an exponent evalu-
ated in this paper. The basic formulation of these techniques
is topology independent. The published approaches are hard
to extend to different qubit gate sets.

Several techniques [18], [21], [28] use numerical opti-
mization and report results for systems with at most four

qubits. They describe the single qubit gates in their vari-
ational/continuous representation and use optimizers and
search to find a gate decomposition and instantiation. From
these, we compare directly against [21] which is the only
published optimal and topology-aware technique. For our
purposes, all these techniques seem to solve a combinatorial
number of hard (low distance) optimization problems. We
expect QFAST to scale better while providing comparable
results. Furthermore, due to its composability, we can di-
rectly leverage any of these implementations.

Topology awareness is important for synthesis algo-
rithms, with opposing trends. Most formulations assume
all-to-all connectivity. Specializing for topology in linear
algebra decomposition techniques seems to increase circuit
depth by rather large constants, [15] mention a factor of
nine, improved by [19] to 4×. Specializing for topology
in search and numerical optimization techniques seems to
reduce circuit depth and Davis et al [21] report up to 4×
reductions. We expect QFAST to behave like the latter.

7.3. Solution Distinguishability

Synthesis algorithms are classified as exact or approx-
imate based on distinguishability. This is a subtle classifi-
cation criteria, as most algorithms can be viewed as either.
For example, [7] proposed a divide-and-conquer algorithm
called Meet-in-the-Middle (MIM). Designed for exact cir-
cuit synthesis, the algorithm may also be used to construct
an ε-approximate circuit. The results seem to indicate that
the algorithm failed to synthesize a three qubit QFT circuit.

Furthermore, on NISQ devices, the target gate set of the
algorithm (e.g. T gate) may be itself implemented as an
approximation when using native gates.

We classify our approach as approximate since we ac-
cept solutions at a small distance from the original unitary.
In a sense, when algorithms move from design to imple-
mentation, all become approximate due to numerical floating
point errors.

8. Conclusion
We have presented a quantum synthesis algorithm de-

signed to produce short circuits and scale well in practice.
The evaluation on depth optimal circuits, as well as circuits
generated by domain generators (VQE, TFIM) indicates
that while not optimal, QFAST can significantly reduce
the depth of circuits used in practice by domain scientists.
This reduction is beyond the capabilities of other existing
synthesis tools or optimizing compilers. This bodes well for
the future adoption of synthesis for algorithm discovery or
circuit optimization during the NISQ era and beyond.

Acknowledgments
This work was supported by the DOE under contract

DE-5AC02-05CH11231, through the Office of Advanced
Scientific Computing Research (ASCR) Quantum Algo-
rithms Team and Accelerated Research in Quantum Com-
puting programs.

References

[1] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl,
“Quantum circuits for isometries,” Physical Review A, vol. 93, no. 3,
p. 032318, 2016.

[2] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-
logic circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, 2006.

[3] R. R. Tucci, “An introduction to cartan’s kak decomposition for qc
programmers,” arXiv preprint quant-ph/0507171, 2005.

[4] C. M. Dawson and M. A. Nielson, “The Solovay-Kitaev Algorithm,”
Quant. Info. Comput., vol. 6, no. 1, pp. 81–95, 2005.

[5] A. De Vos and S. De Baerdemacker, “Block-zxz synthesis of an
arbitrary quantum circuit,” Phys. Rev. A, vol. 94, p. 052317, Nov
2016. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.
94.052317

[6] A. Bocharov and K. M. Svore, “Resource-optimal single-qubit
quantum circuits,” Phys. Rev. Lett., vol. 109, p. 190501,
Nov 2012. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevLett.109.190501

[7] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-
the-middle algorithm for fast synthesis of depth-optimal quantum
circuits,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 32, no. 6, pp.
818–830, Jun. 2013. [Online]. Available: http://dx.doi.org/10.1109/
TCAD.2013.2244643

[8] E. A. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt,
“Compiling quantum algorithms for architectures with multi-qubit
gates,” New Journal of Physics, vol. 18, no. 6, p. 063029, 2016.
[Online]. Available: http://stacks.iop.org/1367-2630/18/i=6/a=063029

[9] B. Giles and P. Selinger, “Exact synthesis of multiqubit Clifford+T
circuits,” Physical Review Letters., vol. 87, no. 3, p. 032332, Mar.
2013.

[10] S. S. Bullock and I. L. Markov, “An arbitrary two-qubit computa-
tion in 23 elementary gates or less,” in Proceedings 2003. Design
Automation Conference (IEEE Cat. No.03CH37451), June 2003, pp.
324–329.

[11] J. Urias, “Householder factorization of unitary matrices,” J. Mathe-
matical Physics, vol. 51, p. 072204, 2010.

[12] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M.
Salomaa, “Quantum circuits for general multiqubit gates,” Phys.
Rev. Lett., vol. 93, p. 130502, Sep 2004. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.93.130502

[13] M. Amy and M. Mosca, “T-count optimization and Reed-Muller
codes,” arXiv:1601.07363v1, 2016.

[14] G. Seroussi and A. Lempel, “Factorization of symmetric matrices
and trace-orthogonal bases in finite fields,” SIAM Journal on
Computing, vol. 9, no. 4, pp. 758–767, 1980. [Online]. Available:
https://doi.org/10.1137/0209059

[15] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-
logic circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, June
2006.

[16] R. R. Tucci, “A Rudimentary Quantum Compiler(2cnd Ed.),” arXiv
e-prints, pp. quant–ph/9 902 062, Feb 1999.

[17] R. Iten, O. Reardon-Smith, L. Mondada, E. Redmond, R. Singh
Kohli, and R. Colbeck, “Introduction to UniversalQCompiler,” arXiv
e-prints, p. arXiv:1904.01072, Apr 2019.

[18] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, and
P. J. Coles, “Quantum-assisted quantum compiling,” arXiv e-prints,
p. arXiv:1807.00800, Jul 2018.

[19] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl,
“Quantum circuits for isometries,” Physical Review A, vol. 93, p.
032318, Mar 2016.

[20] P. Murali, J. M. Baker, A. Javadi Abhari, F. T. Chong,
and M. Martonosi, “Noise-Adaptive Compiler Mappings for
Noisy Intermediate-Scale Quantum Computers,” arXiv e-prints, p.
arXiv:1901.11054, Jan 2019.

[21] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu,
“Heuristics for quantum compiling with a continuous gate set,” arXiv
preprint arXiv:1912.02727, 2019.

[22] R. R. Tucci, “An Introduction to Cartan’s KAK Decomposition for
QC Programmers,” arXiv e-prints, pp. quant–ph/0 507 171, Jul 2005.

[23] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
“The theory of variational hybrid quantum-classical algorithms,” New
Journal of Physics, vol. 18, no. 2, p. 23023, 2016. [Online]. Available:
http://iopscience.iop.org/article/10.1088/1367-2630/18/2/023023/

[24] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014.

[25] D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio, and N. Park,
“Phonon-driven spin-floquet magneto-valleytronics in mos2,” Nature
Communications, vol. 9, no. 1, p. 638, 2018.

[26] L. Bassman, K. Liu, Y. Geng, D. Shebib, A. Krishnamoorthy, and
P. Vashishta, “Simulating dynamic material properties on near-term
quantum computers,” ulletin of the American Physical Society, 2020.

[27] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[28] E. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt, “Compiling
quantum algorithms for architectures with multi-qubit gates,” ArXiv
e-prints, Jul. 2016.

[29] A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivara-
jah, “Phase gadget synthesis for shallow circuits,” arXiv preprint
arXiv:1906.01734, 2019.

[30] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, “Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2019, pp.
1015–1029.

[31] IBM, “Qiskit Aqua: Algorithms for quantum computing applications
,” https://qiskit.org/aqua/.

[32] J. Mcclean, I. D. Kivlichan, D. S. Steiger, Y. Cao, E. Schuyler Fried,
C. Gidney, T. Häner, V. Havlı́ček, Z. Jiang, M. Neeley, J. Romero,
N. Rubin, N. Sawaya, K. Setia, S. Sim, W. Sun, K. Sung, and
R. Babbush, “Openfermion: The electronic structure package for
quantum computers,” 10 2017.

[33] A. B. Nagy, “On an implementation of the Solovay-Kitaev algorithm,”
arXiv:quant-ph/0606077, 2016.

[34] O. Al-Ta’Ani, “Quantum circuit synthesis using solovay-kitaev algo-
rithm and optimization techniques,” Ph.D. dissertation, 2015.

[35] N. J. Ross, “Optimal ancilla-free clifford+v approximation of
z-rotations,” Quantum Info. Comput., vol. 15, no. 11-12, pp.
932–950, Sep. 2015. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2871350.2871354

[36] V. Kliuchnikov, D. Maslov, and M. Mosca, “Practical approximation
of single-qubit unitaries by single-qubit quantum clifford and t cir-
cuits,” IEEE Transactions on Computers, vol. 65, no. 1, pp. 161–172,
Jan 2016.

[37] Classical and Quantum Computation. Boston, MA: American
Mathematical Society, 2012.

[38] A. Paetznick and K. M. Svore, “Repeat-until-success: Non-
deterministic decomposition of single-qubit unitaries,” Quantum Info.
Comput., vol. 14, no. 15-16, pp. 1277–1301, Nov. 2014. [Online].
Available: http://dl.acm.org/citation.cfm?id=2685179.2685181

[39] N. Khaneja and S. Glaser, “Cartan decomposition of su (2ˆ n),
constructive controllability of spin systems and universal quantum
computing,” arXiv preprint quant-ph/0010100, 2000.

[40] J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, “Efficient decom-
position of quantum gates,” Physical review letters, vol. 92, no. 17,
p. 177902, 2004.

[41] F. Vatan and C. P. Williams, “Realization of a general three-qubit
quantum gate,” arXiv preprint quant-ph/0401178, 2004.

