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Abstract

Closing the Domain Gap for Data-E�cient Robotic Learning

by

Sarah Young

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Object manipulation has always been an important task in robotics. Though there are
various methods for learning to do such tasks, imitation learning is one method that has
been immensely successful in allowing agents to learn through human demonstrations. One
of the key challenges of learning such tasks is working with the domain gap. Getting large
scale kinesthetic data on robots doing real world tasks is tedious, and while getting third
person data is much easier, there is a domain gap to resolve. In this work, we present a
method to simplify the data collection process while eliminating the domain gap present in
third-person demonstrations. We focus on using one universal grasping tool that can attach
to a variety of robots and perform a variety of tasks. We present a trash-bot setup where
we are able to easily collect first-person demonstration videos. Our goal is to learn to reach,
push, and place objects in the scene in diverse environments. To train this task, we collected
demonstration data in various di↵erent environments and objects using our grasping tool.
We then learn a policy to output the appropriate actions for completing the task.
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Chapter 1

Introduction

Learning to manipulate objects are vital and challenging tasks for robots. While there has
been significant work done on grasping objects [4], there has not been a focus on the way in
which we can allow robots to universally grasp, push, or place objects easily. Furthermore,
many of these object manipulation setups are very complicated. In this paper, we tackle
the challenge of using a universal grasping tool to simplify the data collection process while
preserving the domain on a simple push and place task.

Imitation learning has been proven to be successful in learning such tasks. This method
involves an agent learning to perform a task from demonstration rather than learning a re-
ward function or learning a policy directly. One of the key challenges of learning via imitation
learning is working with the domain gap present in demonstration data. Traditionally, first-
person demonstrations are provided via kinesthetic teaching. However, getting kinesthetic
demonstration data on real robots is extremely costly and ine�cient. To avoid this, we can
use third-person imitation learning [6]. Instead of using kinesthetic teaching, this method
provides a teacher demonstration achieving the same goal, but from a di↵erent viewpoint.
While this mitigates the ine�cient and di�cult data collection process, it introduces a new
challenge – a domain gap in the viewpoints of data seen from the robot’s point of view and
the data collected from the human.

In this work, we propose a setup that can perform various tasks and collect more e�cient
demonstrations without any domain gap. Furthermore, we do not need to work with a
specific robot and train based on its gripper – we learn these tasks on the tool instead and
the tool can attach to any robot and learn from a single agent. The tasks we focus on in this
work are a reach and push and place task. In the reach task, sing the grasping tool, the agent
learns to reach a specified goal location. In the push task, the agent must initially move
towards the object before pushing it towards the goal. Data collection involves a human
holding the grasping tool and performing the same tasks. The camera is attached onto the
tool for both the robot and the human, such that the viewpoint is consistent. With this
data, the agent learns a policy which takes in a single image as input and outputs the correct
action to take.
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Chapter 2

Background and Related Work

2.1 Imitation Learning

Imitation learning is a branch of AI in which an agent learns decision policies through ex-
pert demonstrations, similar to how humans often learn. Imitation learning comes in two
main forms, behavioral cloning and inverse reinforcement learning. Inverse reinforcement
learning learns a reward function, while behavioral cloning uses supervised learning to ex-
tract actions. In our case, we learn a such a policy through supervised learning. Given a set
of observation and action pairs (ot, at) from human demonstrations, we can learn a policy ⇡✓.

1. Collect human demonstrations (⌧ trajectories).

{(o1, o2, o3, ...), (o1, o2, o3), ...}

2. Label the observations with the ground truth to form state-action pairs.

D = {(o1, a1), (o2, a2), ...(an, on)}

3. Learn a policy ⇡✓(at|ot) by minimizing a loss function L(a, ⇡✓(s))

In the environment we have set up, the agent learns two tasks, reaching and pushing.
Reaching involves the agent learning to reach a target location, and pushing adds an object
into the scene, and the agent must reach towards the object first before pushing it into the
goal, in our case a red circle. We provide human demonstrations in the form of videos, which
gives the agent the current and goal observations.

2.2 Related Work

The following papers detail similar lines of work.
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Rope Manipulation[3]

There has been significant work done in imitation learning and object manipulation. Much of
the work we have done is based o↵ of key ideas in this paper. We began with implementing a
low-level inverse model and training with high level human demonstrations. This paper uses a
pre-trained Alex-net to retrieve actions from images for the trash-bot environment. However,
our action space is di↵erent and we are training on a variety of di↵erent environments, so
our model dynamics are slightly di↵erent as well. A big takeaway from this paper is that
human imitation is important, leading to 16% more successes.

Grasping in the Wild[5]

This paper has a similar but much more complicated setup with the same grasping tool
that we use. It has a servo motor, compute stick, and one camera in addition to other
parts in an attempt to minimize the domain gap. Despite the di↵erence in setup, we use a
similar approach of recovering true actions. Another di↵erence is that their goal is to learn
to grasp objects rather than place them, which introduces di↵erent challenges. This paper’s
approach is to a 6DoF closed-loop grasping model, which uses o↵-policy Q-learning to train
visual grasping value functions. Their experimental setup also requires them to work with a
small domain gap, since their grasping tool is used to simulate a robot’s arm and there are
small di↵erences.

Learning from Virtual Reality Teleoperation[5]

This work addresses the same challenge of obtaining demonstration data more e�ciently us-
ing a Virtual Reality teleoperation system. They learn a variety of tasks, including reaching,
pushing, grasping, and dropping objects among others. However, each task is trained on
the same set of objects and environments, whereas we are looking to learn a policy that can
perform well in more diverse environments. Another key di↵erence is that their input data
includes color as well as depth images, whereas we only provide color images from a simple
GoPro camera.
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Chapter 3

Setup

3.1 Trash-stick

Our experimental setup consists of a simple 19-inch RMS (Royal Medical Solutions) plastic
grabber tool. We attach an angled mount above the stick to hold a Go-Pro camera in place.
There is a lever behind the mounts, which allows the tool to close on an object. We use this
setup for all our data collection. However, in the task we present in this project, we do not
make use of the lever. The setup is illustrated in Figure 3.1 below.

Figure 3.1: Trash-stick setup

It is important to note that this setup allows us to eliminate the domain gap that is
present in [3] and [5]. The Go-Pro attachment is consistent across our data collection and
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testing time on the robot. As seen in figure 3.1, the observation from the robot is the same
as what the Go-Pro would see if a human were collecting data. This makes it much easier
for the model to learn the task at hand.

Figure 3.2: Robot setup

3.2 Task

The task is to learn how to push objects to a goal location. In our experiments, we use various
di↵erent objects and a single goal type, a red circle (approximately 5 inches in diameter).
We vary the starting locations of the trash stick, the object locations, as well as the goal
locations. Figure 3.3 shows an example trajectory.
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Figure 3.3: Example trajectory
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Chapter 4

Data Collection

4.1 Demonstrations

Figure 4.1: Push Task: Some di↵erent example environments where we collected data. Each
environment consists of a red goal location, an object, and a start position.



CHAPTER 4. DATA COLLECTION 8

We collected training data with the trash-stick setup in various di↵erent environments.
In this report, we will mainly focus on the push task, as it is a more di�cult version of the
reach task. We have training data of over 600 trajectories for the push task. As seen in the
examples in Figure 4.1, every trajectory consists of a goal location (red circle), an object (for
the push task only), and a starting location for the trash stick. We took short 5 - 10 second
videos of a human using the grasping tool to push di↵erent objects onto the red circle. The
videos begin with the grasping tool at a start location, then moving towards the object, and
then pushing the object towards the red circle. For the reach task, we directly move the
tool towards the goal location. We first learn to do the simpler reach task before trying our
model on the push task. The videos were then split into frames at a frame rate of 4 frames
per second to use as observations.

Figure 4.2 displays the distribution of translations in the x direction after each translation
is scaled by the largest absolute translation in its trajectory for the push task. We want to
keep the distribution of positive and negative x-values roughly balanced. About 50% of the
data has x values very close to 0, meaning that a large portion of movements were moving
the stick forward in the y direction.

4.2 Data Labeling and Cleaning

We recovered the true actions for our training data for both the push and reach task by
running COLMAP 1, a Structure-from-Motion (SfM) software on our data. The COLMAP
reconstruction gives us the pose of each frame in the form of a quaternion (QW, QX, QY,
QZ) and a translation vector (TX, TY, TZ). From this, we calculate the relative translations
and rotations between consecutive images. Figure 4.3 is an example of a trajectory labeled
with ground truth actions for the push task.

1
COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline.

https://colmap.github.io/index.html
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Figure 4.2: A histogram of the data distribution of translations in the x-direction for the
push task.
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Figure 4.3: Frames labeled with ground truth actions.
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Chapter 5

Methods

5.1 Architecture

We chose to use the following simple dynamics model.

ut = F (It) (5.1)

The notation is as follows: C-x is a convolutional layer with x filters, and F-x is a fully-
connected layer with x filers.

We experimented with 3 di↵erent architectures to get the latent space representations of
the images: a small CNN, a pretrained AlexNet [2], and a pretrained ResNet-18 [1]. We use
an image It of size 224 x 224 and feed it into one of the following networks, which outputs
its latent space representations xt. During training, we add random jitter and random crops
of the images for better generalization.

a) The small neural net has 6 convolutional layers followed by a fully connected layer.
Each convolutional layer is followed by a ReLu layer. The convolutional layers have the
following architecture:

C16� C32� C64� C64� C128� C128 (5.2)

b) AlexNet: we use the first 5 layers of the AlexNet and append another convolutional
layer, followed by a ReLu and MaxPool layer.

c) ResNet18: we use all the convolutional layers of the ResNet and freeze the weights on
the first 11 layers.

The latent space representation is then fed into a fully connected layer to output the
predicted actions pt, a vector (x, y, z). The fully connected layer projects from the output
size to the feature length, 3, and then is followed by a tanh layer.

For rotations, we concatenate the latent space representation of the image with the pre-
dicted translations and feed the result into a linear layer of size 512 and a ReLu, which then
gets projected to a 6D representation of the angle. We train on a 6D rotation representation
[8] because it is continuous in the real Euclidean space and thus more suitable for learning as
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opposed to traditional 3D or 4D rotations. The full architecture is illustrated in the Figure
5.1.

Figure 5.1: Network Architecture: Convolutional layers followed by a fully connected layer.
For translations, the latent space representation is projected to a 3-dimensional vector. For
rotations, output is latent space representation is concatenated with translations, and then
projected to a 6-dimensional vector.
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5.2 Action Space

The action space representing the movement from image It to It+1 is of the form (x, y, z)
and (qt, qu, qv, qw, qx, qy), where x, y, z are the relative translations to get from It to It+1 and
(qt, qu, qv, qw, qx, qy) are the relative rotations between two consecutive images. We use a
continuous 6D angle representation for better learning and output a 3D rotation matrix.
The orientation of the translation axes is shown in figure 5.2.

Figure 5.2: Orientation

To account for inconsistencies between COLMAP outputs for di↵erent trajectories, we
scale the translations by the largest absolute action for each trajectory. Each translation
becomes

T = {( x1

tmax
,

y1
tmax

,
z1
tmax

), (
x2

tmax
,

y2
tmax

,
z2
tmax

), ...}

where tmax is the absolute value of the largest action in trajectory t. We then additionally
scale each action by its L1-norm to focus more on the directional alignment rather than
absolute magnitude.

5.3 Loss Functions

For translations, we use a combination of L1, L2, a direction loss, and a norm-loss. We want
to encourage the directional alignment between the prediction and ground truth[7], so we
add the following loss to minimize the cosine angle:

Ld = arccos(
aTt ⇡✓(ot)

||pt||||⇡✓(ot)||
) (5.3)
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The norm loss encourages translations (x, y, z) to have a norm of 1, since our ground
truth labels are normalized as well. Our overall loss function is a weighted combination of
the above losses for translation and the angle loss La. Because the magnitude of the angle
loss is much smaller than that of the translation loss, we scale it by 10.

L = ↵1 ⇤ L1 + ↵2 ⇤ L2 + ↵3 ⇤ Ld + 10 ⇤ La (5.4)
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Chapter 6

Results

Through our experiments, we found that the AlexNet performs best on our data. We predict
on an entirely new dataset with a di↵erent object and di↵erent background. Our model is
able to successfully push objects to a goal location. The training error reaches 0.34, and
the validation error reaches 0.45.

Figure 6.1: Training curves for our experiments using the pretrained AlexNet.

We ran experiments on the other two architectures as well and found that while our agent
learns fairly well on the pretrained AlexNet, using a ResNet could give us better results if we
have more data. We ran our experiments on a ResNet model, and found that the training
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Table 6.1: Architecture Comparison.

Architecture Train Error Validation Error
No training 5.09 5.1
Small CNN 0.40 0.49
Pretrained ResNet18 0.18 3.3
Pretrained AlexNet 0.34 0.45

performs significantly better, but the model severely overfits and just memorizes the training
data, and this is likely due to not having enough data. We ran an experiment without any
learning to see the baseline error rate. Table 6.1 displays the results we found. To visualize
the results qualitatively, we plotted the predicted actions on top of the images.

Figure 6.2: Frames from test results on a new environment with labeled translations and
rotations (only 3 rotations are shown to save space). The yellow arrow in the images rep-
resents the xz translations, and the arrow at the corner of the image is the y (up-down)
movement. It is di�cult to visualize the relative rotation, but we try to minimize rotation in
this trajectory and we can see that the rotation matrices roughly correspond to no rotation.
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Chapter 7

Conclusion

In this work, we have trained an agent to learn a policy that can successfully reach and
push an object to a goal location. Without introducing any domain-gap, we are able to
more easily obtain human demonstration data with our simple grasping tool setup. We have
greatly increased the e�ciency of data collection, from kinesthetic teaching to holding a
universal grasping stick to push around objects, and even pick up and place objects. With
only around 40 minutes of training data and 600 trajectories for the pushing task, we are
able to learn fairly well. Furthermore, we have shown that this method works in a variety of
environments with di↵erent colored objects and di↵erent objects, start, and goal locations.
Our results have shown that the agent has potential to learn even better with more data
and a more complex model.

We are continuing to expand this project in several directions. We have found that
using a more advanced network, (i.e. ResNet18 or ResNet34), leads to much better training
performance. Due to severe over-fitting, we will need to collect more data to be able to use
these more complex architectures. In the future, we would also like to expand to multiple
di↵erent tasks, such as picking up and placing down objects. The final goal would be to
combine several di↵erent methods to learn end-to-end trash-picking in diverse environments.
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