NBDT: Neural-Backed Decision Trees

Daniel Ho

sl

i |
Al

11
.‘
;. ; :

]

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

#
{¥:Y

Technical Report No. UCB/EECS-2020-65
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-65.html

May 26, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

NBDT: Neural-Backed Decision Trees

by Daniel Ho

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Joseph Gonzalez
Research Advisor

Wa, 297, Qo030
7 y)

(Date)

ok ok osk sk osk ok

; L ovn /24/ dUL
Doctor Jianfei Chen
Second Reader

/V\wrZ], 290

(Date)

Abstract

Deep learning methods are increasingly being used to run inference on a variety of classi-
fication and regression problems, ranging from credit scoring to advertising. However, due
to their increasing complexity, these models lack the basic properties for establishing fair-
ness and trust with users — transparency and interpretability. While a majority of recent
interpretability work involves post-hoc techniques, there has been little work in ante-hoc or
intrinsically interpretable models. Historically, decision trees are the most popular method
among intrinsically interpretable models as they naturally break down inference into a se-
quence of decisions. Recent attempts to combine the interpretability of decision trees with
the representation power of neural networks have resulted in models that (1) perform poorly
in comparison to state-of-the-art models even on small datasets (e.g. MNIST) and (2) require
significant architectural changes. We address these issues by proposing Neural-Backed Deci-
sion Trees (NBDTSs), which take the features produced by the convolutional layers of an ex-
isting neural network and convert the final fully-connected layer into a decision tree. NBDT's
achieve competitive accuracy on CIFAR10, CIFAR100, TinyImageNet, and ImageNet, while
setting state-of-the-art accuracy for interpretable models on Cityscapes, Pascal-Context,
and Look Into Person (LIP). Furthermore, we demonstrate the interpretability of NBDTs
by presenting qualitative and quantitative evidence of semantic interpretations for our model
decisions.

Acknowledgments

I would like to thank Professor Joseph Gonzalez for being my faculty adviser and giving
me my first research opportunity, which ultimately led to all my experiences learning from
talented research students in RISE Lab. I would like to thank Doctor Jianfei Chen for
providing feedback on my thesis and improving the overall clarity. I would also like to thank
all my collaborators on the NBDT work, especially Alvin Wan, who has been a mentor to
me and guided me through several research projects.

Finally, I would like to thank my family and friends for supporting me throughout my 5
years at Berkeley. I would not be where I am today without all of your support.

Contents

Contents
1 Introduction

2 Related Works
2.1 Decision Trees
2.2 Random Forests

2.3 Intersection of Decision Trees and Neural Networks
2.4 Explainable Artificial Intelligence

3 Methodology

3.1 Inference with Embedded Decision Rules

3.2 Building Induced Hierarchies .

3.3 Training with Tree Supervision Loss
3.4 Extension to Semantic Segmentation 00

4 Experiments
4.1 Classification
4.2 Semantic Segmentation

5 Interpretability Analysis

5.1 Interpretability of Nodes’ Semantic Meanings
5.2 Sidestepping the Accuracy-Interpretability Tradeoft

5.3 Visualization of Tree Traversal
6 Conclusion and Future Work

Bibliography

19
19
21

23
23
24
25

26

27

Chapter 1

Introduction

As deep learning has become the de facto standard in computer vision tasks, an increasing
number of fields are applying deep learning methods in order to make use of their predictive
power. However, neural networks typically provide no insight or justification on their pre-
diction process primarily due to the nature of their deep hierarchical representations. Thus
these deep representations are a double-edged sword; although they are responsible for the
representation power of neural networks, they make it almost impossible to trace a model’s
decision making process and isolate the role of any particular hidden unit. Some fields in
particular, such as medicine or finance, require a high level of transparency and accountabil-
ity in order to reliably justify decisions made by a model. As a result, there is typically a
trade-off between representation power and interpretability during model selection.

In addition, experiments have shown that neural networks are susceptible to several
weaknesses which may cripple their performance. Adversarial attacks [55, 21, 38, 7, 17], for
example, demonstrate how small changes in an input, unnoticeable to the human eye, can
drastically change the output of a neural network. This ties into another weakness of neural
networks, i.e. if there is bias in a training set, an algorithm will acquire that bias, limiting
its representation power. Thus if there was a way to enhance the interpretability of deep
learning models, it would be much simpler to correct sources of bias in datasets and ensure
algorithmic fairness.

In light of this, the field of Explainable Artificial Intelligence (XAI) grew out of the
motivation to bring interpretability to deep learning models. To better understand how deep
learning models make decisions, XAI has primarily involved generating saliency heatmaps,
which highlight the regions of the image that are most significant in making a correct decision.
White-box saliency methods [60, 53, 51, 32, 50, 54, 48] take advantage of the internal
workings of a model e.g. feature maps, gradients, etc. In contrast, black-box saliency
methods [46, 43] rely on extracting information from a model by making queries. In either
case, these saliency methods focus on individual inputs and provide little insight into the
general behavior of the model, e.g. over the whole dataset or on out-of-distribution samples.
An XAI method that better expresses the model’s prior over the whole dataset would thus
improve the interpretability of deep learning models.

CHAPTER 1. INTRODUCTION 2

In this thesis, I will introduce Neural-Backed Decision Trees (NBDTs) which not only
utilize the interpretability of decision trees but also maintain the predictive power of state-
of-the-art computer vision models. NBDTs are essentially decision trees constructed using
the weights of an existing neural network. They are defined by two components: (1) the
induced hierarchy which defines the structure of the NBDT and (2) the embedded decision
rules which define how NBDT performs inference. At a high level, my collaborators and I
propose the following approach: (1) Compute an induced hierarchy derived from the weights
of an existing, trained network. (2) Fine-tune the network using a custom tree supervision
loss to maximize the decision tree accuracy under the induced hierarchy. (3) Define a set
of embedded decision rules to run any neural network as a decision tree. Once the NBDT
is trained, the intermediate nodes can be further analyzed by constructing hypotheses for
semantic interpretations. The method will be discussed in more detail in Chapter 3.

NBDTs make no modifications to existing neural network architectures, so any network
for image classification or semantic segmentation can easily be used to construct an NBDT.
Thus, the decision-making process of any existing neural network can be analyzed using
NBDTs to gain insight on the hierarchical structure in the underlying classes. Furthermore,
NBDTs achieve competitive classification accuracy on CIFAR10 [30], CIFAR100 [30], Tiny-
ImageNet [31], and ImageNet [15], while setting state-of-the-art accuracy for interpretable
models on Cityscapes [13], Pascal-Context [40], and Look Into Person (LIP) [20].

The remainder of the thesis is organized as follows: Chapter 2 describes related works,
Chapter 3 outlines the proposed method, Chapter 4 discusses experiments to evaluate the
method, and Chapter 5 discusses the interpretability analysis of NBDTs.

Chapter 2
Related Works

Prior to the past decade of breakthroughs in deep learning, decision trees played an impor-
tant role in predictive modeling due to not only their interpretability but also their ability
to model arbitrarily complex relationships. Decision trees, though prone to overfitting, are
white-box models which break down classification and regression problems into a series of
decisions through intermediate splitting nodes, meaning they provide users with a simple
mechanism to understand the model’s decision-making process. On the other hand, deep
neural networks have far surpassed other learning techniques in terms of predictive accu-
racy and have revolutionized learning in fields like computer vision and natural language
processing; however, they often lack interpretability as they typically contain millions of
parameters and involve billions of operations during inference, making it difficult to trace
the decision-making process within a neural network. In the following sections, I will discuss
the ideas that pioneered research in decision trees and random forests, work exploring the
intersection of decision trees and neural networks, and existing efforts in explainable artificial
intelligence, in particular for computer vision.

2.1 Decision Trees

Historically, the first regression tree-based method was proposed in 1963 by Morgan and
Sonquist [39]. Their method, called Automatic Interaction Detector (AID), involves fitting
a piecewise constant model by recursively splitting up data at each node. The metric for
choosing splits at intermediate splitting nodes is defined as impurity, i.e. ¢(t) = >, (y;i—9)?
for each node t, so splits are chosen such that the sum of the impurities in the two children
nodes was minimized. Theta Automatic Interaction Detector (THAID) [36] extended the
ideas of AID to classification by choosing splits that maximized the sum of the number of
observations in each modal category, i.e. the category with the most observations.

While AID and THAID are restricted to binary splits at each node, Chi-square Auto-
matic Interaction Detector (CHAID) [26], another follow-up work of AID, considers n-ary
splits at each node. Ordered variables are split into 10 equally-sized intervals, while cat-

CHAPTER 2. RELATED WORKS 4

egorical variables are split into one child node for each category. Because the criteria for
splitting is based on the p-values of the chi-square distribution, the stopping rule for tree
generation using CHAID automatically accounts for statistical significance. Initially within
the statistics community, there was little interest in the above decision tree methods as some
criticized AID for severely overfitting to training data and being unable to distinguish the
relative importance of highly correlated variables. In the computer science and engineer-
ing communities, however, there was growing interest in the idea of recursive partitioning
alongside the development of efficient algorithms for searching splits.

The method that finally sparked interest in decision trees and formed the foundation
for modern decision tree methods was Classification and Regression Trees (CART) [10],
proposed by Breiman et al. CART uses the same greedy search approach as AID, but
instead of using stopping rules, the tree is grown to a large size before being pruned to
minimize cross validation error. This alleviates the underfitting and overfitting of earlier
methods though at an increased computational cost. In addition, Breiman et al. introduced
the idea of using surrogate splits to handle variables with missing data. Surrogate splits
are splits on alternate variables that serve as a substitute for the preferred split when the
latter contained missing data. With these improvements over methods like AID, CART
successfully drew attention towards decision tree-based methods.

Another important work that further popularized the adoption of decision trees is Iter-
ative Dichotomiser 3 (ID3) [44], proposed by Quinlan. The main contribution of ID3 was
the use of entropy as the splitting criteria, i.e. at each splitting node, the algorithm selected
the attribute that minimizes entropy or maximizes information gain. Similar to previous
methods, ID3 suffers from limitations such as not guaranteeing the optimal solution since
it uses a greedy approach and is restricted to datasets with categorical variables. Quinlan’s
follow-up work, C4.5 [45] makes several improvements over ID3 and has become one of the
most widely used decision tree methods. Unlike ID3, C4.5 is capable of handling both con-
tinuous and discrete attributes and handles training data with missing attribute values by
ignoring missing values during entropy calculation. In addition, trees are pruned after cre-
ation, though they are still often substantially larger than trees produced by other methods
[35]. In any case, empirical evidence shows that C4.5 has strong prediction accuracy and
speed among decision tree methods [34].

2.2 Random Forests

Although decision trees offer interpretability and are simple to use, they suffer from overfit-
ting, can be non-robust to small changes in training data, and typically rely on heuristics
like greedy search strategies. Consequently, decision trees are unable to generalize well and
suffer from limited accuracy. In response to this limitation, Ho [58] was the first to propose a
tree-based ensemble learning method for increasing generalization accuracy of decision tree-
based classifiers without trading away accuracy on training data by training a random forest
of classifiers. Variation among the trees is introduced by projecting the training data into

CHAPTER 2. RELATED WORKS d

a randomly chosen subspace before fitting each tree or each node, i.e. suppose the input
feature is m-dimensional, then there are 2™ possible feature subspaces on which to project
the training data. Ho notes that the projection allows trees in different subspaces to gener-
alize their classification in complementary ways, resulting in improved overall classification
accuracy. The experiments on MNIST demonstrate that increasing the number of decision
trees yields almost monotonic increase in accuracy to overcome the overfitting issue of indi-
vidual decision trees. Around the same time, Amit and Geman [3]| independently proposed
searching over a random subset of decisions when searching for the best split, in the context
of growing a single tree. They define a set of binary features called queries which are de-
signed to capture prior information about shape invariance and regularity within an image.
Multiple trees are grown and each node searches over a random subset of these geometric
features to find the best split.

Influenced by the two stochastic methods described above, Breiman was the first to
formalize the random forests method and provide both theoretical and empirical results
[9]. Breiman’s method utilizes bagging and random node optimization to construct random
forests, which are defined as a collection of tree structured classifiers whose outputs are
aggregated for classification. In terms of bagging, the method forms bootstrap training sets
from the original training data and constructs a tree for each bootstrap training set. One
benefit of bagging is that it introduces the notion of out-of-bag error. Given a specific sample
from the training set, an out-of-bag classifier refers to a classifier whose bootstrap training
set does not contain that sample. For each sample in the training set, votes are aggregated
for the sample using the out-of-bag classifiers. Then the out-of-bag error is the error rate
of out-of-bag classifiers on the training set. This removes the need for cross validation or
a separate test set for estimating generalization error and provides a means for measuring
variable significance. In terms of random node optimization, Breiman explores two methods
to introduce variance in feature selection. One way is to randomly select a set of variables
to split on at each node. The other way is to generate multiple linear combinations of the
input variables where coefficients are drawn from a uniform distribution. Then the algorithm
searches over the linear combinations for the best split.

Breiman’s work solidified the value of random forests as an ensemble learning method and
directly dealt with the low bias, high variance problem of decision trees. Empirical results
in the early random forests papers demonstrate that forests not only greatly improve the
performance of decision trees but also performed competitively with methods like boosting
and adaptive bagging. However, the drawback of random forests is the fact that they drasti-
cally reduce the interpretability of decision trees by aggregating votes from multiple decision
trees. Nonetheless, despite their limitations, both decision trees and random forests are still
widely used in modern applications from simpler tasks like classification to specialized tasks
like human pose estimation, as we will see in the following section.

CHAPTER 2. RELATED WORKS 6

2.3 Intersection of Decision Trees and Neural
Networks

As mentioned previously, deep learning based techniques have consistently pushed the state-
of-the-art accuracy in a variety of tasks over the past decade while sacrificing the inter-
pretability of results. Because of the inherent interpretability of decision trees, researchers
have explored ways to combine the two methods in hopes of maintaining both accuracy and
interpretability.

Decision Trees to Neural Networks

Work in converting from decision trees to neural networks dates back three decades as
methods explored the use of decision trees to speed up neural network training. [6, 5,
25] propose initializing the weights of a neural network using a decision tree. [6, 5] notes
that while decision tree methods like ID3 and CART run quickly during training, neural
network based algorithms like perceptron and error-backpropagation often attain higher
predictive accuracy. Therefore, they suggest constructing a decision tree, converting it into
a neural network, and fine-tuning it in order to decrease training time. Recent work [24] also
proposes initializing the weights of neural networks using decision trees to speed up training.
The proposed mapping from decision tree to neural network involves corresponding paths
in the tree to connections between neurons in the neural network. Thus, this method not
only determines the initialization weights of a neural network but also the structure of the
architecture. Unlike the previous works which use decision trees to speed up neural network
training, TreeGrad [52] converts decision trees to neural networks in order to train boosted
decision trees in an online manner, e.g. to update decision split values and the choice of
split candidates. Results on the UCI dataset [16] demonstrate that TreeGrad performs
competitively and even outperforms existing greedy tree ensemble algorithms.

Neural Networks to Decision Trees

There has also been work done in the other direction, i.e. converting from neural networks to
decision trees, in hopes of developing an understanding of what a neural network is learning.
[29] proposes a method for extracting decision trees from a neural network in order to better
understand the internal workings of the neural network. This is done by generating a set of
prototypes, i.e. a set of inputs which yield a desired classification when passed through a
neural network. Once the set of the prototypes is generated, a decision tree is induced using
a subset of the prototypes. The prototypes not only reveal information about the neural
network but also cause the induced decision tree to be smaller as it is constructed with
a smaller training set. [8, 14] propose treating a trained neural network as an oracle and
making queries to the network in order to extract a set of rules. Using those rules, the method
induces a decision tree that essentially mimics the behavior of the neural network. Though

CHAPTER 2. RELATED WORKS 7

the induced trees do not perform as well as the neural network, they still reveal some insight
on how neural networks make decisions. A more recent work [18] similarly samples from
the input space and queries the neural network before fitting a decision tree to the output
in order to mirror the behavior of the network. A soft decision tree is constructed and
trained by stochastic gradient descent using the predictions of the neural network, allowing
it to generalize better than a decision tree trained on the training data directly. By using
neural networks to improve the performance of more explicable models like decision trees,
this method eases the tension between representation power and interpretability.

Decision Trees for Image Classification

Recent work in image classification explores methods in which decision trees and neural
networks work jointly to either improve predictive accuracy or model interpretability. Deep
Neural Decision Forests (DNDF') [27] unifies classification trees and convolutional networks
and trains them in an end-to-end manner by introducing stochastic, differentiable trees
which can learn through backpropagation. Input samples are first featurized using a neural
network before being routed through decision nodes to the prediction nodes, which hold
a distribution over the possible output classes. DNDF achieved state-of-the-art accuracy
on ImageNet; however, this was prior to the inception of residual networks which greatly
improved accuracy across computer vision tasks. In addition, the main drawback of DNDF
is the use of random forests and leaves with distributions over all classes which ultimately
diminished the interpretability of the method.

Despite the limited interpretability of DNDF, Li et al. [33] visualize saliency maps along
the decision-making process of DNDF to better understand what the network is attending to
in the input image. The saliency maps are computed by taking the derivative of the routing
probability with respect to the input, where the routing probability of each splitting node
represents whether the tree should traverse along the left sub-node. While saliency maps
highlight spatial evidence, they fail to provide semantic meaning for the decision made at
each intermediate node.

Murthy et al. [41] propose a stage-wise training strategy in which Deep Decision Networks
(DDN) are trained to split data into disjoint clusters of classes that are subsequently handled
by successive expert networks. That is, at each stage, a network is trained on a given set
of data and a confusion matrix is used to identify clusters with samples that are difficult
to classify. Then an expert network is fine-tuned to handle those confusion clusters. This
results in a tree-like structure in which each node corresponds to a network; consequently, this
method reveals insight on the underlying structure of the data, e.g. images and classes that
are difficult to classify. Network of Experts (NofE) [1] presents a similar strategy involving
expert networks and identifying confusing classes. NofE contains a generalist backbone
which is shared across the expert networks and outputs a distribution over the specialties, or
disjoint subsets of original classes. The expert network is responsible for discriminating the
classes within its specialty. Like the previous work mentioned, this method reveals insight
on the data and model in that it partitions the classes into specialties such that confusing

CHAPTER 2. RELATED WORKS 8

classes or classes of the same domain can be clustered together. Then, the expert network
can learn highly specialized features to distinguish between the classes.

While DDN and NofE reveal insight on how classes are clustered and which images or
classes tend to be difficult for classification, they still treat the neural network as a black-box
in that the internal decision-making process of the network is still unclear. In light of this,
Zhang et al. [61] propose learning a decision tree, which clarifies the reason for each prediction
made by a convolutional neural network at the semantic level. A filter loss is defined to push
high-level filters towards representations of object parts, resulting in disentangled filters.
Then, a decision tree is constructed to highlight which object parts highlight which filters
most strongly for a given prediction. Thus this method not only provides insight on which
object parts are contributing to a prediction but also unmasking what high-level filters are
learning at a semantic level, aside from the typical edges, colors, gradient orientations, etc,
which can be somewhat uninformative in the big picture.

Decision Trees for Segmentation

Prior to deep learning becoming the de facto standard in vision-related tasks, decision trees
and random forests were being applied to tasks like human pose estimation and semantic
segmentation. Brostow et al. [11] propose using random forests and 3D point clouds derived
from ego-motion for accurate segmentation of video frames. Unlike previous methods, this
method exploits structure and motion cues in video sequences and works well on sparse,
noisy point clouds. A random forest classifier scans across the image to classify each pixel
based on features inferred from the point cloud, such as distance from and height above the
camera. Shotton et al. [49] similarly uses a sliding window decision forest classifier but in
the context of human pose estimation. The decision forest predicts a body part label at each
pixel as an intermediate step towards predicting joint positions. Despite using handcrafted
features, this method outperformed state-of-the-art methods even without kinematic and
temporal constraints and ran several orders of magnitude faster than existing methods.

Similar to DDN and NofE, where splitting nodes correspond to neural networks, recent
work proposes using neural networks as split nodes to learn more complex split features and
improve performance of decision trees and forests on image segmentation. Neural Decision
Forests (NDF) [12] proposes using randomized multi-layer perceptrons (rMLP) as split nodes
to learn non-linear, data-specific representations and find optimal splits. tMLPs differ from
conventional MLPs, which suffer from overfitting, in that the topology or number of layers
in an TMLP is determined by the distribution of labels arriving at a node and the input data
to the first layer of the rMLP is randomly selected. Evaluated on ETrims8 [28] and CamVid
[11] segmentation datasets, NDF outperforms conventional decision tree classifiers which
typically involve hand-crafted data representations. Similarly, Hehn et al. [23] proposes using
convolutional neural networks as a split feature extractor since their method learns decision
trees end-to-end using a gradient-based optimization method. Using CNNs as splits, a single
decision tree learned using their method outperforms standard random forest ensembles
whose splits are restricted to axis-aligned or oblique splits.

CHAPTER 2. RELATED WORKS 9

Other work explores combining decision trees and deep networks in order to improve
performance on semantic segmentation in the presence of limited training data. In the
context of robotic learning where time and data are limited, Zuo et al. [63] leverage the
strength of CNNs and random forests to reduce training time and provide higher performance
when training data is limited. The method replaces the softmax layer of a CNN with a
decision forest which serves to provide the loss function for learning the network weights
through backpropagation. Thus the network acts as a feature extractor while the decision
forest acts as the final classifier. Evaluated on KITTT [19] and NYUv2-40 [42] segmentation
datasets, this method outperforms pure deep learning methods while using a fraction of
typical training time by exploiting the discriminating power of decision forests. Richmond et
al. [47] instead propose a mapping from stacked decision forests to CNNs as a form of weight
initialization to enable training even with limited amounts of training data. This follows from
the assertion that stacked decision forests are a special case of CNNs with sparse convolution
kernels. Segmentation results on body part labeling and microscopy images indicate that this
method outperforms existing strategies in the face of limited training samples. They further
demonstrate a mapping from the newly trained CNN to another stacked decision forest which
offers a more computationally efficient inference alternative that performs better than the
original stacked decision forest.

While these aforementioned works have tackled increasing accuracy or decreasing run-
time, they are inadequate from an interpretability perspective as many of these methods
rely on random decision forests and do not propose hypotheses for node meanings. In the
following section, we discuss widely used explainable AI methods that attempt to address
the black-box nature of neural networks.

2.4 Explainable Artificial Intelligence

Explainable Al (XAI) is a relatively recent field that grew out of the motivation to ad-
dress the lack of interpretability in state-of-the-art artificial intelligence models. The impact
of research on XAI is not limited to providing insight on the behavior of complex mod-
els and algorithms; XAI improves the transparency of models by providing explanations
to some degree, ensures algorithmic fairness, and allows users to identify potential sources
of bias or issues with training data. While there are many ways to categorize XAI meth-
ods, two predominant categories are white-box or gradient-based methods and black-box or
perturbation-based methods. White-box methods have access to the internals of a system,
e.g. the model, feature maps, gradients, etc. On the other hand, black-box methods do not
require access to the internals of a system and draw explanations from making queries on
the system.

CHAPTER 2. RELATED WORKS 10

White-Box/Gradient-Based

Early white-box methods explored constructing visualizations of images that maximally acti-
vated neurons by projecting activations back to the pixel space or using gradients. Deconvnet
[60] presents a way to map activations back to the input pixel space in order to visualize the
input pattern that causes a given activation in the feature maps. A deconvnet essentially
runs a convnet in reverse by applying unpooling, rectification, and transposed convolution
layers repeatedly until the pixel space is reached. Visualizations constructed using deconvnet
reveal the hierarchical nature of features in a network, with early layers capturing features
like edges and color and later layers capture more complex, class-specific features. The draw-
back of this method is that its performance relies on the existence of max-pooling layers in
the network to obtain the positions of maxima within pooling regions. As a result, decon-
vnet and its reconstructions are conditioned on the input image and do not directly visualize
learned features.

Springenberg et al. [53] addresses this issue by introducing guided backpropagation, in
which they mask out gradient values for which the corresponding gradient or input feature
value is negative. This prevents the backward flow of gradients and adds an additional
guidance signal from higher layers during backpropagation. Using guided backpropagation
rather than deconvnet produces sharper, more recognizable image structure for higher layers
of a network. Similarly, Simonyan et al. [51] introduces two gradient-based visualizations
based on computing gradient of a class score with respect to an image. The first visualization
performs optimization on the image while fixing the weights to generate an image that is
most representative of a given class according to the network’s scoring function. The second
visualization computes the gradient of a class score with respect to each pixel in an input
image, highlighting pixels according to their influence on the class score.

The following works attempt to address the shortcomings of the early gradient-based
methods whose saliency maps can be noisy and contain indistinguishable attention regions.
Li et al. [32] proposes Salience Relevance maps, a two-step method, which begins by comput-
ing a pixel relevance map using Layer-wise Relevance Propagation (LRP) and then constructs
a context-aware saliency map from the LRP-generated map. The second step filters out ir-
relevant regions of the relevance map to better reveal the true attention areas. DeepLIFT
[50], a method similar to LRP, addresses the issue of gradient-based methods in which ac-
tivation functions like ReLU and sigmoid cause zero gradients even when activations may
carry information. Instead of propagating gradients to compute pixel importance, DeepLIFT
propagates activation differences where each neuron is assigned a reference activation. In-
tegrated Gradients [54] is an alternative method which first constructs a series of images
by scaling down the pixel intensities from the input image to zero or a pure black image.
Then, the average of the gradients of the constructed images is computed and multiplied by
the input image to construct the final saliency map. The motivation behind this is that at
a certain scaling factor, there will be a large jump in prediction score, meaning mainly the
pixels of most significance remain visible. Thus, the gradients of that image will dominate
the final saliency map.

CHAPTER 2. RELATED WORKS 11

GradCAM [48] also utilizes gradients of a target class to highlight spatial evidence for
classification; however, rather than computing gradients with respect to the input image,
gradients are taken with respect to the final convolution layer. The heatmap is computed as

follows: . 9
e + Yy
722 o
éradC’AM = ReLU(Z OéiAk>
k

where af, represents the weights of each layer in the final convolution layer and are computed
as the global average pool of gradients. Compared to CAM [62], GradCAM achieves better
localization and clearer class discriminative saliency maps.

Black-Box /Perturbation-Based

In contrast to white-box models, black-box models rely on probing behavior of a model
to gain understanding. LIME [46] identifies the regions of an input most influential for a
decision by constructing a local linear model that serves as a proxy to the full model in the
neighborhood of a given input. The regions of similar pixels are referred to as super-pixels
and are masked to observe how the network output changes in response. The disadvantage
of this method is that its reliance on locating super-pixels impacts the correctness and
consistency of the method, e.g. LIME may face difficulty locating the super-pixel region for
an object containing many textures and colors. In addition, though the linear approximation
constructed by LIME may perform well locally, it may not faithfully mimic the behavior of
a more complex model. In contrast, RISE [43] is another black-box method that generates
saliency maps by feeding masked versions of an input image and observing the subsequent
changes to the output. The saliency map is a linear combination of the randomly generated
masks where the weights correspond to the score of the target class corresponding to the
respective masked input. Thus, RISE, like GradCAM, highlights the pixels most significant
in classifying an input image correctly, but requires no knowledge of the internals of the
model.

As we can see, all the interpretability methods described above generate attribution or
saliency maps to highlight important pixels in an image. As a result, they are limited to
interpreting a single image and are unhelpful when a network is looking at the right thing for
the wrong reasons (e.g. a bird misclassified as a plane). In contrast, neural-backed decision
trees express the model’s prior over the entire dataset and utilizes the interpretability of
decision trees, breaking down classification into a sequence of intermediate decisions.

12

Chapter 3

Methodology

Suppose we have an existing neural network for image classification with standard layers e.g.
convolution, batch normalization, and activation layers. This neural network can range from
something as simple as ResNet10 to the state-of-the-art EfficientNet. Consider all layers of
the network before the final fully-connected layer. We refer to these layers as the backbone
of the neural network and use them to featurize input images/samples in some embedded
space. Then, the final fully-connected layer is responsible for making a prediction based on
the features of the embedded sample. Now, to explain what an NBDT is, we must define it in
terms of two components: the structure of the decision tree and how it performs inference.
We refer to these as the induced hierarchy and embedded decision rules respectively. As
we are trying to better understand the distribution of embedded features and how the fully-
connected layer behaves, we can construct the induced hierarchy and embedded decision rules
using the weights of the final fully-connected layer.

As illustrated in Figure 3.1, the NBDT pipeline consists of four steps divided into a
training phase and an inference phase. In step 1, we build an induced hierarchy using the
weights of a pre-trained network’s fully-connected layer (Sec 3.2). In step 2, we fine-tune
the network with a custom tree supervision loss (Sec. 3.3). In step 3, we featurize the
sample using the neural network backbone. In step 4, we use the embedded decision rules
to run inference (Sec. 3.1).

Notice that the architecture of neural network remains unchanged during construction of
an NBDT. We simply use the weights of the fully-connected layer to construct the NBDT
and update the weights during fine-tuning. Thus, our method supports any existing classifi-
cation or segmentation neural network architecture, and the accuracy of NBDT scales with
the accuracy of the underlying neural network. To reiterate, the interpretability of NBDTs
focuses on the final fully-connected layer and embedded feature space rather than the con-
volutional layers of the neural network. The structure of the NBDT illustrates properties of
the distribution of features in the embedded feature space and provides one interpretation
of how the neural network features are distributed rather than fully explaining the decision
making process of the overall neural network.

CHAPTER 3. METHODOLOGY 13

TRAINING INFERENCE

(=) D ol ®

S ¥ \

/N \ ’ XZ /_\:WZ i /6?
00 YAVART-Y Y

Step 1. Step 2. Step 3. Step 4.
Induced Hierarchy Tree Sup. Loss Featurize using Backbone Embedded Decision Rules

/

o)

>

Figure 3.1: Neural-Backed Decision Tree. The NBDT process consists of a training
phase and inference phase. The induced hierarchy is constructed during training, while the
embedded decision rules are used to run inference using the NBDT.

Notation

Throughout this chapter, we will use the following notation to explain the methodology. Let
x be the featurized sample, i.e. the output of passing an input image through the neural
network backbone, while g is the predicted class. Let W be the weight matrix of the fully-
connected layer, where each row w; of W corresponds to an output class. In addition, each
node in the NBDT will correspond to a representative vector r; contained in the embedded
feature space. The representative vectors are used to run inference using the NBDT.

3.1 Inference with Embedded Decision Rules

Suppose we have an NBDT with some arbitrary structure/hierarchy. We must define how
the NBDT performs inference to complete construction of the NBDT. The first step of the
inference phase in the NBDT pipeline is to featurize each sample using the neural network
backbone, where the backbone consists of all layers in the network before the final fully-
connected layer. To traverse the decision tree, at each non-leaf node, we take the inner
product between the featurized sample z € R? and each child node’s representative vector
r;. Note that all representative vectors r; are computed from the neural network’s fully-
connected layer weights. Thus, these decision rules are “embedded” in the neural network.
We use these inner-products to make either hard or soft decisions, described below.

We first motivate the use of inner products by establishing the equivalence between a
fully-connected layer and a degenerate decision tree.

1. Fully-connected layer. The fully-connected layer’s weight matrix is W & RF*9,
Running inference with a featurized sample is a matrix-vector product:

CHAPTER 3. METHODOLOGY 14

-

v
O (z,yw2)
/ \ 0.8 <Z7@1>/ \ <937“[J'2; \ 0.7

<I’ws>/ \(Zﬂi")ﬁ-?; @ @ (2, ws) (2, wq) (z,w5) \ <I7U[J)6_2j

@ ©® D ®

(a) Hard (b) Naive (c) Soft

(2, w1)

Figure 3.2: Hard and Soft Decision Trees. Illustrated above are the various ways to run
inference on an NBDT.

(] <ZE, w1>
W2 ‘ <$a w2> ~
r| = , = argmax(y) (3.1)
| :
Wq <.I', wd>
T W
9

The matrix-vector product yields inner-products between x and each w;, which is
written as (x,w;) = ;. The index of the largest inner product ¢; is our class prediction.

2. Decision Tree. Consider a minimal tree, with a root node and k child nodes. Each
child node is a leaf, and each child node has a representative vector, namely a row vector
r; = w; from W. Running inference with a featurized sample x means taking inner
products between x and each child node’s representative vector r;, which is written as
(x,r;) = (xr,w;) = ;. Like the fully-connected layer, the index of the largest product
7; is our class prediction. This is illustrated in Fig. 3.2 ((b) Naive).

Although the two computations are represented differently, both make a prediction by
taking the index of the largest inner product argmax(x,w;). Hereafter, we denote decision
tree inference as embedded decision rules.

Now consider the general case in which the decision tree contains non-leaf intermediate
nodes. The embedded decision rules require that each node corresponds to a representative
vector r;. Therefore, we naively consider the non-leaf’s representative vector to be the
average of all the subtree’s leaves’ representative vectors. With a more complex tree structure
containing intermediate nodes, there are now two ways to run inference:

CHAPTER 3. METHODOLOGY 15

1. Hard Decision Tree. Compute an argmax at each node, over all children. For each
node, take the child node corresponding to the largest inner product, and traverse that
child node. This process selects one leaf (Fig. 3.2, (a) Hard).

2. Soft Decision Tree. Compute a softmax at each node, over all children, to obtain
probabilities of each child per node. For each leaf, take the probability of traversing
that leaf from its parent. Then take the probability of traversing the leaf’s parent from
its grandparent. Continue taking products until you reach the root. This product
is the probability of that leaf and its path to the root. Tree traversal will yield one
probability for each leaf. Compute an argmax over this leaf distribution, to select one
leaf (Fig. 3.2, (c) Soft).

Using embedded decision rules thus breaks down any classification into a sequence of
decisions; however, running a neural network as an NBDT as-is yields poor accuracy as
the neural network is not optimized to maximize NBDT accuracy. In the following section,
we discuss how to build an induced hierarchy which can be used in fine-tuning the neural
network to maximize accuracy.

3.2 Building Induced Hierarchies

With the inner-product decision rule defined above, we can now define the structure of the
NBDT. Intuitively, some of these hierarchies may be easier for the network to learn. These
easier hierarchies may also better reflect how the neural network attains higher accuracy.
Thus, we run hierarchical agglomerative clustering on the class representatives r; = w;
extracted from the fully-connected layer weights W. The motivation for this is as follows:
consider the inner product space V = R? containing the rows w; of weight matrix W € RF*9,
w;’s corresponding to similar classes like cat and dog or truck and car should lie close to
each other in V', so agglomerative clustering should cluster similar classes together. In other
words, leaves lying in the same subtree will correspond to classes of similar attributes. Note
that because hierarchical agglomerative clustering is a bottom-up approach, it merges pairs
of clusters during construction of the hierarchy, resulting in a binary tree structure.

As mentioned in Sec. 3.1, each leaf corresponds to one w; and each intermediate node’s
representative vector is the average of the the representative vectors of the leaves in its
subtree. We refer to the hierarchy constructed in this manner as the induced hierarchy (Fig.
3.3). The steps in building an induced hierarchy are as follows: Step (a) Load the weights
of a pre-trained neural network’s final fully-connected layer, with weight matrix W € R?**,
Step (b) Use each column w; of W as representative vectors r; for each leaf node. For
example, the red w; from (a) is assigned to the red leaf in (b). Step (c) Use the average of
each pair of leaves for the parents’ representative vectors. For example, wy and wq (red and
purple) in (b) are averaged to make ws (blue) in (c). Step (d) For each ancestor, take the
subtree for which it is the root. Set the representative vector of the ancestor to the average

CHAPTER 3. METHODOLOGY 16

W.

X3 Y3

. -) "/ .
\\‘ @ /ws\ @
¢ (. OO0 0000 00O
Step (a) Step (b) Step () Step (d)

Load Weights Set Leaf Vectors Set Parent Vectors Set Ancestor Vectors

Figure 3.3: Building Induced Hierarchies. The induced hierarchy of an NBDT corre-
sponds to the structure of the tree and can be built using the weights of a pre-trained neural
network’s final fully-connected layer.

of the representative vectors for all leaves in the subtree. In Fig. 3.3, the ancestor is the
root, so its representative vector is the average of all leaves wy, ws, w3, wy.

We additionally conduct experiments with an alternative WordNet-based hierarchy. Word-
Net [37] provides an existing hierarchy of nouns, which we leverage to relate the classes in
each dataset, linguistically. We find a minimal subset of the WordNet hierarchy that includes
all classes as leaves, pruning redundant leaves and single-child intermediate nodes. As a re-
sult, WordNet relations provide “free” and interpretable labels for this candidate decision
tree, classifying a Cat also as a Mammal and a Living Thing. To leverage this “free” source
of labels, we automatically generate hypotheses for each intermediate node in an induced
hierarchy, by finding the earliest ancestor of each subtrees’ leaves.

3.3 Training with Tree Supervision Loss

In Sec. 3.1, we established the equivalence between a fully-connected layer and a degenerate
decision tree with no intermediate nodes. Using the same example, we can deduce that the
original neural network has only been trained to separate representative vectors for each
class, i.e. training the fully-connected layer to maximize accuracy. Therefore, the network
is not trained to separate the representative vectors for internal node. To address this issue,
we add loss terms that encourage the neural network to separate representatives for internal
nodes, during training.

We propose two variants of tree supervision loss for the hard and soft decision rules in turn
(Fig. 3.4). For hard decision rules, we use the hard tree supervision loss. The original neural
network’s loss Loginal Minimizes cross entropy across the classes. For a k-class dataset, this
is a k-way cross entropy loss. Each internal node’s goal is similar: minimize cross-entropy

CHAPTER 3. METHODOLOGY 17

(@, w1)

Hard Soft (oywr) (2w
@ ws + (a) Har (b) Soft @ o

(z,ws5) (2, wg) (@, ws) (@, ws) (z,wg) (z,w5) / \<1,wﬁ)

Figure 3.4: Tree Supervision Loss has two variants: Hard Tree Supervision Loss (a)
defines a cross entropy term per node. Because the dotted nodes are not included in the path
from the label to the root, they do not have a defined loss. Soft Tree Supervision Loss
(b) defines a cross entropy loss over all leaf probabilities. Each leaf probability is represented
with a colored box. The cross entropy is then computed over this leaf probability distribution,
represented by the colored box sitting directly adjacent to one another.

loss across the child nodes. For node ¢ with ¢ children, this is a c-way cross entropy loss
between predicted probabilities D(i)preq and labels D(7)iane. We refer to this collection of
new loss terms as the hard tree supervision loss (Eq. 3.2). The individual cross entropy losses
for each node are scaled so that the original cross entropy loss and the tree supervision loss
are weighted equally, by default. We test various weighting schemes in Sec. 4.1. Suppose
there are N nodes along the path from the root to the label in the tree, excluding leaves,
then there are NV + 1 different cross entropy loss terms — the original cross entropy loss and
N hard tree supervision loss terms. This is Loginal + Lhard, Where:

N
1) .
Lhard = N ;_1 CROSSENTROPY('D(Z)pred,D(Z)label)j. (3.2)

TV
over the ¢ children for each node

For soft decision rules, we use the soft tree supervision loss. In Sec 3.1, we described
how the soft decision tree provides a single distribution over leaves, Dpeq. We add a cross
entropy loss over this distribution. In total, there are 2 different cross entropy loss terms —
the original cross entropy loss and the soft tree supervision loss term. This is Loriginal + Lsoft
where:

Lot = CROSSENTROPY (Dpred; Diabel)- (3.3)

CHAPTER 3. METHODOLOGY 18

3.4 Extension to Semantic Segmentation

Thus far we have discussed how to construct an NBDT using any image classification neural
network. However, we can easily extend our method to an NBDTSeg model, i.e. constructing
an NBDT using a semantic segmentation network. The fully connected layer of a classifi-
cation network serves as the foundation for our method. For a segmentation network, we
can instead utilize the final 1 x 1 convolutional layer, which plays the same role as a fully
connected layer by essentially performing classification at each input pixel.

Consider an input of dimension (H, W, C;,) and Cyy; 1 X 1 x Cy, convolution kernels. The
output of the 1 x 1 convolutional layer can be computed by taking the inner product between
each convolution kernel and the vector along the channel dimension at each spatial location
of the input. Then the output will have dimension (H, W, C,,;). The final prediction of
the segmentation network will be the argmax of the output feature map along the channel
dimension. Thus, for an NBDT for classification, each row in the weight matrix of a fully
connected layer corresponds to a class; for an NBDT for segmentation, each convolution
kernel in a 1 x 1 convolutional layer corresponds to a class. From this perspective, NBDTs
can be easily applied to both classification and segmentation networks.

19

Chapter 4

Experiments

4.1 Classification

Experiments on multiple image classification benchmark datasets reveal that NBDT's achieve
state-of-the-art accuracy for decision trees, in some cases outperforming other methods by a
large margin. We report results across a variety of datasets, models, and inference modes:

1. Datasets: CIFAR10[30], CIFAR100[30], TinyImageNet[31], ImageNet[15]
2. Models: ResNet[22], recently state-of-the-art WideResNet[59], EfficientNet[56]

3. Inference modes: soft vs. hard inference

In terms of ablation studies, we first note that tree supervision loss with weight 0.5
consistently improves the accuracy of the original neural network by 0.5% across datasets.
In addition, we compare induced hierarchy vs. WordNet hierarchy and run hyperparameter
sweep on tree supervision loss weight.

Results

On all CIFAR10, CIFAR100, TinylmageNet, and ImageNet datasets, NBDT outperforms
competing decision-tree-based methods, even uninterpretable variants such as a decision for-
est, by up to 18% (Table 4.1). Our baselines are either taken directly from the original
papers or improved using a modern backbone: Deep Neural Decision Forest (DNDF up-
dated with ResNet18) [27], Explainable Observer-Classifier (XOC) [2], Deep Convolutional
Decision Jungle (DCDJ) [4], Network of Experts (NofE) [1], Deep Decision Network (DDN)
[41], and Adaptive Neural Trees (ANT) [57].

Using WideResnet28x10 as the backbone, our decision trees achieve 97.57% on CIFAR10,
82.87% on CIFARI100, and 66.66% on TinylmageNet, preserving accuracy of recently state-
of-the-art neural networks. On CIFARI10, our soft decision tree matches WideResnet28x10,
with a 0.05% margin. On CIFAR100, our soft decision tree achieves accuracy 0.57% higher

CHAPTER 4. EXPERIMENTS 20

Table 4.1: Results. On CIFAR10, CIFAR100, and TinylmageNet, NBDTs largely stay
within 1% of neural network performance. We italicize the neural network’s accuracy and
bold the best-performing decision-tree-based accuracy.

Method Backbone CIFAR10 CIFAR100 TinylmageNet ImageNet
NN WideResnet28x10 97.62% 82.09% 67.65% -
ANT-A* - 93.28% - - -

X0C - 93.12% - - 60.77%
NofE ResNet56 - 76.24% - -

DDN - 90.32% 68.35% - -
DCDJ NiN — 69.0% - -
NBDT-H (Ours) WideResnet28x10 97.55% 82.21% 64.39% -
NBDT-S (Ours) WideResnet28x10 97.57% 82.87% 66.66% -

NN EfficientNet-ES - - - 77.23%
NofE AlexNet - — - 61.29%
NBDT-H (Ours) EfficientNet-ES - - - 74.79%
NBDT-S (Ours) EfficientNet-ES - - - 75.30%
NN ResNet18 94.97% 75.92% 64.13% -
DNDF ResNet18 94.32% 67.18% 44.56% -
NBDT-H (Ours) ResNetl18 94.50% 74.29% 61.60% -
NBDT-S (Ours) ResNetl8 94.76% 74.92% 62.74% -

than WideResnet28x10’s, outperforming the highest competing decision-tree-based method
(NofE) by 6.63%. On TinylmageNet, our soft decision tree achieves accuracy within 1%
of WideResNet’s. Furthermore, the ResNetl8 variant outperforms DNDF by 18.2% on
TinyImageNet.

For our ImageNet experiments, we use EfficientNet-ES, a smaller variant of the Efficient-
Net models, which have achieved state-of-the-art accuracy on ImageNet. NBDTs obtain
75.30% top-1 accuracy, outperforming the strongest competitor NofE by 14%. Note that we
take the best competing results for any decision-tree-based method, but the strongest com-
petitors hinder interpretability by using ensembles of models like a decision forest (DNDF,
DCDJ) or feature shallow trees with only depth 2 (NofE).

Ablation Studies

Tree Supervision Loss. As described in Sec. 3.3, the overall loss term is Loyiginal + Lhard;
when weighting the original cross entropy loss and hard tree supervision loss equally. In
these set of experiments (Table 4.2), we use tree supervision loss weight 0.5, i.e. overall loss
i Loriginal + 0.5 % Lyarg. Training the networks from scratch on CIFAR100 and TinyImageNet
using this loss improves accuracy of the original network by 0.5%.

CHAPTER 4. EXPERIMENTS 21

Table 4.2: Tree Supervision Loss. The original neural network’s accuracy increases by
0.5% for CIFAR100 and TinylmageNet across a number of models, after training with soft
tree supervision loss.

Dataset Backbone NN NN+TSL A

CIFAR100 WideResnet28x10 82.09% 82.63% +0.59%
CIFAR100 ResNet18 75.92% 76.20% +0.28%
CIFAR100 ResNet10 73.36% 73.98% +0.62%
TinylmageNet ResNet18 64.13% 64.61% +0.48%
TinyImageNet ResNet10 61.01% 61.35% +0.34%

Table 4.3: WordNet Hierarchy. We compare the WordNet hierarchy with the induced
hierarchy. All results use a ResNet10 backbone with tree supervision loss weight of 10. Both
inference and tree supervision losses are hard.

Dataset Backbone Original WordNet Induced
CIFARI10 ResNet10 93.61% 93.65% 93.32%
CIFAR100 ResNet10 73.36% 71.79% 71.70%
TinyImageNet ResNet10 61.01% 52.33% 56.50%

WordNet Hierarchy. Table 4.3 indicates that WordNet and induced hierarchies per-
form similarly on smaller datasets like CIFAR10 and CIFAR100; however, on TinylmageNet,
the induced hierarchy outperforms the WordNet hierarchy by 4.17% because WordNet sim-
ilarity does not translate directly to visual similarity. Consider the following example: ac-
cording to WordNet, Bird is closer to Cat than to Plane as they are both animals. However,
images of Bird are more visually similar to Plane than Cat as they tend to share contextual
information such as the sky.

Tree Supervision Loss Weight. Sweeping over the tree supervision loss weight, we find
that increasing the weight up to one order of magnitude encourages the network to improve
NBDT accuracy; however, disproportionately assigning weight to the tree supervision loss
by two orders of magnitude significantly degrades performance of both the neural network
and the NBDT. Thus, our method is robust to imbalance between the two loss terms up to
an order of magnitude (Table 4.4).

4.2 Semantic Segmentation

1. Datasets: Cityscapes [13], Pascal-Context [40], LookIntoPerson [20)]
2. Models: HRNet-w18-v1l, HRNet-w48

CHAPTER 4. EXPERIMENTS 22

Table 4.4: Tree Supervision Loss Weight. Below, w refers to the coefficient for the hard
tree supervision loss. All NBDT-H trees use the ResNet18 backbone with hard inference.
Note that w = 0 is simply the original neural network.

Dataset Method w=20 w = 0.5 w=1 w =10 w = 100
CIFARI10 ResNet18 94.97% 94.91% 94.44% 93.82% 91.91%
CIFARI10 NBDT-H — 94.50% 94.06% 93.94% 92.28 %
CIFAR100 ResNet18 75.92% 76.20% 75.78% 75.63% 73.86%
CIFAR100 NBDT-H — 66.84% 69.49% 73.23% 72.05%

TinylmageNet ResNetl8 64.13% 64.61% 63.90% 63.98% 63.11%
TinylmageNet NBDT-H - 43.05% 58.25% 56.25% 58.89%

3. Inference modes: soft vs. hard inference

Results

The NBDTSeg model attains state-of-the-art for decision-tree-based models on three seg-
mentation benchmarks, achieving accuracy within 4% of the base neural network on Pascal
Context [40], Cityscapes [13], and LookIntoPerson [20] in Table 4.5. This demonstrates the
extensibility of neural-backed decision trees to not only high-dimensional inputs like images
but also high-dimensional, dense predictions like segmentation.

Table 4.5: NBDTSeg Results For each dataset, we use a state-of-the-art segmentation
network HRNetv2 and construct a corresponding NBDTSeg model.

Dataset NBDTSeg-S (Ours) NBDTSeg-H (Ours) HRNetV2 Size NN Acc A

Pascal-Context 49.12% - W48 52.54% 3.42%
Cityscapes 67.53% 67.33% W18-Small 70.30% 2.77%
Cityscapes 79.01% - W48 81.12% 2.11%

Look Into Person 51.64% — W48 55.37% 3.73%

23

Chapter 5

Interpretability Analysis

As mentioned previously, decision trees are inherently interpretable as they break down clas-
sification and regression problems into a series of intermediate decisions, which can be inde-
pendently analyzed. When the input features are easily understood (e.g. medicine/finance),
analyzing the rules for splitting intermediate splitting nodes is a relatievly straightforward
task; however, in the case of NBDTs, the input features are the embedded featurization of
images through a complex neural network.

5.1 Interpretability of Nodes’ Semantic Meanings

With the WordNet hierarchy, hypotheses for nodes” meanings can be automatically gener-
ated using the WordNet taxonomy. For induced hierarchies, however, hypotheses must be
manually proposed because the hierarchy is constructed using model weights. In either case,
to verify hypotheses, we follow a four-step procedure for deducing nodes’” meanings:

1. Make a hypothesis for the node’s meaning (e.g. Animal vs. Vehicle). This hypothesis
can be computed automatically from a given taxonomy like WordNet or deduced from
manual inspection of leaves for each child (Fig. 5.1).

2. Collect a dataset with new, unseen classes that test the hypothesis from step 1 (e.g.
Elephant is an unseen Animal). Samples in this dataset are referred to as out-of-
distribution samples.

3. Pass samples from this dataset through the node in question. For each sample, check
whether the selected child node agrees with the hypothesis.

4. The accuracy of the hypothesis is the percentage of samples passed to the correct child.
If the accuracy is low, repeat with a different hypothesis.

Fig. 5.1a depicts the CIFAR10 tree induced by a WideResNet28x10 model trained on
CIFAR10. Consider the hypothesis in which the root node splits on Animal vs. Vehicle.

CHAPTER 5. INTERPRETABILITY ANALYSIS 24

100
3 80
O 60
3 40
g 20
. 0
Hypothesis:
B Jyimal) Vebicle
O/O\Anzgf
/ \ / \ >~‘]_00
O 80
Y '\ Y\ ¥\ ¥ 1\ g 60
@ 00 06 ¢ 900 ¢ g %
Airplane Ship ~ Car Truck f \ f \Horsc Deer <C 28

00 00

Frog Bird Dog Cat

(a)

Figure 5.1: A Node’s semantic meaning. (a) CIFAR10 Tree Visualization of a WideRes-
Net28x10 model. (b) Classifications of the hypothesized Animal/Vehicle node on samples of
unseen classes of Vehicles (top) and Animals (bottom).

Using CIFAR100, we can collect out-of-distribution images for Animal and Vehicle classes
that are unseen at training time. Fig. 5.1b validates our initial hypothesis as samples of
unseen vehicle classes primarily traverse the left child, while samples of unseen animal classes
traverse the right child.

5.2 Sidestepping the Accuracy-Interpretability
Tradeoft

While the induced hierarchies are constructed by clustering representative vectors in the
weight space, vectors that are close in weight space do not necessarily indicate that they are
semantically similar. Fig. 5.2 depicts the CIFAR10 induced hierarchies for WideResNet28x10
and ResNet10 respectively. The WideResNet hierarchy (Fig. 5.2a) splits between animals
and vehicles at the root node, while the ResNet hierarchy (Fig. 5.2b) groups vehicles and
vertebrates like Clat and Frog. Thus the WideResNet hierarchy does a better job in grouping
semantically-similar classes together. We attribute this disparity to the higher accuracy of
WideResNet models, i.e. higher-accuracy models exhibit more semantically-sound weight
spaces. Thus, NBDTs do not require sacrificing accuracy of the model for interpretability.
Instead, using higher accuracy models improves the interpretability of NBDTs.

CHAPTER 5. INTERPRETABILITY ANALYSIS 25
d
wpiee @ — B - B Q=
/ vertebrate O —
O animal . O . cat / O frog
\ Carn}or'e B dog whole
chordate O \ .
~ I bird J / conveyance O - O all‘pliﬂeo ship
whole O vertebrate O — frog object O vehicle O — . O car
- TNOtOr_} Vehlcle O —_ O k
. . car bird truc
\Q‘Otor_vild'e O s 8 truck @ chordate - O - O deer
Vehlcle mamma.l O O dog
lacental O - o horee

craft O — 8 airplane \

ship g
(a) WideResNet28x10

(b) ResNet10

Figure 5.2: CIFAR10 induced hierarchies for (a) WideResNet (97.62% acc) and (b) ResNet
(93.64% acc), with automatically-generated WordNet hypotheses for node meanings.

50.02 0.1
,0.006 “deer 0240 © deer
0.008 airplane 00.02 00.14
craft’ ,0.002 “horse horse
hi
0.01 ship 0.08, .0 . 0.9@ 0018
instrumentality’ 0, ca 0480 cat
0 9 0%
og o
0.002, “car o.aaO 9
motor_vehicle 0o,oozk 0,02 01
1 truc] 0.04, °bird ; 0.180 °bird
whol 0.011 O 50.02 O £0.08
002, °at frog frog
o 008 carnivore’ ,0.009 0 50.02

o ,0.04 . 0,06
verlebrat placenta truck o truck
. o

0.92,
frog O.QSEO oar O 0
ungulat 0.955 O,BBO Oalrplane 0.02, alrplane
horse 50.02
Shlp ship
(a) (b) (c)
Figure 5.3: Visualization of path traversal frequency for three different classes. (a) In-

Distribution Class: Horse uses samples of a class found in training. (b) Context
Class: Seashore uses samples unseen at training time, indicating reliance on context. (c)
Confusing Class: Teddy uses samples that identify edge cases in node meanings.

5.3 Visualization of Tree Traversal

In addition to understanding the meaning of individual nodes, we can draw meaning from
tree traversals by visualizing the percentage of samples that pass each node (Fig. 5.3). This
reveals information about the most frequently traversed path and common incorrect paths
(Fig. 5.3a). We can investigate context and attributes that are shared between leaves such
as Backgrounds, Scenes, Color, or Shape. Fig. 5.3b depicts the paths of Seashore samples.
Notice that a majority of the samples end up at the Ship leaf, while few samples are classified
as animals. Fig. 5.3c depicts the paths of out-of-distribution Teddy samples. Notice that the
samples tend towards the animal classes as they share similar shape and visual features.

26

Chapter 6

Conclusion and Future Work

In this thesis, I discuss Neural-Backed Decision Trees, a method that forgoes the dichotomy
between interpretability and representation power by combining decision trees and deep
neural networks to create a high-accuracy, interpretable model. For image classification,
NBDTs narrow the accuracy gap between neural networks and decision trees to 1% on
CIFAR10, CIFARI100, TinyImageNet and to 2% on ImageNet, while advancing state-of-the-
art for interpretable methods by ~14% on ImageNet to 75.30% top-1 accuracy. For semantic
segmentation, NBDTs match neural network accuracy to within 4% on Cityscapes, Pascal-
Context, and Look Into Person (LIP). We show that any classification or segmentation
network can be used to construct an NBDT by (1) creating a decision tree like structure
called an induced hierarchy, (2) fine-tuning the network using a tree supervision loss, and (3)
running inference using embedded decision rules. To draw meaning from intermediate nodes
in an NBDT, we follow a four step procedure to validate our hypotheses qualitatively and
quantitatively.

In terms of future work, one way of further strengthening the interpretability of NBDT's
is to visually ground the meaning of intermediate nodes, i.e. currently the meaning de-
rived from nodes in trained NBDTs are not associated with semantic parts of the image. In
particular, this would improve interpretability for dense prediction tasks like semantic seg-
mentation as there is currently little work in XAl in terms of producing context explanations
for semantic segmentation. Alvin Wan and I are currently exploring this direction by using
a modified version of GradCAM to highlight what each node is looking at visually in an
image. Associating each decision rule with a visual correspondence in the image can reveal
insight into important object parts or context used to perform segmentation, e.g. windows,
wheels, and tail lights of vehicles.

In addition, currently the interpretability of NBDT's are limited to the embedded feature
space of the neural network backbone as we rely on using the weights of the final fully-
connected layer to construct an NBDT. Consequently, the overall network still remains
largely a black-box model and little insight is gained with respect to the overall decision-
making process. Extending NBDT to handle intermediate convolutional layers would remove
this restriction and reveal more about the internal workings of neural networks.

27

Bibliography

Karim Ahmed, Mohammadharis Baig, and Lorenzo Torresani. “Network of Experts
for Large-Scale Image Categorization”. In: vol. 9911. Apr. 2016.

Stephan Alaniz and Zeynep Akata. “XOC: Explainable Observer-Classifier for Explain-
able Binary Decisions”. In: CoRR abs/1902.01780 (2019).

Y. Amit and D. Geman. “Shape Quantization and Recognition with Randomized
Trees”. In: Neural Computation 9.7 (1997), pp. 1545-1588.

Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. “Deep Convolutional Decision
Jungle for ITmage Classification”. In: CoRR abs/1706.02003 (2017).

Arunava Banerjee. “Initializing Neural Networks using Decision Trees”. In: Proceed-
ings of the International Workshop on Computational Learning and Natural Learning
Systems. MIT Press, 1994, pp. 3—-15.

Arunava Banerjee. “Initializing neural networks using decision trees”. In: (1990).

Avishek Joey Bose and Parham Aarabi. Adversarial Attacks on Face Detectors using
Neural Net based Constrained Optimization. 2018. arXiv: 1805.12302 [cs.CV].

Olcay Boz. “Converting A Trained Neural Network To a Decision Tree DecText -
Decision Tree Extractor”. In: ICMLA. 2000.

Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (Oct. 2001), pp. 5-32. I1SSN:
0885-6125. DOI: 10.1023/A:1010933404324. URL: https://doi.org/10.1023/A:
1010933404324.

Leo Breiman et al. “Classification and Regression Trees”. In: 1983.

Gabriel Brostow et al. “Segmentation and Recognition Using Structure from Motion
Point Clouds”. In: vol. 5302. Oct. 2008, pp. 44-57. DOI: 10.1007/978-3-540-88682~
2_5.

S. Bulo and P. Kontschieder. “Neural Decision Forests for Semantic Image Labelling”.
In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 81—
88.

Marius Cordts et al. The Cityscapes Dataset for Semantic Urban Scene Understanding.
2016. arXiv: 1604.01685 [cs.CV].

BIBLIOGRAPHY 28

14
15
16
17
18
19
20
21
22]

[23]

[24]

[25]

Darren Dancey, David McLean, and Zuhair Bandar. “Decision tree extraction from
trained neural networks”. In: (Jan. 2004).

J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR09.
2009.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. URL: http:
//archive.ics.uci.edu/ml.

Kevin Eykholt et al. Robust Physical-World Attacks on Deep Learning Models. 2017.
arXiv: 1707.08945 [cs.CR].

Nicholas Frosst and Geoffrey E. Hinton. “Distilling a Neural Network Into a Soft
Decision Tree”. In: CoRR abs/1711.09784 (2017).

Andreas Geiger et al. “Vision meets Robotics: The KITTI Dataset”. In: International
Journal of Robotics Research (IJRR) (2013).

Ke Gong et al. Look into Person: Self-supervised Structure-sensitive Learning and A
New Benchmark for Human Parsing. 2017. arXiv: 1703.05446 [cs.CV].

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Fxplaining and Harnessing
Adversarial Examples. 2014. arXiv: 1412.6572 [stat.ML].

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: The IFEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

Thomas Hehn, Julian Kooij, and Fred Hamprecht. “End-to-End Learning of Decision
Trees and Forests”. In: International Journal of Computer Vision (Oct. 2019). DOL
10.1007/s11263-019-01237-6.

Kelli Humbird, Luc Peterson, and Ryan McClarren. “Deep Neural Network Initializa-
tion With Decision Trees”. In: IEEE Transactions on Neural Networks and Learning
Systems PP (Oct. 2018), pp. 1-10.

Irena Ivanova and Miroslav Kubat. “Initialization of neural networks by means of de-
cision trees”. In: Knowledge-Based Systems 8.6 (1995). Knowledge-based neural net-
works, pp. 333-344.

G. Kaas. “An exploratory technique for investigating large quantities of categorical
data”. In: Appl Stat 1980, (Jan. 1980).

Peter Kontschieder et al. “Deep Neural Decision Forests”. In: The IEEE International
Conference on Computer Vision (ICCYV). Dec. 2015.

F. Kor¢ and W. Forstner. eTRIMS Image Database for Interpreting Images of Man-
Made Scenes. Tech. rep. TR-IGG-P-2009-01. Apr. 2009. URL: http://www.ipb.uni-
bonn.de/projects/etrims_db/.

R. Krishnan, G. Sivakumar, and P. Bhattacharya. “Extracting decision trees from
trained neural networks”. In: Pattern Recognition 32.12 (1999), pp. 1999-20009.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

BIBLIOGRAPHY 29

[31]
[32]

[33]

[34]

[37]

[38]

[39]

[40]

Ya Le and Xuan Yang. “Tiny ImageNet Visual Recognition Challenge”. In: 2015.

Heyi Li et al. “Beyond saliency: Understanding convolutional neural networks from
saliency prediction on layer-wise relevance propagation”. In: Image and Vision Com-
puting 83-84 (Mar. 2019), pp. 70-86. 1SSN: 0262-8856. DOI: 10.1016/j.imavis.2019.
02.005. URL: http://dx.doi.org/10.1016/j.imavis.2019.02.005.

Shichao Li and Kwang-Ting Cheng. Visualizing the decision-making process in deep
neural decision forest. 2019. arXiv: 1904.09201 [cs.CV].

Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. “A Comparison of Prediction Ac-
curacy, Complexity, and Training Time of Thirty-Three Old and New Classification
Algorithms”. In: Mach. Learn. 40.3 (Sept. 2000), pp. 203-228. 1SsN: 0885-6125. DOTI:
10.1023/A:1007608224229. URL: https://doi.org/10.1023/A:1007608224229

Wei-Yin Loh. “Improving the precision of classification trees”. In: The Annals of Ap-
plied Statistics 3.4 (Dec. 2009), pp. 1710-1737. 1ssN: 1932-6157. por: 10.1214/09-
aoas260. URL: http://dx.doi.org/10.1214/09-A0AS260.

Robert Messenger and Lewis Mandell. “A Modal Search Technique for Predictive Nom-
inal Scale Multivariate Analysis”. In: Journal of the American Statistical Association
67.340 (1972), pp. 768-772. DOI: 10.1080/01621459.1972.10481290. eprint: https:
//doi.org/10.1080/01621459.1972.10481290. URL: https://doi.org/10.1080/
01621459.1972.10481290.

George A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM
38.11 (Nov. 1995), pp. 39-41. 1ssN: 0001-0782. DOI: 10.1145/219717 .219748. URL:
https://doi.org/10.1145/219717.219748.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: a
simple and accurate method to fool deep meural networks. 2015. arXiv: 1511 . 04599
[cs.LG].

James Nelson Morgan and John A. Sonquist. “Problems in the Analysis of Survey
Data, and a Proposal”. In: 1963.

Roozbeh Mottaghi et al. “The Role of Context for Object Detection and Semantic
Segmentation in the Wild”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2014.

Venkatesh N. Murthy et al. “Deep Decision Network for Multi-Class Image Classifica-
tion”. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2016.

Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus. “Indoor Segmenta-
tion and Support Inference from RGBD Images”. In: ECCV. 2012.

Vitali Petsiuk, Abir Das, and Kate Saenko. “RISE: Randomized Input Sampling for
Explanation of Black-box Models”. In: Proceedings of the British Machine Vision Con-
ference (BMVC). 2018.

BIBLIOGRAPHY 30

[44] J. R. Quinlan. “Induction of Decision Trees”. In: MACH. LEARN 1 (1986), pp. 81—
106.

[45] J. Ross Quinlan. C4.5: programs for machine learning. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 1993. 1SBN: 1-55860-238-0. URL: http://portal.acm.
org/citation.cfm?id=152181.

[46] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should T Trust
You?”: Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016. 2016, pp. 1135-1144.

[47] David L. Richmond et al. “Mapping Stacked Decision Forests to Deep and Sparse
Convolutional Neural Networks for Semantic Segmentation”. In: 2015.

[48] Ramprasaath R Selvaraju et al. “Grad-CAM: Visual Explanations From Deep Net-
works via Gradient-Based Localization”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017, pp. 618-626.

[49] J. Shotton et al. “Efficient Human Pose Estimation from Single Depth Images”. In:
IEEFE Transactions on Pattern Analysis and Machine Intelligence 35.12 (2013), pp. 2821—
2840.

[50] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Fea-
tures Through Propagating Activation Differences. 2017. arXiv: 1704.02685 [cs.CV].

[51] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolutional
networks: Visualising image classification models and saliency maps”. In: arXiv preprint
arXiv:1812.6034 (2013).

[52] Chapman Siu. “Transferring Tree Ensembles to Neural Networks”. In: Neural Infor-
mation Processing. 2019, pp. 471-480.

[53] Jost Tobias Springenberg et al. “Striving for Simplicity: The All Convolutional Net”.
In: CoRR abs/1412.6806 (2014).

[54] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep
Networks”. In: International Conference on Machine Learning (ICML) 2017 (2017).

[55] Christian Szegedy et al. Intriguing properties of neural networks. 2013. arXiv: 1312.
6199 [cs.CV].

[56] Mingxing Tan and Quoc V Le. “Efficientnet: Rethinking model scaling for convolu-
tional neural networks”. In: arXiv preprint arXiv:1905.11946 (2019).

[57] Ryutaro Tanno et al. Adaptive Neural Trees. 2019.

[58] Tin Kam Ho. “Random decision forests”. In: Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition. Vol. 1. 1995, 278-282 vol.1.

[59] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In: arXiv preprint
arXiw:1605.07146 (2016).

BIBLIOGRAPHY 31

[60] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: FEuropean Conference on Computer Vision (ECCYV). Springer. 2014,
pp. 818-833.

[61] Quanshi Zhang et al. “Interpreting CNNs via Decision Trees”. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2019.

[62] Bolei Zhou et al. “Learning Deep Features for Discriminative Localization”. In: Com-
puter Vision and Pattern Recognition. 2016.

[63] Yan Zuo and Tom Drummond. “Fast Residual Forests: Rapid Ensemble Learning for
Semantic Segmentation”. In: Proceedings of the 1st Annual Conference on Robot Learn-
ing. Ed. by Sergey Levine, Vincent Vanhoucke, and Ken Goldberg. Vol. 78. Proceed-
ings of Machine Learning Research. PMLR, 13-15 Nov 2017, pp. 27-36. URL: http:
//proceedings.mlr.press/v78/zuol7a.html.

