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Abstract

Risk-Sensitive Safety Analysis and Control for Trustworthy Autonomy

by

Margaret P. Chapman

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

Methods for managing dynamical systems typically invoke one of two perspectives. In
the worst-case perspective, the system is assumed to behave in the most harmful way; this
perspective is used to provide formal safety guarantees. In the risk-neutral perspective,
the system is assumed to behave as expected; this perspective is invoked in reinforcement
learning and stochastic optimal control. While the worst-case perspective is useful for safety
analysis, it can lead to unnecessarily conservative decisions, especially in settings where un-
certainties are non-adversarial. The risk-neutral perspective is less conservative and useful
for optimizing the system’s performance on average. However, optimizing average perfor-
mance is not guaranteed to protect against harmful outcomes and thus is not appropriate
for safety-critical applications.

This thesis consists of two parts. First, we present an analytical and computational
toolkit for cancer modeling and management that we have developed with cancer biologists
by invoking the worst-case perspective. In addition to providing biological insights about
breast cancer and theoretical insights about switched systems, this work has motivated
the need for new mathematical methods that facilitate less conservative but still protective
control of dynamical systems.

Towards this aim, we have devised a risk-sensitive mathematical method for safety anal-
ysis that blends the worst-case and risk-neutral perspectives by leveraging the Conditional
Value-at-Risk measure. The second part of this thesis presents the mathematical develop-
ment of this risk-sensitive safety analysis method. We also show its practical application to
evaluating the safety of urban water infrastructure, using a numerical example that has been
developed in collaboration with water resources engineers.
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Chapter 1

Introduction: Risk-Neutral vs.
Worst-Case Decision Analysis
Methods for Dynamical Systems

Methods for managing dynamical systems typically invoke one of two perspectives: risk-
neutral or worst-case. In the risk-neutral perspective, the dynamical system is assumed to
behave as expected over time. Examples of risk-neutral methods include: stochastic optimal
control [90] [58] [10] [46] [62] [80], stochastic reachability [1] [81], and reinforcement learning
(stochastic adaptive control) [99] [98] [11].

On the other hand, in the worst-case perspective, the dynamical system is assumed to
behave in the most harmful way over time. Examples of worst-case methods include: robust
control [8] [14] [77] [116] [91] [74], Hamilton-Jacobi reachability [70] [33] [23], and minimax
reachability [9] [12]. Additional worst-case methods are the analysis and computation of
reachable or invariant sets via sums of squares programming [67], linear and second-order
cone programming [66], geometric control [86] [87] [64], or linear matrix inequalities [75].
We have used the worst-case perspective to design and analyze cancer treatment schedules,
which we present in Chapter 2 of this thesis.

The worst-case and risk-neutral decision analysis methods for dynamical systems have
distinct advantages and disadvantages. Worst-case methods are used to provide formal safety
guarantees for dynamical systems in the presence of uncertainty. While the worst-case per-
spective is useful for safety analysis, it can lead to unnecessarily conservative decisions,
especially in settings where uncertainties are non-adversarial. The risk-neutral perspective
is less conservative and useful for optimizing the performance of dynamical systems on aver-
age. However, optimizing average performance is not guaranteed to protect against harmful
outcomes and thus is not appropriate for safety-critical applications.

There is a clear gap between the worst-case and risk-neutral perspectives, and some
methods have been devised to help fill this gap. Examples include methods for the analysis
and control of dynamical systems that are based on minimizing state-trajectory costs with
respect to an assumed family of probability distributions [102] [110] or minimizing state-
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trajectory costs that are assessed using risk measures [25] [44] [79] [89] [92] [93] [102].
In this thesis, we present a new safety analysis method for dynamical systems that further

fills the gap between the worst-case and risk-neutral perspectives. This method, which is
called risk-sensitive safety analysis, uses the Conditional Value-at-Risk measure to evaluate
the safety of a given dynamical system with respect to the α · 100% worst-case outcomes
of the state trajectory.1 The development of risk-sensitive safety analysis is motivated by
the conservativeness that arises by applying standard worst-case methods to safety-critical
dynamical systems under large uncertainties. Examples of such systems include a cancer
treatment system, which we model and analyze in Chapter 2, and a stormwater catchment
system, which we model and analyze in Chapter 3. The development of risk-sensitive safety
analysis is also motivated by the limitation of the standard Exponential Utility measure
to quantify the α · 100% worst cases in settings with non-Gaussian state-trajectory costs.
We examine the differences between using the Conditional Value-at-Risk measure and the
Exponential Utility measure for optimal control of dynamical systems through a numerical
example in Chapter 3.

This thesis has inspired many interesting future research directions, including risk-sensitive
control of cancer systems, approximate risk-sensitive safety analysis for scaling to high-
dimensional systems, and the generalization of risk-sensitive safety analysis to a larger class
of risk measures. These and other promising ideas are presented in the final chapter of this
thesis.

1.1 Overview

The structure of this thesis is as follows. The next section of the Introduction presents
mathematical notation that is used throughout the thesis. Then, Chapter 2 presents a body
of research on modeling and managing a cancer subtype called triple-negative breast cancer.
Most of the content in Chapter 2 is from the previously published papers [20] and [19]. As
practical control theorists, we are interested in improving how triple-negative breast cancer
(TNBC) is managed, but there are no standard models to predict how this cancer subtype
evolves over time. Thus, the first part of Chapter 2 is devoted to the study of new TNBC
dynamical models that we have developed using biological time series data. The second
part of Chapter 2 is focused on the synthesis of a class of cancer treatment schedules, which
leverages the worst-case perspective for managing dynamical systems under uncertainty.

Motivated by the conservativeness of worst-case methods for dynamical systems with
large uncertainties, such as cancer treatment systems, Chapter 3 is focused on the mathe-
matical development of our new risk-sensitive safety analysis method. Prior to presenting
the mathematical details, we further motivate risk-sensitive safety analysis via a numerical
example of a stormwater catchment system. We also present background on the Conditional
Value-at-Risk (CVAR) measure, the Exponential Utility risk measure, and well-established

1α ∈ [0, 1] is the risk-sensitivity level.
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safety analysis methods to explain where our CVAR-based methodology fits within the lit-
erature. In the rest of Chapter 3, we define the notion of a risk-sensitive safe set, provide
a provably correct value iteration algorithm to estimate risk-sensitive safe sets and control
policies for a class of linear systems, and develop an illustrative numerical example. Most of
the content in Chapter 3 is from the previously published conference papers [21] [18] and the
manuscript under review [22]. The final chapter of this thesis, Chapter 4, presents exciting
future research directions, which we look forward to pursuing.

1.2 Notation

Mathematical notation for this thesis is provided below. Recommended references on
real analysis and probability theory include [5] and [34].

• ∀ means for all. ∃ means there exists. ⇐⇒ means if and only if or is equivalent to.
∈ means is an element of. ⊆ means is a subset of.

• Rn is the set of real-valued n-dimensional vectors. I.e., x ∈ Rn means that x =
[x1, x2, . . . , xn]T , where xi ∈ R for each i.

• ||x||p := (
∑n

i=1 |xi|p)
1/p

is the Lp norm of a vector x ∈ Rn, where |xi| is the absolute
value of xi ∈ R. Chapter 2 uses || · ||1 and || · ||2 in various settings.

• Rp×q
+ is the set of p × q matrices with real nonnegative entries. Rp

+ is the set of p-
dimensional vectors with real nonnegative entries.

• N := {1, 2, . . . } is the set of natural numbers.

• N0 := {0, 1, 2, . . . } is the set of natural numbers including zero.

• Πp
i=1A(i) := A(p)A(p− 1) · · ·A(2)A(1) is a product of p matrices. Note that the order

of matrix multiplication is important.

• dye is the ceil function, and byc is the floor function. E.g., d3.6e = 4, and b3.4c = 3.

• (kj)j∈{1,2,...,n} := (k1, k2, . . . , kn) is a finite sequence of elements. Note that elements
in a sequence are ordered. Individual elements need not be unique; i.e., we may have
ki = kj for i 6= j.

• {kj}j∈A is a set of elements. Note that elements in a set are not ordered. E.g.,
{π, 1, 4, 1, 3} = {π, 1, 4, 3} = {3, 1, π, 4} 6= {3, π, 4}.

• If X is any set and f : X → Rn is bounded, then the uniform norm of f is given by
||f ||u := supx∈X ||f(x)||2, where || · ||2 is the Euclidean distance on Rn. E.g., if y ∈ Rn,

then ||y||2 := (
∑n

i=1 |yi|2)
1/2

, where | · | is the absolute value.
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• If X is a metric space, then B(X) is the Borel σ-algebra on X. If A ∈ B(X), then A
is called a Borel set.

• If 1 ≤ p ≤ ∞, then Lp := Lp(Ω,F ,P) is the collection of functions f : Ω → R,
measurable relative to F and B(R), such that ||f ||p := (

∫
Ω
|f(ω)|pP(dω))1/p < ∞,

where |f(ω)| is the absolute value of f(ω) ∈ R. In other words, Lp(Ω,F ,P) is the
collection of random variables with finite pth moment and set of events F . The integral∫

Ω
|f |dP is shorthand for

∫
Ω
|f(ω)|P(dω).

• f ∈ L∞ := L∞(Ω,F ,P) indicates that f is a bounded random variable.

• If f is a random variable defined on a probability space (Ω,F ,P), then σ(f) is the
σ-algebra generated by f , and E(f) :=

∫
Ω
fdP :=

∫
Ω
f(ω)P(dω) is the expected value

of f .

• “Measurable” is short for Borel measurable, and “a.e.” stands for almost everywhere
or almost every. “USC” denotes upper semi-continuous, and “LSC” denotes lower
semi-continuous.

• Bold text is used to signify a deterministic quantity in Chapter 3; e.g., xt = x indicates
that the random variable xt takes on the value x.
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Chapter 2

On Modeling and Managing a Cancer
Subtype

Triple-negative breast cancer (TNBC) is an especially aggressive and deadly form of
breast cancer that disproportionately affects younger women or women of African descent.
This cancer is difficult to treat for two key reasons in particular. First, TNBC lacks the
three most common proteins in breast cancer (which is why it is called triple-negative), so
it is hard to find treatments that specifically target proteins on the tumor surface. Second,
TNBC is composed of many different types of cells, where the cells are different in their
phenotypic traits.

This heterogeneity in TNBC and in other basal-like breast cancers has been character-
ized by Risom et al. through the use of differentiation-state biological markers [84]. The
experimental data have shown that after treatment with certain targeted therapies, some
TNBC cells are able to survive and their phenotypic traits change [84, Figure 3f]. These
phenotypic traits, which are associated with specific cellular behaviors, have been measured
by imaging the relative fluorescence produced by the differentiation-state biological markers.
Thus, the term differentiation state refers to a specific collection of phenotypic traits that
is related to specific cellular behaviors and can be observed via differentiation-state marker
expression.1

We have developed data-driven mathematical models of TNBC differentiation-state dy-
namics by applying statistical learning techniques to cancer cell line data [19].2 These models
explain how TNBC cells may escape from particular therapies through differentiation-state
transitions [19], which is relevant for designing improved cancer treatment strategies. Build-

1The terms cell state and phenotypic state are also used in the literature. A cell state is the most general
term and refers to a cell type with particular genetic or phenotypic traits. A phenotypic state is a cell state
with particular phenotypic traits. A differentiation state is a phenotypic state that is measured through the
use of differentiation-state markers. I.e., differentiation states are phenotypic states, and phenotypic states
are cell states. The term differentiation-state marker expression refers to the relative fluorescence produced
by differentiation-state biological markers.

2A cell line is a collection of cells from a single origin that is cultured in a laboratory setting. The cancer
cell line for our data set, which is called HCC1143, originated from a (human) patient many years ago.
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ing from our modeling contributions, we have proposed a class of therapeutic treatment
schedules with tolerability specifications and have derived sufficient mathematical conditions
for the decay of cancer cell populations under this class by invoking the worst-case perspec-
tive [20]. As well as providing theoretical insights about switched dynamical systems, this
work has motivated the need for mathematical methods that facilitate less conservative but
still protective control of dynamical systems.

This chapter has two main sections. First, we present the data-driven mathematical
models of TNBC dynamics, most of which has been published in [19]. Additional details
about the mathematical and numerical methods used for the modeling are provided in [19,
S1 Appendix]. In the second section of this chapter, we present the synthesis of a class of
cancer treatment schedules, most of which has been published in [20].

While our primary goal is to improve how triple-negative breast cancer (TNBC) is man-
aged, there are no standard models to predict how TNBC evolves over time. Thus, we
first devoted significant research effort to the development and analysis of TNBC dynamical
models, which is presented next.

2.1 Data-Driven Modeling of TNBC Dynamics

Computational models have been built to examine the phenotypic state dynamics of
cancer cell populations and the potential role of these dynamics in the development of ther-
apeutic resistance [36] [43] [84] [17] [113] [115] [114] [76] [3]. A Markov chain model has
predicted that cancer stem-like cells can arise from non-stem-like cells using probabilities
identified from observations at two time points [43]. Although parameter estimation error
was not examined, the prediction has been validated in an experiment [43]. Another pivotal
study has used ordinary differential equation (ODE) modeling to predict that cells express-
ing a transient drug-tolerant phenotype arise from non-stem-like cells [36]. While the model
itself was not tested on independent data, the prediction has been validated empirically [36].
Further, an ODE model has been developed using the principles of biochemical reactions
to represent cell-state birth, death, and transition [115] [114]. A dynamical model that
generalized prior cell-state transition models [43] [115] [114] has been constructed using a
Markov process with a finite number of cell divisions [76], and phenotypic state equilibria and
stability properties have been studied [76]. In the related field of clonal tumor evolution,
a stochastic genotypic state birth-death process model with mutations and a correspond-
ing deterministic ODE model have been developed [113]. The models along with Monte
Carlo sampling and observations at two time points have informed parameter sensitivity
analysis, a treatment window approximation, and investigations of therapeutic scheduling
[113]. Although our first modeling effort in the HCC1143 cell line of basal, mesenchymal,
and non-basal/non-mesenchymal states included the estimation of parameter variability, the
training data set was small for the number of parameters that required identification, and
no statistically significant therapy-induced effects on differentiation-state transitions were
detected [17]. Studies with cell-state dynamical models rarely include statistical analysis
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of model parameters (refs. [17] and [113] are exceptions) because the available data often
lacks sufficient quality and quantity at multiple time points. However, in this chapter, we
leverage novel time series data sets from Risom et al. [84] to estimate parameter variability,
infer statistically significant therapy-induced effects on differentiation-state transitions, and
examine how well our models generalize to unseen data.

Next, we summarize the content of the data sets from Risom et al. [84]. Cell populations
from a TNBC cell line called HCC1143 were cultured and treated with one of four different
agents: 1µM Trametinib, 1µM BEZ235, 1µM Trametinib+1µM BEZ235 (equal-ratio com-
bination), and DMSO. Trametinib and BEZ235 are therapies that inhibit the MEK and
PI3K/mTOR cell signaling pathways, respectively.3 DMSO, which is short for Dimethyl-
sulfoxide, is a baseline condition that represents the absence of therapy. The numbers of
cells in four different differentiation states and the numbers of cells, where the dying cells
were also specified, were measured every 12 hours over 6-7 time points in 4-15 replicate
populations following initial treatment [84]. The four differentiation states are: 1) basal,
2) mesenchymal, 3) luminal, and 4) non-basal/non-mesenchymal/non-luminal. The first
three states predominate “basal-like” triple-negative tumors, “claudin-low” triple-negative
tumors, and “luminal” ER+ tumors respectively [60] [82] [39], and many triple-negative tu-
mors harbor a heterogeneous mixture of cells occupying all four states [84] [38]. The four
differentiation states are defined according to high or low expression of three different biolog-
ical markers, Cytokeratin 14 (K14), Vimentin (VIM), and Cytokeratin 19 (K19) as follows:
1) basal (K14hi), 2) mesenchymal (VIMhiK14low), 3) luminal (K19hiVIMlowK14low), and 4)
non-basal/non-mesenchymal/non-luminal (K19lowVIMlowK14low).

Using these data, we have developed mathematical models to examine the feasibility of
transitions between any two of the four key differentiation states in triple-negative breast
cancer cell populations under different treatment conditions. We have used these models to
infer new biological insights: 1) how often HCC1143-derived cells may transition between
any two of the four differentiation states following treatment with therapy or DMSO, 2) the
statistical significance or insignificance of therapy-induced differences in the transition rates,
and 3) how changes in transition rates may underlie certain differentiation-state aggrega-
tions of drug-tolerant cells reported by [84]. Taken together, these insights demonstrate the
feasibility of transitions in the context of the four key differentiation states in triple-negative
breast cancer and how different treatments can distinctly affect the behaviors of these tran-
sitions. The following sections of this thesis present the dynamical models, our data-driven
model identification procedure, uncertainty analysis of the model parameters, model val-
idation, and an important biological hypothesis that is suggested by these computational
results.

3A cell signaling pathway is a series of chemical reactions involving a collection of molecules within a cell
that work together to control a cell function [73].
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Therapy-Specific Differentiation-State Dynamical Models

We have identified a dynamical model to predict the evolution of the four differentiation-
state subpopulations in response to a particular treatment condition (Trametinib, BEZ235,
Trametinib+BEZ235, or DMSO). Each therapy-specific model quantifies how the number
of live cells in each differentiation state and how the number of dead or dying cells in total
change over time following initial treatment. The key feature of each therapy-specific model
is the dynamics matrix, which contains the average rates of cell division, cell death, and tran-
sition between the four differentiation states under a particular treatment condition. These
dynamics parameters are defined as follows: ρi is the division gain of differentiation state i;
ρiD is the death gain of differentiation state i; ρij is the transition gain from differentiation
state i to differentiation state j. For example, ρ12 is the transition gain from the basal state
(K14hi) to the mesenchymal state (VIMhiK14low), and ρ3 is the division gain of the luminal
state (K19hiVIMlowK14low). A gain is a proportional value that quantifies the relationship
between the magnitude of an input and the magnitude of an output and is a discrete-time
analog of a rate.

Specifically, we have used a linear time-invariant model to represent the evolution of a
cancer cell population in response to initial treatment with therapy j:

x(t+ 1) = Aj · x(t), t = 0, 1, ..., T − 1, (2.1)

where Aj ∈ R5×5 is the dynamics matrix for therapy j and x = [x1, x2, x3, x4, x5]T ∈ R5 is
the vector containing the numbers of cancer cells in different categories. Specifically, x1 ∈ R
is the number of live basal (cancer) cells; x2 ∈ R is the number of live mesenchymal (cancer)
cells; x3 ∈ R is the number of live luminal (cancer) cells; x4 ∈ R is the number of live non-
basal/non-mesenchymal/non-luminal (cancer) cells; and x5 ∈ R is the number of dead or
dying (cancer) cells. We have utilized a fluid-like representation for cell populations, where
x is not necessarily a vector of integers, to accommodate the limitations of the data which
do not distinguish between the live cells and the dying cells occupying a particular differ-
entiation state. The discrete-time interval [t, t+ 1) is the duration between two consecutive
observations, or 12 hours, and T represents a finite time horizon of either 60 or 72 hours.
The dynamics matrix Aj contains the transition gains, division gains, and death gains in the
following form:

Aj :=


α1 ρ21 ρ31 ρ41 0
ρ12 α2 ρ32 ρ42 0
ρ13 ρ23 α3 ρ43 0
ρ14 ρ24 ρ34 α4 0
ρ1D ρ2D ρ3D ρ4D 1


αi := ρi − ρiD −

∑4
s=1,s 6=i ρis i = 1, 2, 3, 4.

(2.2)

For example, α2 = ρ2 − ρ2D − ρ21 − ρ23 − ρ24. The form of Aj is derived by using principles
of mass balance. For example, since we have assumed that live cells are able to transition,
divide, or die, we have the following equation for the dynamics of the number of live cells in
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differentiation state 1:

x1(t+ 1) = α1 · x1(t) + ρ21 · x2(t) + ρ31 · x3(t) + ρ41 · x4(t) + 0 · x5(t),

where α1 = ρ1 − ρ1D − ρ12 − ρ13 − ρ14. The term α1 · x1(t) is the net contribution to the
differentiation state 1 live subpopulation from itself through division, where the cells that
die or transition to other differentiation states are subtracted out. The term ρj1 · xj(t) is
the number of live cells that transition from differentiation state j to differentiation state
1 for j = 2, 3, 4. The reasoning to derive the other dynamics equations is similar. Fig. 2.1
provides a visual depiction of a therapy-specific dynamical model that we have identified by
using time series data from a triple-negative breast cancer (TNBC) cell line.

We have made idealistic assumptions that the evolution of a TNBC cell population is
linear, time-invariant, Markovian, and fully observable. These assumptions have been moti-
vated by the limited number of samples (90-99 per treatment condition) that are available
to identify a dynamical model of differentiation-state behaviors. The differentiation-state
measurements have not been automated, which has restricted the quantity and quality of
time series data that is available. These challenges are likely to be mitigated in the future
through the advancement of measurement technologies for time series data collection. In
the meantime, however, we have been able to estimate parameter variability, perform model
validation, and propose interesting biological insights by using our dynamical models, which
will be presented throughout the chapter. The next section details how we have identified
the therapy-specific dynamical models using the available data.

Data-Driven Identification of Dynamical Models

The core numerical problem is to estimate a dynamics matrix Aj for each treatment
condition j ∈ {Trametinib, BEZ235, Trametinib+BEZ235, DMSO} that fits the available
data sufficiently well under the form specified by the linear time-invariant model (2.1). This
problem cannot be solved exactly because of two key limitations of the data: 1) the data do
not distinguish between the live cells and the dying cells in a given differentiation state; and
2) not all measurements are available due to instrument errors.

To address the first challenge, we have combined the observed numbers of cells in each
differentiation state and the observed death fractions into the form of the cell type vector
x, where death has been distributed evenly across the differentiation states in view of our
preliminary work [19, S1 Appendix].

To address the second challenge, we have inserted these data samples into an alternat-
ing minimization (AM) algorithm to obtain an estimate of Aj, which we refer to as the

AM-optimized dynamics matrix (Âj). Alternating minimization [26] is a local optimization
method that reduces the value of a given cost function by alternating the role of the op-
timization variable between two variables.4 In our setting, these two variables are a data

4Expectation maximization is a special case of alternating minimization [30] [59] [15] [16] [106].
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Figure 2.1: Therapy-specific dynamical model [19]. We have used time series data to
identify a linear time-invariant model of a triple-negative breast cancer (TNBC) cell popula-
tion in response to initial treatment. In the model, the live cells occupy four differentiation
states and can transition, divide, or die. The dynamics parameters (ρ12, ρ21, ρ3, ρ4D, etc.)
are the average rates of these actions taken by the live cells in each differentiation state
following initial treatment.

variable X and a dynamics matrix variable A. We have used initialization for local opti-
mization [13] to help mitigate the possibility of converging to a local minimum that poorly
represents the cancer dynamics. Specifically, we have initialized our alternating minimization
algorithm with a dynamics matrix that solves a particular convex problem (within numer-
ical accuracy), where the convex problem approximates our original non-convex problem.
This convex problem is the minimization of our cost function (to be described in the next
paragraph) in which the data variable has been set to an appropriate estimate X̂ of its true
value. Each column of X̂ is a training data sample for a particular (time point, population)
pair, or the sample mean of the available training data for the time point when training data
for the (time point, population) pair was not available.5 We have shown that the values of
the dynamics parameters converge within numerical accuracy during the iterative process of
the alternating minimization algorithm [19, S3 Appendix]. In addition, we have assessed the
sensitivity of the dynamics matrix returned by the algorithm with respect to the initialization

5Time series measurements from 15 replicate populations were taken, but some measurements could not
be used since the associated images were out of focus.
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of the data variable [19, S4 Appendix].
We have designed the cost function for the alternating minimization algorithm to penal-

ize measurement error, process error, and estimation error measured in the L2 norm [19,
S1 Appendix]. This norm has been chosen because, as a general measure of length, it is
well-suited to identify networks without known structural characteristics, such as sparsity.
We have penalized measurement error and process error with equal weight in view of our
preliminary analysis [19, S1 Appendix]. The cost function utilizes L2-regularization to in-
duce element-wise shrinkage of the dynamics matrix to zero in order to reduce estimation
error of the dynamics parameters [45] [50].

In the identification procedure, we have imposed several constraints on the dynamics
matrix Aj (2.2), including nonnegativity, equal division gains, and equal death gains. The
constraints on Aj are provided and justified in Table 2.1. For each treatment condition,
we have constrained the division gains to be equal since the HCC1143 cell line has shown
similar percentages of EdU-positive cells (cells that are synthesizing DNA) for the differ-
ent differentiation-state marker expression levels over time [84] [19, S1 Figure]. For each
treatment condition, we have constrained the death gains to be equal in view of our data
processing choice to allocate observed death evenly across the differentiation-state subpop-
ulations.

The values of the transition gains that we have identified using the above procedure are
shown in Fig. 2.2. The values of the division and death gains are provided in Table 2.2.
The next section presents how we have estimated the variability of the dynamics parameters
using a well-established resampling algorithm.
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Table 2.1: Constraints on Aj (2.2)

Constraint Rationale
Each entry of Aj is nonnegative. x(t) is nonnegative for all time t since x(t) contains

numbers of cells.
ρi ≥ 1 for i = 1, 2, 3, 4 ρi ·xi(t)−xi(t) is the increase in the number of live

cells in differentiation state i due to cell division
during [t, t+ 1).

ρij ≤ 1 for (i, j) ∈ {1, 2, 3, 4}2, i 6= j Only a portion of live cells in differentiation state
i at time t can transition to differentiation state j
by time t+ 1.

ρiD ≤ 1 for i = 1, 2, 3, 4 Only a portion of live cells in differentiation state
i at time t can die, or begin to die, by time t+ 1.

Last column of Aj is [0, 0, 0, 0, 1]T Dead or dying cells accumulate over time and can-
not come back to life.

ρi = ρ1 for i = 2, 3, 4 EdU-positivity experiments suggest similar rates of
cell division across the differentiation states [84].

ρiD = ρ1D for i = 2, 3, 4 Motivated by preliminary analysis [19, S1 Ap-
pendix, Section 5: System Identification].

Table 2.2: Therapy-specific division gains and death gains [19].

Treatment Condition Division gain ρi Death gain ρiD
DMSO 1.34 0.0057
Trametinib 1.07 0.019
BEZ235 1.09 0.0083
Trametinib+BEZ235 1.00 0.068

The value of the division gains ρi and the value of the death gains ρiD from each
therapy-specific AM-optimized dynamics matrix are provided in units of
# cells at (k+1) multiples of 12 hours

# cells at k multiples of 12 hours
, where i = 1, 2, 3, 4 is a differentiation-state index. i = 1 is

basal (K14hi); i = 2 is mesenchymal (VIMhiK14low); i = 3 is luminal (K19hiVIMlowK14low);
and i = 4 is non-basal/non-mesenchymal/non-luminal (K19lowVIMlowK14low). We have
imposed the following constraints: ρ1 = ρ2 = ρ3 = ρ4 and ρ1D = ρ2D = ρ3D = ρ4D (see text
for justification). Higher values indicate more frequent division or death on average over
time compared to lower values.
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Figure 2.2: Therapy-specific transition gains [19]. For each treatment condition, val-
ues of the transition gains from the AM-optimized dynamics matrix are shown in units of
# cells at (k+1) multiples of 12 hours

# cells at k multiples of 12 hours
. Each transition gain from differentiation state i to differenti-

ation state j of sufficient magnitude (ρij ≥ 0.10) is depicted as an arrow directed from i to
j. Arrow style specifies gain magnitude. A dotted arrow means ρij ∈ [0.10, 0.30), a dashed
arrow means ρij ∈ [0.30, 0.70), and a solid arrow means ρij ∈ [0.70, 1.00].
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Uncertainty Analysis of the Dynamics Parameters

We have estimated the variability of the dynamics parameters with respect to measure-
ment error using the resampling residuals bootstrap algorithm proposed by Wu [108].6 We
have used the resampling method proposed by Davidson and Flachaire [28]. Our implemen-
tation assumes that measurement errors are homoskedastic (have constant variance) and
independent across cell types conditioned on the (time point, population) pair in the data
generating process. For each treatment condition, we have generated 120 bootstrapped dy-
namics matrices using the resampled data and the model identification procedure described
in the previous section. From these 120 bootstrapped matrices, 120 samples of each dynam-
ics parameter have been obtained, and a 95% confidence interval of each parameter has been
computed by discarding the 3 largest samples and the 3 smallest samples (Fig. 2.3). For
each treatment, we have also conducted a two-sided one-sample sign test for each dynamics
parameter using the corresponding 120 bootstrapped samples [19, S2 Appendix].

Figure 2.3: 95% confidence intervals for the dynamics parameters [19]. These inter-
vals indicate the variability of the dynamics parameters with respect to measurement error.
Non-overlapping intervals of a given parameter specify a statistically significant difference.
For example, a statistically significant reduction in K14hi-to-VIMhiK14low transition has been
detected under Trametinib versus DMSO because the ρ12-interval for Trametinib is strictly
below the ρ12-interval for DMSO. Recall that ρ12 is the K14hi-to-VIMhiK14low transition gain.

6This algorithm is also called wild bootstrap in the literature.
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Model Validation

We have compared our dynamical models to a separate data set that was collected about
a year before the training data set. The separate data set (which we call the test data set)
includes 6 time points of observations from 4 replicate populations that were imaged every 12
hours following initial treatment. This model validation approach is particularly stringent;
it is common to test models using data that was collected around the same time to avoid
inter-experimental variability.

Predictions using a family of bootstrapped models (which we call a model ensemble)
in comparison to the test data are shown in Fig. 2.4 for each treatment condition. The
ensemble model predictions and the test data demonstrate consistency in the number of
K14hi live cells under DMSO, the number of K14hi live cells under Trametinib, and the
number of VIMhiK14low live cells under Trametinib+BEZ235, evident by comparable trends
and lack of significant differences (Fig. 2.4). There is also qualitative agreement between the
predictions and the test data in the number of dead/dying cells for each treatment condition
(Fig. 2.4). In certain cases, the predictions and the test data both increase overall, although
their respective rates of change differ; e.g., see VIMhiK14low and K19lowK14lowVIMlow for
DMSO (Fig. 2.4). The most severe discrepancies involve the differentiation states defined
by VIM or K19 (Fig. 2.4), which can be explained partly by biological knowledge.

Experiments have shown that Vimentin (VIM) and Cytokeratin 19 (K19) display a con-
tinuum of low expression to high expression in HCC1143 cells, which makes the low and high
cutoffs more variable across replicate experiments and introduces noise into the subpopula-
tion fractions [19, S2 Figure]. Cytokeratin 14, however, is strongly expressed by a subset of
cells and is weakly expressed, or lacks expression, in the other subset of cells [19, S2 Figure].
This biphasic expression pattern forms distinct high and low subpopulations, so the fraction
of cells in each subpopulation is more similar across replicate experiments.7

Driven by these findings, for each treatment condition, we have identified a lower-
dimensional dynamics matrix on the training data using K14hi and K14low as the differentiation-
state definitions, and we have evaluated how well this matrix predicts the test data. As shown
in Fig. 2.5, the predictions and the test data in this setting demonstrate qualitative consis-
tency (comparable trends) and quantitative consistency (sufficiently large p-values, p > 0.05)
for most cell types (K14hi live, K14low live, dead/dying) and treatment conditions.

The next section describes an important biological hypothesis that is suggested by the
dynamical models.

7These experimental results suggest that the differentiation states in the HCC1143 cell line defined by
the expression of Vimentin and Cytokeratin 19 may be modeled as continuous rather than discrete entities,
which indicates the utilization of a hybrid dynamical system model in future work. The framework of hybrid
dynamical systems is utilized for systems that have both discrete and continuous dynamical components. A
fundamental reference for this framework is Dr. Claire Tomlin’s dissertation [101].
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Figure 2.4: Ensemble model predictions in comparison to test data [19]. The test
samples (black stars) and ensemble model predictions (gray bands) are shown for each
treatment condition: DMSO (row 1), Trametinib (row 2), BEZ235 (row 3), and Trame-
tinib+BEZ235 (row 4). The model ensemble is a collection of models that have been iden-
tified from the training data via the resampling residuals bootstrap algorithm [108] for each
treatment condition. In each plot, we show a 95% confidence interval (gray band) around the
median (black dotted line) of the ensemble model predictions. Higher p-values indicate better
consistency between predictions and test data over the time horizon (12h, 24h, . . . , 60h).

Biological Hypothesis

An important biological and clinical question is to understand why the K14hi cells are
able to survive following treatment with Trametinib therapy, where this survival is evident
through the experimental data provided by Risom et al. [84, Figure 3f]. Additional exper-
iments and mathematical modeling have indicated that the survival of K14hi cells is not a
consequence of increased death of K14low cells [84, Figures 3ef and Figure 3h-left] but may
instead be a consequence of changes in differentiation-state transitions [84, Figure 3h-right
and Figures 5ghi].

Specifically, our modeling results suggest that less frequent transitions from K14hi to
VIMhiK14low may be critical to the K14hi enrichment that has been observed following Tram-
etinib treatment. The K14hi-to-VIMhiK14low transition gain ρ12 is significantly reduced under
Trametinib versus DMSO because the ρ12-confidence interval for Trametinib is strictly below
that for DMSO (Fig. 2.3). No significant difference in the reverse direction, VIMhiK14low to
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Figure 2.5: Single model predictions in comparison to test data, where the differ-
entiation states are defined by K14 only [19]. The test samples (black stars) and single
model predictions (pink bands) are shown for each treatment condition: DMSO (row 1),
Trametinib (row 2), BEZ235 (row 3), and Trametinib+BEZ235 (row 4). The single model
was identified on the training data using K14hi and K14low as the differentiation states for
each treatment condition. The pink band extends between the maximum prediction and the
minimum prediction out of four predictions in total at each time point (0h, 12h, . . . , 72h).
The dotted line indicates the median of the predictions. Higher p-values indicate better
consistency between predictions and test data over the time horizon (12h, 24h, . . . , 60h).
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K14hi, has been detected under Trametinib versus DMSO since the ρ21-confidence intervals
for Trametinib and DMSO overlap (Fig. 2.3).

More frequent transitions from K19hiVIMlowK14low to K14hi may also underlie the K14hi

enrichment that has been observed following Trametinib treatment. In particular, the
K19hiVIMlowK14low-to-K14hi transition gain equals its upper bound for Trametinib, ρ31 = 1,
and is approximately five times smaller for DMSO, ρ31 = 0.19 (Fig. 2.2).8 No significant
increase has been detected because the ρ31-confidence intervals for Trametinib and DMSO
overlap, but the amount of overlap is small compared to the length of either interval. The
ρ31-confidence interval for Trametinib is [0.32, 1], and the ρ31-confidence interval for DMSO
is [0, 0.39] (Fig. 2.3).

To further examine the predictions above, we have trained another dynamics matrix for
Trametinib with two additional constraints: 1) ρ12 ≥ 0.59, which is the value of the DMSO
K14hi-to-VIMhiK14low transition gain, and 2) ρ31 ≤ 0.19, which is the value of the DMSO
K19hiVIMlowK14low-to-K14hi transition gain (Fig. 2.2). Fig. 2.6 shows the K14hi live cell tra-
jectories predicted by the further constrained dynamics matrix and those predicted by the
(Trametinib) AM-optimized dynamics matrix in comparison to test data. The AM-optimized
dynamics matrix provides trajectories that demonstrate qualitative and quantitative con-
sistency with the test data, whereas the further constrained dynamics matrix fails in these
regards. This simulation result supports our prediction that decreased K14hi-to-VIMhiK14low

transition or increased K19hiVIMlowK14low-to-K14hi transition underlie the K14hi enrichment
that follows Trametinib treatment in comparison to DMSO.

Discussion

The dynamical models that we have developed provide improved understanding of the
nature of differentiation-state heterogeneity in triple-negative breast cancer and more specif-
ically, a means to predict how therapy can affect differentiation-state transitions. However,
it is important to note that empirical validation of our predictions poses particular chal-
lenges. Current antibody-based techniques for assessing intracellular protein expression in
cells grown in two dimensions require cell fixation (i.e., preservation of cellular structures
for further analysis). So, observing the numbers of cells in each differentiation state can be
performed only in fixed cells, and transitions cannot be observed in real time. Nonetheless,
if cell-surface markers were found to correlate well with the four differentiation states in
our study, then existing methods could be used to validate our hypotheses. A given state
could be isolated via Fluorescence-Activated Cell Sorting [43], and then the homogeneous
cell population could be treated and observed for changes in cell-surface marker expression.

The accuracy and the predictive power of the differentiation-state dynamical models will
improve as experimental methods improve. Since dying cells show false positivity for all
markers, our instruments could not simultaneously detect the differentiation-state marker
expression of a single cell and whether that cell was alive or dying. To manage this limitation,

8The transition gains represent proportions of cells and so are bounded between 0 and 1 (Table 2.1).
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Figure 2.6: Further investigations of Trametinib-induced K14hi enrichment hy-
pothesis [19]. Left: Trametinib K14hi live cell predictions by the AM-optimized dynamics
matrix (pink band) are shown in comparison to test data (black stars). Right: Trametinib
K14hi live cell predictions by a dynamics matrix identified with additional constraints (pink
band) in comparison to test data (black stars). The additional constraints are ρ12 ≥ 0.59,
the value of ρ12 for DMSO, and ρ31 ≤ 0.19, the value of ρ31 for DMSO. Recall that ρ12 is
the K14hi-to-VIMhiK14low transition gain, and ρ31 is the K19hiVIMlowK14low-to-K14hi tran-
sition gain. In each plot, the pink band extends between the maximum prediction and the
minimum prediction out of four predictions in total at each time point (0h, 12h, . . . , 72h).
The dotted line indicates the median of the predictions. Higher p-values indicate better
consistency between predictions and test data over the time horizon (12h, 24h, . . . , 60h).

we distributed the observed death fractions evenly across the observed numbers of cells
occupying each differentiation state to estimate the data samples required for modeling and
subsequent analyses [19, S1 Appendix]. Moreover, our instruments can only detect cells with
intact nuclei, so dying cells can fade from view. This is one reason why the number of dead
or dying cells in the data may decrease. While empirical observations indicate time-varying
rates of cell division and death, our models are restricted to encoding these rates on average
(see [84, Figure 4c] for cell division data; see [19, Figure 6] for death data; Table 2.2 provides
division and death gains). There will be potential to relax the time-invariance assumption
when more time series data is available to help mitigate overfitting [52].

Our models have predicted that treating HCC1143 cells with a MEK inhibitor, a PI3K/
mTOR inhibitor, or a combination of these inhibitors can alter rates of transitions between
basal, mesenchymal, luminal, and non-basal/non-mesenchymal/non-luminal states relative
to DMSO. These predictions provide new biological insights into how changes in transition
rates may underlie certain differentiation-state aggregations of drug-tolerant persister cells
that have been reported by [84]. In particular, our findings support differentiation-state tran-
sition as the major mechanism underlying resistance to MEK and PI3K/mTOR inhibitors.
Our modeling work demonstrates the feasibility of this mechanism by predicting—with sta-
tistical rigor—the directionality of state transition in the absence of, and in the presence
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of, therapeutic pressure. Improved understanding of the directionality of state transition
may inform the design of mechanistic studies that promote the development of improved
treatment strategies for heterogeneous plastic cancers.

2.2 Controller Synthesis via the Worst-Case

Perspective

One important experimental finding discussed in the previous section is that the applica-
tion of Trametinib therapy to the triple-negative breast cancer cell line HCC1143 facilitates
aggregation of the basal (K14hi) differentiation state [84, Figure 3f]. That is, Trametinib
is able to drive a heterogeneous cancer cell population to a homogeneous state. This out-
come suggests the following treatment strategy. Why not first apply Trametinib to drive
the cancer cell population to the K14hi state, and then administer a different therapy that
specifically targets the residual K14hi cells? This proposed strategy is illustrated in Fig. 2.7.

The challenge is that it is difficult to identify a single therapy that specifically targets one
differentiation state without causing other types of interactions in the cell population as well.
More generally, it is difficult to balance the requirement to kill the cancer cells in a timely
manner without also causing undue harm to the non-cancer (i.e., healthy) cells. While we
do not yet have the data to quantify how healthy cells respond to cancer treatments, we
do know that cancer therapies can be quite harmful to healthy cells, which is evident by
adverse secondary reactions [42] [104]. These critical challenges indicate the need for new
computational tools to inform the development of more tolerable treatment strategies that
are designed to control the dynamics of cancer. This section presents one approach towards
this goal through the use of a switched dynamical system model.

Figure 2.7: A proposed treatment strategy. The images of the cancer cells are from [84].
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Problem Formulation

We assume that linear time-invariant (LTI) dynamical models for the responses of cancer
cell populations to various therapies at a fixed dose are available (such models have been
identified in Section 2.1). We suppose that some of these therapies can shrink the live cancer
cell population but are very toxic to healthy cells. In addition, there are other therapies that
only slow the growth of the live cancer cell population but are less toxic to healthy cells.
While applying any drug in the first group repeatedly should eradicate the cancer, we assume
that this approach is impractical due to toxicity concerns, negative secondary reactions, or
the development of drug resistance. The less toxic drugs, on the other hand, cannot kill
the cancer alone, but they do reduce the cancer growth rate and are better tolerated. We
further assume that longer waiting times between treatments are preferable since longer
waiting times imply a smaller total therapeutic concentration in the cells over a fixed time
period.

In the setting described above, we seek to address a controller synthesis problem for cancer
treatment. The dynamical system is a population of cancer cells subject to therapeutic
intervention, and the control input is how the available therapies are administered (e.g.,
which therapy is applied at what time, the order in which the therapies are applied, and the
waiting time between treatments). Our goal is to stabilize the live cancer cell population,
which means that we aim to drive the number of live cancer cells to zero as time becomes
sufficiently large. Overall, we analyze schedules composed of therapies with varying toxicities
and long waiting times between treatments by employing a switched dynamical system model.

Stability and controller synthesis of switched dynamical systems have been well-studied
in the literature (e.g., see [53], [27], [97], [63], and [65]). Further, the synthesis of therapeutic
schedules for HIV treatment has been posed as the optimization of control laws for switched
systems [49] [47] [48]. Inspired by these works, we consider the following problem at the
intersection of switched systems and cancer treatment.

We propose the use of a cyclic schedule of d ∈ N therapies, where each therapy is applied
once per cycle in any order. Some of the d therapies can shrink the live cancer cell population
but are extremely toxic to healthy cells (I denotes the set of these therapies). Other less
toxic therapies can only slow the growth of the live cancer cell population (J denotes the
set of these therapies). We provide an upper bound on the cancer growth rate in response
to a single therapy by using the matrix norm induced by the vector L1 norm and the matrix
structure from Section 2.1 (Lemma 1). We derive a set of maximal waiting times between
therapies under the assumption that waiting time bounds representing a measure of toxicity
to normal cells or the onset of resistance are available for each therapy (Lemma 2). This
assumption is justified in part by the limited efficacy of using one therapy to treat certain
cancers. In the absence of modeling error, we show that a cyclic schedule with a set of
maximal waiting times stabilizes the live cancer cell population exponentially (Theorem 1).
Further, we prove that if the modeling error is bounded and if the product of the errors in
each cycle is sufficiently small, then a cyclic schedule with a set of maximal waiting times
also exponentially stabilizes the population (Theorem 2). Using this last result, we derive a
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conservative upper bound on the amount of time required for the population to settle to a
small size (Corollary 1).

Switched Dynamical System Model

Recall from Section 2.1 that we have identified and validated a linear time-invariant
model to represent the evolution of a cancer cell population in response to initial treatment
with a single therapy. In particular, we have modeled how the numbers of live cancer cells in
various differentiation states and how the number of dead or dying cancer cells evolve over
time following treatment.

Now, we are interested in stabilizing the live cancer cell population. I.e., we would like
to design a (tolerable) sequence of therapies that will drive the live cancer cell population
to the origin, as time becomes sufficiently large. Hence, we consider the following switched
dynamical system model:

x(t+ 1) = Aδt · x(t); t ∈ N0, δt ∈ D, x(0) = x0, (2.3)

where x = [x1, x2, . . . , xp]
T ∈ Rp is the live cancer cell population with xi being the number

of live cells in differentiation state i, and there are p differentiation states.9 δt is the therapy
that is most active in the cancer cell population at time t (i.e., the therapy that has been
applied most recently), and D := {1, 2, . . . , d} is the set of available therapies. Aδt takes the
form of the first p rows and p columns of (2.2) as shown below:

Aδt =


α1 ρ21 . . . ρ(p−1)1 ρp1
ρ12 α2 . . . ρ(p−1)2 ρp2
...

...
. . .

...
...

ρ1(p−1) ρ2(p−1) . . . αp−1 ρp(p−1)

ρ1p ρ2p . . . ρ(p−1)p αp


αi = ρi − ρiD −

∑p
s=1,s 6=i ρis, i = 1, 2, . . . , p,

(2.4)

where the parameters ρij = ρij(δt), ρi = ρi(δt), and ρiD = ρiD(δt) depend on the therapy
δt. We assume that the initial live cell population x0 is non-zero. Recall from the previous
section that we have imposed the following (well-justified) constraints: each entry of Aδt is
nonnegative, ρ1(δt) = ρ2(δt) = . . . = ρp(δt), and ρ1D(δt) = ρ2D(δt) = . . . = ρpD(δt) for each
therapy δt. We denote the difference between the division gain and death gain for therapy
δt as follows:

µδt := ρ1(δt)− ρ1D(δt) = ρ2(δt)− ρ2D(δt) = . . . = ρp(δt)− ρpD(δt). (2.5)

The switched dynamical system (2.3) assumes that the response to a therapy applied at
time t does not depend on the therapies applied previously. This assumption is not true

9With slight abuse of notation, the vector x has p dimensions, and the dynamics matrix Aδt has p rows
and p columns. In Section 2.1, p = 4.
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generally. Our theoretical results involving modeling error (Theorem 2, Corollary 1) start
to address the possibility of interactions between therapies to relax this assumption. Two
additional important assumptions that the switched dynamical system (2.3) implies are the
following: 1) the only external factor affecting the system is the therapeutic input; and 2)
the system is fully observable. While these assumptions are not true in practice, they are
motivated by the limitations of current knowledge, and they may be relaxed with improved
measurement techniques in the future.

The switched dynamical system (2.3) is called a positive system because each element
of x is nonnegative [31]. Positive systems may make computational tasks, such as es-
timation, more challenging due to the presence of additional constraints. On the other
hand, positive switched systems may be useful for the optimization of therapeutic schedules;
see [49], [47], [48], and the next section.

Preliminary Results

In the following lemma, we derive an upper bound on the cancer growth rate by using
the structure of the dynamics matrix (2.4).

Lemma 1. Let Aδt be given by (2.4). Then, the matrix norm of Aδt induced by the vector
L1 norm is µδt, which is defined by (2.5).

Proof.
||Aδt ||1 = max

i=1,2,...,p
|αi(δt)|+

∑p
s=1,s 6=i |ρis(δt)|

= max
i=1,2,...,p

|µδt −
∑p

s=1,s 6=i ρis(δt)|+
∑p

s=1,s 6=i |ρis(δt)|

= max
i=1,2,...,p

µδt −
∑p

s=1,s 6=i ρis(δt) +
∑p

s=1,s 6=i ρis(δt)

= µδt ,

where the third line holds because each entry of Aδt is nonnegative.

Remark 1. If the division gains are not assumed to be equal and the death gains are not
assumed to be equal, then ||Aδt ||1 = max

i=1,2,...,p
ρi(δt)− ρiD(δt), which is the largest net growth

rate of the p differentiation-state subpopulations.

Definition 1. kj ∈ N is the waiting time between the application of therapy j ∈ D and the
application of the next therapy.

The next lemma provides a set of maximal waiting times under the assumption that
waiting time bounds related to toxicity (or to the onset of resistance) are available for
each therapy. The waiting times together with a therapeutic sequence determine which
therapy is applied and when that therapy is applied. The waiting times are designed so that
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the treatment regimen shrinks the live cancer cell population over time, while limiting the
toxicity to normal cells or avoiding the onset of drug resistance implicitly.10

Lemma 2. Suppose (Lj, Uj) ∈ N2 with Lj ≤ Uj for j ∈ D. Let I := {i ∈ D : µi ∈ (0, 1)}
and J := {j ∈ D : µj ≥ 1} be non-empty. Assume β := Π

i∈I
µUii Π

j∈J
µ
Lj
j ∈ (0, 1). Choose any

ε ∈ [β, 1). Consider the following optimization program:

maximize
(kj)j∈D

∑
j∈D

kj

subject to Π
j∈D

(µj)
kj ≤ ε

kj ∈ [Lj, Uj] ∩ N for j ∈ D.

(2.6)

Then, k∗i = Ui for all i ∈ I, and (k∗j )j∈J can be found via Algorithm 1. Further, if I = {1}
and J = {2}, then k∗2 = min

(
U2, b log ε−U1 logµ1

log µ2

⌋)
.

Data: nl ∈ J s.t. µn1 ≤ µn2 ≤ · · · ≤ µnJ , J = |J |;
Result: (k∗j )j∈J ;

initialize q = J , knl = Unl for l = 1, . . . , J ;
while true do

if Π
i∈I

(µi)
Ui

J

Π
l=1

(µnl)
knl ≤ ε then

k∗nl = knl for l = 1, . . . , J ;

break;

else
if knq = Lnq then

q = q − 1;
end
knq = knq − 1;

end

end
Algorithm 1: For the optimization program (2.6) in Lemma 2.

Proof. Choose any (kj)j∈D satisfying the constraints of (2.6). Because µi ∈ (0, 1) and ki ≤ Ui
for all i ∈ I,

ε ≥ Π
i∈I
µkii Π

j∈J
µ
kj
j ≥ Π

i∈I
µUii Π

j∈J
µ
kj
j . (2.7)

10An important area for future research is to explicitly measure the death of normal cells under a given
therapy and use these measurements to quantify toxicity for that therapy explicitly.
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Thus, k∗i = Ui ∀i ∈ I. Algorithm 1 initializes each kj (j ∈ J ) to be as large as possible. If this
choice satisfies the inequality constraint of (2.6), then the algorithm terminates. If not, the
algorithm decreases the waiting time associated with the largest µj (which is denoted by kj)

by 1. The algorithm starts with the largest µj to obtain the largest reduction, µ
kj
j ≥ µ

kj−1
j ,

possible. If the kj reaches its minimum, the algorithm moves onto the waiting time associated
with the second largest µj. The algorithm is guaranteed to terminate because β ≤ ε.

If I = {1} and J = {2}, then the inequalities µU1
1 µL2

2 ≤ µU1
1 µk22 ≤ ε are equivalent to

L2 ≤ k2 ≤
log ε− U1 log µ1

log µ2

. (2.8)

Choose k∗2 as the largest value satisfying (2.8) and k2 ∈ [L2, U2] ∩ N.

Remark 2. In Lemma 2, β is the fastest possible decay rate of the live cancer cell population
per treatment cycle, if each of the d drugs is applied once per cycle and the waiting times
are provided by (2.6).

Main Results

Now we present the mathematical analysis results that utilize the lemmas in the previous
subsection. We define a cyclic schedule of D as a sequence of therapies:

(l1m, l2m, . . . , ldm)∞m=1 , (2.9)

such that lim ∈ D is the ith therapy applied in cycle m, and ∪di=1{lim} = D for each m. This
means that each therapy in D is applied once per cycle, and the order of the therapies in
each cycle may vary.

Fig. 2.8 illustrates a cyclic schedule of D := {♦,�,4} with the waiting times (klim)3
i=1

for two cycles. Note that lim ∈ D and ∪3
i=1{lim} = D for m = 1, 2.

Analysis in the Absence of Modeling Error

The next theorem provides the following conclusion. In the absence of modeling error,
a cyclic schedule that uses the maximal waiting times derived in Lemma 2 and an arbi-
trary ordering of the therapies in each cycle will exponentially stabilize the live cancer cell
population modeled via the switched dynamical system (2.3).

Theorem 1. Assume the conditions of Lemma 2, choose any ε ∈ [β, 1), and let K := (kj)j∈D
be a solution to (2.6). Then, a cyclic schedule (2.9) with the waiting times K stabilizes the
system (2.3) exponentially at the decay rate per cycle ε.

Proof. Define Tp := p
∑

j∈D kj for p ∈ N0. Let m ∈ N. By induction on (2.3) and (2.9),

x(Tm) =
m

Π
c=1

(
(Aldc)

kldc · · · (Al2c)
kl2c (Al1c)

kl1c

)
x0, (2.10)
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Figure 2.8: A cyclic schedule of three therapies, D := {♦,�,4}, with the waiting times
(k♦, k�, k4) is shown for two cycles [20]; see (2.9). For example, l32 = � means that therapy
� is the third therapy applied in cycle 2, and the next therapy will be applied k� time points
later. Notice that each therapy in D is applied once per cycle, and the order of the therapies
in each cycle may vary.

such that lic ∈ D is the ith drug applied in cycle c. Take the L1 norm of (2.10) and use
||Aδt ||1 = µδt from Lemma 1 to derive the following:

||x(Tm)||1 ≤
m

Π
c=1

(
(µldc)

kldc · · · (µl2c)
kl2c (µl1c)

kl1c

)
||x0||1

=

(
Π
i∈D

µkii

)m
||x0||1,

(2.11)

which holds because each therapy in D is applied once per cycle. Since Πi∈D (µi)
ki ≤ ε by

Lemma 2, we have
||x(Tm)||1 ≤ εm||x0||1. (2.12)

Define Km ∈ argmax {||x(t)||1 : t ∈ (Tm−1, Tm] ∩ N}. Because local maxima (or minima)
only occur at times of therapy application, we have

x(Km) = (Alim)klim · · · (Al2m)kl2m (Al1m)kl1m x(Tm−1), (2.13)

where lim ∈ D is the ith drug applied in cycle m and i ∈ {1, . . . , d} by (2.3) and (2.9). Define
U <∞ such that

U ≥ Π
j∈D′

µ
kj
j ∀D′ ⊆ D. (2.14)

Take the L1 norm of (2.13) and use ||Aδt ||1 = µδt from Lemma 1 to obtain

||x(Km)||1 ≤ (µlim)klim · · · (µl2m)kl2m (µl1m)kl1m ||x(Tm−1)||1
= Π

j∈D′
(µj)

kj ||x(Tm−1)||1

≤ U ||x(Tm−1)||1,

(2.15)
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where D′ = {l1m, l2m, . . . , lim} in the second line. Finally, use (2.12) with (2.15) to see that

||x(Km)||1 ≤ U ||x(Tm−1)||1 ≤ Uεm−1||x0||1. (2.16)

Because 0 < ε < 1, ||x(Km)||1 → 0 exponentially with decay rate ε, as m → ∞. Since
||x(Km)||1 is a maximum on cycle m, the proof is complete.

Analysis in the Presence of Modeling Error

In this section, we provide mathematical analysis results in the presence of modeling
error. An important source of modeling error arises because how the cancer responds at
the current time to the most recent therapy likely depends on the prior treatment regimen,
but the therapy-specific dynamical models are typically identified separately. A therapy j is
applied to a cancer cell population that has not been treated before, and the therapy-specific
dynamical model Aj is identified using the time series data that has been collected in response
to therapy j. Since the experiments are laborious and expensive, one would like to conduct
the least number of experiments, for example one experiment per therapy, and then use the
dynamical models that have been identified from these experiments to synthesize therapeutic
schedules that could be more effective than standard regimens. Using the mathematical
machinery of switched systems, we sequence the dynamical models together, knowing that
when the models are used in this way error arises, and we ask, what are sufficient conditions
on the error under which stability is attained.

More formally, suppose that the therapy-treated live cancer cell population can be mod-
eled using the following linear time-varying switched dynamical system:

x(t+ 1) = Aδt(t) · x(t); t ∈ N0, δt ∈ D, x(0) = x0, (2.17a)

where the initial state x0 ∈ Rp
+ is non-zero. The dynamics matrix Aδt(t) quantifies the effect

of applying the therapy δt ∈ D at time t (or before time t), in addition to the effect of the
prior treatment regimen: the ordering and the timing of the therapies that have been applied
prior to the therapy δt. Suppose that the dynamics matrix in (2.17a) Aδt(t) is related to the
dynamics matrix in (2.3) Aδt through the bounded multiplicative error term ξδt(t) ∈ (0, E]
as follows:

||Aδt(t)||1 = ||Aδt ||1 · ξδt(t)
= µδt · ξδt(t),

(2.17b)

where the second line holds by Lemma 1. Multiplicative error is mathematically convenient
for quantifying the distance from the origin because the state vector x(t+1) is determined by
matrix multiplication; see (2.17a). While the dynamics matrix Aδt(t) and the multiplicative
error ξδt(t) are functions of the prior treatment regimen, we do not write these dependencies
explicitly to simplify notation.

Remark 3. The switched dynamical system (2.17) reduces to the error-free switched dy-
namical system (2.3) if ξδt(t) = 1 ∀t ∈ N0.
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Remark 4. If ξδt(t) > 1, then the error has a de-stabilizing effect. If ξδt(t) < 1, then the
error has a stabilizing effect. If ξδt(t) = 1, then the error has no effect.

We would like to derive sufficient conditions on the modeling error under which a cyclic
schedule with the waiting times given by Lemma 2 stabilizes the live cancer cell population.
Next, we show that exponential stability is attained, if the errors are bounded and if the
error product in each cycle is sufficiently small.

Theorem 2. Assume the conditions of Lemma 2, choose any ε ∈ [β, 1), and let K := (kj)j∈D
be a solution to (2.6). Define Tp := p

∑
j∈D kj for p ∈ N0. If ξδt(t) ∈ (0, E] ∀t ∈ N0 for some

E <∞ and if ∃η ∈ (ε,∞) such that

1

η
≥

Tm−1

Π
t=Tm−1

ξδt(t) ∀m ∈ N, (2.18)

then a cyclic schedule (2.9) with the waiting times K stabilizes the system (2.17) exponentially
at the decay rate per cycle ε

η
.

Proof. Let m ∈ N. Use (2.17a) to derive the following equation:

x(Tm) =
Tm−1

Π
t=0

Aδt(t) · x0. (2.19)

Take the L1 norm of (2.19) to obtain

||x(Tm)||1 ≤
Tm−1

Π
t=0
||Aδt(t)||1 · ||x0||1

=
Tm−1

Π
t=0

µδt · ξδt(t) · ||x0||1

=
m

Π
c=1

Tc−1

Π
t=Tc−1

µδt · ξδt(t) · ||x0||1.

(2.20)

Because each therapy j ∈ D is active for kj time points in every cycle, we have

Tc−1

Π
t=Tc−1

µδt = Π
j∈D

(µj)
kj ∀c ∈ {1, 2, . . . ,m}. (2.21)

Thus, (2.20) and (2.21) imply

||x(Tm)||1 ≤
(

Π
j∈D

(µj)
kj

)m m

Π
c=1

(
Tc−1

Π
t=Tc−1

ξδt(t)

)
||x0||1. (2.22)

Since Πj∈D(µj)
kj ≤ ε by Lemma 2, we have

||x(Tm)||1 ≤ εm
m

Π
c=1

(
Tc−1

Π
t=Tc−1

ξδt(t)

)
||x0||1

≤ εm
(

1

η

)m
||x0||1,

(2.23)
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where the second line holds by (2.18).
Let Km ∈ argmax {||x(t)||1 : t ∈ (Tm−1, Tm] ∩ N}. Because ||x(Km)||1 is a maximum on

cyclem, it suffices to show that ||x(Km)||1 → 0 exponentially with decay rate ε/η, asm→∞.
Because the errors are bounded, ∃B <∞ such that

B ≥
τ

Π
t=Tm−1

µδtξδt(t) ∀τ ∈ (Tm−1, Tm − 1] ∩ N, ∀m ∈ N. (2.24)

For example, if E ≥ 1, then B = EL · Πj∈J (µj)
kj satisfies (2.24), where L =

∑
j∈D kj and

J = {j ∈ D : µj ≥ 1}.
Eq. (2.17a) implies that

x(Km) =
Km−1

Π
t=Tm−1

Aδt(t) · x(Tm−1). (2.25)

Take the L1 norm of (2.25) to derive the following inequality:

||x(Km)||1 ≤
Km−1

Π
t=Tm−1

µδt · ξδt(t) · ||x(Tm−1)||1

≤ B · ||x(Tm−1)||1

≤ B

(
ε

η

)m−1

||x0||1,

(2.26)

where the last line holds by (2.23).

Lastly, we provide a conservative settling time result for the switched dynamical sys-
tem (2.17) subject to a cyclic schedule with the waiting times given by Lemma 2.

Definition 2. For any γ ∈ (0, 1), T is a γ-settling time for the system (2.17) if ||x(t)||1 ≤
γ||x0||1 for all t ≥ T .

Corollary 1. Assume the conditions of Lemma 2, choose any ε ∈ [β, 1), and let K := (kj)j∈D
be a solution to (2.6). Let the system (2.17) evolve under a cyclic schedule (2.9) with the
waiting times K. Let B <∞ satisfy (2.24). Suppose ∃η ∈ (ε,∞) that satisfies (2.18). Then,
for any γ ∈ (0, 1), a γ-settling time is Kmγ , which is defined as follows:

Kmγ ∈ argmax
{
||x(t)||1 : t ∈ (Tmγ−1, Tmγ ] ∩ N

}
Tmγ = mγ

∑
j∈D kj

mγ =

⌈
log γ − logB

log ε− log η
+ 1

⌉
, B > γ.

(2.27)

Proof. Take m ∈ N. By (2.26), we have

||x(Km)||1 ≤ B

(
ε

η

)m−1

||x0||1. (2.28)
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Let Sm := B
(
ε
η

)m−1

||x0||1, and notice that (Sm)m∈N is a decreasing sequence. Let γ ∈ (0, 1).

It suffices to find mγ ∈ N such that

||x(Kmγ )||1 ≤ B

(
ε

η

)mγ−1

||x0||1 ≤ γ||x0||1 (2.29)

because Kmγ is a γ-settling time; see that ||x(t)||1 ≤ ||x(Kmγ )||1 ≤ γ||x0||1 for all t ≥ Kmγ .
Choose B > γ; we can do this because B is an upper bound. Use (2.29) and recall that
||x0||1 > 0, 0 < γ

B
< 1, and 0 < ε

η
< 1 to find the following:

B

(
ε

η

)mγ−1

≤ γ ⇐⇒

(mγ − 1) log

(
ε

η

)
≤ log

( γ
B

)
⇐⇒

mγ ≥
log γ − logB

log ε− log η
+ 1.

(2.30)

We choose mγ to equal the smallest natural number that satisfies the last line above.

The next section provides a numerical example to illustrate the mathematical analysis
results.

Numerical Example

We have estimated therapy-specific dynamical models for two differentiation states (basal,
non-basal) using time series measurements of triple-negative breast cancer cell populations
that were collected by Risom et al. [84]. These therapy-specific dynamical models, which
take the form of (2.4) with p = 2 differentiation states, are provided below:

AP =

[
0.755 0.081
0.169 0.843

]
(2.31)

AB =

[
0.896 0
0.186 1.083

]
(2.32)

AT =

[
1.030 0.231
0.022 0.821

]
, (2.33)

where therapy P is Trametinib+BEZ235, therapy B is BEZ235, therapy T is Trametinib,
and the discrete time interval [t, t + 1) is 12 hours long. Using (2.31)-(2.33), we find that
||AP||1 = µP = 0.924, ||AB||1 = µB = 1.083, and ||AT||1 = µT = 1.052. Thus, I := {i ∈ D :
µi ∈ (0, 1)} = {P} and J := {j ∈ D : µj ≥ 1} = {B,T}.

In this numerical example, we have set Li = 2 (1 day) ∀i ∈ D since receiving treatment
several times per day is inconvenient. We have chosen UP = 4 (2 days), UB = 8 (4 days), and
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UT = 6 (3 days) to illustrate a conservative scenario since µP < 1 and 1 ≤ µT < µB. So, β =
µUP

P µLB
B µLT

T = 0.947. We have set ε = 0.95 to ensure that ε ∈ [β, 1). We have computed the
following waiting times using Lemma 2: kP = 4, kB = 2, and kT = 2. We have set η = 0.96
to ensure that η ∈ (ε,∞). We have chosen the errors ξδt(t) ∈ (0, E] to be pseudorandom
values drawn from the uniform distribution on the interval [0.9, 1.5] conditioned on the
satisfaction of (2.18); hence, E = 1.5. The upper bound B = EL (µB)kB (µT)kT = 33.3,
where L = kP + kB + kT = 8 (4 days).

Fig. 2.9 shows an example simulation of the cancer system (2.17) in response to a cyclic
schedule of the three therapies {P,B,T} with the waiting times (kP, kB, kT) for 40 cycles
(160 days).11 For example, if therapy P is applied at time zero, then x(kP) is given by

x(kP) =

(
kP−1

Π
t=0

AP(t)

)
x0 =

(
kP−1

Π
t=0

ξP(t)AP

)
x0

=

(
kP−1

Π
t=0

ξP(t)

)(
kP−1

Π
t=0

AP

)
x0

=

(
kP−1

Π
t=0

ξP(t)

)
(AP)kP x0,

(2.34)

where the second line holds since the errors are scalars. Further, if therapy T is applied next,
then x(kP + kT) is given by

x(kP + kT) =

(
kP+kT−1

Π
t=kP

ξT(t)

)
(AT)kT x(kP). (2.35)

We have randomly chosen an ordering of the three therapies for each cycle. If (2.18) was not
satisfied for a cycle, then the errors for that cycle were regenerated. The initial condition
x0 = [220, 612]T is the estimated number of live cells in each differentiation state (basal,
non-basal) at time zero averaged over fifteen populations, where the data comes from [84].

In Fig. 2.9, the saw-tooth behavior arises mainly because the cancer cell population
shrinks following treatment with Trametinib+BEZ235 (therapy P) but grows following treat-
ment with the other two therapies. The simulation shows that the settling time provided by
Corollary 1 is conservative, where this conservativeness arises partly because B is a worst-
case upper bound. For example, if γ = 1

10
, then mγ = 556 cycles according to Corollary 1.

However, after about 19.5 cycles, the cancer cell population stays below one-tenth its orig-
inal size in Fig. 2.9. Further, the simulation shows that although the errors are similar in
magnitude throughout the time horizon, the size of the live cancer cell population decays
exponentially.

Discussion

Here we have used the machinery of switched dynamical systems to synthesize and an-
alyze the effects of cyclic therapeutic schedules with toxicity specifications on cancer cell

11The code has been written in MATLAB R2016b (The MathWorks, Inc., Natick, MA) and is available
here: https://github.com/chapmanmp/CDC_2018_Github/tree/master/CDC_2018_MatlabCode.
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Figure 2.9: A simulation of the switched dynamical system (2.17) for a cancer cell population
in response to a cyclic schedule of the therapies {P,B,T} with the waiting times (kP, kB, kT)
for 40 cycles (160 days) [20]. Each vertical grid line denotes the start of a cycle. Top:

Normalized population size ||x(t)||1
||x0||1 is shown at each time t of the application of a therapy.

E.g., in the first cycle, if the order were T first, B second, and P third, then ||x(t)||1
||x0||1 would be

plotted at t ∈ {0, kT, kT +kB, kT +kB +kP}. Middle: The error ξδt(t) is shown at each time
point t ∈ {0, 1, . . . , 319}. There are 320 time points in total since 40 cycles×8 time points

cycle
= 320.

The duration of each discrete time interval [t, t+1) is 0.5 days. Bottom: The error product
ΠTm−1
t=Tm−1

ξδt(t) per cycle m ∈ {1, 2, . . . , 40} is shown. Note that each error product is less than

or equal to 1
η
.
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populations in theory. Our utilization of switched dynamical systems has been motivated
by our computational modeling contributions in Section 2.1.

The theoretical contributions in the current section have inspired the collection of new
data on the response of cancer cell populations to schedules with two distinct therapies.
These data are being used to develop improved computational models and cancer treatment
strategies for finite time horizons, where distributions of the errors are being estimated from
the data. This ongoing research has been submitted for review with the lead author Marius
Wiggert. In addition, experiments are being conducted by our collaborators at the Oregon
Health and Science University to observe the death of healthy cells in response to various
cancer therapies, which will provide quantitative toxicity measures.

In this chapter, we have presented a computational and analytical toolkit to improve
the understanding and management of a cancer subtype called triple-negative breast cancer
(TNBC). Using time series data from a TNBC cell line, we have identified dynamical mod-
els of cancer cell populations in response to different therapies. Subsequent computational
analyses on these models have provided biological insights about how differentiation-state
behaviors may contribute to the aggregations of therapy-tolerant cells that have been ob-
served following treatment. Moreover, we have proposed a class of therapeutic treatment
schedules with toxicity specifications and have derived sufficient mathematical conditions
for the decay of cancer cell populations under this class. This is a particularly important
contribution since treatment decisions for triple-negative breast cancer are typically made
by trial and error.

However, the benefits that we anticipate from the above research will only be realized
if our dynamical models are sufficiently predictive and if our worst-case uncertainty condi-
tions are always satisfied. The predictive power of the models will improve as more high-
quality data becomes available, which will happen over time as measurement techniques
advance. Hence, this thesis will focus on the second challenge of requiring worst-case uncer-
tainty conditions to always be satisfied. More broadly, similar requirements are inherent to
standard worst-case decision analysis methods for dynamical systems, such as: robust con-
trol [8] [14] [77] [116] [91] [74], Hamilton-Jacobi reachability [70] [33] [23], and minimax reach-
ability [9] [12]. Unfortunately, assuming that worst-case uncertainty conditions are always
satisfied may lead to excessive conservativeness, which is not appropriate for safety-critical
systems that have large uncertainty bounds or have unbounded uncertainties. Examples of
such systems are those that are influenced by natural phenomena, including disease systems
(within an individual or transmission through society) and infrastructure systems that are
affected by uncertain natural resources (e.g., food, water, and energy systems).

The limitations of standard worst-case decision analysis methods for highly uncertain sys-
tems motivate the development of new mathematical methods that can balance the worst-
case and risk-neutral perspectives. The next chapter will present a new safety analysis
method for dynamical systems that is able to attain this balance by leveraging the Condi-
tional Value-at-Risk measure.
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Chapter 3

Risk-Sensitive Safety Analysis via
CVAR

In the previous chapter, we have argued that standard worst-case decision analysis is not
appropriate for systems with large uncertainties, such as cancer treatment systems. In the
current chapter, we present a new mathematical method for safety analysis that quantifies the
notion of worst case in a more flexible way by using the Conditional Value-at-Risk (CVAR)
measure. We call this method risk-sensitive safety analysis via CVAR or risk-sensitive safety
analysis for brevity. Most of the material presented here is from a manuscript that is under
review [22] and from two published conference papers [18] [21].

This chapter has four parts. First, we show a numerical example of a stormwater catch-
ment system that is based on a real system in Lenexa, Kansas for which worst-case safety
analysis is too conservative to provide practical design guidance. This example in addition
to the cancer treatment system from the previous chapter motivate the need for new math-
ematical methods that facilitate less conservative but still protective control of dynamical
systems under uncertainty. Following this motivating example, we provide background on
risk measures and background on safety analysis, which are needed to understand our contri-
bution. The third part of the chapter focuses on our contribution, which is the mathematical
development of risk-sensitive safety analysis. Fourth, we demonstrate the practical utility of
risk-sensitive safety analysis as a method to evaluate the risk of overflows for a stormwater
catchment system under precipitation uncertainty.

3.1 Motivating Example

We have applied a standard worst-case safety analysis method called Hamilton-Jacobi
reachability [70] [23] [2] to evaluate various designs of a stormwater catchment system in
Lenexa, Kansas (Fig. 3.1). Given a dynamical system model in continuous time, Hamilton-
Jacobi reachability can be used to compute the set of initial states from which the state
trajectory is guaranteed to avoid constraint violation by assuming that the disturbance
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(uncertainty) is bounded and behaves in the most adversarial way.1 In the current example,
the dynamical system model is the stormwater catchment system depicted in Fig. 3.1 with
the state vector x = [x1, x2, x3]T ∈ R3, where x1 is the water elevation of pond 1, x2 is the
water elevation of the stream, and x3 is the water elevation of pond 2. The approach is to
estimate the set of initial water elevations from which the system can avoid overflows under
a particular design by using Hamilton-Jacobi reachability (called: HJ safe set). Then, we
evaluate how different design choices, such as adding an automated valve or increasing the
surface area of a pond, affect the size and shape of the HJ safe set in comparison to a baseline
design.

When using a small constant surface runoff rate (2 cubic feet per second) over a 4-hour
time horizon, HJ safe sets provide interesting insights about how different design choices
influence the ability of the system to avoid overflows (Fig. 3.2). By considering a wide range
of realistic initial conditions and by utilizing a dynamical systems perspective, HJ safe sets
provide benefits for design in comparison to standard practice, which only considers one
initial condition and one pond in isolation.

However, when using standard surface runoff profiles (Fig. 3.3), HJ safe sets turn out
to be empty and so are limited in their usefulness as a design tool. Additional experiments
have demonstrated that very large facilities would be needed to provide non-empty HJ safe
sets under standard surface runoff profiles (Fig. 3.4). Very large facilities are not financially
feasible in general since stormwater systems are typically funded by taxpayer money.

This stormwater catchment system example motivates the need for a new safety analysis
method that permits a more flexible definition of conservativeness than a standard worst-case
safety analysis approach.

Figure 3.1: A stormwater catchment system in Lenexa, Kansas that consists of two ponds
in series connected by a stream [21]. This system is currently operated by OptiRTC, Inc.
(Boston, MA).

1A particularly clear presentation of Hamilton-Jacobi reachability can be found in Dr. Anayo Akamet-
alu’s dissertation [2].
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Figure 3.2: HJ safe sets for three different design choices when there is constant surface
runoff of 2 cubic feet per second into each pond over a 4-hour time horizon [21]. In each
plot, each point in the volume represents an initial condition from which the system is
predicted to avoid overflows. The x1-axis is the water elevation of pond 1; the x2-axis is the
water elevation of the stream; and the x3-axis is the water elevation of pond 2. A reference
vector that points approximately in the (5 ft, 3 ft, 3.5 ft)-direction is shown with each safe
set. 5 feet, 3 feet, and 3.5 feet are the maximum water elevations of pond 1, the stream,
and pond 2, respectively. An estimate of the distance that each safe set extends along this
vector is provided.

3.2 Mathematical Background

Now that we have presented the above motivating example, we provide mathematical
background that is needed to understand our new risk-sensitive safety analysis method.

Conditional Value-at-Risk (CVAR) vs. Exponential Utility
(Mean-Variance)

The purpose of this subsection is to explain Conditional Value-at-Risk (CVAR) and
demonstrate how CVAR is different from the more commonly used Mean-Variance measure
using a numerical example. CVAR is a type of risk measure, which is a mapping on a space of
random variables to the extended real line. In this thesis, the random variables are random
costs; i.e., smaller values are better, and larger values are worse. There are many different
types of risk measures, and each risk measure quantifies the deviation from the expectation
of a random variable in a distinct way.2 Here we focus on two risk measures: Exponential
Utility (Mean-Variance) and Conditional Value-at-Risk (CVAR).

2Shapiro et al. [92, Chapter 6.3] provides a detailed overview of risk measures, and Kisiala [55, Chapter
2] provides an intuitive presentation of risk measures with emphasis on CVAR.
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Figure 3.3: A standard surface runoff profile for pond 1 (r1) and pond 2 (r2) over a 4-
hour time horizon [21]. Surface runoff into each pond has been estimated using the two-
year rainfall event for Lenexa, Kansas with the USEPA Stormwater Management Model
for various model parameter sets via PCSWMM (Computational Hydraulics International,
Ontario) [85].

The Exponential Utility of a random cost variable Y is defined as follows:

ρe,θ(Y ) := −2
θ

logE
(
e
−θ
2
Y
)

= E (Y )− θ
4
V(Y ) +O(θ2), (3.1)

where θ ∈ (−1, 0)∪ (0, 1) is the risk-sensitivity level, E(Y ) is the expectation of Y , and V(Y )
is the variance of Y [107, Eqn. 1.10, Eqn. 1.11]. The second equality holds since 0 < |θ| < 1,
which can be shown using two Taylor expansions by grouping together the higher-order terms
in O(θ2). The value of θ encodes the user’s preference for being more risk-averse or being
more risk-seeking, where the notion of risk is encoded in terms of variance. Specifically, “high
variance is disadvantageous” is a risk-averse perspective, and “high variance is advantageous”
is a risk-seeking perspective. If θ is near −1, then ρe,θ is more risk-averse and penalizes
high variance. On the other hand, if θ is near 1, then ρe,θ is more risk-seeking and values
high variance. If θ is near 0, then ρe,θ is nearly risk-neutral and minimal weight is placed
upon variance. Exponential Utility encodes the notion of risk in terms of variance, whereas
Conditional Value-at-Risk encodes the notion of risk in terms of one tail of a cost distribution,
as we shall see next.
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Figure 3.4: HJ safe sets for very large facilities using the standard surface runoff profiles
(r1, r2) over a 4-hour time horizon [21]. The surface runoff profiles are shown in Fig. 3.3.
A reference vector that points approximately in the (5 ft, 3 ft, 3.5 ft)-direction is shown
with each non-empty safe set. 5 feet, 3 feet, and 3.5 feet are the maximum water elevations
of pond 1, the stream, and pond 2, respectively. An estimate of the distance that each
non-empty safe set extends along this vector is provided.
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There are various nearly equivalent definitions for Conditional Value-at-Risk (also called
Average Value-at-Risk), and we use the following definition in this thesis. The Conditional
Value-at-Risk of a bounded random cost variable Y at risk-sensitivity level α ∈ [0, 1] is
defined as:3

CVARα(Y ) :=

{
1
α

∫ 1

1−α VAR1−τ (Y )dτ if 0 < α ≤ 1

||Y ||∞ if α = 0,
(3.2a)

where
VARα(Y ) := inf{y ∈ R | Pr(Y ≤ y) ≥ 1− α} (3.2b)

is the Value-at-Risk at level α, and ||Y ||∞ is the essential supremum (essential least upper
bound) of Y [92, Thm. 6.2] [78]. The above definition (3.2) assumes a risk-averse setting,
where α is associated with the upper (worse) tail of the probability distribution of Y . The
alternate name “Average Value-at-Risk” comes from the first case in (3.2a), where CVAR is
an average of Value-at-Risk. After a few steps, one can show that CVAR1(Y ) = E(Y ). If the
cumulative distribution function of Y , HY (y) := Pr(Y ≤ y), is continuous at y = VARα(Y ),
then CVARα(Y ) = E(Y |Y ≥ VARα(Y )), which is illustrated in Fig. 3.5, and which explains
the name “Conditional Value-at-Risk” [92, Thm. 6.2]. Intuitively, CVARα(Y ) can be inter-
preted as the expectation of the α · 100% worst realizations of Y . Hence, CVARα(Y ) is able
to balance the worst-case and risk-neutral perspectives by focusing on the upper tail of the
cost distribution via the parameter α.

Figure 3.5: Conditional Value-at-Risk (CVAR) is a measure of one-sided tail risk of a
random variable Y . Intuitively, CVARα(Y ) can be interpreted as the expectation of the
α ·100% worst realizations of Y . More specifically, if Y is a continuous cost random variable,
then CVARα(Y ) is the expectation of Y conditioned on the event {Y ≥ VARα(Y )}, where
VARα(Y ) is the minimum cost in the α · 100% worst cases.

3Alternatively, we could consider random variables with finite expectation and α ∈ (0, 1] to ensure that
CVAR is bounded.



CHAPTER 3. RISK-SENSITIVE SAFETY ANALYSIS VIA CVAR 40

For α ∈ [0, 1], CVARα is a coherent risk measure on the space of bounded random
variables. This means that for fixed α ∈ [0, 1], CVARα : L∞ → R is convex, monotonic,
translation equivariant (CVARα(Y + a) = CVARα(Y ) + a if a ∈ R), and positively homoge-
neous (CVARα(λY ) = λCVARα(Y ) if λ ≥ 0) [78] [79]. Moreover, since CVARα is a coherent
risk measure, it is equivalent to an expectation maximized over a specific set of probability
density functions [92, Thm. 6.4, Eqn. 6.40, Eqn. 6.70]. The above properties are mathe-
matically useful and have intuitive interpretations. For example, the convexity of coherent
risk measures is consistent with the notion that the diversification of assets decreases risk.
Moreover, CVARα may be considered a “robustified” expectation, since it is equivalent to
a worst-case expectation with respect to certain perturbations in the assumed probability
distribution [25]. We will use the above properties in our proofs later in this chapter.

Next, we provide a numerical comparison between simulated outcomes that result from
control policies that have been computed with respect to a CVAR criterion or an Exponential
Utility criterion at different levels of risk aversion. For this example, we use a thermo-
statistically controlled load (TCL) system with a heavy-tailed finite disturbance distribution,
where the state xt ∈ R is the temperature of a thermal mass in degrees Celsius. An outcome
is a realization of the following random cost of the state trajectory, C0:T =

∑T
t=0 max(xt −

21, 20 − xt), under a control policy that we have computed offline. C0:T is the cumulative
deviation outside a safe temperature range of 20 to 21 ◦C over a one-hour time horizon. We
use the following model for a TCL dynamical system:

xt+1 = axt + (1− a)(b− ηRPut) + dt, t = 0, 1, . . . , T − 1, (3.3)

which we have adopted from [110], and which was first developed by [72]. In the above
model, xt ∈ R is the temperature (◦C) of a thermal mass, ut ∈ [0, 1] is a continuous control
input from no power to full power, and dt ∈ R is a random disturbance due to environmental
uncertainty (Table 3.1).

From two distinct initial conditions, we have sampled C0:T =
∑T

t=0 max(xt− 21, 20− xt)
one million times using control policies that have been computed with respect to a CVAR
criterion or an Exponential Utility criterion at different levels of risk aversion.4 We have
utilized the heavy-tailed finite probability distribution for dt called “Original” in Fig. 3.6
to train the control policies and to generate the histograms of C0:T shown in Fig. 3.7 and
Fig. 3.8. Further, we have used the distribution for dt called “Perturbed” in Fig. 3.6 to

4We have computed a control policy with respect to a CVAR criterion by using an algorithm that we will
present in Sec. 3.3. The CVAR criterion for a fixed α takes the following form: minimize CVARα(C0:T ) over
a set of history-dependent control policies, subject to a given dynamical system model with a pre-specified
probability distribution for the disturbance. The set of history-dependent control policies will be specified
in Sec. 3.3. We have computed a control policy with respect to an Exponential Utility criterion by using
standard value iteration [22, Section VII]. The Exponential Utility criterion for a fixed θ takes the following
form: minimize ρe,θ(C0:T ) over a set of Markov control policies, subject to a given dynamical system model
with a pre-specified probability distribution for the disturbance. The control policies that we have computed
are not optimal due to discretization that is typical for value iteration on a continuous state space. Also, we
have restricted ourselves to pre-commitment policies when using the CVAR criterion, which will be explained
in Sec. 3.3.
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Table 3.1: Thermostatically Controlled Load Model Parameters

Symbol Description Value

a time delay e
−4τ
CR (no units)

b temperature shift 32 ◦C
C thermal capacitance 2 kW hr

◦C

η control efficiency 0.7 (no units)
K constraint set [20, 21] ◦C
P range of energy transfer to or from the thermal mass 14 kW
R thermal resistance 2

◦C
kW

4τ duration of [t, t+ 1) 5
60

hr
T length of discrete time horizon 12 (= 1 hr)
U action space [0, 1] (no units)
X state space [18, 23] ◦C
hr = hours, kW = kilowatts, ◦C = degrees Celsius.

generate the histograms of C0:T in Fig. 3.9 to assess robustness to distribution estimation
error.

Our results show that the CVAR criterion minimizes the mean of higher-consequence
outcomes, evident by reduced weight on the upper tail of the empirical distribution of C0:T

as the degree of risk aversion increases (Fig. 3.7, top row, left to right). The Exponential
Utility criterion penalizes the mean and variance of C0:T , and the empirical variance becomes
smaller as the degree of risk aversion increases (Fig. 3.7, bottom row, left to right). While the
Exponential Utility criterion penalizes variance, this criterion is not guaranteed to minimize
the mean of higher-consequence outcomes in the setting of asymmetric cost distributions (see
estimated values of CVAR0.01, top vs. bottom row, Fig. 3.7). Notably, at a typical level of
risk aversion, the empirical variance of C0:T is smaller under the CVAR criterion compared
to the Exponential Utility criterion (Fig. 3.7, center column).

Our results indicate that the initial condition of the system impacts the relative advantage
of using the CVAR criterion versus the Exponential Utility criterion for policy synthesis. The
probability distribution of the disturbance in the TCL example represents a setting where the
thermal mass is exposed to random temperature perturbations with a positive bias (Fig. 3.6),
and the control input ut is only able to provide heat. Thus, if the system is initialized at
the center of the constraint set (K = [20, 21] ◦C), the controller has limited authority to
avoid high temperatures regardless of the chosen criterion (CVAR or Exponential Utility),
as shown in Fig. 3.8. However, if the system is initialized at a cooler temperature where
the controller has more authority, there is a substantial advantage to employing the CVAR
criterion rather than the Exponential Utility criterion to reduce the mean of high-consequence
outcomes (Fig. 3.7). In addition, the CVAR criterion continues to offer advantages over the
Exponential Utility criterion when the cumulative cost C0:T is sampled under a perturbed
probability distribution for the disturbance (Fig. 3.9).
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Overall, using a CVAR criterion is quite important for safety-critical situations in which
cost distributions cannot be well-approximated by symmetric distributions. Also, CVAR
has the substantial advantage of improved interpretability compared to Exponential Utility.
The CVAR criterion at the risk-sensitivity level α is guaranteed to minimize the mean of
the α-fraction of worst-case outcomes, if the outcome distribution is continuous. However,
the risk-sensitivity level θ of the Exponential Utility criterion does not map to a precise
reduction in variance.

Figure 3.6: Probability distributions for the disturbance dt to the TCL system (3.3). The
horizontal axis shows the possible (discrete) realizations of the disturbance in degrees Celsius.
Their associated probabilities are shown on the vertical axis.

Reachability Analysis for Safety-Critical Systems

In the previous subsection, we have discussed two key benefits of CVAR (ability to
quantify asymmetric cost distributions and improved interpretability). In the current sub-
section, we provide background on reachability analysis to explain where our new method
risk-sensitive safety analysis via CVAR fits within the existing literature.

Reachability analysis is a framework for formal verification of dynamical systems that
is used to compute subsets of the state space X and control policies with certain desirable
properties. In this thesis, we focus on safety-critical settings, where a dynamical system
is required to satisfy particular safety constraints or is required to reduce the extent of
constraint violation to a particular threshold. We are interested in computing safe sets
for a given dynamical system model, which are sets of initial states from which the state
trajectory is guaranteed to satisfy the safety constraints or reduce the extent of constraint
violation to a particular threshold. Safe sets are defined in terms of level sets of an optimal
control problem, where the optimal control problem is designed to quantify the extents of
constraint violations when using different control policies. In addition to computing safe
sets, we are interested in computing control policies that optimize the control problem and
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Figure 3.7: Histograms of C0:T =
∑T

t=0 max(xt−21, 20−xt) for the TCL system (3.3) initial-
ized at x0 = 20.1 ◦C are shown under different control policies. Top row: A control policy
has been computed with respect to CVARα. Bottom row: A control policy has been com-
puted with respect to ρe,θ (3.1). Left column: Nearly risk neutral (α, θ) = (0.99,−0.01).
Center column: Typical risk aversion (α, θ) = (0.05,−0.95). Right column: Nearly
worst case (α, θ) = (0.01,−0.99). One million samples of C0:T are shown in each histogram,
and relevant empirical statistics of these samples are displayed. The red circle marks the em-
pirical mean, and each green circle marks the empirical mean plus/minus one/two standard
deviations. The same pseudorandom sequence of disturbance realizations has been used for
each histogram and chosen according to the “Original” distribution in Fig. 3.6.
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Figure 3.8: Same setting as in Fig. 3.7 except that x0 = 20.5 ◦C.

can be implemented on real dynamical systems. We call the development of algorithms that
facilitate such computations as accurately as possible and the study of the results from these
computations reachability-based safety analysis.5 We assume that a safety constraint is given
in the following form: xt ∈ K for t = 0, 1, . . . , T , where K ⊆ X is a constraint set in the state
space X that is specified by a domain expert.6 It is common to use a function g : X → R to
quantify the extent of constraint violation or satisfaction of a state xt in a trajectory of the
dynamical system.

There are different types of reachability-based safety analysis methods, and the type
that is used depends on problem-specific assumptions, domain knowledge, and safety re-
quirements. Using worst-case safety analysis, one can estimate the set of initial states from
which the amount of constraint violation of any state trajectory is zero by assuming that the
uncertainty is bounded and takes on its most harmful values over time. Worst-case safety
analysis for dynamical systems in discrete time, which is called minimax reachability, was
developed by Bertsekas and Rhodes in the early 1970s [12] [9]. Worst-case safety analysis
for dynamical systems in continuous time, which is called Hamilton-Jacobi reachability, was

5A very important research direction, which will be discussed in Chapter 4, is the inexact computation
of safe sets and control policies with quality-of-approximation guarantees to facilitate scalability to high-
dimensional systems that may not have analytical models.

6This is a standard safety constraint. Using signal temporal logic to specify more descriptive safety
constraints is an exciting area of research.
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Figure 3.9: Histograms of C0:T =
∑T

t=0 max(xt − 21, 20 − xt) are shown for the TCL sys-
tem (3.3) initialized at x0 = 20.1 ◦C under a perturbed probability distribution for the dis-
turbance. For each histogram, the same pseudorandom sequence of disturbance realizations
has been used to sample C0:T via the “Perturbed” distribution shown in Fig. 3.6. Control
policies have been computed using the “Original” distribution for the disturbance shown in
Fig. 3.6. Left: A control policy has been computed with respect to CVARα for α = 0.05.
Right: A control policy has been computed with respect to ρe,θ for θ = −0.95 (3.1). One
million samples of C0:T are shown in each histogram, and relevant empirical statistics of
these samples are displayed. The red circle marks the empirical mean, and each green circle
marks the empirical mean plus/minus one/two standard deviations.

developed by Mitchell et al. in the early 2000s [70].
A less conservative method called stochastic safety analysis was developed by Abate et

al. in 2008 [1]. Using stochastic safety analysis, one can estimate the set of initial states
from which the probability of constraint violation can be reduced to a required threshold
by assuming that the uncertainty is non-adversarial and stochastic with a given probability
distribution [1]. Stochastic safety analysis has been extended to the problem of reaching
a target set within finite time [96], a dynamic games setting in which the uncertainty is
adversarial [54] [29], and a distributionally robust setting where the probability distribution
for the uncertainty is assumed to reside within a given family of distributions [110].

Our new method risk-sensitive safety analysis via CVAR is a generalization of stochastic
safety analysis [1] in terms of how we define the optimal control problem that characterizes
the safe sets. Using risk-sensitive safety analysis, one can estimate the set of initial states
from which the expected amount of constraint violation in rare worst-case circumstances can
be reduced to a required threshold. The mathematical formulation for our new method will
be presented next.
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3.3 Mathematical Formulation

This section provides four key contributions. First, we introduce the notion of a risk-
sensitive safe set to specify the degree of safety for a given stochastic dynamical system,
which leverages the Conditional Value-at-Risk (CVAR) measure at a given risk-sensitivity
level α. Second, we show that risk-sensitive safe sets can be under-approximated by the so-
lution to a Markov Decision Process (MDP), where the cost is assessed according to CVAR.
This CVAR-MDP problem is time-inconsistent, meaning that a policy that is optimal when
viewed at time zero is not necessarily optimal when viewed at a later time, so standard
value iteration cannot be used as a solution method (see discussion in [69]). However, a non-
standard value iteration algorithm on the state space augmented by the (one-dimensional)
risk-sensitivity level space has been proposed to approximately solve the CVAR-MDP prob-
lem [25]. Third, we prove that this algorithm solves the CVAR-MDP problem for a class of
linear systems. Fourth, for this class of systems, we show the existence of optimal history-
dependent policies under a pre-commitment to certain risk-sensitivity level dynamics. These
history-dependent policies are tractable since the history is summarized in two parameters,
the current state (which may be multi-dimensional) and the current risk-sensitivity level
(which is one-dimensional).

Risk-Sensitive Safe Sets

Suppose that a model for a stochastic dynamical system is given in the following form:

xt+1 = ft(xt, ut, dt), t = 0, 1, . . . , T − 1, (3.4)

where xt ∈ X ⊆ Rn is the state, ut ∈ U ⊆ Rm is the control input, dt ∈ D ⊆ Rq is the
random disturbance, ft : X × U × D → X is Borel measurable, and X, U , and D are
non-empty Borel sets. The disturbances d0, d1, . . . , dT−1 are random variables defined on a
probability space (Ω,F ,P), so each dt is a function from Ω to D that is measurable relative
to F and B(D). Assume that d0, d1, . . . , dT−1 are independent and identically distributed,
where their common distribution is defined by the probability measure P and is independent
of all states and actions. Suppose that K ⊆ X is a set of safety constraints, and gK : Rn → R
is a bounded function that quantifies the extent of constraint violation (e.g., a clipped signed
distance function from the boundary of K [2, p. 8]). We specify the set of admissible control
policies for the dynamical system model (3.4) as being non-anticipatory, deterministic, and
history-dependent.

Definition 3 (Set of Admissible Control Policies). The set of admissible control policies for
time t = 0, 1, . . . , T − 1 is defined as follows:

Πt :=
{
πt := (µt, µt+1, . . . , µT−1)

∣∣ each µk : Ht:k → U is Borel measurable
}
, (3.5)

where Ht:k := (X × U)k−t ×X is the set of histories from time t to time k, whose elements
take the form ht:k := (xt, ut, . . . , xk−1, uk−1, xk).
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Next, we define a risk-sensitive safe set in terms of a level set of a non-standard optimal
control problem over policies in Π0, where a maximum cost of the state trajectory is assessed
using CVAR at a given risk-sensitivity level.

Definition 4 (Risk-Sensitive Safe Set). The risk-sensitive safe set at (α, r) ∈ [0, 1] × R is
defined as:

Srα := {x ∈ X | W ∗
0 (x, α) ≤ r}, (3.6a)

where
W ∗

0 (x, α) := inf
π∈Π0

CVARπ
α

(
max

t=0,1,...,T
gK(xt)

∣∣∣x0 = x
)
, (3.6b)

and the state trajectory (x0, x1, ..., xT ) evolves under the policy π ∈ Π0 according to (3.4)
initialized at x0 = x.

The risk-sensitive safe set definition is well-motivated for several reasons. First, the defi-
nition incorporates different risk-sensitivity levels and non-binary distance to the constraint
set, and thereby generalizes the classic maximal probabilistic safe set from [1]. Specifically,
let ε ∈ [0, 1] be a maximum tolerable probability of constraint violation, and choose α = 1,
r = ε, and gK(x) = 1K̄(x), where 1K̄(x) = 1 if x /∈ K and 1K̄(x) = 0 if x ∈ K. Then, the
risk-sensitive safe set at (α, r) = (1, ε) is equal to{

x ∈ X
∣∣∣ inf
π∈Π0

Eπ
(

max
t=0,1,...,T

1K̄(xt)
∣∣∣x0 = x

)
≤ ε

}
, (3.7)

which is the maximal probabilistic safe set at the ε-safety level [1] for a given stochastic
system that evolves under policies in Π0.7 Moreover, Srα encodes higher degrees of safety as
α or r decrease: α1 ≥ α2 and r1 ≥ r2 =⇒ Sr2α2

⊆ Sr1α1
. Also, Srα specifies that the CVARα

of the worst constraint violation of the state trajectory must be below a required threshold,
whereas the safe set in [89] specifies that the CVARα of the constraint violation of xt must
be below a required threshold for each t. So, Srα provides a risk-sensitive safety specification
for the entire state trajectory.

Reduction to CVAR-Markov Decision Process

Srα is a well-motivated safety specification but is difficult to estimate in a tractable way
due to the CVAR and the maximum in the definition of W ∗

0 .8 To facilitate the estimation
of risk-sensitive safe sets, we use the following method.

7Abate et al. [1] used the formalism of stochastic hybrid systems, which we do not utilize here.
8To compute infπ∈Π0

Eπ(maxt=0,1,...,T gK(xt)|x0 = x) subject to a given stochastic dynamical system
model, where Π0 is an admissible set of control policies, one can define zt := maxk=0,1,...,t gK(xk) =
max(zt−1, gK(xt)) and perform value iteration on the augmented state (xt, zt). Adopting this approach
to facilitate the estimation of risk-sensitive safe sets is an area for future work (Chapter 4).
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Theorem 3 (Reduction to CVAR-MDP). Fix β > 0 and γ > 0. For any (α, r) ∈ [0, 1]×R,
define the set U rα ⊆ X as follows:

U rα := {x ∈ X | J∗0 (x, α) ≤ βeγr}, (3.8a)

where
J∗0 (x, α) := inf

π∈Π0

CVARπ
α

(
C0:T

∣∣x0 = x
)

C0:T := cT (xT ) +
∑T−1

t=0 ct(xt, ut),
(3.8b)

such that the state trajectory evolves under the policy π according to the dynamical system
model (3.4) initialized at x0 = x, ct : Rn × Rm → R is a stage cost, and cT : Rn → R is
a terminal cost. If ct := βeγgK for all t, where gK : Rn → R is bounded, then U rα ⊆ Srα.
Moreover, the gap between U rα and Srα can be reduced by increasing γ.

Proof. Use the log-sum-exp relation in [13, Sec. 3.1.5] to show: for any y ∈ Rp and γ > 0,

max
i=1,2,...,p

yi ≤ 1
γ

log(
∑p

i=1 e
γyi) ≤ max

i=1,2,...,p
yi + log p

γ
. (3.9)

So, as γ →∞, 1
γ

log(
∑p

i=1 e
γyi)→ max

i=1,2,...,p
yi.

Further, for any α ∈ [0, 1] and any bounded positive random variable Z, the following
relation holds:

CVARα(log(Z)) ≤ log (CVARα(Z)) , (3.10)

since CVARα(Z) = supξ∈A Eξ(Z), where A is a specific set of probability density functions
by [92, Thm. 6.4, Eqn. 6.40, Eqn. 6.70], and since Eξ(log(Z)) ≤ log (Eξ(Z)) for any ξ ∈ A
by Jensen’s Inequality. For any α ∈ [0, 1], x ∈ X, and π ∈ Π0, the following inequalities
hold:

CVARπ
α

(
max

t=0,1,...,T
gK(xt)

∣∣∣x0 = x
) (3.9)

≤ 1
γ
CVARπ

α

(
log
(∑T

t=0 e
γgK(xt)

) ∣∣∣x0 = x
)

(3.10)

≤ 1
γ

log
(

CVARπ
α

(∑T
t=0 e

γgK(xt)
∣∣∣x0 = x

))
,

(3.11)

by the relations cited above each inequality symbol, and since CVARπ
α is monotonic and

positively homogeneous. Take x ∈ U rα. For any ε > 0, there exists πε ∈ Π0 such that

0
(i)
< CVARπε

α

(∑T
t=0 e

γgK(xt)
∣∣∣x0 = x

) (ii)

≤ ε+ inf
π∈Π0

CVARπ
α

(∑T
t=0 e

γgK(xt)
∣∣∣x0 = x

) (iii)

≤ ε+ eγr

for the following reasons: (i) ∀y ∈ X, eγgK(y) > 0, (ii) definition of infimum and gK is
bounded, (iii) x ∈ U rα, CVARπ

α is positively homogeneous, and β > 0. Take the logarithm
of both sides and divide by γ > 0 to obtain

1
γ

log
(

CVARπε
α

(∑T
t=0 e

γgK(xt)
∣∣∣x0 = x

))
≤ 1

γ
log (ε+ eγr) . (3.12)
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Use the definition of W ∗
0 (3.6b) as an infimum to find

W ∗
0 (x, α) ≤ CVARπε

α

(
max

t=0,1,...,T
gK(xt)

∣∣∣x0 = x
)

(3.11)

≤ 1
γ

log
(

CVARπε
α

(∑T
t=0 e

γgK(xt)
∣∣∣x0 = x

))
(3.12)

≤ 1
γ

log (ε+ eγr) ,

where the appropriate relation is cited above each inequality symbol. Finally, sinceW ∗
0 (x, α) ≤

1
γ

log (ε+ eγr) for any ε > 0, take ε → 0 and apply continuity of the logarithm to obtain

W ∗
0 (x, α) ≤ r. So, x ∈ Srα.

Remark 5. In Theorem 3, the parameter β is included to counter numerical issues that
arise when γ is large.

Theorem 3 indicates that U rα is an under-approximation of the risk-sensitive safe set Srα.
A purpose for Theorem 3 is to approximate the maximum in the definition of Srα in terms
of a summation since the latter may be more amenable to computation due to translation
equivariance of CVAR.9 However, computing the function J∗0 , as defined in Theorem 3, is still
difficult because the Conditional Value-at-Risk measure is time-inconsistent [4]. Intuitively,
time-inconsistency implies that a policy that is optimal when viewed at time zero is not
necessarily optimal when viewed at a later time [69]. Thus, a standard dynamic programming
value iteration algorithm, such as [10, Sec. 1.3], cannot be used to compute J∗0 . In the next
section, taking inspiration from [25] and [79], we prove that a value iteration algorithm on
the augmented state space X := X × [0, 1] computes J∗0 for a class of linear systems.

An Algorithm to Solve the CVAR-MDP Problem for a Class of
Linear Systems

We consider a value iteration algorithm on X := X × [0, 1] that induces dynamics on
the risk-sensitivity level. The algorithm involves optimizing over a set of probability den-
sities (i.e., weights) to determine the risk-sensitivity level at a given time, so a desired
risk-sensitivity level is attained over the entire (finite) time horizon. We specify this set of
probability densities next and use αt to denote the risk-sensitivity level at time t.

9Translation equivariance of CVAR is the following property: CVARα(Y +a) = CVARα(Y )+a if a ∈ R.
Please refer to Sec. 3.2 to review important properties of CVAR. Estimating risk-sensitive safe sets without
the reduction to the CVAR-MDP problem is a future research direction, which will be discussed in Chapter 4.
However, it should be noted that solving the CVAR-MDP problem (which we do in Sec. 3.3 for a class of
linear systems) is an interesting research contribution itself.
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Definition 5 (Risk Envelope). Fix t, xt = x ∈ X, ut = u ∈ U , and αt = α ∈ [0, 1]. The
risk envelope for time t is defined as follows:

Rα
t (x,u) :=

{
Z : Ω→ R

∣∣∣∣∣ σ(ft(x,u, dt))-measurable,

∫
Ω

ZdP = 1,

0 ≤ αZ(ω) ≤ 1 for a.e. ω ∈ Ω

}
, (3.13)

where
∫

Ω
ZdP :=

∫
Ω
Z(ω)P(dω) is the expectation of Z with respect to the probability measure

P, (Ω,F ,P) is the probability space upon which the random disturbance dt is defined, and
σ(ft(x,u, dt)) is a sub-σ-algebra of F .

The following algorithm, which was originally proposed by [25], defines the value function
at time t in terms of a stage cost ct and a worst-case weighted expected value function at
time t + 1. Here the notion of worst case is specified by optimizing over the risk envelope
for time t.

Algorithm 1 (CVAR Value Iteration). Define the functions JT−1, . . . , J1, J0 recursively as
follows: for all (x, α) ∈ X and t = T − 1, . . . , 1, 0,

Jt(x, α) := inf
u∈U

{
ct(x,u) + sup

Z∈Rαt (x,u)

∫
Ω

Z(ω) · Jt+1

(
ft(x,u, dt(ω)), αZ(ω)

)
P(dω)

}
, (3.14)

with the terminal condition JT (x, α) := cT (x).

In this section, we will prove that J∗0 , as defined by (3.8b), is equivalent to J0, as defined
by Algorithm 1, by specifying additional assumptions, including linear time-varying (LTV)
dynamics.

Assumption 1 (Conditions on Control System). The following conditions hold:

1. xt+1 = ft(xt, ut, dt) := Atxt + Btut + Etdt for t = 0, 1, . . . , T − 1. The matrices
At ∈ Rn×n, Bt ∈ Rn×m, and Et ∈ Rn×q are given for each t. The initial condition
x0 = x is deterministic.

2. The stage cost functions ct : Rn×Rm → R for t = 0, 1, . . . , T −1 and the terminal cost
function cT : Rn → R are bounded, convex, and continuous.

3. The action space U ⊂ Rm is non-empty, compact, and convex.

Many practical control systems can be modeled by linear time-varying dynamics with
compact convex action spaces and convex continuous stage (or terminal) costs. A concrete
example is the thermostatically controlled load system model that we have presented in Sec.
3.2. Assumption 1 ensures that a minimax equality holds, and this minimax equality (which
was not shown by [25]) is required to prove the validity of Algorithm 1.

The next definition specifies the CVAR-optimal cost-to-go at time t in terms of the set
of admissible control policies Πt (3.5).
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Definition 6 (CVAR-Optimal Cost-to-Go). The CVAR-optimal cost-to-go function J∗t :
X→ R at t = 0, 1, . . . , T − 1 is defined as follows:

J∗t (x, α) := inf
πt∈Πt

CVARπt
α (Ct:T |xt = x), (3.15a)

where Ct:T is the random cumulative cost of the state trajectory for time t,

Ct:T := cT (xT ) +
∑T−1

k=t ck(xk, µk(ht:k)), (3.15b)

such that the state trajectory evolves under πt := (µt, µt+1, . . . , µT−1) ∈ Πt via the LTV
dynamics initialized at xt = x. Moreover, we define the optimal terminal cost J∗T (·, α) := cT
for all α ∈ [0, 1].

Since we have specified Assumption 1 and the CVAR-optimal cost-to-go function J∗t , we
are ready to state the main result of this subsection.

Theorem 4 (Validity of CVAR Value Iteration). The value function Jt, as defined recur-
sively by Algorithm 1, is equivalent to the CVAR-optimal cost-to-go function J∗t , as defined
by (3.15), for t = 0, 1, . . . , T .

Theorem 4 is significant because it allows us to solve the CVAR-MDP problem (3.15)
numerically and hence estimate the risk-sensitive safe set under-approximation U rα (3.8). Our
strategy to prove Theorem 4 leverages a representation theorem for the Conditional Value-
at-Risk measure from [79] that is amenable to a value iteration approach. After showing how
the representation theorem simplifies in the setting of a Markov Decision Process (Lemma 3),
we will prove a critical minimax equality (Lemma 4) and then use these two lemmas to prove
Theorem 4.

Lemma 3 (Transfer Thm. 6 (iii) in [79] to MDP). Fix t, xt = x ∈ X, ut = u ∈ U , and
αt = α ∈ [0, 1]. For any π ∈ Πt+1, the following equality holds:

CVARπ
α

(
Ct+1:T

∣∣xt = x, ut = u
)

= sup
Z∈Rαt (x,u)

∫
Ω

Z(ω) · CVARπ
αZ(ω)(Ct+1:T |xt+1)P(dω),

(3.16)
where Ct+1:T is conditioned on xt+1 = ft(x,u, dt(ω)) in the integral above, Ct+1:T is the
random cumulative cost of the state trajectory for time t + 1 (3.15b), Rα

t (x,u) is the risk
envelope for time t (3.13), and (Ω,F ,P) is the probability space upon which the random
disturbance dt is defined.

Proof. Let Ft := σ(h0:t), where h0:t := (x0, u0, . . . , xt−1, ut−1, xt) is the random history from
time 0 to time t. Fix ut ∈ U and π ∈ Πt+1. Apply [79, Thm. 6 (iii)] to the random
cumulative cost Ct+1:T of the state trajectory conditioned on (ut, π) ∈ U × Πt+1 to obtain

CVARπ
αt(Ct+1:T |Ft, ut) = ess sup

Z
E
(
Z · CVARπ

αtZ(Ct+1:T |Ft+1)
∣∣Ft, ut), (3.17)
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where the essential supremum is taken over the set of Ft+1-measurable random variables Z
that satisfy 0 ≤ αtZ ≤ 1 and E(Z|Ft, ut) = 1 almost everywhere. We condition on ut ∈ U
and π ∈ Πt+1 above to fix the tree of possible outcomes, so [79, Thm. 6] applies, although
the original theorem has no explicit notion of control. Further, since (xt, ut, αt) = (x,u, α)
is given, Ct+1:T is initialized at time t+ 1, and the system is Markov, we can simplify (3.17)
by removing the dependency on the history prior to time t as follows:

CVARπ
α(Ct+1:T |xt = x, ut = u) = sup

Z
E
(
Z(xt+1)CVARπ

αZ(xt+1)(Ct+1:T |xt+1)
∣∣xt = x, ut = u

)
,

where the supremum is taken over the set of Borel measurable functions Z : X → R with
0 ≤ αZ(xt+1) ≤ 1 for almost every xt+1 and E(Z(xt+1)|xt = x, ut = u) = 1. The ex-
pectations above are taken with respect to the probability distribution of xt+1 conditioned
on (xt, ut) = (x,u). Note that xt+1 is a function from Ω to X through dt, and the dis-
turbances are independent with a common distribution defined by the probability measure
P. Thus, for any Borel measurable function g : X → R, we have E(g(xt+1)|xt = x, ut =
u) = E

(
g(ft(x,u, dt))

)
:=
∫

Ω
g(ft(x,u, dt(ω))P(dω) =

∫
Ω
ĝ(ω)P(dω), where ĝ : Ω → R is

σ(ft(x,u, dt))-measurable; see [5, Thm. 6.4.2 (c), p. 251] and [46, Eqn. 3.4.2, p. 31]. So,
the desired result holds.

Having shown Lemma 3, we proceed to Lemma 4. In Lemma 4, we will show a critical
minimax equality that uses Sion’s Minimax Theorem and two intermediary results (Lem-
mas 6 and 7, which are provided in Appendix A at the end of this thesis). The intermediary
results specify properties of certain functions using Assumption 1 as well as properties of
the risk envelope to allow the application of Sion’s Minimax Theorem. Next, we state and
prove Lemma 4.

Lemma 4 (Minimax Equality). Fix t, xt = x ∈ X, ut = u ∈ U , and αt = α ∈ [0, 1]. Define
H : Rα

t (x,u)× Πt+1 → R as follows:

H(Z, π) :=

∫
Ω

Z(ω) · CVARπ
αZ(ω)(Ct+1:T |xt+1)P(dω), (3.18)

where Ct+1:T is conditioned on xt+1 = ft(x,u, dt(ω)) := Atx + Btu + Etdt(ω) inside the
integral above, and (Ω,F ,P) is the probability space upon which the random disturbance dt
is defined. Then, the following minimax equality holds:

inf
π∈Πt+1

sup
Z∈Rαt (x,u)

H(Z, π) = sup
Z∈Rαt (x,u)

inf
π∈Πt+1

H(Z, π). (3.19)

Proof. We use Sion’s Minimax Theorem [83, Thm. 1.1]. Rα
t (x,u) is a non-empty, convex,

and compact set in L2 := L2(Ω, σ(ft(x,u, dt)),P) with the weak topology by Lemma 7.
H(·, π) is concave on Rα

t (x,u) for any π ∈ Πt+1 by [79, Thm. 12] applied to a random cost
and by linearity of expectation. For any π ∈ Πt+1, H(·, π) is upper semi-continuous in the
relative weak topology on Rα

t (x,u) ⊆ L2 by [7, Prop. 2.10, p. 72] since H(·, π) is real-
valued, concave, and upper semi-continuous in the relative norm topology on Rα

t (x,u) ⊆ L2
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(Lemma 6, Lipschitz =⇒ upper semi-continuous). Moreover, since U ⊆ Rm is non-
empty, bounded, and convex, Πt+1 is a non-empty convex set in {(µt+1, . . . , µT−1) | µk :
Ht+1:k → Rm, ||µk||u < ∞, Borel measurable} with the norm topology. H(Z, ·) is convex
and continuous in the norm topology on Πt+1 for any Z ∈ Rα

t (x,u) by Lemma 6. So, the
conditions of Sion’s Minimax Theorem hold, which completes the proof.

Equipped with the conclusions of Lemmas 3 and 4, we are ready to prove Theorem 4.
In particular, we show that the value function Jt, as defined recursively by Algorithm 1,
is equivalent to the CVAR-optimal cost-to-go function J∗t , as defined by (3.15), for each t.
This equivalence means that we can solve the CVAR-MDP problem (3.15) numerically using
Algorithm 1 and hence estimate the risk-sensitive safe set under-approximation U rα (3.8).
Next, we prove Theorem 4 by induction.

Proof. J∗T = JT by definition. Assume J∗t+1 = Jt+1 for some t. Take (x, α) ∈ X. Then, the
following equations hold:

J∗t (x, α)
(i)
= inf

u∈U

{
ct(x,u) + inf

π∈Πt+1

CVARπ
α

(
Ct+1:T

∣∣xt = x, ut = u
)}

(ii)
= inf

u∈U

{
ct(x,u) + inf

π∈Πt+1

sup
Z∈Rαt (x,u)

Hα
t

(
Z, π,x,u

)}
(iii)
= inf

u∈U

{
ct(x,u) + sup

Z∈Rαt (x,u)

inf
π∈Πt+1

Hα
t

(
Z, π,x,u

)}
,

where

Hα
t

(
Z, π,x,u

)
:=

∫
Ω

Z(ω) · CVARπ
αZ(ω)

(
Ct+1:T

∣∣xt+1

)
P(dω),

such that Ct+1:T is conditioned on xt+1 = ft(x,u, dt(ω)) := Atx + Btu + Etdt(ω) in the
integral above, and (Ω,F ,P) is the probability space upon which the random disturbance dt
is defined. We justify each equality as follows: (i) the equivalence between minimizing over
µt : Ht:t → U and u ∈ U when xt = x is given, and CVAR is translation equivariant; (ii)
Lemma 3; and (iii) Lemma 4. Moreover, the following equations hold:

inf
π∈Πt+1

Hα
t (Z, π,x,u)

(iv)
=

∫
Ω

Z(ω) · inf
π∈Πt+1

CVARπ
αZ(ω)

(
Ct+1:T

∣∣xt+1

)
P(dω)

(v)
=

∫
Ω

Z(ω) · J∗t+1(ft(x,u, dt(ω)), αZ(ω))P(dω)

(vi)
=

∫
Ω

Z(ω) · Jt+1(ft(x,u, dt(ω)), αZ(ω))P(dω),
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where we justify each step above: (iv) the interchangeability assertion from the proof of [79,
Thm. 18, p. 162];10 (v) the definition of J∗t+1 (3.15), and Ct+1:T is conditioned on xt+1 =
ft(x,u, dt(ω)) in the previous line; and (vi) the induction hypothesis J∗t+1 = Jt+1. The above
steps together with (3.14) show that J∗t = Jt, which completes the induction.

We have shown that J∗t , as defined by (3.15), is equal to Jt, as defined by Algorithm 1, for
t = 0, 1, . . . , T−1 under the conditions specified by Assumption 1. In the next subsection, we
prove the existence of tractable policies that attain J∗t , if we pre-commit (restrict ourselves)
to the dynamics of the risk-sensitivity level induced by Algorithm 1.

Synthesis of Pre-Commitment Control Policies for the
CVAR-MDP Problem

Our approach to the synthesis of control policies for the CVAR-MDP problem (3.15)
involves restricting the optimization space of history-dependent policies (3.5) to policies
that commit to specific risk-sensitivity level dynamics a priori. Such policies are called
pre-commitment policies. This restriction to pre-commitment policies is well-motivated for
two reasons. First, due to time-inconsistency, a Conditional Value-at-Risk cost function is
not amenable to dynamic programming unless the entire history is recorded [79]. Second,
computing history-dependent policies is intractable generally since substantial memory and
computation time are required. However, we can overcome these two challenges by restricting
the optimization space to policies that pre-commit to risk-sensitivity level dynamics that
summarize the history.

The purpose of this section is to synthesize tractable policies that attain the CVAR-
optimal cost-to-go function J∗t (3.15) under mild restrictions on the optimization space of
history-dependent policies Πt (3.5). We define a control law at time k ≥ t on the augmented
state space X := X × [0, 1] that is a function of the current state xk and the current risk-
sensitivity level αk. Accordingly, this law is called a X-Markov control law. The current state
xk ∈ X satisfies the linear time-varying dynamics specified by Assumption 1. The current
risk-sensitivity level αk ∈ [0, 1] satisfies particular dynamics induced by Algorithm 1. Under
these dynamics, αk is a one-dimensional parameter that summarizes the higher-dimensional
prior history (xt, ut, xt+1, ut+1, . . . , xk−1, uk−1) ∈ (X × U)k−t.

This section is structured as follows. First, we specify a regularity condition on the risk
envelope to facilitate policy synthesis (Assumption 2). Second, we define X-Markov control
laws and X-Markov policies (Definition 7). We prove the existence of X-Markov control
laws by invoking Assumptions 1 and 2. Third, we define the dynamics of the risk-sensitivity
level induced by Algorithm 1 (Definition 8). Finally, in Theorem 5, we show that X-Markov
policies attain the CVAR-optimal cost-to-go function (3.15), if we pre-commit to the risk-
sensitivity level dynamics induced by Algorithm 1.

10Showing the interchangeability assertion from the proof of [79, Thm. 18, p. 162] explicitly (which has
not been done to our knowledge and is out of the scope of this thesis) requires non-trivial arguments from
functional analysis, measure theory, and topology, which could be part of a future doctoral dissertation.
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Regularity Condition on Risk Envelope

Here we specify and justify a regularity condition on the risk envelope defined by (3.13).

Assumption 2 (Regularity Condition on Risk Envelope). The set-valued mapping (x, α,u) 7→
Rα
t (x,u) is lower semi-continuous on X× U .11

Assumption 2 is useful in general since it guarantees the existence of policies that op-
timize certain performance criteria. For example, in the classic setting of games against
nature, where stochastic control systems are affected by adversarial players with unknown
distributions, the set of admissible actions of the adversary (player 2) is assumed to be lower
semi-continuous in the state and action of the controller (player 1) [37, Assumption 3.1 (g),
p. 1632]. Also, Assumption 2 resembles conditions in the risk-averse dynamic programming
literature. Ruszczyński [88] assumes that the stochastic transition kernel is continuous in the
control and the risk envelope is lower semi-continuous in the probability measure, implying
that the risk envelope is lower semi-continuous in the control by composition [88, Thm. 2 (i)
(ii)]. The conditions in [88] are required for a time-consistent problem, whereas the condition
in Assumption 2 is required for a time-inconsistent problem.

Assumption 2 is a measurable selection condition for time-inconsistent CVAR-MDP prob-
lems that guarantees the existence of a X-Markov control law.12 Next, we define a X-Markov
control law in terms of an argument that minimizes an objective function over a compact
set. To ensure that a minimum argument exists, the objective function must be lower semi-
continuous. Assumption 2 specifies a sufficient condition to guarantee that the objective
function is indeed lower semi-continuous.

Existence of X-Markov Policies

Recall that X := X × [0, 1] is the state space augmented by the space of risk-sensitivity
levels. Here we define X-Markov control laws as Borel measurable mappings from X to U and
X-Markov policies as time-based sequences of such mappings. Then, we prove the existence
of X-Markov control laws using the conditions specified by Assumptions 1 and 2.

Definition 7 (X-Markov Control Law, Policy). Fix t. A X-Markov control law at time t is
a Borel measurable function µ∗t : X→ U that satisfies the following: for all (x, α) ∈ X,

µ∗t (x, α) ∈ arg min
u∈U

{
ct(x,u) + sup

Z∈Rαt (x,u)

Gα
t (Z,x,u)

}
, (3.20)

11The condition specified in Assumption 2 is equivalent to the following statement. If (xn, αn,un) →
(x, α,u) in X × U and Z ∈ Rαt (x,u), then there exist Zn ∈ Rαn

t (xn,un) s.t. Zn → Z [46, Prop. D.2, p.
182].

12Measurable selection conditions for standard MDPs, where expected costs are assessed, can be found
in [46, Sec. 3.3]. An important direction for future work is to identify practical examples that satisfy
Assumption 2.
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such that (xt, αt) = (x, α) is the state and risk-sensitivity level at time t, and Gα
t (Z,x,u) is

defined as follows:

Gα
t (Z,x,u) :=

∫
Ω

Z(ω) · J∗t+1

(
ft(x,u, dt(ω)), αZ(ω)

)
P(dω), (3.21)

where ft(x,u, dt(ω)) := Atx + Btu + Etdt(ω), xt = x is the state at time t, ut = u is the
control at time t, and (Ω,F ,P) is the probability space upon which the random disturbance
dt is defined. A sequence of X-Markov control laws π∗t := (µ∗t , µ

∗
t+1, . . . , µ

∗
T−1) is a X-Markov

policy for time t.

It will become clear that the arguments in Lemmas 5, 8, and 9 together show the existence
of X-Markov control laws by invoking Assumptions 1 and 2. Lemma 5 specifies that the
objective function in (3.20) is lower semi-continuous in u to ensure the existence of a X-
Markov control law, if Gα

t (Z,x,u) is lower semi-continuous in (Z,u). Lemma 8 specifies that
Gα
t (Z,x,u) is lower semi-continuous in (Z,u), if J∗t+1 is lower semi-continuous (Appendix A).

Finally, Lemma 9 specifies that J∗t is lower semi-continuous for each t (Appendix A). We
provide the statements and proofs of Lemmas 8 and 9 at the end of this thesis in Appendix A,
while we provide the statement and proof of Lemma 5 next.

Lemma 5 (Existence of X-Markov Control Laws). Fix t, and define vt : X × U → R as
follows:

vt(x, α,u) := ct(x,u) + sup
Z∈Rαt (x,u)

Gα
t (Z,x,u), (3.22)

where Rα
t (x,u) is given by (3.13), and Gα

t (Z,x,u) is given by (3.21). Then, there exists
a Borel measurable function µ∗t : X → U that satisfies the following statement: for all
(x, α) ∈ X,

vt(x, α, µ
∗
t (x, α)) = inf

u∈U
vt(x, α,u) = min

u∈U
vt(x, α,u). (3.23)

Proof. Since U is compact, it suffices to show that vt(x, α, ·) is lower semi-continuous on U
for every (x, α) ∈ X by [46, Prop. D.5 (a)]. Since the sum of lower semi-continuous functions
is lower semi-continuous, it suffices to show that u 7→ ψαx(u) := sup

Z∈Rαt (x,u)

Gα
t (Z,x,u) is lower

semi-continuous on U for every (x, α) ∈ X. Since u 7→ Rα
t (x,u) is a lower semi-continuous

set-valued mapping by Assumption 2, for any {u(j)} ⊆ U converging to a point u ∈ U and
for any Z ∈ Rα

t (x,u), there exists Z(j) ∈ Rα
t (x,u(j)) such that Z(j) → Z. If Gα

t (Z,x,u) is
lower semi-continuous in (Z,u), then one can show

lim inf
j→∞

ψαx(u(j)) ≥ lim inf
j→∞

Gα
t (Z(j),x,u(j)) ≥ Gα

t (Z,x,u),

by the definition of supremum and lower semi-continuity, respectively. Since the above
inequalities hold for any Z ∈ Rα

t (x,u), and since the supremum is the least upper bound,

lim inf
j→∞

ψαx(u(j)) ≥ sup
Z∈Rαt (x,u)

Gα
t (Z,x,u) =: ψαx(u),



CHAPTER 3. RISK-SENSITIVE SAFETY ANALYSIS VIA CVAR 57

showing that ψαx is lower semi-continuous on U , which is the desired result. (See [37,
Lemma 3.2 (a)] for the original proof.) So, it suffices to show that Gα

t (Z,x,u) is lower
semi-continuous in (Z,u), which is shown in Lemma 8 (Appendix A).

Next, we specify the dynamics of the risk-sensitivity level so that X-Markov policies under
these dynamics are history-dependent.

Risk-Sensitivity Level Dynamics

Here we define the risk-sensitivity level dynamics in terms of a member of the risk envelope
that maximizes a weighted CVAR-optimal cost-to-go in expectation.

Definition 8 (Risk-Sensitivity Level Dynamics). Fix t, xt = x ∈ X, ut = u ∈ U , and
αt = α ∈ [0, 1]. Let Z∗t ∈ Rα

t (x,u) satisfy the following statement:

Z∗t ∈ arg max
Z∈Rαt (x,u)

Gα
t (Z,x,u),

where Gα
t (Z,x,u) is defined by (3.21). Then, the risk-sensitivity level at time t+ 1 is given

by αt+1 = α · Z∗t .

Please note the following remarks concerning the risk-sensitivity level dynamics defined
above.

Remark 6. Lemma 7 and Lemma 10 ensure that Z∗t ∈ Rα
t (x,u) is well-defined since the

supremum of an upper semi-continuous map on a compact topological space is attained [5,
Thm. A6.3]. Lemma 7 specifies that the risk envelope Rα

t (x,u) is compact in L2 :=
L2(Ω, σ(ft(x,u, dt)),P) endowed with the weak topology (Appendix A). Lemma 10 specifies
that Gα

t (·,x,u) is upper semi-continuous in the relative weak topology on Rα
t (x,u) ⊆ L2

(Appendix A).

Remark 7. The risk-sensitivity level at time t + 1, αt+1 = α · Z∗t , is a σ(ft(x,u, dt))-
measurable random variable since Z∗t is. If ω ∈ Ω is fixed (which implies that dt(ω) occurs at
time t), then the risk-sensitivity level that occurs at time t+1 is given by αt+1(ω) = α·Z∗t (ω).

Remark 8. X-Markov policies (Definition 7) under the dynamics of the risk-sensitivity level
(Definition 8) are history-dependent policies. Specifically, a X-Markov policy for time t is
a function of the augmented state trajectory (xt, αt, xt+1, αt+1, . . . , xT , αT ) by Definition 7,
where αk is a function of (αt, xt, ut, . . . , xk−1, uk−1) for k = t+ 1, t+ 2, . . . , T by Definition 8
and [5, Thm. 6.4.2 (c), p. 251].
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Optimality of Pre-Commitment X-Markov Policies

The CVAR-optimal cost-to-go J∗t (3.15) is an infimum over a set of history-dependent
policies Πt (3.5). The final theorem of this chapter indicates that X-Markov policies (Defini-
tion 7) attain J∗t , if we pre-commit (restrict ourselves) to the risk-sensitivity level dynamics
given by Definition 8. This is a powerful practical result because history-dependent policies
are generally intractable due to extensive memory requirements, but the following theorem
enables tractable computations.

Theorem 5 (Optimal Pre-Commitment Policies). Fix t. Let π∗t = (µ∗t , µ
∗
t+1, . . . , µ

∗
T−1) be

a X-Markov policy for time t, where the risk-sensitivity level dynamics are given by Defi-
nition 8. Then, π∗t ∈ Πt is an optimal pre-commitment policy, i.e., the following equality
holds: for all (x, α) ∈ X,

J∗t (x, α) = CVARπ∗t
α

(
Ct:T

∣∣xt = x
)
, (3.24)

where
Ct:T = cT (xT ) +

∑T−1
k=t ck(xk, µ

∗
k(xk, αk)),

and (xt, αt, . . . , xT , αT ) satisfies the linear time-varying dynamics (Assumption 1) and the
risk-sensitivity level dynamics (Definition 8) under π∗t initialized at (xt, αt) = (x, α).

Proof. We proceed by induction. Since J∗T (xT , αT ) = cT (xT ) does not depend on the control
when (xT , αT ) = (x, α) is given, the base case is t = T − 1. In this case, π∗T−1 = µ∗T−1, where
uT−1 = µ∗T−1(x, α). Then, the following equations hold:

CVAR
µ∗T−1
α

(
CT−1:T

∣∣xT−1 = x
)
− cT−1(x, µ∗T−1(x,α))

(i)
= CVARα

(
cT (xT )

∣∣xT−1 = x, uT−1 = µ∗T−1(x, α)
)

(ii)
= sup
Z∈RαT−1(x,µ∗T−1(x,α))

∫
Ω

Z(ω) · cT (xT (ω))P(dω),

where xT (ω) = fT−1(x, µ∗T−1(x, α), dT−1(ω)), and (Ω,F ,P) is the probability space upon
which the random disturbance dT−1 is defined. We justify each equality as follows: (i) CVAR
is translation equivariant; and (ii) Lemma 3, and CVARβ(cT (xT )|xT ) = cT (xT ) for any
β ∈ [0, 1] since cT is bounded. On the right side of equality (ii) above, cT (xT ) = J∗T (xT , αZ).
Next, use Definition 7 to obtain

CVAR
µ∗T−1
α

(
CT−1:T

∣∣xT−1 = x
)

= inf
u∈U

{
cT−1(x,u) + sup

Z∈RαT−1(x,u)

Gα
T−1(Z,x,u)

}
= J∗T−1(x, α),

which shows the base case. Now, for some t, consider a X-Markov policy π∗t+1, and assume
the following: for all (x̄, ᾱ) ∈ X,

J∗t+1(x̄, ᾱ) = CVAR
π∗t+1
ᾱ

(
Ct+1:T

∣∣xt+1 = x̄
)
,
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where (xt+1, αt+1, ut+1, . . . , xT−1, αT−1, uT−1, xT , αT ) satisfies the linear time-varying dynam-
ics (Assumption 1) and the risk-sensitivity level dynamics (Definition 8) under π∗t+1 with the
initialization (xt+1, αt+1) = (x̄, ᾱ). Consider π∗t = (µ∗t , π

∗
t+1), where µ∗t is a X-Markov control

law. Then, for any (xt, αt) = (x, α) ∈ X, the following equations hold:

CVAR
(µ∗t ,π

∗
t+1)

α

(
Ct:T

∣∣xt = x
)(i)
= CVAR

π∗t+1
α

(
ct(xt, ut) + Ct+1:T

∣∣xt = x, ut = µ∗t (x, α)
)

(ii)
= ct(x, µ

∗
t (x, α)) + CVAR

π∗t+1
α

(
Ct+1:T

∣∣xt = x, ut = µ∗t (x, α)
)
.

We justify each equality as follows: (i) µ∗t (x, α) is the control at time t since µ∗t is a X-Markov
control law at time t and (xt, αt) = (x, α); and (ii) CVAR is translation equivariant. Denote
u∗t := µ∗t (x, α) and use Lemma 3 to obtain

CVAR
π∗t+1
α (Ct+1:T |xt = x, ut = u∗t ) = sup

Z∈Rαt (x,u∗t )

∫
Ω

Z(ω) · CVAR
π∗t+1

αZ(ω)

(
Ct+1:T

∣∣xt+1

)
P(dω),

where Ct+1:T is conditioned on xt+1 = ft(x,u
∗
t , dt(ω)) in the integral above. Next, using the

induction hypothesis and the definition of Gα
t given by (3.21), we have

CVAR
π∗t+1
α (Ct+1:T |xt = x, ut = u∗t ) = sup

Z∈Rαt (x,u∗t )

∫
Ω

Z(ω) · J∗t+1

(
ft(x,u

∗
t , dt(ω)), αZ(ω)

)
P(dω)

= sup
Z∈Rαt (x,u∗t )

Gα
t (Z,x,u∗t ).

The risk-sensitivity level at time t + 1 satisfies Definition 8 when using the policy π∗t =
(µ∗t , π

∗
t+1). Indeed, this risk-sensitivity level is given by αt+1 = α · Z∗t , where

Z∗t ∈ arg max
Z∈Rαt (x,u∗t )

Gα
t (Z,x,u∗t ) and u∗t = µ∗t (x, α). Finally, combine the above equations to

obtain the following statements:

CVAR
(µ∗t ,π

∗
t+1)

α

(
Ct:T

∣∣xt = x
)

= ct(x, µ
∗
t (x, α)) + sup

Z∈Rαt (x,µ∗t (x,α))

Gα
t (Z,x, µ∗t (x, α))

(iii)
= inf

u∈U

{
ct(x,u) + sup

Z∈Rαt (x,u)

Gα
t (Z,x,u)

}
(iv)
= J∗t (x, α),

(3.25)

where equality (iii) holds since µ∗t is a X-Markov control law (Definition 7), and equality
(iv) holds since Jt = J∗t (Theorem 4). Since the induction step has been shown, the proof is
complete.

We have presented the theoretical contributions of this chapter. The next section provides
a numerical example of risk-sensitive safety analysis applied to a stormwater system.
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3.4 Numerical Example

We provide a numerical example of a two-tank gravity-driven stormwater system with an
automated valve to illustrate risk-sensitive safety analysis (Fig. 3.10, Table 3.2).13 Consider
the following non-linear discrete-time dynamics model: xt+1 = xt + F (xt, ut, dt) · 4τ for
t = 0, 1, . . . , T − 1, where

F (x, u, d) :=

[
d− qvalve(x, u)

a1

,
d+ qvalve(x, u)− qdrain(x)

a2

]T
qvalve(x, u) := u · πr2

v · sgnh(x) ·
√

2g|h(x)|
h(x) := max(x1 − Z1, 0)−max(x2 − Z1,in, 0)

qdrain(x) :=

{
Cdπr

2
d

√
2g(x2 − Z2) if x2 ≥ Z2

0 otherwise,

and xt = [x1t, x2t]
T ∈ R2 is the state vector, xit ∈ R is the water elevation of tank i, ut ∈ [0, 1]

is the valve setting (closed to open), dt ∈ R is the random surface runoff (disturbance), and
4τ is the duration of [t, t+1). The constraint set K := [0, K1]×[0, K2] specifies the maximum
water elevation of the two tanks. The stage cost gK(xt) := max(x1t −K1, x2t −K2, 0) is the
maximum overflow elevation when the system occupies state xt.

We have identified a finite probability distribution for dt using the first three empirical
moments of time-averaged surface runoff samples (Table 3.3). We have obtained the surface
runoff samples by simulating a design storm in PCSWMM (Computational Hydraulics In-
ternational), which extends USEPA’s Stormwater Management Model [85]. We have used
the two-year Type II 24-hour design storm for Lenexa, Kansas to generate 100,000 surface
runoff samples, and these samples prior to time-averaging are shown in Fig. 3.3.

We have estimated {U rα} by approximating J∗0 on a grid of states and risk-sensitivity levels
via Algorithm 1, and by utilizing the risk-sensitivity level interpolation approach proposed
by [25], multi-linear interpolation of the state space, and uniform discretization of the action
space. We have chosen the values of β and γ (Theorem 3) empirically, where the magni-
tude of γ is constrained by the limitations of numerical solvers to manage differently scaled
constraints. The computation time of the value functions J0, J1 . . . , JT−1 and an optimal
pre-commitment policy π∗0 = (µ∗0, µ

∗
1, . . . , µ

∗
T−1) was about 230 hours on a three-dimensional

grid of 50,490 nodes over T = 48 time points when using a 4-core machine.14 We have
executed Algorithm 1 serially on the state space grid, however at a given time point t, the
computations at each state are independent and can be run in parallel to reduce compu-
tation time. We have approximated {Srα} by performing 100,000 Monte Carlo simulations

13Our code is available at https://github.com/risk-sensitive-reachability/IEEE-TAC-2019.
14The three-dimensional grid consists of 15 risk-sensitivity levels, 51 values of x1, and 66 values of x2 for

a total of 50,490 nodes. To compute the value functions and an optimal pre-commitment policy, we have
executed Algorithm 1 in a cluster computing session that was allocated 4 CPU cores running at 2.8 GHz.
We have used the Tufts Linux Research Cluster (Medford, MA) running MATLAB (The Mathworks, Inc.)
with MOSEK [100] and CVX [40] [41].
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Table 3.2: Two-Tank Stormwater System Parameters

Symbol Description Value
a1 surface area of tank 1 28292 ft2

a2 surface area of tank 2 25965 ft2

Cd discharge coefficient 0.61 (no units)
g acceleration due to gravity 32.2 ft

s2

K1 maximum water elevation of tank 1 3.5 ft
K2 maximum water elevation of tank 2 5 ft
π circle circumference-to-diameter ratio ≈ 3.14
rd radius of drain 2/3 ft
rv radius of valve 1/3 ft
4τ duration of [t, t+ 1) 5 min
T length of discrete time horizon 48 (= 4 hr)
U action space [0, 1] (no units)
X state space [0, 5] ft× [0, 6.5] ft
Z1 invert elevation of pipe from base of tank 1 1 ft
Z1,in invert elevation of pipe from base of tank 2 2.5 ft
Z2 elevation from base of tank 2 to orifice 1 ft
ft = feet, s = seconds, min = minutes, hr = hours.

Table 3.3: Empirical Surface Runoff Probability Distribution

Possible value of dt
(ft3/s)

8.6 9.5 10.4 11.3 12.2 13.1 14.0 14.9 15.8 16.7

Probability P (dt) 0.02 10-4 10-4 0.52 0.33 10-4 10-4 10-4 10-4 0.12
The first three empirical moments are: mean = 12.16 ft3/s, variance = 3.22 ft6/s2,
and skewness = 1.68 ft9/s3. Last digits are approximate.

of max{gK(xt) : k = 0, 1, . . . , T} initialized at each x0 = x in the state space grid under a
policy computed by Algorithm 1, and by utilizing a consistent CVAR estimator [92, p. 300].

Numerical approximations of U rα and Srα (denoted by Û rα and Ŝrα, respectively) for the
non-linear stormwater system model are presented in Fig. 3.11. Although we have shown
the correctness of Algorithm 1 and the existence of optimal pre-commitment policies for a
class of linear systems, we have found that Û rα provides an under-approximation of Ŝrα when
βeγr is sufficiently large.15 These results demonstrate that Algorithm 1 is tractable when
applied to a realistic (yet low-dimensional) numerical example.

15Ûrα provides an under-approximation of Ŝrα when βeγr is on the order of 10−4 or greater for α ∈
{0.99, 0.05, 0.01}. When βeγr is too small, numerical inaccuracies in the approximation of Urα may be ampli-
fied by the transformation from J0 ≤ βeγr to 1

γ log(J0/β) ≤ r. The numerical stability of the computations

requires a careful selection of (β, γ) that balances the desire to make γ as large as possible with the under-
standing that β cannot be made arbitrarily small without introducing additional numerical issues.
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Figure 3.10: A non-linear two-tank stormwater system with an automated valve, where water
flows by gravity between the tanks and can flow in either direction.

3.5 Summary

We started this chapter by exploring Conditional Value-at-Risk (CVAR) in comparison
to the more commonly used Exponential Utility (Mean-Variance) criterion. Our results
indicate that CVAR may be preferable to Exponential Utility for optimal control under
the following conditions: the distribution of the cumulative cost of the state trajectory is
asymmetric; the optimizer wishes to penalize tail risk; and the system has adequate control
authority. Otherwise, it may be preferable to utilize the Exponential Utility criterion at a
single risk-sensitivity level due to more straightforward implementation, faster computation,
and milder assumptions.

Motivated by the ability of CVAR to penalize tail risk, this chapter has focused on
the development of a new approach to safety analysis for stochastic dynamical systems.
Our risk-sensitive safety analysis approach uses CVAR to quantify the expected amount of
constraint violation in the α · 100% worst cases, which blends the risk-neutral and worst-
case perspectives by focusing on the upper tail of a cost distribution. We have formally
shown the correctness of an under-approximation computation method for a class of linear
systems via mathematical proofs, and we have empirically demonstrated that the approach
can be applied to a non-linear setting via a numerical example of a stormwater system. While
optimal control with respect to the Conditional Value-at-Risk measure is more involved than
standard dynamic programming, one gains safety specifications that are more sensitive to
rare high-consequence outcomes, which is an important development for formal verification.
In the next chapter, we will discuss possible extensions to risk-sensitive safety analysis (e.g.,
scalability to higher dimensional systems via approximate dynamic programming) as well as
other interesting future research directions.
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Figure 3.11: Approximate contours of U rα and Srα (denoted by ∂Û rα and ∂Ŝrα, respectively)
are shown for α ∈ {0.99, 0.05, 0.01} and r ∈ {1.25, 1.5} for the non-linear stormwater system
model. These results demonstrate that risk-sensitive safety analysis can be applied to a
non-linear dynamical system. Û rα provides an under-approximation of Ŝrα when βeγr is suf-
ficiently large, although Theorems 4 and 5 have been proven for linear dynamical systems.
Approximations of J0(·, α) and W ∗

0 (·, α) are also provided. U rα is the βeγr-sub-level set of
J∗0 (·, α) = J0(·, α) with (β, γ) = (2 · 10−11, 13). Srα is the r-sub-level set of W ∗

0 (·, α).
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Chapter 4

Future Directions

In the final chapter of this thesis, we present exciting future research directions. Some
directions are more applied, and others are more theoretical. Many of the directions have
been inspired by feedback and questions that were asked during the presentation of this
thesis during the spring of 2020.

4.1 Risk-Sensitive Control of Cancer Systems

While the estimation of stochastic dynamical models for biological systems is challeng-
ing, developing treatment strategies that leverage ideas from risk-sensitive control has the
potential to improve the management of various types of diseases. In the context of cancer,
we would like to design treatment strategies that balance the need to kill cancer cells in a
timely manner while also not causing undue harm to healthy cells. Designing treatments in
a risk-sensitive context is especially important since a worst-case approach (e.g., applying
very high doses of drugs over a short period of time) can have lasting long-term consequences
on quality of life, even if the cancer is eradicated; and if the cancer is not eradicated, it can
become resistant to future treatments. In a pre-clinical setting, important uncertainties to
consider include drug-drug interactions when different drugs are applied sequentially and
how the microenvironment can influence the response of the disease to treatment. In the
near term, the extent of harm to healthy cells can be estimated by treating healthy cell
populations with cancer therapies and measuring how the numbers of live and dying cells
change over time.

In addition, one can focus on developing improved treatment strategies for blood cancers,
such as Chronic Lymphocytic Leukemia (CLL), since the progression of this disease can be
observed frequently in a minimally invasive way. In CLL, how to sequence therapy and
when to administer therapy to individual patients are open questions (e.g., which patients
require earlier intervention?). The number of white blood cells can be measured, and if
this population grows too quickly, some oncologists will apply treatment and others will
not. Ibrutinib is the front-line treatment for CLL, which is a pill that is taken daily. Some



CHAPTER 4. FUTURE DIRECTIONS 65

patients develop resistance to this drug and relapse, and if this occurs, other drugs are tried.
CLL progresses relatively slowly, so there is time to collect sufficient time series data for
system identification and control.

One could design a clinical trial for CLL patients that involves: 1) collecting patient
blood samples over time to measure how the numbers of cancer cells and healthy cells are
evolving in response to treatments, 2) developing patient-specific dynamical models using
these data, and 3) using these data and models for improved treatment design. Developing
stochastic dynamical models and treatment strategies using blood samples is promising since
these samples capture patient-specific variations over time that cannot be observed in cell
lines. Moreover, using a risk-sensitive cost function, such as Conditional Value-at-Risk or
Exponential Utility, is important for giving flexibility to the notion of worst case in the
setting of disease management, where outcomes are highly uncertain.

Overall, there is a vital need to study certain diseases as systems that evolve over time
in response to therapeutic interventions, where these responses are uncertain due to patient-
specific genetic, epigenetic, and environmental factors. Developing new technologies that
are designed to take measurements of biological systems over time is critical for designing
improved treatment strategies that balance the risks of disease progression, the onset of
therapeutic resistance, and the occurrence of adverse secondary reactions. Quantifying how
the state of the disease is evolving under the current therapeutic strategy and re-designing
the strategy based on this knowledge in a scientific way is necessary for improving quality
of life in the long term. We are hopeful that transferring ideas from risk-sensitive control,
classic feedback control, and system identification to the problem of disease management
will benefit patient outcomes.

In this section, we have discussed an exciting applied research direction related to cancer
systems and risk-sensitive control. In the next section, we present an important theoretical
research direction for risk-sensitive safety analysis.

4.2 Approximate Risk-Sensitive Safety Analysis

Developing a new method for approximate risk-sensitive safety analysis is required for
quantifying the safety of high-dimensional stochastic systems, such as societal-scale infras-
tructure systems. Specifically, we would like to estimate risk-sensitive safe sets and control
policies with quality-of-approximation guarantees for high-dimensional systems which may
not have analytical models. We plan to begin this effort by studying the foundations of
approximate dynamic programming [11] and multi-armed bandits [94]. Approximate dy-
namic programming methods are scalable to high dimensions, and the multi-armed bandits
literature contains well-established quality-of-approximation guarantees. Developing a new
grid-free method that leverages ideas from approximate dynamic programming and multi-
armed bandits may provide a more scalable risk-sensitive safety analysis approach.

In the next section, we discuss potential alternate approaches to risk-sensitive safety anal-
ysis (Chapter 3), which have been inspired by recent conversations during the presentation
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of this thesis.

4.3 Potential Alternate Approaches to Risk-Sensitive

Safety Analysis

State Augmentation via Maximum

It may be possible to estimate risk-sensitive safe sets without using the log-sum-exp func-
tion to approximate the maximum. For example, to solve the following stochastic optimal
control problem,

inf
π∈Π̄

Eπ
(

max
t=0,1,...,T

gK(xt)

∣∣∣∣∣x0 = x

)
(4.1a)

subject to a stochastic dynamical system model, xt+1 = ft(xt, ut, dt) for t = 0, 1, . . . , T − 1,
where Π̄ is an appropriate set of control policies, one may define

zt := max
k=0,1,...,t

gK(xk) = max(zt−1, gK(xt)) (4.1b)

and perform value iteration on the augmented state (xt, zt). The value function at time t
takes the following form:

Vt(xt, zt) := inf
ut∈U

E (Vt+1(ft(xt, ut, dt), zt+1)) , (4.1c)

where the expectation is taken with respect to the probability distribution of the disturbance
dt. It may be possible to adapt (4.1) in addition to using the machinery from Chapter 3 to
estimate risk-sensitive safe sets (Definition 4).

CVAR-MDP via Dynamic Games

In this thesis, we have estimated risk-sensitive safe sets by first reducing the non-standard
stochastic optimal control problem which defines these sets to the solution to a CVAR-MDP
problem (Definition 4, Theorem 3). Then, we have estimated the solution to the CVAR-MDP
problem for a class of linear systems by using a non-standard value iteration algorithm on the
state space augmented by the space of risk-sensitivity levels (Theorem 4). This non-standard
value iteration algorithm is based on a tower-like property for the Conditional Value-at-Risk
measure, which allows us to express CVAR at a current risk-sensitivity level in terms of
CVAR at a future risk-sensitivity level [79, Thm. 6 (iii)]. Proving the correctness of the
non-standard value iteration algorithm for a class of linear systems requires us to show a
minimax equality (Lemma 4).
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Thus, a natural question is whether we can improve our method for solving the CVAR-
MDP problem by leveraging the following well-established dual representation for the Con-
ditional Value-at-Risk measure:

CVARα(Y ) = sup
ξ∈A

Eξ(Y ), (4.2)

where α ∈ [0, 1] is the risk-sensitivity level, Y is a bounded random cost variable, and A
is a specific set of probability density functions that depends on α [92, Thm. 6.4, Eqn.
6.40, Eqn. 6.70]. In the CVAR-MDP problem (3.15), we minimize an expression similar
to “CVARα(Y )” over an appropriate set of control policies, meaning that we minimize an
expression similar to “supξ∈A Eξ(Y )” by the dual representation (4.2). Hence, the CVAR-
MDP problem is a minimax optimization problem that could possibly be solved by using
existing results from the dynamic games literature [37].

CVAR-MDP via Hamilton-Jacobi-Bellman

A very interesting paper that has recently been published [6] provides the solution to a
stochastic optimal control problem in continuous time, where the cost of the state trajectory
can be assessed via Conditional Value-at-Risk, using a Hamilton-Jacobi-Bellman partial
differential equation. A challenging, yet promising and important, future research direction
is to transfer the methodology provided by [6] to a stochastic control system of the following
form:

ẋ = f(x(t), u(t), d(t)), (4.3)

where f satisfies the usual assumptions so that the ordinary differential equation (4.3) has
a unique solution, and an appropriate set of control policies must be specified. Additional
related research contributions include: 1) the development of a software toolbox to estimate
the solution to the Hamilton-Jacobi-Bellman partial differential equation provided by [6]
and a sub-optimal control policy efficiently with quality-of-approximation guarantees, and 2)
leveraging this toolbox for risk-sensitive safety analysis of control systems. Key references
for this research direction in addition to [6] include [69], [51], and [57], where the last is a
classic reference on stochastic optimal control theory.

Application of Large Deviations Theory

The Conditional Value-at-Risk of a continuous random cost variable Y at risk-sensitivity
level α is the expectation of the α · 100% worst realizations of Y . Hence, is it possible to
solve the CVAR-MDP problem (3.15) by shifting the distribution of the random cost of the
state trajectory and then utilize standard value iteration, which evaluates an expectation
at each time step (e.g., see [10])? Studying Large Deviations Theory, which focuses on low
probability events that are not characterized by the Central Limit Theorem, may help answer
this question. References on Large Deviations Theory include [95] and [103].
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Exponential Utility to Quantify Asymmetric Distributions

A key advantage of using Conditional Value-at-Risk for optimal control is the ability of
this measure to quantify asymmetric cost distributions, i.e., distributions that cannot be
well-approximated by bell-shaped curves. An interesting question is whether one can use
Exponential Utility to quantify the skew of a distribution (and other higher-order moments)
sufficiently well. Recall from (3.1) that the Exponential Utility of a random cost variable Y
is defined as follows:

ρe,θ(Y ) := −2
θ

logE
(
e
−θ
2
Y
)

= E (Y )− θ
4
V(Y ) +O(θ2),

where θ ∈ (−1, 0) ∪ (0, 1) is the risk-sensitivity level, E(Y ) is the expectation of Y , and
V(Y ) is the variance of Y [107, Eqn. 1.10, Eqn. 1.11]. The second equality holds since
0 < |θ| < 1, which can be shown using two Taylor expansions by grouping together the
higher-order terms in O(θ2). Specific research questions to study include the following:

1. What range of θ can be used to quantify the first, second, and third moments of the
distribution of Y ?

2. Can the third moment of the distribution of Y be quantified sufficiently well for the
range of θ specified above?

3. Or, is the weight on the third moment too small for practical applications? (This
weight may be proportional to θp for some p ≥ 2.)

One can use Taylor expansions of the logarithm and the exponential functions to investigate
the above questions. If the third moment of the distribution of Y can be quantified sufficiently
well using Exponential Utility, then one may not require the use of CVAR to represent
asymmetric cost distributions, which may be desirable due to more straightforward theory
and implementation when using Exponential Utility.

In this section, we have presented potential alternate and improved approaches to risk-
sensitive safety analysis, which may be interesting to investigate in the future. In the next
section, we present important extensions to risk-sensitive safety analysis to generalize the
methodology to a larger class of dynamical systems and risk measures.

4.4 Extensions to Risk-Sensitive Safety Analysis

This section is organized into short-term and long-term extensions to risk-sensitive safety
analysis based on perceived difficulty.

Short-Term Extensions

Interpretability of Regularity Condition on Risk Envelope. An important direction for
future work is to identify standard examples that satisfy Assumption 2 to improve the
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interpretability of this assumption. For example, if the probability space upon which the
random disturbance dt is defined is finite, can we prove that Assumption 2 holds? If the
probability space is Gaussian, can we prove that Assumption 2 holds?

Time-Varying Probability Distributions. Disturbances to control systems may have prob-
ability distributions that depend on time, for example, when the disturbances are related to
weather patterns. One can extend risk-sensitive safety analysis to the setting of time-varying
probability distributions, where the random disturbances (d0, d1, . . . , dT−1) are independent
but may not be identically distributed. One can start by studying how the probability
distributions are formalized in [32, Sec. II].

CVAR Objective versus CVAR Constraint. In this thesis, we use CVAR to evaluate the
cost of the state trajectory, i.e., “CVARα(Cost(x0, x1, . . . , xT )),” whereas other papers have
used CVAR to constrain the cost at each state in the trajectory, i.e., “CVARα(Cost(xt)) for
all t” [89] [102]. Using practical examples, it is important to evaluate the advantages and
disadvantages of each approach. One can start this work by observing that our approach
provides a risk-sensitive safety metric for the entire state trajectory and is more conservative.

Long-Term Extensions

Generalization to a Larger Class of Risk Measures. We have developed risk-sensitive
safety analysis using the Conditional Value-at-Risk measure, and it would be interesting to
extend this analysis to other types of risk measures. One could start by studying the Opti-
mized Certainty Equivalent risk measures, which have been utilized recently in an optimal
control setting by Backhoff-Veraguas and Tangpi [6]. This research direction could include
the following steps:

1. Define a more general notion of a risk-sensitive safe set using an Optimized Certainty
Equivalent risk measure;

2. Specify a dynamical system equipped with an appropriate space of control policies and
transfer the methodology in [6] to this system;

3. Develop a scalable numerical method to approximately solve the Hamilton-Jacobi-
Bellman partial differential equation proposed by [6] with quality-of-approximation
guarantees; and

4. Create an open-source, well-documented software toolbox to compute approximate
risk-sensitive safe sets using the numerical method above.

An especially exciting component of the above research direction is to specify the math-
ematical assumptions on the dynamical system and on the set of control policies so that
the resulting methodology is practical for many applications (i.e., efficient computations are
possible for a broad class of systems).

Generalization to a Larger Class of Dynamical Systems. The computational approach to
risk-sensitive safety analysis in this thesis is applicable in theory to a class of linear systems,
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and we would like to extend its theoretical applicability to a broader class of dynamical
systems. One could explore extensions to non-linear systems by utilizing operators that
transform non-linear dynamics to linear dynamics on an infinite-dimensional space, such as
the Koopman operator [56].1 Another approach is to impose structural assumptions, such
as the system being feedback linearizable or having cone-bounded non-linearities [90].

Very challenging but important extensions include the development of efficient compu-
tational approaches to risk-sensitive safety analysis for partially observable systems, high-
dimensional systems, and systems that do not necessarily have dynamics that can be fully
expressed in terms of analytical equations. A societal-scale infrastructure system (e.g., food,
energy, water, or transportation systems, or a subset of these systems in combination), for
example, is partially observable, high-dimensional, and may not have a complete analytical
dynamics representation. Developing a safety analysis method for a part of one of these
cases would be a fundamental research contribution. Considering an infinite time horizon,
which has been studied by [25], may be useful so that the computation time does not scale
with the number of time points.

It is also critical to consider systems where the probability distribution of the disturbance
is not known exactly but lives within a known family of distributions, or ambiguity set (e.g.,
see [110]). In this setting, one could develop a distributionally robust risk-sensitive safety
analysis method. An important extension involves developing a risk-sensitive safety analysis
method with non-asymptotic guarantees, where only a finite number of samples can be used to
estimate the probability distribution of the disturbance. One may even consider developing
an efficient risk-sensitive uncertainty estimation method using a finite number of samples
to approximate the α · 100% worst mean, variance, and skew of the distribution with non-
asymptotic guarantees. In the final section, we present additional exciting future research
directions and concluding remarks.

4.5 Additional Exciting Future Directions

This thesis has inspired a wide range of interesting future research directions, many of
which we have discussed above. Additional future projects include: the extension of finite-
time stability analysis for stochastic switched dynamical systems with application to cancer
treatment [112] [109] [24] [111] [35]; the application of multi-armed bandits to optimize ther-
apeutic schedules for cancer cell populations that stochastically evolve into subpopulations of
varying degrees of sensitivity;2 the application of risk measures, such as Conditional Value-at-
Risk, to alleviate conservativeness in the analysis and design of optimization algorithms and

1A challenge with using the Koopman operator is that the lifted dynamical system is control-affine.
2Consider a setting with d distinct therapies and d distinct types of cancer cells. Each therapy can kill a

particular type of cancer cell over time but may cause the other types of cancer cells to proliferate. The cancer
cell population is assumed to stochastically evolve after a random waiting time into subpopulations containing
the original cell type(s) and a randomly chosen cell type. The cancer cell population is homogeneous initially.
We can only administer one therapy at a time, and we would like to design a treatment strategy that is
guaranteed in probability to reduce the size of the cancer cell population to a given threshold by a given
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to broaden the assumptions on the objective functions that are typically used [61] [71] [68];
leveraging risk measures [92] and non-asymptotic statistical analysis [105] to develop uncer-
tainty quantification methods that balance the risk-neutral and worst-case perspectives with
non-asymptotic guarantees that use the number of available data samples; the application of
risk-sensitive control to develop food processing or production strategies with reduced wa-
ter and carbon footprints using sensor data; and writing a tutorial-style paper on practical
examples of linear control systems. We conclude this thesis by presenting, what we believe
to be, the fundamental open research areas in the field of systems and control.

Open theoretical research areas in the field of systems and control concern the develop-
ment of: 1) numerical methods that scale to high-dimensional systems but also provide safety
or quality-of-approximation guarantees for these systems by exploiting domain-specific struc-
ture; 2) numerical methods with safety or quality-of-approximation guarantees that are de-
vised with respect to more realistic assumptions about uncertain disturbances using available
data;3 3) controller synthesis methods that more rigorously integrate physics-based models,
data-driven models, partially observable states, and states that have no analytical dynamics
representation; and 4) new approaches to decentralized control for high-dimensional systems
(in adversarial or non-adversarial settings) that leverage the ability of modern computers to
easily exchange information and facilitate coordination between low-dimensional subsystems.

Open applied research areas in the field of systems and control concern the translation
and transfer of mathematical and numerical methods to address safety-critical challenges
in society, which involve the protection of the health of the planet, including the health
of humankind. Specific applications include transferring systems and control methodolo-
gies to inform decision-making under uncertainty in disease and healthcare systems and in
societal-scale infrastructure systems, such as food, water, energy, transportation, and their
interactions. We are hopeful that these ideas will inspire scholarship that is focused on
developing, not technologies for convenience, but technologies that promote the safety and
well-being of the planet and its people.

finite time. How do we efficiently design a treatment strategy for this setting or further specify the setting
so that a treatment strategy can be efficiently designed?

3Both non-asymptotic and asymptotic theoretical guarantees are important as well as the integration of
real-time data samples and previously existing data sets.
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Appendix A

Supplementary Results for Chapter 3

A.1 Lemmas 6 and 7

Here we show two results that are required to prove the minimax equality (Lemma 4).
Lemma 6 states that an expected CVAR of the cost of the state trajectory is convex and
continuous on the policy space and is continuous on the risk envelope. Lemma 7 specifies
important topological properties of the risk envelope.

Remark 9. Recall that (Ω,F ,P) is the probability space upon which the random distur-
bance dt is defined. The risk envelope Rα

t (x,u) is a subset of L2(Ω, σ(ft(x,u, dt)),P) since
it is a collection of P-integrable, σ(ft(x,u, dt))-measurable bounded functions on Ω by def-
inition (3.13). “Bounded” means bounded in || · ||∞, which implies bounded in || · ||2. We
study properties of the risk envelope in L2 := L2(Ω, σ(ft(x,u, dt)),P) since L2 is reflexive
and equals its dual, which simplifies proofs.

Lemma 6 (Convexity and Continuity). Fix t, xt = x ∈ X, ut = u ∈ U , and αt = α ∈ [0, 1].
Define H : Rα

t (x,u)× Πt+1 → R as follows:

H(Z, π) :=

∫
Ω

Z(ω) · CVARπ
αZ(ω)(Ct+1:T |xt+1)P(dω),

where Ct+1:T is conditioned on xt+1 = ft(x,u, dt(ω)) := Atx+Btu+Etdt(ω) in the integral
above. Then, the following properties hold:

1. H(Z, ·) is convex and continuous in the norm topology on Πt+1 for any Z ∈ Rα
t (x,u).

2. H(·, π) is Lipschitz continuous in the relative norm topology on Rα
t (x,u) ⊆ L2 :=

L2(Ω, σ(ft(x,u, dt)),P) for any π ∈ Πt+1.

Proof. Ct+1:T is convex on Πt+1 since Ct+1:T is a convex function, the state trajectory is
affine on Πt+1, and the composition of a convex function with an affine function is convex.
Further, H(Z, ·) is convex on Πt+1 for any Z ∈ Rα

t (x,u) because Ct+1:T is convex on Πt+1,
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Conditional Value-at-Risk is a convex functional, Z(ω) ≥ 0 for almost every ω ∈ Ω, and
expectation is a linear functional.

Define the product norm on Πt+1 as the maximum uniform norm, i.e., ||π|| := max{||µk||u :
k = t + 1, . . . , T − 1}. Take {π(n)} in Πt+1 converging to π ∈ Πt+1. Fix r > 0, define

γn := ||π−π(n)||
r+||π−π(n)|| , and define π̄(n) ∈ Πt+1 so that π = γnπ̄

(n) +(1−γn)π(n). Fix Z ∈ Rα
t (x,u).

Since H(Z, ·) is convex on Πt+1, we have

H(Z, π) ≤ γnH
(
Z, π̄(n)

)
+ (1− γn)H

(
Z, π(n)

)
.

As n → ∞, γnH(Z, π̄(n)) → 0 since H(Z, ·) is bounded and γn → 0. So, H(Z, π) ≤
lim inf
n→∞

H(Z, π(n)), which shows lower semi-continuity. To show upper semi-continuity, i.e.,

lim sup
n→∞

H(Z, π(n)) ≤ H(Z, π), define π̄(n) ∈ Πt+1 so that π(n) = γnπ̄
(n) + (1 − γn)π, use

convexity to obtain H(Z, π(n)) ≤ γnH(Z, π̄(n))+(1−γn)H(Z, π), and take the limit superior
as n→∞.

Now fix π ∈ Πt+1 and ω ∈ Ω. Use the definition of CVAR (3.2) as an integral over
VAR if αZ(ω) > 0 and as an essential supremum if αZ(ω) = 0 to show that Z(ω) 7→
Z(ω) · CVARπ

αZ(ω)

(
Ct+1:T

∣∣xt+1 = ft(x,u, dt(ω))
)

is Lipschitz continuous on R for almost
every ω ∈ Ω; set the Lipschitz constant equal to the essential supremum of Ct+1:T . Since∫

Ω
|Z(ω)|P(dω) := ||Z||1 ≤ ||Z||2 for any Z ∈ Rα

t (x,u), H(·, π) is Lipschitz continuous in
the relative norm topology on Rα

t (x,u) ⊆ L2 for any π ∈ Πt+1.

Lemma 7 (Properties of Risk Envelope). Fix t, xt = x ∈ X, ut = u ∈ U , and αt =
α ∈ [0, 1]. Rα

t (x,u), as defined by (3.13), is a non-empty, convex, and compact set in
L2 := L2(Ω, σ(ft(x,u, dt)),P) endowed with the weak topology.

Proof. Rα
t (x,u) is non-empty since it contains Z(ω) = 1 for almost every ω ∈ Ω. Rα

t (x,u) ⊆
L2 since bounded random variables have bounded second moments. So, Rα

t (x,u) is bounded
in || · ||2. Rα

t (x,u) is a convex subset of L2 by inspection. Since only bounded costs are eval-
uated in our setting, for any α ∈ [0, 1], CVARα is a real-valued coherent risk measure on L2.
Moreover, for any α ∈ [0, 1] and Y ∈ L2 such that Y is bounded, the following equality holds
by [92, Thm. 6.4, Eqn. 6.40, Eqn. 6.70]: CVARα(Y ) = supZ∈Rαt (x,u)

∫
Ω
Z(ω)Y (ω)P(dω).

So, Rα
t (x,u) is closed in the weak* topology on L2 by [92, Thm. 6.6, p. 264]. Finally, a

bounded and weakly* closed set is weakly* compact by the Banach-Alaoglu Theorem [92,
Thm. 7.70, p. 401]. Thus, Rα

t (x,u) is compact in the weak* topology on L2. Since L2 is
reflexive, the weak and the weak* topologies on L2 coincide, hence Rα

t (x,u) is compact in
the weak topology on L2.

Remark 10. L2 endowed with the weak topology is a locally convex topological vector space
since the weak topology in a topological vector space is locally convex [5, p. 161].
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A.2 Lemmas 8-10

Here we provide three results that facilitate the synthesis of pre-commitment policies for
the CVAR-MDP problem. Lemmas 8 and 9 are required to prove the existence of X-Markov
control laws. Lemma 10 is critical for ensuring that the risk-sensitivity level dynamics
are well-defined. These results require the following definition repeated from (3.21) for
convenience:

Gα
t (Z,x,u) :=

∫
Ω

Z(ω) · J∗t+1

(
ft(x,u, dt(ω)), αZ(ω)

)
P(dω),

where (x, α) ∈ X, u ∈ U , Z ∈ Rα
t (x,u), ft(x,u, dt(ω)) := Atx + Btu + Etdt(ω), and

(Ω,F ,P) is the probability space upon which the random disturbance dt is defined.

Lemma 8 (Gα
t is LSC in (Z,u)). For any (x, α) ∈ X, Gα

t (Z,x,u) is lower semi-continuous
in (Z,u).

Proof. Fix t and (xt, αt) = (x, α) ∈ X. Since u 7→ ft(x,u, dt(ω)) is continuous for al-
most every ω ∈ Ω by Assumption 1, (Z(ω),u) 7→ (ft(x,u, dt(ω)), αZ(ω)) is continu-
ous for almost every ω ∈ Ω. If J∗t+1 is lower semi-continuous on X, then (Z(ω),u) 7→
J∗t+1(ft(x,u, dt(ω)), αZ(ω)) would be lower semi-continuous for almost every ω ∈ Ω, since a
lower semi-continuous function composed with a continuous function is lower semi-continuous.
Then, (Z(ω),u) 7→ Z(ω) · J∗t+1(ft(x,u, dt(ω)), αZ(ω)) would be lower semi-continuous for
almost every ω ∈ Ω, since Z(ω) is nonnegative and bounded for almost every ω ∈ Ω. (The
product of a nonnegative, continuous bounded function and a lower semi-continuous bounded
function is lower semi-continuous.) Since expectation preserves lower semi-continuity,
Gα
t (Z,x,u) would be lower semi-continuous in (Z,u) to complete the proof. So, it suffices

to show that J∗t+1 is lower semi-continuous on X, which is shown in Lemma 9 below.

Lemma 9 (Lower Semi-Continuity of J∗t ). Fix t. J∗t , as defined in (3.15), is lower semi-
continuous on X := X × [0, 1].

Proof. Recall that each J∗t is bounded since the stage costs and the terminal cost are bounded.
It suffices to show that Jt, as defined in (3.14), is lower semi-continuous on X by Theorem 4.
We proceed by induction. Let (x, α) ∈ X. JT (x, α) = cT (x), which is continuous. Now,
assume Jt+1 is lower semi-continuous on X for some t. Since U is compact, ct is continuous,
and lower semi-continuity is preserved through summation, it suffices to show that the fol-
lowing (bounded) map (x, α,u) 7→ sup

Z∈Rαt (x,u)

Gα
t (Z,x,u) is lower semi-continuous on X × U

by [46, Prop. D.5 (b)], where Gα
t (Z,x,u) =

∫
Ω
Z(ω) · Jt+1

(
ft(x,u, dt(ω)), αZ(ω)

)
P(dω)

by Theorem 4. Since (x, α,u) 7→ Rα
t (x,u) is a lower semi-continuous set-valued mapping

by Assumption 2, if Gα
t (Z,x,u) is lower semi-continuous in (Z,x, α,u), then the desired

result holds by [37, Lemma 3.2 (a)]. Since (x,u) 7→ ft(x,u, dt(ω)) is continuous for al-
most every ω ∈ Ω by Assumption 1, (Z(ω),x, α,u) 7→ (ft(x,u, dt(ω)), αZ(ω)) is contin-
uous for almost every ω ∈ Ω. Since Jt+1 is lower semi-continuous on X by the induction
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hypothesis, (Z(ω),x, α,u) 7→ Jt+1(ft(x,u, dt(ω)), αZ(ω)) is lower semi-continuous for al-
most every ω ∈ Ω. Moreover, since Z(ω) is nonnegative and bounded for a.e. ω ∈ Ω,
(Z(ω),x, α,u) 7→ Z(ω) · Jt+1(ft(x,u, dt(ω)), αZ(ω)) is lower semi-continuous for almost ev-
ery ω ∈ Ω. Since expectation preserves lower semi-continuity, the proof is complete.

Lemma 10 (Gα
t is USC on Risk Envelope). Fix t, xt = x, ut = u, and αt = α. Gα

t (·,x,u),
as defined by (3.21), is upper semi-continuous in the relative weak topology on Rα

t (x,u) ⊆
L2 := L2(Ω, σ(ft(x,u, dt)),P).

Proof. It suffices to show that Gα
t (·,x,u) is real-valued concave and upper semi-continuous

in the relative norm topology on Rα
t (x,u) ⊆ L2 by [7, Prop. 2.10]. Gα

t (·,x,u) is real-valued
since Z ∈ Rα

t (x,u) and J∗t+1 are bounded. Gα
t (·,x,u) is concave on Rα

t (x,u) by [79, Thm.
12] applied to a random cost, since the pointwise infimum of concave functions is concave,
by the definition of J∗t+1, and by linearity of expectation. It suffices to show that Gα

t (·,x,u)
is Lipschitz continuous in the relative norm topology on Rα

t (x,u) ⊆ L2, as this implies
upper semi-continuous in this topology. One can show that for any π ∈ Πt+1, Z(ω) 7→
Z(ω) · CVARπ

αZ(ω)

(
Ct+1:T |xt+1 = ft(x,u, dt(ω))

)
is Lipschitz continuous on R for almost

every ω ∈ Ω. It follows (after a few steps) that Z(ω) 7→ Z(ω) · J∗t+1(ft(x,u, dt(ω)), αZ(ω))
is Lipschitz continuous on R for almost every ω ∈ Ω, by using the definition of J∗t+1 as an
infimum over the policy space Πt+1. Then, take the expectation with respect to P, and use
|E(·)| ≤ E(| · |) := || · ||1 ≤ || · ||2 to complete the proof.


