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Abstract

Sparse-Graph Codes for the Big Data Era: Exploiting Sparsity to Speed Up Computation

by

Orhan Ocal

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

We are witnessing an unprecedented growth in the amount of data being sensed, collected and
processed to drive modern applications across many domains. This growth has challenged classical
algorithms to scale up to big-data regimes. Because time is critically important in settings such as
control and decision-making, interventional medical imaging, and security, speeding up widely-used
routines has the potential to open up the application space.

In this thesis, we focus on six problems of fundamental importance, and develop fast algorithms
for solving them whenever there is an underlying structure of sparsity, which typically holds in
most natural settings. Our algorithms attain their speed by being sample and computationally
efficient whenever there is sparsity. In particular, the problems we study and a summary of our
results are as follows. (1) We propose a novel architecture for sampling continuous-time signals
that have band-limited and sparse spectra at their minimum sampling rate, which can be much
lower than the Nyquist rate. (2) We improve the noise robustness of divide-and-conquer-based
sparse Discrete Fourier Transform algorithms by developing a novel method for fast and sample-
efficient frequency identification. (3) We develop a fast algorithm for recovering sparse wavelet
coefficients of a signal from its Fourier domain samples. This setting arises in Magnetic Resonance
Imaging, and our approach provides a theoretical framework for fast imaging. (4) We propose a
sample and computationally efficient algorithm for recovering sparse pseudo-Boolean functions
with application to learning a DNA repair outcomes for CRISPR-Cas9 experiments. (5) We propose
a computationally efficient method for coded computation to reduce the effect of slow computational
nodes in distributed matrix multiplication. (6) We propose a computationally efficient algorithm for
large-scale matrix multiplication whenever the output is sparse with application to database search.

Our approach in tackling these diverse problems is based on a unifying divide-and-conquer strategy,
where by leveraging ideas from modern coding theory (in particular, Low Density Parity Check
Codes) which have previously been studied in the context of communications, we create structures
that enable simple and fast peeling-based recovery.
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Chapter 1

Introduction

We are witnessing an unprecedented growth in the amount of data being sensed, collected, and
processed to drive modern applications across a multitude of domains. This growth has been, in
part, fueled by recent advancements in machine learning and decision-making, where the approach
has shifted to using complex models which require large amounts of data for training. This has
challenged classical algorithms to scale up to big-data regimes, rendering them too resource-hungry
and slow. Because time is critically important in settings such as control and decision-making,
interventional medical imaging, and security, speeding up widely-used routines has the potential to
open up the application space. In this thesis, we focus on six problems of interest, and develop fast
algorithms for solving them whenever there is sparsity, which appears naturally in a wide range of
real-world problems.

First, sparsity can be in the data representation. For example, in Magnetic Resonance Imaging
(MRI), the images have a sparse representation in the wavelet domain. This structure of sparsity has
already been exploited to compress data after acquisition, as is done in JPEG to compress images.
However, this pipeline of first acquiring the data and then compressing it can be too costly. To
combat high acquisition costs, a new paradigm for data acquisition called compressed sensing was
developed by researchers. In this paradigm, data is subsampled at the acquisition time to compress
the data at its source. Then, an appropriate recovery algorithm is used to reconstruct the object
of interest based on the acquired samples. This paradigm enabled faster acquisition, and led to
important advancements in real-world problems, such as reducing the time a patient spends in the
MRI machine. The now well-known recovery algorithms in compressed sensing literature work well
when the ambient dimension is relatively small and the bottleneck is the data acquisition. However,
for large ambient dimensions, these recovery algorithms are too costly because their computational
complexities are at least linear in the ambient dimension even though the information might reside
in a significantly smaller subspace. This dependence of computational complexity in the ambient
dimension renders the well-known recovery algorithms in compressed sensing literature (such as
LASSO [86] or OMP [87]) impractical. In this thesis, we propose frameworks that are fast at
both acquisition and recovery. In particular, the developed algorithms have sample complexity and
computational complexity that scale sublinearly in the ambient dimension whenever the degrees of
freedom (sparsity level) also scale sublinearly.



CHAPTER 1. INTRODUCTION 2

Another setting we study is where there are sparse nonidealities in a system. Concretely, we will
consider distributed computing where a large computation is divided into smaller chunks and the
workload is distributed across multiple workers to speed up computation. In this modality there can
be slow worker nodes, called stragglers, that affect the overall runtime of the computation. Sparsity
in this setting means that the number of straggler nodes is small compared to the total number
of workers. In this setting, the user can introduce controlled redundancy to combat against these
straggling nodes. For this setting, we develop a fast algorithm to combat against stragglers.

Our approach in tackling these seemingly diverse problems is based on a unifying divide-and-
conquer strategy, where by leveraging ideas from coding theory (Low Density Parity Check Codes
and Product Codes) which have been previously studied in the context of communications, we create
structures that enable simple and fast peeling-based recovery. As shown in Figure 1.1, sparse-graph
codes (to be described in Section 1.1) sit at the center like an engine that “powers” the structure in
tackling our diverse problems of interest. The problems we consider and our contributions therein
are as follows.

In Chapter 2, we study the problem of spectrum-blind sampling, that is, sampling signals
with sparse spectrum whose frequency support is unknown. The minimum sampling rate for
this class of signals has been established as twice the measure of its frequency support; however,
constructive sampling schemes that achieve this minimum rate are not known to exist. We propose
a novel sampling framework by leveraging a mix of tools from modern coding theory, which
has been largely untapped in the field of sampling. We make interesting connections between
the fundamental problem of spectrum-blind sampling, and that of designing erasure-correcting
codes based on sparse-graph codes, which have both theoretically and practically revolutionized
the design of modern communication systems. The key idea is to cleverly exploit, rather than
avoid, the resulting aliasing artifact induced by subsampling, which introduces linear mixing
of spectral components in the form of parity constraints for sparse-graph codes. We show that
the signal reconstruction under this sampling scheme is equivalent to the peeling decoding of
sparse-graph codes for reliable transmission on an erasure channel. We further show that the
achievable sampling rate is determined by the rate of the sparse-graph code used in the filter bank.
As a result, based on insights derived from the design of capacity-achieving sparse-graph codes,
we simultaneously approach the minimum sampling rate for spectrum-blind sampling and low
computational complexity based on fast peeling-based decoding with operations per unit of time
scaling linearly with the sampling rate.

In Chapter 3, we focus on the Discrete Fourier Transform (DFT) and take steps towards
improving the practical impact of a class of divide-and-conquer-based fast sparse DFT algorithms.
The class of algorithms we consider computes a K-sparse DFT by dividing the problem into
recovering K-many single tones and then combining their results. We improve the noise robustness
of such algorithms by developing a novel sample and computationally efficient method for single
tone identification from noisy measurements. This is a step towards making the algorithm more
impactful in low SNR applications such as medical imaging and radio astronomy. Besides having
strong theoretical guarantees, these algorithms also have strong practical performance, and our
collaboration resulted in a hardware implementation.

In Chapter 4, we introduce a new ensemble of random bipartite graphs, which we term the
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Figure 1.1: In this dissertation, we focus on six problems. Underlying our solutions to these
problems is the use of sparse-graph codes as a divide-and-conquer engine to devise fast peeling-
based algorithms.

‘smearing ensemble’, where each left node is connected to some number of consecutive right nodes.
Such graphs arise naturally in the recovery of sparse wavelet coefficients when signal acquisition is
in the Fourier domain, such as in MRI. Graphs from this ensemble exhibit small, structured cycles
with high probability, rendering current techniques for determining iterative decoding thresholds
inapplicable. We develop a theoretical platform to analyze and evaluate the effects of smearing-
based structure. Despite the existence of these small cycles, we derive exact density evolution
recurrences for iterative decoding on graphs with smear-length two. Further, we give lower bounds
on the performance of a much larger class from the smearing ensemble, and provide numerical
experiments showing tight agreement between empirical thresholds and those determined by our
bounds. Finally, we describe a system architecture to recover sparse wavelet representations in the
MRI setting that is sample and computationally efficient.

In Chapter 5, we present a sample and computationally efficient method for recovering low-
degree pseudo-Boolean functions. Pseudo-Boolean functions are functions whose input variables are
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binary and the output is real-valued. Such functions show up in many applications in computational
biology and computer science to name a few. Pseudo-Boolean functions lend themselves to a
spectral representation, which is closely related to the Walsh-Hadamard Transform (WHT) from
signal processing. In many problems of interest, the coefficients of the spectral representation
are active only on low-degree terms, which means that the cardinality of the interactions between
the features is small. Our method is based on evaluating the input pseudo-Boolean function at
points given by the codewords of a codebook, and then performing a WHT on the resulting signal.
Codes having high rates and good minimum distance properties yield sets of evaluations points
whose size is close to the number of low-degree coefficients. In particular perfect codes, such as
Hamming Codes or the Golay Code, enable efficient recovery with a minimal number of evaluations
of the function. We use our method for learning the landscape of DNA repair outcomes after
CRISPR-Cas9 double-strand breaks. Recent studies have shown that after a double-strand break,
the DNA repair outcomes are consistent across experimental replicates, and that they are a function
of the sequence around the cut site. Learning a model for repair outcomes is of interest as it can
be used for designing gene knock out experiments. We represent the DNA sequence in a window
around the cut site as a binary sequence, and learn the function mapping the sequence to the repair
outcomes. As nucleotides in DNA can take on 4 different bases (A,T,C,G), a window length of n
nucleotides has 4n possible base sequences, which poses a high dimensional problem. However,
we observe that WHT-sparse models have significant predictive power, and we use our method for
learning it. Furthermore, the WHT coefficients provides interpretable insights on the DNA repair
process.

In Chapter 6, we present a novel coded matrix-matrix multiplication scheme to combat stragglers,
that is, slow worker nodes, in distributed computing. Distributed computing allows for large-scale
computation and machine learning tasks by enabling parallel computing at massive scale. A critical
challenge to speeding up distributed computing comes from stragglers, a crippling bottleneck
to system performance. Recently, coding theory has offered an attractive paradigm dubbed as
coded computation for addressing this challenge through the judicious introduction of redundant
computing to combat stragglers. However, most existing approaches have limited applicability if
the system scales to hundreds or thousands of workers, as is the trend in computing platforms. At
these scales, previously proposed algorithms are too expensive due to their hidden cost, such as
computing and communication costs associated with the encoding/decoding procedures. On the
other hand, our novel coded matrix-matrix multiplication scheme based on product codes allows
for order-optimal computation/communication costs for the encoding/decoding procedures while
achieving near-optimal compute time.

In Chapter 7, we design a framework for speeding up large-scale matrix multiplication when the
output is sparse. Leveraging the sparsity of the output matrix in a matrix multiplication operation
has applications ranging from the recovery of sparse covariance matrices to fast string search across
a database (where the rows of the first matrix represent the database of strings and the columns of
the second matrix matrix represent the query strings to be searched in the database) to sketching
sparse matrices. Our solution is based on a novel use of product codes. When multiplying two
matrices of sizes n × d and d × n where the output matrix is (exactly) K-sparse with support
uniformly distributed, our algorithm requires max(O(dK), O(dn)) computations to perform the
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matrix-matrix multiplication with high probability.

1.1 Sparse-Graph Codes
We start with a brief introduction to sparse-graph codes, which have been revolutionary in the
communications literature for doing error correction. Assume, as the sender, we have a sequence
of n symbols x1, . . . , xn that we want to send over an erasure channel which erases each symbol
with a constant probability pe. Hence, at the receiver side, some symbols will have possibly been
erased (on average npe symbols are erased). If we want the receiver to be able to recover all the
symbols with high probability, then we need to introduce some redundancy to the message we send
so that the erasures can be recovered at the receiver. The level of redundancy needed for reliable
communication is characterized by information theory founded by the seminal work of Claude
E. Shannon [79], and for the erasure channel, we need a redundancy rate of pe. Coding theory is
the study of how to introduce controlled redundancy so that reliable communication is possible
over noisy channels. Sparse-graph codes provide a way to introduce this redundancy. They are
fast for encoding and decoding the message, and simultaneously enable the amount of introduced
redundancy to be arbitrarily close to the optimal.

The most relevant way of introducing sparse-graph codes for our work is through their graphical
representation. Sparse-graph codes represent message symbols as variable nodes and some linear
constraints on these variable nodes as check nodes. Traditionally, the variable nodes are represented
as circles on the left-hand side of a bipartite graph, and the check nodes are represented as squares
on the right-hand side of that graph. If a variable node appears in the linear constraint related to a
check node, then that variable node and the check node are connected in the graph. These graphs
are called Tanner Graphs, and an example is provided in Figure 1.2. The “sparsity” in sparse-graph
codes denotes that the number of edges connecting the variable nodes to the check nodes is linear in
the number of nodes.

The property that we are going to use extensively in our works is that erasures can be decoded
on a sparse-graph code in linear time through peeling. The idea behind peeling is similar to the
back-substitution method for solving linear systems involving triangular matrices. In that method,
we recover the value of an unknown by reading off its value from an equation that involves that
single coefficient, and then peel off its contributions by substituting it back into the equations it
shows up.

We explain the peeling process in sparse-graph codes with reference to Figure 1.3 where an
example is provided. First, variable nodes corresponding to non-erased symbols are peeled off the
graph by subtracting their contributions from the check nodes. We call this resulting graph the
pruned graph. We categorize the check nodes into three classes:

• zeroton check nodes are connected to no unresolved variable nodes,

• singleton check nodes are connected to a single unresolved variable node,

• multiton check nodes are connected to multiple unresolved variable nodes.
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c1 : x1 + x5 + x9 + x13 = 0

c2 : x2 + x6 + x10 + x14 = 0

c3 : x3 + x7 + x11 + x15 = 0

c4 : x4 + x8 + x12 + x16 = 0

c5 : x1 + x2 + x3 + x4 = 0

c6 : x5 + x6 + x7 + x8 = 0

c7 : x9 + x10 + x11 + x12 = 0

c8 : x13 + x14 + x15 + x16 = 0

Figure 1.2: Tanner Graph representation of a sparse-graph code. The symbols of the codeword are
shown on the left as variable nodes, and the check nodes corresponding to linear constraints on the
symbols are shown on the right. If a variable node appears in the linear equation corresponding to a
check node, that variable node and the check node are connected by an edge.

At each round of peeling, first, singleton check nodes resolve the variable node connected to them.
Then, the contributions of these resolved variable nodes are removed from the graph. This induces a
new graph with fewer unresolved variable nodes, and the peeling process is iterated. The procedure
stops when there are no singleton check nodes left. If all check nodes are zerotons, we have
recovered all erased symbols.

It is important to characterize when this procedure recovers all erased symbols. The theoretical
analysis for decoding a sparse-graph code through peeling is deferred to Appendix A, but we give, at
a high-level, the results that will be useful for designing our algorithms. Let r be the number of check
nodes. Asymptotically in the number of message symbols n, we can design sparse-graph codes
while keeping r/n arbitrarily close to pe and recover the erasure pattern with high probability. This
means that we can design codes that are arbitrarily close to optimal. Since check nodes correspond
to linear constraints, each check node takes away one degree of freedom from the message sequence
x1, . . . , xn. Hence, (if these linear constraints are independent) the aggregate redundancy rate is
equal to r/n, which can be made arbitrarily close to pe while enabling recovery of the erasures with
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(a) In this example, the channel erases symbols x6, x11, x12, and x15.
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(b) First, the contributions of non-
erased symbols are subtracted from the
check nodes to yield a pruned graph.
In the pruned graph, we see that c2, c6,
and c8 are singleton check nodes, and
they recover x6, x12, and x15. The con-
tributions of these symbols are then re-
moved from the check nodes they con-
nect to.
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Figure 1.3: Decoding a sparse-graph code on an erasure channel. The unknown symbols (erasures)
are marked with filled variable nodes.
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high probability. As a redundancy rate of pe is necessary for reliable communication on an erasure
channel with erasure probability pe, we are arbitrarily close to optimal.

In our work, we are going to use sparse-graph codes not for communications but for big-data
problems. In doing so, it will be easier to conceptualize our algorithms by starting from the pruned
graph. Figure 1.4 summarizes the process starting from the pruned graph abstracting away the
application.
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zeroton check node singleton check node multiton check node

recovered variable node non-recovered variable node

Figure 1.4: Decoding on a sparse-graph code through peeling. At each round, messages are passed
between the check nodes and the variable nodes. First, singleton check nodes recover the variable
nodes that are connected to them, and then, the recovered variable nodes remove edges connected
to them from the connectivity graph. The peeling stops when there are no singleton check nodes
remaining. Here, panel (1) shows the connectivity between the variable nodes and the check nodes.
We see that c2, c4, c6, and c8 are singleton check nodes, and they recover variable nodes v1, v3, and
v4. After the first round of peeling, the connections from these variable nodes are removed from the
graph to yield the connectivity in panel (2). In the second round, we see that c3 and c7 are singleton
check nodes, and they recover the variable node v2. In this example, in two rounds of peeling, all
the variable nodes are recovered as can be seen in panel (4).



In this part of the thesis, we study speeding up “classical” problem settings:

• Chapter 2: Sampling signals with sparse spectrum below the Nyquist Rate

• Chapter 3: Improving the noise robustness of divide-and-conquer-based sparse DFT
algorithms

• Chapter 4: Fast MRI and theory for fast signal recovery with wavelet-domain sparsity

Part I

Classic Problems of Interest

9
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Chapter 2

Minimum-Rate Spectrum-Blind Sampling

2.1 Introduction
In the past few decades, we have witnessed the power of sampling theory ushering into the digital
age. This has been enabled by a diverse set of tools from mathematics and signal processing, which
allow us to capture continuous-time signals through discrete-time representations without loss of
information. In particular, the celebrated sampling theorem, also known as the Shannon-Nyquist
sampling theorem [80], has provided the foundation for digital signal processing through analog-
to-digital conversion (ADC) over the last century. The basic theorem states that any real-valued
bandlimited signal can be reconstructed from its point-wise samples taken at or above the Nyquist
rate that is twice the maximum frequency component of the underlying signal. With a deeper
understanding of the concept of signal spaces, advances in signal processing and harmonic analysis
have contributed significantly to the field of sampling theory, leading to sophisticated extensions of
the basic Nyquist sampling framework [88, 91, 18].

The problem of spectrum-blind sampling has attracted considerable recent interest, mostly
because of its promise of offering significant reduction in sampling rate over the Nyquist rate
when the signal spectrum is sparse but its frequency support is not known a priori. This important
class of bandlimited signals is commonly referred to as multiband signals, which consist of a
union of (arbitrary) continuous spectral bands spread across a wide spectrum. There exists a
rich body of research related to the theory and algorithms for sampling this class of signals. As
shown in the seminal work by Landau in 1960’s [43], any bandlimited signal with an arbitrary
but known frequency support can be recovered from samples taken at a rate equal to the measure
of its frequency support (that is, the sum of existing spectral bands), also known as the Landau
rate. Interestingly, it was later pointed out by the authors of [53] that spectrum-blind sampling of
multiband signals requires a minimum sampling rate of twice the Landau rate, establishing that the
price of not knowing the signal spectrum support is a factor of 2 over the Landau rate. This result
guarantees that given samples of a multiband signal taken at twice the Landau rate, there is a unique
multiband signal that generates those samples. However, the result does not provide a constructive

This chapter is based on joint work with Xiao Li [62].
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method for recovering that unique multiband signal.
In order to constructively approach this minimum rate, the authors of [24, 10] showed that

using multicoset sampling, the signal can be reconstructed from the discrete-time Fourier transform
(DTFT) of the samples if the cosets are chosen carefully. Another approach was proposed by the
authors of [58, 57] where the problem of spectrum-blind sampling was transformed to a compressed
sensing problem through modulation by random periodic functions and low pass filtering. However,
the proposed scheme is not tight as it incurs an extra logarithmic factor away from the minimum
rate, and the computational complexity depends on the total bandwidth of the signal.

In this chapter, we study this open problem (and sampling theory in general) from a radically
different angle based on coding theory, which at the surface seems unrelated to the problem of
interest, and has been largely unexplored to-date in sampling theory. This is partly due to the
disparity between the two fields with respect to problem statements, goals, and concepts, which
have had little overlap in the past. Here, our prime goal is to first shed some new light on general
sampling designs from a coding-theoretic perspective, and further pinpoint the unexplored benefits
of sub-Nyquist sampling strategies based on sparse-graph codes, which have theoretically and
practically revolutionized the design of modern communication systems. This allows us to derive a
novel sampling framework that reflects interesting connections between the fundamental problem
of minimum-rate spectrum-blind sampling, and the well-studied problem of designing capacity-
achieving sparse-graph codes, such as Low Density Parity Check (LDPC) codes [26, 74].

2.1.1 Our Contributions
The key contribution of our framework is the coding-theoretic design of a multichannel sparse-graph-
coded filter bank sampling architecture, which approaches the minimum spectrum-blind-sampling
rate constructively with fast reconstruction. By treating the underlying signal as a union of multiple
disjoint spectral bands such that the frequency support occupies only a few slices, the main idea
is to design each sampling channel in the filter bank such that undersampling the filtered output
leads to a certain aliasing pattern on all the spectral bands. This is similar in spirit to inducing
parity check constraints for the sparse spectral components of the signal residing at each existing
frequency band. Therefore, the reconstruction is equivalent to decoding the sparse spectral slices
from the parity check constraints.

To achieve minimum-rate spectrum-blind sampling, we design the sampling filters to induce
“good” parity checks that emulate capacity-achieving sparse-graph codes. This allows fast decoding
through a simple decoder using the minimum number of parity checks (which corresponds to the
minimum number of sampling channels). As a result, we can simultaneously achieve the minimum
sampling rate and reduce the reconstruction complexity in the spirit of peeling decoding for LDPC
codes used in erasure channels. Exploiting the powerful analysis tools in modern coding theory [76]
(e.g., density evolution), our results show that any multiband signal can be sampled asymptotically
at the minimum rate in a probabilistic setting, where the probability of reconstruction failure goes
to zero. To the best of our knowledge, this is the first theoretical result that achieves the minimum
rate for spectrum-blind sampling, and meanwhile, admits a constructive scheme for reconstructions
at such rate.
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2.1.2 Organization and Notation
This chapter is organized as follows. In Section 2.2, we state the problem and describe the key
underlying ideas behind our results. In Section 2.3, we present a multiband filter bank sampling
architecture, and in Section 2.4, we describe the design of sparse-graph code filter banks that enable
minimum-rate sampling of wideband signals, and describe an implementation for realizing such
filters. We then derive an extension of our method for the discrete-time setting in Section 2.5. We
provide simulation results in Section 2.6, and present concluding remarks in Section 2.7. In order to
improve readability, the technical proofs of our main results are deferred to Appendix 2.A.

Functions denoted by upper case letters are in the Fourier domain, e.g., X(f) denotes the Fourier
transform of x(t) defined as

X(f) =

∫ ∞

−∞
x(t)e−j2πft dt. (2.1)

Whenever it is convenient, we denote Fourier transform pairs as x(t)
F←→ X(f). The complex

conjugate of a number z ∈ C is denoted as z∗. Lower case bold letters denote vectors, e.g., x, and
upper case bold letters denote matrices, e.g., A. There will be additional definitions introduced as
needed; for a quick lookup, Table 2.1 gives a brief description of the upcoming definitions.

Table 2.1: Glossary of important notation for Chapter 2.

Notation Definition

x(t) : input signal
fmax : maximum bandwidth of the input
fL : Lebesgue measure of the frequency support of input signal
N : number of frequency bands divided within [0, fmax)
B : width of each band, B = fmax/N

xk(t) : signal at band k moved to baseband [0, B)
yi(t) : output of the multiband filter i
yi[n] : subsampled output of the multiband filter i
hi(t) : multiband filter i

2.2 Design Objective and Philosophy
We first give a precise definition of our signals of interest.
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Definition 1. By BandLimited(fmax, fL) we denote signals x(t) ∈ C whose frequency spectrum
is zero outside1 [0, fmax), i.e.,

X(f) = 0 if f < 0 or f ≥ fmax, (2.2)

and its frequency support F has Lebesgue measure |F| = fL and is of the form of the union of a
finite number of intervals with unknown locations.

An example signal from BandLimited(fmax, fL) is given in Figure 2.1.

X(f)

f
fmax

w1 w2 w3

Figure 2.1: Illustration of a signal from BandLimited(fmax, fL). In this example, the Lebesgue
measure of the frequency support is |F| = w1 + w2 + w3 = fL.

Corollary 1. The minimum rate for sampling signals in BandLimited(fmax, fL) so that lossless
recovery is possible is min(2fL, fmax) [53].

2.2.1 Sampling Framework and Design Objective
Our sampling framework is summarized in Figure 2.2. An input signal given by Definition 1 is
passed through a filter bank consisting of M filters with frequency response Hi(f) for i = 1, . . . ,M .
The filter bank outputs are sampled regularly at B Hz to produce M streams of samples {yi[n]}n∈Z
for i ∈ {1, . . . ,M}, which are then fed as input to a (non-linear) reconstruction scheme.

Our goal is to design a spectrum-blind, lossless sampling and reconstruction scheme that
achieves a sampling rate approaching the minimum rate, and that perfectly recovers the signal
(with probability approaching 1 asymptotically in M ). Given a certain reconstructed signal x̂(t),
the performance of our design is characterized by the triplet (fs, T,PF ), where fs is the aggregate
sampling rate, T is the reconstruction complexity in terms of arithmetic operations, and PF is the
failure probability defined as

PF = Pr (x̂(t) 6= x(t)) . (2.3)

The probability PF is evaluated with respect to the randomness associated with the sampling
frontend design. In other words, for any given sparse wideband signal x(t), our design generates a

1Note that the choice of the lower limit to be 0 is without loss of generality because any given signal with known
frequency limits [fmin, fmin + fmax) can be modulated to the band [0, fmax) by a multiplication with e−j2πfmint.
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Figure 2.2: Proposed framework for spectrum-blind sampling and reconstruction of bandlimited
multiband signals. The framework consists of a sampling frontend and a reconstruction backend.
The frontend takes sub-Nyquist-rate samples of a filter bank of carefully designed sparse-graph-code
based multiband filters (see Section 2.4 for details). The backend performs decoding by fast peeling
on a sparse-graph induced by the filter bank structure (see Section 2.2.2 for details).

random sampling frontend (from a specific random ensemble2) and produces an estimate x̂(t) where
probability 1− PF approaches 1 asymptotically in M . Some questions of interest are: (1) How to
design the filter response Hi(f) and how to choose the sampling rate B? (2) How many filters (i.e.,
M ) are necessary? How are the design parameters B, M related to the minimum rate? (3) How to
reconstruct the signal given the filter bank output samples {yi[n]}n∈Z for i ∈ {1, . . . ,M}? Before
answering the above questions in details, we first explain our design philosophy using the cartoon
illustration in Figure 2.3.

2.2.2 Design Philosophy
We explain our design philosophy based on the example provided in Figure 2.3, where a signal
from BandLimited(4B, 3B) is considered. For simplicity, the frequency spectrum is sliced into 4
intervals of equal width B. In this example, the input in Figure 2.3 is supported on 3 out of the 4
slices, over bands 0, 2 and 3 color-coded in red, green and blue respectively3.

To sample this signal from BandLimited(4B, 3B), we use a filter bank with M = 3 sampling
channels, where each sampling filter has a frequency response Hi(f) taking a multiband structure.
In this example, each multiband filter has unity gains, Hi(f) = 1, in some bands and Hi(f) = 0
elsewhere. For example, in Figure 2.3, the first filter passes bands 0 and 2, the second filter passes
bands 1 and 2, and the third filter passes bands 0, 1 and 3. Then, conforming with the multiband
structure of the sampling filter, the associated filter output is also (sub)sampled at rate B. Clearly,
sampling at rate B results in aliasing of the output spectrum, or namely the discrete-time Fourier
transform (DTFT) of output samples {yi[n]}n∈Z for i ∈ {1, . . . ,M}, because the rate is below the
Nyquist rate 4B. However, due to the variations of the passbands across the sampling filters, the
aliasing pattern observed at each channel is different; this is depicted in Figure 2.3 as mixtures of
different colors. That is to say, each output stream of samples is a linear combination of signal

2In the compressed sensing literature, this is what is known as the ‘for-each’ guarantee [27] in contrast to the
‘for-all’ guarantee, where, in the latter, a single measurement matrix (once generated) is used for all signals.

3The ‘shape’ of the spectral content in each band can be arbitrary. We use rectangles for simplicity of illustration.
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input spectrum sampling aliasing

B 2B 3B 4B0

1/B

1/B

1/B
band 0

band 1 band 3
band 2

1

2

3

r g b

g
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Figure 2.3: The illustration of the aliased spectrum at the outputs of the sampling channels. Each
multiband sampling filter passes a controlled subset of bands of the signal, and subsampling
introduces aliasing of these components, that is, introduces a linear combination of the signals
residing on the passed bands.

components in a controlled selection of bands. For example, stream 1 is a linear combination of
signals in bands 0 and 2 (red and green), and stream 2 is equal to the signal in band 2 (green) since
there is no signal in band 1.

x0[n] x2[n] x3[n]

x0[n]+x2[n] x2[n] x0[n]+x3[n]

1 2 3
g
r

b
r

g

r g b

Figure 2.4: Spectral aliasing induces parity check constraints for each sampling instant. The
reconstruction is equivalent to finding the sample values at the bands that satisfy these parity check
constraints.

It will become clear in Section 2.4 that the design of these filters is guided by coding patterns
from sparse-graph codes to create careful linear mixing of the spectral components. For illustration,
we highlight such mixing in Figure 2.4 in the form of sparse-graph codes, where each color mixture
corresponds to a parity check constraint of the codeword for each sampling snapshot n. This sparse
bipartite graph structure helps decode the signal at each frequency band through peeling the edges
off the graph. If the decoder knows that a certain stream of samples is representative of a single
color, it can peel off its contribution from other streams of samples, resulting in new streams of
samples. This is similar in spirit to the ‘peeling decoder’ in sparse-graph codes, and decodes the
input by iteratively unmixing the aliased spectral components.

Next, we describe how to reconstruct the input through peeling with reference to Figure 2.5.
The aliasing structure resulting from the subsampling of multiband filter outputs can be rendered as
a bipartite graph shown in the ‘aliasing structure’ box in Figure 2.5. For the sake of simplicity, let
us first assume that we have a mechanism that informs the decoder if an output stream consists of
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aliasing structure

recovered spectra

peeling 1 peeling 2 peeling 3

peeling graphs

1 2 3

r g b r g b r b b
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Figure 2.5: Illustration depicting a three stage peeling. The decoder detects streams composed of a
single color and peels this color off from the streams that it appears.

spectral components coming from a single band or not, and if so, which band it is coming from (we
will later reveal how to realize this mechanism). Given this mechanism, we perform the following:

• Stream 2© is composed of a single component colored by green, so we recover the signal
residing in the green component;

• Because the green component contributes to streams 1© and 2©, we peel it off from them
(peeling 1 in the figure).

• Then stream 1© is made out of a single component marked with red, so we recover the signal
residing in the red component;

• Because the red component contributes to streams 1© and 3©, we peel it off from them (peeling
2 in the figure);

• Then stream 3© is composed of a single component colored by blue, so we recover the signal
residing in the blue component;

• Because the blue component contributes to stream 3©, we peel it off from it (peeling 3 in the
figure);

• After these peeling rounds, the signal is completely recovered.

2.3 Spectrum-Blind Sampling
We describe our approach through an example.

2.3.1 A Simple Example
We now give a mathematically detailed account for Figure 2.3 and Figure 2.5. Let the input signal
be

x(t) =
∑

k={0,2,3}

ejBπ(2k+1)t

∞∑

n=−∞

(−1)nxk[n] sinc(Bt− n),
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where xk[n] ∈ C, and

sinc(t) =

{
sin(t)/t if t 6= 0

1 if t = 0.

Because we have

sinc(Bt)
F←→ boxB(f) :=

{
1/B if |f | ≤ B/2

0 otherwise,

the spectrum of x(t) has the support shown in Figure 2.3 and Figure 2.5. Let filters h1(t), h2(t) and
h3(t) denote the multiband filters shown in Figure 2.3, i.e, their frequency responses are

H1(f) = boxB(f −B/2) + boxB(f − 5B/2),

H2(f) = boxB(f − 3B/2) + boxB(f − 5B/2),

H3(f) = boxB(f −B/2) + boxB(f − 3B/2) + boxB(f − 7B/2).

(2.4)

Figure 2.6: The design of the multiband sampling filters is guided by a sparse-graph. The design
methodology is described in detail in Section 2.4.2.

The design of the multiband filters is guided by sparse-graph codes, which are explained in
more detail in Section 2.4. In particular, the filters in (2.4) are designed from the graph shown in
Figure 2.6. Note that each multiband filter passes signal components supported on a controlled
subset of bands. Furthermore, when fL ≤ fmax, the signal is supported on a subset of its possible
bandwidth. Hence, the output of each multiband filter will have components at frequencies where
its passband and the input’s frequency support intersect. This introduces a sparse relation between
filter outputs and the components of the input signal at the frequency bands. In other words, each
filter output is a linear combination of a small number of components of signal at the frequency
bands. This relation results in a sparse-graph structure with respect to input and the measurements.

To see the sparse-graph structure for our example, define signals at the outputs of the filters,
yi(t), and their samples, yi[n], as

yi(t) := x(t) ∗ hi(t), (2.5)
yi[n] := yi(n/B). (2.6)
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it follows that y1(t) = x(t)∗h1(t) =
∑∞

n=−∞
(
(−1)nx0[n]ejBπt + (−1)nx2[n]ejBπ5t

)
sinc(Bt−l),

and

y1[n] = y1(n/B) = x0[n] + x2[n],

likewise,

y2[n] = x2[n],

y3[n] = x0[n] + x3[n].

For each sampling instant n, the samples {yi[n]}i=1,2,3 can be viewed as a set of constraints that
input samples need to satisfy, and the resulting sparse-graph structure can be seen in Figure 2.4.
With regard to the connectivity of the sparse-graph, we categorize the streams into the following
types:

1. Zeroton: a stream is a zeroton if it does not involve any contribution from the input signal.

2. Singleton: a stream is a singleton if it involves contribution coming from a single band of the
input. More specifically, we refer to the band k of the non-zero contribution and the sample
measurement xk[n] as the ‘band-sample’ pair for that singleton.

3. Multiton: a stream is a multiton if its value is the superposition of contributions from more
than one band.

To help describe the decoding algorithm, let us first assume that there exists an ‘oracle’ that
informs the decoder which streams are singletons and provides the ‘band-sample’ pair for such
streams (next paragraph describes how to practically implement an equivalent mechanism). In this
example, in the first peeling round, the oracle informs the decoder that band 2 is a singleton with
value x2[n], which we compactly write as (2, x2[n]), Then the decoder subtracts this contribution
from all measurements that have contribution from band 3, in this example, the stream 1, forming a
new singleton. Hence, the peeling on this example works as follows:

1. oracle informs decoder (2, x2[n]), decoder peels x2[n] from stream 1 to get residual y1[n]−
x2[n] = x0[n],

2. oracle informs decoder (0, x0[n]), decoder peels x0[n] from stream 3 to get residual y3[n]−
x0[n] = x3[n],

3. oracle informs decoder (3, x3[n]), and the whole signal is recovered.

The above discussion assumed an oracle. We can realize an equivalent mechanism to the oracle
by introducing a second set of filters defined as

Hc,1(f) = boxB(f −B/2) + ej2
2π
4 boxB(f − 5B/2),

Hc,2(f) = ej
2π
4 boxB(f − 3B/2) + ej2

2π
4 boxB(f − 5B/2),

Hc,3(f) = boxB(f −B/2) + ej
2π
4 boxB(f − 3B/2) + ej3

2π
4 boxB(f − 7B/2),
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where we used the subscript ‘c’ to stand for ‘coded’. Then, similarly to (2.5) and (2.6), defining the
signals,

yc,i(t) := x(t) ∗ hc,i(t), (2.7)
yc,i[n] := yc,i(n/B), (2.8)

we have

yc,1[n] = x0[n] + ej2
2π
4 x2[n],

yc,2[n] = ej2
2π
4 x2[n],

yc,3[n] = x0[n] + ej3
2π
4 x3[n].

Now with these measurements, one can effectively determine if a stream is coming from a single
band with a ratio test

∠(yc,i[n]/yi[n])

2π/4
, (2.9)

where ∠(·) returns the argument of its input. If the ratio (2.9) is an integer, it indicates that the
sample yi[n] comes from a single band, and the value of the ratio gives the band index. On the other
hand, if yi[n] is a superposition of signals coming from multiple bands, then under conditions that
are going to be stated later on, the ratio will not be an integer. As a last case, if the sample has no
contribution from any support bands then the measurement yi[n] will be zero. Hence, by making
use of the two filter banks, we have a way to detect zerotons, singletons, multitons, and perform the
operations of the oracle.

This simple example shows how the problem of sampling and reconstructing sparse wideband
signals can be cast as an instance of sparse-graph decoding. The sparse bipartite graph in this
example only shows the idea of peeling decoding, but does not guarantee successful sampling and
reconstruction for an arbitrary signal. Furthermore, this example also suggests that it is possible
to obtain the band-sample pair of any singleton without the help of an ‘oracle’ by adding more
sampling filters. In the following, we present our general sampling architecture, and then later
discuss in detail how to design the sampling filters for the proposed architecture.

2.3.2 Sampling Architecture and Observation Model
Choose N ∈ Z++ and divide the interval [0, fmax) into N intervals of equal width B = fmax/N .
We can write any signal bandlimited to [0, fmax) as a sum

x(t) =
N−1∑

k=0

xk(t)e
j2πkB, (2.10)

where each xk(t) ∈ C is bandlimited to the frequency interval [0, B). Because this is a universal
representation, the signal x(t) can be reconstructed if each xk(t) is recovered. As each xk(t) is



CHAPTER 2. MINIMUM-RATE SPECTRUM-BLIND SAMPLING 20

bandlimited to [0, B), it can be recovered from its samples taken at rate B

xk[n] = xk(n/B). (2.11)

In the case where the signal is from BandLimited(fmax, fL) with fL � fmax, the number of
active components in (2.10) is significantly less than N whenever the frequency spectrum is sliced
finely. More precisely, by assumption of a finite union of intervals, there exists a lower bound
B0 > 0 for the smallest consecutive interval of the signal spectrum. Using this fact, we see that
only K substreams are active, i.e., xk[n] 6= 0, where fL/B ≤ K ≤ fL/B + fL/B0. Note that, as
the slicing becomes finer, namely, as N grows, we have the ratio of the active components of x[n]
to N approach the frequency occupancy ratio, that is,

lim
N→∞

|supp (x[n])|
N

=
fL
fmax

. (2.12)

To leverage sparsity in the number of active components in order to reduce the sampling rate,
define M multiband filters, hi(t), where each filter has frequency response a weighted combination
of ideal bandpass filters, generalizing the example given in Section 2.3.1:

Hi(f) =
N−1∑

k=0

ci,k boxB(f − kB −B/2).

Under this design, M channels sampled at rate B result in an aggregate sampling rate of
fs = MB. We want to design the filter bank such that as the number of slicing N grows, fs
approaches the minimum rate 2fL. The resulting M samples output from the filter bank at each
sampling instant n ∈ Z can be described as

yi[n] =
N−1∑

k=0

ci,kxk[n]. (2.13)

The multiple measurements obtained through the use of M different hi(t) can be represented, for
each sampling instant n, by a linear equation

y[n] = Cx[n], (2.14)

Figure 2.7: Illustration representing the mathematical relation between the input signal and the
output samples.
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where C ∈ CM×N . The problem then boils down to designing the matrix C that will enable
recovery of x[n] from y[n]. When the frequency support is sparse, the vector x[n] is going to
be sparse for each n. This sparse recovery problem has been studied extensively in compressed
sensing where there is a prolific body of literature with various measurement scaling results for
M [18]. A typical construction is to choose C from some random matrix ensemble. For example,
the authors of [58] proposed using such randomized constructions that require oversampling with a
logarithmic factor log(N) with respect to the number of slices, which does not achieve the minimum
rate. Another approach is to design C with a Vandermonde structure, where by using Prony’s
method, one can recover the signal using samples twice the number of non-zero entries in x[n] [33].
However, Prony’s method requires solving for the roots of a polynomial. As the number of slices
increases, the numerical precision for the roots needs to scale with N , increasing the computational
complexity and the numerical instability. To approach the minimum sampling rate together with low
computational complexity, we use the framework developed in [52] based on sparse-graph codes,
which circumvents the above issues.

2.4 Filter Bank Design
The compressed sensing formulation in (2.14) captures the filter bank architecture by the M ×N
coefficient matrix C, and the goal is to recover the baseband samples x[n] in each band from the
filter bank outputs y[n]. More specifically, each row of the matrix C characterizes the frequency
response of the sampling filter in each channel of the filter bank. In the following, we discuss how
to design the frequency response of the filter bank to achieve minimum rate sampling and fast
reconstruction.

2.4.1 Filter Bank Response
Here we specify our filter bank frequency response in terms of its magnitude response over N bands
and phase response over N bands respectively. In our sampling framework, the magnitude response
is sparse-graph encoded to introduce peeling-friendly aliasing artifacts, and the phase response is
appropriately chosen for the purpose of identifying the original band location of each baseband
signal samples.

We specify R magnitude responses for the sampling filters through an R × N magnitude
response matrix H, and further P associated phase responses for each magnitude response through
a P ×N phase response matrix S such that M = RP for some positive integers R and P . Given
an R×N magnitude response matrix H, and a P ×N phase response matrix S, the M ×N filter
bank response matrix C is given by

C = H� S, (2.15)

where � is a row-tensor product. For example, let the magnitude response matrix H be a sparse
matrix consisting of {0, 1} and the phase response matrix S be chosen as the first two rows of a
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DFT matrix as in the example in Section 2.3.1 as

H =




1 1 0 1 0 1 0
0 1 0 1 0 0 1
1 0 0 1 1 1 1


 , S =

[
1 1 1 1 1 1 1
1 ω7 ω2

7 ω3
7 ω4

7 ω5
7 ω6

7

]
, (2.16)

where ω7 = ei 2π
7 . Then the row-tensor product is given by

C = H� S =




1 1 0 1 0 1 0
1 ω7 0 ω3

7 0 ω5
7 0

0 1 0 1 0 0 1
0 ω7 0 ω3

7 0 0 ω6
7

1 0 0 1 1 1 1
1 0 0 ω3

7 ω4
7 ω5

7 ω6
7



. (2.17)

In this example, the filter bank has M = 6 channels, where there are 3 magnitude response patterns
where each pattern is further associated with 2 phase response patterns. Next we formally define
our filter bank ensemble using this construction.

Definition 2 (Filter Bank Ensemble Q(N,B,M)). Let the sampling frontend be an instance from
the ensemble of M -channel filter banks. Given an R × N magnitude response matrix H and a
P ×N phase response matrix S, the M ×N filter bank coefficient matrix C associated with the
filter bank ensemble Q(N,B,M) is given by

C = H� S, (2.18)

where the R×N magnitude response matrix H = [Hr,n]R×N is chosen as the adjacency matrix of a
bipartite graph G consisting of N left nodes V1 := [N ] and R right nodes V2 := [R] with an edge set
E := V1 × V2, and the P ×N phase response matrix is chosen as the first two rows of an N -point
DFT matrix:

S =

[
1 1 1 1 1 · · · 1
1 ωN ω2

N ω3
N ω4

N · · · ωN−1
N

]
, (2.19)

where ωN = ei 2π
N .

Corollary 2. The measurement y[n] = Cx[n] is divided into R bins as y[n] = [y>1 [n], . . . ,y>R[n]]>

with

yr[n] = Szr[n], for r = 1, . . . , R, (2.20)

where zr[n] is a variant of the vector x[n] sparsified by the connectivity of the right node r in graph
G. Specifically, the support of zr[n] satisfies

supp (zr[n]) = supp (x[n]) ∩N (r), (2.21)

where N(r) is the left neighborhood of right node r.
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Proof. The proof is straightforward and is omitted.

Next, we discuss the specific constructions for H and S in our sampling filter design. We
first present the design of the magnitude response matrix H for blind sampling with the help of a
singleton oracle during reconstruction, and then discuss how to use the phase response matrix S to
complete our sampling framework without using the singleton oracle.

2.4.2 Oracle-Based Reconstruction with Blind Sampling
In this section, we describe the design of the magnitude response of the filter bank using a constant
phase response S = 11×N such that C = H. In this setup, we assume that the sampling is done
through the filter bank blindly (without knowing the spectral support) and yet the reconstruction
benefits from the singleton oracle, which informs the reconstruction process of the band location and
sample value of a singleton bin. To define H, we define the regular graph ensemble and irregular
graph ensemble for designing the magnitude response H.

Definition 3 (Regular graph ensemble). Given N left nodes and R right nodes and d ∈ Z+ with
d ≥ 2, regular graph ensemble GNreg(R, d) is the set of all graphs where each left node is connected
to d right nodes.

Theorem 1. Given the filter bank ensemble Q(N,B,M) designed by regular graph ensemble, if
there exists a singleton oracle in reconstruction, any signal x(t) ∈ BandLimited(fmax, fL) can be
sampled at rate fs = 1.23fL and perfectly reconstructed with probability at least 1−O(B/fL) by
performing O(fL) arithmetic operations per unit time.

Proof. The proof is postponed to Appendix 2.A.

This theorem states that, assuming a singleton oracle in reconstruction, a multiband signal can
be sampled a constant 1.23 factor away from the Landau rate. To lower this constant factor, the
filter bank can be constructed based on the following graph ensemble.

Definition 4 (Irregular graph ensemble). Given N left nodes and R right nodes and D ∈ Z+ with
D ≥ 2, the edge set in the irregular graph ensemble GNirreg(R,D) is characterized by the degree
sequence

λj =
1

L(D)(j − 1)
, for j = 2, . . . , D + 1, (2.22)

where λj denotes the fraction of edges that connect to a left node with degree j and L(D) =∑D
j=1 1/j is chosen for normalization, i.e., to have

∑
j≥2 λj = 1.

Theorem 2. Given the filter bank ensemble Q(N,B,M) designed by irregular graph ensemble, if
there exists a singleton oracle in reconstruction, any signal x(t) ∈ BandLimited(fmax, fL) can be
sampled at rate fs = (1 + ε)fL for any ε > 0 and perfectly reconstructed with probability at least
1−O(B/fL) by performing O(fL) arithmetic operations per unit time.
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Proof. The proof is postponed to Appendix 2.A.

Filter bank designed through irregular graph ensemble allows sampling at rate fs = (1 + ε)fL
for any ε > 0, while the probability of perfect reconstruction is at least 1 − O(B/fL). However,
design through irregular graph ensemble needs asymptotics in N for performance. Hence, for
empirical validations, we will use the regular graph ensemble.

2.4.3 Blind Reconstruction with Blind Sampling
We now discuss how to use the phase response of the filter bank,

S :=

[
1 1 · · · 1 1
1 ωN · · · ωN−2

N ωN−1
N

]
, (2.23)

where ωN is the N -th root of unity as before, to get rid of the need of an oracle in reconstruction.
By using this choice of S, for each filter with a magnitude response specified in H and a constant
phase response, we get an extra auxiliary filter whose magnitude response is identical but with
a piecewise linear phase response over the N bands. This introduces a factor of P = 2 in the
number of sampling channels such that the resulting aggregate sampling rate fs is twice that of the
oracle-based reconstruction with blind sampling.

Using the sample outputs yr[n] = [yr[n], yc,r[n]]> for each pair of the filters with the same
magnitude response r = 1, . . . , R, we perform the following tests to reliably identify the singleton
bins and obtain the correct band-sample pair for any singleton:

• Zeroton Test: since there is no noise, it is clear that the bin is a zeroton if ‖yr[n]‖2 = 0.

• Multiton Test: The measurement bin is a multiton as long as |yc,r[n]| 6= |yr[n]| and/or
∠ (yc,r[n]/yr[n]) 6= 0 mod 2π/N . The multiton test fails when the relative phase is a
multiple of 2π/N ;

• Singleton Test: After the zeroton and multiton tests, if |yc,r[n]| = |yr[n]| and

yc,r[n]

yr[n]
= ej

2π`
N , for some ` ∈ [N ], (2.24)

the measurement bin is detected as a singleton with the band-sample pair:

k̂r[n] =
N

2π
∠

(
yc,r[n]

yr[n]

)
, x̂[k̂r[n]] = yr[n]. (2.25)

This gives us the band-sample pair of the singleton for peeling.

By performing these tests on all the outputs of the sampling channels, the baseband samples from
each band can be reconstructed via peeling in the same manner as the oracle-based reconstruction
scheme.
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2.4.4 Implementation of the Filters with Modulators
The filter banks described above can be implemented as follows. Let pi(t) ∈ R, i = 1, . . . ,M
denote periodic signals with period Tp = N/fmax = 1/B, that is,

pi(t) = pi(t+ Tp).

Let h(t) be an ideal one-sided lowpass filter, with frequency response

h(t)
F←→ H(f) =

{
1, if 0 ≤ f < B,

0, otherwise.

We define signals yi(t) for i = 1, . . . ,M , as

yi(t) := (x(t)× pi(t)) ∗ h(t). (2.26)

Note that because of the convolution with h(t), yi(t) is bandlimited to [0, B) and can be recovered
from its samples taken at rate B,

yi[n] = yi(n/B) = yi(nTp).

Because pi(t) is periodic with Tp = 1/B, it can be written as a Fourier series

pi(t) =
∞∑

k=−∞

ci,ke
−j2πBkt, (2.27)

where ci,k are Fourier series coefficients of the signal pi(t),

ci,k =
1

Tp

∫ Tp

t=0

pi(t)e
j2πBkt. (2.28)

Using the Fourier series expansion for pi(t), we get

x(t)× pi(t) F←→
∞∑

k=−∞

ci,kX(f + kB).

Hence, the spectrum of yi(t) satisfies

Yi(f) =

{∑∞
k=−∞ ci,kX(f + kB), if 0 ≤ f < B,

0, otherwise.

Furthermore, because X(f) is zero outside [0, fmax), we can have contribution only for k =
0, . . . , N − 1. Hence, we have

Yi(f) =

{∑N−1
k=0 ci,kX(f + kB), if 0 ≤ f < B,

0, otherwise.
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To simplify the notation, define

Xk(f) =

{
X(f + kB), if 0 ≤ f ≤ B,

0, otherwise.

Hence, we can write

Yi(f) =
N−1∑

k=0

ci,kXk(f), (2.29)

which yields the same relation as (2.13).

2.5 Spectrum-Blind Sampling of Discrete-Time Signals
Here we consider the case for discrete-time complex signals x[n] ∈ C. Assume that the discrete-time
Fourier transform (DTFT) of x[n]

X(ejω) =
∞∑

n=−∞

x[n]e−jωn.

is supported on a union of a finite number of intervals. Note that the DTFT is periodic in ω with
period = 2π, hence we can limit our discussion to region [0, 2π).

Similar in flavor to the continuous-time case, let us divide the frequency range [0, 2π) into
N ∈ Z++ intervals of width B = 2π/N . We denote the baseband signals of interest

Xk(e
jω) :=

{
X
(
ej(ω+kB)

)
, if 2π` ≤ ω ≤ 2π`+B for some ` ∈ Z,

0, otherwise.

In the discrete-time setting, this corresponds to

xk[n] = (x[n]e−jkBn) ∗ h[n],

where h[n] is a low-pass filter with frequency spectrum

H(ejω) =

{
1, if 0 ≤ ω ≤ B,

0, otherwise.

Like in the continuous-time case, say we take measurements of the signal x by first modulating
and then filtering as

yi[n] = (x[n]× pi[n]) ∗ h[n],
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where the modulating signal is given by

pi[n] =
N−1∑

k=0

ci,ke
−jkBn.

Then, the discrete-time Fourier transform of the signal y satisfies

Yi(e
jω) =

N−1∑

k=0

ci,kXk(e
jω).

Now, since each yi[n] is bandlimited to [0, 2π/N) we can downsample each yi[n] by N without
aliasing. When the support of the frequency spectrum of the input signal has Lebesgue measure fL,
the discussions about the sparsity of the measurements in the previous section hold true. Hence, we
state the following theorem.

Theorem 3. Any discrete-time signal x[n] whose frequency support is a union of finite number of
intervals with total Lebesgue measure fL, using sparse-graph code filter bank, can be downsampled
to rate 2(1 + ε)fL, for any ε > 0, with the probability of perfect reconstruction arbitrarily close to
one. Furthermore, the time averaged computational complexity of the recovery algorithm is O(fL).

Proof. Follows the same steps as the continuous time case with band limits replaced by [0, 2π).

2.6 Empirical Validation
In this section we present numerical experiments validating the performance of our spectrum-blind
sampling and reconstruction framework based on sparse-graph-coded filter banks.

For the first experiment, we generate a random signal from BandLimited(1, 0.1) having a
piecewise constant spectrum on 10 disjoint frequency bands occupying a total of 1/10 of the
interval [0, 1). The frequency spectrum and the Nyquist rate samples of the input signal is shown in
Figure 2.8a. We choose number disjoint frequency slices N = 1000 and use M = 284 channels
designed through the regular graph ensemble. The sampling rate at the output of each filter is 1/N .
Samples from a choice of two channels of the filter bank are shown in Figure 2.8b. The aggregate
sampling rate from this setting is equal to fs = fmaxM/N = 0.284.

Figure 2.8c shows the Nyquist samples from the original signal together with the reconstruction
from samples obtained by the sparse-graph-coded filter bank. As can be seen, Nyquist rate samples,
hence the whole time domain signal, can be recovered spectrum-blind from samples taken at rate
0.284. Our result in Theorem 1 implies a rate of 0.246 for this signal model. The difference is
due to finite slicing of the spectrum; as we increase N the empirical aggregate sampling rate fs
approaches the theoretical value.

The second simulation shows spectrum-blind sampling and reconstruction of discrete time
signals using finite length practical filters. The input signal has components in two frequency bands
occupying a total of 5% of the spectrum as shown in Figure 2.9a. For frequency domain slicing,
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Figure 2.8: Simulation with ideal filters. (a) Input signal’s magnitude spectrum (top) and the real
part of Nyquist rate samples (bottom). (b) Output samples of two channels of the sparse-graph-coded
filter bank; note that the filter bank outputs are sampled at rate 10−3. (c) Nyquist rate samples
corresponding the region marked by the green box in (a); red lines correspond to the Nyquist rate
samples of the input signal, and the blue circles correspond to the reconstruction using our proposed
sampling framework.

we choose N = 20 and use a low-pass filter of length 801 whose frequency response is shown
in Figure 2.9b. As can be seen in Figure 2.9c, the input signal can be reconstructed from the samples
obtained using the proposed framework. The aggregate sampling rate achieved with this simulation
setting is fs = 0.4.
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Figure 2.9: Simulation with non-ideal filters. (a) Input signal’s magnitude spectrum (top) and the
real part of the signal (bottom). (b) Frequency response of the low pass filter of the sparse-graph-
coded filter bank. (c) Reconstruction overlaid on top of the input signal; red lines correspond to
the input signal, and the blue circles correspond to the reconstruction using our proposed sampling
framework.

2.7 Conclusions and Future Directions
In this chapter, we studied the problem of spectrum-blind sampling of continuous-time signals with
sparse frequency spectra. The minimum sampling rate for this class of signals has been established
as twice the measure of their frequency support; however, constructive schemes that achieve this
minimum rate were not known. We proposed a sampling framework based on ideas from modern
coding theory that approaches this minimum rate. Furthermore, we made interesting connections
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between the problem of spectrum-blind sampling, and that of designing erasure-correcting codes
based on sparse-graph codes. We showed that the signal reconstruction under our sampling scheme
is equivalent to the peeling decoding of sparse-graph codes for reliable transmission on an erasure
channel, and that the achievable sampling rate is determined by the rate of the sparse-graph code
used in the filter bank. As a result, our method simultaneously approaches the minimum sampling
rate for spectrum-blind sampling and has low computational complexity based on fast peeling-based
decoding with operations per unit of time scaling linearly with the sampling rate.

Our framework has potential applications in communication settings where a receiver needs to
monitor transmissions at unknown locations over a large frequency band. For example, in frequency-
hopping spread spectrum method, communication signals are transmitted while rapidly changing
the carrier frequency over a large spectral band [29]. If the frequency-hopping pattern is unknown,
receiver of the signal needs to sample at the Nyquist rate corresponding to the whole frequency
range, which can be prohibitive large in practice. However, because transmitter hops between
carrier frequencies, the signal occupies a sparse spectrum at any given time window. Our method
can be used to design receiver architectures that can recover the signal using practical sampling
rates without knowing the frequency-hopping pattern. Another application area is cognitive radio,
where secondary users can communicate on unoccupied bands when primary users of these bands
are inactive. Our framework can be used to detect unoccupied bands over a large range without
requiring prohibitively large sampling rates. Tailoring our method for these applications are future
research directions.

Appendix

2.A Proofs
Proof of Theorem 1. Choose N ∈ Z++ and divide the frequency interval [0, fmax) to N bins of
equal width, B = fmax/N . The signal is assumed to have a finite number of disjoint bands, say that
it has K0. Let K denote the number of bins that overlap with a frequency support, K satisfies

fL
B
≤ K ≤ fL

B
+K0. (2.30)

Because the vector x(t) is made up of the signal components at the bands, the sparsity of x(t) is
also upper bounded by fL/B +K0. Choose

R = 1.23

(
fL
B

+K0

)
.

From Theorem 11 in Appendix A, it follows that the oracle-based peeling reconstruction succeeds
with probability

Ps ≥ 1−O
(

1

K

)
≥ 1−O

(
B

fL

)
= 1−O

(
fmax

fL
· 1

N

)
. (2.31)
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Hence, as the slicing in the spectral domain becomes finer with increasing N , the probability of
success approaches 1 asymptotically. We sample at rateB at each channel, so the resulting aggregate
sampling rate is

fs = RB = 1.23

(
fL
B

+K0

)
B

= 1.23fL + 1.23
K0

N
.

(2.32)

Hence, as the number of frequency slices N increases, the sampling rate approaches 1.23fL.
Furthermore, this scheme requires O(K) arithmetic operations at rate B because there are O(K)
edges in the graph that needs to be processed, each is processed in constant time, and this processing
needs to be done at rate B. As K = O(fL/B), this results in O(fL) operations per unit time.

Proof of Theorem 2. Choose N ∈ Z++ and divide the frequency interval [0, fmax) to N bins of
equal width, B = fmax/N . By assumption of finite union of intervals, there exists a lower bound
B0 > 0 for the smallest support interval, and the number of disjoint bands in the signal is upper
bounded by bfL/B0c. The number of bins that overlap with a frequency support k satisfies

fL
B
≤
⌈
fL
B

⌉
≤ K ≤

⌈
B0

B

⌉⌊
fL
B0

⌋
≤ fL
B

+
fL
B0

, (2.33)

which means that the sparsity of x(t) is also bounded the same way. Choose ε′ > 0 and denote
R = (1 + ε′)(fL/B + fL/B0). From Theorem 5 in [96], the oracle-based peeling reconstruction
succeeds with probability

Ps ≥ 1−O
(

1

K

)
≥ 1−O

(
B

fL

)
= 1−O

(
fmax

fL
· 1

N

)
. (2.34)

Hence, as the spectral slicing becomes finer as N increases, the probability of success approaches 1.
We sample at rate B at each channel, so the resulting sampling rate is

fs = RB = (1 + ε′)

(
fL
B

+
fL
B0

)
B

= (1 + ε′)fL + (1 + ε′)
fL
B0

fmax

N
.

Given an arbitrarily small ε > 0, the sampling rate fs can be made smaller than (1 + ε)fL by
appropriate choices of ε′and N (i.e., B), while satisfying any given success probability. This scheme
requires only O(fL/B) arithmetic operations at rate B, which results in fL operations per unit
time.

2.B Special Case of Real-Value Signals
Assume now that signal is real-valued, that is, x(t) ∈ R for all t. Note that this implies that
the spectrum of x is conjugate symmetric, that is, X(f) = X∗(−f). Hence, instead of a one-
sided spectrum, we now assume that the signal has a two-sided spectrum bandlimited to fmax/2
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on the positive and the negative side, i.e., X(f) = 0 for |f | > fmax/2. For partitioning the
frequency domain, we choose L0 ∈ Z++ and divide the frequency interval (−fmax/2, fmax/2) into
N = 2L0 + 1 equal bands. Furthermore, we limit the choice of the periodic modulators to be
real-valued, that is, pi(t) ∈ R for all t. Because pi(t) ∈ R, it follows from (2.28) that we have

ci,k = c∗i,−k. (2.35)

We define signals yi(t) for i = 1, . . . ,M as in (2.29); because X(f) = X∗(−f), we have X(f −
kB) = X∗(−f − (−k)B), hence in (2.29) we have

Xk(f) = X∗−k(−f). (2.36)

Writing (2.29) in time domain, and using (2.35) and (2.36) we have

yi(t) = ci,0x0(t) + 2

L0∑

k=1

<(ci,kxk(t)),

where <(·) denotes the real part of its argument. In vector form, measurements are

yi(t) =
(
c∗i,L0

· · · ci,L0

)


x∗L0

(t)
...

xL0(t)


 .

The multiple measurements through the use of M different pi(t) can be represented for each time t
by the linear equation

y(t) = Cx(t), (2.37)

where C ∈ CM×2L0+1. Note that, as B asymptotically approaches 0, for each time instant t, the
sparsity of x(t) is going to approach Lebesgue measure of the frequency support of x(t) divided by
B.

2.B.1 Constructing Sparse-Graph Codes for Real-Valued Signals
Because we study the case where the periodic modulators pi(t) are real in this section, we have
constraints in the design of the matrix C, namely it is required that ci,k = c∗i,−k. Although this seems
to constrain the design of C, because the signal support comes in conjugate pairs, we actually only
need to design the sparse-graph code for the positive part of the spectrum.

As for the design of support detection tensor, because the signal support comes in conjugate
pairs, if ci,kxk(t) 6= 0 for k > 0, we need to recover two entries of x(t). Hence, we need a new
support detection algorithm tailored for this setting. By leveraging the conjugate pair nature of the
support, we will be able to design a support detection tensor that is similar to the Fourier-friendly
bin detection algorithm proposed by the authors of [52].
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In designing the support detector, we are going to use the property of Fourier series expan-
sion that states shifts in time corresponds to multiplication by complex exponentials of Fourier
coefficients. More formally, we have

pi

(
t+ l

Tp
2L0 + 1

)
=

L0∑

k=−L0

[
ci,k exp

(
j

2π

2L0 + 1
lk

)]
exp(j2πBkt). (2.38)

To simplify the notation, we define ω0 := 2π
2L0+1

. The rest of the text is going to talk about how we
can recover the support and the signal from measurements with a total of three delays in each pi(t).

Say we have the measurement

yi,l(t) =

(
x(t)× pi

(
t+ l

Tp
2L0 + 1

))
∗ h(t), (2.39)

combining (2.38) and (2.39), and substituting in ω0, we get

yi,l(t) =

L0∑

k=−L0

ci,ke
jω0lkxk(t).

Now, say we obtain three measurements yi,0, yi,1 and yi,2, and there is only one k > 0 such that
ci,kxk(t) 6= 0 (the case of k = 0 has a simpler relation that is explained after the discussion of
k > 0). Then we have

yi,0(t) = c∗i,kx
∗
k(t) + ci,kxk(t),

yi,1(t) = e−jω0kc∗i,kx
∗
k(t) + ejω0kci,kxk(t),

yi,2(t) = e−j2ω0kc∗i,kx
∗
k(t) + ej2ω0kci,kxk(t).

Defining

rejθ := 2ci,kxk(t), (2.40)

and dropping the time index t and subscript i for brevity, we can write

y0 = r cos(θ),

y1 = r cos(θ + ω0k),

y2 = r cos(θ + 2ω0k).

To find the support, we need to recover k, and to find the signal we need to recover r and θ. We
have, three equations and three unknowns, and show how to solve this set of equations. Define

a := cos(ω0k),

b := sin(ω0k).
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By trigonometric identities, we can write

y0 = r cos(θ),

y1 = r cos(θ) cos(ω0k)− r sin(θ) sin(ω0k)

= ay0 − br sin(θ),

y2 = r cos(θ) cos(2ω0k)− r sin(θ) sin(2ω0k)

= y0(2a2 − 1)− 2abr sin(θ),

which gives

a =
y0 + y2

2y1

.

Hence, we can find

k = cos−1(a)/ω0. (2.41)

If the resulting k ∈ Z+ then we have found a singleton/doubleton. It then follows that b = sin(kω0).
From the set of equations we also have

r sin(θ) =
ay0 − y1

b
,

which gives

θ = tan−1(r sin(θ), y0),

where tan−1(u, v) is the four quadrant inverse tangent function satisfying r sin(tan−1(u, v)) = u
and r cos(tan−1(u, v)) = v. We can also find

r = y0/ cos(θ).

Then, from these equations, for k > 0, it follows that

xi,k(t) =
rejθ

2ci,k
,

xi,−k(t) =
re−jθ

2c∗i,k
.

Now we treat the special case of k = 0. In that case, in (2.41) we get k = 0, and θ = 0 since
zi,0(t) is real. Hence, we have

xi,0(t) = y1(t).

The pseudocode for support and signal detection is given in Algorithm 1.
Note that once the support of the vector x(t) is recovered, the extra channel for support detection

can be turned. Hence, we state the following theorem.
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Algorithm 1: Support and signal detection for real valued signals
Input :{yi}i=0,1,2, {ck}k=0,...,L0 , ω0

Output :Support k and amplitude x if singleton, otherwise declare not a singleton
1 a← (y0 + y2)/(2y1)
2 k′ ← cos−1(a)/ω0

3 if k′ = 0 then
4 k ← k′

5 x← y0

6 else if k′ ∈ Z++ then
7 k ← k′

8 θ ← tan−1 ((ay0 − y1)/ sin(kω0), y0)
9 r ← y0/ cos(θ)

10 x← rejθ/(2ck)

11 else
12 declare not a singleton
13 end

Theorem 4. Any continuous-time real valued signal x(t) that is bandlimited within a known
frequency interval, and whose frequency support is a union of intervals with total Lebesgue measure
fL, using sparse-graph code filter bank, can be sampled at rate 1.5(1 + ε)fL while the probability
of perfect reconstruction can be made arbitrarily close to one. Furthermore, the coded filter bank
can be implemented with real signals, and time averaged computational complexity of the recovery
algorithm is O(fL).

Proof. The proof follows similar steps to Theorem 1. Hence, we are going to highlight the main
difference. Note that the sparse-graph code remains the same for one sided spectrum. Assume,
for simplifying the proof, that the signal does not have support on an interval near the zero-
frequency. The Lebesgue measure of the support on positive frequencies is fL/2 since the frequency
components come in complex conjugate pairs. Then we have

fL
2B
≤ k ≤ fL

2B
+

fL
2B0

.

Hence, in the limit as B tends to 0, we have sampling rate for the ‘oracle’, i.e., (1 + ε)kB, go
to (1 + ε)fL/2. We can replace ‘oracle’ by using 3 channels at each multiband filter. Hence, the
sampling rate can be made 1.5(1 + ε)fL.
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Chapter 3

Sparse Discrete Fourier Transform:
Enabling Low SNR Regimes

3.1 Introduction
In Chapter 2 we focused on sampling continuous-time signals and presented extensions for the
discrete-time case. In both of these settings, the signal of interest was of infinite length. In this
chapter, we focus our attention to finite-length discrete-time signals which have widespread practical
applications as they lend themselves to analysis on computers. In this chapter, we focus on the
Discrete Fourier Transform (DFT) which has been critically important in science and engineering,
and is used in applications related to audio, video, and communications to name a few.

The Fast Fourier Transform (FFT) is a revolutionary algorithm to compute the DFT of an
arbitrary N -length signal using O(N logN) operations [14]. It is widely accepted that this scaling
of the computational complexity is necessary for obtaining the DFT of arbitrary signals [66].
However, in many applications of interest, such as audio, video, and spectroscopy to name a
few, the DFT has a sparse structure, which can be used to cut down sample and computational
complexity over that of FFT’s. Recently, the authors [70, 69] proposed the algorithms Fast Fourier
Aliasing-Based Sparse Transform (FFAST) and Robust-FFAST (R-FFAST) for computing an N -
length K-sparse DFT in sample and computational complexity that scale sublinearly in the ambient
dimensionN whenever the sparsityK also scales sublinearly inN . At a high level, these algorithms
work by first subsampling the signal judiciously and then performing smaller-sized FFTs using the
obtained samples. The subsampling reduces the sample complexity, and by performing FFTs on the
subsampled streams, the computational complexity is also reduced. Through a careful design of the
subsampling patterns, the recovery of K-sparse DFT is transformed into recovering K-many single
frequencies and combining their results to get the DFT of the input signal. Besides having strong
theoretical guarantees, these algorithms also work well in practice, and they are implemented in
software1 and hardware [94, 93]. However, one of the limitations of these algorithms is that they

This chapter is based on joint work with Raaz Dwivedi.
1Repository can be found on Github at https://github.com/UCBASiCS

https://github.com/UCBASiCS
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require a sufficiently-high signal to noise ratio (SNR) in order to attain a sublinear computational
complexity [69]. This can be a bottleneck in applications requiring operating in low SNR, such as
medical imaging, radio astronomy, and wideband spectrum sensing

In this chapter, we propose a method to improve the SNR range of operation of R-FFAST [69].
Specifically, we propose a sample and computationally efficient method for single frequency
identification from noisy measurements. This is a subproblem in R-FFAST where the recovery
of a K-sparse DFT (signal is a superposition of K frequencies) is divided to recovering K-many
1-sparse DFTs (signal is a single frequency). By providing stronger guarantees for the low SNR
regime, our method enhances the robustness guarantees of R-FFAST. This is a step towards making
the algorithm more impactful in low SNR applications.

The organization of this chapter is as follows. In Section 3.2 we cover the necessary background
on FFAST and R-FFAST. In Section 3.4 we describe the details of our novel method for single tone
identification, and give guarantees on its sample and computational complexity in Section 3.5. We
then present numerical experiments in Section 3.6, comparing our method with a baseline of the
successive estimation algorithm based on Kay’s method [38] which is the method proposed in the
original R-FFAST paper [69], and conclude with Section 3.7.

3.2 Background on Aliasing-Based Sparse DFT
Let x ∈ CN be an N -length signal. Any such x can be represented as a sum of N complex
exponentials

x[n] =
N−1∑

k=0

X[k]ej
2π
N
kn, (3.1)

where the amplitudes X[k] ∈ C for k ∈ {0, . . . , N − 1}. These amplitudes are called the DFT
coefficients of X , and they can be calculated as

X[k] =
1

N

N−1∑

n=0

x[n]e−j
2π
N
kn. (3.2)

The operation in equation (3.2) is called the DFT, and the one in equation (3.1) is called the inverse
DFT2.

We are going to give a brief introduction to FFAST and R-FFAST through a running example.
For the example, assume that the signal length is N = 3× 4 = 12, and let x ∈ C12 such that

x[n] = ej
2π
12
n + ej

2π
12

4n + ej
2π
12

5n, (3.3)

that is, x is made up of a superposition of 3 tones at locations 1, 4, and 5 over a grid of size 12.
Note that because x is made up of a superposition of 3 tones, the DFT of x is K = 3 sparse. Let
X ∈ C12 be the DFT of x; then, X is equal to 0 except for X[1] = 1, X[4] = 1, X[5] = 1.

2Note that the scaling of 1/N is usually included in the inverse DFT equation. We included the scaling in the DFT
equation because it helps us simplify the notation in this chapter.
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x peeling
decoder

↓ 4 3−DFT

1−shift ↓ 4 3−DFT

↓ 3 4−DFT

1−shift ↓ 3 4−DFT

(x[0], x[4], x[8])

(x[1], x[5], x[9])

(x[0], x[3], x[6], x[9])

(x[1], x[4], x[7], x[10])

(Y [0], Y [1], Y [2])

(Y1[0], Y1[1], Y1[2])

(Z[0], Z[1], Z[2], Z[3])

(Z1[0], Z1[1], Z1[2], Z1[3])

Figure 3.1: Architecture of FFAST. First, the signal is shifted and subsampled at coprime factors.
Smaller sized DFT (compared to the original signal length) is then performed on each subsampling
output. The outputs of these DFTs are then fed into the peeling decoder. This peeling decoder
then outputs the DFT of the original signal x. The example here is given for a signal length of
3× 4 = 12.

As shown in Figure 3.1, FFAST works by first subsampling the signal x by coprime subsampling
factors. Since the signal length is N = 3× 4, the coprime factors that evenly divide N are 3 and 4,
and FFAST subsamples the input by these two factors. The subsampling operations are repeated
after circularly shifting x by 1. These shifts are going to be used at the check nodes for location
identification (as will be described below).

We will make use of two properties of DFT. First one states that circularly shifting the input
signal equals to modulation in the DFT domain, that is,

x[(n+ r)N ]
DFT←−−−−→ X[k]ej

2π
N
kr, (3.4)

where (n+ r)N := n+ r mod N . The second property is the aliasing property, which states that
subsampling the input signal creates linear mixing of the DFT coefficients. In particular, for a signal
x ∈ CN of length N , where N is a product of two factors N = N1N2, let y[n] = x[N1n] be the
signal obtained by subsampling x with at rate N1. Then, the DFT Y of y satisfies

y[n] = x[N1n]
DFT←−−−−→ Y [k] =

N1−1∑

`=0

X[k +N2`]. (3.5)

Combining these two properties, for the streams given in Figure 3.1, we get:

Y [0] = 0, Y1[0] = 0,

Y [1] = X[1] +X[4], Y1[1] = X[1]ej
2π
12 +X[4]ej

2π
12

4

Y [2] = X[5], Y1[2] = X[5]ej
2π
12

5,

(3.6)
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and

Z[0] = X[4], Z1[0] = X[4]ej
2π
12

4,

Z[1] = X[1] +X[5], Z1[1] = X[1]ej
2π
12 +X[5]ej

2π
12

5

Z[2] = 0, Z1[2] = 0,
Z[3] = 0, Z1[3] = 0.

(3.7)

The vectors Y , Y1, Z, and Z1 are then laid out on a graph as shown in Figure 3.2 to make up the
variable nodes and check nodes. As can be seen in the figure, each index of (Y, Y1) pair and (Z,Z1)
pair make up one check node. The result is a sparse-graph where each variable node (left node) is
connected to 2 check nodes (right node).

X[1]

X[4]

X[5]

c1 : (Y [0], Y1[0])

c2 : (Y [1], Y1[1])

c3 : (Y [2], Y1[2])

c4 : (Z[0], Z1[0])

c5 : (Z[1], Z1[1])

c6 : (Z[2], Z1[2])

c6 : (Z[3], Z1[3])

subsampling by 4

subsampling by 3

Figure 3.2: Aliasing of the DFT coefficients induces a sparse-graph code structure in FFAST. The
figure depicts the graph for a signal with three non-zero DFT coefficients: X[1], X[4], and X[5].
The variable nodes (left nodes) correspond to the non-zero DFT coefficients of the signal, and the
check nodes (right nodes) correspond to the grouping of equations in (3.6) and (3.7). An edge
is drawn between a variable node and a check node if the DFT coefficient corresponding to that
variable node appears in the equations corresponding to that check node.

In order for the peeling decoder introduced in Section 1.1 to work, we need a mechanism
that identifies singleton check nodes, and recovers the location and the value of the variable
node connected to that check node for peeling. This mechanism can be achieved as follows; if
|Y [i]| = |Y1[i]|, and we have (2π/N)∠(Y1[i]/Y [i]) = k̂ an integer, then the check node i is a
singleton, and it recovers the location at k̂ and value Y [i]. This information is than peeled off
from the graph as was done in the example shown in Figure 1.4 for decoding. This concludes the
coverage of FFAST in noiseless setting.

The noisy setting we consider is where the signal is

x[n] = ej
2π
12
n + ej

2π
12

4n + ej
2π
12

5n + w[n], (3.8)



CHAPTER 3. SPARSE DISCRETE FOURIER TRANSFORM 39

with noise w[n]
i.i.d.∼ Nc(0, σ2), which is independent and identically distributed as centrally-

symmetric complex Gaussian with mean 0 and variance σ2. In this setting, the mechanism designed
for the noiseless case described above will not work as |Y [i]| = |Y1[i]| and (2π/N)∠(Y1[i]/Y [i]) =

k̂ being an integer both happen with zero probability. However, we can design a method that utilizes
more shifts applied to the input signal as shown in Figure 3.3. As can be seen from the relation
in (3.4), a circular shift of r corresponds to multiplication of the DFT coefficient at location k by a
complex exponential ej

2π
N
k. Using a shift sequence of (r1, r2, . . . , rD), we have the following set of

relations:
x[(n+ r1)N ]

DFT←−−−−→ X[k]ej
2π
N
kr1 ,

x[(n+ r2)N ]
DFT←−−−−→ X[k]ej

2π
N
kr2 ,

...

x[(n+ rD)N ]
DFT←−−−−→ X[k]ej

2π
N
krD .

(3.9)

Looking at the right-hand side of these relations, we have a list of samples equal to
(
X[k]ej

2π
N
kr1 , X[k]ej

2π
N
kr2 , . . . , X[k]ej

2π
N
krD
)
.

Note that this is equal to sampling a single tone x̃[n] = X[k]ej
2π
N
kn at the sampling points n

corresponding to the shifts {r1, r2, . . . , rD}. Note that the frequency location is equal to k, and the
amplitude is equal to X[k]. Hence, identifying the frequency and amplitude recovers the location k
and amplitude X[k] respectively to be used in the peeling decoder.

This puts single frequency identification from its noisy measurements at the core of the peeling
process. One method to do single frequency identification is through using the maximum likelihood
method. However, this requires going over all possible frequencies, and calculating the likelihood
for each. Hence, the computational complexity of that algorithm scales linearly with the ambient
dimension of the problem. In R-FFAST [69], the authors propose a method that uses Kay’s
tone identification algorithm [38] for building a computationally efficient algorithm which has a
computational complexity that scales as O(log4/3(N)). However, for this to hold, it requires a
sufficiently high signal to noise ratio (SNR). This limits the applicability of R-FFAST to problems
that has low SNR.

In the rest of the this chapter, we introduce a novel method, dubbed maximum-likelihood-based
successive digit recovery (MSDR), for identifying a single tone whose frequency lies on a regular
grid, from a set of noisy measurements. For any targeted error probability, we establish that the
sample and computational complexities of our algorithm scale logarithmically with the grid size.
Moreover, our guarantees apply for any given SNR. Compared to the maximum likelihood method,
our method has an exponentially better dependence on the grid size for computational complexity, at
the expense of a worse sample complexity by a doubly-logarithmic factor. Our proposed method is
a robust building block for many applications involving the sparse DFT, e.g., MRI, radio astronomy,
optical imaging, wideband sparse spectrum sensing, via R-FFAST algorithm, whose robustness
guarantees get significantly enhanced.



CHAPTER 3. SPARSE DISCRETE FOURIER TRANSFORM 40

x

r1−shift ↓ N1 N2−DFT

r2−shift ↓ N1 N2−DFT

r3−shift ↓ N1 N2−DFT

...
...

...

rD−shift ↓ N1 N2−DFT

(Y1[0], . . . , Y1[N2 − 1])

(Y2[0], . . . , Y2[N2 − 1])

(Y3[0], . . . , Y3[N2 − 1])

(YD[0], . . . , YD[N2 − 1])

r1−shift ↓ N2 N1−DFT

r2−shift ↓ N2 N1−DFT

r3−shift ↓ N2 N1−DFT

...
...

...

rD−shift ↓ N2 N1−DFT

(Z1[0], . . . , Z1[N1 − 1])

(Z2[0], . . . , Z2[N1 − 1])

(Z3[0], . . . , Z3[N1 − 1])

(ZD[0], . . . , ZD[N1 − 1])

Figure 3.3: Schematic of shifts and downsampling of R-FFAST in the noisy setting. Here, D is the
number of shifts, and the signal length is N = N1N2. Compared to the noiseless case shown in
Figure 3.1, more shifts are used for combating against noise. The shifts {r1, r2, . . . , rD} induce a
signal equivalent to sampling of a single tone at singleton check nodes (see equation 3.9).

3.3 Single Tone Identification
Single tone identification is an important problem in signal processing that arises in a wide variety
of applications including direction of arrival estimation, radar, and sparse DFT. Prior works have
extensively studied the continuous-valued frequency setting and provided several notable sample
and computationally efficient methods [38, 25, 55]. These methods have a performance close to the
maximum likelihood method in terms of sample complexity, and often achieve a low computational
complexity when the signal-to-noise ratio (SNR) is high enough.

In this work, we consider a setting where we have partial knowledge about the frequency of
the tone; in particular, the frequency lies on a regular grid known apriori, but with its precise
location unknown. Such a setting arises in many modern applications of interest including sparse-
DFT algorithms. One class of these algorithms work with a divide-and-conquer strategy. More
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concretely, in order to recover the DFT of a signal composed of a small number of tones, they divide
the problem into multiple simpler problems of identifying a single tone [70, 69]. This ‘divide’ step
is achieved via a judicious sub-sampling of the signal followed by computations of smaller-sized
Fourier transforms. The simpler single-tone identification problems are then solved by using the
well-known continuous frequency identification methods, along with a scheme to round to the
closest grid point. Such a combined strategy does not fully leverage the discrete nature of the
problem. Hence, the obtained results are often not optimal especially in the low SNR regime. One
method that leverages the discrete nature is the maximum likelihood (ML) method. Given a set of
noisy samples from the signal, ML method maximizes the inner product of the measurements with
the signatures corresponding to all possible locations on the grid. Given a regular grid of size N and
a fixed error probability, the ML method requires O(log(N)) samples; however, the computational
complexity scales as O(N log(N)) which is superlinear [68].

We present a method that attains a near-ML performance in terms of sample complexity and
achieves a logarithmic-time complexity. More precisely, our algorithm has O(log(N) log(log(N)))
sample and computational complexity for every SNR point. By having a logarithmic-time complex-
ity at every SNR point, our method provides a robust building block for many applications involving
the sparse discrete Fourier transform like MRI, radio astronomy, optical imaging, wideband sparse
spectrum sensing to name a few, via the recently proposed sublinear-time R-FFAST algorithm [69],
whose robustness guarantees get significantly enhanced.

3.4 Proposed algorithm
We begin with a description of our method assuming access to an infinite sequence of the signal.
We describe how to handle a practical setting of having access to the signal on a limited interval in
Section 3.4.2.

Consider the case of N = pn where p is a prime and n ∈ N. We assume access to the following
signal:

y[m] = Aej
2π
N
km + w[m], (3.10)

where k is an integer in [0, N) and denotes the true frequency location, w[m]
i.i.d.∼ Nc(0, σ2) denotes

the noise with a centrally-symmetric complex Gaussian distribution with mean 0 and variance σ2.
Our goal is to determine the frequency location k in a sample and computationally efficient way.

Our method makes use of the following fact that; since N = pn, we can represent k as

k = k0 + k1p+ k2p
2 + · · ·+ kn−1p

n−1, (3.11)

where ki are integers in [0, p) for all i ∈ {0, . . . , n− 1}. Recovering k is equivalent to recovering
all of its coefficients ki (which we refer to as a digit). The main idea behind our proposed method is
to recover ki progressively by performing carefully-designed sub-sampling (see Figure 3.4 for an
example).
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y0 y1 y2 y3 y4 y5 y6 y7

y0 y4 y1 y3 y5 y6

Signal:

Chain 1: Chain 2: Chain 3:

Figure 3.4: Our algorithm recovers digits ki given in equation (3.11) of the frequency location from
the least significant one to the most significant. In order to achieve this, we construct chains of
samples from the signal. The example in the figure corresponds to a setting where p = 2, n = 3.

For recovering k0, consider sub-sampling the signal with the interval between successive
samples3 equal to pn−1. Noting that N = pn, the resulting signal is given by

y[pn−1m] = Aej
2π
N
kpn−1m + w[pn−1m]

= Aej
2π
p

(
∑n−1
i=0 kip

i)m + w[pn−1m]

= Aej
2π
p
k0m + w[pn−1m], (3.12)

which is a tone with frequency 2πk0/p radians per sample. We can find k0 by comparing p-many
candidate frequency locations {0, . . . , p− 1}. In contrast, finding k would require us to compare
pn-many frequencies. Thus, by sub-sampling the signal by a carefully-chosen period, we obtain a
simpler problem of recovering a single digit of k. We choose an integer ` and sample the resulting
signal at m ∈ {0, . . . , `p− 1}, and let the resulting signal be y, a vector of size `p. The maximum
likelihood estimate of the location k0 is then found by

k̂0 = argmax
c∈{0,...,p−1}

|〈y,uc〉|2 , (3.13)

where uc ∈ C`p with uc[m] = exp(j(2π/p)cm).
Assume that we have recovered the location k0 correctly. We can then remove its contribution

from the original signal to obtain a new signal:

y(1)[m] = y[m]e−j
2π
p
k0m

= e
j 2π
pn−1 (k1+···+kn−1pn−2)m

+ w[m]e−j
2π
p
k0m.

The new signal y(1) can be associated with a new grid corresponding to N (1) = pn−1, and its
frequency is located at k(1) = k1 + k2p + · · · + kn−1p

n−2. Note that the resulting noise is still
independent and distributed as Nc(0, σ2) since it was centrally-symmetric. Thus, we now have a
new problem of finding a tone sitting on a frequency grid of size N (1) = pn−1. We can recover the
next least significant digit of k by using a sampling period of pn−2. The sub-sampling and digit
recovery procedure is then repeated a total of n times to recover ki for i = [0, n) to obtain k as in
equation (3.11). Thus our algorithm is an n-stage method, where at stage s it recovers the digit ks
corresponding to the unknown frequency k. See Figure 3.5 for a visual illustration and Algorithm 2
for a pseudo-code.

3We will refer to this as the sampling period.
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(a) Stage 1
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(b) Stage 2
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6
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(b) Stage 3

Figure 3.5: The figure depicts an example for N = 8, and recovering the discrete frequency at
location k = 3. Each stage determines if the frequency of the signal belongs to the red diamond
or blue circle sets. In the first stage, frequencies that are π/2 apart belong to the same set, in the
second stage frequencies that are π apart belong to the same set, and in the third stage each set
contains a single frequency.

Algorithm 2: Pseudocode for the proposed method (MSDR) when recovering a single
digit from the signal at each stage of the algorithm.

Input: Signal y[m], p, n, `
Output: k̂ (the estimate of the frequency index)
/* initialize the estimate */

1 k̂ ← 0
/* go over each digit */

2 for s = 0, . . . , n− 1 do
/* remove the estimate so far */

3 y(s)[m]← y[m]e−i2πk̂/n
p

/* subsample signal with period pn−1−s
*/

4 y(s) ← [y(s)[0], . . . , y(s)[(`p− 1)pn−1−s]]
/* new digit */

5 k̂s ← argmax
c∈{0,...,1−p}

∣∣〈y(S),uc〉
∣∣2

/* update the estimate */

6 k̂ ← k̂ + k̂sp
s

3.4.1 Extension to a general grid
This method can be extended to any positive integer N as it admits a prime factorization of the form
N =

∏L
i=1 p

ni
i for some L, where each pi is a unique prime. In that setting, sub-sampling the signal

with sampling period N i = N/pnii , yields a signal with frequency 2πk/Ni where Ni = pnii . From
the resulting signal of this sub-sampling, we recover k modulo Ni via MSDR. Doing this procedure
for each i = 1, . . . , L yields the estimate for k modulo Ni for each i. As Ni are coprime and their
product is equal to N , by Chinese Remainder Theorem [34], we can recover k from its remainders
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modulo Ni via several methods. For instance, letting k(i) denote the remainders of k modulo pnii ,
then Euler’s theorem [34] implies that

k =
L∑

i=1

k(i)N̄
(pi−1)p

ni−1
i

i (mod N). (3.14)

We focus our discussion only on the case L = 1 as our results can be extended to more general case
of L > 1 using this observation.

3.4.2 Limited Interval Setting
We now consider the case when we have access to a limited interval to take measurements from
the signal. The setting where the samples can be taken only in [0, N) is of particular interest as
it corresponds to performing a 1-sparse DFT of an N -length signal using its noisy measurements.
In this scenario, we cannot obtain an arbitrary number of samples for large sampling periods. For
example, for N = pn, when using a sampling period of pn−1 for recovering k0, we obtain only p
samples that are corrupted by independent noise as the next sample would be same as the first one
when the samples are taken modulo N .

For such a setting, in order to increase the number of samples taken at each phase of the
algorithm, we recover multiple digits in the decomposition (3.11). Denote the number of digits
recovered at each phase by d; then, the largest sampling period equals to pn−d, and it enables
obtaining pn/pn−d = pd samples. The equation (3.13) is then adapted to search over pd possible
locations, and the number of phases of the algorithm is dn/de.

This change in the recovery algorithm can be viewed as making the decomposition (3.11) with
respect to pd instead of p. While this allows us to increase the number of samples, it also increases
the size of the search space as the number of competing locations in equation (3.13) increases to pd.
Nonetheless, the overall computational complexity still stays logarithmic in N for fixed SNR as
shown in Section 3.5.1.

3.5 Analysis of the algorithm
In this section, we analyze the sample and computational complexity of our proposed method for
the infinite sequence and the limited interval settings. We use the short-hand notation

σ̃2 :=
1

SNR
=

σ2

|A|2
(3.15)

for the inverse of the signal-to-noise ratio (SNR).

3.5.1 Sample complexity
We start with the infinite sequence case. At the first stage of our procedure, we estimate the digit
k0 ∈ [0, p) (cf., representation in (3.11)) from the noisy signal y given by equation (3.10). We
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assume access to ` periods (the value to be made precise in Theorem 5) of the signal so that we
have access to M = `p number of measurements after sub-sampling with period pn−1. Then the
maximum likelihood estimate k̂0 in (3.13) for the digit k0 satisfies the following high probability
bound.

Theorem 5. For any fixed δ ∈ (0, e−1), if the sample size satisfies M ≥ 7σ̃2 log(p/δ) then
P(k̂0 6= k0) ≤ δ.

Theorem 5 establishes that each coefficient of k can be estimated with number of samples
scaling inversely with SNR = 1/σ̃2 and logarithmically with the inverse of the error probability. We
stated our results for δ ∈ (0, e−1) because the regime of small error probability is of most interest.
Larger δ can be dealt with a change in the constant factor. Here the probability is taken over the
randomness in the noise. Note that our guarantee does not impose any restriction on the SNR.

Proof of Theorem 5. When M = `p samples are used, the inner product in equation (3.13) is
distributed as Z1 ∼ Nc(A, σ2/M) for the correct location. For a wrong location, that inner
product is distributed as Z2 ∼ Nc(0, σ2/M). The location is classified wrongly with probability
P (|Z1|2 ≤ |Z2|2). Since the noise is centrally symmetric we can consider the mean of Z1 to be
|A| without loss of generality. We have P (|Z1|2 ≤ |Z2|2) = P (Z2

1,r + Z2
1,i − Z2

2,r − Z2
2,i ≤ 0),

where Z1,r ∼ N(|A| , σ2/(2M)), and Z1,i, Z2,r, and Z2,i are distributed as N (0, σ2/(2M)). Let
Z = (Z2

1,r +Z2
1,i−Z2

2,r−Z2
2,i)/(σ

2/(2M)). Since Z is a sum of sub-exponential random variables,
it is a sub-exponential random variable [92]. It has sub-exponential parameters (

√
12 + 12M/σ̃2, 6),

and E [Z] = 2M/σ̃2, where σ̃2 = σ2/ |A|2. It then follows that

P (Z < 0) ≤ exp

(
− 4M2/σ̃4

2(12 + 12M/σ̃2)

)
, (3.16)

from the properties of sub-exponential random variables [92]. Whenever M ≥ 7σ̃2 log(p/δ), the
right hand side of (3.16) is less than or equal to δ/p. Union bounding over the p − 1 competing
locations gives the desired result.

Theorem 5 can be applied to bound the probability of error for estimating the digit ki+1, given
that the prior digits k0, . . . , ki have been estimated correctly. Let k̂MSDR denote the estimate of k
returned by MSDR method. Then, applying the standard union bound we obtain the following
result, which shows that we need O(n log n) samples to correctly recover the frequency using the
MSDR method.

Corollary 3. For any fixed δ ∈ (0, e−1), if the sample size satisfies M ≥ 7σ̃2n log(np/δ), then
P(k̂MSDR 6= k) ≤ δ.

When the samples can be taken only in the limited interval of [0, N), we increase the number
of samples implicitly by recovering multiple digits at each phase (refer to Section 3.4.2 for the
discussion of this case). The following proposition gives the number of digits to be recovered to get
an error accuracy.
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Theorem 6. For any fixed δ ∈ (0, e−1), the probability of error in recovering the first d digits of k
is less than or equal to δ whenever d satisfies pd ≥ 7σ̃2 max (2 log (7σ̃2/δ), log (p/δ)) samples are
used.

The proof of this result is similar to that of Theorem 5 with modifications to the bound in (3.16),
and is thereby omitted.

Given the analysis of one stage, we can (in a manner analogous to Corollary 3) conclude the
following result.

Corollary 4. For any fixed δ ∈ (0, e−1), if the sample size satisfies

M ≥ 7σ̃2n

d
max

(
2 log

(
7σ̃2n

dδ

)
, log

(np
dδ

))
, (3.17)

then we have P(k̂MSDR 6= k) ≤ δ.

Corollary 4 follows immediately from an application of Theorem 6 along with the union bound.
The sample complexity in Corollary 4 is a decreasing function of d, the number of digits

recovered at each phase of the algorithm. It would be minimum if we estimate all n digits in a
single phase. However, increasing d results in an increase in the computational complexity of
the algorithm. Thus an optimal choice of d depends on a precise characterization of the trade off
between the sample and computational complexity. We now turn our attention to the latter of the
two.

3.5.2 Computational complexity
For detecting each digit (or multiple digits at a time) of the frequency location k in equation (3.11),
we need to compute inner products as in (3.13). Since these inner-products actually correspond
to calculating the DFT coefficients of the small-sized signal, they can be computed using FFT. To
estimate d-coefficients from the decomposition (3.11) in a single stage, the length of the input is `pd,
hence the FFT can be computed using O(`pd+1d) operations using radix-p FFT. After finding these
d digits, we need to remove the contribution of the frequency recovered so far in order to obtain the
next set of samples. This step requires O(`pd) operations for a set of d-digits thereby not changing
the order of overall computational complexity. In total we have n coefficients to recover so we
repeat these computations dn/de times, thereby giving a computational complexity of O(`pd+1n).

For the case of infinite length sequence, we choose d = 1, and n`p = O(nσ̃2 log(np/δ)). Thus
the overall computational complexity for the MSDR method turns out to be O(npσ̃2 log(np/δ)).

For the case of access to a limited interval from the signal, we choose ` = 1, and minimum value
of pd as given by Theorem 3.5. For the low SNR regime (where the complexity is dominated by the
terms with σ̃2), we get n`pd = O(nσ̃2 log(nσ̃2/δ)); thus the overall computational complexity in
this setting becomes O(npσ̃2 log(nσ̃2/δ)).
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3.5.3 Applications to Sparse DFT
The authors of R-FFAST [69] propose an algorithm that calculates a sparse N -length DFT in
sublinear (in N ) sample and computational complexity whenever the number of non-zero DFT
coefficients K scales sublinearly as K = O(Nα) for some 0 < α < 1. The R-FFAST algorithm
has a sublinear computational complexity only for sufficiently high SNR. This restriction is caused
due to the utilization of Kay’s method [38] in their algorithm, which in turn requires a sufficiently
high SNR as one of its assumptions. Thus, our method is well-suited as an efficient alternative in
the low-SNR regime, in particular to obtain sublinear computational complexity for any non-zero
SNR. In order to use our algorithm as a part of R-FFAST, we need to target an error probability of
δ = O(1/N2). This choice allows operation at every SNR point and results in number of samples
scaling asM = O(log(N)2), and computational complexity scaling asO(log(N)3) for the modified
R-FFAST algorithm based on our method.

3.6 Numerical experiments
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Figure 3.6: (Left) The number of samples required against the signal length (in log scale) for an
error probability of 1% at 0dB SNR. (Right) The number of samples required for reaching an error
probability of 1% a function of SNR for a fixed N = 230.

We present numerical experiments showing comparisons between our method and the successive
estimation method based on Kay’s estimator [69]. Note that the latter method has better sample
complexity compared to Kay’s estimator for identifying frequencies on a grid [69], so it is an upper
bound on the performance of using Kay’s method for our problem.

In the left panel of Figure 3.6, we plot the number of samples required to achieve an error
probability of 1% at 0dB SNR and −5dB SNR as a function of the grid size N . The plot shows
that our method requires fewer samples for each N to achieve a targeted error rate, and that the
gap grows as SNR decreases. To better understand the difference in the two methods as the SNR
changes, in the right panel in Figure 3.6 we plot the number of samples for reaching an error
probability of 1% a function of SNR for a fixed N = 230. It is evident that the gap between the
samples required by the algorithms grow as SNR decreases, providing evidence that MSDR is a
more sample efficient alternative to Kay’s method.
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3.7 Conclusions and Future Directions
In this chapter, we presented a novel stagewise method (MSDR) for identifying a single tone on
a grid from its noisy measurements in a sample and computationally efficient way. The sample
complexity of our algorithm is close to that of the maximum likelihood (ML) method (worse only by
a doubly-logarithmic factor on the grid size), while the computational complexity is logarithmic in
the number of grid points which is exponentially better than that of the ML method. Our proposed
method is a robust building block for many applications involving the sparse discrete Fourier
transform, e.g., MRI, radio astronomy, optical imaging, wideband sparse spectrum sensing, via the
recently proposed sublinear-time FFAST algorithm [69]. Our hardware implementation [93] of
R-FFAST [69] uses the single tone identification algorithm based on Kay’s method. Implementing
the new single tone identification algorithm in hardware could improve the SNR performance and
open up the application areas.
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Chapter 4

A Theoretical Framework for Fast MRI

4.1 Introduction
Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality of widespread use
for diagnostic studies of the nervous system and the musculoskeletal system [60]. In this modality,
the MRI machine acquires samples from the Fourier transform of the region to be imaged. At
the high level, an inverse Fourier transform is then applied to the samples to recover the desired
image. The total time a patient spends in the MRI machine is directly related to the number of
Fourier-domain samples acquired. By subsampling in the Fourier domain, the total time can be cut
down. However, as discussed in chapters 2 and 3, this subsampling introduces aliasing artifacts. To
combat these artifacts, the authors of [54] propose a framework called Compressed Sensing MRI
which cuts down the number of samples acquired and still enables the recovery of high-quality
images by leveraging the underlying sparsity of MR images. In their framework, the Fourier domain
is subsampled at random locations, and a convex optimization problem is solved to recover the MR
image. Although, this cuts down the acquisition time, solving the optimization problem is costly,
and requires computations that scale super-linearly with the size of the image. The image-recovery
time could be a bottleneck in some applications, in particular, in interventional settings.

In order to get fast acquisition and fast image-recovery time, we can use robust FFAST [69,
63] described in Chapter 3. However, in many MR images, the sparsity is in the wavelet domain
instead of the canonical domain (except for angiograms) [54]. It turns out that when the sparsity is
in a wavelet domain instead of the canonical basis, the induced sparse-graph in FFAST will contain
cycles. Standard techniques based on density evolution equations for analyzing the performance of
decoding a sparse-graph code through peeling (see Appendix A.1) does not work whenever there
are cycles in the graph. In this chapter, we develop novel techniques for this analysis, and show
that the algorithm described in Chapter 3 can be adapted to handle the case where sparsity is in a
wavelet domain.

We will now abstract away from the MRI problem and consider an intriguing balls-and-bins
game (the interesting connection between this game and MRI will be made in Section 4.3). Assume

This chapter is based on joint work with Kabir Chandrasekher [11, 12].
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there are n distinct colors, d balls of each color and M bins. You know beforehand that only K � n
of the colors, which are selected uniformly at random from the n possible colors, will be ‘active’,
but you do not know which ones they are. You have to throw all the (dn) balls into the (M ) bins.
The rules of the game are as follows:

R1) For each color c, you choose a subset (possibly by a randomized strategy) Bc ⊂ {0, . . . ,M −
1} of size d. Then, the system throws the balls of that color c into bins {b + bc : b ∈ Bc}
modulo M where bc is sampled uniformly at random from {0, . . . ,M − 1}1.

R2) If a bin contains a single active ball, then all d balls having the same color as that ball can be
removed.

R3) The process continues iteratively until either (a) all active balls have been removed or (b)
there is no bin having a single active ball.

The goal of the game is to remove all active balls using the minimum number of bins. We focus on
the regime in which (n,K,M)→∞, d = O(1) and ask the following questions:

1. What is the optimal method of dispatching the d balls? That is, what is the optimal strategy
for designing the subsets in R1?

2. Given (n,K, d), what is the minimum number of bins (M ) necessary?

While this is an intriguing game in its own right, more importantly, it has connections to the
design of sparse-graph codes and peeling decoding. Surprisingly, and more relevant here, it is also
intimately related to the recovery of sparse wavelet representations from Fourier domain samples
(see Section 4.3).

To illustrate, suppose that d = 3, then the best known strategy is to throw each ball at a bin
selected uniformly at random. It has been demonstrated that we need asymptotically M ' 1.23K
bins as K grows. This can be shown through density evolution methods (see Appendix A.1,
introduced by Richardson and Urbanke in [74], which have proven powerful in analyzing the
performance of sparse-graph codes. Now suppose that d = 6. The natural strategy is to again
throw each ball at a bin selected uniformly at random. Surprisingly, this strategy is not optimal. To
see this, we give a brief introduction to the smearing ensemble. Consider a g dimensional vector
s = [s1, s2, . . . , sg] where

∑g
i=1 si = d. The ensemble is such that g bins are selected at random,

and for the ith bin, the immediately following si−1 bins are deterministically selected2; this is what
we term the smearing ensemble. Figure 4.1 shows an example illustration for s = [2, 2], and we
formally define the smearing ensemble in Section 4.2. Examining Table 4.1, one can see that many
simple smearing strategies outperform the fully random ensemble (corresponding to the column
labeled as 1, 1, 1, 1, 1, 1 in the table). Note that, we do not claim to design an optimal strategy for
this game; rather, we provide a theoretical platform to analyze these structure-exploiting policies.

1Note that the only effect of this is to randomly offset the bins for each color.
2For example, if si = 2 (we henceforth refer to this as the smear-length), then bins bi and bi + 1 (modulo M ) are

selected, where bi is uniformly selected on {0, 1, . . . ,M − 1}. See Figure 4.1 for an illustration.
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bin:

K active colors

d balls

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.1: An example graph showing active balls and bins that can result from rule R1. Here
K = 4, M = 15 and d = 4. Each color is partitioned into g = 2 groups and the number of balls
per group is 2. The game proceeds by following the rules R2-R3. We want to find the minimum
number of bins necessary to recover all the active colors.

Our balls-and-bins game is motivated by an extension of the recently proposed FFAST (Fast
Fourier Aliasing-based Sparse Transform) algorithm [67] to the case where sparsity is with respect
to some wavelet basis. In this setting, the balls correspond to the wavelet coefficients and the bins
correspond to samples. Wavelets are universally recognized to be an efficient sparse representation
for the class of piecewise smooth signals having a relatively small number of discontinuities, a very
good model for many real-world signals such as natural images [90]. In particular, we note that
in MRI, images are observed to be sparse with respect to appropriately chosen wavelet bases, and
acquisition is in the Fourier domain [54]. The computational bottleneck in recovering these images
has been observed to be the computation of multiple large Fourier transforms. Our extension of the
FFAST algorithm targets this problem. The details of this extension can be found in Section 4.3.

Table 4.1: Thresholds (M/K) for graphs of various smearing for d = 6. Note that this table contains
a subset of all possible strategies.

Regime 1,
1,

1,
1,

1,
1

1,
1,

1,
1,

2

1,
1,

1,
3

1,
1,

4

1,
1,

2,
2

1,
2,

3

2,
2,

2

M/K 1.570 1.533 1.489 1.518 1.533 1.542 1.547

4.1.1 Related Work
Density evolution methods have proven powerful in analyzing the performance of sparse-graph
codes and their extensions [74, 76]. Unfortunately, these methods apply only for sparse random
graphs that are locally cycle-free. This is not the case for all ball-throwing strategies in the game we
outlined above (for example the [2, 2, 2] scheme). Recently the authors of [19, 6] have introduced
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approximate message passing (AMP) techniques to extend the message passing paradigm to the
case when the underlying factor graph is dense. Although AMP has been successfully applied to
many problem domains, e.g., [84, 56], it imposes a dense structure on the factor graph. Additionally,
the authors of [40, 41] have been able to show the benefit of structure in convolutional LDPC codes
through the spatial coupling effect. However, if the bipartite graph is sparse, but contains small,
structured cycles, it may not be necessary to invoke such methods.

4.1.2 Main Results and Organization
The main results presented in this chapter are the derivation of exact thresholds for random graphs
with smear-length 2, and bounds for higher smear-length which are empirically shown to track
the actual performance of the peeling decoder well. We additionally present the details for an
application to fast recovery of sparse wavelet representations of signals when acquisition is in the
Fourier domain. In particular, given an n-dimensional signal that is K-sparse3 with respect to the
1-stage Haar wavelet, our analysis shows that 2.63K Fourier domain samples are needed to recover
the signal in O(K logK) time.

The rest of this chapter is organized as follows. In Section 4.2.1, we derive exact thresholds
for the specific case of 2-smearing. In Section 4.2.2, we derive lower bounds for the probability of
recovery in the case of arbitrary smearing. We outline the connection between the ball coloring game
and the recovery of sparse wavelet representations in Section 4.3. We conclude with Section 4.4 by
summarizing some interesting open problems and conjectures that have resulted from this work.

4.2 Main Results
In this section, we introduce a new random graph ensemble, termed the ‘smearing ensemble’, and
present a method for deriving the density evolution recursions for graphs from this ensemble. The
derivations are done for a smear-length of 2, and we give lower bounds for smear-length L. We now
formally define the smearing ensemble:

Definition 5. Let G(K,M, s) denote the ‘smearing graph ensemble’ with K left nodes and M
right nodes with connectivity characterized by s. Each left node selects g right nodes, where g is
the length of the vector s. At the ith iteration (0 ≤ i < g), edges are put between the left node
and right nodes {bi, bi+1, . . . , bsi−1} modulo M where bi is selected uniformly at random from
{0, 1, . . . ,M − 1}.

Henceforth, we are going to use the terms ‘left node’ and ‘ball’ interchangeably as well as
‘right node’ and ‘bin’ interchangeably. We additionally refer to balls thrown to the same set of bins
as a stream. Now, let λ := gK/M . If K balls are thrown into the M bins randomly, the degree
(that is the number of balls in) of each stream will be distributed like Poisson(λ) by the Poisson
approximation to the binomial distribution (see Appendix A.1). We now carefully derive the density
evolution recurrence for smearing ensembles with the maximum smearing length of 2.

3That is, an n-dimensional signal with exactly K non-zero entries.
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4.2.1 Density Evolution on Graphs with Smearing Length of Two
In our ball-coloring game, we noted that threshold for the setting [2, 2, 2] outperforms that for the
setting [1, 1, 1, 1, 1, 1]. In this section, we give exact analysis for these thresholds4. First, we define
our notation in Table 4.2.

Table 4.2: Notation for density evolution on a smearing graph with smear-length 2.

Notation Definition

xt : Probability that a random ball is not removed by iteration t
qt : Probability that none of the bins in a smeared pair is resolved

by iteration t
dt : Probability that all balls in the same stream as the reference

ball are removed by time t
st : Probability that all balls in a stream which intersects, but

does not fully overlap, with the reference stream are removed
by time t

Figure 4.2: Depth 2 neighborhood of a ball in a graph with [2, 2, 2] smearing (see Definition 5). The
bins and balls are grouped by their colors with respect to distance from the root.

Unlike as in conventional density evolution methods in the LDPC literature which are based on
an edge perspective, we take a node perspective here because dependencies between edges in the
smearing setting complicate the analysis. We refer the interested reader to [75] for a discussion of
the differences between node perspective and edge perspective. Our goal is to derive recurrences

4Although thresholds can be derived for the other elements in the table, we give the [2, 2, 2] derivation for clarity.
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for each of the quantities defined in Table 4.2. In this case, the equations for xt and qt are clear:

xt = q3
t , (4.1)

qt = 1− dt(1− (1− st)2). (4.2)

To see these, we recall the dynamics of the peeling decoder: a ball is removed as soon as any of its
neighbors are removed, whereas a bin is removed only if all balls contained in it are removed. Thus,
xt only occurs when none of the pairs of smeared bins to which it is connected are removed. On
the other hand, for a bin to be removed, all of its connected nodes must be removed. Thus, every
ball in the same stream as the reference ball must be removed, which happens with probability dt.
Additionally, at least one of the two streams that do not fully overlap with the reference ball must be
removed, which happens with probability (1− (1−st)2). Now, note that in Figure 4.2, the recurring
structures are those with probabilities st and dt, so we are done upon calculating these quantities.

We first calculate dt. Let D1 denote the number of balls in this stream other than the reference
ball we are looking at. It follows that D1 is distributed as Binomial(3(K − 1), 1/M), which can be
approximated well for large K and M by Poisson(λ), where λ = 3K/M . It follows that:

dt =
∞∑

i=0

P (D1 = i)(1− q2
t−1)i

=
∞∑

i=0

e−λ
λi

i!
(1− q2

t−1)i = e−λq
2
t−1 . (4.3)

Now, we tackle st. Note that intuitively, st ≥ dt. This is because each ball in a stream tracked
by st gets the same independent help from 2 bins as dt. However, there is additionally a shared
bin between all these balls. This shared bin is able to aid in the removal of the stream tracked by
st when exactly one ball is left in the stream, and the bin has no contributions from elsewhere.
The incorporation of this help is the key ingredient in using the structure to help characterize the
decoding thresholds. Letting D2 be the number of balls in this stream, we precisely characterize
this as follows:

st =
∞∑

i=0

P (D2 = i)
[
(1− q2

t−1)i + ist−1q
2
t−1(1− q2

t−2)i−1
]

= e−λq
2
t−1 + λst−1q

2
t−1e

−λq2t−2 . (4.4)

Note that the first term in this recursion is exactly dt. The second term describes the help received
from the shared bin. In order to properly characterize this term, it is necessary to introduce the
notion of memory: the shared bin can help if it has all contributions removed except for one by time
t. Unlike when the neighborhood is cycle-free and the branches of the computation tree become
independent [30], when cycles are introduced, there is dependence between the branches. The
introduced memory captures exactly this dependence. In Figure 4.3 we plot the evolution of xt
given in equation (4.1) obtained using numerical experiments against the predictions by our theory,
and we can see that they are in very close agreement.

We summarize the results of this section with the following lemma:
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Figure 4.3: Evolution of xt as a function of the number of peeling rounds t for different values of
M/K. The markers are obtained by simulations of peeling rounds and the solid lines are obtained
through the density evolution equations. We see that our equations capture the behavior of the
peeling decoder well.

Lemma 1. Consider a random graph from the ensembleG(K,M, [2, 2, 2]). Then, forM ≥ 1.547K,
recovery using the peeling decoder will succeed with high probability.

Proof. The threshold follows from the density evolution derived above. It is important to note that
these recurrences were derived using only high probability cycles and to be precise, it is necessary
to show that the actual fraction of unidentified balls concentrates around the average, xt. This is
done with a slight tweak of the proof presented in Appendix A.2.

The analogous density evolution equations can be derived exactly for the cases of smear-lengths
greater than 2; however, the equations get complicated in that case. Instead, in the next section,
we derive simple, but effective, lower bounds for L-smearing. We do this by using the following
principles of generalization, inspired by the derivation above:

1. In a stage with L smearing, there will be L−1 steps of memory necessary in order to properly
capture the smearing structure.

2. In a stage with L smearing, the number of recurring structures will be L.

3. Shared bins can be used through the introduction of memory in the recursion.

Following the above principles of generalization, we now derive lower bounds on the density
evolution for the general smearing ensemble.

4.2.2 Lower Bound on L-smearing
For clarity, we will consider the ensembles with s = [L,L, L]. Along with xt, qt, dt as described
in Table 4.2, we define quantity s(i)

t as the probability that all nodes in the streams which does
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Figure 4.4: Depth 1 neighborhood of a ball under L-smearing. The quantities dt and {s(i)
t }L−1

i=1 are
the recurrent structures, where s(i)

t tracks the joint probability that all the streams which intersect
with the reference stream in {j}L−1

j=L−i bins are removed at time t. The neighborhood is drawn for
the right-hand side of the bins labeled from 1 to L only, and the symmetric left-hand side is omitted.

not intersect with the reference stream in j bins where 1 ≤ j ≤ i bins are removed at time t (see
Figure 4.4 for an illustration of this notation).

As described in the principles of generalization, there will be L recursions, and up to L − 1

memory. The probability dt is unaffected as it depends only on the other stages. All the s(i)
t ,

however, can have up to i memory (corresponding to the number of bins that do not overlap with
the reference ball). Thus, we take an approach much like a first-order approximation of a Taylor
series, and allow each s(i)

t to use only one step of memory. The following lemma characterizes the
critical quantity qt in terms of its component streams.

Lemma 2. In a stage with L-smearing,

1− qt = dt

[
2s

(L−1)
t +

L−1∑

i=2

s
(i−1)
t s

(L−i)
t −

L−1∑

i=1

s
(i)
t s

(L−i)
t

]
.

Proof. See Appendix 4.A

The following lemma establishes monotonicity of 1− qt with respect to dt, s
(i)
t . Using this fact,

we can use plug in bounds on dt and s(i)
t to give a bound on the performance of the peeling decoder

on graphs from the smearing ensemble.

Lemma 3. Let f(dt, s
(1)
t , . . . s

(L−1)
t ) = 1 − qt, then f(dt, s

(1)
t , . . . s

(L−1)
t ) is non-decreasing in

(dt, s
(1)
t , . . . , s

(L−1)
t ).

Proof. See Appendix 4.A.
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Given the characterization of qt, it now remains to give lower bounds for dt, s
(1)
t , . . . , s

(L−1)
t .

The following provides a set of bounds:

dt = e−λq
2
t−1 , (4.5)

s
(i)
t ≥ e−iλq

2
t−1 + λq2

t−1e
−λq2t−2r

(i)
t−1, (4.6)

for i ∈ {1, . . . , L− 1}, where

r
(i)
t :=

i∑

j=1

j∑

k=1

s
(k)
t−1e

−(L−k−1)λq2t−2e−(k−1)λq2t−1 . (4.7)

There is a simple way to think about the problem to attain these bounds. Consider the bound given
in equation (4.6) on s(i)

t . This term tracks the joint probability that all the streams which intersect
the reference stream in L− j bins where 1 ≤ j ≤ i are removed at time t. In order for all of these
streams to be removed, there are two cases:

1. Each stream was removed from another stage. This probability is tracked by the first term:
e−iλq

2
t−1 .

2. Exactly one ball remains among all the streams. This probability is tracked by the second
term.

We focus on the second case. Suppose that the remaining ball is in the stream which intersects
the reference stream in j bins. This implies that it is also contained in L − j shared bins that do
not intersect the reference stream. It can be removed by any of these bins, as long as it is the only
contribution. This help is tracked by the summation in the second term.

Corollary 5. The lower bounds given in equations (4.5) and (4.6) imply a lower bound on xt, the
probability that a random node is removed at time t.

Proof. This follows directly from Lemma 2 and Lemma 3.

We now give numerical experiments corroborating that the bounds in Corollary 5 capture the actual
thresholds well. We experimentally find the thresholds for full recovery by sweeping λ, and compare
them to the thresholds implied by the bounds. Figure 4.5 shows these for filters with different
lengths.

4.3 Connections to Recovery of Sparse Wavelet
Representations

In MRI, one acquires samples of the Fourier transform of an input signal of interest. MRI speed is
directly related to the number of samples acquired. An inverse transform is then used to recover the
original signal. Mathematically, let x be an n-length signal, and X := Fnx be its Fourier transform,
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Figure 4.5: Lower bounds against empirical simulations with settings s = [1, 1, L] for various
values of L. The vertical axis denotes the probability that a random ball is removed when peeling
stops (that is, 1 − xt as t → ∞), and the horizontal axis denotes the oversampling factor. We
chose these ensembles for the plot as they are of particular interest for recovery of sparse wavelet
representations (see Section 4.3 for the connection).

where Fn is the Fourier matrix of size n×n. In MRI, the problem is to recover x from {Xi : i ∈ I}
where the set I denotes the sampling locations, and this set is a design parameter.

We now present how the game of balls-and-bins and its analysis as described in Sections 3.3
and 4.2 relates to MRI. For ease of illustration we confine ourselves to the noiseless setting and
exact sparsity, but these assumptions can be relaxed. If the signal x is K-sparse, one can use
the FFAST algorithm to recover x from O(K) samples with O(K logK) computations [63, 67].
However, the images of interest in MRI are generally not sparse, but they do have sparse wavelet
representations [54]. That is, we can express x = W−1

n α, where W−1
n is an appropriate wavelet,

and α is sparse. Under this signal model, the problem of recovering α can be transformed into the
problem of decoding on an erasure channel using a sparse-graph code. In particular, the graph for
the code is drawn from a smearing ensemble with smearing length L a function of the length of the
underlying wavelet filter.

Furthermore, assume that α is K-sparse and the length of x is of the form n = f1f2f3 where
f1, f2 and f3 are co-prime. For m ∈ Z that divides n, let Dm,n be the regular downsampling
matrix from length n to m, that is, Dm,n = [Im · · · Im] with Im is repeated n/m times. Let yf` for
` ∈ {1, 2, 3} be the inverse Fourier transform of the downsampled X , that is, yf` := F−1

f`
Df`,nX .

Using the properties of Fourier Transform, it follows that yf` = Df`,nx = Df`,nW
−1
n α.

Now, for simplicity, assume that W is a block transform with block size L (eg., for 1 stage
Haar wavelets L = 2), and the support of α is chosen uniformly random over the subsets of size
K. Using the relations between yf1 , yf2 and yf3 and α, recovering α is equivalent to decoding on a
random graph from G(K,M = f1 + f2 + f3, s = [L,L, L]).

We can actually ‘improve’ the induced graph if a factor of the signal length has L as a factor.
Say that L divides f1, it follows that Af1,nW

−1
n = [W−1

f1
· · ·W−1

f1
], where W−1

f1
is repeated n/f1

times. It can be verified that y′f1 := Wf1yf1 = Af1,na, hence it aliases the wavelet coefficients
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regularly without smearing. The relation between y′f1 , yf2 and yf3 and α then induces a graph from
G(K,M = f1 + f2 + f2, s = [1, L, L]), which gives raise to a better threshold.

To complete the equivalence to decoding a sparse-graph code on an erasure channel, we need
a mechanism to check if there is a single component in a bin (a single color in a bin). This
can be implemented by processing a shifted version of x (incurring an additional factor of 2 of
oversampling). We end this section with the following lemma.

Lemma 4. Consider a signal α with ambient dimension n and sparsity K, and access to samples
from FnW

−1
n α. Then, the subsampling scheme described above along with the peeling decoder is

able to exactly recover the sparse signal α using 2.63K samples and time complexity O(K logK).

Proof. The threshold 2.63K follows from the density evolution derived in Section 4.2. For compu-
tational complexity, the creation of the bipartite graph is done in O(K logK) time. Decoding uses
an iterative decoder with a constant number of iterations [76], and the number of bins iterated over
is O(K). Combining these two, we get O(K logK) for computational complexity.

4.4 Conclusions and Future Directions
We have introduced a new random graph ensemble, termed the ‘smearing ensemble’ and developed
a framework for deriving density evolution recurrences for random graphs from this ensemble.
Recalling our balls-and-bins game, our results show that some amount of smearing can lead to
a better strategy than the full random case. A fascinating open question arises here: what is the
optimal ball-throwing strategy and what are the density evolution recurrences for such a strategy?
Here, we have given the first steps in analyzing this problem rigorously. To do this, we have
leveraged the existence of small, structured cycles and introduced the notion of memory into our
density evolution. We believe there to be a deep connection between the introduction of memory in
our recurrences and the introduction of the ‘Onsager’ term in the update equations of AMP [20].
We additionally believe the gains seen in spatially coupled ensembles [41] are intimately related
to the structural gains of the smearing ensemble. An interesting open problem is to determine the
nature of these connections. We have additionally shown the practical connection between the
smearing ensemble and the recovery of a sparse wavelet representation of a signal whose samples
are taken in the Fourier domain.

Appendix

4.A Proofs
Here, we provide proofs for the bounds on L-smearing.

Proof of Lemma 2. Consider the depth 1 neighborhood of a random node, as shown in Figure 4.4.
Let Ai, for i ∈ {1, . . . , L}, be the event that the check node labeled with i is resolved (that is,
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contains no other balls than the root) by time t. Then, we have

1− qt = Pr

(
L⋃

i=1

Ai

)

= Pr (A1 ∪ (A2 \ A1) ∪ (A3 \ (A2 ∪ A1)) ∪ · · · ∪ (AL \ (AL−1 ∪ · · · ∪ A1)))

(a)
= Pr (A1) + Pr (A2 \ A1) + Pr (A3 \ (A2 ∪ A1)) + · · ·+ Pr (AL \ (AL−1 ∪ · · · ∪ A1))

(b)
= Pr (A1) + Pr (A2 \ A1) + Pr (A3 \ A2) + · · ·+ Pr (AL \ AL−1)

=
L∑

i=1

Pr (Ai)−
L−1∑

i=1

Pr (Ai, Ai+1) , (4.8)

where (a) follows because the events are disjoint, and (b) follows because Ai \ ∪i−1
j=1Aj = Ai \Ai−1

where empty union is defined to be the empty set. Now, we note that Pr (A1) = Pr (AL) = dts
(L−1)
t

and Pr (Ai) = dts
(L−i)
t s

(i−1)
t where 1 < i < L. Additionally, we can see that Pr (Ai, Ai+1) =

dts
(i)
t s

(L−i)
t . Plugging these into equation (4.8) gives the result.

Proof of Lemma 3. First, we note that

dt ≥ s
(j)
t ≥ s

(i)
t (4.9)

if i ≥ j ≥ 1 by definition. Additionally, we can see that f(0, 0, . . . , 0) = 0 and f(1, 1, . . . , 1) = 1.
Now, we have

∂f

∂dt
= 2s

(L−1)
t +

L−1∑

i=2

s
(i−1)
t s

(L−i)
t −

L−1∑

i=1

s
(i)
t s

(L−i)
t

= s
(L−1)
t +

L−2∑

i=1

s
(1)
t (s

(L−i−1)
t − s(L−i)

t ) + s
(L−1)
t − s(L−1)

t s
(1)
t

≥ s
(L−1)
t + s

(L−1)
t (1− s(1)

t ),

≥ 0

where the first inequality follows by equation (4.9), and the last inequality follows since s(1)
t ≤ 1

and s(L−1)
t ≥ 0. Additionally, we can see that

∂f

∂s
(i)
t

= 2dt(s
(L−i−1)
t − s(L−i)

t ) ≥ 0,

for 1 ≤ i < L−1, where the inequality follows from equation (4.9). The argument follows similarly
for ∂f

∂s
(L−1)
t

. Thus, the result follows because all partial derivatives are non-negative.
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Chapter 5

Low-Degree Pseudo-Boolean Function
Recovery

5.1 Introduction
The Walsh-Hadamard transform (WHT) is a well-known signal processing tool that has applications
in areas such as image compression [72], multi-user communications via spreading sequences and
spectroscopy [59], and more recently, in learning pseudo-Boolean functions and decision trees [39],
and hypergraph sketching [50]. The WHT of an N -length signal, in general, can be calculated with
O(N logN) operations via a recursive algorithm [47, 36] similar to the Fast Fourier Transform
(FFT). Recent work has shown that when the number of significant WHT coefficients is much
smaller than the ambient dimension N , the number of samples needed from the input signal and
the computational complexity for recovering the significant WHT coefficients can be reduced [78,
49]. These algorithms have similar work flows to that of the sparse DFT algorithm described in
Chapter 3. First, they subsample the input signal and take the WHT of the subsampled signal, which
can be done using fewer operations. Then a peeling decoder recovers the WHT of the input signal.
For classes of signals whose WHT has K-nonzero coefficients, where K = Nα for α ∈ (0, 1), the
algorithms compute the WHT using O(K log(N)) samples with O

(
K log2(N)

)
operations. The

algorithms assume that the support set is uniformly distributed over all subsets of cardinality K in
the WHT domain, and the recovery guarantees are probabilistic1, where the probability is calculated
over the randomness of the support set.

In a variety of applications of interest, the significant WHT coefficients are at indices that have
a small number of ones in their binary expansion. This is the case for recovering polynomials
f : {−1,+1}n → R where the significant coefficients of the polynomial are for the monomials with
small degrees. Such polynomials arise, for example, in decision trees with small depths [42] and as
cut functions of hypergraphs where the hyperedges have small degrees [50]. Because the support of
significant coefficients differs from being uniform, the algorithms [78, 49] cannot be used directly.

This chapter is based on joint work with Swanand Kadhe [61], and Amirali Aghazadeh [2].
1The guarantees are of the form Pr (recovery)→ 1 as N →∞.
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In this chapter, we show that we can recover the WHT of signals whose non-zero WHT
coefficients are at indices whose binary expansion have a small number of ones (that is, “degree” of
the multinomial is small), in a sample and computationally efficient way. We do this by designing
subsampling patterns carefully so that such non-zero coefficients do not alias together. The sampling
patterns we use have interesting connections with coding theory: they are obtained by using parity
check matrices corresponding to codes with good minimum distance properties (see Property 4 for
a precise statement). In particular, we show that subsampling a signal at points obtained by using
the parity check matrix of a perfect code (see Definition 6) with minimum distance 2t+ 1, we are
sample optimal in recovering WHT coefficients whose binary expansion have at most t ones.

We use a variant of our method for learning fitness landscapes for DNA repair outcomes after
CRISPR-Cas9 double-strand breaks. After a double-stranded break, DNA is repaired by the cell with
possible insertions and deletions of nucleotides. Fitness, in our problem, captures the propensity
of repair outcomes to satisfy a criteria of interest, such as the probability of insertion of a certain
base pair in the DNA during repair. Learning a model for repair outcomes is of significant interest
in biology as it can be used for knocking out genes or treating genetic conditions through gene
editing. Recent studies have shown that after a double-strand break, the DNA repair outcomes
are a function of the DNA sequence around the cut site [65]. As nucleotides in the DNA can take
on 4 different bases (A,T,C,G), a sequence of n nucleotides can have 4n possible values, which
poses a high-dimensional problem. First step in our approach is to represent the DNA sequence in a
window around the cut site as a binary sequence, and study the function that maps this sequence to
the fitness of DNA repair outcomes. We observe that this function is sparse in the WHT domain
(see Section 5.5.3), and use our method for learning it in a sample and computationally efficient
way. Furthermore, the learned model provides interpretable insights on the DNA repair process
as the nonzero coefficients in the WHT capture which nucleotides around the cut site interact to
influence the fitness of the repair outcomes.

5.1.1 Notation and the Organization of the Chapter
We use row vectors having elements in F2 to denote indices. For a binary string ` ∈ Fn2 , let `i
denote its i-th coordinate, the Hamming weight of ` is defined as the number of ones in `, that is,
wH(`) = |{i : `i 6= 0}|. We use Knt := {` ∈ Fn2 : wH(`) ≤ t} to denote the set of all binary strings
of length n with Hamming weight less than or equal to t. For two strings ` ∈ Fn2 and m ∈ Fn2 , both
of length n, we define 〈`,m〉 =

∑n−1
i=0 `imi where the summation is over F2. We use h(·) to denote

the binary entropy function h(p) = −p log2(p)− (1− p) log2(1− p) for p ∈ (0, 1) and h(p) = 0
for p ∈ {0, 1}.

The organization of this chapter is as follows. In Section 5.2 we cover background on WHT
and coding theory that will be useful to explain our main concepts. In Section 5.3, we formulate
the problem and explain our method. In Section 5.4, we look at the performance of various
deterministic and randomized constructions for generating subsampling patterns. We apply a variant
of our algorithm for learning the fitness landscape of DNA repair outcomes in CRISPR-Cas9
experiments in Section 5.5. In Section 5.6, we describe hypergraph sketching as another application
of our algorithm, and conclude with Section 5.7.
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5.2 Background
We first cover relevant background on WHT and then notions of coding theory that will be useful.

5.2.1 Walsh-Hadamard Transform
Let signal length be N = 2n, for some integer n ≥ 0. The Walsh-Hadamard transform (WHT) of a
vector x ∈ RN is the vector X ∈ RN whose `th element equals to2

X` =
1

N

∑

m∈Fn2

xm(−1)〈`,m〉. (5.1)

The inverse transformation is given by

xm =
∑

`∈Fn2

X`(−1)〈m,`〉, (5.2)

which has the same form with equation (5.1). Looking at the inverse transformation, we can interpret
the WHT as follows. Consider the polynomial (multinomial) in n variables

f(z0, . . . , zn−1) =
∑

`∈Fn2

X`

∏

i:`i=1

zi, (5.3)

then xm is equal to the evaluation of this polynomial at zi = (−1)mi for i ∈ {0, . . . , n− 1}. As can
be seen, the WHT coefficient X` multiplies the monomial

∏
i:`i=1 zi, which is a function of wH(`)

many variables {zi : `i = 1}, and we call wH(`) the degree of the coefficient X`. For example, the
pseudo-Boolean function

f(z0, z1, z2, z3, z4) = 12z0z3 − 3z2 + 6z0z1z4, (5.4)

has three terms with degrees 2, 1, and 3 and WHT coefficients 12, −3, and 6, respectively. Note
that the pseudo-Boolean function in this example is also sparse since out of 25 = 32 possible
monomials3 only three are active (that is, have non-zero coefficients).

In order to reduce down the number of samples we need from the input signal (or evaluations
of the polynomial), we are going to subsample it. The following property relates the WHT of a
subsampled signal to the WHT of the input signal.

Property 1 (Subsampling/Aliasing). Let x be an N = 2n length vector. Given a full-rank matrix
H ∈ Fb×n2 , let y be the B = 2b length vector where ym = xmH for all m ∈ Fb2. Then, the WHT
coefficients of y satisfy

Yk =
∑

j∈FN2 :jH>=`

Xj, (5.5)

for all ` ∈ FB2 , where Xj is the jth WHT coefficient of x.
2Note that the scaling of 1/N is usually included in the inverse WHT equation. We included the scaling in the

WHT equation because it helps us simplify the notation in this chapter.
3The monomials are

{∏
z∈Z z : Z ∈ P ({z0, z1, z2, z3, z4})

}
, where P (·) denotes the powerset of its argument.
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Property 1 says that if we subsample the input signal x at indices given by the range of the rows
of the matrix H, the jth index WHT coefficient aliases to the bin with index jH>. Below is an
example of the aliasing pattern induced by subsampling.

Example 1. Given x ∈ R8, let y ∈ R4 be equal to ym = xmH where H ∈ F2×3
2 is

H =

(
1 0 1
0 1 1

)
. (5.6)

Then, the elements of y are: y00 = x000, y01 = x011, y10 = x101, and y11 = x110, and the WHT
coefficients of y satisfy

Y00 = X000 +X111,

Y01 = X100 +X011,

Y10 = X010 +X101,

Y11 = X110 +X001,

(5.7)

which follows from the Property 1. �

There is another way to view these aliasing patterns. For the b × n matrix H, there is a full
rank (n − b) × n matrix G ∈ F(n−b)×n

2 satisfying HG> = 0, where 0 is the all zero matrix of
appropriate size. Then, if the WHT coefficient at ` of the input signal aliases to a WHT coefficient
of the sampled signal, then coefficients of the input signal at {`+ uG : u ∈ Fn−b2 } also aliases to
that same WHT coefficient of the sampled signal. Note that because the rows of H and G have
inner products equal to 0, sampling of the signal in the input space and the aliasing in the WHT
domain happens in orthogonal dimensions. The following is an example for this equivalent view
of aliasing, and Figure 5.1 shows examples of sampling and corresponding aliasing patterns that
makes the geometry more evident.

Example 2. For the matrix H given in Example 1, the matrix G given by

G =
(
1 1 1

)
(5.8)

satisfies HG> = 0. As can be seen in equation 5.7, the coefficients at locations ` and `+ (1, 1, 1)
are aliased to the same coefficient in Y . �

There is one more property of WHT that will be useful in deriving our algorithm.

Property 2 (Shifting/Modulation). For p ∈ Fn2 , zm = xm+p has WHT coefficients

Z` = (−1)〈`,p〉X`, (5.9)

for all ` ∈ FB2 , where X` is the `th WHT coefficient of x.

This property says that shifting the signal generates modulation patterns for WHT coefficients
based on the coefficient’s index and the shift.
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x100 x101

x000 x001

x110 x111

x010 x011

X100 X101

X000 X001

X110 X111

X010 X011

(a) When the input is sampled by the range of (100) and (010), in the WHT domain, coefficients are aliased
along the dimension given by (001).

x100 x101

x000 x001

x110 x111

x010 x011

X100 X101

X000 X001

X110 X111

X010 X011

(b) When the input is sampled by the range of (101) and (010), in the WHT domain, coefficients are aliased
along the dimension given by (101).

x100 x101

x000 x001

x110 x111

x010 x011

X100 X101

X000 X001

X110 X111

X010 X011

(c) When the input is sampled by the range of (100), in the WHT domain, coefficients are aliased along the
range of vectors (001) and (010).

Figure 5.1: Left images correspond to the input domain, and the right images correspond to the
WHT domain. Gray shaded nodes denote the samples taken from the input signal. Nodes with the
same color are aliased together in the WHT domain. The aliasing happens along vectors that are
orthogonal to the vectors along which the samples of the input signal are chosen.
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5.2.2 Relevant Coding Theory Background
We give a brief overview the relevant notions from linear codes that will be useful to explain our
main concepts. A binary (n, k, d) linear code C consists of 2k binary strings each of length n, and
has minimum distance dmin := min 6̀=m,`,m∈C wH(`+m), equal to d. Note that, in a linear code,
minimum distance is equal to the minimum over the Hamming weights of the non-zero codewords
of the code. The codewords of a linear code can be generated as the range space of the rows of an
associated generator matrix G ∈ Fk×n2 that has full rank. There is an associated parity check matrix
H ∈ F(n−k)×n

2 for the code such that ` ∈ C if and only if `H> = 0. The minimum-weight property
and the existence of a parity check matrix for linear codes yields the following property [8].

Property 3. Let H be a parity check matrix of an (n, k, d) linear code; then, `H> 6= 0 for every
` 6= 0 with wH(`) < d.

5.3 Low-Degree WHT by Sampling With Codes
Assume that we want to find the WHT coefficients of x ∈ RN , where N = 2n, and we know that
the WHT coefficients X` for wH(`) > t are zero for a given t < n. Hence, the number of non-zero
coefficients can be at most |Knt |, which could be much less than N depending on t. In order to
reduce sampling and computation cost in recovering the non-zero coefficients, let us consider first
subsampling and then performing the WHT on the subsampled signal. Consider using a parity
check matrix H of an (n, k, d) linear code where d > 2t to get sampled signal y of length 2n−k

as ym = xmH for m ∈ {0, . . . , 2m−k − 1}. WHT of y is then obtained using O
(
(n− k)2n−k

)

operations. Every WHT coefficient X` with ` ∈ Knt will appear at a different WHT coefficient of y
by the following property.

Property 4. Let H be a parity check matrix of an (n, k, d) linear code with minimum distance
d > 2t. For ` ∈ Fn2 and m ∈ Fn2 , with ` 6= m, we have `H> 6= mH> whenever wH(`) ≤ t and
wH(m) ≤ t.

This follows from Property 3; as the minimum distance is d > 2t, the code that has H as its
parity check matrix has no codeword with weight less than or equal to 2t (except for the all zero
codeword). Hence, (` −m)H> 6= 0, as wH(`−m) ≤ 2t whenever wH(`) ≤ t and wH(m) ≤ t.
This property implies that if the minimum distance d of a code satisfies d > 2t, then every binary
string with Hamming weight less than or equal to t is mapped to a different vector when multiplied
by H> on the right.

Example 3. Matrix H given in Example 1 is a parity check matrix of an (n = 3, k = 1, d = 3)
code. We can validate that the minimum distance of the code is 3 because the columns of the parity
check matrix H are the non-zero strings of length 2, so no two columns are equal to each other,
but sum of all 3 columns equals to 0. As d > 2t for t = 1, coefficients X` for ` ∈ Kn=3

t=1 alias to
different coefficients in Y . This can be seen to be true from the equations in (5.7). �
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For ` ∈ Knt , in order to find the WHT coefficient X`, we read off the WHT coefficient Y`H> .
Hence, we need a mapping between Knt and the strings {u : u = `H>, ` ∈ Knt }. This mapping
can be calculated in O(|Knt | (n − k)) time, because given the value of uH> for some u, we can
calculate vH> for v satisfying wH(u+ v) = 1 in O(n − k) time. Hence, we can read off all the
aliased indices with O(|Knt | (n− k)) operations.

Combining the complexity results for taking the WHT and reading off the coefficients, the
overall computational complexity becomes O((n−k)2n−k). The complexity is dominated by taking
WHTs as 2n−k ≥ |Knt | for an (n, k, d) code with d > 2t, which follows from the well-known
Hamming bound [8].

Our algorithm to compute the WHT of an N = 2n length x, if its WHT coefficients X` for
` /∈ Knt for some t are zero, can be summarized as follows:

1. Choose an (n, k, d) linear code with d > 2t, and let H ∈ F(n−k)×n
2 be its parity check matrix,

2. Subsample x to get ym = xmH for 2n−k values of m ∈ Fn−k2 ,

3. Take the WHT of y to get Y ,

4. Read off the WHT coefficient X`, where ` ∈ Knt , from Y`H> .

Remark 1. In deriving our algorithm and the results, we assumed that the support of the WHT
coefficients are exactly on Knt . The algorithm can be made robust to accommodate significant
coefficients outside this set or sparsity within this set by assigning modulation patterns to the WHT
coefficients of the input signal by introducing shifts (see Property 2) before sampling. This idea
is similar to [78, 49], where the authors use these modulation patterns to recover the indices of
the WHT coefficients of the input signal from WHT coefficients of the subsampled signal. In
Section 5.5.2 of this chapter, we present a variation of our method for such settings.

In contrast to our algorithm, a naı̈ve approach to computing the WHT coefficients in Knt would
be by inverting a linear system. Because there are |Knt | many unknowns that can be non-zero, we
can obtain |Knt | samples of the input signal to get an invertible linear system. Solving such a linear
system requires O(|Knt |2) operations in general. Our algorithm can be seen as obtaining samples
at carefully designed locations, possibly more than the minimum amount necessary, so that the
resulting linear system can be inverted efficiently.

It is useful to compare the computational complexity of our proposed method to that of the naı̈ve
approach. For that, we are going to use an existence result. Gilbert-Varshamov bound states that for
every 0 ≤ δ < 1/2, and 0 < ε ≤ 1− h(δ), there exists a linear code with rate R ≥ 1− h(δ)− ε,
and relative distance δ [89]. Which means that for ε > 0, δ ∈ (0, 1/4), and for sufficiently large n,
there exists an H with size n(h(2δ) + ε)× n with minimum distance greater than 2δn. This enables
our algorithm to recover coefficients in Knnδ. The ratio of the computational complexity of the naı̈ve
algorithm to that of ours, order-wise, is

|Knt |2
n(h(2δ) + ε)2n(h(2δ)+ε)

&
22nh(δ)

n3(h(2δ) + ε)2n(h(2δ)+ε)
= O

(
2n(2h(δ)−h(2δ)−ε)) . (5.10)
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Since 2h(δ)− h(2δ) > 0, for each δ ∈ (0, 1/4) fixed, we can choose an appropriate ε > 0 and get
savings in the computational complexity that is exponential in n.

Even though the result above is enough to show the existence of good codes for our algorithm,
in some settings, we can get savings that are far better. Below we provide a concrete example.

5.3.1 An Illustrative Example
Say n = 23, and in the WHT domain, only coefficients whose indices have Hamming weight less
than or equal to 3 are non-zero. By the polynomial interpretation of the WHT in equation (5.3), this
corresponds to having non-zero coefficients at multinomial terms that have degree less than or equal
to 3. Counting the number of such terms, we have

∣∣K23
3

∣∣ =
3∑

i=0

(
23

i

)
= 211 (5.11)

many of them.
Now, choose a subsampling matrix H ∈ F11×23. We know from Property 1 that a coefficient

with index j ∈ F23
2 will be aliasing to the coefficient at index ` ∈ F11

2 where ` = jH>. By the
assumption on the signal, we know that the index set that contains non-zero coefficients are K23

3 .
From equation (5.11), it follows that |K23

3 | = 211, and the number of bins is also equal to 211. An
interesting question is how are the WHT coefficients of the input signal distributed over the 211

WHT coefficients of the subsampled signal.
Now, choose H as a parity check matrix of the (23, 12, 7)-Golay code [28]. Since the minimum

distance is 7, it means that every binary string of length 23 with weight up to and including 3 must
map to a different vector when multiplied by H> (cf. Property 4). There are 211 output vectors and
there are 211 input strings which map to a unique vector, it must be that each vector gets assigned
exactly one such string. This is equivalent to each element of K23

3 mapping to a unique index when
we subsample the input signal using this particular H.

Combining the above ideas, the algorithm to recover the WHT if the non-zeros are over K23
3

defined as above is as follows:

1. Subsample x using a parity check matrix H of the (23, 12, 7)-Golay code, and get ym = xmH,
for 211 values of m,

2. Take the WHT of y which is of length 211,

3. Read off X`, for wH(`) ≤ 3, from Y`H> .

5.4 Choice of Codes
In this section, we analyze the sample and computational complexity of recovering low-degree
WHT coefficients by using codes from particular families.
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5.4.1 Perfect Codes
The subsampling matrix used in the illustrative example in the previous section and in Example 1
are called perfect codes.

Definition 6 (Perfect codes). A binary linear (n, k, d = 2t+ 1) code is perfect, if

t∑

i=0

(
n

i

)
= 2n−k. (5.12)

This definition says that the balls of radius t around the 2k codewords perfectly cover the whole
space of binary strings of length n. While recovering coefficients from Knt , because 2n−k = |Knt |
for a perfect code, the number of samples we take from the input signal is equal to the number of
possible non-zero coefficients. This makes the sample complexity optimal, and the computational
complexity O(|Knt | log(|Knt |). However, it is well-known that any nontrivial perfect code (over any
finite field) must have the same parameters n, k, and d as one of the Hamming or Golay codes [8].
Hence, the application of such codes to recovering low-degree WHT coefficients is limited. Next,
we demonstrate that several well-known families of binary codes can be used to cover a wider range
of parameters.

5.4.2 Bose-Chaudhuri-Hocquenghem Codes
Bose-Chaudhuri-Hocquenghem (BCH) codes are a class of binary linear codes [31, 9]. Given
integers r ≥ 3 and t < 2r−1, there exists a BCH code with [8]:

n = 2r − 1, (5.13)
n− k ≤ rt, (5.14)

dmin ≥ 2t+ 1. (5.15)

Combining (5.13) and (5.14), we get n− k ≤ t log2(n+ 1).
Say we want to recover the WHT coefficients at Knt by subsampling the input signal at points

given by the parity check matrix of a BCH code, then we will take 2n−k ≤ (n+ 1)t samples of the
signal. We have

|Knt | ≥
(
n

t

)
≥
(n
t

)t
. (5.16)

Hence, the oversampling factor, that is, the ratio of the number of samples taken to the degrees of
freedom in the signal, satisfies

2n−k

|Knt |
≤ (n+ 1)t

(n/t)t
≤
(

8t

7

)t
, (5.17)
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where 8/7 comes because n ≥ 7 by the assumption r ≥ 3. Hence, whenever t = O(1), we get
a constant oversampling factor. Even though we get a constant oversampling in this setting, the
bound in (5.17) can be large. However, this upper bound is observed to be loose in many settings.
Table 5.1 shows operating points of BCH codes along with resulting oversampling factors. We
observe that they are significantly smaller than the bound in equation (5.17).

Table 5.1: Sample operating points for BCH codes (adapted from [13]).

n k t 2n−k/ |Knt |
63 57 1 1.00

51 2 2.04
45 3 6.29
39 4 26.33
36 5 17.51

127 120 1 1.00
113 2 2.02
106 3 6.15
99 4 25.15
92 5 129.71

5.4.3 Random Linear Codes
Random linear codes satisfy the Gilbert-Varshamov bound with probability going to one expo-
nentially fast in the blocklength [89]. Hence, we can use them to recover coefficients in Knδn for
δ < 1/4 with high probability. For this, choose H ∈ Fb×n2 where b = n(h(2δ) + ε), at random
uniformly over all binary parity check matrices of size b× n. The probability of the code to have
minimum distance less-than or equal to 2δn goes to zero exponentially fast in n. The oversampling
factor becomes

2b

|Knδn|
≤ (n+ 1)2n(h(2δ)+ε−h(δ)) ≤ (n+ 1)Nh(2δ)+ε−h(δ).

By the Gilbert-Varshamov bound, for every 0 < ε and sufficiently large n, there exists a subsampling
pattern giving an oversampling factor of O(Nh(2δ)+ε−h(δ)) to recover WHT coefficients on Knδn.
Using a random linear code will be able to do this with probability going to 1 exponentially in n.

5.5 Learning Fitness Landscapes for DNA Repair Outcomes
In this section of the chapter we apply a variant of our algorithm (to be described in Section 5.5.2)
for learning fitness landscapes for DNA repair outcomes after CRISPR-Cas9 double-strand breaks.
After a double-stranded break, the DNA is repaired by the cell with possible insertions and deletions
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of nucleotides. Fitness, in our problem, captures the propensity of repair outcomes to satisfy a
chosen criterion of interest, such as the probability of insertion of a certain base pair during repair.

Recent studies on site-specific double stranded breaks generated by the RNA-guided DNA
endonuclease Cas9 have shown that DNA repair outcome following Cas9 cutting is nonrandom
and consistent across experimental replicates, cell lines, and reagent delivery methods and highly
a function of the DNA sequence around the cut site [65]. Follow-up studies employed machine
learning models such as deep neural networks [81], decision trees [48], and logistic regression
models [3] to train DNA repair models using a database of double stranded breaks generated in
CRISPR-Cas9 experiments. These models take in the DNA sequence of the genome in a window
surrounding the cut and predict key statistics of the repair outcomes such as the percentage of cells
with certain frame shifts, insertions, and deletions.

While initial studies have shown the applicability of these machine learning models in designing
gene knock-out [48] and knock-in [81] experiments, their applicability is limited due to the lack of
a reliable, interpretable, and scalable machinery to train and analyze the DNA repair models.

Reliability. Currently, there is no clear mechanism to determine the number of site-specific
CRISPR experiments required for training DNA repair models reliably. The number of experiments
is typically defined by the total budget invested in the experiments rather than a principled scientific
mechanism backed by theoretical reasoning. In addition, the location of cut sites (guide RNAs) on
the genome are determined either randomly rather than experimental design procedures tailored for
the repair models.

Interpretability. Our understanding of how the current DNA repair models operate is limited;
for example, we do not have a clear mechanism to determine what features or combination of
features enrich for key repair outcomes such as frame shifts, insertions, and deletions. Interpretable
models would enable an understanding of the repair process as well as a set of design rules for gene
knock-out and knock-in experiments.

Scalability. Models for DNA are slow in the inference time. Considering the growing interest
in using CRISPR-Cas9 in different cell types, there is a critical need for more scalable methods at
the inference time.

Here, we aim to address these problems by analyzing the landscape of the DNA repair process
in the spectral domain by using our sparse WHT recovery algorithm. The key insight that enables
our framework is that the DNA repair model, in its full generality, can be formulated by a pseudo-
Boolean function f(z1, z2, . . . , zn): {−1, 1} → R, where zi ∈ {−1, 1} are binary variables that
encode the input DNA sequence in a window of length L surrounding the cut, and f(z) is a real-
valued outcome of interest, for example, percentage of insertions. This function admits a polynomial
(multinomial) representation as in equation 5.3. From a biological perspective, the index of the
non-zero coefficients in the WHT domain reveal high-order interactions between the input features
that enrich (or deplete) certain DNA repair outcomes. The interaction order depends on the number
of “1”s in the coefficient index (degree of the coefficient) as it corresponds to a multinomial term
with that many variables (see Section 5.2 for this interpretation). Our goal in molecular biology is
to efficiently estimate these coefficients from the underlying biological process. The main challenge
is that the scale of the problem grows exponentially with n as there are 4n different configurations
for n nucleotides. The key observation that enables the recovery of the coefficients is that the DNA



CHAPTER 5. LOW-DEGREE PSEUDO-BOOLEAN FUNCTION RECOVERY 73

repair landscape is sparse in the WHT domain (see Figure 5.4). Therefore, the problem reduces
to recovering the WHT coefficients (equivalently, the pseudo-Boolean function) when there is
sparsity in the WHT domain. While methods proposed in compressed sensing literature, such as
LASSO [86], OMP [87], or FISTA [7], can be used to recover a sparse signal in a sample efficient
way, their computational complexities scale at least linearly with the ambient dimension N . This
makes these well-known algorithms infeasible for use, as even for modest value of the window size,
e.g., n = 40, the dimension of the problem N becomes too large to handle.

5.5.1 Contributions
The variant of our method discussed in this chapter provides an efficient algorithm that employs a
divide-and-conquer strategy which breaks the problem of recovering a K-sparse signal into K-many
smaller problems of recovering 1-sparse signal, and solve each 1-sparse problem efficiently, and
combine their solutions to recover the original signal. The recovery algorithm is closely tied to
decoding a sparse-graph-code by peeling, and we use techniques from the literature on Low Density
Parity Check (LDPC) codes [76] and product codes [23] for designing and analyzing our algorithm.
Our contributions for learning the fitness landscape of DNA repair outcomes can be summarized as
follows.
• Approach: We analyze the fitness landscape of the DNA repair outcome after a CRISPR

double strand break in the WHT domain. We show that the landscape is highly sparse, and
the sparsity level depends on the type of the repair outcome.
• Methodology: Our method is the first machine-learning framework that leverages the sparsity

of DNA repair landscape in the WHT spectral domain.
• Interpretation: By looking at which coefficients are active in the WHT domain, our method

provides insights into molecular biology by extracting higher-order interactions among the
input features.
• Scalability: Our method is scalable to high dimensions as computational complexity scales

linearly with the inherent degrees of freedom of the signal (sparsity in the WHT domain) and
has a week dependence on the ambient dimensions (polylogarithmic).

5.5.2 Learning Framework
In Section 5.3, we described a method for recovering all of the low-degree WHT coefficients by
choosing an appropriate subsampling matrix. It turns out, many functions of interest, such as fitness
landscape of DNA repair outcomes, the WHT is sparse on top of being low degree and can possibly
have a small number active high-degree terms. Hence, we develop a variation of our algorithm
where we can leverage this sparsity to reduce down the sample and computational complexity
beyond that of described in Section 5.3 and handle higher-degree terms. To do this, we combine
our subsampling strategies with peeling-based algorithms for sparse WHT [50, 78, 51], which are
algorithms similar in flavor to the sparse DFT algorithm described in Chapter 3. These algorithms
assumes that the support in the WHT domain is chosen uniformly at random over subsets of size K



CHAPTER 5. LOW-DEGREE PSEUDO-BOOLEAN FUNCTION RECOVERY 74

of N elements. In particular, we have the following theorem for the SPRIGHT algorithm (SParse
Robust Iterative Graph-based Hadamard Transform) from [51].

Theorem 7 (Adapted from Theorem 1 from [51]). Suppose that N = 2n and assume that K = Nα

for a fixed α ∈ (0, 1). Let x ∈ RN be a vector, and X ∈ RN be its WHT. Assume that X is
K-sparse and its support is selected uniformly at random among all possible subsets of size K.
Then, SPRIGHT algorithm has the following properties:

1. Sample complexity: SPRIGHT uses O
(
K log2N

)
samples of x.

2. Computational complexity: Total number of operations to successfully decode all nonzero
WHT coefficients or declare a decoding failure is O

(
K log3N

)
.

3. Success probability: Probability of recovering X completely approaches to 1 as N grows,
where the probability is taken over randomness of the support of X .

Similar to the sparse DFT architecture shown in Figure 3.1, SPRIGHT first subsamples the signal
and then takes short WHTs. This creates linear mixing of WHT coefficients through Property 1
and Property 2. Then, the algorithm proceeds to recover the WHT coefficients of the original input
through fast peeling based on the aliased measurements. Algorithm 3 provides a pseudocode for the
overall procedure.

Algorithm 3: Sparse-WHT Learning Algorithm
Input :Function xm for m ∈ Fn2 , number of subsampling groups C, number of shifts per

subsampling group P
Output :WHT support and coefficient values S

1 Y,H,P ← Subsample(x,C, P )
2 S ← ∅
/* go over each digit */

3 for i← 1 to I do
/* go over subsampling groups */

4 for c← 1 to C do
/* go over check-nodes */

5 for ` ∈ Fb2 do
6 (type, ˆ̀, v̂) = ClassifyNode(Y

(c)
` ,P)

7 if type is singleton then
8 S ← S ∪ (ˆ̀, v̂)

9 Peel(ˆ̀, v̂, H)

10 end
11 end
12 end
13 end

When the sparsity is not uniformly distributed over size K subsets of N , but over low-degree
terms, the induced sparse-graph using the subsampling algorithm proposed in [51] does not produce
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the guarantees of Theorem 7, and its performance degrades significantly. The reason is that, under
that subsampling scheme, most of the low-degree terms alias together at the same check nodes,
and the peeling algorithm cannot progress because of the lack of singletons (see Section 1.1 and
Figure 1.4 for the importance of singletons for the peeling decoder). Hence, to handle support over
the low-degree terms, the subsampling matrices need to be designed guided by the ideas described
in Section 5.4. Example 4 depicts a setting showing how the subsampling matrices affect peeling
decoder when sparsity is distributed over the low-degree terms.

Example 4. Example 1 used the subsampling matrix

H =

(
1 0 1
0 1 1

)
,

which had each WHT coefficient with degree less than or equal to 1 alias to a separate check node.
If, instead, we subsample using a single row of this matrix, say the first row of H

H1 =
(
1 0 1

)
,

then y(1)
m = xmH1 has WHT equal to

Y
(1)

0 = X000 +X010 +X101 +X111,

Y
(1)

1 = X001 +X100 +X011 +X110.

As can be seen, each bin has exactly 2 coefficients with degree less than or equal to 1. On the other
hand, if we use a subsampling matrix chosen as one of the rows of the identity matrix of size 3, say

H2 =
(
1 0 0

)
,

then y(2)
m = xmH2 has WHT equal to

Y
(2)

0 = X000 +X001 +X010 +X011,

Y
(2)

1 = X100 +X101 +X110 +X111,

which shows that 3 out of 4 of the WHT coefficients with degree less than or equal to 1 alias to
check node 0. Whenever the support is uniformly distributed over the low-degree terms, the peeling
decoder has a higher probability of failing to recover all of the variable nodes when H2 is used
for subsampling compared to H1. For example, if sparsity if K = 2 with support distributed over
the term of X with degree t ≤ 1, the peeling decoder has 2/3 chance recovering the full support
when subsampling with H1 compared to 1/2 with H2. Note that these probabilities are for this
example only, and the gap between them grow with problem size (see the plot in Figure 5.2 for an
example). �
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The example provides a small setting showing the importance of the choice of the subsampling
matrices. Here, we show the results of a larger numerical experiment depicting how the performance
gap grows with problem size. In the numerical experiment n = 24, hence N ≈ 16 million, number
of check nodes M = 768, sparsity is K = 548, and the support is uniform over the low-degree
terms with t ≤ 5. We use two subsampling schemes. First one is the ‘canonical design’ where
we subsample the input signal using subsets of the rows of the identity matrix of size 24× 24 (as
is done in [51]), and the second one is the ‘random design’ where we subsample the input signal
using random matrices. Let R be the fraction of variable nodes recovered in a run of the experiment.
Figure 5.2 shows the empirical Pr (R ≥ r) we obtain from 500 random experiments from this
setting. As can be seen, the ‘random design’ allows for the recovery of all variable nodes with high
probability, while the ‘canonical design’ fails to recover more than r = 0.2 fraction of the variable
nodes.
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Figure 5.2: Recovery of variable nodes using subsampling matrices from ‘random design’ and
‘canonical design’. The setting is where n = 24, N ≈ 16 million, the number of check nodes
M = 768, sparsity is K = 548, and the support of WHT coefficients is uniform over the low-degree
terms with t ≤ 5. The ‘canonical design’ subsamples the input signal using subsets of the rows of
the identity matrix, and the ‘random design’ subsamples the input signal using random matrices. R
denotes the fraction of variable nodes recovered. We can see that the ‘random design’ allows for the
recovery of all variable nodes with high probability, while the ‘canonical design’ fails to recover
more than r = 0.2 fraction of the variable nodes.

In light of the discussion above, we use random matrices for subsampling the input signal as in
Algorithm 4 (in the appendix to this chapter). The peeling process works as described in Section 1.1
where for each recovered variable node (coefficient), we strip its contributions from the check nodes
it corresponds to as shown in Algorithm 5 (in the appendix to this chapter). This assumes that we
have a mechanism to detect singleton check nodes, and recover the location and value of the variable
node connected to them. One way to do this is by using O

(
log2N

)
shifts for each subsampling

group where log(N) shifts are to recover each digit of the location `, and we take O(logN) samples
for each location for noise averaging. The `th WHT coefficient of the signal obtained by shifting
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indices of x by p and then subsampling by H is equal to

UH,p(`) :=
∑

j:jH>=`

(−1)〈j,p〉Xj, (5.18)

which follows from combining Property 1 and Property 2. Furthermore, let us define the ratio of a
WHT coefficient obtained by using the same subsampling matrix but using two different delays p
and q as

rH,p,q(`) :=
UH,p+q(`)

UH,p(`)
. (5.19)

Assume that for a transform index `, there is only one index j such that H>j = ` and Xj 6= 0 in
equation (5.18) (that is, the check node corresponding to it is a single-ton). Then, it follows that
UH,p(`) = (−1)〈j,p〉Xj . Using q = ei ∈ F n (the vector with all indices equal to 0 except for the ith
index which is equal to 1) in equation (5.19) then yields

rH,p,ei(`) =
(−1)〈j,p+ei〉Xj

(−1)〈j,p〉Xj

= (−1)〈j,ei〉. (5.20)

Note that this value is in {−1,+1} for all p if there is no noise. As the value of 〈j, ei〉 is equal to
the ith index of the location j ∈ Fn2 , by using shifts {ei}n−1

i=0 going through all indices of j we can
recover it. When there is noise, it can be shown that by taking O(logN) random shifts and using a
threshold τ that depends on the noise level, the probability of detecting a single-ton and finding
its location wrongly can be made polynomially small [51]. The pseudocode for processing check
nodes is shown in Algorithm 6 in Appendix 5.A.

Next we show the results we get by applying this algorithm to learning fitness landscapes of
DNA repair outcomes.

5.5.3 DNA Repair Landscapes
We will consider two DNA repair landscapes of scientific interest: insertion percentage and in-
frame shift 4 percentage. In order to compute the fitness landscape, we first generate all the 4L

possible binary codewords m of length n = 2L. We then decode the binary code words into their
corresponding DNA sequences through the following mapping: A:00, T:01, C:10, and G:11. With
this encoding, we can represent a DNA sequence of length L using a binary code m of length
n = 2L.

We then construct CRISPR experiments where we break the genome exactly in the middle of
the DNA sequences constructed as described above. We repeat the same experiment for all the 4L

4Amino acids in the DNA are represented by triplets where consecutive three nucleotides correspond to an amino
acid in the synthesized protein. An indel (insertions or deletions) that is not divisible by three can significantly can
change the grouping of the nucleotides, resulting in a completely different sequence of amino acids in the synthesized
protein. By in-frame shift, we denote indel lengths divisible by three.
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Figure 5.3: The fitness landscape of DNA repair outcomes in U2OS (human bone Osteosarcoma
epithelial cells) in terms of the insertion percentage. Only the first 100 000, 10 000, and 1 000
coordinates of the landscape are illustrated for clarity. Insertion percentages are mean-subtracted.
The landscape shows redundant structures in different resolutions.

Figure 5.4: The WHT of the repair landscape for insertion percentage in U2OS. Only the first
100 000 and 20 000 coordinates of the landscape are illustrated for clarity. Right-most plot shows
the `2 error in recovering the landscape using the top coefficients of the WHT transform.

generated DNA sequences and use a trained repair model (e.g., inDelphi [81] or SPROUT [48])
to find the repair outcome for all the generated DNA sequences. We then store the key summary
statistics (outputs) of the DNA repair outcome that we want to learn, that is, in-frame shift percentage
and insertion percentage. We represent each summary statistics in a 4L-dimensional vector in the
same order as they appear in the binary code m; we call these vectors the fitness landscape of the
DNA repair outcomes. These landscapes fully describe the DNA repair models in terms of the key
statistics.

An example of the fitness landscape in terms of the insertion percentage is illustrated in
Figure 5.3 for window length L = 10 in U2OS (human bone Osteosarcoma epithelial cells). The
figure illustrates the mean subtracted insertion percentage of the first 100 000, 10 000, and 1 000
coordinates of the 410 = 1 048 576-dimensional landscape. As can be seen from the figure, the
insertion percentage displays structure.

We applied the WHT on the resulting 410-dimensional landscape signal. The spectrum of
insertion percentage and in-frame shift percentage are depicted in Figures 5.4 and 5.5 respectively.
In order to measure how sparse the WHT transform is, we plot the recovery error of the inverse
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WHT using only the top components of the WHT transform in terms of the `2 norm. Our key
observation is that the WHT transform of the landscape is sparse; only the top-100 coefficients
out of the total of 410 coefficients (< 0.01%) suffices to recover the insertion percentage landscape
with around 10% error. The WHT of the in-frame shift landscape is more wide spread and shows
coefficients that are periodically repeated along the spectrum. The spectrum is still sparse; however,
it is more dense compared to the insertion percentage. More than 10 000 WHT coefficients out of the
total of 410 coefficients (≈ 1%) are required to recover the landscape with around 10% error. This
suggests that the information required to estimate the in-frame shift percentage is more widespread
compared to insertion percentage, which is more localized to the nucleotides around the cut site.
Our finding in Figures 5.4 and 5.5 also suggest a bound in terms of the number of samples required
to approximate the function x[m].

Knowing that the landscape of the repair outcomes can be recovered using only a small fraction
of the WHT coefficients, a natural question is what biological features the top WHT coefficients
corresponds to. Each WHT coefficient αS corresponds to a monomial defined by S . Table 5.2 shows
the index of the top-5 WHT coefficients, their corresponding binary representation, monomial and a
short interpretation of each monomial. Each code in the second column is the binary representation
of the index written in n = 2L = 20 bits. The monomial is obtained based on the pattern of “1”s
in the binary code. We can write the repair model x[m] in terms of the first five monomials as,
x[m] ≈ 13.76z9 − 4.61z9z10 − 3.96z9z10z11z12 + 2.84z9z12 + 2.56z10z11z12, where zi = (−1)mi .
Note that the cut site is in between z10 and z11 and is indicated by a straight line in Table 5.2.

Table 5.2: Top-5 WHT coefficients of the repair landscape for percentage of insertions in U2OS cells.
WHT coefficients correspond to monomials defined by their binary expansions. Each monomial can
be interpreted as a question regarding the type of the nucleotides around the cut site.

index code monomial interpretation coefficient

2048 00 00 00 00 10 | 00 00 00 00 00 z9 {C,G}∧ {A,T}@-1? 13.76

3072 00 00 00 00 11 | 00 00 00 00 00 z9z10 -1 bp? -4.61

3840 00 00 00 00 11 | 11 00 00 00 00 z9z10z11z12 -1 & +1 bp? -3.96

2304 00 00 00 00 10 | 01 00 00 00 00 z9z12 {C,G}∧{A,T}@-1 & {T,G}∧{A,C}@+1? 2.84

1792 00 00 00 00 01 | 11 00 00 00 00 z10z11z12 +1 bp? {T,G}∧{A,C}@-1? 2.56

To better understand the interpretation of each monomial, we describe the biological meaning
of the first monomial z9, the rest follows from the same intuition. The monomial z9 = (−1)m9 only
considers the 9th binary digit. Recall that we encode the nucleotides using the following encoding:
A:00, T:01, C:10, and G:11. The monomial z9 is related to the nucleotide next to the cut on the
left hand side (we call it location -1), and has the value −1 if the nucleotide is a C or a G (since
these are the nucleotides that their binary code begin with the digit 1), and has the value 1 if the
nucleotide is an A or a T . Therefore, this monomial is only asking if the nucleotide at location -1 is
C/G or A/T. We represent this question using the logical statement {C,G}∧{A,T}@-1? where ∧ is an
OR operator and @ points to a location on the genome. This feature has been shown in the biology
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Figure 5.5: The WHT of the repair landscape for in-frame percentage in U2OS. The WHT of
in-frame percentage is more dense than that of the insertion percentage. This suggests more number
of samples is required to recover the landscape of in-frame percentage compared to insertion
percentage.

Table 5.3: Top-5 WHT coefficients of the CRISPR fitness landscape when the output is set to
the in-frame shift percentage of the repair outcome distribution in U2OS cells. WHT coefficients
correspond to monomials defined by their binary expansions. The monomials with ∗ sign indicates
a microhomology feature, which are identical patterns repeating around the cut site.

index code monomial interpretation coefficient

2048 00 00 00 00 10 | 00 00 00 00 00 z9 {C,G}∧{A,T}@-1? -3.24

256 00 00 00 00 00 | 01 00 00 00 00 z12 {T,G}∧{A,C}@+1? 1.50

12288 00 00 00 11 00 | 00 00 00 00 00 z7z8 -2 bp? 1.48

4160 00 00 00 01 00 | 00 01 00 00 00 ∗z8z14 {T,G}∧{A,C}@-2 & +2 bp? 1.42

12480 00 00 00 11 00 | 00 11 00 00 00 ∗z7z8z13z14 -2 & +2 bp? 1.36

literature to have a significant correlation with the percentage of insertions [81, 48]. The rest of the
monomials can be interpreted similarly. Note that all of the top-5 monomials in the WHT transform
of the insertion percentage fitness landscape is related to the nucleotides that are adjacent to the
cut site. This shows that the nucleotides around the cut are sufficient to describe the DNA repair
landscape in terms of the insertion percentage.

We tabulate the top-5 WHT coefficients αS of the repair landscape of in-frame shift percentage
in Table 5.3. Similar to the landscape of insertion percentage, we see that the first two monomials
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correspond to nucleotides that are next to the cut site. The last two monomials, however, show a
new pattern. These two monomials ask about symmetric patterns that occur around the cut site.
These features resemble the microhomology patterns, i.e., repeating sequences around the cut site.
Such higher order interactions between the features in the input space are very hard to capture using
deep learning models.

5.5.4 Massive-scale Landscape Prediction
We now discuss the computational challenges in finding the full landscape of the repair outcomes
when the sequence length goes beyond L > 10 and present the results of our algorithm. Testing a
single DNA sequence using the inDelphi software [81] takes about 0.15 seconds on a 2.7 GHz Intel
Core i5 with 8G of RAM at the inference time. Therefore, it takes around 410 × 0.15 = 157 286
seconds (close to 2 days) to obtain the full landscape of the repair outcome of each cell type in
silico with L = 10 (assuming sequential processing of data). However, running the same inference
problem for a longer sequence of length L = 20 (twice the length of out previous experiment)
takes about 410 times this (assuming sequential processing). This computation can be too costly in
supercomputers today, let alone doing as experiments to obtain the landscape in vitro.

We do an analysis of DNA repair outcomes as a function of the window size around the cut
site to find out for what values of L we can capture most of the variation in the repair outcomes.
To do this, we consider a window considered around the cut size with varying length. The DNA
sequence in the window is varied and the maximum range that the DNA repair outcome changes
is monitored as a function of the window size (nucleotide on each side of the cut) and plotted in
Figure 5.6. While knowing only the 3 nucleotides around the cut site (window of length 6) reduces
the range of variation for insertion percentage below 5%, we need to know at least 20 nucleotides (a
window of size 40) to reduce the range of variation for frame shift below 5%. This necessitates the
need to develop a computational platform that scales to such large values of window lengths.
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Figure 5.6: The variation of the DNA repair landscape as a function of the window size around the
cut site (number of nucleotides from each side of the cut). For insertion percentage, a window of 3
nucleotides from each side is enough to capture the landscape with less than 5% variation. However,
for in-frame shift, a window of 20 nucleotides from each side to get that level of precision.



CHAPTER 5. LOW-DEGREE PSEUDO-BOOLEAN FUNCTION RECOVERY 82

(a) Insertion percentage, R2 = 0.90. (b) Frameshift percentage, R2 = 0.88.

Figure 5.7: The prediction results on 330 000 randomly chosen unseen test CRISPR experiments.
The analysis has been done on the sparse insertion percentage landscape as well as the less sparse
in-frame shift percentage landscape. Only 10 000 data points are plotted for more clarity. In both
landscapes we predict the outcomes with very high accuracy.

We approximate the DNA repair landscape in terms of the insertion percentage and frame shifts
in U2OS cells with a context window of size L = 20 using only about 3 million carefully designed
guide RNAs (each corresponding to a sample). We design the input samples based on ideas from
signal processing and coding theory. Note that, in general, the DNA sequences of all the guide
RNAs suggested by our algorithm might not exactly appear on the human genome. In those cases,
either a sufficiently close guide RNA can be selected or the recovery algorithm can be changed to
accommodate for the deviation. Obviously, this will not be a problem when the repair outcomes are
derived using a pretrained repair model.

Here, we evaluate the generalization performance of our method using 330 000 unseen samples
from the DNA repair landscape. The results of our prediction algorithm can be seen in Figure 5.7.
We predict the DNA repair outcome of the set of 330 000 unseen test guide RNAs with a very high
accuracy (R2 ∼ 0.9) in both the easier insertion percentage and the harder in-frame shift percentage
landscapes. Given the repair outcome of the 3 million designed guide RNAs (which takes about a
week to acquire from inDelphi’s software), our method requires only few seconds to recover the
queried repair outcomes.

5.6 Hypergraph Sketching
Hypergraphs are a generalization of graphs to accommodate for edges with higher connectivities. A
hypergraph G = (V,E) is a collection of nodes V = {1, . . . , n} and a set E of hyperedges defined
on these nodes. Each hyperedge e ∈ E is a subsets of nodes V . The degree of a hyperedge is the
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cardinality of the set corresponding to that hyperedge. With this definition, a graph is a hypergraph
where each edge has degree equal to 2.

The problem of hypergraph sketching is to recover a hypergraph from its cut values. A cut S on
a hypergraph is a subset of its nodes S ⊆ V , and the cut value is equal to the number of hyperedges
whose elements are split between S and V \S, that is, fG(S) = |{e : e ∈ E, S ∩ e 6= ∅, S ∩ e 6= e}|.
Let us denote a cut by a vector u ∈ {−1, 1}n as ui = −1 if i ∈ S, and ui = 1 if i /∈ S. Then we
can represent the cut value function [50]

fG(u) =
∑

e∈E

(
1−

(∏

i∈e

1 + ui
2

+
∏

i∈e

1− ui
2

))
. (5.21)

Letting ui = (−1)mi , for i ∈ {1, . . . , n}, in the equation we get

xm := fG(u) =
∑

`∈Fn2

X` · (−1)〈`,m〉, (5.22)

which is in the form of a WHT relation. If the maximum degree of a hyperedge is t, then all the
coefficients X` with wH(`) > t will be 0, since in equation (5.21), each product will have at most t
factors.

Table 5.4: Empirical rate of full recovery of a randomly-selected hypergraph with 1000 nodes and
hyperedge degree 5 as a function of the number of hyperedges.

number of hyperedges

b 1 2 3 4 5 6 7 8

14 100 99.0 94.0 93.0 89.0 78.5 75.5 66.0
15 100 99.0 97.5 95.5 92.5 88.5 83.0 81.5
16 100 99.0 99.5 97.5 95.5 94.0 94.0 90.8
17 100 100 100 98.0 97.0 97.5 97.5 97.2
18 100 100 100 99.5 99.2 99.4 99.0 98.5

If the non-zero coefficients of the cut value function are recovered, the hypergraph is also
recovered. We can use the parity check matrix of an (n, k, 2t+ 1) code to recover the coefficients.
When the number of hyperedges in the graph is small, there will further be sparsity over the
coefficients in Knt , and we run simulations to test our algorithm’s generalization performance to this
sparse setting. In the simulations n = 1000 and t = 5, and we sweep the number of hyperedges from
1 to 8, and select hyperedges uniformly at random. We draw Hb×n from random linear code design
and empirically evaluate the success rate of recovering the full hypergraph. Table 5.4 shows the
probability of success as a function of b and number of hyperedges. As can be seen, our algorithm
can leverage further sparsity on the low-degree set.
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5.7 Conclusions and Future Directions
We presented a sample and computationally-efficient algorithm to recover pseudo-Boolean functions
whose non-zero coefficients are over monomials having small degree. This problem is equivalent
to recovering the WHT of a signal whose WHT coefficients are non-zero only at indices whose
binary expansion has small number of ones. The algorithm we proposed first evaluates the input
pseudo-Boolean function at points given by the codewords of a codebook. These codebooks are
related to codes with good minimum distance properties. We then perform a WHT on the resulting
signal, and read off the coefficients of the input pseudo-Boolean function from the resulting WHT
coefficients. Further, we incorporated our subsampling methods for recovering low-degree WHT
coefficients in peeling-based sparse WHT algorithm of [51], and showed that it improves the
recovery performance when the support is distributed mostly on the low-degree terms. We applied
this variant of the algorithm to learning fitness landscapes for DNA repair outcomes, and showed
that we get interpretable models and fast inference. Future research directions include exploring
other application areas that lend themselves to pseudo-Boolean functions such as learning epistasis
(interactions of genes) in genotype-phenotype maps [77, 64].

Appendix

5.A Pseudocodes
In this section, we provide pseudocodes for the subroutines called in Algorithm 3 for learning fitness
landscapes for DNA repair outcomes. Subsampling is given in Algorithm 4, peeling is described in
Algorithm 5, and check node classification is provided in Algorithm 6.
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Algorithm 4: Subsample (Subsampling and WHT)
Input :Function xm for m ∈ Fn2 , number of subsampling groups C, number of shifts per

subsampling group P
Output :Observations {Y (c)}Cc=1, subsampling matrices {Hc}Cc=1, shifts {Pc}Cc=1

/* go over groups */
1 for c = 1 to C do

/* generate subsampling matrices */

2 Hc ← Uniform(Fb×n2 )
/* generate shifts */

3 Pc ← {Uniform(Fn2 )}Pi=1

/* go over shifts */
4 for p ∈ Pi do

/* subsample the signal */

5 y
(c,p)
m ← xmHc+p

/* calculate 2b-length WHT */

6 Y
(c,p)
` ← 1

B

∑
m∈Fb2

y
(c,p)
m (−1)〈m,`〉

7 end
8 end

Algorithm 5: Peel (Single step of peeling)
Input :Location `, value v to peel from the measurements, subsampling matrices {Hc}Cc=1

/* go over subsampling groups */
1 for c = 1 to C do

/* the coefficient ` aliases to `c in subsampling group c
(see Property 1) */

2 `c ← `H>c
/* go over shifts */

3 for p ∈ Pc do
4 Y

(c,p)
`c
← Y

(c,p)
`c
− v(−1)〈p,`〉

5 end
6 end
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Algorithm 6: ClassifyNode (Classification of check-nodes)
Input :Measurements Y (c)[`], shifts P , threshold τ

1 if ‖Y (c)[`]‖ < τ then
2 declare zeroton
3 end
4 ˆ̀← all zeros of length n
/* go over each bit */

5 for i = 1 to n do
6 ŝi ← 0

/* go over shifts */
7 for p ∈ Pc do
8 ŝi ← ŝi + sign(Y (c,p)) sign(Y (c,p+ei))
9 end

10 ˆ̀
i ← (1− sign(ŝi))/2

11 end
12 v̂ ← 1

P

∑
p∈Pc) Y

(c,p)(−1)〈
ˆ̀,p〉

13 rp ← Y (c,p) − v̂(−1)〈
ˆ̀,p〉

14 if ‖r‖ < τ then
15 declare singleton
16 else
17 declare multiton
18 end
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Chapter 6

Speeding Up Distributed Computing:
Straggler-Resilient Matrix Multiplication

6.1 Introduction
In the previous chapters, we designed algorithms that leveraged the underlying structure of the
input to speed up computations. On the other hand, in this chapter, we will study the setting where
data is divided among multiple machines, as in distributed computing, to reduce the computational
burden and scale up computations to big-data regimes. Distributed computing is becoming the main
mode of computation for modern large-scale machine learning and data analytics jobs. Dividing
the workload among multiple workers can help speed up computation as each worker node works
on a problem of smaller size, and the results of these smaller problems are then combined to
obtain the target. However, an important problem in distributed computing systems is that there
are compute nodes that are slowed down due to unpredictable factors impacting their compute
and communication time [16]. Such worker nodes are called stragglers. At the same time, the
scales of distributed computing systems, that is, the number of worker nodes in the system, are
growing, (e.g., using AWS Lambda [37]). The straggler problem is even more evident in such
large-scale computing systems. For example, in [37], about 5% to 10% of 3000 distributed workers
are observed to be stragglers.

Straggling compute nodes severely impact runtime, as the total execution time depends on the
slowest worker, if resiliency to straggling nodes is not built in to the computation. The authors
of [44] apply erasure codes to distributed matrix multiplication algorithms, and propose a new
framework called coded computation to combat stragglers, significantly speeding up distributed
computing algorithms. Subsequently, coded computation techniques have been shown to speed up
a variety of computing tasks such as large-scale matrix multiplications [46], distributed gradient
computing, convolutions [21], Fourier transforms [99], and personalized PageRank [97] to name a
few.

The typical workflow of coded computation schemes is illustrated in Figure 6.1. In this chapter,

This chapter is based on joint work with Tavor Baharav and Kangwook Lee [4].
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Figure 6.1: System architecture for distributed computing.

we assume a standard master-worker model but one may also consider a decentralized (or master-
less) setting. First, unless the input data is already stored as encoded across the workers, the master
node needs to encode the input data and share the encoded data with the distributed workers. We
denote the total encoding time as the sum of 1) the time to encode data (Tenc) and 2) the time to
transmit the encoded data from the master to the workers (Tenc,comm). Upon receiving the input data,
the distributed workers start performing their assigned tasks. Upon completion of the tasks, the
results of the computations need to be transmitted from each worker to the master. We denote the
compute time (including the time to communicate the task result to the master) of each worker by
Ti. Once a decodable set of task results are collected, the master runs the decoding algorithm to
obtain the final output, and the time to run this stage is called the decoding time Tdec. Hence, the
total execution time of a coded computing algorithm can be expressed as

Ttotal = Tenc + Tenc,comm︸ ︷︷ ︸
Encoding

+ min
S∈S

max
i∈S

Ti
︸ ︷︷ ︸
Compute (Tcomp)

+ Tdec︸︷︷︸
Decoding

, (6.1)

where S is the set of all decodable sets of task indices [44].
Most existing works have focused on optimizing the recovery threshold of the algorithm [44,

85, 45]. Define the total time the distributed computation algorithm spends at the worker nodes by
Tcomp = minS∈S maxi∈S Ti; then, optimizing the recovery threshold is equivalent to minimizing the
compute time Tcomp only. This assumes that the encoding/decoding times are negligible in (6.1)
compared to Tcomp. When the number of worker nodes is relatively small, the encoding/decoding
costs can be safely ignored. However, the encoding/decoding costs of coded computation schemes
scale with the number of worker nodes, and this assumption does not hold for larger systems, e.g.,
systems that make use of tens of thousands workers [37].

This increase in the size of distributed computing platforms and the resulting need for balancing
the encoding/decoding costs together with the computation time forms the precise motivation of our
work. Our goal is to design a coded computation scheme that not only achieves low compute time
but also allows for efficient encoding and decoding, hence a lower total execution time in (6.1).
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6.1.1 Problem Formulation
We consider the matrix-matrix multiplication task [46], where we compute A>B for A ∈ Rs×`, B ∈
Rs×t. We focus on the case where s is large, and s ≥ ` and s ≥ t, as otherwise the resulting
matrix is rank-deficient, and there may be more efficient ways of computing the product. While
our results and algorithm can easily be generalized to the case where ` 6= t, we will focus on the
setting where ` = t for ease of presentation. We divide A into m equal-sized chunks, Ai ∈ Rs×`/m

for i ∈ {0, . . . ,m− 1}, Likewise, we divide B into h chunks, Bj ∈ Rs×`/h for j ∈ {0, . . . , h− 1}.
Then, the worker node i is assigned to perform a single matrix-matrix multiplication Ã>i B̃i, where
Ãi and B̃i are input encoded matrices. The goal is to minimize Ttotal in (6.1) by carefully designing
a code.

One interesting aspect of this problem that prevents us from using an arbitrary code are the
constraints induced by the matrix-matrix multiplication. We desire the worker nodes to perform
operations of the form (

∑
i∈SA Ai)

>(
∑

j∈SB Bj), that is, we want the task to factor. The reason
is the following. For example, if a worker node needs to compute A>0 B0 + A>0 B1, it would be
able to do this as A>0 (B0 +B1). The summation (B0 +B1) requires O(s`/h) operations, and the
multiplication requires O(s`2/(hm)) operations. Note that the computational bottleneck is in the
multiplication operation. However, if it wanted to compute A>0 B0 + A>1 B1, it would not be able to
factor this and solve it quickly. The multiplication operations, in total, would require double the
time. Furthermore, the runtime difference between the two operations increase with the number
of terms that need to be summed. Thus, we cannot use an arbitrary code. We can formalize this
constraint imposed by matrix-matrix multiplication as the requirement that if we represent our code
in systematic form, then the rows of the generator matrix of our code must be of the form vec(uv>)
for vectors u, v, corresponding to the chunks of A,B selected1.

6.1.2 Our Contributions
We propose a novel coded computation scheme based on high-dimensional product codes for
matrix-matrix multiplication. We form this connection between matrix-matrix multiplication and
decoding a high-dimensional product code by adding carefully designed parity chunks on the input
matrices. We show that our proposed scheme can achieve near-optimal compute time performance
as well as order-optimal encoding/decoding costs. This enables applicability to massive-scale
distributed computing where encoding/decoding costs make prior solutions that only optimize over
the recovery threshold impractical.

6.1.3 Related Works
In [46], the authors propose a 2-dimensional product code based scheme for straggler resilient
matrix-matrix multiplication. The authors apply an (n, k, dmin) code to each matrix, generating

1In Chapter 7, we will describe a method for fast matrix-matrix multiplication whenever the output matrix is
sparsity. In that problem, the same constraint will appear while inducing a code on the output matrix.
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n − k new parity chunks for each matrix. Then, worker (i, j) is assigned the task of computing
A>i Bj . While this scheme has linear encoding and decoding costs, it exhibits suboptimal Tcomp.

Another scheme proposed for matrix-matrix multiplication is Polynomial Codes [100], where a
Reed-Solomon (RS) code is applied to the resulting matrix chunks. The authors show that Tcomp

is optimal under the polynomial codes. This holds even when the straggling machines are chosen
adversarially thanks to the RS codes being maximum distance separable (MDS)2. However, as the
number of workers increases, the encoding/decoding costs are much higher than those of product
codes. RS based schemes rely on polynomial interpolation for decoding, and as the problem
size scales, this can become prohibitive3. Furthermore, polynomial interpolation is notoriously
numerically unstable over the reals [22]. In order to improve numerical stability, the matrix must be
quantized and converted into a finite field, which incurs additional complexity.

6.2 High-Dimensional Product Coded Computation
In this section, we propose the d-dimensional product coded matrix multiplication algorithm,
generalizing the 2D algorithm proposed in [46]. Under the metric of end-to-end latency of (6.1),
current MDS codes as in [100] exhibit undesirably long encoding/decoding times. On the other side
of the spectrum, 2D product codes require more processors than optimal. The d-dimensional product
codes fall between these two, exhibiting order-optimal encoding and decoding times while tolerating
a constant fraction fewer stragglers than optimal (the constant factors are exactly characterized in
Table 6.2).

Traditionally, product codes are thought of as 2D constructions, where one arranges the data in
a k × k square, and applies a systematic linear (n, k) component code to every row and column,
yielding an n×n square. We use the natural extension of this to higher dimensions, the d-dimensional
product code as described more in depth in [5].

We describe the scenario of encoding a distributed matrix multiplication job via a d-dimensional
product code. We proceed by partitioning A ∈ Rs×` into

√
K = (n − r)d/2 chunks, of size

Ai ∈ Rs×`/
√
K , and B ∈ Rs×` into

√
K = (n − r)d/2 chunks, of size Bi ∈ Rs×`/

√
K , to be

computed over N = nd processors. In the rest of the section, as we are going to describe the
different phases of our algorithm in reference to Figure 6.2 as a toy example, and Table 6.1
summarizes the notation we will be using.

6.2.1 Encoding
Our encoding rests on the inherent tensored structure of a d-dimensional product code, as can be
seen through the tensored structure of its encoding matrix. For a d-dimensional product code with

2An MDS code has parameters (n, k, dmin = n− k + 1). Hence, any subset of k erasures can be resolved.
3All the off-the-shelf RS erasure coding libraries we found are capable of operating only up to a block length of

256, in GF (28). This is because RS implementations require storing ‘log’ and ‘exp’ tables for each element of GF (28)
to operate quickly.
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Table 6.1: Glossary of important notation for High-Dimensional Product Codes.

Notation Description

(n, k, r + 1) component code
d dimension of product code
N = nd total number of workers
K = kd number of ‘data’ workers
`× s dimensions of input matrices A,B

A0

A1

A2

A3

A>

B0 B1 B2 B3

B
A0 A1 A0+A1

A2 A3 A2+A3

A0+A2 A1+A3

3∑

i=0

Ai

⊗

B0 B1 B0+B1

B2 B3 B2+B3

B0+B2 B1+B3

3∑

i=0

Bi

Figure 6.2: Toy example for a product code with n = 3, d = 4, r = 1, yielding N = 34. The 4D
product code is equivalent to the two 2D product codes tensored together. Parity chunks are shaded
in blue.

an (n, k, r + 1) component code, the overall generator matrix is simply the tensor product4 of d
generator matrices for its (n, k, r + 1) component code (see Figure 6.3). We make use of this
inherent tensor structure by partitioning the tensors into 2 groups of d/2 matrices, and spreading
A and B over d/2 dimensions each5. We achieve this by computing parities for the matrices A,B
independently after we have divided them into chunks. We do this by arranging the (n−r)d/2 matrix
chunks of each matrix in a d/2 dimensional hypercube with side length k = n− r. We then encode
these matrix chunks using a d/2-dimensional product code with component code (n, k, r + 1),
yielding a d/2-dimensional hypercube with side length n of encoded chunks of A. For example, in
the toy example in Figure 6.2 we have d = 4, so we divide each matrix along 4/2 = 2 dimensions.
Since each component code is (n, k) = (3, 1), we have 2 data chunks and 1 parity chunk on each
dimension.

6.2.2 Communication
As can be seen from Figure 6.2, there is a regular, easily exploitable structure to the matrix chunks
that processors require. Due to the tensored structure of our encoding scheme, we need to send

4We refer to a Kronecker product on the blocks of the matrices A and B.
5This assumes d is even. For odd d, we spread one matrix over dd/2e dimensions, and the other one over bd/2c.
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G =

n−1︷ ︸︸ ︷


1
1

1 1


⊗ . . .⊗

n−1︷ ︸︸ ︷


1
1

1 1




︸ ︷︷ ︸
d

Figure 6.3: Generator matrix of the d-dimensional product code with (n, k, r + 1) = (3, 2, 2).

each chunk of A to nd/2 workers. In our toy example, the worker indexed by (i, j, k, `) where each
i, j, k, l ∈ {0, 1, 2} needs to receive the (i, j)th chunk of A and (k, `)th chunk of B. In particular,
worker (0, 0, 0, 0) receives A0 and B0, and worker (0, 0, 0, 2) receives A0 and B0 +B1.

6.2.3 Computation
We are able to induce a d-dimensional product code on the results of the worker nodes through
a tensoring of coded matrix chunks of A and B. This is done by taking the d/2 dimensional
hypercube of coded chunks of A and taking its tensor product with the d/2 dimensional hypercube
of coded chunks of B. In our toy example depicted in Figure 6.2, each worker (i, j, k, `) where
each i, j, k, l ∈ {0, 1, 2} multiplies the matrices it receives; worker (0, 0, 0, 0) performs A>0 B0, and
worker (0, 0, 0, 2) performs A>0 (B0 + B1). This induces the desired d-dimensional product code
structure.

6.2.4 Decoding
For decoding, we employ a simple peeling decoder. Due to the induced d-dimensional product code,
we are able to arrange the results of the worker nodes in a d-dimensional hypercube with side length
n, as suggested by the tensor structure (the example in Figure 6.2 would create a 4-dimensional
hypercube). Since each ‘row’ is a codeword for the (n, k, r + 1) component code, we can iterate
over all dnd−1 rows and resolve the erasures (where each erasure corresponds to a straggling node) if
there are r or fewer erasures in a given row. Resolving an erasure in one row may lead to another row
becoming resolvable, and so if there are few enough erasures (formally characterized in Theorem 8),
we can iterate over the rows of the d-dimensional product code and resolve (n, k, r + 1) component
codes until the results of all straggling worker nodes have been recovered.

6.2.5 Choosing d, r
The choice of d and r (row component codes) make a significant difference in performance and
setting. We can formulate the choice of these parameters as an optimization problem for a given
number of workers N . Assume that the master node can perform α floating point operations per
second (FLOPS) and transmit β bits per second (BPS). Given the task runtime distribution, we can
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choose d and r to minimize the end-to-end latency in equation 6.1 by solving:

minimize
d,r

α−1Tenc + β−1Tenc,comm + ETcomp + α−1Tdec. (6.2)

Depending on the parameters α and β, the optimum d might not correspond to the optimizer of the
recovery threshold (as it would minimize E [Tcomp] only).

6.3 Analysis
Our analysis utilizes the isomorphism between d-dimensional product codes and a class of d-left
regular Low Density Parity Check (LDPC) codes presented in [5]. A high level intuition for this
isomorphism is that the randomness of the erasure channel (nature’s random choice of straggling
processors) allows us to leverage LDPC analysis techniques on the residual graphs.

6.3.1 Compute Time
We can derive the density evolution update equation, and substitute in d and r to numerically
compute the maximum number of unknown variables that the residual graph can peel.

Theorem 8. In a d-dimensional product coded matrix multiplication scheme with (n, k, r + 1)

component codes, a set of tasks S with |S| ≥
(
N − N−K

η(d,r)

)
(1 + ε) drawn uniformly at random from

the set of all N tasks is a decodable set with high probability for arbitrarily small ε > 0 and η(d, r)
as given in Table 6.2.

Proof. Through density evolution analysis, one can determine the erasure correcting capability of
these d-dimensional product codes. This result directly follows from [5].

In order to calculate the expected runtime of a computation scheme we first assume the existence
of a mother runtime distribution F (t) [44]. We assume that running an algorithm using a single
machine takes a random amount of time T , that is a positive-valued, continuous random variable
distributed according to F , that is, Pr (T ≤ t) = F (t). Furthermore, when the algorithm is
distributed into K data subtasks, the runtime distribution for each subtask is assumed to be a scaled
distribution of the mother distribution as Pr (Ti ≤ t) = F (Kt) for 1 ≤ i ≤ N . We assume that the
computing times of these N tasks are independent of one another. For convenience, let

K ′ =

(
N − N −K

η(d, r)

)
,

be the effective number of completed tasks a d-dimensional product code requires before it becomes
decodable. Then, under these assumptions, Tcomp = X(K′), the K ′ order statistic of N i.i.d. random
variable Xi ∼ f(x).

Empirically, a shifted exponential distribution which is the sum of a constant c ≥ 0 and an
exponential random variable with rate µ ≥ 0, i.e., F (t) = 1− e−µ(t−c),∀t ≥ c, has been found to
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be an accurate and tractable model for processor run time [44]. For {Xi}Ni=1 distributed as i.i.d.
shifted exponentials,

E
[
X(m)

]
=

1

K

(
c+

1

µ
ln

(
N

N −m

))
.

Specializing to the case of a d-dimensional product code, we get

E [Tcomp] = E
[
X(K′)

]
=

1

K

(
c+

1

µ
ln

(
N

(N −K)/η(d, r)

))
= O

(
1

N

(
c+

1

µ
ln(n)

))
.

In the case of a shifted exponential processor latency model, we can see that a d-dimensional product
code has order optimal compute time. The bigger picture idea behind this is that the K ′th order
statistic will be very close in expectation to the Kth order statistic, while the N th order statistic
(max) will be much higher.

Table 6.2: Recovery thresholds, η(d, r), for product codes as a function of the dimension of the
code, d, and the error correcting capability of the component code, r.

d
r

1 2 3 4 5 6

3 1.2218 1.2880 1.3797 1.4564 1.5202 1.5741
4 1.2949 1.4998 1.6568 1.7781 1.8760 1.9575
5 1.4250 1.7275 1.9409 2.1031 2.2327 2.3406
6 1.5697 1.9577 2.2244 2.4256 2.5864 2.7199
7 1.7189 2.1869 2.5051 2.7446 2.9361 3.0953

6.3.2 Encoding and Decoding costs
While achieving near-optimal compute time as stated in Theorem 1, our scheme also achieves
order-optimal encoding (both Tenc and Tenc,comm) and decoding complexities.

Lemma 5. Tenc for a d-dimensional product coded scheme is O(`s), which is order-optimal.

Proof. To encode the d-dimensional product code, we simply need to encode the matrix chunks of
A,B in d/2-dimensional product codes, as explained in Sec. 6.2.1. Since this is a d/2-dimensional
product code itself, it can be encoded in time linear with respect to the number of chunks: O(nd/2).
Since matrix chunks are of size `× s

(n−r)d/2 , encoding of A is nd/2 `s
(n−r)d/2 = O(`s), as d and r are

constants, and n → ∞. The lower bound comes from the requirement that any scheme needs to
read every element of A and B in order to prepare the chunks for communication.

Lemma 6. Communication cost, Tenc,comm, is O(`sγ(
√
N)), where γ(m) is the multicast cost of

communicating the same message to m workers. This cost is order-optimal.
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Proof. Consider an arbitrary systematic coding scheme that divides A,B into m chunks each. It
needs at least m2 workers to return to finish computing, so N ≥ m2. We proceed by considering its
communication cost for A. Assume that this scheme sends chunks of the same size to each worker,
and that there are p, m ≤ p ≤ N , coded chunks of A. Then, the cost is `s

m
× (
∑p

i=1 γ(ci)), where
ci is the number of times we send chunk i. Since the code is systematic, ci ≥ m for i = 1, ...,m.
Thus, the cost is lower bounded by `s

m
× (mγ(m)), as γ(·) is monotone non-decreasing, and positive.

Because m2 = θ(N) in our scheme, the cost can be lower bounded by Ω(`s× γ(
√
N)).

Due to the tensored structure of our encoding scheme, we send the same chunk ofA to nd/2 work-
ers. Communication cost is thus O

(
(nd/2γ(nd/2))(`s)/((n− r)d/2)

)
= O(`s × γ(

√
N)). For in-

stance, if γ(m) = log(m), then our communication cost is O
(
(nd/2 log(nd/2))(`s)/((n− r)d/2)

)
=

O(`s log(n)).

Lemma 7. For a d-dimensional product code, decoding cost, Tdec is O(`2), which is order-optimal.

Proof. The decoding time of our scheme is linear in the size of the output matrix, `2. After K ′

workers have arrived the residual graph will be resolvable with high probability (c.f., Theorem 8).
Because each straggling matrix chunk is of size `2

K
, and there are n chunks per row, n

(n−r)d `
2 work is

required to resolve a row. Because we have dnd−1 rows, our decoding time can be upper bounded
by the time it takes to resolve them all, which gives dnd

(n−r)d `
2 = O(`2). This is order-optimal, as any

scheme will need to read enough workers’ results in order to reconstruct the output `× ` matrix.
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Figure 6.4: Simulation results for d-Dimensional Product Codes with N = 104 = 1002, k =
94 = 812. Experiments are done using a (100, 81, 20) component code for d = 2, and a (10, 9, 2)
component code for d = 4.

6.3.3 Comparisons
Reed-Solomon

We assume that a systematic RS code is used. For the parities, encoding is done by creating a
Vandermonde structure, which entails a weighted linear combination of the chunks of A, of the
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Table 6.3: Comparisons (orderwise) of encoding, communication, computation and decoding
time for uncoded computation and coded computation using d-Dimensional Product Codes, and
Systemmatic Reed-Solomon Codes.

d-Dim. Product Code Systematic Reed-Solomon Uncoded

Tenc d`s d`snd−1 `s

Tcomm `sγ(nd/2) `s(γ(k1/2) + dnd/2−1) `sγ(
√
N)

Tcomp
1
N

(c+ 1
µ

log(n)) 1
N

(c+ 1
µ

log(n)) 1
N

(c+ 1
µ

log(N))

Tdec d`2 `2d2nd−2 `2

form
∑√K

i=1 α
iAi, for a properly chosen factor α. However, this work is unique for each parity, and

involves using the entire matrix A. Thus, the total work of encoding will be `s(N −K).
For communication, a systematic RS code will be able to broadcast the

√
K data chunks of each

matrix to the data workers; each chunk is `× s√
K

, and needs to be used by
√
K workers, yielding

a cost of `s√
K

(
√
K · γ(

√
K)) = `s · γ(

√
K). For the parity workers, each one uses a uniquely

computed chunk of A, meaning that multicast gains cannot be utilized. The cost for sending the
parity chunks is `s√

K
· (N −K), giving a total communication cost of `s(γ(

√
K) + N−K√

K
).

For decoding, a systematic RS code will need to interpolate a polynomial for each one of the
`2

K
entries of an output chunk. In each of these interpolations, one needs to solve a Vandermonde

system of size (N −K)× (N −K), which is usually accepted to cost O((N −K)2) [17]. This
results in a decoding cost of `2 (N−K)2

K
= O(`2d2nd−2).

Uncoded

Encoding is simply splitting the matrices into
√
N chunks each, which requires a single pass over

the data. Each processor receives Ai, Bj ∈ Rs×`/
√
N , and thus one broadcasts each Ai (similarly Bi)

chunk to
√
N processors. Thus, the overall communication cost is O(`sγ(

√
N)). The computation

latency is EX(N), and so the expected latency under a shifted exponential model is O(c+ µ ln(N)).

6.4 Simulation Results
One way of comparing different schemes is by comparing their synthetic wall clock times; for a
given matrix size, the number of worker nodes N and the number of straggling nodes K, we can
calculate the number of flops required for the encoding and decoding procedures. We can then
compute the expected worker latency for a given model (shifted exponential), and then express the
wall clock time as α(Tenc + Tdec) + ETcomp. We sweep α over a wide range of values. We can see
from Figure 6.5 that when encoding and decoding costs are negligible (when α is small), RS based
coded computation method has lower latency. However, as the encoding/decoding costs factor in
(as α increases), product codes achieve better latency. Furthermore, d = 4 product codes perform
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Figure 6.5: Synthetic wall clock times of coded computation methods forN = 104, k = 94, r = s =
108. Time = α · (Tenc + Tdec) + ETcomp. PC denotes product codes, and RS denotes Reed-Solomon
codes.

better compared to d = 2 due to their superior threshold. However, once encoding/decoding costs
become dominant, d = 2 attains better latency to its marginally lower encoding/decoding costs. As
α increases further, latency introduced due to stragglers become less of a bottleneck compared to
the encoding/decoding costs, and the uncoded scheme becomes the fastest.

6.5 Conclusions and Future Directions
We formulated a new model for analyzing the performance of coded computation schemes which
encapsulates the desire to minimize end-to-end latency, and presented a novel coded matrix-
matrix multiplication scheme that has order-optimal computation/communication costs for the
encoding/decoding procedures and achieves near-optimal compute time. Our scheme is based on
the use of high-dimensional product codes, and allows for efficient encoding/decoding and low
communication cost. Because product codes can be decoded by operating on single ‘rows’ and
‘columns’ in an iterative way, our algorithm is a suitable candidate to have an impact in master-less
computation frameworks. In particular, in a platform having shared memory with fast input/output
where workers write their results, separate workers assigned to the task of decoding can do so in a
streamlined fashion. This master-less architecture is an exciting new computing paradigm which
Product Codes are well suited for, and tailoring our algorithm to master-less setting is an interesting
future research direction.
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Chapter 7

Fast Matrix-Matrix Multiplication with
Output Sparsity

7.1 Introduction
We are witnessing an unprecedented growth in the amount of data being collected, generated and
processed to drive machine learning and decision-making tasks across a multitude of domains. This
has challenged classical algorithms to scale up to big-data regimes, driving architectures to either
leverage the underlying structure of the data to reduce the computational burden, or to divide the data
among multiple machines, or do some combination of both. Motivated by this observation, in this
work, we focus on reducing the computational burden of large-scale matrix-matrix multiplication
when the output matrix has a particular structure, that is, it is sparse or approximately sparse.

Matrix-matrix multiplication is a fundamental linear algebra primitive that is the workhorse of
many algorithms in machine learning, signal processing, and scientific computing; so a speed-up
therein has potential to impact a multitude of applications. Leveraging the sparsity of the output
matrix in a matrix-matrix multiplication operation has applications ranging from the recovery of
sparse covariance matrices [95, 71] to fast string search across a database (where the rows of the
first matrix represent the database of strings and the columns of the second matrix represent the
query strings to be searched in the database) [35] to sketching sparse matrices [95, 15].

For the rest of this chapter, we abstract away the use-case scenarios and focus on the base
problem of performing large-scale matrix-matrix multiplication efficiently whenever the resulting
matrix is known to be sparse. We show that product codes, which have been studied for channel
coding in communications [23, 73], can be used to accomplish this.

Our algorithm draws inspiration from the previous chapter of the thesis and [4], where we
introduced controlled redundancy in large-scale distributed matrix-matrix multiplication to combat
against slow computational nodes (stragglers) by inducing a product-code structure. Hence, the use
of codes in the previous chapter is like their use in channel coding, where controlled redundancy
is introduced through codes to combat against nonidealities in a communication channel. There
is a dual use of codes, that is, for source coding, where codes are used for compression. In this
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chapter, we use product codes in their dual source coding form to perform compressed calculations
in matrix-matrix multiplication to reduce computational complexity. To the best of our knowledge,
this use case is new, and it is interesting to see that the product codes can be used in a variety of
problems that relate to matrix multiplication.

The high-level summary of our method is as follows. We first sketch the input matrices to
obtain matrices of smaller sizes, and then perform multiplications between them to create a set of
check nodes (see Section 7.3 for details). Because multiplications are performed over smaller-sized
matrices, we get a lower computational complexity for the creation of these check nodes compared
to multiplying the original input matrices. By carefully designing these sketches to induce a product
code structure on the check nodes (see Section 7.4 for details) and leveraging the underlying sparsity
in the output matrix, we then recover the matrix-matrix multiplication output based on the check
nodes through peeling.

7.1.1 Notation and the Organization of the Chapter
In Section 7.2 of this chapter, we present the problem formulation and summarize our main results.
In Section 7.3, we describe the sketched matrix-matrix multiplication framework that we are going
to use in our algorithm. We present our algorithm for sparse-output matrix-matrix multiplication in
Section 7.4. In Section 7.5, we present numerical simulations corroborating our claims, and then
conclude with Section 3.7.

For a positive integer n we use [n] to denote the set {0, . . . , n− 1}. For i ∈ [n], we denote the
ith column of a matrix A by the column vector ai. The entry at ith row and jth column of a matrix
C is denoted by Ci,j . We refer to the non-zero entries of a matrix as its support.

7.2 Problem formulation and our contributions
Given matrices A ∈ Rd×n and B ∈ Rd×n such that their product C = A>B is K-sparse, our goal
is to design an algorithm that reduces the number of operations below the naı̈ve O(n2d) to find the
support1. We propose a novel algorithm for doing so, which works by transforming the problem of
finding the support of the output matrix to decoding a product code on an erasure channel through
peeling. Our algorithm first obtains carefully-designed sketches of the input matrices, and then
calculates the products between them. The sketches are designed so that the resulting multiplication
outputs have a product code structure, from which the matrix C can be decoded. For theoretical
results, we consider the following simplifying assumption.

Assumption 1. The K non-zero entries of the output matrix A>B are uniformly distributed in the
set of n2 entries.

Our main results are as follows.
1In general, our method allows for matrices to be of size d×n and d×m where m 6= n. For simplicity we consider

n = m.
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Theorem 9. Under Assumption 1, for K = O(nδ) where δ ∈ (0, 2), using max(O(dK), O(dn))
computations, the non-zero elements of A>B can be recovered with probability 1−O(1/K).

Our algorithm can be extended to handle an approximately-sparse setting as the following
theorem states.

Theorem 10. Under Assumption 1, let K = O(nδ) for 0 < δ < 2. Let S denote the support,
and assume that (A>B)i,j in {−1, 1} if (i, j) ∈ S and

∣∣(A>B)i,j
∣∣ ≤ O(n−1) otherwise. Then,

we can recover S and the coefficients of A>B on S using max(O(dK log2(n)), O(dn log2(n)))
computations with probability 1−O(1/K).

7.3 Sketched Measurements and Related Work
Given A and B, consider measurements of the form

fA,B(u,v) = u>A>Bv =
n∑

i=1

m∑

j=1

uivj(a
>
i bj). (7.1)

Note that these measurements can be calculated by first sketching the input matrices by calculating
Au and Bv, and then performing the inner product 〈Au〉Bv. We refer to the vector inputs to
f as sketching vectors, and the output of f as measurements. We will group the measurements
fA,B(u,v) for which the support of vu> is the same, and refer to each group of measurements as a
check node, and we will refer to the entries of the output matrix as variable nodes2. We seek an
algorithm that obtains measurements in the form of (7.1) and recovers the support of C = A>B.

Note that the measurements in (7.1) are linear in vu>. Hence, our model can be viewed as
taking linear measurements of the output matrix C. Recently, the authors of [96] showed that one
can design a system of linear measurements for a vector such that its support can be recovered
with sublinear measurement and computational complexity in the ambient dimensions whenever
the sparsity of the vector also scales sublinearly in the ambient dimensions. The algorithm therein
works by dividing the problem of recovering the support of a K-sparse vector to recovering the
support of K many 1-sparse vectors, and then combining their solutions to get the support of the
input vector. Although our measurement system is linear, it is linear in vu>, and because our
freedom is through designing v and u, we are constrained in the measurements we can generate.
These constraints make the methods described in [96] not applicable to our problem. However, our
approach is inspired by their work as we will still divide the problem into simpler sub-problems and
combine their results to recover the support of the output matrix. Despite the constraint that our
measurements are linear in vu>, by carefully designing the sketching vectors v and u, we are able
induce a product code structure and recover the non-zero entries of the output matrix efficiently.

2The collection of measurements fA,B(u,v) where the support of vu> is the same will comprise the syndrome of
the signal residing on that support in the output matrix. This connection will be made clear in Section 7.4.
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Figure 7.1: An example product code with k = 2 data symbols in each dimension. Parity symbols
are colored in blue.
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Figure 7.2: Decoding a 3 × 3 two-dimensional product code through peeling. The unresolved
entries are shown in red, zero entries are shown in white, and recovered entries are shown in green.
In the first round of peeling, entries labeled with 1, 5 and 6 singletons (single red circle in a row
or a column), and are recovered. In the second round, entires 3 and 4 become singletons and are
recovered.

7.4 High-dimensional product coded matrix-matrix
multiplication

In standard 2-dimensional product codes [23] one first selects a linear component code C. For
simplicity, we will consider product codes whose component code C is the (k + 1, k) parity-check
code. The resulting product code is achieved by arranging the k2 data bits in a k × k square, and
encoding to a (k + 1)× (k + 1) square. This is done by encoding each of the k data rows with C,
determining the parity symbol for each row, and then encoding all k+1 columns with C to determine
the parity symbol of each column (see Figure 7.1 for an illustration). Product codes allow for the
use of a peeling decoder in recovering erasures, which yields simple, linear-time decoding [1]. This
is because if there is a single erasure in a row (or a column), then it can be recovered as each row
(or a column) is a codeword of C, which is the (k + 1, k) parity-check code. This may in turn allow
us to decode other erasures as we have resolved some unknown symbols, and continue this iterative
peeling process (see Figure 7.2 for an example peeling process). High-dimensional product codes
extend this 2-dimensional framework to higher dimensions [4].

In this work we use product codes to perform compression by obtaining a sketch of the output
matrix C from which the matrix C can be recovered. The sketches are composed of syndromes
at check nodes, and these check nodes represent a product code on the elements of the matrix C.
Before describing the general product-coded matrix-matrix multiplication framework, we give two
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

cn5

cn6

cn7

cn8
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Figure 7.3: Illustration of check nodes for a 4 × 4 matrix. Elements of the matrix are shown as
circles, and there are 8 check nodes represented by rounded rectangles with labels cn1 to cn8. Each
check node consists of a set of linear combinations of the elements that they encircle. These linear
combinations are designed so that if there is a single non-zero entry connected to a check node, we
can resolve its location and value (see Sections 7.4.1 and 7.4.2.) The Tanner graph representation of
the resulting code is shown in Figure 7.4

examples that illustrate how product codes can be constructed for matrix-matrix multiplication. The
first example corresponds to a 2-dimensional product code.

Example 5. Let A and B be two d×4 matrices for some d ∈ Z++. The resulting matrix C = A>B
is of size 4× 4. Entries of C can be indexed by a tuple (i, j) where the indices correspond to rows
and columns of C respectively. As Ci,j = a>i bj , the first index corresponds to the column index of
A, and the second index corresponds to the column index of B which get multiplied together to
produce Cij . For inducing a product code structure, we calculate a set of linear combinations over
the rows and the columns of C. Each set of linear combinations is designed so that if there is a single
non-zero element in a row or a column of C, we can recover its position and value. The systematic
way of designing these weighted measurements are going to be explained in sections 7.4.1 and
7.4.2.

Consider a linear combination of the elements in column 0 of C. This can be achieved by
choosing, in equation (7.1), u = (w0, w1, w2, w3)>, and v = (1, 0, 0, 0)>, where {w0, w1, w2, w3}
are the weights for the linear combination. Likewise, linear combinations of the elements in any
row or column can be obtained by using an appropriate choice of vectors u and v in (7.1). Going
over each row and column of the output matrix yields a total of 8 set of measurements. The support
of these measurement sets are depicted in Figure 7.3. Through this set of measurements, we create
2-dimensional product code whose Tanner graph is shown in Figure 7.4. �

Although the structure of a 2-dimensional product code yields an example with intuitive expla-
nation because the matrices we are multiplying are also 2-dimensional structures, the theoretical
guarantees and the practical performance are inferior to 3-dimensional product codes. This is
because they suffer from an error floor when the component codes are single erasure correcting [70].
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cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8

Figure 7.4: Tanner graph representation for the product code in Figure 7.3. Variable nodes (entries
of the matrix) are shown as circles and the check nodes are represented by squares.
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Figure 7.5: A 3-dimensional product code for a 4× 2 output matrix. The 8 entries of the matrix are
laid out on a 3 dimensional cube as shown. Sketched measurements correspond to weighted sum
of elements along chosen (possibly multiple) dimensions. Here, we show two check nodes, each
shaded a different color, and they are over elements at a fixed ‘height.’

Increasing the dimension of the code to 3 or more removes this error floor. The following is an
example of how one can create a 3-dimensional product code structure.

Example 6. Given A of size d × 4 and B of size d × 2, the output matrix C = A>B is of size
4× 2 and has 8 elements. Index the entries of the resulting matrix using 3 bits as (i1, i0, j0), where
the first 2 bits correspond to the column index of A, and the last bit corresponds to the column index
of B. Then, we choose a 3-way partitioning of the indices as i′ = (j0), j′ = (i0), and k′ = (i1), and
interpret each new index as corresponding to an axis of a cube. This corresponds to placing the 8
entries of the matrix on the vertices of a 3-dimensional cube as shown in Figure 7.5. The sketched
measurements correspond to weighted sums of elements along each dimension of this resulting
cube. �

For the rest of this chapter, we will consider 3-dimensional product codes. The extensions
to other dimensions can be performed by partitioning the indices accordingly. For simplifying
the notation assume that n = m = p3 where p is a non-negative integer3. The resulting matrix

3This is to simplify the explanation of our approach as this particular choice results in a 3-dimensional product
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Figure 7.6: Illustration of a 3-dimensional product code on an 8×8 output matrix. There are 4 check
nodes in each group (12 check nodes in total). The entries shaded with the same color in a group are
connected to the same check node in that group; and each entry of the matrix is connected to 3 check
nodes (1 in each group). Observe that each check node is connected to 16 entries. Furthermore,
sketched measurements going to a check node can be obtained by first taking a linear combination
of 4 columns of A and 4 columns of B and then taking an inner product between these two sketches.
Given the information that an entry is connected to a check node in a block, it is equally likely to go
to any check node in the other two groups.

C = A>B is of size p3 × p3 having a total p6 elements. We can assign an indexing to the elements
of C so that the elements lie on a 3-dimensional cube of size p2 × p2 × p2. For this, let i ∈ [p3]
denote the row and j ∈ [p3] denote the column of C. Represent the indices as i = i2p

2 + i1p+ i0
and j = j2p

2 + j1p+ j0 where each of the coefficients {i0, i1, i2, j0, j1, j2} is in [p]. Then, map the
indices (i, j) to on 3-dimensions (i′, j′, k′) as

(i, j) = (i2p
2 + i1p+ i0, j2p

2 + j1p+ j0)

7→ (j0p+ i0, j1p+ i1, j2p+ i2) = (i′, j′, k′).
(7.2)

Note that each component of the new indices has equal number of contributions from original
indices (i, j). As a result, check nodes in the product code can be obtained by first taking linear
combinations of equal number of columns of A and B, and then taking their inner products.

The number of check nodes necessary to recover C depends on the sparsity level K. Below,
we describe the construction for the setting where K = O(n2/3). In that case, we build 3 sets of
p2 checks nodes. As p = n1/3, this yields a total of 3n2/3 check nodes. We then connect a check
node for the elements of the output matrix whose indices are equal to each other in one dimension
of (i′, j′, k′). For example, one of the check nodes is connected to indices {(i′, j′, k′) : i′ = 0}.
Figure 7.6 shows the connectivity of the check nodes and the elements of the matrix C.

Since the sparsity is uniformly distributed, each non-zero entry of C is connected to a check node
chosen uniformly at random in each dimension. This gives a left-regular Low-Density-Parity-Check
(LDPC) code construction where the variable nodes have degree 3, and the degrees of the check
nodes follow a Poisson distribution [70]. The proof for recovering the support of C follows similar
lines to the proof of the algorithm in [70]. Here, we outline the high level ideas for completeness.

code with length p2 in each dimension. High-dimensional product codes can be built in higher dimensions and with
different lengths in each dimension.
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In peeling, we recover a variable node (non-zero coefficient of the matrix) if it is connected to
a check node with degree 1, and remove the outgoing edges from that variable node. The density
evolution equation for the expectation that a randomly chosen edge in the Tanner graph is not
removed after ` rounds of peeling is given by the recursive equation p` =

(
1− e−dp`−1/(M/K)

)d−1
,

where p0 = 1, and M is the total number of check nodes (see the derivation of equation A.10 in
Appendix A.1). This equation assumes that the depth ` neighborhood of the chosen edge is a tree.
We can show similarly to [70] that the depth ` neighborhood of a randomly chosen edge is a tree
with high probability for any fixed `. On average, an arbitrarily large fraction of edges are removed
if p` goes to zero as ` → ∞. For p` to go to zero, M/K needs to be greater than a threshold for
each fixed d. These thresholds are found through numerical methods (e.g., bisection) using the
equation for p`. Table 7.1 shows thresholds for various code dimensions. Then, one can use a
martingale-based argument to show that the fraction of non-recovered components concentrates
around it’s mean [74]. This guarantees recovery of an arbitrarily-large fraction of significant
components. An expander-graph argument is then used to show that peeling continues to recover all
components [70].

Table 7.1: Thresholds for recovery (see Appendix A for a derivation of these thresholds).

code dimensions 3 4 5 6 7

threshold M/K 1.2218 1.2949 1.4250 1.5697 1.7189

7.4.1 Recovering the Values and Locations in the Exactly-Sparse Setting
In the exactly-sparse setting, for each check node, we take two measurements that use complex
exponentials. Define an n × n modulation matrix as Wn(x) := diag

(
(1, x, . . . , xn−1)>

)
, where

diag(·) creates a diagonal matrix out of its vector input, and consider measurements of the form

fA,B(uWn(ωnn2),vWn(ωn2)) =
n∑

i=1

n∑

j=1

uivj(a
>
i bj)ω

in+j
n2 ,

where ωn2 = exp(ı2π/n2) with ı denoting the unit complex number. If the check node correspond-
ing to the vectors u and v picks up a single non-zero element of C (that is, if the check node is a
singleton) we can find its location through a ratio test. Let (i?, j?) denote the index of the non-zero
element, then

fA,B(uWn(ωnn2),vWn(ωn2))

fA,B(u,v)
=
ui?vj?(a

>
i?bj?)ω

i?n+j?

n2

ui?vj?(a>i?bj?)

= ωi
?n+j?

n2 .

As the result is unique for every i? ∈ [n] and j? ∈ [n] we can determine the index (i?, j?). If
this ratio is not an integer power of ωn2 , it means that the measurement gets contribution from
multiple non-zero elements of C. After finding the location, the value of a>i0bj0 can be found as
Ci?,j? = a>i?bj? = fA,B(u,v)/(ui?vj?).
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7.4.2 Recovering the Values and Locations in the Approximately-Sparse
Setting

Assume that all significant components of the matrix C = A>B are in {−1, 1}, and that the
values of all non-significant entries are smaller than ε = O(n−1) in magnitude4. In this setting, we
construct O(log2(n)) linear combinations at each check node to detect the location and recover the
value. First, we assign each row and each column a unique signature string. Let Q = dlog(n)e,
and b(i) ∈ {0, 1}Q be the binary expansion of i ∈ [n], that is, i =

∑Q−1
q=0 b

(i)
q 2q. Define the matrix

S ∈ {−1, 1}n×Q as Si,q = (−1)b
(i)
q , for all i ∈ [n] and all q ∈ [Q]. The signature assigned to

column or row i ∈ [n] is then the ith row of S. Note that this assigns each column and row a unique
signature. We design auxiliary measurements at each check node that create these signatures for
each row and column.

Consider a choice of u and v that defines which indices of the matrix C is included in a check
node. Choose P = O(log(n)) random vectors {u̇p}p∈[P ] and {v̇p}p∈[P ] where all have values drawn
i.i.d. from Rademacher(1/2). We will first find the row index and then the column index of the
singleton. To find the qth entry of the signature of the row index, consider the measurements

y0 = fA,B(u� u̇p,v � v̇p),

y1 = fA,B(u� u̇p � sq,v � v̇p).
(7.3)

If the measurement has only components at ith row we have sign(y0) sign(y1) equal to Si,q in the
exactly-sparse setting. In the approximately-sparse setting, this is true with a fixed probability. Thus
repeating the procedure P = log(n) times gives an error probability that decays polynomially in n.
The proof, which we omit, is based on standard concentration results [32] and is similar to [51]. In
total, we need PQ = O(log2(n)) measurements to resolve singleton check nodes.

7.4.3 Computational complexity
From the previous section (and Table 7.1), we see that O(K) check nodes are enough for decoding
the product code. First, assume that the sketches of the matrices are obtained. Because each
check node is obtained by taking the inner product of two vectors of length d, the complexity for
calculating a measurement in a check node is O(dK). In the exactly-sparse setting, each check node
consists of 2 measurements, so overall complexity staysO(dK). In the approximately-sparse setting,
there are log2(n) measurements for each check node, resulting in a computational complexity of
O(dK log2(n)). For calculating the sketches of matrices, in each dimension of the product code,
each entry of A and B is used once to create the check nodes. Hence, for a single measurement in a
check node, we use O(dn) operations. Because there are 2 measurements for each check node in the
exactly-sparse setting, we getO(dn) computations for calculating the sketches. In the approximately-
sparse setting, there are log2(n) measurements for each check node, so the overall complexity
for sketching becomes O(dn log2(n)). Combining these, we get a computational complexity of

4Our algorithm can be extended to the setting where the significant components take arbitrary values using ideas
from [96, 98] by increasing the computational complexity of our algorithm by a factor of log(K).
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Figure 7.7: (Left) Fraction of complete recovery of the output matrix as a function of the ratio of
the number of check nodes, M , to output sparsity, K. The plot assumes that we can recover the
location and values from singleton check nodes. (Right) Probability of identifying an element of the
signature of a singleton from measurements of the form given by (7.3) in the approximately-sparse
setting as a function of the bound ε on the magnitude of non-significant entries for varying n.

max(O(dK), O(dn)) for the exactly-sparse setting, and max(O(dK log2(n)), O(dn log2(n))) for
the approximately-sparse setting.

7.5 Numerical Experiments
We present two numerical experiments corroborating our claims in Figure 7.7. The plot on the
left shows the probability of complete recovery by the product code through peeling assuming we
can recover entries from singleton check nodes. In the simulations n = 103 and the number of
check nodes M = 30, 000, and the output sparsity is around K = O(n4/3). Our theory states that
asymptotically M/K ≈ 1.23 measurements is enough for the recovery of all entries. As can be
seen from the plot, the performance is close to the theoretical prediction. The plot on the right
considers recovering the location from a singleton check node. It shows the probability of detecting
the sign correctly using a pair of measurements given in (7.3) as a function of the bound ε on the
magnitude on the non-significant entries of C for different values of n. Lines going from right to
left depicts a doubling in n, and the dashed line is an arbitrarily chosen constant probability line
(0.9 in this figure). We see that for keeping the probability of error the same when doubling n (that
is, going to left from one plot to the other), one needs to halve ε, which means that if ε = O(n−1)
the probability of correct detection stays the same. By having a constant error probability, we can
repeat the process O(log n) times to get polynomially decaying error probability for recovering
each entry of the signature of a non-zero location.

7.6 Conclusions and Future Directions
We have presented a fast algorithm for large-scale matrix-matrix multiplication when the output
matrix is known to be sparse. Our algorithm is based on transforming the problem of support
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recovery of a matrix product to decoding a product code on an erasure channel. Through this
formulation, we utilize a peeling-based algorithm to recover the support of the matrix product. Our
problem setting arises in a variety of problems ranging from the recovery of sparse covariance
matrices to fast string search across a database (where the rows of the first matrix represent the
database of strings and the columns of the second matrix represent the query strings to be searched
in the database) to sketching sparse matrices. Tailoring our method to these applications is a part of
future research.
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Chapter 8

Conclusions and Future Research
Directions

In this thesis, we have studied six problems of practical and theoretical interest, and developed
fast algorithms for solving them whenever there is some underlying sparse structure. This sparse
structure can be that (1) in a signal processing application, the input signal is representable with
a small number of non-zero coefficients in some basis, (2) in a distributed computing setting, the
number of straggling machines is small, or (3) in performing matrix-matrix multiplication, the
output matrix is sparse. The algorithms we developed attained their speed by being sample and
computationally efficient through leveraging the structure of sparsity.

Our approach in tackling the problems was based on a unifying divide-and-conquer strategy
where by leveraging ideas from Low Density Parity Check (LDPC) Codes and Product Codes which
has previously been studied in the context of communications, we created structures that enable
simple and fast peeling-based recoveries. In particular, the problems we considered and a summary
of our results therein were:

• We proposed a novel architecture for sampling a continuous-time signal having a band-
limited and sparse spectrum at its minimum sampling rate. This minimum rate is equal to
twice the occupancy of its spectrum, which can be much lower than the rate given by the
Shannon-Nyquist sampling theorem.

• We improved the noise robustness of peeling-based sparse DFT algorithm R-FFAST by
developing a sample and computationally efficient single-tone identification algorithm. This
helps pave the way for applications that require operating at low signal to noise ratios.

• We developed a fast algorithm for recovering sparse wavelet coefficients of a signal based on
samples from its Fourier Transform. We analyzed our algorithm by deriving novel density
evolution equations that takes into account cycles on the code graph. Using our analysis, we
showed that the sample complexity of our algorithms is linear in the number of non-zero
wavelet coefficients of the signal and the computational complexity requires only a term that
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depends logarithmically on the sparsity on top of the linear term. This setting arises in MRI,
and our approach provides a theoretical framework for fast MRI.

• We proposed a sample and computationally efficient algorithm for recovering sparse pseudo-
Boolean functions. We showed that there is an interesting connection between recovering
low-degree pseudo-Boolean functions and the minimum distance properties of codes from
communications literature. We applied a variant of our algorithm to learn fitness landscapes
of DNA repair outcomes after CRISPR-Cas9 induced breaks.

• We proposed a coded computation method to speed up distributed matrix-matrix multiplication
by reducing the effects of straggler nodes (slow worker nodes). Our method uses a novel
code construction based on Product Codes in its channel coding form. Our code construction
attains a good balance between straggler resiliency and having computationally efficient
encoding/decoding at the master node.

• We propose a computationally efficient algorithm for large-scale matrix-matrix multiplication
whenever the output matrix is sparse. Our method uses product codes in its dual compression
form to obtain orderwise-optimal number of sketches from the output matrix, and then
recovers it by fast peeling-based decoder.

Future research directions can be related to the overall unifying approach or problem-specific.
First we provide directions about the overall approach. Unifying our algorithms is a divide-and-
conquer strategy. We divide a hard problem into smaller easier problems using a sparse-graph
code, such as an LDPC code or a product code, then recover the solution to the original problem
by peeling, that is, by recovering solutions to the easier problems iteratively. This divide-and-
conquer strategy is designed to work in a non-adversarial setting, and variations of our algorithms
tailored for an adversarial setting might be of practical and theoretical interest. Another property
of our algorithms is that while combining the solutions to the easier problems, we make local
decisions. Alternatively, convex-optimization based algorithms for sparse-signal recovery, such
as LASSO [86], make global computations. This results in higher robustness to non-idealities
like noise or approximate sparsity. However, as a result, the complexity of such algorithms also
scale super-linearly with the ambient dimension. Hybrid approaches that combine local and global
operations, and hence, trading computational complexity with robustness against non-idealities are
interesting to pursue.

Next, we provide problem-specific future directions.
In Chapter 2, we studied recovering band limited signals whose frequency occupation is exactly

sparse. Many continuous-time signals, such as signals which have finite duration in time, are not
bandlimited. However, such signals, if they have finite energy, have a finite bandwidth where most
of the energy of the signal is concentrated [82, 83]. One future research direction can be to develop
algorithms that recover arbitrarily large fraction of the signal energy for non-bandlimited signals or
signals that has approximately-sparse spectra.

In Chapter 3, we presented an algorithm for single tone identification for improving the noise
robustness of R-FFAST [69] algorithm for sparse DFT calculations. Our hardware implementa-
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tion [93] of R-FFAST [69] uses the single tone identification algorithm based on Kay’s method.
Implementing the new single tone identification algorithm in hardware could improve the SNR
performance and open up the application areas.

In Chapter 4, our results show that a strategy having some non-random components in the graph
design can lead to better performance than the fully random case. An interesting open direction is
the pursuit of optimal ball-throwing strategy. In our work, we have given initial steps in analyzing
this problem rigorously. We additionally believe the gains seen in spatially coupled ensembles [41]
can be related to the structural gains of the smearing ensemble; an interesting open problem is to
study the connections.

In Chapter 5, we have shown that codes that have minimum distance greater than 2t enables
recovery of all coefficients corresponding to multinomial terms of degree up to and including t.
However, what is the optimal choice of the code if there is sparsity on the low-degree terms, and
that we do not need to recover all of them but only the non-zero ones? If we use the codewords
corresponding to a code with minimum distance less than or equal to 2t, there will be coefficients
of monomials with degree less than or equal to t which alias together in the same bins. As
each coefficient is equally likely to be non-zero under the uniform-support assumption, intuition
suggests that codes that minimize the maximum number of aliasing coefficients should perform
well. An interesting future direction is to provide theoretical results and practical deterministic code
constructions for this setting.

In Chapter 6, as we have utilized product codes which can be decoded by operating on single
‘rows’ and ‘columns’ in an iterative way, our algorithm is a suitable candidate to have an impact in
master-less computation frameworks. In particular, in a platform having shared memory with fast
input/output where workers write their results, separate workers assigned to the task of decoding
can do so in a streamlined fashion. This master-less architecture is an exciting new computing
paradigm which Product Codes are well suited for.

In Chapter 7, our algorithm for sparse-output matrix multiplication also uses product codes, and
it can be combined with the algorithm from Chapter 6 for being straggler-resilient in a distributed
computing setting. Furthermore, sparse-output matrix multiplication arises in a variety of problems
ranging from the recovery of sparse covariance matrices to fast string search across a database
(where the rows of the first matrix represent the database of strings and the columns of the second
matrix represent the query strings to be searched in the database) to sketching sparse matrices.
Tailoring our method to these application areas is another possible research direction.
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Appendix A

Analysis of the Peeling Decoder

Here, we cover the theoretical analysis of decoding a sparse-graph code through peeling. The
outline of the steps is as follows. First, a graph ensemble on which we perform peeling is defined,
and the analysis is made for that ensemble. While decoding, at each step of peeling, we remove
edges that are connected to singleton check nodes from the graph. Hence, we need to make sure that
there are singleton check nodes until all the variable nodes are resolved. Let p` denote the fraction
of edges that are remaining in the graph after a fixed ` rounds of peeling. We can derive density
evolution equations that track the evolution of p` through the iterations of peeling (Section A.1).
These density evolution equations are derived assuming that the depth ` neighborhood of an edge
is cycle-free. Through counting arguments, the depth ` neighborhood of a randomly chosen edge
is shown to be cycle-free with high probability for any fixed ` (Lemma 10). If p` goes arbitrarily
close to 0 as ` increases, we can remove an arbitrarily large fraction of edges on average over the
ensemble of graphs. Then, one can use a martingale-based argument to show that the fraction of non-
recovered components concentrates around this average (Lemma 10). This guarantees recovery of an
arbitrarily-large fraction of significant components with high probability. Then, an expander-graph
argument is then used to show that peeling continues to remove all edges (Section A.3).

We have the following graph ensemble similar to the Definition 3. The slight changes in the
notation is to have this appendix abstracted away from the application.

Definition 7. Given K left nodes and M right nodes and an integer d with d ≥ 2, regular graph
ensemble C(K,M, d) is the set of all graphs where each left node is connected to d right nodes.

Figure A.1 shows an example graph from C(K,M, d) with K = 4, M = 8, and d = 2. We
have the following theorem adapted from Theorem 9 in [70].

Theorem 11. The peeling decoder over a random graph from the ensemble C(K,M, d) with d ≥ 3,
and M = ηK where η is given in Table A.1

(a) recovers all the variable nodes with probability at least 1−O(1/K),
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Figure A.1: An example graph from C(K,M, d) with K = 4 left nodes (variable nodes), M = 8
right nodes (check nodes), and left node degree d = 2.

(b) recovers all but a vanishingly small fraction of variable nodes with probability at least
1− exp

(
−γε2K1/(2`+1)

)
for some constants γ, ε > 0, ` > 0 .

Proof. In Lemma 8 we show the result in (b), combining it with the result in Section A.3 we get the
result in (a).

Table A.1: Thresholds for density evolution on C(K,M, d) as a function of the degree d and
η = M/K. The calculation of these thresholds are explained in Section A.1.

d 3 4 5 6 7

η 1.2218 1.2949 1.4250 1.5697 1.7189

A.1 Density Evolution for Cycle-Free Case
We derive density evolution equations that track the average behavior of the peeling decoder. For
this, let

λ(x) :=
∞∑

i=1

λix
i−1, (A.1)
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where λi denotes the probability that an edge of the graph is connected to a left node of degree i.
Likewise, let

ρ(x) :=
∞∑

i=1

ρix
i−1, (A.2)

where ρi denotes the probability that an edge of the graph is connected to a right node of degree i.
Because the graphs in C(K,M, d) are left regular with degree d, we have

λ(x) = xd−1. (A.3)

Next, is to calculate ρ. Let Dc be the degree of a check node c, then the expected number of right
nodes with degree j is

M∑

c=1

Pr (Dc = j) = MPr (D1 = j) , (A.4)

by symmetry. Then pj can be calculated as

ρj =
Pr (D1 = j)Mj

Kd
=
jη

d
Pr (D1 = j) , (A.5)

where we used M = ηK. According to C(K,M, d), D1 follows the binomial distribution
B(Kd/η, d), and it can be approximated well by a Poisson distribution

Pr (D1 = j) ≈ (d/η)jed/η

j!
. (A.6)

As a result, ρj , the fraction of edges connected to a right node having degree j is

ρj =
(d/η)j−1ed/η

(j − 1)!
. (A.7)

This gives

ρ(x) = e−(d/η)(1−x). (A.8)

For deriving the density evolution equations we introduce the concept of directed neighborhood
(see Figure A.2). A directed edge ~e means an ordered pair (c, v) or (v, c) where c is a check
node and v is a variable node in the graph. A path in the graph is a sequence of directed edges
~e1, ~e2, . . . , ~et such that for every i ∈ {1, . . . , t− 1} if we have ~ei = (ui, u

′
i) and ~ei+1 = (ui+1, u

′
i+1),

then ui+1 = u′i. The length of the path is the number of edges in it. The directed neighborhood of
depth ` of ~e = (v, c), denoted by N `

~e , is defined as the induced subgraph containing all edges and
nodes on paths ~e1, . . . , ~e` starting at node v such that ~e1 6= ~e. An example of directed neighborhood
is given in Figure A.2.
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Figure A.2: Illustration of N2
~e , the depth 2 neighborhood of a directed edge ~e = (v, c).

Assume that the depth 2` neighborhood of an edge in the graph is cycle-free. Let pj denote the
probability that an edge is present after j rounds of peeling. Probability that a check node connects
to no variable nodes from below (see Figure A.2) is then ρ(1− pj). The probability of one check
node that the variable node is connected to being not a singleton is then 1− ρ(1− pj). Since there
are multiple check nodes that the variable node connects to from below, we have all of them being
not a singleton to be λ(1− ρ(1− pj)). Hence, under cycle-free assumption we have

pj+1 = λ(1− ρ(1− pj)), for j = 0, 1, . . . , `− 1. (A.9)

Substituting in λ and ρ from equations (A.3) and (A.8) in the recurrence (A.9) we get

pj+1 =
(

1− e− dη pj
)d−1

, for j = 0, 1, . . . , `− 1. (A.10)

This equation tracks the expectation of an edge to remain in the graph after j rounds of peeling. If
we are hoping to recover all variable nodes, all edges in the graph need to be removed. This would
hold if pj goes to 0 as the number of iterations j increases. However, this requires a certain relation
between η and d. If pj+1 < pj for all j ≥ 0, then pj goes to 0 as j increases. Solving for η that
satisfies this property given d requires using numerical methods (such as searching using bisection
method). One way is to plot the evolution and see if it crosses the pj+1 = pj line. Figure A.3
plots the evolution of pj given in (A.9) for d = 3. As can be seen, η = 1.2218 just satisfies this
property, and anything below this value crosses above the pj+1 = pj . The values in the Table A.1
are numerically calculated for different values of d using equation (A.10).

A.2 Convergence to Cycle-Free Case
We have the following lemma which says that the expected number of edges removed from the
graph is tracked well by the density evolution equations, and that the performance concentrates
tightly around this expected value.
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Figure A.3: Evolution of pj in equation A.10 for different values of η = M/K for d = 3. We see
that when η = 1, the curve crosses above the pj+1 = pj line. The smallest value of η for which the
curve is always below the pj+1 = pj line is η = 1.2218.

Lemma 8. Let Z be the total number of edges that are removed after ` iterations of the peeling
decoder over a randomly chosen graph from C(K,M, d). Further, let p` be given as in equa-
tion (A.10). Then, there exists a constant γ such that for any ε > 0 and sufficiently large K we
have

E [Z] < 2Kdp` (A.11)

and

Pr (|Z − E [Z]| > kdε) < exp
(
−γε2k1/(2`+1)

)
. (A.12)

The proof follows the lines of the proofs of Theorem 2 in [74] and Lemma 5 in [70].

Proof. Let Ze for e ∈ {1, . . . , dK} be the indicator that eth edge remains on the graph after `
iterations of peeling. The number of edges remaining in the graph after ` rounds of peeling is then

Z =
dK∑

e=1

Ze. (A.13)

By symmetry, we have E [Z] = dKE [Z1]. We bound E [Z1] as,

E [Z1] = E
[
Z1|N2`

~e1
is cycle-free

]
Pr
(
N2`
~e1

is cycle-free
)

+ E
[
Z1|N2`

~e1
is not cycle-free

]
Pr
(
N2`
~e1

is not cycle-free
)

≤ E
[
Z1|N2`

~e1
is cycle-free

]
+ Pr

(
N2`
~e1

is not cycle-free
)
.

(A.14)
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In Lemma 10, we show that Pr
(
N2`
~e1

is not cycle-free
)
≤ O(log2`(K)/K). We also have, from the

definition of density evolution equations E
[
Z1|N2`

~e1
is cycle-free

]
= p`. Thus, for sufficiently large

K we have

E [Z] < 2Kdp`,

which proves equation A.11.
Next, we show the concentration of Z around its mean. The number of remaining edges is given

by (A.13). Note that the summands are not independent with each other. Therefore, we cannot use
concentration of independent random variables. Thus, we resort to a martingale-based argument
similar to [74]. Suppose that we expose the whole set of Kd edges of the graph one at a time. We
let

Yi = E [Z|Z1, . . . , Zi] , for i ∈ {0, 1, . . . , Kd} . (A.15)

By definition, Y0, Y1, . . . , YKd is a Doob’s martingale process, where Y0 = E [Z] and YKd = Z. To
use Azuma’s inequality to show concentration, we require that |Yi+1 − Yi| ≤ δi for some δi > 0.
Then, Azuma’s inequality would state that

Pr (|Z − E [Z]| > t) ≤ 2 exp

(
−t2

2
∑dK

i=1 δ
2
i

)
. (A.16)

In [74], the authors have shown that for regular bipartite graphs with variable node degree dv and
check node degree dc we have

δi < 8(dvdc)
`, (A.17)

where ` is the number of iterations. However, since the check node degree is not regular in our case,
we need further analysis.

Let Dc be the degree of check node c; because Dc follows a Poisson distribution with a fixed
mean of 1/η, we have

Pr
(
Dc > κ1K

2/(4`+1)
) (a)

≤
(

e

ηκ1K2/(4`+1)

)κ1K2/(4`+1)

≤ κ2 exp
(
−κ3K

2/(4`+1)
)
, (A.18)

for some κ2 and κ3, where (a) follows from Claim 1 below. Let B̄ be the event that there is a check
node with degree > κ1K

2/(4`+1). Then, by union bound over all ηK check nodes, we have

Pr
(
B̄
)
≤ O

(
K exp

(
−κ3K

2/(4`+1)
))
. (A.19)

Under the complement of B̄, substituting the upper bound on the check node degree in equa-
tion (A.17), we have

δ2
i = O

(
K4`/(4`+1)

)
. (A.20)



APPENDIX A. ANALYSIS OF THE PEELING DECODER 118

Substituting this into Azuma’s inequality, we find that

Pr (|Z − E [Z]| > Kdε) ≤ Pr (|Z − E [Z]| > dKε|B) + Pr
(
B̄
)

≤ 2 exp

(
−K2d2ε2

2
∑dK

i=1 δ
2
i

)
+O

(
K exp

(
−κ3K

2/(4`+1)
))

≤ exp
(
−γε2K1/(4`+1)

)
,

(A.21)

for some γ, which proves equation (A.12).

The following lemma bounds the size of the set of variable nodes and the set of check nodes
in the neighborhood N2`

~e with high probability. The sizes of these sets will be used to bound the
probability of N2`

~e not being cycle-free.

Lemma 9. Let C` be the number of check nodes and V` be the number of variable nodes in the
neighborhood N2`

~e . Then

Pr
(
V` > κ1 log`K

)
≤ O(1/K), (A.22)

Pr
(
C` > κ1 log`K

)
≤ O(1/K). (A.23)

Proof. Let αi := Pr
(
Vi > κ1 logiK

)
. We have

αi ≤ αi−1 + Pr
(
Vi > κ1 logiK|Vi−1 < κ1 logi−1K

)
. (A.24)

Given Vi−1 < κ1 logi−1K, we have Ci < κ2 logi−1K at depth i for some κ2 > 0 since left degree
is bounded by d. Hence, we can bound the second term as

Pr
(
Vi > κ1 logiK|Vi−1 < κ1 logi−1K

)
≤ Pr

(
Vi > κ1 logiK|Ci < κ2 logi−1K

)
. (A.25)

Let the number of check nodes at exactly depth i be C̆i, and Dj be the degrees of each of these
check nodes. We have

Pr
(
Vi > κ1 logiK|Ci < κ2 logi−1K

)
≤ Pr




C̆i∑

j=1

Dj ≥ κ3 logiK


 (A.26)

for some κ3 > 0. Since the check node degrees are distributed as Poisson random variables with
rate 1/η, and sum of Poisson random variables are also distributed as Poisson, and C̆i ≤ Ci ≤
κ2 logi−1K,

Pr




C̆i∑

j=1

Dj ≥ κ3 logiK


 (a)

≤
(

eC̆i/η

κ3 logiK

)κ3 logiK

≤
(

κ4

logK

)κ3 logiK

≤ κ5

K
, (A.27)
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for some κ4 > 0 and κ5 > 0, where (a) follows from Claim 1. Therefore, we have

αi ≤ αi−1 +
κ5

K
, (A.28)

and thus V` satisfies

Pr
(
V` > κ1 log`K

)
≤ O(1/K), (A.29)

for each fixed `. Similar analysis can be performed to prove the bound on C`.

The following lemma bounds the probability of N2`
~e not being cycle-free.

Lemma 10. Consider a randomly selected edge ~e in a graph G chosen from C(K,M, d). We have

Pr
(
N2`
~e is not cycle-free

)
≤ O

(
(logK)2`

K

)
. (A.30)

Proof. Let Ci be the number of check nodes, and Vi be the number of variable nodes present in N2i
~e .

We bound the probability as

Pr
(
N2`
~e1

is not cycle-free
)
≤ Pr

(
V` > κ1 log`K

)
+ Pr

(
C` > κ1 log`K

)

+ Pr
(
N2`
~e1

is not cycle-free|V` ≤ κ1 log`K,C` ≤ κ1 log`K
)
.

(A.31)

From Lemma 9, we have a probabilistic bound on the number of check nodes and variable nodes in
N2`
~e , so the first two terms are O(1/K).

Next, We focus on the last term. Assume depth 2i, where i < `, is cycle-free. Also, assume that
t more edges from the leaf variable nodes in N2i

~e to the check nodes are revealed without creating a
loop. Then, the probability that the next revealed edge from a leaf variable node to a check node
does not create a loop is

1− C`
ηK

. (A.32)

Therefore, given that N2i
~e is cycle-free, the probability that N2i+1

~e is cycle-free is lower bounded by

(
1− C`

ηK

)Ci+1−Ci
. (A.33)

By similar reasoning, given that N2i+1
~e is cycle-free, the probability that N2(i+1)

~e is cycle free is
lower bounded by

(
1− V`

K

)Vi+1−Vi
. (A.34)
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Therefore, the probability that N2`
~e being not-cycle-free is bounded by

1−
(

1− C`
ηK

)C` (
1− V`

K

)V`
≤
(
V 2
`

K
+
C2
`

ηK

)
≤ O

(
log2`

K

)
, (A.35)

where the last inequality follows from the conditioning V` = O
(
log`K

)
and C` = O

(
log`K

)
.

Combining all the terms in (A.31) concludes the proof.

The following claim provides a bound on the probability of tail events of Poisson random
variables which we used in the proofs of Lemma 8 and Lemma 9.

Claim 1. If a random variable D has a Poisson distribution with mean µ, then

Pr (D ≥ d) ≤
(eµ
d

)d
(A.36)

for all d > µ.

Proof. The moment generating function of D is E
[
eθD
]

= eµ(eθ−1) for all θ ∈ R. We have

Pr (D ≥ d) = Pr
(
eθD ≥ eθd

)

≤ eµ(eθ−1)−θd.
(A.37)

Minimizer of this over θ > 0 is θ∗ = log(d/µ), which is greater than 0 for d > µ. Substituting in
the equation we get

eµ(eθ
∗−1)−θ∗d = ed−µ

(µ
d

)d

≤
(eµ
d

)d
,

(A.38)

which proves the claim.

A.3 Expander Graph Property and Complete Recovery of
Variable Nodes

Definition 8. Let G be a bipartite graph with K left nodes and M right nodes. We call G an (α, β)
expander, if for all subsets S of left nodes of size at most αK we have |N(S)| > β |S|, where N(S)
is the neighborhood of S.

The following lemma shows that if the graph is an appropriate expander, then the peeling
continues to recover all variable nodes given that it has recovered a sufficiently large fraction of
them.

Lemma 11. Consider a graph from the ensemble C(K,M, d) that is an (α, d/2) expander for some
α > 0. If the peeling-decoder over this graph succeeds in decoding all but at most αK variable
nodes, then it decodes all the variable nodes.
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Proof. Let S be the set of the variable nodes that the peeling decoder fails to decode. We have
S ≤ αK and |N(S)| > d |S| /2 by the assumption of the lemma. Note that the peeling decoder
fails to decode the set S if and only if there are no more singleton check nodes in N(S). Assume all
check nodes in N(S) to be a multiton, the number of edges connecting to the check nodes in the set
N(S) have to be at least 2 |N(S)| > d |S|. This is a contradiction since there are only d |S| edges
going from set S to N(S) by construction. Hence, there must be at least one singleton check node
to continue the peeling process.

The following lemma shows that graphs from the ensemble C(N,K, d) is an expander with
high probability for d ≥ 3.

Lemma 12. Consider a graph G randomly selected from the ensemble C(N,K, d) with d ≥ 3.
Then G is an (α, d/2) expander with probability at least 1 − O(1/K) for sufficiently small but
constant α.

Proof. Consider S of variable nodes in a random graph G from C(K,N, d) for d ≥ 3. Let N(S)
be its neighbors, and let ES denote the event |N(S)| ≤ d |S| /2. We have

Pr (ES) <

(
M

d |S| /2

)(
d |S|
2M

)d|S|/2

≤
(
d |S| e

2N

)d|S|/2
.

(A.39)

Let Ev be the probability that a subset of size v of variable nodes in G having neighborhood of size
less than or equal to dv

2
. By union bound, we have

Pr (Ev) <

(
K

v

)(
dve

2N

)dv/2

<
( v
K

)(d/2−1)v

cv ≤
(
vc2

K

)v/2
,

(A.40)

where c = e(de/(2η))d/2 is some constant for fixed d. Union bounding over all possible values v
up to α∗K, where we choose α∗ < 1/(2c2) gives

α∗K∑

v=2

Pr (Ev) ≤
α∗K∑

v=2

(
vc2

K

)v/2
= O(1/K), (A.41)

which concludes the proof.
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