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ABSTRACT

Real-world robots will require adaptation to a wide variety of underlying dynamics functions. For example, an
autonomous delivery drone would need to fly with different payloads or environmental conditions that modify
the physics of flight, and a land robot might encounter varying terrains during its runtime. This paper focuses
on developing a single sample-efficient policy that adapts to time-varying dynamics, applied to a quadcopter
in simulation that carries a payload of varying weight and a real mini-quadcopter carrying a variable string
length hanging payload. From the sample-efficient PETS policy, our approach learns a dynamics model from
data and learns a context variable to represent a range of dynamics. At test time, we infer the context that best
explains recent data. We evaluate this method both on a simulated quadcopter and a real quadcopter, the Ryze
Tello. For both scenarios, we illustrate the performance improvements of our method in adapting to different
dynamics compared to traditional model-based techniques. Supplemental materials and videos can be found at
our website: https://sites.google.com/view/meta-rl-for-flight.

1 Introduction

When operating robots in the real world, there are often many
factors that can affect their dynamics, including changes in
weather, onboard equipment failure, and others. These can
be unpredictable and highly detrimental to performance. Ac-
counting for these when developing a model typically re-
quires domain-specific knowledge about how these factors
will affect the dynamics. However, we propose applying
meta-learning to model-based reinforcement learning to cre-
ate an efficient system for adapting to unknown conditions.

Recently, model-based reinforcement learning (MBRL) al-
gorithms have greatly increased performance to rival model-
free algorithms while achieving greater sample efficiency [4,
13]. Our goals in this paper are two-fold. First, we apply
PETS to real-world conditions and applications. Second, we
explore variational inference techniques [7] to improve the
generalization capability of these algorithms to real-world
conditions.

We specifically consider a quadcopter in simulation, as it
offers enough simplicity in modeling dynamics while still
allowing for meaningful changes in dynamics. In order to
better support adaptation to the changing quadcopter physics
at test time, such as weight or string length, one contribution
that we make to these algorithms is the introduction of la-

tent variable models, which will be optimized online. This
will additionally allow the dynamics model to be trained to
represent a continuous spectrum of dynamics contexts.

We then test the ability of PETS to learn to operate on a
real world quadcopter and apply the latent variable model
to validate our method of adaptation. In particular, we aim
to control 1) a quadcopter in simulation carrying a payloads
of various weights and 2) a real quadcopter with a hanging
payload with various length strings as their dynamics change.
Latent variables can be used in this setting to learn to adapt
to hardware failures (such as propeller failure), changing
environment conditions (like wind), or task-related changes
(like changes in weight from pick-up or drop-off). In our
work, we will be using the latent variable for task-related
changes.

2 Related Work

The following section is based on the background research
conducted in Belkhale et al. [2].

In the realm of flight control, prior work has been done to
achieve various tasks including: flight through tight spaces
[11], aerobatics [10], and obstacle avoidance [16]. How-
ever, these methods require prior knowledge about the con-
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figuration of the quadcopter, which must then be manually
configured.

Certain work has attempted to solve this problem by creat-
ing a system with unknown variables to represent the un-
known configuration [17, 6]. Then, using automatic sys-
tem identification, the varying parameters are automatically
learned. However, these methods still require domain knowl-
edge about how the variations affect the dynamics in order
to program their effect into the system.

In order to solve this problem, meta-learning, a framework
for essentially learning how to learn, can be applied. In this
formulation, the effect of different configurations is learned
alongside the dynamics. Prior work in using meta-learning
for quadcopter flight has been shown to improve model accu-
racy but with no significant benefit in control for actual task
performance [14].

Our work improves upon the existing work by eliminating the
need for domain knowledge when preparing for quadcopter
flight. We demonstrate an improvement in task performance
when using our approach compared to standard model-based
reinforcement learning methods in a challenging setting that
requires fast adaptation. Parts of this report are based on
collaborative work [2].

Our latent variable formulation was based off the research
done by Perez, Such, and Karaletsos [15]. Their work imple-
mented a variational inference approach to learn an explicit
representation of unknown environment properties through
latent variable models. This accelerates learning in such en-
vironments during training and, more importantly, facilitates
generalization on novel environments at test time. For exam-
ple, in our quadcopter environment, we modeled the latent
variable for task-related changes, like the mass of the pay-
load and the varying-length string from which the payload is
hanging.

In addition, our latent variable formulation was built on the
foundation of the PETS algorithm by Chua et al., which we
discuss in the next section [4]. This algorithm, probabilistic
ensembles with trajectory sampling (PETS), works to achieve
performance similar to model-free algorithms while retaining
the sample efficiency capable of model-based algorithms.

3 Model-Based Reinforcement Learning

3.1 General Formulation

In the model-based reinforcement learning framework, we
have a conditional distribution for the next state given the
current state and action, and parameterized by the specific
parameters of our model. Thus, MBRL strives to fit an ap-
proximation to the actual state transition function for the
data given in terms of N {{s¢, at} — s¢41} pairs, which we
denote as D",

St41 = St + fo(s¢e,ar)

Using the dataset, we are able to train the parameters 6 of the
neural network using maximum likelihood:

0* = argmax p(D""|9)
9

— argmax > logpo(seeilsia). (1)
o (st,a¢,8¢41)€Dmain

Once the dynamics model, fy, has been estimated, this model
is then utilized to evaluate multiple candidate action se-
quences with this estimated dynamics model after getting
the resulting state trajectories. Then, using the expected re-
wards for all these candidate sequences, we can then find the
best candidate sequence to maximize the reward obtained as

follows
t+H—1

Z C(gt/, at/)

t'=t
where we have $y11 = §¢ + fp(8p,ar). While model-
based learning algorithms have been shown to be much more
sample-efficient as compared to model-free algorithms, the
asymptotic performance achieved on some standard complex
learning tasks has been significantly lower. For this reason,
Chua et al. propose an algorithm, PETS, which we discuss in
the next section, and which will be our baseline algorithm on
which we test the value of learning latent or context variables
[4].

A" = arg min
Aty Qtt1se.AQt+H—1

3.2 PETS Algorithm

Probabilistic ensembles with trajectory sampling (PETS)
is an algorithm proposed by Chua et al., that combines
uncertainty-aware deep network dynamics models with
sampling-based uncertainty propagation. PETS consists of
three main components, as seen in Figure 1, which we will
be relying on as a baseline method to support this study.

First, the algorithm determines a dynamics model by us-
ing multiple randomly initialized neural networks, in what
effectively works as an ensemble of bootstrapped proba-
bilistic models. The ensemble of probabilistic models aims
to capture two types of model uncertainty, aleatoric and
epistemic, where the use of probabilistic networks explains
the inherent stochasticities of the system, and the ensembles
allow us to account for the subjective uncertainty about the
dynamics function. Then, the algorithm uses a particle-
based propagation algorithm to propagate different state
trajectories through the different models. Specifically, P
particles are created from the current state and each particle
is propagated by one of the bootstrap models in the ensemble
(in the TS(oc0) variation). Finally, the algorithm plans and
optimizes for a sequence of actions, using a model predictive
controller (MPC) [5, 8, 13]. While a random sampling
shooting method is used traditionally, PETS improves on this
by using the cross-entropy method for optimization (CEM),
which samples actions from a distribution closer to previous
action samples that yielded high reward, selecting the action
sequence with the highest predicted reward:
t+H
aj = argmax | max Z Es.np, [7(sr,a7)]| . (2)
T=t

ag At 1:t+H



Rachel Li

Dynamics Model Trajectory Propagation

Planning via Model Predictive Control

Figure 1: PETS algorithm model. Figure reproduced from Chua et al. [4]

A summarized version of this algorithm is shown in Algo-
rithm 1, reproduced from Belkhale et al. [2].

Algorithm 1 Model-Based Reinforcement Learning

1: Initialize dynamics model pg with random parameters 6
2: while not done do
Get current state s¢
Solve for action aj given pg« and s; using MPC > see (2)
Execute action a; _
Record outcome: D™ <— D™" U {s;, a;,s¢4+1}
Train dynamics model pg using D" > see (1)
end while

A A

4 Environments

4.1 Quadcopter Simulation

We adapted a quadcopter simulator created by Somil Bansal
in order to validate the performance of PETS in this domain.
The simulator environment was based off the Crazyflie, a
small and versatile quadcopter. This quadcopter was chosen
because of its size and ability to control at fine detail. In
order to simulate the dynamics of the system, we are using a
simple nonlinear dynamics model.

The state space of our quadcopter includes the Cartesian co-
ordinate position (z, ¥y, z), the velocities in each direction,
the angles (roll «, pitch 3, yaw +), and the angular velocities.
The action space includes the roll, pitch, and yaw rate, which
allows us to control the quadcopter for finer maneuvers. In
our simulation, we fixed the thrust in the z-direction so that
the quadcopter stays at a constant height above the ground.
This means that our controls effectively only take effect in a
2D plane.

To control the quadcopter, we created a propor-
tional-integral-derivative (PID) controller on top of the
quadcopter simulator. Given a desired action, the PID
controller performs a control-loop mechanism to reach the
setpoint using proportional, integral, and derivative correc-
tion terms. We opted for a PID controller because it provides
accurate control. The coefficients for the proportional, in-
tegral, and derivative terms were hand-tuned to achieve the
desired performance.

5 Latent Variable Framework

In adding the latent variable, we adapted our optimization
for our neural network parameters from Equation 1 to the
following:

0* = argmax logp(D"™"|zy.x, 6)
0

K
= arglefnaxz Z log pg(s¢y1lst,as, zx) -

k=1 (s;,at,si41)€Dyn

3)

In order to find the appropriate value for our latent variable,
we would like to maximize the posterior: p(6, z;. i |DID).
However, this is computationally intractable, so we instead
based our framework off the formulation specified by Perez,
Such, and Karaletsos [15] where we maximize the probability
of our seen dataset, the evidence lower bound (ELBO), which
is an approximate estimate of the posterior. Essentially, we
are performing regularized regression for a maximum likeli-
hood cost function.

logp(Dtrainw)

= log/ p(D"™"|z1.5, 0)p(21. 1 )dz1. 1
Z1:K

. p(zk)
= logE,, o, p(D™0|zy,0) -2
; an PP 20 6) 40, (2k)

K
ZEZkN‘M)k Z log po(St+1[st, ar, zk)

>
k=1 (8¢.a¢,8¢41) €D
— KL(gg,, (z)[p(2k))
= ELBO(D"™"|0, ¢1.x), 4)

From this formulation, we find that the cost that the network
uses is composed of two parts: a Kullback-Leibler regulariza-
tion term and a log likelihood probability. The KL divergence
term prevents our latent variable from straying too far from
our prior, where the prior is a standard normal Gaussian dis-
tribution. For the log likelihood, we use the log-Gaussian
probability of each observation given the predictions of the
dynamics model at that time step.

¢s(-) is the distribution of the latent variable z;, and we
represent this with A/(p%, %), where * and X% are the vari-
ables we learn directly. py is the model predicted probability
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Figure 2: Quadcopter single goal flight at various time steps. The actual trajectory is shown in dark blue with the goal in light
blue. All evaluated trajectories are shown in gray. When the quadcopter is furthest from the goal (left), the trajectories are much
longer than when the quadcopter is closer to the goal (middle). This difference is because the planning recognizes that the goal is
further away. When the quadcopter is at the goal and needs to hover to maintain its position (right), the trajectories are much

shorter and try to keep the quadcopter centered in its position.

of the given transition. p(-) is our prior which is A/(0,1). We
use a structured latent variable, meaning the latent variable
represents the weight of the payload in the case of simulation
or the length of the string in the case of the real quadcopter.

In order to normalize the values of the payload weight, we
are actually predicting the standard deviation of the weight
from the previously seen distribution of weights. To estimate
the value of the latent variable, we are learning two values:
the mean and standard deviation. This will essentially allow
us to estimate a distribution from which we believe the latent
variable is sampled.

Learning the latent variable is composed of two parts. During
training time, we learn the dynamics model with the value
of the known latent variable passed in as part of the state.
During test time, we can either use a known or unknown
latent variable model. In the situation where there are known
dynamics variables, we are able to directly use the ground-
truth as input. However, when the dynamics variables are
unknown, we start with the unknown latent variable initial-
ized to the standard normal Gaussian distribution. Then, we
will take a sample from the latent variable distribution and
use it along with the state during predictions. Using either
an online or an offline dataset, we can pick the best ;* and
3% according to the cost function defined previously.

5.1 Data Collection

During data collection, the quadcopter was flown in simula-
tion with randomized actions, ensuring that the action-space
was well covered. We modified the states in the simulation
environment to include a concatenated history of past states
and actions. This MBRL controller with history along with
the vanilla version of PETS provided two baseline model-
based reinforcement learning controllers that were used for
comparisons during testing.

5.2 Offline Learning

During offline learning, we ran the dynamics training on data
sets for different latent variables with 50 episodes of data,

where each episode consists of 150 timesteps. Then, during
test time, we froze the parameters of the dynamics model
and only optimized for the latent variable. We preprocessed
another set of data of the same size so that we receive tuples
of (s, a, s"). With our latent variable distribution gges (2'*)
initialized to be the prior (0, I), we randomly sampled
batches of the data points across episodes to update the latent
variable.

5.3 Online Learning

During online training, we ran the dynamics training sim-
ilar to offline training. However, during online test-time,
we optimized the latent variable based on recent batches of
observations. This allowed to learn changes in the latent
variable in real time.

6 Experimentation

6.1 Prediction Accuracy

We evaluated the performance of the model by looking at its
one-step prediction accuracy across all dimensions, which is
shown in Figure 3. We visualized each of the predicted state
components individually due to the high dimensionality of
the state space. The graphs depict the difference in actual and
predicted values for the dimension, where we have sorted
by ground truth in each dimension. Predictions on the z, y
positions and their velocities are the most accurate. We note
that the height of the quadcopter, which corresponds to the z
coordinate, was held fixed in the dataset, which may explain
its lower prediction accuracy.

6.1.1 Toy Tasks

In order to test the application of PETS to the quadcopter
environment, we created a few toy tasks: hovering at a nearby
goal position, following a square trajectory, and following a
figure-8 trajectory. For each of these tasks, we have provided
intermediate planning visualizations of the quadcopter’s po-
sition in a 2D plane as well as the planning trajectories being
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Figure 3: Visualized one-step predictions where the blue line represents the sorted ground truth for each of the 12 dimensions:
x,y, z and their velocities, roll, pitch, yaw, and their velocities. The red line denotes the predictions for each respective value. As
shown in the figures, the prediction of x, y and their respective velocities is the most accurate.

considered at that time step. The blue dot in each subfigure
in Figure 2 represents the waypoint that the quadcopter is
trying to reach. Full videos for these toy tasks can be viewed
here.

The first task was to reach a single waypoint and hover at the
destination. This would test the system’s ability to control
the quadcopter at a basic level, requiring it to fly in a single
direction and hover with stability. We can see in the figures
the difference in planning trajectories when we are flying

towards the goal and when we are trying to hover at the goal.

An interesting note about this trajectory planning is that we
are able to see the algorithm planning ahead to account for

momentum, as seen in the evaluated trajectories in Figure 2.

When the target waypoint is close, the trajectories are shorter

because of the lower speed necessary to produce hovering.

When the target waypoint is further, it plans for higher speed
flight. As it approaches the waypoint, the trajectory becomes
more granular when hovering near the waypoint. This shows
that the algorithm plans to reach the waypoint quickly but
slows down so that it can hover, taking its momentum into
account.

125

Figure 4: Visualization of simulated quadcopter in mid-
flight for square and figure-8 trajectories. The actual tra-
jectory is shown in dark blue with the target waypoint in
light blue. The evaluated trajectories are shown in gray.

Our second task consisted of following waypoints in a square
formation. This tested the general ability of PETS to control
the quadcopter in a simple scenario consisting of mainly fly-
ing straight and making sharp 90 degree turns. In the first
image of Figure 4, we can see the planning trajectories that
PETS is considering as well.

Our final task consisted of following more frequently chang-
ing waypoints in a figure-8 formation. This tests the ability
of the system to update its trajectory more frequently and
to fly in a continuous range of directions. The intermedi-
ate planning trajectories can be seen in the second image of
Figure 4.

Based on the planning accuracy and ability to follow the
trajectories specified by our toy tasks, we were confident in
the ability of PETS to operate under our target tasks.
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Figure 5: From left to right: No additional weight configuration, 0.05kg additional weight configuration, 0.1kg additional weight
configuration. The target latent variable value is shown in red, and the value learned by our algorithm is shown in blue with its
standard deviation. Learned latent values for all three weight configurations approach their target, and, more importantly, are
distinct, which means the algorithm can distinguish the weight configuration.

6.1.2 Latent Variable Verification

Before adding a latent variable, we tested the limitations of
the dynamics model learned by vanilla PETS. We trained
a model based on a quadcopter with no additional weight
and tested its ability to control a quadcopter with varying
amounts of weight to follow the square waypoints toy tasks.
We evaluated its performance visually based on its ability to
reach all four waypoints, completing the square trajectory.
The dynamics model trained on the Okg additional weight
was able to successfully complete the toy task with up to
0.07kg of additional weight, which led us to believe that the
dynamics are roughly the same up until that weight. We took
this into account when selecting our test weights.

To test the latent variable framework, we collected data on
three weight configurations: no additional weight, 0.05kg
additional weight, and 0.1kg additional weight. We selected
0.05kg because it was in the range of weights that a model
learned on no additional weight could control successfully,
and we selected 0.1kg weight as an out-of-range value. Nor-
malized, the corresponding latent values for these configura-
tions were -1.22, 0, and 1.22 for the Okg, 0.05kg, and 0.1kg
weight settings respectively. We tested the latent variable
inference using batch sizes of 10, 30, 100, 150, 300, and
1000.

Figure 5 show the results of our best experiment with test-
time training batch size of 300 and the speed of latent value
convergence in clock time.

We can see from Figure 5 that the latent variable can achieve
different values based on the actual parameter values being
estimated. The most important takeaway from this test was
that the latent framework was able to learn three distinct
values for the three weights, which means that algorithm can
distinguish the weights.

We concluded that the reason the latent variable did not con-
verge as well to the target values for the two lower masses
(Okg and 0.05kg) is because the dynamics with those weights
are less distinguishable. This is expected because the quad-
copter could fly with up to 0.07kg additional mass when
trained on data collected with Okg additional mass.

7 Joint Work

7.1 Real-world Quadcopter

The following section describes joint work done with Suneel
Belkhale in order to apply the meta-learning algorithm to a
real-world quadcopter.

After initial experimentation with the Crazyflie, we decided
to switch to the Tello Ryze quadcopter for real-world flight
due to the larger carrying capacity, sturdier build, and longer
duration of flight.

Using Robot Operating System (ROS), we created a cross-
network system to minimize lag and allow for quadcopter
control using interchangeable learning agents. In this system,
we planned using a horizon length of five and sent a new ac-
tion to the quadcopter every 0.25 seconds, giving us a control
frequency of 4HZ. This timestep was chosen to account for
two calculations: 1) action selection, which takes roughly
0.05-0.10 seconds and 2) latent optimization. This choice
balances reactivity, a long horizon of planning (1.25 seconds),
and plenty of time for latent optimization per iteration.

Rather than varying the weight, as we did in simulation, we
varied the length of the string carrying the payload because
we found that varying the string length changed the dynamics
more significantly than mass due to the mitigating effects of
the Tello’s onboard stabilization controllers. From the Tello,
we hung a payload with a varying length string to represent
the multiplicity of dynamics functions.

We kept an external camera facing towards the quadcopter,
through which we measured the pixel coordinates and area
of hanging payload using OpenCV [3]. The state space of
the real quadcopter included only these measurements of
the payload target. The action space is (v, vy, v;) of the
quadcopter, and we aimed to arbitrarily control the position
of the payload in 3D space.

Our training and testing pipeline was modified to include
real-world data collection and interfacing with the Tello. The
modified pipeline is shown in Figure 6.
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Figure 6: System diagram for the real-world quadcopter created by Rowan McAllister [2]. In the training phase, we manually
piloted the quadcopter with various payload configurations, which were concatenated into a single dataset. Then, meta-training
is run to learn the neural network weight parameters as well as the adaptation parameters ¢ for each payload. At test time, using
the learned dynamics model parameters 6*, the robot infers the optimal latent variable ¢* online using all of the data from the
current task. The dynamics model is then used by a model-based controller to plan and execute actions that follow the desired
path. As the robot flies, it continues to store data, infer the optimal latent variable parameters, and perform planning until the task

is complete.

Algorithm Avg. Tracking Error (pixels) for each Task Path and Payload String Length (cm)
Circle Square Figure-8

18 30 18 30 18 30
Ours (unknown variable) | 23.62+£2.67 | 24.41+3.90 | 23.88+2.81 | 26.57+3.84 | 24.67+1.33 | 29.08+6.00
Ours (known variable) 31.81£6.49 | 30.49+2.65 | 26.37+3.63 | 31.684+4.68 | 29.84+2.84 | 28.28+3.76
MBRL without history 00 00 00 00 00 00
MBRL 39.96+4.40 | 42.36+£2.84 | 32.37+2.40 | 39.264+5.16 | 34.17£1.90 | 41.01£7.26
PID controller 70.58+4.01 | 67.98+2.50 | 65.79£9.99 | 69.53+6.85 | 90.15+10.40 | 86.3749.27

Table 1: Performance comparison for following the three trajectories (circle, square, figure-8) while carrying payloads with
unknown-length strings across variants of our method and existing methods. In all setups, our method achieves the lowest
tracking error. Note: A result of infinity denotes that the method caused the quadcopter to exit the camera frame of view and was

therefore unable to achieve the task.

7.2 Real-world Quadcopter Testing

7.2.1 Latent Variable Verification

For the Tello experiments, our latent variable represented
string lengths of 18CM (latent value -1) and 30CM (latent
value 1). Before running latent experiments, we used vanilla
PETS as a baseline. First, we collected roughly 10,000 data
points for each of our two starting configurations. Then,
we trained separate dynamics models with vanilla PETS on
these datasets, which we will refer to as the I8CM policy and
the 30CM policy. We then tested each policy in each string
length configuration and verified that each policy worked
well on the environment for which it was tested but per-
formed worse on average for the other environment. This
both demonstrates the efficacy of PETS in the real world and
validates the need for our latent variable to have one policy
for all environments.

After verifying that the string length had a significant effect
on dynamics, we trained a latent variable model on both
18CM and 30CM data. Using this model during test-time,

we either provided the known value for the latent variable or
have the model infer the value from the data.

L e

AN
\\;ji,;,/w:ii’,/

Figure 7: Visualization of offline latent value convergence
for Tello quadcopter with 3 trials each created by Suneel
Belkhale. On the left, the evaluated string length was
18CM, and the right visualizes the convergence for the
30CM setup. For both, the latents converge between 5-10
seconds on average.

We tested offline latent value convergence by running our la-
tent variable optimization on a playback of recorded data. In
this setup, we converged quickly to the desired latent value,
usually within 5-10 seconds. Some examples of this can be
seen in Figure 7.

Finally, we demonstrate a fully online version of the latent
model. This final model was trained on 16,000 data points,
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corresponding to 1.1 hours of flight. We used three suspended
payload control tasks as benchmarks: (1) square in the plane
of image, (2) circle in plane of image, (3) one dimensional
horizontal sinusoid motion, a figure-8, parallel to the ground.
Convergence to the correct latent mean and variance is the
same for the online case as in the offline case, and the perfor-
mance coverage of the latent online policy is better than both
the 18CM and 30CM policies.

Table 1 compares our method to various non-adaptation es-
timates by calculating the pixel tracking error between the
target location on each path versus the actual location of the
quadcopter. For all setups, the length of the string was not
provided, so meta-learning was necessary in order to adapt
to the dynamics of the payload. As seen in the table, our
method is able to complete the goal with the lowest track-
ing error. The standard MBRL algoirthm without history
exhibited failure for each of the tests, where failure is defined
as either failing to reach the first coordinate (square, circle,
figure-8), last coordinate (square task), or running out of
frame (square, circle, figure-8). As shown here, the online
latent policy shows much better coverage over all dynamics
contexts.

Figure 8 shows the qualitative difference between the paths
flown by variations of our method and the MBRL controller
with past states and actions concatenated. Our method ex-
hibits greater stability and better path-following across all
tasks.

Ours (Unknown)

= B

Ours (Known)
—

Square Circle

Figure-8

Figure 8: Path-following comparison of our meta-learning
approach versus MBRL with past states and actions con-
catenated. The tasks are to follow a circle or square in
the image plane, or a figure-8 parallel to the ground. The
target trajectory is shown in red while the path flown is
shown in cyan. In all three cases, our methods are better
able to follow the trajectory.

7.3 Applications

Outside of the path-following tasks, we also tested our
method on a series of tasks that modeled realistic scenar-
ios that a quadcopter may be tasked with when carrying a
payload. This section is based on the applications described
in Belkhale et al. [2].

7.3.1 Full Pickup and Dropoff Sequence

In the pickup-dropoft sequence, the quadcopter must fly with-
out a payload in a circle trajectory, then pick up a payload,
successfully travel in a circle trajectory, and carry it to a spec-
ified dropoff location where a person removes the payload.
Finally, it must fly steadily in another circle trajecotry with-
out the payload. In this task, since the quadcopter alternates
between not carrying and carrying a payload, it must adapt
to these changes online in order to succeed. The series of
images in Figure 9 shows the quadcopter flying in each stage
as well as its ability to learn the appropriate latent value after
each transition.

7.3.2 Other Applications

Other tasks we tested included avoiding obstacles while fly-
ing along a pre-specified trajectory (Figure 10), flying along
directed trajectories (Figure 11), and following a target (Fig-
ure 12).

8 Conclusions

In this paper, we have shown the application of model based
techniques to a real world application, specifically using
PETS with quadcopter simulations and real-world quad-
copters. We examined adding a latent variable model to
the dynamics function to be able to adapt online to changes
in dynamics. We showed that in the real world, this latent
model is able to quickly adapt to new dynamics functions.
Additionally, the latent model improves performance over
traditional MBRL methods.

9 Future Work

One next step will be to test adaptation when the dynamics
change multiple times. For example, testing an end-to-end
autonomous pickup and drop off. Another avenue of future
study will be adaptation to latent values outside of the trained
distribution. For example, we might try controlling a 24CM
string and seeing if the latent variable value converges appro-
priately, and then seeing if this performs as well as expected
on the real quadcopter.

To augment the algorithm itself, future work can also be done
to make the latent trainable as well, which would remove
semantic meaning from the value of the latent and allow the
algorithm to learn its own values without having to know the
precise weight or string length during training time. Addi-
tionally, we can add multiple latent dimensions to capture
more changes that can affect quadcopter dynamics.

10 Contributions

Rachel worked on creating the quadcopter environment and
testing PETS performance in operating the quadcopter with
the PID controller. Rachel also worked on implementing the
latent variable framework for PETS and testing it with the
quadcopter environment.
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Figure 9: Visualization of our approach successfully completing the full quadcopter payload transportation task. The task consists
of three distinct phases: before the quadcopter picks up the payload, while the payload is in transit to the dropoff location, and
after the payload is dropped off. During each phase, the our approach uses the collected data to infer the latent value. When the
state changes, all data is flushed, and the latent inference continues with new data. As shown in the graphs, the latent values are
different when carrying a payload and when flying with no payload, and the latent values converge to the same value when flying
without a payload, which demonstrates the success of the method.

Figure 10: In this scenario, the quadcopter is given a trajectory to follow that avoids the obstacle. By using our method, the
quadcopter is able adapt to the payload and maneuver closely around the obstacle.

Figure 11: In certain scenarios, like pickup and dropoff, the user may prefer to directly indicate where the payload should go,
letting the quadcopter decide how to fly to move the payload towards the desired location. In this experiment, we mounted the
external camera onto a stick to create a "wand." The robot’s goal is to keep the suspended payload in the center of the camera’s
field of view at a specific pixel size as the camera moves around.

Figure 12: With the goal of keeping the payload in the center of an external camera’s field of view, we created a following robot
that could follow a user’s trajectory around obstacles.
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Suneel Belkhale adapted the latent variable framework
for the Tello quadcopter and modified PETS to interface with
ROS. Suneel also worked on the Tello testing analysis with
PETS and created the quadcopter rig.

Rachel and Suneel worked together on testing the final
system on the application tasks.

Gregory Kahn contributed to the base quadcopter setup
and provided guidance throughout the project.

Rowan McAllister developed the meta-learning algorithm
and provided guidance throughout the project.

Roberto Calandra provided guidance throughout the project.

Sergey Levine provided primary guidance throughout the
project.
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