
MicroBotNet: Low Power Neural Networks for Microrobots

Brian Liao

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-78
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-78.html

May 28, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

To my friends Eric, Daniel, Tushar, Angela, Vera, Jhinuk, Alan, Suchir, and
Dennis who helped and supported me throughout my research and college
journey. I will cheerish these memories and experiences for years to come.

To Eric for the invaluable help in this research project. I could not have done
it without your help.

MicroBotNet: Low Power Neural Networks for Microrobots
by Brian Liao

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kristofer Pister
Research Advisor

(Date)

* * * * * * *

Professor Yakun Sophia Shao
Second Reader

(Date)

MicroBotNet: Low Power Neural Networks for Microrobots

Brian Liao1

Abstract— We present MicroBotNet, a neural network ar-
chitecture for image classification with fewer than 1 million
multiply-and-accumulate (MAC) operations. We wish to ex-
plore architectures suitable for microrobots with a goal of
less than 1 µJ per forward-pass. We estimate this to be
feasible with 1 million MAC operations. MicroBotNet achieves
80.47% accuracy with 740,000 MAC operations on CIFAR-10.
Additionally, 60% of weights are quantized to {�1, 0, +1} using
Trained Ternary Quantization. We also evaluate MicroBotNet
on our Micro Robot Dataset, which is composed of 10 image
classes a microrobot may encounter such as acorns, mushrooms,
and ladybugs. After applying transfer learning, MicroBotNet
achieves 67.80% accuracy on the Micro Robot Dataset. Finally,
we test MicroBotNet on acorn images simulating a microrobot.
MicroBotNet correctly identify the acorn in 7 out of 8 cases
when approaching an acorn and 15 out of 16 cases from
different angles using a best of last three frames filter.

I. INTRODUCTION

Microrobots are miniature robots that operate at the micro-
millimeter scale. Engineering microrobots is important as
it help us explore the limits of scaling electronics and
robotics down to the micro scale using principles from Mi-
croelectromechanical systems (MEMs). An important part of
creating autonomous microrobots is to enable vision systems
that help the robot with planning, object avoidance, and
path-finding. Deep Learning using artificial neural networks
has been effective for vision tasks. However, these neural
networks are computationally expensive and consume high
amounts of power, making them difficult to use in microrobot
settings.

Work has been done with compression and quantization
of neural networks to make them more efficient. We wish to
explore the limits of these methods to see how feasible they
are for microrobots, which have extremely limited battery
power for computation. Our goal is to build a neural network
with less than 1 µJ per forward-pass. This pushes the limits
of low power neural networks and is a magnitude smaller
than current commercial and research neural networks. By
doing so, this has applications in other extremely low power
devices such as future low power Edge and Internet of Things
devices.

In this paper, we introduce MicroBotNet, a neural net-
work architecture for image classification with fewer than 1
million multiply-and-accumulate (MAC) operations. We use
this as an estimate benchmark for building neural networks
with less than 1 µJ per forward-pass. MicroBotNet is built
using three techniques for compressed and efficient neural

btl787@berkeley.edu
1Department of Electrical Engineering and Computer Sciences, Univer-

sity of California, Berkeley.

Fig. 1: Applications of MicroBotNet to microrobots. Mi-
croBotNet does low power image classification with an
efficient neural network architecture, fast downsampling, and
trained ternary quantization.

networks. First, we use the compressed neural network model
architecture from MobileNetV3 [1] as the basis for our
model. Second, we apply Fast-Downsampling [2] to our
model, compressing it further and significantly reducing
the number of MAC operations. Finally, we apply Trained
Ternary Quantization, [3] which prunes our model and makes
a subset of MAC operations more efficient.

We evaluate our model on CIFAR-10 and our own Micro
Robot Dataset and show that our model is able to maintain
accuracy and is practical for use. We also test our model on
acorns images we take to ensure the model is transferable
and can work in microrobot situations.

II. BACKGROUND AND RELATED WORK

A. Microrobots

Current examples of microrobots are heavily inspired by
biological designs of insects such as walkers [4], [5] and
winged flapping fliers [6]–[8]. To build on top of these
developments in microrobot locomotion, vision systems are
a natural evolution to assist with path finding and object
avoidance.

Additional work to enable micro-scale robots and compu-
tation includes system-on-chip (SoC) breakthroughs at mm
scale computation, sensing, and power. Chips on the scale
of mm2 have been created for 100V, multi-channel power
[9] and radio communication [10]. Finally, a 2mm3 camera
has been shown to take 128⇥128 greyscale images [11] and
can be extended for microrobot purposes. Examples of these
microrobots and components are shown in Figure 2.

B. Neural Network Efficiency

When evaluating neural networks for efficiency, two com-
mon metrics used are the number of parameters in a neural
network and the number of multiply-and-accumulate (MAC)
operations in a forward pass. MACs are a more accepted

(a) Silicon Walker [5] (b) SCµM [10] (c) mm3 imager [11]

Fig. 2: Pieces of the micro-robot platform. Left) a silicon
walking microrobot, center) a single-chip mote with inte-
grated radio TRX, microprocessor, and sensor interface, and
right) an initial mm3 camera capable of 128 ⇥ 128 pixel
images.

computational-cost metric as they map to the multiply-and-
accumulate computation in the partial sums for layer output
maps.

SqueezeNet [12] introduced Fire Modules as a compres-
sion method in an effort to reduce the number of parameters
while maintaining accuracy. Fire Modules reduce some of
the 3⇥ 3 convolutions to 1⇥ 1 convolutions, resulting in 9x
less parameters. MobileNetV1 [13] replaces standard convo-
lutions with depth-wise separable convolutions. The depth-
wise convolution performs spatial filtering and pointwise
convolutions to generate features. Fd-MobileNet applies Fast
Downsampling [2] on MobileNet for extremely computa-
tionally constrained tasks. It performs 32⇥ downsampling
in the first 12 layers, dropping the computation by 4⇥ at a
5% accuracy loss. MobileNetV3 [1] uses neural architecture
search, optimizing for efficiency to design the model. Other
improvements include ‘hard’ activation functions (h-swish
and h-sigmoid) [14], inverted residuals and linear bottlenecks
[15], and squeeze-and-excite layers [16] that extract spatial
and channel-wise information. SqueezeNext [17] improves
on depth-wise separable convolutions with low rank separa-
ble filters for higher arithmetic intensity (ratio of compute
to memory operations). They note that arithmetic intensity
serves as a better metric than MACs for performance of
energy efficiency since it additionally measures hardware
utilization. This can guide future design for lower power
neural network models.

Trained Ternary Quantization [3] reduces weight precision
to 2-bit ternary values with scaling factors, and achieve no
accuracy loss. Hessian Aware Quantization [18] recognizes
that using low precision leads to accuracy degradation.
Instead, they propose using mixed-precision, where layers
can be selected for quantization based on their second order
Hessian eigenvalues. These eigenvalues provides information
on the sensitivity of a layer to quantization. Eyeriss [19] pro-
vides a taxonomy of execution dataflows in neural networks
and shows that row stationary dataflow is more efficient
than output stationary, weight stationary, and no local reuse
dataflows.

Benchmarking from a 45nm process [20], shrinking pro-
cess nodes and decreased bit precision enable a MAC cost
that approaches 1pJ. Targeting 1µJ per forward-pass, we
combine these advancements into a new network with <1

Input Operator exp size # out SE s
322 ⇥ 3 conv2d, 3⇥ 3 - 16 - 2
162 ⇥ 16 bneck, 3⇥ 3 72 24 No 2
82 ⇥ 24 bneck, 5⇥ 5 96 40 Yes 2
42 ⇥ 40 bneck, 5⇥ 5 240 40 Yes 1
42 ⇥ 40 bneck, 5⇥ 5 120 48 Yes 1
42 ⇥ 48 bneck, 5⇥ 5 144 48 Yes 1
42 ⇥ 96 bneck, 5⇥ 5 288 96 Yes 2
22 ⇥ 96 bneck, 5⇥ 5 576 96 Yes 1
22 ⇥ 96 bneck, 5⇥ 5 576 96 Yes 1
22 ⇥ 96 bneck, 5⇥ 5 576 96 Yes 1
22 ⇥ 96 bneck, 5⇥ 5 576 96 Yes 1
22 ⇥ 96 conv2d, 1⇥ 1 - 576 Yes 1
22 ⇥ 576 pool, 2⇥ 2 - - - 1
12 ⇥ 576 conv2d, 1⇥ 1 - 1024 - 1
12 ⇥ 1024 linear - 10 - 1

TABLE I: Model specification of MicroBotNet (SE indicates
if a Squeeze-And-Excite is used, s indicates the stride used).

million MACs.

III. MICROBOTNET

A. Architecture

MicroBotNet adapts the neural network architecture of
MobileNet V3 [1] to achieve low power image classification.
MicroBotNet uses efficient mobile bottleneck layers, which
are built with linear bottlenecks and inverted residuals, and
squeeze and excite attention modules that help extract spatial
and channel-wise information. MicroBotNet also uses hard
activation functions that are more hardware efficient.

The overall network architecture is shown in Table I.
1) Linear Bottlenecks and Inverted Residuals: Bottle-

neck layers are based on the idea that using low dimen-
sional tensors reduces the computation and number of MAC
operations required. However, filtering cannot extract a lot
of information from low dimensional tensors as a lot of
information is lost. Linear bottlenecks are designed to have
the input activation begin in a low dimensional tensor, expand
to high dimensional tensor which we can apply a depthwise
convolution to, and shrink back down to a low dimension ten-
sor. The inverted residual applies skip connections between
different bottleneck layers to help apply gradient flow in the
network. The residual is “inverted” because we have residual
connections among layers of a low dimensional tensor, a
later high dimensional tensor, and another low dimensional
tensor. Normal residual networks have a residual connection
between layers of a high dimensional tensor, a later low
dimensional tensor, and another high dimensional tensor.

This bottleneck module is shown in Table II.
2) Squeeze-and-Excite: The goal of squeeze and excite

modules is to globally embed channel-wise dependencies in
layers. Convolutions extract spatial wise dependencies using
filters that stride along a local field. To embed channel wise
dependencies, we encode the channels into a vector statistic
zc with a Squeeze operation which can be done with global
average pooling.

Operator Input Output Purpose
conv2d, 1⇥ 1 C E Uncompress Data

bnorm - - -
hswish - - -

conv2d, F ⇥ F E E Filter Data
hswish - - -

squeeze, E E Embedded Channel Data
hswish - - -

conv2d, 1⇥ 1 E K Compress Data
bnorm - - -

TABLE II: MobileNet V3 Bottleneck Layers. Input and
Output are the number of channels where C, E, K are channel
sizes and E >> C, K. F is a filter size. “squeeze” is a
Squeeze-and-Excite module.

zc = F sq(uc) =
1

H ⇥W

HX

i=1

WX

j=1

uc(i, j) = avgpool(uc)

(1)

The second step is an Excite operation that applies self-
attention from the statistic. This is done with a sigmoid that
gates the statistic and is parameterized by W1 , W2, and a
non-linear activation. Doing so provides a weighting to the
input tensor that shows what information to show attention
to.

s = F ex(z,W) = �(W2 · h-swish(W1 · z)) (2)

The squeeze-and-excite module is able to embed global
channel information in the layer and is shown in Table III.

3) Hard Activation Functions: Hard activation functions
are functions that are efficient to calculate in floating point
hardware. Nonlinearities, such as sigmoid defined below,

�(x) =
e
x

1 + ex
(3)

require complex numerical precision to calculate. ReLU,

ReLU(x) = max(x, 0) (4)

by comparison, requires only a hardware comparison to
calculate. ReLU6,

ReLU6(x) = min(max(x, 0), 6) (5)

caps the output activation at 6, making the output activation
representable when quantized to 3 bits. MobileNet V3 intro-
duced the use of h-sigmoid and h-swish where the h stands
for “hard” activation function. h-sigmoid is defined as

h-sigmoid(x) =
ReLU6(x+ 3)

6
(6)

It approximates sigmoid without e
x, allowing for self-

attention gating in the squeeze-and-excite module.
Swish is an activation function similar to ReLU in that

its output is approximately 0 when the input is less than 0,
and the input value when the input is greater than 0. Swish,

Operator Input Output Purpose
pool, 1⇥ 1 H ⇥W ⇥ E 12 ⇥ E Global Embedding

linear 12 ⇥ E 12 ⇥ C Embedded Channels
relu - - -

linear 12 ⇥ C 12 ⇥ E Embedded Channels
hsigmoid - - Self-Attention

TABLE III: Squeeze-and-Excite modules. Input and Output
are tensors where H, W are the current input dimensions, E
is the expanded channel size, and C is the input channel size
of the bottleneck layer.

however, is smooth and differentiable at 0, assisting gradient
flow. It is defined as

swish(x) = x · �(x) (7)

and h-swish is defined as

h-swish(x) = x · h-sigmoid(x) = x · ReLU6(x+ 3)

6
(8)

MicroBotNet uses h-swish for nonlinearity activations in
our network and h-sigmoid for self-attention gating.

B. Fast Downsampling

To reduce the number of MAC operations, we use fast-
downsampling as introduced in Fd-MobileNet [2]. Fast
Downsampling downsamples our network early by doing
striding in the first layers of our network. This reduces
the width and height feature dimension inputs by a half
and decreases the number of MAC operations by a fourth.
The number of channels is usually doubled or increased
to compensate but gives a savings of half the number of
MAC operations. When applied early in our network, this
drastically reduces the number of MAC operations required.

MicroBotNet does 16⇥ fast-downsampling in the first 8
layers. To compensate, we add 4 bottleneck 5 ⇥ 5 layers
with an expand size of 576 at the end of our network for
suitable network information capacity. We also include the
width multiplier ↵ for the number of channels, which allows
the model to generalize based on one’s MAC computation
needs. Width multipliers of ⇥0.25, ⇥0.50, and ⇥1.00 are
included as reference.

C. Quantization

In addition, we quantize our model to take advantage of
reduced energy costs when retrieving memory access from a
fixed precision of numbers. This also allows the network
to have an efficient access pattern when using a weight
stationary dataflow. We use trained ternary quantization [3]
which quantizes weights in each layer to a negative value,
zero, or a positive value {�W

n

l
, 0, +W

p

l
}. Values that are

quantized to 0 are also pruned and do require a Multiply-
and-Accumulate operation, reducing our MAC count. To
quantize, we use a threshold value �l defined as

�l = t⇥ max(|w̃l|) (9)

where w̃l is our full precision weights for each layer. This
gives the final quantized weight

Fig. 3: Tradeoff of MAC Count and Accuracy of different
models on CIFAR-10. TQ-MicroBotNet ⇥0.50 improves on
FD-MobileNet ⇥0.25 while continuing the trend of accuracy
towards low-MACs.

w
t

l
=

8
<

:

+W
p

l
w̃l > �l

0 |w̃l|  �l

�Wl
n

w̃l < ��l

(10)

After applying trained ternary quantization to our model,
we noticed �Wl

n ⇡ �1 and +W
p

l
⇡ +1. Multiplying an

input activation by a weight of 1 is the input activation itself,
and multiplying an input activation by a weight of �1 is a
bit flip of the sign bit in floating point. Both of which are
hardware efficient operations. To take advantage of these,
we used a mask to requantize {�Wl

n, 0, +W
p

l
} to ternary

quantization {�1, 0, +1}.

IV. EXPERIMENTAL SETUP AND RESULTS

A. CIFAR-10
1) Experimental Setup: We evaluate the accuracy of dif-

ferent energy-efficient neural network models on the CIFAR-
10 dataset [21] using a 12GB Nvidia K80 GPU. The number
of parameters and MAC operations are calculated with THOP
[22]. Each model is trained with full 32-bit precision. We use
standard pre-processing including random cropping, random
horizontal flipping, and normalization of training and testing
images. We process images with a batch size of 256. For
each model, we use stochastic gradient descent with 0.9
momentum, 5e-4 weight decay, a learning schedule with a
learning rate of 0.1, and a decay of 0.1 every 50 epochs for
200 epochs. We benchmark against SqueezeNet, MobileNet,
FD-MobileNet, and MobileNet V3 with width multipliers of
⇥0.25 and ⇥1.00. We validate against our model, MicroBot-
Net, with width multipliers of ⇥0.25, ⇥0.50, and ⇥1.00.

We also evaluated applying ternary quantization to our
MicroBotNet ⇥0.50 model. Our model uses several 1 ⇥ 1
convolutions that, when quantized, do not have enough
information bandwidth to maintain accuracy. Instead, we
quantize all fully connected and convolution layers with
number of parameters above 5000, not including the initial
convolution and final fully connected layers.

Model Top-1 MAC Parameters
MobileNet V3 ⇥0.25 86.33 2,540,820 124,050

MobileNet ⇥0.25 85.87 3,539,456 215,642
MicroBotNet ⇥0.50 81.91 1,715,024 538,138

TQ-MicroBotNet ⇥0.50 80.47 735,402 230,753
Fd-MobileNet ⇥0.25 79.09 1,029,888 128,730
MicroBotNet ⇥0.25 77.99 697,662 160,162

TABLE IV: Top-1 is accuracy on CIFAR-10. Comparison
of MicroBotNet ⇥0.25 and ⇥0.50 and Ternary Quantized
MicroBotNet ⇥0.50 with similar architectures.

Model Top-1 MAC Parameters
MobileNet ⇥1.00 91.42 47,187,968 3,217,226

MobileNet V3 ⇥1.00 91.16 18,891,842 1,518,594
SqueezeNet 90.71 23,902,388 730,314

Fd-MobileNet ⇥1.00 87.73 11,983,872 1,886,538
MicroBotNet ⇥1.00 84.19 6,597,218 2,044,298

TABLE V: Top-1 is accuracy on CIFAR-10. Comparison of
MicroBotNet ⇥1.00 with similar architectures.

2) Results: Ternary Quantized MicroBotNet (TQ-
MicroBotNet) ⇥0.50 achieves 80.47% accuracy on CIFAR-
10 while only using 735,402 MACs. This outperforms the
previous work by 1.38% in FD-MobileNet ⇥0.25, which
achieves 79.09% accuracy with 1,029,888 MACs. Here, it
is clear that our model is able to maintain accuracy and
achieve our goal of staying under 1 million MACs. Our
work represents a further step in the trend of low-power
classification as shown in Figure 3.

TQ-MicroBotNet ⇥0.50 is able to quantize parameters by
60% where 57% of the model is pruned to zero. This makes
the network efficient for processor elements that do not
have to evaluate pruned MAC operations. The distribution
of quantized weights can be seen in Figure 5.

B. Micro Robot Dataset

1) Experimental Setup: To further evaluate our results, we
created a dataset selecting for classes of objects a microrobot
may encounter in the wild. These images were pulled from
Tiny-ImageNet [23], which is 200 classes of 500 training
images, 50 validation images, and 50 test images, at 64⇥64
resolution. The Micro Robot Dataset is 10 classes of acorns,
bees, black widows, frogs, ladybugs, mushrooms, nails,
sandals, socks, and tarantulas with 500 training images
and 50 test images at 32⇥32 resolution. Reference images
can be seen in Figure 4.

Fig. 4: The Micro Robot Dataset is composed of acorns, bees,
black widows, frogs, ladybugs, mushrooms, nails, sandals,
socks, and tarantulas, 10 classes a microrobot may encounter.

Fig. 5: Distribution of the types of parameters in Ternary
Quantized MicroBotNet. 57% of parameters are pruned to
zero and 60% are quantized to efficient hardware operations.

Model Top-1 MAC Parameters
TQ-MicroBotNet ⇥0.50 67.80 735,402 230,753

Fd-MobileNet ⇥0.25 65.60 1,029,888 128,730
MicroBotNet ⇥0.25 65.20 697,662 160,162

TABLE VI: Top-1 is accuracy on Micro Robot Dataset.

We use a 12GB Nvidia K80 GPU and preprocess with ran-
dom cropping, random horizontal flipping, and normalization
of training and testing images at a batch size of 128. We do
coarse grain transfer learning on the Micro Robot Dataset,
using stochastic gradient decent with 0.9 momentum, 5e-4
weight decay, and a learning schedule with a learning rate of
1e� 3 and a decay of 0.1 every 25 epochs for 100 epochs.

2) Results: With coarse grain transfer learning, TQ-
MicroBotNet ⇥0.50 achieves an accuracy of 67.80% on
the Micro Robot Dataset. For comparison, Fd-MobileNet
⇥0.25 achieves 65.60% accuracy. Future work to improve
this model can be done by collecting more data such as using
a larger dataset like IP102 [24] which contains 75,222 images
of 102 insect classes.

C. Emulating Vision Tasks for Microrobots
To evaluate the effectiveness of our network for use in

microrobot tasks, we simulated a scenario of identifying
acorns with images from a microrobot perspective. This
would help us evaluate the transferability from datasets
such as CIFAR-10 and our Micro Robot Dataset to real
world microrobot applications. We took 10 images of acorns
simulating a microrobot approach in four scenarios in the
wild:

1) Single Acorn on Pavement
2) Multiple Acorns on Pavement
3) Single Acorn in Grass
4) Multiple Acorns in Grass
All images were taken using an iPhone 8 and cropped

and downsampled to 32⇥32. Our sequences of acorns were
a combination of simulating a microrobot approaching an
acorn and a microrobot rotating around an acorn for multiple
perspectives and angles. Four images frames were used to
simulate approaching an acorn and six image frames were

Fig. 6: Confusion Matrix of TQ-MicroBotNet ⇥0.50 on the
Micro Robot Dataset. TQ-MicroBotNet ⇥0.50 accurately
predicts the correct class. Predicting tarantulas for black
widows is the largest misclassified class.

use to simulate rotating around the acorn. Examples of image
sequences for each class can be seen in Figure 7 and Figure 8.

One additional difference from computer vision bench-
marks is that a microrobot in the wild can move towards and
around an object and have higher confidence in identifying
an object. To take this into account, we use a simple filter
that would the most common class of the last three images
taken.

Using a best of last three image filter, MicroBotNet is
able to accurately identify the acorn in 7 out 8 cases when
approaching an acorn. MicroBotNet also correctly identifies
the acorn in 15 out of 16 cases when viewing the acorn
from different angles. Accuracy results for each scenario are
included in Table VII.

In most cases, our network is able to identify the acorn
from taking the best of the three filter. The most successful
class was Multiple Acorns on Pavement where the brown
color of the acorn contrasts with the flat gray pavement

Scenario Total Accuracy
(10 Frames)

Approach Best
of 3 (4 Frames)

Rotating Best
of 3 (6 Frames)

Single Acorn
on Pavement 7/10 2/2 3/4

Multiple Acorns
on Pavement 8/10 2/2 4/4

Single Acorn
in Grass 6/10 1/2 4/4

Multiple Acorns
in Grass 7/10 2/2 4/4

Total 28/40 7/8 15/16

TABLE VII: Accuracy of MicroBotNet identifying acorns,
simulating approaching an acorn with best of three filter,
and rotating around and showing different perspectives of an
acorn with best of three filter.

Fig. 7: Images of a single acorn in grass from different angles.

Fig. 8: Simulating an approach of a microrobot towards multiple acorns on pavement.

making it a clear target to identify. The two misclassied
classes were misidentified as a nail and a bee. The first
misclassified image was also taken from the furthest position
away on approach, making it difficult to identify. The hardest
class to identify was Single Acorn in Grass. In this scenario,
the grass can cover the acorn and the grass environment
makes it similar to other classes such as mushrooms and
ladybugs. The four misclassified classes were two ladybugs,
one mushroom, and one bee.

Another factor we considered is the false positive rate of
the network to ensure it is not biased to acorns. To test this,
we added 40 images from each of the other classes to create
a balanced dataset with acorns and all other image classes.
Our network’s true positive rate was 70% with 28 out 40
images correctly classified and the false positive rate was
6.7% with 24 out of the 360 images misclassified as acorns.
Our model is therefore accurate without bias towards acorns.

Overall, MicroBotNet with a best of three filter would
allow a microrobot to reliably detect objects running in the
wild.

V. CONCLUSION

We present MicroBotNet, a neural network architecture
capable of image classification with under 1 million multiply-
and-accumulate (MAC) operations, approximately less than
1 µJ per forward-pass. Our network is designed for micro-
robots and is an order of magnitude smaller than current
research and industrial neural networks. This shows that
it is possible to design performant neural network with
significant efficiency constraints. MicroBotNet is evaluated
on CIFAR-10 and achieves 80.47% accuracy with 740,000
MACs and 67.80% accuracy on our Micro Robot Dataset.
To demonstrate that this network is practical for microrobot
use, we tested MicroBotNet on images of acorns simulating
a microrobot. MicroBotNet correctly identify the acorn in 7
out of 8 cases of approaching an acorn and 15 out of 16 cases

for different angles with a best of last three frames filter.
This demonstrates our contribution of practical and highly
accurate neural networks that can be used in microrobots
and other lower power IoT devices.

REFERENCES

[1] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for
mobilenetv3,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 1314–1324.

[2] Z. Qin, Z. Zhang, X. Chen, C. Wang, and Y. Peng, “Fd-mobilenet:
improved mobilenet with a fast downsampling strategy,” in 2018 25th
IEEE International Conference on Image Processing (ICIP). IEEE,
2018, pp. 1363–1367.

[3] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantiza-
tion,” arXiv preprint arXiv:1612.01064, 2016.

[4] X. Zhang, J. Zhao, Q. Zhu, N. Chen, M. Zhang, and Q. Pan,
“Bioinspired aquatic microrobot capable of walking on water surface
like a water strider,” ACS applied materials & interfaces, vol. 3, no. 7,
pp. 2630–2636, 2011.

[5] D. S. Contreras, D. S. Drew, and K. S. Pister, “First steps of
a millimeter-scale walking silicon robot,” in 2017 19th Interna-
tional Conference on Solid-State Sensors, Actuators and Microsystems
(TRANSDUCERS). IEEE, 2017, pp. 910–913.

[6] R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic
insect,” IEEE transactions on robotics, vol. 24, no. 2, pp. 341–347,
2008.

[7] Y. Zou, W. Zhang, and Z. Zhang, “Liftoff of an electromagnetically
driven insect-inspired flapping-wing robot,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1285–1289, 2016.

[8] N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood,
“Untethered flight of an insect-sized flapping-wing microscale aerial
vehicle,” Nature, vol. 570, no. 7762, p. 491, 2019.

[9] J. S. Rentmeister, K. Pister, and J. T. Stauth, “A 120-330 V, sub-µA,
optically powered microrobotic drive IC for DARPA SHRIMP,” in
GOMACTech, 2020.

[10] F. Maksimovic, B. Wheeler, D. C. Burnett, O. Khan, S. Mesri, I. Suciu,
L. Lee, A. Moreno, A. Sundararajan, B. Zhou, R. Zoll, A. Ng,
T. Chang, X. Villajosana, T. Watteyne, A. Niknejad, and K. S. J.
Pister, “A crystal-free single-chip micro mote with integrated 802.15.4
compatible transceiver, sub-mw ble compatible beacon transmitter, and
cortex m0,” in 2019 Symposium on VLSI Circuits, 6 2019, pp. C88–
C89.

[11] J. Choy, “A 10µJ/frame 1mm2 128⇥128 cmos active image sensor,”
Master’s thesis, University of California, Berkeley, 2003.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and < 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[14] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[16] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[17] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and
K. Keutzer, “Squeezenext: Hardware-aware neural network design,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 1638–1647.

[18] Z. Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. W. Mahoney, and
K. Keutzer, “Hawq-v2: Hessian aware trace-weighted quantization of
neural networks,” arXiv preprint arXiv:1911.03852, 2019.

[19] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–
138, 2016.

[20] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[21] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, vol. 55, 2014.

[22] “Thop: Pytorch-opcounter.” [Online]. Available: https://github.com/
Lyken17/pytorch-OpCounter/

[23] L. Yao and J. Miller, “Tiny imagenet classification with convolutional
neural networks,” CS 231N, vol. 2, no. 5, p. 8, 2015.

[24] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “Ip102:
A large-scale benchmark dataset for insect pest recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8787–8796.

