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Abstract

PSec: A Programming Language for Secure Distributed Computing

by

Shivendra Kushwah

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

We introduce PSec, a programming language for secure distributed computing. PSec is a
high-level language designed for Trusted Execution Environments such as Intel SGX to en-
able programmers to create distributed systems consisting of both trusted and untrusted
machines. We design and abstract away various secure message sending and dynamic ma-
chine creation protocols. We also create a trust designation system to establish trust between
di↵erent machines in the system. By combining techniques in information flow control and
cryptography, we are able to prevent programmers from inadvertently leaking sensitive data
and allow them to send data securely from one machine to another.
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Chapter 1

Introduction

1.1 Motivation

Distributed systems are essential to modern computing. The ability to break a computation-
ally complex task into multiple parts and divide the workload between multiple computers
leads to more e�cient computing as well as more modular code. Since this design is powerful
and used widely in the real world, many domain-specific programming languages have been
developed that enable programmers to more readily develop these kinds of systems.

Unfortunately, ensuring the resulting distributed systems are secure is a di↵erent problem
entirely. Programming secure distributed systems is still an active area of research because
writing secure code is innately a hard problem. While enabling programmers to write per-
formant code, lower level programming languages such as C/C++ are susceptible to attacks
such as bu↵er overflows. Even if using higher level languages, programmers generally have to
understand the basics of cryptography to properly initialize and e↵ectively use cryptographic
code and libraries to perform sensitive operations. This can prove troublesome, as in the
case of the Sony PS3 Private Signing Key leak [22] where programmers actually used the
same random number for each ECDSA signature. This made cracking the private signing
key much easier and enabled hackers to trick Sony PS3 machines into running malicious code
that appeared to be signed by Sony. In the distributed setting, using proper cryptography is
especially critical to transmit messages that may contain sensitive data. However, the prob-
lem doesn’t just end there. Even if the message is sent securely, there are no guarantees that
the receiving machine will not accidentally leak the underlying sensitive data to untrusted
machines after decryption.

1.2 Related Work

In the past, programming language research in secure distributed systems has generally
focused on preventing sensitive data from being inadvertently leaked. Works such as Jif/s-
plit [38], SIF [3], Swift [4], and Fabric [18] utilize language-based information flow control
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to achieve desired security properties in the distributed setting. They accomplish this by
enforcing confidentiality and integrity policies on data passed through the system.

Jif/split [38] focuses on protecting sensitive data in the context of distributed systems
where entities trust di↵erent distributed host machines to varying degrees. It accomplishes
this by secure program partitioning, which involves dividing a main program and a descrip-
tion of entity-host trust relationships into various sub-programs deployed on the distributed
hosts. Through this process, each entity can be assured that sensitive data is only sent to
machines they trust and not leaked to untrusted machines. It is important to note that
a declaration of trust of a particular machine means that the entity trusts that machine’s
hardware, operating system, and Jif/split’s run-time support. The adversary model is that,
for a given entity, attackers may subvert any untrusted host machines. However, this should
not compromise or leak that entity’s confidential data. Swift [4] further explores program
partitioning with a particular focus in the web application space. The partitioning proce-
dure has additional constraints and optimizations because although client machine code is
regarded as less trusted than server code, it generally yields better performance to end-users.
In comparison to Jif/split, the authors state that Swift supports a richer programming lan-
guage with better information flow control properties. Servlet Information Flow (SIF) [3] is
another work in the web application space that focuses on language-based information flow
enforcement. Rather than focusing on program partitioning, SIF is a framework that enables
programmers to directly write secure server-side code. The adversary model is that attackers
are assumed to be able to compromise client machines and that server-side code is poten-
tially buggy but benign. Therefore, the confidentiality and integrity data policies need to be
enforced server-side regardless of the actions of client machines or inadvertent programmer
mistakes. Finally, Fabric [18] is a newer paper that continues to leverage language-based se-
curity for secure distributed computation and storage. It additionally allows new distributed
hosts to join the system and supports consistent, distributed computing over shared, per-
sistent data. Similar to previous approaches, Fabric users are able to express varying level
of trust in di↵erent Fabric nodes and security guarantees are lost if adversaries compromise
trusted nodes.

A main assumption behind these approaches is the correctness of the trust designation
system. These approaches enable entities to specify which distributed nodes they trust to
correctly run and securely execute code. However, if an entity trusts a potentially corrupted
node, they lose any security guarantees provided by the system. Additionally, this trust
definition often requires trust in the hardware and operating system of the distributed node.
Although this may be a fair assumption in most cases, this attack surface is by no means
small and stronger adversaries may be able to exploit bugs and security vulnerabilities to
compromise even trusted systems.

More recently, research has leveraged hardware enforced trusted computing (such as
Trusted Platform Modules [35] and Trusted Execution Environments/hardware enclaves [33])
to reduce previous trust assumptions and provide guarantees in the face of more privileged
adversaries. Some recent work has focused on formally verifying security properties of pro-
grams built using trusted computing technologies in the presence of privileged adversaries.
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Moat [31] is a tool that verifies confidentiality properties of hardware enclave-based program
binaries (specifically Intel SGX-based [17]) in the face of an adversary that can arbitrarily
modify external code. It requires developers to have knowledge of lower-level enclave specifics
in order to e↵ectively use the tool. Sinha et al. [28] provide a methodology for developing
Intel SGX applications that requires placing the entire application within trusted enclave
memory and having it communicate with the outside world through a narrow, trusted in-
terface. They formalize these restrictions as a confidentiality property coined Information
Release Confinement and create a verification tool for this property. Subramanyan et al.
[34] formalize an idealized enclave platform into a trusted abstract platform (TAP) model.
This work serves to create a verification methodology for the TAP model and formalizes the
definition of secure remote execution for enclaves.

A di↵erent stream of work has focused on using trusted computing technologies to enable
programmers to more readily create secure applications through a language-based approach.
Fournet and Planul [11] develop a compiler for secure distributed information flows by lever-
aging Trusted Platform Modules, secure boot, and remote attestation, and combining it
with information flow control techniques. They use cryptographic methods to emulate se-
cure memory. In contrast, IMPe [13] is an information flow control calculus that uses Intel
SGX enclaves to directly provide secure memory. However, IMPe is not tailored to the dis-
tributed setting. Patrignani et al. [21] develop a secure compilation scheme that compiles
high level language code to protected module architectures (PMAs) that essentially provide
memory isolation similar to enclaves. However, once again, this work is not tailored to the
distributed setting and doesn’t consider applications that may require multiple enclaves.
One of the more recent examples, EActors [24], develops an actor-based programming lan-
guage that leverages Intel SGX to enable trusted communication between multiple entities.
Programmers are able to create secure distributed systems by specifying trusted/untrusted
actors and having them perform computation and send messages to each other. The adver-
sary model assumes a privileged adversary who has physical access to hardware in the system
and control over the entire software stack (including the operating system kernel). The hard-
ware trusted execution support (Intel SGX) is assumed to be correct and side-channel attacks
are discounted. Trusted actors are implemented using Intel SGX enclaves, and the authors
create a secure instant messaging service and a secure multiparty computation service to
demonstrate the capabilities of their language. However, it is important to note that this
work doesn’t provide any protections against inadvertent data leakage to untrusted parties.
The key focus of this line of research is the reliance on hardware for trusted computation and
attestation for establishing trust between secure environments across di↵erent machines.

For our work, we seek to combine these lines of research and create a high-level program-
ming language that provides information flow guarantees while leveraging hardware enclaves
for trusted computation in the secure distributed systems setting. Our adversary model
includes a powerful adversary that has privileged access to host machines in our system
(similar to EActors) and is able to snoop on network requests. For the purposes of this
thesis, side channel attacks are out of scope. We detail our entire adversary model in Section
3.3.1.
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1.3 Overview

In order to solve the aforementioned problems, we propose PSec, a language that abstracts
security details and implementations away from programmers and enables them to easily
and e↵ectively write secure distributed systems code. We will be building on top of P [9], an
existing actor-based programming language for creating distributed systems. By leveraging
Trusted Execution Environments such as Intel SGX [17] and combining them with secure
machine creation and message exchange protocols, we can enable programmers to design
secure distributed systems that provide specific guarantees. Programmers are able to mark
certain messages and variables as secure to prevent them from being inadvertently leaked
and can use our send construct to securely send sensitive messages from one machine to
another.

We structure the remainder of this thesis as follows: Chapter 2 will describe relevant
background information on both P and Intel SGX; Chapter 3 will provide the PSec language
design, formalisms, implementation, and an evaluation of our system; and Chapter 4 will
conclude and discuss future work.

1.4 Contributions

The core contributions of this thesis are:

1. We design a programming language for creating secure distributed systems and an
information flow control type system to prevent secure data from being leaked to
untrusted systems or maliciously corrupted. We formalize the type system as well as
the operational semantics of our programming language.

2. We design security protocols and develop a secure runtime to enable the secure cre-
ation of machines and the ability to send messages securely. We also create a trust
designation system in order to establish trust between machines.

3. We present initial performance metrics on an implementation of our language and
system (located at https://github.com/ShivKushwah/PSec). We create a One Time
Passcode and a Secure Voting example to demonstrate language expressivity. Finally,
we give formal proofs for the confidentiality and integrity properties provided by our
programming language.

https://github.com/ShivKushwah/PSec
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Chapter 2

Background

2.1 The P Programming Language

P is a programming language co-developed by Microsoft and UC Berkeley to address the
issues with asynchronous programming [10]. Due to the nature of asynchronous programs,
problems such as race conditions and Heisenbugs arise and are often very di�cult to spot
and debug. By using P, users are able to model and specify protocols in this space. P has
been used in the development of the USB 3.0 driver inside the Windows Phone and Windows
8.1. It is also being used to develop cloud infrastructure inside Azure and is currently run
on hundreds of millions of devices all over the world.

The programming model is actor-based and consists of concurrently executing state ma-
chines communicating via events with payloads. Programmers can easily write state ma-
chines in P and specify transitions based on the results of di↵erent events. The P compiler
provides automated testing for concurrency-related race conditions and generates executable
C code for running the protocols. This allows P to meet the di↵erence between a high-level
model and the low-level implementation, and lends itself to be more readily accepted by pro-
grammers than traditional formal modeling. The P memory management system is based
on linear typing and unique pointers (prevents race conditions associated with concurrent
access of data) which enforces safe memory practices. It is important to note that P does not
readily enable di↵erent state machines to be deployed on di↵erent physical hosts. Rather,
all state machines run on 1 physical host and P ensures that the various state machines
correctly model distributed behavior. Overall, P enables users to model concurrency, spec-
ify safety and liveness properties and has the ability to check that the program satisfies its
specification by using systematic search.

In terms of an actual P program, PingPong.p (Figure 2.1) touches on many major aspects
of P. In this program, we have a Server P machine and a Client P machine. The Client
machine creates a new instance of the Server machine and transitions to the SendPing state.
In this state, the Client sends the Server a Ping event (containing a reference to itself) and
goes to the WaitPong state. Upon receiving the Ping event, the Server transitions to the
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1 event PING: machine;
2 event PONG;
3
4 machine Client
5 {
6 var server: machine;
7
8 start state Init {
9 entry {

10 server = new Server();
11 goto SendPing;
12 }
13 }
14
15 state SendPing {
16 entry {
17 send server, PING, this;
18 goto WaitPong;
19 }
20 }
21
22 state WaitPong {
23 on PONG goto SendPing;
24 }
25 }

(a) Client

1 machine Server
2 {
3 start state WaitPing {
4 on PING goto SendPong;
5 }
6
7 state SendPong {
8 entry (payload: machine) {
9 send payload, PONG;

10 goto WaitPing;
11 }
12 }
13 }

(b) Server

Figure 2.1: P Client Server Example

SendPong state, and sends the Client machine a Pong event. The Client receives this Pong
event and transitions back to the SendPing state, where it sends the Server a Ping message
again. These set of states cycle as the Client and Server continually exchange Ping and Pong
events in a never ending loop. This example highlights the simplicity and expressivity of the
P syntax.

2.2 Intel SGX

Intel Software Guard Extensions (SGX) allow for application developers to create secure
applications that may reside in untrusted host machines [17]. Intel SGX takes advantage of
a specialized instruction set in newer Intel CPUs that allows developers to create enclaves, or
secure areas of execution in memory. The content of these enclaves is protected from all other
processes (including higher-level operating system processes) and is only decrypted on the
fly by the actual CPU to run the commands. Intel also provides a way to perform attestation
of these enclaves to verify their identity and that they have not been tampered with. By
using all of these features, we can leverage Intel SGX to perform secure computation.
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Enclave applications have a unique architecture. They are divided into an untrusted
portion and a trusted portion. The trusted portion runs inside the enclave and is respon-
sible for executing secure code. The untrusted host serves as a wrapper for the enclave to
make external calls because many syscalls aren’t allowed/implemented within the enclave.
Therefore, the enclave must rely on the untrusted host to make these calls and return the
correct results back. However, enclave programmers must not assume that any code running
outside the enclave will execute correctly and must design their applications accordingly.

More specifically, as in Figure 2.2, the enclave can make an ocall to pipe requests (such
as syscalls) to outside the enclave. In a similar fashion, the outside world can make ecalls
to execute trusted code. A general enclave application flow might look as follows.

1. A network request comes in and is processed by the untrusted host

2. The untrusted host makes an ecall to the enclave to forward the contents of the
request

3. The enclave runs its secure application code and makes appropriate ocalls as needed

4. The enclave returns and the untrusted host sends back the results of the computation
over the network

Figure 2.2: Enclave Architecture

An important consideration is that enclaves are inherently vulnerable to a Denial of Ser-
vice attack by the untrusted host. For example, in the flow mentioned above, the untrusted
host can choose to not forward any of the network requests to the enclave. Since the enclave
can’t open ports and process networks requests directly, the enclave will be prevented from
doing anything useful in this case. However, it is important to note that the security of the
system isn’t impacted from this type of attack.

Unfortunately, writing Intel SGX code is a very non trivial task. For example, a bare
bones version of attestation using the Intel SGX SDK requires 1000+ lines of C++ code.
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In addition to this, code executed within the enclave has only access to a restricted set of
LibC++, which makes converting normal programs/libraries to “enclave” programs/libraries
an arduous task. Further wrappers on top of the Intel SGX SDK do exist (such as Microsoft
Open Enclave SDK [19]), but these also require extensive knowledge of basic enclave prim-
itives. In addition to these limitations, recent research has demonstrated that enclaves are
vulnerable to a wide variety of side channel attacks that may yield unwanted leakage of
sensitive knowledge. These side channels include page-fault attacks [36, 30], cache-timing
attacks [14, 1, 26], and speculative execution attacks [2]. Correspondingly, there has been
a lot of recent work in providing defenses [30, 29, 12, 15, 25, 20] with varying degrees of
success.

Despite these challenges, enclaves are being increasingly used in a wide range of applica-
tions due to the security guarantees they provide. They are often used in cloud applications
where we need trusted code to run in the cloud but we can’t trust the cloud provider to not
snoop on our data. In summary, enclaves provide confidentiality, integrity, and security for
the application running within. In a modern world that is becoming increasingly security
and privacy driven, this is an extremely valuable technology.
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Chapter 3

PSec

While designing PSec, we wanted to be able to create language constructs to enable pro-
grammers to implement real-world systems. Secure distributed systems, which consist of
trusted machines, may have to interact with external untrusted machines for input or to
execute non-sensitive tasks. As a result, we want to incorporate the concepts of both trusted
and untrusted state machines in PSec. In the following sections, we will describe the various
additions to the P language to support this new programming paradigm.

3.1 Language Design

In PSec, programmers can choose between 2 types of state machines. We have Secure
State Machines (SSMs), which the programmer can denote by defining the state machine
code within an enclosing secure_machine block. We also have Untrusted State Machines
(USMs), denoted using an enclosing machine block as in regular P. SSMs are trusted to
run sensitive code and handle secret data while USMs run in the untrusted world. As in P,
State Machines can receive and send events with payloads and take di↵erent actions based
on events received. PSec is built as an extension to the P language, and we outline notable
di↵erences in the following sections. One important note is that all commands are assumed to
be atomic and state machines do not execute the next command until the current command
terminates.

3.1.1 Machine Creation

Rationale

Since PSec machines are created dynamically, we need a way to create state machines on the
fly in a secure manner. In addition to this, we need a way to designate trust so that state
machines can be confident they are sending sensitive data to and receiving correct data from
trusted entities. Our initial approach involved having SSMs trust all other SSMs running
valid PSec code. However, we determined this designation of trust to be too broad because
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adversaries could spin up their own SSMs (running valid PSec code) and convince our SSMs
to send them sensitive data. Although this is not a problem in itself (our implementation
of SSMs prevent them from leaking data to their untrusted host machines), the adversaries
would be able to more readily perform denial of service attacks on these SSMs and prevent
them from doing any useful work since they reside on systems local to the adversary. This
would result in our machines waiting on responses that will never come.

A more sensible designation of trust relies on having trust chains centered around machine
creation. In this scheme, the primary driver of trust is that SSMs trust any SSMs they
have created and these child SSMs trust their parent SSM. The secondary driver of trust is
through trust designation. Child SSMs additionally trust SSMs deemed by their parent to
be trustworthy (as well as SSMs deemed by those SSMs and so on). The last point is an
important distinction because this enables trust to flow in a chain rather than a tree, which
is important in enabling us to express real-world applications. Initial trust is bootstrapped
by having the first SSM in the system be created by a trusted host machine that performs
the necessary initial setup. If this trusted host machine is corrupted, the worst case scenario
is again a denial of service (the host can refuse to create this first SSM or can relay incorrect
information, preventing anyone from communicating with it). However, we argue that this
point of failure is smaller than the point of failure discussed in the previous approach. With
this approach in mind, we design our machine creation as follows.

Design

Machine creation falls in the following cases:

1. Trusted Create: SSM1 creates SSM2

2. Untrusted Create: SSM1 creates USM1 or USM1 creates USM2 or USM1 creates
SSM1

In both of these cases, machine creation is denoted using the new command as in:

machineHandle = new StateMachine();

Invoking the new command actually utilizes the PSec Runtime to send a state machine
creation request across the network to one of the distributed host machines in our system.
Upon successful machine creation, a machine handle is returned that can be used to send
events to the newly created machine.

In the Untrusted Create case, the parent machine receives the handle of the newly
created child machine so that it knows where to send future messages. This is reflected by
the type of the returned handle, which is machine_handle;



CHAPTER 3. PSEC 11

1 machine ParentUSM {
2 var machineHandle : machine_handle;
3 ...
4 entry {
5 machineHandle = new ChildSSM();
6 ...
7 }
8 }

In the Trusted Create case, the parent SSM receives the handle of the newly created
child SSM as well as the capability to send trusted data to it. This type of the returned han-
dle is secure_machine_handle which reflects the necessary capability of the child machine.
The parent SSM can share this capability by simply sending this secure_machine_handle
to other trusted SSMs.

1 secure_machine ParentSSM {
2 var machineHandle : secure_machine_handle;
3 ...
4 entry {
5 machineHandle = new ChildSSM();
6 ...
7 }
8 }

Once created, a PSec state machine can access its own machine handle by using the this
keyword. A USM can access its own machine_handle, and a SSM can additionally access
its secure_machine_handle.

3.1.2 Message Sending

Rationale

We need to define multiple message sending types in order to properly capture the various
interactions between USMs and SSMs. First of all, SSMs should be able to send trusted
messages containing sensitive data to other SSMs they trust as well as receive data they
know not to be corrupt/malicious from these entities. In addition to this, they should also
be able to send and receive messages from USMs as well as untrusted SSMs (one simple use
case being to accept input from user systems and sending back computed output). SSMs
should be able to di↵erentiate between these trusted and untrusted interactions so that they
can respond accordingly. USMs, in general, should be able to send messages to both USMs
and SSMs.

After looking at all the possible scenarios, we decided to define 2 types of message sending:
Trusted Message Sending and Untrusted Message Sending. Trusted Messaging is used to
exchange messages whose contents can be trusted between SSMs while Untrusted Messaging
is used for all other use cases. We are assuming that all SSMs and USMs are distributed,
and any messages they want to send to each other need to be sent across the network. Since
P innately requires messages to be encapsulated by Event objects, we also define two types



CHAPTER 3. PSEC 12

of events: Trusted Events and Untrusted Events. On the sending side, programmers can use
Trusted Message Sending to send messages encapsulated in Trusted Events and Untrusted
Message Sending for messages in Untrusted Events. On the receiving side, programmers can
specify di↵erent behavior for state machines when they receive a Trusted Event versus an
Untrusted Event.

Trusted Sending

Trusted Sending is inferred by the compiler based on the specified handle of the receiving ma-
chine (needs to be secure_machine_handle). This type of sending can only occur between 2
SSMs, and the machine that is sending must have the capability of the receiving SSM to do
so (and hence must possess the secure_machine_handle). These messages are sent over a
secure channel across the network and are resistant to Man-in-the-Middle attacks. The PSec
Type Checker enforces that Trusted Events can only be sent using Trusted Message Sending
so that their contents are never leaked to the untrusted world. On the receiving machine’s
side, the PSec Runtime ensures that Trusted Events can only be received from other trusted
SSMs through secure channels. If an adversary sends a Trusted Event without proving they
possess the necessary capability, the receiving machine’s PSec Runtime doesn’t forward
the event to the receiving SSM. The command template is the following:

send receivingSSMSecureMachineHandle, TrustedEvent, securePayload;

Untrusted Sending

Untrusted Sending is inferred by the compiler if the type of the receiving machine’s handle
is machine_handle. Both SSMs and USMs can use this command to send Untrusted Events
with payloads to other machines without needing any sort of capability. These messages
are sent securely as well but since these messages may originate from the untrusted world,
the content of these messages are untrusted. The command template is:

send receivingMachineHandle, UntrustedEvent, payload;

3.2 Language Formalisms

In this section, we formalize the operational semantics as well as the type system of PSec. We
will use these formalisms in later sections in order to be able to construct proofs regarding
our language. In terms of the operational semantics, we build on top of the operational
semantics of the P Programming language, denoted in [8] and [9].

3.2.1 Notation

1. Let E represent the set of names of all the Events
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• Let ET represent the set of names of all the Trusted Events, which is a subset of
E

• Let EU represent the set of names of all the Untrusted Events, which is a subset
of E and disjoint to ET

2. Let M represent the set of names of all the state machines

• Let MT represent the set of names of all the SSMs, which is a subset of M

• Let MU represent the set of names of all the USMs, which is a subset of M and
disjoint to MT

3. Let Z be the set of all machine identifiers that uniquely identify each state machine in
our system, which is M⇥N, where N is the set of natural numbers. This is important
because there can be multiple state machines created of the same type (with the same
name), and we need a way to distinguish between them

4. Let H be the set of all machine handles, which is M ⇥ N ⇥ X, where N is the set
of natural numbers and X 2 {0, 1} . This is important because handles are used to
send events to state machines and we need a way to distinguish between handles that
contain Trusted Event capabilities and those that do not

• Let HT represent the set of trusted machine handles that indicate that the ma-
chine that possesses the trusted handle has the capability to send Trusted
Events to the corresponding SSM. This is represented as M ⇥ N ⇥ 1, where
N is the set of natural numbers

• Let HU represent the set of untrusted machine handles that indicate that the
machine that possesses the handle can send Untrusted Events to the handle’s
corresponding machine. This is represented as M⇥ N⇥ 0, where N is the set of
natural numbers

5. Let S represent the set of all possible local state for a state machine. This local state
contains everything needed for execution of the machine, including data structures and
control stack

6. • Let VT represents the set of all possible payloads that may be encapsulated in
a PSec Trusted Event. These payloads must be derived from trusted variables
stored in local state of machines

• Let VU represents the set of all possible payloads that may be encapsulated in a
PSec Untrusted Event. These payloads must be derived from untrusted variables
stored in local state of machines

• Let V represents the union of VT and VU
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7. Let B represent the set of all possible values for the input bu↵er for state machines.
Upon receiving events with payloads, state machines enqueue these messages into their
input bu↵er. This input bu↵er is a sequence of (e, v) 2 E ⇥ V pairs

3.2.2 Operational Semantics

Definitions

We define various transition relations and functions below:

1. We define the Local ✓ S ⇥H ⇥ S ⇥H transition relation that represents the various
internal transitions of a state machine. (s, id, s0, id0) 2 Local(m) means that the ma-
chine m transitions from local state s to s0 and can model the movement of handles
between these local states

2. We define the Enq ✓ S ⇥H ⇥ E ⇥ V ⇥ S transition relation that represents message
sending from one machine to another. (s, id, e, v, s0) 2 Enq(ms) means that the sending
machine ms changes local state from s to s0 and event e with payload v is sent to the
receiving machine with handle id

3. We define the Rem ✓ S⇥B⇥N⇥S transition relation that represents a state machine
dequeuing and handling an event from its input bu↵er. (s, b, n, s0) 2 Rem(m) means
that the machine m dequeues the nth event from its input bu↵er b and changes local
state from s to s0

4. We define the New ✓ S⇥M⇥S transition relation that represents new state machine
creation. (s,mc, s0) 2 New(mp) means that the parent machine mp moves local state
from s to s0 after creating a child machine mc

5. • We define a function uids such that uids(s) is the set of all untrusted machine
handles embedded in state s and uids(v) is the set of all untrusted machine handles
embedded in value v

• We define a function tids such that tids(s) is the set of all trusted machine handles
embedded in state s and tids(v) is the set of all trusted machine handles embedded
in value v

• We define ids to be a function that is the union of uids and tids

6. • We define a function uvals that returns a map of non-sensitive variables to their
values in state s

• We define a function tvals that returns a map of secret variables to their values
in state s

• We define vals as a function that returns a map of all variables to their values in
state s
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7. We define a helper function containsAll(A,B) that returns true if the map A contains
all of the keys and values that are present in map B

8. We define a function IFA(s, s0) that returns true if s to s0 represents a valid transition
for a state machine after our information flow analysis type checking rules (depicted
in later sections) have successfully terminated. We have 3 possible valid transitions:
state remains the same, or either the untrusted state or the trusted state increases

• IFA(s, s0) returns true if
(uvals(s) = uvals(s0) ^ tvals(s) = tvals(s0))
or (uvals(s) = uvals(s0) ^ containsAll(tvals(s0), tvals(s)))
or (tvals(s) = tvals(s0) ^ containsAll(uvals(s0), uvals(s)))

Machine Handles Cannot be Created “Out of Thin Air”

Recall that an SSM can only send a Trusted Event to another SSM if it possesses its trusted
handle (secure_machine_handle). The capability to send these Trusted Events to a
particular SSM can be modified as these trusted handles can be transmitted from one SSM to
another. Untrusted Events can be sent to any state machines as long as the sending machine
has the receiving machine’s untrusted handle (machine_handle). We need to formalize the
concept that these machine handles cannot be created “out of thin air” [8] and must be
present in the local state of a state machine before they can be used. State machines can get
access to these handles by either creating a new machine (New) or by receiving the handle
from another state machine and dequeuing the event (Rem). We formalize this as follows:

For all m 2 M, id, id0 2 H, s, s0 2 S, e 2 E , v 2 V , n 2 N, b 2 B

1. (s, id, s0, id0) 2 Local(m) ) ids(s0) [ id0 ✓ ids(s) [ {id}

2. (s, b, n, s0) 2 Rem(m) ) ids(s0) ✓ ids(s) [ {ids(v) j 9e.b[n] = (e, v)}

3. (s, id, e, v, s0) 2 Enq(m) ) ids(v) [ ids(s0) ✓ ids(s)

4. (s,m0, s0) 2 New(m) ) ids(s0) ✓ ids(s)

Propagation of Secret State

In addition to this, we need to make sure that local state flows correctly propagates sensitive
labels and correctly accounts for transitions between secret and non-sensitive state. We
leverage our information flow type system to guarantee information flow properties and
formalize the following based on that assumption:

For all m 2 M, id, id0 2 H, s, s0 2 S, e 2 E , v 2 V , n 2 N, b 2 B

1. (s, id, s0, id0) 2 Local(m) ) IFA(s, s0)

2. (s, b, n, s0) 2 Rem(m) ) containsAll(vals(s0), vals(s).put( (x, v) j 9e.b[n] = (e, v)))
where x is defined to be a new variable
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3. (s,m0, s0) 2 New(m) ) IFA(s, s0)

Setup

The state of a state machine is represented as (s, id) 2 (S,H) where s is the local state of
the machine, and id is a placeholders used to store the target of a send command or the
handle of a newly created machine.

The configuration of our system is the following tuple: (S, B, C) where S is a partial map
of Z to S ⇥H, B is a partial map of Z to B, and C is a partial map of M to N. Essentially,
S[m,n] represents the state of the nth instance of machine m where m ✏ M and n 2 N.
B[m,n] represents the input bu↵er of this machine. C[m] represents the number of instances
of machine m that have been created so far.

Internal Rules

These rules represent the internal state transitions of the state machines.
For the Local Transition, an observer is assumed to be able to infer the new untrusted

state from this transition, and we indicate this in the label of the transition.

Local Transition

m 2 M n 2 N
S[m,n] = (s, id) (s, id, s0, id0) 2 Local(m)

(S,B,C)
uvals(s0)
�����! (S[(m,n) 7! (s0, id0)], B, C)

For the Dequeue Event transition, an observer is assumed to be able to infer the new
untrusted state from this transition as well as the content of any Untrusted Event that
is being processed. Also, recall that dequeuing an event can add a handle to the current
machine’s local state (if another machine has sent it), and that is defined in the “Machine
Handles Cannot be Created Out of Thin Air” formalization for the Rem rule in the previous
section.

Dequeue Event

m 2 M n, pos 2 N S[m,n] = (s, id) B[m,n] = b
(s, b, pos, s0) 2 Rem(m) b0 = remove(b, pos) (e, v) = b

(S,B,C)
uvals(s0),e, (vje2EU )
������������! (S[(m,n) 7! (s0, id)], B[(m,n) 7! b0], C)

Creation Rules

In the Trusted Create rule, we have a parent SSM (denoted with subscript p) creating a new
child SSM (denoted with subscript c). The parent SSM will receive the trusted handle of
the newly created child SSM. This is a labeled transition because an outside observer can
see which child machine is created as well as which machine sent the creation request. We



CHAPTER 3. PSEC 17

denote the Trusted Create rule as follows:

Trusted Create

mp,mc 2 MT np, nc 2 N
tidc = (mc, nc, 1) uidc = (mc, nc, 0)

S[mp, np] = (sp, ) (sp,mc, s0p) 2 New(mp) nc = C[mc]

(S,B,C)
(mp,np),(mc,nc)
���������! (S[(mp, np) 7! (s0p, tidc), (mc, nc) 7! (s0, {tidc, uidc})],

B[(mc, nc) 7! b0], C[mc 7! nc + 1])

In the Untrusted Create rule, we have a parent state machine (denoted with subscript p)
creating a child state machine (denoted with subscript c). The parent machine will receive
the untrusted handle of the child machine. This is a labeled transition because an outside
observer can see which child machine is created as well as which machine sent the creation
request. We denote the Untrusted Create rule as follows:

Untrusted Create SSM

mp,mc 2 M (mp 2 MU ^mc 2 MT ) np, nc 2 N
tidc = (mc, nc, 1) uidc = (mc, nc, 0)

S[mp, np] = (sp, ) (sp,mc, s0p) 2 New(mp) nc = C[mc]

(S,B,C)
(mp,np),(mc,nc)
���������! (S[(mp, np) 7! (s0p, uidc), (mc, nc) 7! (s0, {tidc, uidc})],

B[(mc, nc) 7! b0], C[mc 7! nc + 1])

Untrusted Create USM

mp,mc 2 M mc 2 MU np, nc 2 N
uidc = (mc, nc, 0)

S[mp, np] = (sp, ) (sp,mc, s0p) 2 New(mp) nc = C[mc]

(S,B,C)
(mp,np),(mc,nc)
���������! (S[(mp, np) 7! (s0p, uidc), (mc, nc) 7! (s0, {uidc})],

B[(mc, nc) 7! b0], C[mc 7! nc + 1])

Sending Rules

In the Trusted Send rule, we have a sending SSM (denoted with subscript s) sending a
Trusted Event to a receiving SSM (denoted with subscript r). The sending SSM must
possess the trusted handle of the receiving SSM. After executing this command, the sending
SSM transitions to its next state and the receiving SSM enqueues this trusted event in its
input bu↵er. This is a labeled transition because an outside observer can infer the type of
event that was sent (although they cannot infer the contents of the message payload itself)
as well as which 2 parties the communication is happening between. We denote the Trusted
Send rule as follows:

Trusted Send

ms,mr 2 MT ns, nr 2 N e 2 ET v 2 VT tidr = (mr, nr, 1)
S[ms, ns] = (ss, tidr) B[mr, nr] = br (ss, tidr, e, v, s0s) 2 Enq(ms)

(S,B,C)
(ms,ns),(mr,nr),e
����������! (S[(ms, ns) 7! (s0s, tidr)], B[(mr, nr) 7! br

J
(e, v)], C)
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In the Untrusted Send rule, we have a sending state machine (denoted with subscript s)
sending an Untrusted Event to a receiving state machine (denoted with subscript r). The
sending machine must possess the untrusted handle of the receiving machine. After executing
this command, the sending machine transitions to its next state and the receiving machine
enqueues this untrusted event in its input bu↵er. This is a labeled transition because an
outside observer can corrupt the untrusted machines and view the message payload, event
type, as well as which parties the message is being exchanged between. We denote the
Untrusted Send rule as follows:

Untrusted Send

ms,mr 2 M ns, nr 2 N e 2 EU v 2 VU uidr = (mr, nr, 0)
S[ms, ns] = (ss, uidr) B[mr, nr] = br (ss, uidr, e, v, s0s) 2 Enq(ms)

(S,B,C)
(ms,ns),(mr,nr),e,v
�����������! (S[(ms, ns) 7! (s0s, uidr)], B[(mr, nr) 7! br

J
(e, v)], C)

3.2.3 Type Checker

Information Flow Analysis

One of the primary goals of PSec is to enable secure computation in a simple, high-level
language. To achieve this goal, we also want to prevent programmers from accidentally
leaking secret data. For example, a Secure Voting System application should not leak any
identifying information of the voter to untrusted machines. Traditional approaches to ac-
complishing this involve using forms of encryption or access control frameworks. However,
a fundamental problem with these approaches is although these techniques do prevent ma-
licious machines from accessing data directly, they don’t prevent machines with legitimate
access from leaking this data to bad actors [32]. This problem can be combated by placing
external monitors on the machines that check all output and block as necessary. However, it
is hard for these detection systems to detect all forms of sensitive data (sensitive data that
is slightly modified may not trigger these monitors).

A better approach is to implement Information Flow Control in PSec’s type checker.
This kind of static analysis enables us to enforce that no secret information is leaked. In-
formation Flow Control works by augmenting the type system to include security labels for
each type of variable [32]. In our system, we define two types of security labels (High/H and
Low/L). These labels indicate that we want to maintain the confidentiality and integrity
of certain values. Essentially, we want to prevent data with H labels from being leaked to
adversaries and we also want to ensure that this data contains trusted information, rather
than potentially malicious payloads. Programmers can mark variables with a secure type
to indicate this and a High security label is automatically assigned to these variables. We
need to propagate these labels and enforce certain rules to actually achieve these properties,
and we describe this in the next few sections.

Our Adversary Model for the information flow system is that we are assuming that the
adversary is allowed to view/infer the content of Low security variables and expressions at
any time. They can also arbitrarily write to any Low security variables. However, the goal of



CHAPTER 3. PSEC 19

our type system is that, given the previous assumptions, we want to prevent the adversary
from inferring or corrupting the values of any High security variables/expressions. More
specifically, our goals are the following [6]:

1. Classify Expressions

2. Prevent Explicit Flows

3. Prevent Implicit Flows

4. Prevent Corruption

Goal 1 states that we need a way to figure out how to classify expressions as H and L.
Goal 2 states that we should forbid H expressions from being assigned to L variables. This
is because given our adversary model, the adversary will be able to view the L variable after
the assignment statement is executed and infer information regarding the H variables used
to construct the assigned expression. Goal 3 states that we need to prevent side channel
attacks that will leak the value of H values. Finally, Goal 4 states that we want to protect
the integrity of H values within our system.

Type Checker Rules

In this section, we describe the formal type checking rules of our system so that we can
achieve the goals mentioned above. They are derived/adapted from [6], [23], and [32].

First of all, we define the security labels for P’s native types. We demonstrate the rules
for the int type, machine_handle type, and the event type as specific examples, but this
pattern follows for all remaining types (such as bool, StringType, etc)

�(secure int) = H;

�(int) = L;

�(secure machine handle) = H;

�(machine handle) = L;

�(trusted event) = H;

�(event) = L;

Variables and Constants For our variable and constant rule, we have

Constant
n 2 N

� ` n : L
Variable

�(x) = ⌧

� ` x : ⌧

where ⌧ represents the security type of the variable x. These rules are fairly straightfor-
ward.
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Expressions Expression information flow need to propagate security labels correctly in
order to maintain confidentiality as well as integrity properties.

For the remainder of this section, this

� ` e : ⌧

means that e is a well typed expression with the ⌧ security label.
Given the above, we define the expression rules to be the following:

Unary Exp
� ` e : ⌧

� ` op e : ⌧
Binary Exp

� ` e1 : ⌧ � ` e2 : ⌧
� ` e1 op e2 : ⌧

where op in the unary case is [!, -] and in the binary case is [+, -, *, /, <, <=,
>, >=, ==, !=, &&, ||].

We additionally define a Declassify and Endorse function in order to allow the program-
mer to explicitly change security labels for practical uses cases.

Declassify
� ` e : H � ` ⌧ : L

� ` (Declassify(e) as ⌧) : L

Endorse
� ` e : L � ` ⌧ : H

� ` (Endorse(e) as ⌧) : H

Commands Command Information Flow utilizes subtyping in order to determine the
security label of each command. This enables us to prevent implicit side channels. For
commands, we have the following subtyping rule:

H com  L com

With this subtyping, we have the following subsumption rule:

Subsumption Command
⌧1 com  ⌧2 com � ` c : ⌧1 com

� ` c : ⌧2 com

Based on the previous results, this

� ` c : ⌧ com

means that c is a well typed command that assigns to variables of type ⌧ or higher
In terms of the command rules, we have the following:

Assign
� ` e : ⌧ �(x) = ⌧

� ` x := e : ⌧ com
If Rule

� ` e : ⌧ � ` c1 : ⌧ com � ` c2 : ⌧ com
� ` if e then c1 else c2 : ⌧ com
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Sequence Rule
� ` c1 : ⌧ com � ` c2 : ⌧ com

� ` c1; c2 : ⌧ com
While Rule

� ` e : ⌧ � ` c : ⌧ com
� ` while e do c : ⌧ com

Since sending messages to untrusted machines and printing output to the console are
natural side channels, we denote the following commands with an L label. In the Untrusted
Send rule, it is important to note that PSec enforces Untrusted Events are only allowed to
contain non-sensitive payloads, and this is showcased in the L security label of the payload
expression.

UntrustedSend

id 2 HU ev 2 EU v 2 VU

� ` id : L � ` ev : L
� ` send id, ev, v : L com

Print
� ` e : L

� ` Print e : L com

We regard sending messages to trusted SSMs as a trusted action (since we use the Trusted
Message Sending protocol). As a result, we denote the following command with an H la-
bel. It is important to note that PSec enforces Trusted Events are only allowed to contain
payloads with an H security label. This is important for the confidentiality proof in the
later sections, and we note that this doesn’t hinder programmers from sending L payloads
with the Trusted Messaging Sending protocol. If necessary, the programmer can explicitly
Endorse the payload on the sending SSM and use the Declassify function on the receiving
SSM to achieve this goal, which facilitates many practical use cases.

TrustedSend

id 2 HT ev 2 ET v 2 VT

� ` id : H � ` ev : H
� ` send id, ev, v : H com

Similarly, the Declassify and Endorse functions are denoted with an H label since they
are trusted operations.

Declassify
� ` Declassify : H com

Endorse
� ` Endorse : H com

One item to note is that PSec allows for external method calls implemented in C++
code. This approach is taken from P, where this functionality is provided for cases where the
P language is not expressive enough to implement certain application features. We require
the programmer to specify the input and output types (along with security labels) of this
“foreign method”. Since the protections o↵ered by PSec can be subverted in the C++ code,
we place the responsibility on the programmer to handle input safely and securely. “Foreign
methods” are out of scope for the purposes of the thesis. PSec also provides for regular
function definitions written directly in PSec, but since these function bodies can e↵ectively
be expanded in the state machine code, we do not provide formalisms for this feature in the
body of this thesis.
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Sanity Checks Using these rules, we can perform a sanity check and construct the fol-
lowing proof trees for add operations with di↵erent security labels.

Declassify Sanity Check

� ` int : L � ` secure int : H � ` int : L
� ` (Declassify(secure int) as int) : L

� ` int+ (Declassify(secure int) as int) : L

Endorse Sanity Check

� ` int : L � ` secure int : H
� ` (Endorse(int) as secure int) : H

� ` secure int : H

� ` (Endorse(int) as secure int) + secure int : H

We can perform a sanity check on the if command as well. First of all, recall the if
command has the following structure: if e then c1 else c2. Based on this, we construct
the following cases and see whether our command rules lead to valid derivation trees.

1. Case 1: if L then L com else L com

� ` e : L � ` c1 : L com � ` c2 : L com
� ` if e then c1 else c2 : Lcom

! Succeeds. Overall Type is L.

2. Case 2: if L then L com else H com

� ` e : L � ` c1 : L com
� ` c2 : H com H  L

� ` c2 : L com
� ` if e then c1 else c2 : L com

! Succeeds. Overall Type is L.

3. Case 3: if L then H com else H com

� ` e : L
� ` c1 : H com H  L

� ` c1 : L com
� ` c2 : H com H  L

� ` c2 : L com
� ` if e then c1 else c2 : L com

! Succeeds. Overall Type is L.

4. Case 4: if H then H com else H com

� ` e : H � ` c1 : H com � ` c2 : H com
� ` if e then c1 else c2 : Hcom

! Succeeds. Overall Type is H.

5. Case 5: if H then H com else L com ! Error! No Derivation Tree.

6. Case 6: if H then L com else L com ! Error! No Derivation Tree.
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If we look at this example, this only leaks information when e is equal to H and there is an
L in either command c1 or c2. Intuitively this makes sense because since the adversary can
view the value of L variables, they can see how the L variables have changed after execution
and gain some knowledge about the H expression that is conditioned on. Our type checker
prevents information from being leaked through these side channels.

We outline sample PSec code with comments in regards to information flow type checking
in the Appendix, in Section A.3.

Observational Determinism Theorem Observational determinism [37, 7] is a property
that, if satisfied, prevents adversaries from inferring sensitive information from the execution
of the program and corrupting trusted values in our system. We state the following theorem:

Theorem 1 If the PSec type checker terminates successfully for a given program P, then P
satisfies the property of Observation Determinism when executed with the PSec Runtime.

We provide a formal proof for this theorem as part of our evaluation in Section 3.4.3 of
this thesis.

3.3 Language Implementation

As part of our language design, we assume that code running within Secure State Machines
(SSMs) is trusted and unmodified and that adversaries cannot read sensitive data contained
within these machines. By providing guarantees such as confidentiality of execution and
integrity of code through remote attestation, Intel SGX can enable us to achieve these goals.

Figure 3.1: Distributed Host Architecture
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We create 2 separate runtimes: the PSec Enclave Runtime, and the PSec Untrusted
Runtime. After the programmer writes the PSec file, and it passes the type checking phase,
the PSec Compiler is used to generate C code for the various state machines. The PSec
Enclave Runtime as well as the generated code for all of the state machines is then compiled
within each Intel SGX Enclave. The enclave, upon creation, spawns an instance of a PSec
Process within secure memory that handles running the generated state machine code. Each
enclave has the ability to create any state machine provided by the generated code, but
the PSec Enclave Runtime enforces that each enclave only contains 1 SSM at any given
time. Each distributed host machine also has an instance of the PSec Process running
within untrusted memory that handles creating and managing USMs based on the previously
generated state machine code. The PSec Untrusted Runtime within the distributed host is
in charge of ferrying messages to the network for all of the SSMs and USMs located on this
host machine. This overall architecture is shown in Figure 3.1.

3.3.1 Threat Model

Adversaries

We assume that there are di↵erent levels of adversaries and we provide di↵erent guarantees
against each one.

1. Passive Network Observer

• Can observe all network tra�c and will attempt to extract relevant data from
network requests

• Cannot tamper or modify any network tra�c

2. Active Man-in-the-Middle

• Can observe all network tra�c and will attempt to extract relevant data from
network requests

• Can tamper with network tra�c and modify network requests in hopes of extract-
ing relevant information

3. Privileged Attacker

• Can observe all network tra�c and will attempt to extract relevant data from
network requests

• Can tamper with network tra�c and modify network requests in hopes of extract-
ing relevant information

• Can corrupt distributed host machines in our network and spin up its own ma-
licious enclaves on these host machines as needed. Has privileged access in un-
trusted world and can read and tamper with all internal state for the distributed
host machines, except state stored within enclaves
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Guarantees against Adversaries

We design PSec in order to provide certain levels of guarantees against the aforementioned
adversaries. We describe the guarantees provided in this section and discuss the implemen-
tation enabling these guarantees in later sections.

1. Passive Network Observer

• PSec has necessary cryptography built-in to prevent network observers from de-
termining message payloads for both Trusted and Untrusted Message Sending

• Passive Network Observers will be able to determine which 2 parties are commu-
nicating as well as lengths of messages exchanged between the parties

• State machines will execute their code as expected

2. Active Man-in-the-Middle

• PSec has necessary cryptography built-in to enable state machines to detect if
any message payloads have been tampered with

• Active Man-in-the-Middle attackers will be able to determine which 2 parties are
communicating as well as message lengths. They can also induce denial-of-service
attacks by dropping network requests

• State machines will execute their code as expected

3. Privileged Attacker

• Privileged Attackers have control over the entire untrusted world (USMs, dis-
tributed host machines, and the network). They can additionally create SSMs by
spinning up their own malicious enclaves. As a result, Privileged Attackers can
send authenticated messages from compromised parties to other state machines
in our system. They can also perform denial-of-service attacks by preventing
messages from being sent and processed

• PSec still provides guarantees against this more advanced adversary. PSec pre-
vents SSMs from ever giving secrets to the untrusted world (such as to USMs)
because these secrets are assumed to be easily leaked. PSec also prevents secrets
from being sent to untrusted SSMs (SSMs that the current machine doesn’t have
the capability for)

• SSMs created using the Trusted Create protocol are guaranteed to execute their
code as expected. All other state machine are not guaranteed to execute their
code correctly

It is important to note that denial-of-service attacks cannot be prevented in any case
because this is a fundamental limitation of enclaves as they rely on their host machines
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for network operations. Regardless, PSec guarantees that no secret data is ever leaked to
adversaries.

Similar to other SGX-related work in this area (such as the EActors programming lan-
guage [24]), we consider side-channel attacks (such as page-fault based attacks [36, 30],
speculative execution attacks [2], cache-timing attacks [14, 1, 26], or general timing attacks)
to be out of scope. These attacks have counter-measures [30, 29, 12, 15, 25, 20] that can be
implemented on the side, and we leave that as future work.

3.3.2 System Architecture

In our system, we have multiple distributed host machines and a trusted Key Provisioning
Server (KPS). The KPS stores all precomputed valid enclave measurements and serves as
an intermediary to establish trust for various protocols. The public KPS key is baked into
all enclaves so they can establish secure channels with the KPS. The programmer is able
to take the PSec executable and spawn the KPS or di↵erent host machines by specifying
di↵erent command-line arguments and running the executable on that physical machine. If
spawning the KPS, the programmer additionally has to specify the network addresses for all
the di↵erent distributed hosts in the system as well as the type of State Machines allowed
to be hosted by those distributed hosts. This is important so that the KPS can include this
information in its IP lookup table. Finally, the KPS is assumed to be deployed on a trusted
server. This setup can be visualized in Figure 3.2.

In general, we assume that the first SSM in our system is created from a secure context.
This means that when a USM creates the first SSM in order to kickstart the system, the
USM assumes that the SSM is securely created even though the Untrusted Create protocol
is used. This assumption is necessary to bootstrap trust in our system and can be made
practical by having the initial SSM and USM be hosted by the same trusted distributed
host. Once the first SSM is created and running successfully, it is able to go ahead and
create additional trusted SSMs in our system (which can reside on untrusted distributed
host machines) and perform trusted computations or create even more trusted SSMs during
the execution of the program.

3.3.3 Definitions for Protocols

Identity

Every state machine has an associated unique Identity public/private key pair which es-
tablishes the identity of the machine. When we say that a state machine has authenticated
with its Identity, this involves a signature over the private Identity key. When we refer
to Identity in the rest of this paper, we mean the Identity public key. For example, a
state machine sending its Identity to another state machine means that it is sending its
Identity public key over. We will be explicit when we refer to the Identity private key.
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Figure 3.2: Network Architecture

Capability

Every SSM has a Capability associated with it. A Capability is essentially a public/pri-
vate key pair that gives anyone who can prove they possess the private key the ability to
send Trusted Events to the associated SSM. Capabilities must never leave into the un-
trusted world and must stay within enclaves since they are secret keys. When we refer to
the Capability key, we mean the entire public/private key pair.

Secure Sigma* Channel

We use Secure Sigma* to establish secure channels between enclaves and the KPS. This
channel is created using Intel’s version of the Sigma Protocol (version of Authenticated
Di�e-Hellman that addresses many of the weakness of Di�e-Hellman). Recall that the KPS
Public Key is pre-baked into all enclaves. In this protocol, the enclave remote attests itself
to the KPS and proves that it is legitimate and running PSec. The KPS authenticates using
its private signing key while the enclave authenticates using Intel EPID.

3.3.4 Trusted Create Protocol

Recall that the Trusted Create Protocol is invoked when an SSM wants to create a new
SSM. We denote the newly created SSM as the child SSM and the original SSM as the
parent SSM. Upon successful completion, this protocol returns a secure_machine_handle
typed object to the parent SSM that contains both the Capability, Identity, and network
address information of the child SSM.

We outline the protocol in Figure 3.3. The protocol is divided into 2 parts as below:
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Parent SSM - createMachineRequest()

When the new command is invoked on a SSM type, the Parent SSM actually calls the
createMachineRequest method of the PSec Enclave Runtime. It passes in its Identity
as well as the type of SSM it wishes to create. This method makes an OCALL to the PSec
Untrusted Runtime to make a network request to the KPS to determine the IP address/port
of a valid distributed host that can create the Child SSM. After receiving this information,
the createMachineRequest method makes another OCALL to forward the machine creation
request along with the Parent SSM’s Identity to this valid distributed host. The expected
response from this request is the Identity of the newly created Child SSM. After receiv-
ing this response, the parent enclave establishes a Secure Sigma* channel with the KPS.
It then sends in (Parent SSM Identity, Child SSM Identity, Type of SSM Requested
To Create) and receives the Child SSM Capability. The Parent Enclave then encapsu-
lates the Child SSM’s Capability key, Identity, and network address information in a
secure_machine_handle object and returns it back to the programmer in the PSec code.

Child SSM - createMachineAPI()

When a distributed host receives a network request, the PSec Untrusted Runtime processes
the request. In the case of a SSM creation request, it receives the Parent SSM Identity
and the type of SSM that needs to be created. It goes ahead and creates a new enclave on
the host machine and then calls the createMachineAPI PSec Enclave Runtime method with
the appropriate parameters. The createMachineAPI method checks to make sure that there
are no existing SSMs running in the current enclave and that the child SSM type is a valid
type. It then initializes a new PSec Process inside the enclave and creates the Child SSM
by calling PrtMkMachine within the existing PSec process. It also generates an Identity
for the child SSM. After this initial setup, the enclave needs to establish a Capability for
this SSM so that it can receive Trusted Events. The Child Enclave does this by establishing
a Secure Sigma* channel with the KPS and sending it (Parent SSM Identity, Child SSM
Identity, Type of SSM Requested To Create). The KPS generates a new Capability,
stores (Parent SSM Identity, Child SSM Identity, Type of SSM Requested To Create) ->
Child SSM Capability, and sends the Capability back to the Child SSM. Once the Child
Enclave receives the Capability, it stores it and makes an OCALL to the PSec Untrusted
Runtime in order to send the Child SSM Identity back to the Parent Enclave.

Guarantees

The Trusted Create Protocol gives us many guarantees against even our privileged attacker.
First of all, if the Parent SSM successfully retrieves the Capability of the Child SSM from
the KPS, it receives a guarantee that the Child SSM was securely created in a valid enclave.
This guarantee is ensured by the fact that the KPS validates the Child Enclave through the
Secure Sigma* protocol before generating a Capability for it. The Child SSM receives
the guarantee that only its Parent SSM receives its Capability and that the Parent SSM
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Figure 3.3: Trusted Create Protocol

is running inside a valid enclave. Once again, this guarantee is ensured since the Parent
Enclave is validated by the KPS through the Secure Sigma* protocol before it can retrieve
the Capability.

This protocol has limitations, but we show that the limitation are the same limitations
that are inherent to enclaves. This protocol is vulnerable to a Denial of Service attack by
any of the distributed host machines since the host machines can refuse to send messages
across the network. Another limitation is that the distributed hosts can modify the Child
SSM Identity that is sent back across the network to the Parent Enclave or modify the
requested type of SSM to create. However, in this case, the Parent Enclave will not be able
to retrieve the Capability from the KPS and will realize that the Trusted Create call
has failed. The KPS’s final message to the child enclave containing the Capability of the
child machine can be blocked (DoS), preventing the child SSM from ever receiving Trusted
Events. The distributed host machines can also give the wrong IP address of the Child SSM
from the KPS so that the Parent Enclave is unable to contact the correct machine (another
form of DoS). It is important to note that in all of these cases, this protocol doesn’t leak any
secret data and the enclaves are generally aware of when failures/malicious behavior occur.
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3.3.5 Untrusted Create Protocol

The Untrusted Create Protocol is invoked during all other machine creation cases. We
denote the newly created machine as the child machine and the original machine as the
parent machine. Upon completion, this protocol returns a machine_handle typed object to
the parent machine that contains the Identity as well as network address information of
the newly created child.

Similar to Trusted Create, the protocol is divided into 2 parts as below:

Parent Machine - createUntrustedMachineRequest()

When the new command is invoked on an USM type (or an SSM type being created from a
parent USMmachine), the parent machine actually calls the createUntrustedMachineRequest
method of the PSec Runtime. This method makes a network request to the KPS to determine
the IP address/port of a valid distributed host that can create the child machine SSM. Af-
ter receiving this information, the createUntrustedMachineRequest method forwards the
machine creation request along with the Parent SSM’s Identity to this valid distributed
host. The expected response from this request is the Identity of the newly created Child
SSM, and the PSec Runtime encapsulates this Identity as well as the network address
information into a machine_handle and returns it to the parent machine.

Child Machine - createUntrustedMachineAPI()

When a distributed host receives a network request, the PSec Untrusted Runtime processes
the request. If the request is to create a new SSM (since USMs can request to create SSMs), a
new enclave is created and the request is forwarded to the PSec Enclave runtime (the process
proceeds in a manner similar to Trusted Create). However, in this case, the Capability
of the newly created SSM is not shared with any other parties. If the request is to create a
new USM, the PSec Untrusted Runtime creates a new child USM within the existing PSec
process by calling PrtMkMachine and also generates an Identity for the child machine.
In both cases, the newly created Identity is sent back across the network to the parent
machine.

Guarantees

The Untrusted Create Protocol doesn’t provide many guarantees and is a best-e↵ort pro-
tocol. Since these creation requests don’t contain any sensitive information, they are sent
across the network in plaintext. However, as a result, adversaries can conduct a wide variety
of attacks. Adversaries can modify the requests to prevent the correct machines from being
created (e↵ective denial of service). They can also modify the Identity that is returned
by the child machine and intercept all future untrusted messages sent from the parent ma-
chine. This protocol ensures correct and secure creation in the face of our first adversary,
a network snooper. In order to protect against more advanced Man-In-The-Middle network
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adversaries, we can potentially implement Public Key Infrastructure additionally at the host
machine level (instead of just the state machine level). In this design, messages sent from one
physical host machine to another in the system would have an additional layer of encryption
and would be processed and decrypted by the PSec Runtime in the receiving distributed
host machine. We have not implemented this for now, and outline a possible design for this
additional feature as part of our future work in Section 4.1.

3.3.6 Trusted Send Protocol

The Trusted Send Protocol is used when an SSM wants to send a Trusted Event containing
potentially sensitive data to another SSM. We denote the first SSM as the Sending SSM and
the second SSM as the Receiving SSM. The Sending SSM must have the Capability of the
Receiving SSM as well as its Identity handle.

TrustedSend()

When the Sending SSM invokes the send command with a secure_machine_handle, it
actually calls the TrustedSend method in the PSec Enclave Runtime. As before, this
connection goes through the Sending Enclave’s distributed host, the network provider,
and the Receiving Enclave’s distributed host before it terminates in the Receiving En-
clave. The Sending Enclave authenticates itself by using the Capability and the re-
ceiving Enclave authenticates itself by using its Identity. After a secure channel is cre-
ated, the Trusted Event is sent over and passed to the Receiving SSM by the PSec En-
clave Runtime. In terms of the specifics, we outline the protocol below. We have SSM
A wanting to send a trusted message to SSM B. We are assuming that SSM A already
has obtained PublicIdentityKeyB, PublicCapabilityKeyB, PrivateCapabilityKeyB, and
IPAddressAndPortMachineB and SSM B has PublicIdentityKeyB, PrivateIdentityKeyB,
PublicCapabilityKeyB, and PrivateCapabilityKeyB.

1. SSM A randomly generates a new sessionKey using sgx_read_rand

2. SSM A constructs the following message M: M = sessionKey

3. SSM A constructs EncryptedMessage: EncryptedMessage = E(M) where

PublicIdentityKeyB is used for encrypting

4. SSM A sends “InitComm:SSM-A-Identity:SSM-B-Identity:EncryptedMessage” to

IPAddressAndPortMachineB

5. SSM B receives the message and decrypts it using PrivateIdentityKeyB and saves
the sessionKey

6. SSM B sends back a “Success!” response in plaintext
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7. SSM A generates a random IV

8. SSM A constructs M: M = PublicIdentityKeyB k nonce k Trusted Event Payload

9. SSM A constructs E(M k Sign(M)) = (EncryptedMessage, MAC) where encryption
occurs using sessionKey and IV and signing occurs over PrivateCapabilityKeyB

10. SSM A sends over “TrustedSend:SSM-B-Identity:IV:MAC:EncryptedMessage”

11. SSM B receives this message, decrypts using the sessionKey, verifies the signature
over PublicCapabilityKeyB, and checks the nonce to prevent against replay attacks.
SSM B extracts the TrustedEventPayload and handles this event.

12. SSM B updates the nonce and generates a new IV. It then sends back the following
confirmation message: IV:MAC:E(“Success” k nonce) where the sessionKey is used
for encryption

13. SSM A receives this message and verifies that the trusted message was successfully
received

Guarantees

This protocol guarantees confidentiality and integrity of the data being sent against even
privileged attackers. We guarantee that Trusted Events are never leaked to the untrusted
world through this sending process and that they are sent by a trusted SSM to the intended
SSM. As before, this protocol is vulnerable to DoS attacks because the distributed host
machines can choose to drop the messages at any point of time.

3.3.7 Untrusted Send Protocol

Invoking the send command with a machine_handle actually calls the UntrustedSend
method in the PSec Runtime. This method establishes a secure channel with the receiv-
ing machine by using the receiving machine’s Identity as a means of authentication. It is
important to note that this authentication isn’t important toward providing any additional
guarantees and is easily spoofable by Man-in-the-Middle attackers that can construct mes-
sages that seem to be coming from a particular machine. However, the confidentiality and
integrity of existing message is still protected against these type of attackers. After a secure
channel is created, the Untrusted Event is sent over and passed to the receiving machine by
the PSec Runtime. In terms of the specifics, we outline the protocol below. We have Ma-
chine A wanting to send a Untrusted Event to Machine B. We are assuming that Machine A
already has obtained PublicIdentityKeyB and IPAddressAndPortMachineB, and Machine
B has PublicIdentityKeyB and PrivateIdentityKeyB.

1. Machine A randomly generates a new sessionKey
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2. Machine A constructs the following message M: M = sessionKey

3. Machine A constructs EncryptedMessage: EncryptedMessage = E(M) where

PublicIdentityKeyB is used for encrypting

4. Machine A sends “InitComm:Machine-A-Identity:Machine-B-Identity:EncryptedMessage”
to IPAddressAndPortMachineB

5. Machine B receives the message and decrypts it using PrivateIdentityKeyB and saves
the sessionKey.

6. Machine B sends back a “Success!” response in plaintext

7. Machine A generates a random IV

8. Machine A constructs M: M = PublicIdentityKeyB k nonce k UntrustedEventPayload

9. Machine A constructs E(M k Sign(M)) = (EncryptedMessage, MAC) where encryption
occurs using sessionKey and IV and signing occurs over PrivateIdentityKeyA

10. Machine A sends over “UntrustedSend:Machine-B-Identity:IV:MAC:EncryptedMessage”

11. Machine B receives this message, decrypts using the sessionKey, verifies the signature
over PublicIdentityKeyA, and checks the nonce to prevent against replay attacks.
Machine B extracts the UntrustedEventPayload and handles this event.

12. Machine B updates the nonce and generates a new IV. It then sends back the following
confirmation message: IV:MAC:E(“Success” k nonce) where the sessionKey is used
for encryption

13. Machine A receives this message and verifies that the message was successfully received

Guarantees

Since these messages are potentially originating from the untrusted world, this protocol
doesn’t validate whether machines are running valid PSec code. As a result, privileged
adversaries may be able to corrupt one, or both, parties involved and steal their keys to
forge or decrypt these Untrusted messages. Assuming that such privileged adversaries have
not compromised the sending or receiving party, this protocol guarantees confidentiality and
integrity of the data being sent. In particular, this protocol prevents Man-in-the-Middle
network attackers from learning anything useful about the data. However, Man-in-the-
Middle attackers are able to spoof incoming messages with a custom payload to a target
state machine that appear to be coming from a state machine of their choice. Since PSec
state machines don’t di↵erentiate where events are coming from, this has the same result
as the attackers creating a new legitimate connection to a target state machine and sending
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that custom payload with the Untrusted Send protocol, and therefore doesn’t change the
guarantees we provide. Once again, network adversaries can do a denial-of-service attack
that cannot be prevented in any case.

3.3.8 Implementation Limitations

Currently, in order to correctly implement remote attestation, Intel SGX requires enclaves to
be registered with the Intel IAS Server beforehand. During the remote attestation verification
protocol, one of the signatures during the exchange needs to be verified by this server. In
our current implementation, PSec code written by the programmer is compiled as part of
the enclave which results in a di↵erent enclave measurement for di↵erent PSec programs.
As a result, there is no way to pre-register our enclaves with the IAS server. As a result, we
skip this registration and signature verification process for now, and leave automating the
registration process as future work. We additionally use Intel’s provided sample code for
implementing remote attestation and it is important to note that Intel states that this code
is not a production level implementation.

In our current implementation, our distributed hosts and the KPS can only handle one
network request at a time. Additionally, we have not implemented multi-threading in our
initial implementation and PSec programs proceed in an overall sequential fashion where
state machines execute in a predefined order and requests are sent after previous requests
complete. There is one e↵ective thread executing in the overall system at any given moment
in time.

Finally, in order to have optimal compatibility with the Intel’s internal SGX encryp-
tion/decryption libraries, we used the Intel’s sample_libcrypto for cryptographic opera-
tions outside the enclave. This is the default library provided in Intel’s sample applications,
and Intel notes that this library is not at production level. We have not substituted this
library for a di↵erent one yet.

3.4 Evaluation

We evaluate PSec in multiple dimensions. First, we give performance metrics on an initial
implementation of our language and system (located at https://github.com/ShivKushwah/
PSec). Then, we evaluate our system on 2 key examples to demonstrate the expressivity
of our language. Finally, we give formal proofs of confidentiality and integrity properties
provided by our system.

3.4.1 Performance

We present our performance results on an initial implementation of our system. We run our
experiments by deploying the distributed hosts on Azure Confidential Compute Instances
running on 3.7GHz Intel Xeon E-2176G Processors with SGX technology on Ubuntu 18.04.

https://github.com/ShivKushwah/PSec
https://github.com/ShivKushwah/PSec
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We chose to rent 2 Standard DC2s v2 instances (2 vcpus, 8 GiB memory) in the UK South
region and connected the instances to the same virtual network. All SGX-code is running
in HARDWARE mode rather than SIMULATION mode.

We present our initial results for di↵erent operations below. It is important to note
that all measurements take place with the sender and receiver machine on di↵erent Azure
hosts. For example, any send or create operation was measured by deploying di↵erent PSec
machines on our 2 Azure instance and measuring the operation across the machines. In the
Send cases, we sent the same payload across the di↵erent tests for consistency (in our case,
this was the tuple (1, "hello-world")). Additionally, the KPS is hosted on one of the 2
Azure instances.

We outline our performance results in Table 3.1 and Table 3.2, and display them pictori-
ally in Figure 3.4 and Figure 3.5. We took 5 samples for each configuration on May 25, 2020
and averaged the results. Trusted Create (SSM) involved an SSM creating another SSM.
Untrusted Create (SSM) involved a USM creating an SSM (since the new SSM contacts
the KPS to receive its own Capability, this takes approximately the same time as Trusted
Create). Untrusted Create (USM) involved a USM creating another USM. Untrusted Send
was measured from a USM to an SSM while Trusted Send was measured from an SSM to
another SSM. Finally, since sending messages over a previously established connection saves
overhead, we also measured subsequent message sending (denoted with an “again”).

Figure 3.4: Create Performance Graph
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Figure 3.5: Send Performance Graph

Create

Trusted (SSM) Untrusted (SSM) Untrusted (USM)

Average (in milliseconds) 3912 4524 376
Standard Deviation 482.9 898.8 193.5

Table 3.1: Create Performance Results

Send (Initial) Send (Again)

Trusted Untrusted Trusted Untrusted

Average (in milliseconds) 525 391 14 21
Standard Deviation 349.7 328.9 2.61 2.07

Table 3.2: Send Performance Results

3.4.2 Expressivity

We showcase the expressivity of PSec by programming 2 key examples.
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One Time Passcode Service Example

One Time Passcode (OTP) Services are often used in 2-Factor Authentication schemes where
“something you know” such as a password is combined with “something you have”, such as
a cell phone. Not all implementations of 2-Factor Authentication are secure in practice (for
example, attacks on schemes reliant on phone number verification have been demonstrated
in recent years). Many secure implementations rely on using tamper resistant hardware
tokens (such as the Feitian c100 OATH OTP Token) that establish a pre-shared secret with
the Authenticating server. Upon authentication request, the user supplies their regular
credentials as well as the OTP code computed by the hardware token (the code is a function
of the pre-shared secret and time duration since the secret was provisioned on the token).
Although these implementations provide stronger security guarantees, distributing these
hardware tokens is often inconvenient in practice. Recent schemes such as the one proposed
by Hoekstra et al. [16] replace these physical hardware tokens with Intel SGX (which is
already present in modern computers with Intel CPUs). Intel SGX provides similar security
guarantees because after an Intel SGX enclave is provisioned, attackers cannot easily conduct
remote attacks and actually need access to the same physical machine as the user to generate
valid OTP codes. We implement a version of an SGX-OTP service using the PSec language.

In order to test PSec, we implement a version of an SGX-OTP service, particularly a Bank
2-Factor Authentication example. In our system, we have a Bank Enclave SSM, a Client Web
Browser USM, and a Client Enclave SSM. The Bank Enclave SSM handles authentication
as well as creating and provisioning the Client Enclave SSM. The Client Web Browser USM
is used by the user to perform the authentication request, and the Client Enclave SSM is
used to generate the OTP codes. We deploy our system with the setup in Figure 3.6 where
we have the Bank Enclave SSM on one distributed host and the Client Web Browser USM
and Client Enclave SSM on another host.

We implement the system in PSec as in Figure 3.8 and Figure 3.9. The diagram’s key
is in Figure 3.7. There are 2 phases: the setup phase and the sign in phase. In the setup
phase, the Client Web Browser USM authenticates with the Bank Enclave SSM and requests
to enable 2-Factor. Upon successful authentication, the Bank Enclave SSM creates a Client
Enclave SSM on the same distributed host as the Client Web Browser USM. It then provisions
the newly created Client Enclave SSM with a master secret, thus ending the setup phase.
In the sign in phase, the Client Web Browser USM wants to authenticate with the Bank
Enclave SSM. In order to do so, it first sends a request to the Client Enclave SSM (located
on the same distributed host) with its credentials and receives an OTP code in return. It
is important to note that the Client Enclave SSM computes this OTP code as a function
of the input credential, so an OTP code is generated regardless of the correctness of the
input credential. After receiving this OTP code, the Client Web Browser USM forwards this
OTP code along with its credential to the Bank Enclave SSM. The Bank Enclave SSM sends
back either Auth Failure or Auth Success and the client is either successfully logged in or
redirected to attempt to login again.

Although we were able to write up this example in PSec and execute it successfully, we
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Figure 3.6: OTP System Diagram

outline some shortcomings below. First of all, although PSec enables us to create this secure
distributed system, it requires us to know all of the machines in the system beforehand.
There is no way to dynamically add new host machines to the system once it has started
executing (such as new Client host machines for potentially new customers). In addition to
this, in order to make this example more secure, the Bank Enclave SSM should only take local
messages from the Client Web Browser USM and block all messages from any other parties.
Since PSec state machines don’t distinguish where incoming Untrusted Events are coming
from, it is not possible to provide this protection in this version of our implementation. We
leave implementing these features as part of our future work in Section 4.1.

Figure 3.7: Diagram Key
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Figure 3.8: OTP PSec Setup Phase
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Figure 3.9: OTP PSec Sign In Phase
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Civitas Secure Voting Example

The Civitas Secure Voting System is an electronic voting system designed by Cornell Univer-
sity that claims to be the first voting system to provide coercion resistance, voter verifiability,
and be suitable for use in remote voting [5]. This system consists of an Election Supervisor
and Bulletin Board as well as Ballot Boxes, Registration Tellers, and Tabulation Tellers.
The Election Supervisor starts and stops the election, as well as performs other adminis-
trative tasks. The Ballot Boxes collect votes by storing them in tamper-evident logs and
submit them to Tabulation Tellers during the Vote Counting Phase. The Tabulation Tellers
eliminate duplicate votes and votes submitted with incorrect credentials, and the final vote
list is sent to the Bulletin Board, which displays the results of the election. The Civitas
design relies on utilizing various cryptography schemes to ensure that the various machines
in the system do not tamper with election data and correctly perform operations such as
vote duplication removal and vote counting.

We choose to implement a version of Civitas using PSec. Since in PSec we have the notion
of Secure State Machines that run on trusted hardware, we can achieve similar guarantees
with a streamlined implementation of the system. In our system, we have a Voter USM,
Secure Voting Enclave SSM, Secure Supervisor SSM, Ballot Box SSM, Append Only Log
SSM, Bulletin Board SSM, and Tabulation Teller SSM. We deploy the Voter USM and
Secure Voting Enclave SSM on the same distributed host, and the rest of the machines on a
di↵erent distributed host, as in Figure 3.10. We implement both the Voting phase and the
Vote Counting phase and choose to not implement the Voter Registration phase and assume
registration is done out-of-band (through a physical registration teller), as recommended by
the Civitas paper. We depict these two phases in Figure 3.11 and Figure 3.12. The key is
once again located at Figure 3.7.

Initially, the Secure Supervisor SSM creates all of the required SSMs to record and count
votes (the Ballot Box SSM, the Bulletin Board SSM, and the Tabulation Teller SSM). The
Voter USM sends a request to the Secure Supervisor SSM so that it can create and provision
a Secure Voting Enclave SSM on the same distributed host as the Voter USM. In the Voting
Phase, the Voter USM submits a (Vote, Credential) tuple to the Secure Voting Enclave SSM.
The Secure Voting Enclave SSM sends this vote and credential to the Ballot Box SSM, which
records this tuple by sending it to its Append Only Log SSM. In order to provide protections
against voter coercion, the submitted credential may be a fake credential and the vote will
be recorded for now, but discarded during the vote counting phase. The Vote Counting
phase is initiated by the Secure Supervisor SSM by notifying the Ballot Box SSM that the
voting period has ended. The Ballot Box SSM retrieves the vote log from the Append Only
Log SSM and forwards it to the Tabulation Teller SSM. The Tabulation Teller SSM removes
duplicate votes and eliminates votes with fake credentials, and forwards these results to the
Bulletin Board SSM. Here, the votes are tallied and the election winner as well as a list of
credentials that have been used to vote are stored. The Secure Voting Enclave SSM then
queries this Bulletin Board SSM to verify that its vote was counted and sends the election
winner to the Voter USM.
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Figure 3.10: Civitas System Diagram

Our implementation provides many of the same guarantees as the original Civitas paper.
However, we provide a weaker coercion resistance property. The original Civitas paper
assumes the existence of anonymous channels (channels where the adversary is unable to
snoop and cannot tell if any particular host machine has sent any data across). Since
we aren’t able to create these anonymous channels in PSec (we provide secure channels,
not necessarily anonymous channels which can be implemented through mesh networks like
TOR), we would not be able to provide these strong guarantees in any case. We guarantee a
weaker form of coercion resistance where the voter can supply a fake credential to a coercer
and still submit a vote with their real credentials. In this case, the coercer will submit a vote
with incorrect credentials and will not be able to determine any wrongdoing until election
results are finally released, at which point they will realize their vote was not counted. At
this point, it will be too late for the coercer to change the outcome of the election, but we
would ideally like to prevent the coercer from learning this information at any point of time.
We leave this extension of our Civitas implementation as future work. As stated before,
PSec doesn’t allow for dynamically adding new host machines to the system (such as new
Voter host machines), and we also leave this for future work.
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Figure 3.11: Civitas PSec Voting Phase
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Figure 3.12: Civitas PSec Vote Counting Phase
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3.4.3 Observational Determinism Security Proofs

In this section, we want to formally prove Theorem 1. Recall that observational determinism
[37, 7] is a property that, if satisfied, prevents adversaries from inferring sensitive information
from the execution of the program and corrupting trusted values in our system. The proof
can be divided into independent confidentiality and integrity components and using the
formalisms we have shown thus far, we can prove that PSec gives us these formal guarantees.

Note that this section contains necessary definitions, setup, and proof sketches. The full
confidentiality proof is included in the Appendix, in Section A.1, and the full integrity proof
is in Section A.2.

Configuration and Traces Definition

We will refer to the configuration of our system as Gk, which is equivalent to the (Sk, Bk, Ck)
mentioned earlier. A trace of our program (similar to a trace in P [9]) is a finite sequence

G0 a0
�! ...

an�1
���! Gn for n 2 N such that Gi ai

�! Gi+1 for each i 2 [0, n).

Proof of Confidentiality

Observational Equivalence Definition Observational (L) Equivalence is used to de-
note that 2 values appear the same to a low-level observer/adversary [37, 7]. For example, in
the case of 2 di↵erent H values, the observer will not be able to distinguish them (i.e. they
are observationally equivalent). However, the observer will be able to tell 2 di↵erent L val-
ues apart (i.e. these values are not observationally equivalent). We define the observational
equivalence rule for primitive values below:

v1 ⇡L v2 , � ` vi : ⌧ ^ (⌧ = L ) v1 = v2)

Generalizing this rule, we have the following,
For states:

S1 ⇡L S2 , uvals(S1) = uvals(S2)

For bu↵ers:

B1 ⇡L B2 , filter(B1, �(e1, v1). e1 2 EU) = filter(B2, �(e2, v2). e2 2 EU)

For machine instance maps:

C1 ⇡L C2 , 8m 2 M. C1[m] = C2[m]

For configurations:

G1 ⇡L G2 , (S1 ⇡L S2) ^ (B1 ⇡L B2) ^ (C1 ⇡L C2)

For traces:
⇡1 ⇡L ⇡2 , 8i 2 [0, n). Gi

1 ⇡L Gi
2
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Observation Function Definition We define an Observation function (ObsL) that maps
transitions in our system to labels that indicate which information is leaked to our adversary.
For example, in an Untrusted Send transition, ObsL(Gt, Gt+1) = < (ms, ns), (mr, nr), e, v >
since the sending machine identity, receiving machine identity, and message payload are
assumed to be inferable by the adversary during this transition. We specify all of the labels
associated with transitions from Section 3.2.2 to Section 3.2.2.

Confidentiality Proof Sketch The purpose of this proof is show that PSec prevents ad-
versaries from inferring sensitive information from the execution of the program. A program
satisfies the confidentiality property of observational determinism if for every pair of traces
of the system, given that the initial configurations are observationally equivalent and the
untrusted operations performed at every step are identical, then the traces are both obser-
vationally equivalent. In our case, we will be using our Observation function as a way to
measure the operations performed at each step. Assume that P is the set of all possible PSec
traces that are derived from programs that have passed our type checker. Stated formally,
we need to prove the following for our system:

8⇡1, ⇡2 2 P , n 2 N, ⇡1 = G0
1

a0
�! ...

an�1
���! Gn

1 , ⇡2 = G0
2

a0
�! ...

an�1
���! Gn

2 .

(G0
1 ⇡L G0

2) ^ (ObsL(⇡1) = ObsL(⇡2)) ) ⇡1 ⇡L ⇡2

We outline the entirety of this proof in the Appendix, in Section A.1. In terms of a brief
proof sketch, we start with a proof by induction.

Base Case G0
1 ⇡L G0

2

Inductive Case Assume that there exists a k such that Gk
1 ⇡L Gk

2

Inductive Step We need to prove that ifObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2), thenGk+1
1 ⇡L

Gk+1
2. There are multiple places where this condition holds, and we can continue via a proof

by cases. We outline the remainder of this proof in Section A.1.

Proof of Integrity

Trusted Equivalence Definition In direct contrast to Observational Equivalence, Trusted
(H) Equivalence is concerned with the equivalence of trusted values in our system. We define
the trusted equivalence rule for primitive values below:

v1 ⇡H v2 , � ` vi : ⌧ ^ (⌧ = H ) v1 = v2)

Generalizing this rule, we have the following,
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For states:
S1 ⇡H S2 , tvals(S1) = tvals(S2)

For bu↵ers:

B1 ⇡H B2 , filter(B1, �(e1, v1). e1 2 ET ) = filter(B2, �(e2, v2). e2 2 ET )

For machine instance maps:

C1 ⇡H C2 , 8m 2 M. C1[m] = C2[m]

For configurations:

G1 ⇡H G2 , (S1 ⇡H S2) ^ (B1 ⇡H B2) ^ (C1 ⇡H C2)

For traces:
⇡1 ⇡H ⇡2 , 8i 2 [0, n). Gi

1 ⇡H Gi
2

Trusted Observation Function Definition We define a Trusted Observation function
(ObsH) that can be invoked by trusted parties to map trusted transitions in our system
to labels that reveal changes in trusted state. This function is explicitly only defined for
trusted transitions since are the only transitions that can modify trusted state. We outline
the mappings below:

1. Trusted Create: ObsH(Gt, Gt+1) = < (mp, np), (mc, nc) >

2. Trusted Send: ObsH(Gt, Gt+1) = < (ms, ns), (mr, nr), e, v >

3. Local Transition: ObsH(Gt, Gt+1) = < tvals(s0) >

4. Dequeue Event: ObsH(Gt, Gt+1) = < tvals(s0), e, (vje 2 ET ) >

Integrity Proof Sketch The purpose of this proof is to show that PSec preserves the
integrity of trusted values. In essence, we need to show that adversaries are not able to
corrupt trusted values with malicious payloads in our system. Assume that P is the set of
all possible PSec traces that are derived from programs that have passed our type checker.
Stated formally, we need to prove the following for our system:

8⇡1, ⇡2 2 P , n 2 N, ⇡1 = G0
1

a0
�! ...

an�1
���! Gn

1 , ⇡2 = G0
2

a0
�! ...

an�1
���! Gn

2 .

(G0
1 ⇡H G0

2) ^ (ObsH(⇡1) = ObsH(⇡2)) ) ⇡1 ⇡H ⇡2

We outline the entirety of this proof in the Appendix, in Section A.2. In terms of a brief
proof sketch, we start with a proof by induction.

Base Case G0
1 ⇡H G0

2
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Inductive Case Assume that there exists a k such that Gk
1 ⇡H Gk

2

Inductive Step We need to prove that if ObsH(Gk
1, G

k+1
1) = ObsH(Gk

2, G
k+1

2), then
Gk+1

1 ⇡H Gk+1
2. There are multiple places where this condition holds, and we can con-

tinue via a proof by cases. We outline the remainder of this proof in Section A.2.
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Chapter 4

Conclusion

In this thesis, we presented PSec, a programming language for secure distributed systems. We
augmented the P programming language and added various language constructs to abstract
various security protocols from the programmer and enable them to write high-level code for
these systems. We designed our language to incorporate both Secure State Machines and
Untrusted State Machines and created a trust designation mechanism. We finally augmented
our language with an Information Flow Control type system to prevent sensitive data from
being inadvertently leaked. We presented initial performance results of an implementation
of our system and showcased the expressivity of our language by implementing a secure One
Time Passcode Service and a version of the Civitas Secure Voting system. We also provided
a formal proof formalizing the security guarantees of our system.

4.1 Future Work

We outlined the limitations of our language implementation in Section 3.3.8 and leave it for
future work. We also would like to implement an additional layer of message integrity and
confidentiality at the host machine level. As in the Untrusted Create case, these messages
are sent across the network in plaintext and easy to modify by Man-In-The-Middle attackers.
A potential idea to combat this problem would be to have IP address lookups at the KPS
return the network address as well as the public key for that distributed host machine.
In this case, network requests between host machines would have an additional layer of
encryption and integrity (layering on top of encryption based on the receiving state machine’s
public Identity key). Another item mentioned previously is that PSec doesn’t allow us to
dynamically add new host machines to the system once it has started executing. Some
changes we would need to make to enable this is to allow for the registration of new host
machines in the KPS. We would also need to create PSec constructs that allow new host
machines to query the KPS for the IP addresses/ports of all existing machines in order
to automatically generate/retrieve PSec handles as well as constructs to provision a new
PSec state machine on a distributed host of choice. In addition to this, there are some
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potential use cases where accurately determining the origin of a particular PSec event for
an Untrusted Send is important (outlined in the OTP example in Section 3.4.2). This will
require adding new language constructs and modifying the Untrusted Send protocol. We
have not implemented these features yet and leave this as potential future work.

Another future direction is to more directly verify security properties of PSec programs.
This can be accomplished by translating these programs directly into a formal modeling and
verification language such as UCLID5 [27] (located at https://github.com/uclid-org/
uclid). If an automatic UCLID5 translation is achieved, we can more readily verify confi-
dentiality and integrity properties of our PSec programs.

A more ambitious future direction for the PSec language would be to completely abstract
the concept of Secure State Machines from the programmer. In this approach, programmers
would simply designate certain variables as secure variables, and rest assured that the con-
tents of these variables would not be stored in untrusted memory. The compiler would
automatically infer which parts of the code are sensitive based on the aforementioned des-
ignation, and run those selective parts within enclave memory. If secure variables are sent
from one state machine to another, they would actually be sent from the enclave from the
first system to the enclave of the second system, ensuring they never leave trusted memory.
Regular data would be stored outside the enclave on the host machines as before. This
approach would enable an even higher of abstraction from the programmer and we leave this
as a potential avenue of future work.

https://github.com/uclid-org/uclid
https://github.com/uclid-org/uclid
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Appendix A

Additional

A.1 PSec Confidentiality Proof

We need to prove the following for our system:

8⇡1, ⇡2 2 P , n 2 N, ⇡1 = G0
1

a0
�! ...

an�1
���! Gn

1 , ⇡2 = G0
2

a0
�! ...

an�1
���! Gn

2 .

(G0
1 ⇡L G0

2) ^ (ObsL(⇡1) = ObsL(⇡2)) ) ⇡1 ⇡L ⇡2

We can prove this via induction and then a proof by cases.

Base Case G0
1 ⇡L G0

2

Inductive Case Assume that there exists a k such that Gk
1 ⇡L Gk

2

Inductive Step We need to prove that ifObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2), thenGk+1
1 ⇡L

Gk+1
2. There are multiple places where this condition holds, and we can continue via a proof

by cases:

1. Create Transitions:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < (mp, np), (mc, nc) >

• For both Trusted Create and Untrusted Create transitions, the parent machine
identity and receiving machine identity is assumed to be observable.

• Therefore, for the Observation function for the two configurations to be equivalent,
these must be identical in the corresponding transitions.

• Since PSec has deterministic transitions, this would yield the same e↵ect on both
Gk

1 and Gk
2 (Sk and Ck change in the same way for both configurations while Bk

remains the same).

• Therefore, given that Gk
1 ⇡L Gk

2, then Gk+1
1 ⇡L Gk+1

2 in this case.
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2. Trusted Send Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < (ms, ns), (mr, nr), e >

• On a Trusted Send Transition, the sending machine identity, receiving machine
identity, and event type is assumed to be observable.

• Therefore, for the Observation function for the two configurations to be equivalent,
these must be identical in the corresponding transitions.

• The non-observable di↵erence between the two transitions is the message payload
in this case. Since the message payload must consist of secure, trusted data, the
receiving machine adds the payload to its trusted local state, thus changing its
tvals. After this transition takes place, uvals(Gk+1

1) = uvals(Gk+1
2) regardless of

the message payload sent in the 2 transitions. This means Sk+1
1 ⇡L Sk+1

2.

• Since the event that is enqueued in the bu↵er of the receiving machine is a trusted
event, Bk+1

1 ⇡L Bk+1
2. C

k remains unchanged for both configurations.

• Therefore, given that Gk
1 ⇡L Gk

2, then Gk+1
1 ⇡L Gk+1

2 in this case.

3. Untrusted Send Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < (ms, ns), (mr, nr), e, v >

• For a Untrusted Send Transition, the sending machine identity, receiving machine
identity, event type, and message payload is assumed to be observable.

• Therefore, for the Observation function for the two configurations to be equivalent,
these must be identical in the corresponding transitions.

• Since PSec has deterministic transitions, this would yield the same e↵ect on both
Gk

1 and Gk
2 (Sk and Bk change in the same way for both configurations while Ck

remains unchanged).

• Therefore, given that Gk
1 ⇡L Gk

2, then Gk+1
1 ⇡L Gk+1

2 in this case.

4. Local Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < uvals(s0) >

• For a Local Transition, the untrusted values stored in the local state of the machine
are assumed to be observable (since they can be leaked through side channels).

• Therefore, for the Observation function for the two configurations to be equivalent,
these must be identical in the corresponding transitions.

• For USMs, since the entirety of their state is untrusted, this would mean that
the USMs must undergo the exact same transition in both configurations. For
SSMs, this only applies if they only modify their untrusted state in this transition,
which would additionally imply that the same transition must take place in both
configurations. Since PSec has deterministic transitions, this would yield the same
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e↵ect on both Gk
1 and Gk

2 (Sk changes in the same way for both configurations
while Bk and Ck remain unchanged).

• For SSMs, the non-observable di↵erence between the two transitions would be
changes in trusted state. This means that the SSM may modify its tvals. After
this transition takes place, uvals(Gk+1

1) = uvals(Gk+1
2) since these values are not

modified, so Sk+1
1 ⇡L Sk+1

2. In this case, Bk and Ck remain unchanged.

• Therefore, given that Gk
1 ⇡L Gk

2, then Gk+1
1 ⇡L Gk+1

2 in this case.

5. Dequeue Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < uvals(s0), e, (vje 2 EU) >

• For a Dequeue Transition, the untrusted values stored in the local state as well
as the newly dequeued value (if it is non-sensitive) of the machine are assumed
to be observable.

• Therefore, for the Observation function for the two configurations to be equivalent,
these must be identical in the corresponding transitions.

• For USMs, since the entirety of their state is untrusted and they can only receive
and dequeue Untrusted Events, this would mean that the USMs must undergo
the exact same transition in both configurations. For SSMs, this only applies
if they are dequeuing an Untrusted Event, which would additionally mean that
the transition must be the same across the 2 configurations. Since PSec has
deterministic transitions, this would yield the same e↵ect on both Gk

1 and Gk
2

(Sk and Bk change in the same way for both configurations while Ck remains
unchanged).

• For SSMs, the non-observable di↵erence between the two transitions would be
the dequeuing of Trusted Events. The SSM may receive sensitive data through
the Trusted Event, thus modifying its trusted state and appending values to its
tvals. After this transition takes place, uvals(Gk+1

1) = uvals(Gk+1
2) regardless of

the Trusted Event type and payload sent in the 2 transitions, so Sk+1
1 ⇡L Sk+1

2.
Since the Untrusted Events in the bu↵er are not modified in both configurations,
Bk+1

1 ⇡L Bk+1
2. Ck in this case remains unchanged.

• Therefore, given that Gk
1 ⇡L Gk

2, then Gk+1
1 ⇡L Gk+1

2 in this case.

Since we have proven this for all cases, we have proven our initial statement through
induction and PSec satisfies the confidentiality property of observational determinism.

A.2 PSec Integrity Proof

We need to prove the following for our system:
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8⇡1, ⇡2 2 P , n 2 N, ⇡1 = G0
1

a0
�! ...

an�1
���! Gn

1 , ⇡2 = G0
2

a0
�! ...

an�1
���! Gn

2 .

(G0
1 ⇡H G0

2) ^ (ObsH(⇡1) = ObsH(⇡2)) ) ⇡1 ⇡H ⇡2

We can prove this via induction and then a proof by cases.

Base Case G0
1 ⇡H G0

2

Inductive Case Assume that there exists a k such that Gk
1 ⇡H Gk

2

Inductive Step We need to prove that ifObsH(Gk
1, G

k+1
1) = ObsH(Gk

2, G
k+1

2), thenGk+1
1 ⇡H

Gk+1
2. We can continue via a proof by cases over the various transitions:

1. Trusted Create Transition:

• ObsH(Gk
1, G

k+1
1) = ObsH(Gk

2, G
k+1

2) = < (mp, np), (mc, nc) >

• The parent machine identity and receiving machine identity must be identical in
the corresponding transitions.

• Since PSec has deterministic transitions, this would yield the same e↵ect on both
Gk

1 and Gk
2 (Sk and Ck change in the same way for both configurations while Bk

remains the same).

• Therefore, given that Gk
1 ⇡H Gk

2, then Gk+1
1 ⇡H Gk+1

2 in this case.

2. Trusted Send Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < (ms, ns), (mr, nr), e, v >

• The sending machine identity, receiving machine identity, event type, and event
payload must be identical in the corresponding transitions.

• Since PSec has deterministic transitions, this would yield the same e↵ect on both
Gk

1 and Gk
2 (Sk and Bk change in the same way for both configurations while Ck

remains unchanged).

• Therefore, given that Gk
1 ⇡H Gk

2, then Gk+1
1 ⇡H Gk+1

2 in this case.

3. Local Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < tvals(s0) >

• In a Local Transition, the state machine may change either its trusted local state
or its untrusted local state.
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• If trusted local state is changed, according to the condition above, it must change
in the same way for both configurations. This implies that the same transition
must occur in both configurations. Since PSec has deterministic transitions, this
would yield the same e↵ect on both Gk

1 and Gk
2 (Sk changes in the same way for

both configurations while Bk and Ck remain unchanged).

• If untrusted local state is changed, the state machines may di↵er in how this state
is modified across the two configurations. This means that the state machines may
modify their uvals di↵erently from each other. However, after this transition
takes place, tvals(Gk+1

1) = tvals(Gk+1
2) since these values are not modified, so

Sk+1
1 ⇡L Sk+1

2. In this case, Bk and Ck remain unchanged.

• Therefore, given that Gk
1 ⇡H Gk

2, then Gk+1
1 ⇡H Gk+1

2 in this case.

4. Dequeue Transition:

• ObsL(Gk
1, G

k+1
1) = ObsL(Gk

2, G
k+1

2) = < tvals(s0), e, (vje 2 ET ) >

• In a Dequeue Transition, an Untrusted Event or a Trusted Event can be dequeued
from the input bu↵er.

• If a Trusted Event is dequeued, according to the condition above, the following
trusted states of the state machines must be identical across the 2 configurations.
Since Trusted Events can only contain trusted payloads, the trusted payloads
must be identical which additionally means that the transition must be the same
across the 2 configurations. Since PSec has deterministic transitions, this would
yield the same e↵ect on both Gk

1 and Gk
2 (Sk and Bk change in the same way for

both configurations while Ck remains unchanged).

• If an Untrusted Event is dequeued, the state machines may di↵er in their following
untrusted states. Since Untrusted Events contain untrusted payloads, the state
machines may receive additional untrusted state and append values to their uvals,
which don’t need to be identical across the 2 configurations. However, after this
transition takes place, tvals(Gk+1

1) = tvals(Gk+1
2) regardless of the Untrusted

Event type and untrusted payload sent in the 2 transitions, so Sk+1
1 ⇡H Sk+1

2.
Since the Trusted Events in the bu↵er are not modified in both configurations,
Bk+1

1 ⇡H Bk+1
2. Ck in this case remains unchanged.

• Therefore, given that Gk
1 ⇡H Gk

2, then Gk+1
1 ⇡H Gk+1

2 in this case.

Since we have proven this for all cases, we have proven our initial statement through
induction and PSec satisfies the integrity property of observational determinism.

A.3 PSec Sample Annotated Code

The following PSec sample code contains comments in regards to information flow analysis
type checking.
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1 trusted event Ping;
2
3 secure_machine ExampleMachine {
4 var ssn : secure_int;
5 var insecure_int : int;
6 var s_int : secure_int;
7 var s_handle : secure_machine_handle;
8 var handle : machine_handle;
9

10 start state Initial {
11 entry {
12 ssn = Endorse(6123456) as secure_int; // Valid
13
14 if (ssn == (Endorse(6123456) as secure_int)) { // Valid
15 s_int = Endorse(7) as secure_int;
16 } else {
17 s_int = Endorse(8) as secure_int;
18 }
19
20 s_handle = this; // Valid
21 handle = Declassify(this) as machine_handle;
22
23 s_int = s_int + (Endorse(1) as secure_int); // Valid
24 insecure_int = 10;
25 s_int = Endorse(insecure_int) as secure_int;
26
27 while (insecure_int < 15) { // Valid
28 s_int = s_int + (Endorse(1) as secure_int);
29 insecure_int = insecure_int + 1;
30 }
31
32 while (s_int < (Endorse(20) as secure_int)) { // Valid
33 s_int = s_int + (Endorse(1) as secure_int);
34 send s_handle, Ping;
35 }
36
37 // Invalid Code Below
38
39 // Invalid because value of insecure_int after this if statement
40 // will leak whether ssn is 6123456 or not
41 // if (ssn == (Endorse(6123456) as secure_int)) {
42 // insecure_int = 7;
43 // } else {
44 // insecure_int = 8;
45 // }
46
47 // Invalid because value of ssn will be leaked by assigning it to a
48 // non-secret variable
49 // insecure_int = ssn;
50
51 // Invalid because value of s_int will be compromised by looking at value
52 // of insecure_int after execution of while statement
53 // while (s_int < (Endorse(15) as secure_int)) {
54 // s_int = s_int + (Endorse(1) as secure_int);
55 // insecure_int = insecure_int + 1;
56 // }
57 }
58 }
59 }
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