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Abstract

This report introduces a new dataset TranSketch, which is a collection of
20,032 tree sketch pairs, each accompanied with a natural language descrip-
tion describing the instructions needed to transform one sketch to the other.
To provide more options for exploration, for each sketch, we also include a
latent representation produced by the encoder of a Sketch-RNN model. The
TranSketch dataset provides fine-grain transformation between stroke-based
sketch pairs using stylistic content text descriptions. Our statistical analysis
suggests tree component-level transformation to be the most promising di-
rection for investigation, but there are certainly more to be explored for this
dataset.
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1. Introduction

Sketching is a natural way for people to express artistic feelings and con-
vey abstract information. In recent years, sketch-related deep-learning re-
search, such as sketch generation, has gained popularity. The interaction be-
tween text and sketch is also increasingly drawing people’s attention. Sketch
datasets such as SketchyScene[7] and CoDraw[3] were widely used in those
researches. However, if we want to specifically explore sketch transformation
based on stylistic content text descriptions, such datasets are not enough.

This report presents a new dataset TranSketch to address the challenge.
TranSketch provides a fine-grain transformation between stroke-based sketches
using natural language. TranSketch contains 20,032 responses collected from
Amazon Mechanical Turk. Each response in the dataset consists of an orig-
inal sketch, a latent representation of the original sketch, a target sketch, a
latent representation of the target sketch, and a user-provided description
that describes the instructions needed to transform the original sketch to the
target sketch. The latent representation is a latent vector generated by the
encoder of a Sketch-RNN model, which is a Sequence-to-Sequence Variational
Autoencoder (VAE). All sketches are from the Quick, Draw! dataset[1]. Cur-
rently, our dataset only contains sketches from the tree category, but the same
data collection process can be performed for other categories.

Our dataset will allow people to explore and develop applications related
to language descriptions that correlate and translate between sketches. Some
examples include transforming sketches based on language input or predict-
ing transformation instructions based on two given sketches.
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2. Related Work

Datasets have played a critical role throughout the evolution of sketch-related
machine-learning research. They not only provide means for training and
evaluating models, but also inspire researchers to explore in more creative
and challenging directions. This section attempts to address a few datasets
targeting three major sketch-related research directions, which are sketch
labeling, sketch-based image retrieval, and collaborative sketching.

2.1 Sketch labeling

The task of sketch labeling requires a sketch to be labeled to a category, such
as tree, key, airplane, and so on, or to a captioning that describes at the
object or scene level. The Quick, Draw![2] dataset and the SketchyScene[7]
dataset are examples of sketch categorization and sketch captioning respec-
tively.

The Quick, Draw! dataset contains a collection of 50 million drawings, di-
vided into 345 categories. All sketches were created by human users in a
game in 20 seconds. In contrast with most of the existing image datasets
that store images as pixels, the Quick, Draw! Dataset represents a sketch as
a set of pen stroke actions. Its great amount of doodling data provides many
opportunities for researchers for developing and studying sketch-related ma-
chine learning techniques.

SketchyScene is a large-scale dataset consisting of both object- and scene-level
data with rich annotations. It contains more than 29,000 scene-level sketches,
7,000 pairs of scene templates and photos, and 11,000 object sketches, accom-
panied by ground-truth semantic and instance masks. The highly scalable
and extensible nature of the dataset allows researchers to investigate in the
direction of scene composition and semantic segmentation of scene sketches.
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2.2 Sketch-based Image Retrieval

Sketch-based image retrieval is a frequently studied computer vision problem
with a long history. The basic task usually involves users providing a simple
sketch with minimal user-defined features and asking the computer to return
similar images. Datasets such as the Sketchy database[6] are developed pri-
marily to assist research in fine-grained image retrieval.

The Sketchy database contains a large collection of sketch and image pairs
from 125 categories. Crowd workers were asked to sketch according to partic-
ular photographic objects, and 75,471 sketches were produced out of 12,500
objects. The Sketchy dataset provides a fine-grained association between the
sketch details and photographic object details. The nature of the dataset
allows training for cross-domain representation so that the image retrieval
task can go beyond category recognition and instead focus on smaller fea-
tures such as pose, parts, and sub-type.

2.3 Mixed Initiative Sketching

The task of mixed initiative sketching focuses on building AI agents or ML
systems that can assist humans in editing and completing a sketch. Datasets
addressing such a task must contain means of human-computer interaction,
which are usually natural language descriptions, and the progression of the
sketch under the means. The CoDraw dataset[3] is one of the examples.

The CoDraw dataset was collected from a game involving two players: a
Teller and a Drawer. In the beginning, the Teller is given an abstract scene
with multiple clip art pieces while the Drawer is given a blank canvas with
available clip art pieces. The goal of the game is to let the Drawer reconstruct
the scene solely based on the communication with the Teller. Teller was given
the chance to ‘peek’ once at Drawer’s canvas during each game. The CoDraw
dataset consists of 9993 sessions of conversation records in natural language,
scene modifications, and ground-truth scenes.

Our dataset falls under the category of mixed initiative sketching. The main
problem we address is the transformation of stroke-based sketches based on
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stylistic language descriptions. However, our dataset also opens up new op-
portunities for sketch and natural language understanding and synthesis.
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3. Data Collection

3.1 Sketch

All sketches in our dataset come from the tree category of the Quick, Draw!
Dataset. The tree category contains 70k training samples, 2.5k validation,
and 2.5k test samples. We used the 70k training samples to form 35k pairs,
displayed around 21k for text collection, and eventually collected 20032 re-
sponses. Therefore, our dataset contains 20032 sketch pairs, and every sketch
is unique.

We represent every sketch as a set of pen stroke actions, and each sketch stroke
was converted to and stored with the Stroke-5 format (�x, �y, p1, p2, p3).
�x and �y are the o↵set distance in the x and y directions of the pen from
the previous point. p1, p2, and p3 represent a binary one-hot vector of 3
possible pen states. If p1 is set to 1, indicating the pen is touching the pa-
per, and a line will be drawn from the current point to the next point. If
p2 is set to 1, the pen is lifted from the paper, and no line will be drawn
from the current point to the next point. Finally, if p3 is set to 1, the draw-
ing is finished, and no future points, including the current one, will be drawn.

3.2 Text descriptions

We created an application to conduct sketch comparisons and collect text
descriptions. In each comparison, we displayed a randomly sampled tree
sketch pair to a participant. All sketches were scaled individually to have
relatively the same size during display. Then we asked the participant to
give instructions needed to transform the sketch on the left to the sketch
on the right in English (eg. “Make the trunk of the tree taller and leaves
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rounder”). The application was put on Amazon Mechanical Turk to collect
crowdsourced data.

Figure 3.1: Our data collection interface on Amazon Mechanical Turk: At each turn, two
tree sketches are displayed, and participants are required to describe the changes required
to convert the sketch on the left to the sketch on the right.
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4. Dataset Statistics and
Analysis

In this section, we provide statistical insights and analysis for our dataset.
We hope the statistics and analysis from di↵erent perspectives can shed some
light on the potential problems to be explored.

4.1 Sketch Statistics

Our dataset contains 40064 sketches. For every stroke, the first two elements
are the o↵set distance from the previous point. The o↵set values are generally
very small, with an average of 0.0012, and a standard deviation of 0.624.

(a) (b)

Figure 4.1: (a) The distribution of the number of strokes for all sketches. (b) The distribution
of the stroke di↵erence between the original sketch and the target sketch in each pair.

Sketches in our dataset have various strokes, but to make the format uniform,
sketches were padded to the length of 176 with the padding stroke [0, 0, 0,
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(a)

(b)

Figure 4.2: (a) 10 sketches with 35 strokes. (b) 10 sketches with 176 strokes.

(a) (b)

Figure 4.3: (a) Sketch pairs with the most stroke di↵erences. (b) Sketch pairs with the least
stroke di↵erences.

0, 1]. We plot the number of strokes for all sketches in Figure 4.1(a) and
show the distribution. The average strokes for a sketch is 69.48 strokes, with
a minimum of 35 and a maximum of 176 strokes. Most of the sketches have
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strokes between 35 and 80. Figure 4.2 (a) draws out 10 sketches with 35
strokes while Figure 4.2 (b) with 176 strokes. The number of strokes do not
a↵ect the quality of a sketch, but sketches with more strokes generally look
more complex, detailed, and messy. We plot out the stroke di↵erence between
the original sketch and the target sketch in each pair in Figure 4.1(b). The
distribution is skewed to the right. Most of the pairs have relatively similar
numbers of strokes. However, as shown in Figure 4.3, larger stroke number
di↵erences do not indicate more di↵erences between the sketches nor more
di↵erences between text descriptions.

4.2 Latent Vector Statistics

To provide people the option to explore sketches in the latent space, ev-
ery sketch in the dataset has a latent representation. The latent vectors
were generated using the Sketch-RNN model proposed in the paper A Neural

Representation of Sketch Drawing [1]. Sketch-RNN is a recurrent neural net-
work (RNN) that can construct stroke-based drawings of common objects.
Its architecture is a Sequence-to-Sequence Variational Autoencoder (VAE).
We trained a Sketch-RNN model on the tree category of the Quick, Draw!
dataset. Then, we fed each sketch to the encoder to obtain its latent repre-
sentation.

Figure 4.4: Schematic diagram of Sketch-Rnn [1]

Every latent vector has 128 dimensions. All latent vector elements have an
average value of 0.00099 and a standard deviation of 0.993. In Figure 4.5(a),
we plot out the distance in latent space (z1 - z2) between the latent vector
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(a) (b)

Figure 4.5: (a) The distribution of the distance between the latent vector of the original
sketch z1 and the latent vector of the target sketch z2 in each pair. (b) The distance in
latent space vs. the number of words in text description.

Figure 4.6: Sketch pairs with di↵erent latent distances

of the original sketch z1 and the latent vector of the target sketch z2. The
distribution of the distance follows the shape of a Guassian distribution, and
most pairs have a distance between 14.5 - 17.5. As shown in Figure 4.6, a
bigger distance in latent space does not imply a larger di↵erence in sketch.
Figure 4.5(b) plots out the relationship between the distance in latent space
and the number of word in text description. The graph has an interesting bell
shape, which can be further investigated. Distance in latent space may cor-
respond to other interesting details, which are left for researchers to explore
in the future.
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4.3 Text Description Statistics

Text description is the main component that di↵erentiates our datasets from
other common sketch datasets. Each text description provides the instruc-
tions to transform an original sketch to a target sketch. Many of the descrip-
tions tend to focus on part-level transformation, such as “Make the trunk
thinner” and “Make the leaves smaller”. They usually encompass the most
salient parts of the change, like “make the truck more of a triangle and remove
swirls from leaves”, but some also provide detailed instructions for drawing,
as in “Draw a line from the leafs to the top of the page and then mark down
and to the left for an 1/8 of an inch”.

Figure 4.7: The distribution of the length (word counts) of all descriptions

Figure 4.7 shows the distribution of the length (word counts) of all descrip-
tions, excluding 8 outliers that have more than 100 words. The average word
count for a description is 13.29 words, with a minimum of 1 and a maxi-
mum of 205 words. Most of the descriptions have a length between 1 and
20 words. In Figure 4.8(a), we plot the most common words in all descrip-
tions, excluding all stopwords. Tree components such as “trunk”, “leaves”,
“top”, “bottom” and “branches” and transformative words such as “wider”,
“rounder”, “smaller” and “taller” occur very frequently. “Trunk” seems to be
the most popular tree component people paid attention to. We also plot out
the most common bigram phrases in Figure 4.8(b). Again, we excluded all
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(a) (b)

Figure 4.8: (a) A plot of the most common words in text descriptions, excluding all stop-
words. (b) A plot of the most common bigram phrases, excluding all stopwords.

stopwords. Phases that describe component change such as “leaves rounder”,
“leaves smaller”, “trunk taller”, and “trunk thinner” are most frequently
used. Phases that target a tree part like “tree trunk”, “tree top” and “leaf
area” are often mentioned as well.

4.4 Noise

Given that we could not easily monitor the user inputs on Amazon Mechan-
ical Turk, the text description data may contain a few invalid answers. We
strongly suggest applying filters to the responses before doing any training.
The most common invalid user inputs we encountered were “left”, “right”,
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“tree”, “none”, “neutral”, “good” and “bad”. Thus, people should be cau-
tious about the very short answers. Some of the “Make the trunk of the tree
taller and the leaves rounder”, as we observed, are also invalid as this sen-
tence is used as an example for user input. For each assignment on AMT, a
worker was asked to complete 10 comparisons. Therefore, if the same phrase
appears more than 10 times, people may also want to pay attention to its
validity.

Compared to text descriptions, sketches should be more clean as they were
collected from the Quick, Draw! Dataset. We eyeballed all the sketches and
filtered out inappropriate and ugly ones before showing on AMT. However,
we may still miss some low-quality ones.
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5. Conclusion and
Discussion

We introduce a new dataset for stroke-based sketch transformation based on
stylistic content text description. With over 20k responses, the dataset should
provide rich contextual information for sketch transformation. Data statistics
suggests tree component-level transformation may be the most promising di-
rection to be explored while line-level transformation may also be worth a try.

There are also several other potential directions on our datasets. Instead
of generating new sketches based on some original sketches and instructions,
we can investigate the prediction of instructions based on sketches. Besides,
we can collect data for other categories utilizing the same collection proce-
dure and explore cross-category transformation. As suggested in A Neural
Representation of Sketch Drawing, by interpolating between latent vectors
from two di↵erent categories, one sketch can be morphed into another one.
Similar attempt can be used for our dataset.

After the bibliography, we provide a report of a class project, which is an
explorative attempt on building models that transform sketches based on
text descriptions using this dataset. It shows the potential of the dataset and
what it can achieve.
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ABSTRACT
In our work, we addressed a completely new task that com-
bines generative modeling of sketches and the interaction
between text and sketches. We intend to explore language
descriptions that correlate and translate between sketches and
build an ML system that transforms sketched objects based
on stylistic and content text descriptions, such as ‘Make the
branch of a tree taller’. We developed four methods with differ-
ent neural network architectures: latent vector transformation,
sketch to sketch transformation using CNN encoder - CNN
decoder, CNN encoder - RNN decoder, and RNN encoder -
RNN decoder. With all models manually evaluated by volun-
teers and an inception model, we conclude the second version
of RNN encoder - RNN decoder achieves the best result.

INTRODUCTION
In recent years, generation of sketch-based drawing has
increasingly drawn people’s attention. People proposed
different generative modeling techniques, such as Variational
Autoencoder (VAE), Generative Adversarial Network (GAN),
and Autoregressive (AR) models to generate images. More
specifically, in [4], the authors introduced Sketch-RNN, a
model that is tailored to generating sketches of common
objects.

The interaction between text and images have been studied
extensively. Image captioning, which is the process of
generating textual description of images, has been studied
for a long time, and the state-of-the-art model uses CNN
to extract features from image and RNN to generate the
description. The reverse of image captioning, which is
the process of generating images from natural language
descriptions, has also been studied in recent years. In [10], the
authors proposed a model to generate images conditioned on
captions.

One question still remains: Can we teach machines to trans-
form sketches like humans? In our research, the main task
we are exploring is that given a human drawn sketch and a
short piece of text, how to let machines transform the sketch to
another sketch based on the textual description. For instance,
if we are given a short tree and a piece of text saying “grow
taller”, we want to transform the tree to a taller one. We de-
veloped four different methods using neural networks: latent
vector transformation, sketch to sketch transformation using
CNN encoder - CNN decoder, CNN encoder - RNN decoder,
and RNN encoder - RNN decoder.

RELATED WORK
In the paper A Neural Representation of Sketch Drawing,
Ha and Eck proposed Sketch-RNN [4] which primarily
focused on constructing stroke based drawings of common
objects. Unlike other previous works that learns from sketch
images [9] or uses sampling to generate blurry pixels [2],
Sketch-RNN is a neural network based autoencoder that
generates stroke sequences. The quality of Sketch-RNN
generation inspired us to look into both its latent space and
model structure.

Based on findings from Sketch-RNN, researchers have
explored sketch generation with extra human inputs as in
Sketchforme [7] and sketch translation into image outputs
as in SketchyGAN [3]. These recent successes show that
models are capable of both decoding sketch strokes from data
beyond the stroke sequences, and encoding sketches to inform
the generation of other types of data. In our attempts, we
experimented with text sequences, image pixels, in addition to
sketch strokes in different combinations to achieve the goal of
sketch transformation with human inputs.

Previous works have proposed learning user-specified image
transformation from unlabeled data to assist data augmenta-
tion process [11], as well as music sequence transformation
with generative models [1]. In comparison, our approach aims
at transforming the semantic content to generate new sketches
instead of altering the style or local features of the data.

Although our work only used one category of sketch from
Sketch-RNN Quick, Draw! dataset [8], the models and meth-
ods we developed can be directly transferred to data from any
other categories in this dataset. To better format and visual-
ize the experiment results, we also borrowed several helper
functions from the Magenta Project [4] which was originally
developed for Sketch-RNN.

DATASET
Data Collection
We created an application to conduct sketch comparison tasks.
In each comparison, we displayed a randomly sampled tree
sketch pair to a participant. All sketches were scaled individu-
ally to have relatively the same size during display. Then we
asked the participant to give instructions needed to transform
the sketch on the left to the sketch on the right in English (eg.
“Make the trunk of the tree taller and leaves rounder”). We
put the application on Amazon Mechanical Turk and collected
20032 responses in total.



Figure 1: Our data collection interface on Amazon Mechanical Turk: At each
turn, two tree sketches are displayed, and participants are required to describe
the changes required to convert the sketch on the left to the sketch on the right.

All sketches displayed in the task are from the tree category
of the Quick, Draw! dataset. The sketches in Quick, Draw!
were created by human users in a game in 20 seconds. Each
sketch stroke was converted to the Stroke-5 format (Dx, Dy,
p1,p2,p3) for both displaying and training models. Dx and Dy
are the offset distance in the x and y directions of the pen from
the previous point. p1,p2, and p3 represent a binary one-hot
vector of 3 possible pen states. If p1 is set to 1, it indicates the
pen is touching the paper, and a line will be drawn from the
current point to the next point. If p2 is set to 1, the pen is lifted
from the paper, and no line will be drawn from the current
point to the next point. Finally, if p3 is set to 1, the drawing is
finished, and no future points, including the current one, will
be drawn.

Data Filtering
Given that we could not easily monitor the user inputs on Ama-
zon Mechanical Turk, we applied a strict and robust filtering
for data quality assurance. We first filtered out all user re-
sponses that are less than 6 characters. Then, we found out all
responses that repeated more than 9 times since each task on
Amazon Mechanical Turk contained 10 comparisons. Among
all the highly repeated responses, we manually check the va-
lidity of each one and white-listed all valid phases. Lastly, we
filtered out all responses that have more than 6 repeated words.
After filtering, 14413 responses remained. We used 80% of
the remaining responses for training, 10% for validation, and
10% for testing.

METHODOLOGY
Latent Vector Transformation
As previous works[4] have presented the Sketch-RNN, a
neural network that is able to construct stroke-based drawings,
we first think about how to make use of the Sketch-RNN to
generate transformed sketches. Sketch-RNN will transform a
series of strokes into latent vectors with its encoder and will
output a sketch by decoder with latent vector. We would like
to build on top of the Sketch-RNN model by transforming the
latent vectors. Here we explore in the latent space, not only
because the latent vector is short, which will lead to a faster

computation process, but also because there will be less noise
in the latent transformation process.

Figure 2: Schematic diagram of Vector Transformation model

There are two inputs for our model: original sketch and
description text. For the original sketch, in this model, we
used the latent vector z from the Sketch-RNN model. For
the text, we have tried different embeddings including Bert
embedding, skip-gram embedding and CBOW embedding
which can transform sentences into vectors.

Next, we put an embedded vector into an LSTM layer in order
to find sequential relations in the text. Since latent vector z did
not seem to have sequential relationship among its elements,
we decided not to use an RNN layer, and instead directly
concatenate the output of the LSTM layer and z-vector for the
original sketch together. Then we use several dense layers with
relu and linear as activation functions to output the z-vector
for the target sketch.

Sketch Transformation
In addition to learning the transformation between latent
vectors, we also explored possibilities of learning end-to-end
transformations between sketch strokes. To incorporate both
text sequence and sketch data in this task, we experimented
with three different types of encoder-decoder architectures
that all consist of one encoder for the input text instruction,
a second encoder for the input sketch, and one decoder
to generate the transformed sketch. We used CBOW text
embedding for all encoder-decoder models.

1. CNN Encoder with CNN Decoder When designing CNN
models, we spent a long time solving the problem: given
2D images and 1D text, how to concatenate images with
text? After careful consideration, we proposed two major
model structures to solve this problem: one with a dense
layer, and one without a dense layer.

Both models use three convolutional 2D layers as encoders.
In both models, we first process the text using an Embed-
ding layer and an LSTM layer with 100 output units. The
model without a dense layer concatenates the text with the
image by reshaping the text to a squared size. In the model,
we take the original sketch as input, feed it consecutively
into two convolutional 2D layers. Then, we reshape the
hidden layers of text output from LSTM into a shape of 10



* 10 tensor, and concatenate with the image output from
CNN encoder. Next, we use a linear activation layer. After
that, we feed the output after activation into CNN decoder.
The decoder consists of three convolutional 2D transpose
layers. After feeding the data into the decoder, we use a
sigmoid activation layer to get the final output. The model

Figure 3: Schematic diagram of CNN Encoder with CNN Decoder model

with a dense layer concatenates the text with the image by
concatenating the 1D dense layer with the text. The encoder
consists of three convolutional 2D layers. After we got the
encoded data, we flatten it from 2D to 1D, and feed it into
a Dense layer of 1400 output units. Then, we concatenate
the output from the Dense layer with the text output from
LSTM. Same as the previous model structure, we also use
a linear activation layer, a decoder, which consists of three
convolutional 2D transpose layers, and a sigmoid activation
layer to get the final output.

Figure 4: Schematic diagram of CNN Encoder with CNN Decoder model
with Dense layer

2. RNN Encoder with RNN Decoder In this model, our
encoder is two LSTM layers. One LSTM layer takes in the
embedded text as input and outputs hidden state ht and ct .
The other LSTM layer takes in the original sketch as input
and outputs hidden state hs and cs. Then, we concatenated

the two hidden states to get the final encoder states.

Our decoder is an LSTM layer that takes in the encoder
states as initial states and the target sketch as input. At
each time step i of the decoder LSTM, we feed the previous
stroke Si-1 of the target sketch, where S0 is defined as a
starting stroke (0, 0, 0, 1, 0). The output of the LSTM
layer is fed in a dense layer and then gets split into position
and pen states. For the position output, we used a linear
activation and used mean square error as our loss. For
the pen states output, we used softmax as activation and
cross-entropy as loss.

Figure 5: Schematic diagram of RNN Encoder with RNN Decoder model

To decode the sketch, we developed two versions of infer-
encing. The first version iteratively predicts the next stroke
from the previous stroke at each time step, and the second
version predicts the whole new sketch in a single time step.
For both versions, we first encode the input text and the
original sketch to retrieve the initial decoder state. Then,
for the first version, we run one step of the decoder with the
initial state and the first stroke of the original sketch. The
outputted states and stroke will be the input for predicting
the next stroke. This stroke prediction will continue until
we reach the target length for the predicted sketch. We also
tried to feed the starting stroke (0, 0, 0, 1, 0) to the decoder
as an initial input, but got very similar outputs for different
sketches, possibly due to the simple model architecture. For
the second version, we directly feed all strokes of the orig-
inal sketch and the encoder state as inputs to the decoder.
The decoder is run only once for the prediction.

3. CNN Encoder with RNN Decoder The text encoding
process of this model is the same as what we have tested
with all other models introduced in this section. It takes
in preprocessed text data and encodes it with one layer
of LSTM. The sketch encoding process of this model
relies on convolutional neural net instead of recurrent
neural net used in the original Sketch-RNN architecture.
And by using the CNN encoder, this model takes input
as pixel values of the sketch instead of its actual strokes.
A potential advantage of CNN in this task is its focus
on exploring pixel locality and generating features at



different scales. Because many text inputs in our training
data would describe the shape or local feature of a sketch,
using a CNN might help to address these instructions.
Since we have limited time and computing resources
during this work, we built the CNN in this model using
many modules of depth-wise convolution followed by 1x1
convolution and batch norm, similar to the structure of Mo-
bileNet [6], and added a few max pooling layers in between.

Figure 6: Schematic diagram of CNN Encoder with RNN Decoder model

After these encoding processes, we flatten the encoded
sketch image and concatenate it with two hidden layers
from the LSTM text encoder. These concatenated results
will then go through another fully connected layer to match
the shape of hidden states in the LSTM decoder for sketch
stroke generation. We have also tested with several dropout
layers after different convolutional and/or fully connected
layers to prevent over-fitting during the training, but the
results were not as good as data augmentation alone. So
dropout layers are not included in this model. The LSTM de-
coder in this model is the same as the first version described
in the previous model.

MODEL TRAINING
The encoder-decoder models are not very easy to optimize,
so we have made a few adjustments and customization
during the training process. By default, the sketch data has
a fixed sequence length of 176 strokes. However, most of
the sketches in our dataset end within 100 strokes with the
remaining strokes being dummy data (zero paddings). Thus
we customized the loss function with proper masking to ignore
these paddings in the stroke sequence and only computed loss
for the valid strokes. Since the first two numbers in any sketch
stroke are the offset distances in x and y, we measure their loss
with mean square error. On the other hand, the last 3 numbers
in a sketch stroke are the pen states, which is represented by a
one-hot vector, so we applied categorical cross-entropy as the
loss.

For the special model when we use CNN as the decoder to
generate sketch images, we simplified the training process
into multiple binary classification problems. The sketches in
our dataset don’t have any color or transparency, so it’s safe to
predict 1 or 0 for each pixel of the generated sketch images.
Hence we used binary cross-entropy loss for this task.

Another adjustment for models with CNN encoder is the pre-
processing of sketch data. This sketch dataset does not specify
either canvas size or color map for people to display each
sketch as an image. We customized some sketch drawing
tools from the Magenta Project [4] to draw each sketch into a
squared PNG image and scale them to the same size. During
this scaling process, it is important for us to keep the aspect
ratio of each sketch, because our sketch transformation task in-
volves stretching the tree to be relatively taller or wider based
on the text instructions. We also generated these sketch images
with white strokes and black background, hoping to make it
easier for the convolutional neural net to pick up the useful
signals.

EXPERIMENTS AND RESULTS
We used two exploratory ways to evaluate our generative mod-
els. We conducted user studies to rate our model outputs and
developed an inception model to classify the predictions. The
latent vector transformation model was not used for evaluation
because the outputs of this model have high similarities regard-
less of inputs, which implies the model did not learn enough
to distinguish different cases, possibly due to the very simple
architecture. Different embeddings also did not cause any dif-
ference to the training and validation loss nor the convergent
time. The CNN-CNN model with the dense layer was not used
as well since its output is less ideal than the CNN-CNN model
without the dense layer. It always produces a solid tree instead
of a stroke-based tree with line boundaries.

User Evaluation
We randomly sampled 52 sketch and text pairs from our testing
data and ran them using the following four models: CNN-CNN
model without dense layer, CNN-RNN model, RNN-RNN
model version 1 2. In total, we generated 208 sketches. 17
users in total were asked to evaluate the 208 generated sketches
by answering the following questions: From a score of 1 - 5,
how well do you think the transformation did? This question
is used to evaluate how well our model transforms the sketch
under human perception.

Table 1: Human Evaluation. We report on the mean and standard deviation
of the ratings of 208 generated sketches given by 17 reviewers.

Model CNN-CNN RNN-RNN v1 RNN-RNN v2 CNN-RNN

Mean 2.58 1.73 2.63 1.60
Std 0.96 1.12 1.09 0.93

The second version of the RNN-RNN model and the CNN-
CNN model received the highest score, though scores received
by all models are not high. All of our models also have rel-
atively large standard deviation, which implies the output
quality is not consistent.

Inception Model Evaluation
In order to evaluate our models quantitatively on a larger
scale, we trained an Inception Network [12] as a classifier
with 8 classes from the Sketch-RNN Quick, Draw! dataset.
After training with 70 thousand sketch images from each class,



the InceptionV3 model achieves around 92% top 1 accuracy
on sketch image classification, so we are confident that this
classifier will provide a fair evaluation on whether a generated
sketch looks like a tree or not. Because the inception model
was trained with images drawn from sketch strokes, we did not
use it to evaluate the sketches generated from CNN decoder,
which directly generates images on pixel level. According to
Table.2, the Inception model evaluation result on 1441 testing
images shows that the model with RNN encoder and RNN
decoder when fed with original sketch 1 strokes generates the
best tree-looking sketches. Technically, this RNN decoder
was only trained to reconstruct target sketch strokes by itself,
and feeding an existing sketch during inference time does not
exactly align with the purpose it has been trained for. However,
the fact that RNN decoder can generate 72.8% tree-looking
sketches with hints from an existing tree sketch shows its
capability of learning the relation between adjacent strokes in
a sketch.

Table 2: Inception Model Evaluation. We report on the number and percent-
age of sketches correctly classified as tree by the inception model. All models
were evaluated with 1441 testing data.

Model RNN-RNN v1 RNN-RNN v2 CNN-RNN

number 280 1049 75
percentage 19.4 72.8 5.2

Example Results

Figure 7: Examples generation of the latent vector transformation model

Figure 8: Examples generation of the CNN to CNN model (without dense
layer)

Figure 9: Examples generation of the RNN to RNN model (first version
decoder)

Figure 10: Examples generation of the RNN to RNN model (second version
decoder)

Figure 11: Examples generation of the CNN to RNN model (second version
decoder)

CONCLUSION
In this work, we explored different methods to transform one
sketch to another sketch given text description that guides the
transformation. We used two evaluation methods to assess our
model. User evaluation mainly shows whether the generated
sketch is tailored to the textual description, and inception
model evaluation mainly shows whether the generated sketch
looks like an object (in our experiment, the object is a tree).
Given both user and inception model evaluation results, we
concluded that the model using both RNN as encoder and
decoder, and predicts the transformed sketch at a single time
step, achieves the best performance. However, the average
scores overall are not very high and the standard deviations
are a bit large, which implies that there is still much room for
improvement. The architectures of our models are relatively
simple, and therefore may not capture all features of the sketch
and text. A more complex model architecture will probably do
better. By using different approaches to solve this unexplored



task, we hope to encourage people to explore further on this
new idea, and thus develop better methods to solve it.

FUTURE WORK
1. Future Applications: We believe our research will enable

many creative applications. By establishing a relationship
between natural language and strokes of sketches, many
applications in various domains will become possible. In
the science and education domain, relations between text
and sketches are heavily present. Applying the research
idea may help people easily to understand and process the
topics in science and education.

2. Data Improvement: There are still many problems remain-
ing. Samples are one of the major problems in our research.
To have a good natural language model, we need a clean
dataset for our model to learn. Since our samples come
from human input, there are many noisy cases. Some noisy
samples are copied from others without describing the true
situations, and some of them are just meaningless sentences.
So we need to build a stronger filter to get a cleaner dataset.
Also, natural language models need a lot of samples for
models to understand the language, and we should get more
data if possible to improve the results.

3. Model Architecture Improvement: Although we have
tried many different types of models, due to the lack of
previous researches in this area, our model is not very com-
plex. In the future, models can have much complexity so
that it will become more flexible to learn the language. For
latent vector transformation, models can continue to im-
prove by adding layers that can extract features of latent
vectors which will help models to understand latent vectors
easier. For sketch to sketch models, one straightforward
method is to stack more LSTM layers in our current model
so that the model will contain more parameters to fit the
samples. Another way is to adapt LSTM structures or CNN
structures from other similar topics which may lead to good
performance.

4. Evaluation Improvement: The evaluation part is another
major problem since our models are generative. Now we
are manually evaluating the accuracy of our model. This
method is not only inefficient but also contains a lot of bias.
One way future work could explore is by using co-teaching
ideas[5]. The main idea is to train two networks and select
a small set for possibly clean data after fitting all the data
each epoch. Researchers may use clean mini-batch data to
validate each other and then feed the data forward in the
next epochs. This idea may solve part of the evaluation
problem and improve the result by making the dataset less
noisy.
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