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Abstract

A Language-Based Approach to Run-Time Assurance for Autonomous Systems

by

Sumukh Shivakumar

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Distributed Mobile Robotics (DMR) systems are increasingly present in complex autonomous
missions, which creates excitement around autonomous robots, but raises questions of safety.
Safety of these DMR systems cannot always be guaranteed at design time. To address this, we
provide a language-based approach for run-time assurance for robotic systems based on the
Robot Operating System (ROS). We present SOTER, an updated run-time assurance (RTA)
framework for building safe, distributed robotic systems on ROS. The SOTER framework
specifically contains a programming language for implementing reactive robotic software and
an integrated run-time assurance system that allows programmers to use uncertified com-
ponents, but still provide safety guarantees. We demonstrate the efficacy of SOTER using
a multi-robot surveillance case study, with multiple run-time assurance modules. Through
rigorous simulation, we show that SOTER enabled systems ensure safety, even when using
third-party components.
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Chapter 1

Introduction

There has been an increase in autonomous robots collaborating to perform complex missions
in recent times, which has created excitement around the future opportunities offered by dis-
tributed mobile robotic (DMR) systems. These robotic systems are commonly involved in
diverse and safety critical roles [7], but pose a particularly challenging problem with regards
to safety. When designing these DMR systems, safety often cannot be guaranteed uncondi-
tionally at design time. These DMR systems also often contain 3rd party components, such
as machine learning based components, which are hard to verify for safety. One solution is
to use formal verification and systematic testing techniques; however, these techniques are
often computationally expensive and have not yet caught up with this increased complexity
[21]. There is hence a need to somehow monitor these DMR systems, in order to ensure that
they are safe. In particular, there is a need for a systematic way to define monitors for DMR
systems so that can be directly integrated with common robot SDKs that are used to build
these systems.

These DMR systems have found themselves in numerous use cases, such as package
delivery systems, personal transportation, and surveillance. One approach to certifying
these systems for safety is to use run-time assurance. This is where the programmer builds a
system at design time that has the ability to monitor itself and the surrounding environment
at run-time. This system also has the ability to switch to a formally verified safe mode of
operation when necessary, even if this means degraded performance.

A popular run-time assurance framework is the Simplex architecture [22]. In the context
of robotic systems, this architecture is composed of three main components: (1) the advanced
controller (AC) which controls the robot under normal operating conditions, (2) the safe
controller (SC) which has been previously certified to keep the robot within a safe region
of operation, often at degraded performance, and (3) the decision module (DM) which has
also been previously certified to periodically monitor the robot’s state and its environment
to decide whether to switch from the advanced controller to the safe controller so that it
remains with a safe region of operation.

Simplex-based Run-Time Assurance (RTA) frameworks operate with the advanced con-
troller driving the system, paired with the decision module that monitors the overall system
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every ∆ time to analyze whether the robot is in a state where its safety specification can
be violated within ∆ time. If it decides that the robot is in imminent danger, it switches
control from the advanced controller to the safe controller. These framework are useful, but
have limitations in their existing implementations. Many existing techniques [15] [1] [19]
apply this framework to just a single component in the entire system, or wrap the entire
system using a single Simplex module, making the design of the components of this module
often extremely difficult and complicated. Many prior applications also lack programming
language support for constructing these RTA systems in a module manner, optimizing only
for communication and timing of the system. Some approaches only focus on monitoring
capabilities [9] and do not provide a systematic method of switching from the safe controller
back to the advanced controller to minimize the overall performance hit. Most importantly,
no prior work provides a comprehensive framework with language support for monitor gen-
eration and Simplex-based run-time assurance on top of the Robot Operating System. In
order to solve these issues, there is a need for a programming framework for building these
provably safe robotic systems with run-time assurance that considers all facets of the software
stack.

In this work, we build upon SOTER [4], a programming framework used to build safe
robotic systems using run-time assurance. The goal of our work is to provide formal monitor-
ing support and run-time assurance for general robot SDK’s by extending the SOTER system
to become much more modular in supporting a variety of robotics platforms. Specifically,
we focus on refactoring the SOTER toolkit to support the Robot Operating System (ROS),
which is a common robotics platform. The motivation largely stems from the DARPA
Assured Autonomy project to ensure autonomous systems behave correctly as autonomy
evolves with machine learning. This effort is in conjunction with Boeing, who have test beds
to vet these assured autonomy techniques. These test beds are largely built on top of the
ROS platform and so it is clear that having a version of this SOTER run-time assurance
software framework on top of the ROS platform would substantially aid in the use of run-
time assurance on their automated taxiing project and help advance one avenue of assured
autonomy.

In SOTER, a program is built as a collection of nodes, which are periodic processes, that
communicate with other nodes in a publish-subscribe mode of communication. An RTA
module written in the SOTER language, as in traditional RTA modules, is composed of an
advanced controller, a safe controller, and a safety specification which the decision module
uses to switch between controllers. The programmer can construct these RTA modules
and specify timing behavior for the decision module so the pre-certified safe controller has
the ability to switch back to the advanced controller to maximize overall performance of the
system. SOTER importantly supports compositional construction of an overall RTA system.
In other words, the SOTER contains constructs used to built RTA modules for individual
components of the system, and with many such RTA modules, the programmer is able to
provide security guarantees for the overall composite system. The SOTER toolkit itself
also includes a compiler that generates C code that can be executed on top of the Mavlink
software platform.
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In this work, we refactor the SOTER framework to support modular components that
help port the system on to ROS. Through this process, we make a number of systems contri-
butions in order to allow the SOTER integration on generic SDK’s just as ROS. This includes
the ability to compile SOTER programs directly as ROS nodes, having P programming lan-
guage support in ROS’s native catkin workspace, and dynamically creating ROS nodes from
the SOTER language, directly from application level code in the SOTER program.

In all, we provide a clear software stack for distributed mobile robotics as well as a pro-
gramming framework for monitoring, which supports a Simplex-based run-time assurance
system. This new implementation leverages the original SOTER compiler and generates ex-
ecutable C code that can be directly ported on to robots in addition to simulation platforms
such as Gazebo [13] and Open AI gym [12]. We demonstrate the efficacy of this refactored
version of the SOTER framework by building a multi-robot surveillance case study. Our
results show that this SOTER framework can ensure the safety of multiple robots simulta-
neously even in the presence of unsafe third-party components and controllers.

In summary, we make the following novel contributions:

1. A refactored programming framework for Simplex-based run-time assurance on top of
the ROS platform.

2. SOTER/P language support for native ROS development.

3. A modular robotics software stack to build distributed mobile robotic systems.

4. A sample case study for multi-robot surveillance with multiple RTA modules on differ-
ent components of the software stack that compose together meeting the overall safety
specification of the system.

5. Experimental results in simulation on the ROS platform proving how SOTER can be
used for guaranteeing correctness of a system in the presence of third-party unverified
components. Videos of our simulations can be found on https://drona-org.github.io/Drona/
and implementation of our framework can be found at https://github.com/Drona-
Org/Drona.
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Chapter 2

Background

2.1 The P Language

The SOTER framework relies on being an asynchronous event-driven language. SOTER
is largely built on top of the P language, which is a domain specific language meant to
write asynchronous event driven code easily [3]. It is designed to implement protocols that
dictate the interaction between concurrently executing components, which is essential for
safe execution of such programs. P also provides the tools in order to be able to create
formally safe programs, which are verified through systematic testing. This naturally makes
it a good fit for the SOTER language.

A P program is represented as a group of interacting state machines, and each of which
communicate asynchronously with events. Events themselves are queued onto a machine’s
buffer, a first-in-first-out queue, and machines are responsible for handling each of these
events in a responsive manner. These events are commonly queued by other machines, but
can also be raised from the same machine as well. If a machine does not handle any one of
the events that could be potentially enqueued, a failure is thrown during compilation, which
is detected during automatic verification.

The PingPong P program shown below illustrates the features and semantics of the P
language. This program contains 3 machines: Client, Server, and Driver. The goal of
this P program is to create a Client machine that communicates with two Server machines.
At a high level, the Client machine sends a Ping event to both of the Server machines
sequentially and expects a reply from each one.

An event can be raised by a machine or can be sent from one machine to another. In
our PingPong example, the Server machine raises the Success event, which is queued onto
its own FIFO buffer from the SendPong state. Formally, each state description consists
of 4 elements: a state name, a set of events (called the deferred set), a set of event action
pairs (called action handlers), and a statement (called the entry statement), which gets
executed when a state is entered. A machine contains control states, transitions, actions, and
variables. Events cause machines to transition into other states found within the same state
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machine. The Client machine’s Init state has an entry statement, where it first instantiates
serverMachines using payload parameters passed from the Driver when creating the Client
machine. The machine also raises a Success event from withing the entry block.

1 event Ping assert 1: machine;

2 event Pong assert 2: machine;

3 event Success;

4

5 machine Client

6 {

7 var serverMachines: (machine , machine);

8

9 // This is the entry point

10 start state Init {

11 entry (payload : any) {

12 serverMachines = payload as (machine , machine);

13 raise Success;

14 }

15 on Success goto SendPing;

16 }

17

18 state SendPing {

19 entry {

20 send serverMachines .0, Ping , this;

21 send serverMachines .1, Ping , this;

22 raise Success;

23 }

24 on Success goto WaitPong_1;

25 }

26

27 state WaitPong_1 {

28 on Pong goto WaitPong_2;

29 }

30

31 state WaitPong_2 {

32 on Pong goto Done;

33 }

34

35 state Done {}

36 }

37

38 machine Server

39 {

40 start state Init {

41 on Ping goto SendPong;

42 }

43

44 state SendPong {

45 entry (payload : machine) {

46 send payload , Pong , this;
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47 raise Success;

48 }

49 on Success goto End;

50 }

51

52 state End {

53 entry {

54 raise(halt);

55 }

56 }

57 }

58

59 machine Driver

60 {

61 var client : machine;

62 var server_1 : machine;

63 var server_2 : machine;

64

65 start state Init {

66 entry {

67 server_1 = new Server ();

68 server_2 = new Server ();

69 client = new Client (( pongMachine_1 , pongMachine_2))

70 }

71 }

72 }

Events sent to the machine are stored in the machine’s buffer as a FIFO queue and are
generally processed in this order by the machine, with one exception. Events themselves
can be deferred, which means they can influence the order in which they are delivered to
the machine itself. Hence, when the machine is trying to receive an event, it scans its FIFO
queue, starting from the beginning and dequeuing the first event that is not in the deferred
set. Once an event is dequeued, it is then processed by executing an outgoing transition
or by executing an action handler. An action itself is just some code to be executed from
within a state. It is the code that is designated to run after a particular event is raised
and is entirely dependent on the manner in which the programmer designs the system. In
our PingPong program, once a Success event is enqueued from the entry segment from the
Client machine, it is then immediately dequeued and transitioned to the SendPing state
within the same machine.

There are two types of transitions in P: step transitions, and call transitions. In both
types of transitions, the transition itself takes the form (n1, e, n2), where n1 is the source
state of the transitions, e is an event name, n2 is the target state of the transition. Step
transitions are the traditional cases, where the Client machine raises a Success event which
then caused it to transition to the SendPing state. A call transition has the semantics
of pushing the new state on top of the call stack. Call transitions are used to provide a
subroutine-like abstraction for machines.

The P language itself has been designed for the implementation of asynchronous re-
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sponsive systems, and so it has many built in tools that help the programmer with this
implementation. One of the biggest support tools P provides within the compiler itself is
checking for unhandled events with automatic verification. If an event arrives in a state and
there is no transition defined for this event, then the verifier throws an unhandled event
violation. Of course there are certain situations in which the designer of the system would
want to delay handling of such events or dropping/ignoring the events all together. In these
situations, P allows for these events to be members of the deferred set, and in this case the
verifier at compilation time will not flag the events as unhandled. The verifier however also
has a built-in liveness check that disallows deferring events indefinitely long. This ensures
that the verifier is not simply silenced because every event is in the deferred set.

Under the hood, a P program itself is compiled down from these high level semantics into
a “core language” where state descriptions are tuples in the form (n, d, s1, s2), where n is a
state name, d is a set of deferred events, s1 is an entry statement, and s2 is an exit statement.
A P program reduced to its core language consists of event declarations, a nonempty list of
machines, and one machine creation statement. Each event declaration also contains a list
of types which are sent with an event as payload. Machine declarations now in this core
language consist of (1) a machine name, (2) a list of events, (3) a list of variables, (4) a
list of actions, (5) a list of states, (6) a list of transitions, and (7) a list of action bindings.
Each variable event in the high level P semantics, as seen in the PingPong program, has a
declared type, and currently P supports int, byte, bool, event, and machine identifier types.

The P compiler takes these P programs and compiles them down to executable C code.
The C code is automatically generated with statically allocated data structures, as defined in
the P compiler, and these data structures are examined by the P run-time when it executes
the operational semantics of the program. The P run-time contains all of the functionality
for executing operational P semantics, such as creating machines and enqueueing events on
to specific machines. Most of this functionality is kept private to the run-time; however,
when integrating another driver framework with the P compiler, often times the run-time
needs modifications and foreign functions need to be implemented.

A critical feature of the core language and semantics of the P language is that it allows
for the use of foreign functions. This feature is very important in the context of writing
real world asynchronous code. To support 3rd party codebases and external code, P allows
the programmer to call functions written in the C programming language directly from P
programs. These functions are called from within specific P machines and therefore need
to be introduced to the machine’s scope with a declaration that gives the function’s name
and type signature. The run-time semantics of the foreign functional is nearly identical to
a standard C method call. Chapter 3 shows how one must rely on this functionality of P in
order to be able to interface with the Robot Operating System’s (ROS) C++ API for the
SOTER implementation and experiments.

In all, the goal of the P programming language is to allow the programmer to unify
modeling and programming into one activity. Not only can a P program be compiled into
executable C code, but it can also be verified using model checking techniques. With its
emphasis on asynchronous event-driven programming, P makes a natural choice to use for
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SOTER, which relies on many underlying features of P. Our SOTER implementation can
be built as an extension to the existing P language, making the necessary changes to the
existing P compiler in order to support the run-time assurance language primitives.

2.2 Drona Framework

In order to build this run-time assurance framework for robotic systems, we must also have
a reliable framework in which to build and coordinate distributed mobile robotic systems.
One of the key components/dependencies to making our SOTER implementation viable
on ROS based systems is Drona [2]. Drona is a software framework for building reliable
distributed mobile robotics applications. It enables the programmer to program an ensemble
of robots with formal guarantees and high assurance of correct operation. Distributed mobile
robotics (DMR) systems are those which involve teams of networked robots navigating a
physical space to coordinate and accomplish specific tasks. In general distributed mobile
robotics systems are becoming increasingly prevalent in complex safety-critical applications
[2]. Drona aims to bridge the gap between such systems and providing high assurance and
provable guarantees on such systems to enable large scale adaptation. Drona considers the
class of DMR systems where the robots are in a known workspace with static obstacles and
the tasks to be performed by the robots are generated dynamically. A task represents moving
a single robot to a specified goal location.

One of the fundamental problems when working with a team of mobile robotics that share
the same workspace is that the programmer must design the system to prevent collisions and
still compute optimal motion plans for the individual robots. Additionally, it is difficult to
program autonomous reactive robots to properly handle dynamically generated events.

Drona makes the process of building these systems easier by integrating the P language
into the Drona tool-chain. As mentioned in section 2.1, P aids the programmer in imple-
menting and specifying asynchronous and event-driven programs. In this case, the Drona
software stack can be represented as a series of interacting state machines that communicate
with a series of asynchronous events. The P programs are then compiled into C code which
can be deployed on a number of robotic systems with the proper interfaces, such as Mavlink
[11].

A DMR system implemented using Drona software stack consists of both event-driven
asynchronous processes and periodic processes. Hence, Drona has been termed to be a
mixed-synchronous system. DMR systems written in Drona can be formally verified using
P’s built model checking system, Zing. The model checking approach is based on the notion
of approximate synchrony where the clocks of each of the robots are not necessarily synced
but bounded within a given limit.

The Drona software stack can be divided into 3 main components: the task planner, the
software stack, and the robot SDK as displayed in Figure 2.1.

The task planner is where the programmer implements application specific protocols
to guarantee that the system satisfies the application specific goals. In the example for a
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Figure 2.1: DMR Software Stack from [2]

priority mail drone delivery system, the task planner is responsible for ensuring that the
mail requests are handled responsively by individual drones and are always delivered in
priority order. In an effort to achieve this goal and have a particular drone visit a specific
location in the workspace, the task planner sends a request to the motion planner, a separate
component inside the DMR software stack. The motion planner is responsible for computing
a trajectory to the goal location. The multi-robot motion planner module is responsible for
computing safe and collision-free trajectories for each of the robots by coordinating with all
other robots within the system. Once the trajectory is computed, the motion planner then
sends this trajectory to the plan executor module. It is important to note that the motion
planner is a modular component that allows the programmer to swap the multi-robot motion
planner with other third-party motion planners, such as the Open Motion Planning Library
(OMPL) motion planner [23]. Once the motion planner has computed a path for the robot,
it then sends this path back to the Task Planner which forwards it to the Plan Executor
module. The Plan Executor module is responsible for interacting with the robot SDK to
physically execute the robots’ paths in accordance to their designated trajectories. The Plan
Executor module ensures that the robot properly follows and executes the path provided by
the Motion Planner module.

The Sense and Infer module within the software stack implements monitors that contin-
uously look at a variety of sensor streams from their respective robot and informs the Task
Planner if there is something awry and needs immediate attention. The monitors themselves
are also represented as state-machines, following P language semantics with asynchronous,
event-driven flow of communication between the other Drona stack components. In the ex-
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ample of a battery monitor, the P state machine would view inputs streams from the robot’s
battery sensor and inform the task-planner when the battery level of the robot is below a
certain threshold.

The final component of the overall DMR stack is the Robot SDK. Often times, robot
manufacturing companies provide a software development kit that provides robot primitives
and functions that allow the programmer to controller robot operations. This SDK also
samples the state of the robots and often enables inter-robot communication as well. From
a formal verification perspective, the DMR software stack is verified under the assumption
that the robot SDK is correct.

Currently, the robot SDK that the Drona software stack support is the Micro Air Ve-
hicle Link (MAVLink) protocol [11]. It is a protocol meant for communicating with small
unmanned vehicles. MAVLink is a very lightweight messaging protocol for communicating
with drones specifically. It follows a modern publish-subscribe communication model and
the point-to-point design pattern. The MAVLink toolchain uses XML message definitions
to generate MAVLink libraries. MAVLink, in addition to providing communication between
the drones, enables communications between the drone and a ground control station.

The Drona software framework contains four main components: an event-driven pro-
gramming language for implementing and specifying a DMR application, a reliable DMR
software stack, a model checking backend for efficiently verifying the DMR system, and a
run-time library for executing the generated C code on a designated robot SDK [2]. The
software framework is an extension to the state-machine based programming language P, so
that generated C code from the P compiler can be executed on top of the MAVLink protocol.
The language is also extended with primitives for specifying workspace configuration. Below
is a diagram showing the Drona tool chain.

Figure 2.2: Drona Software Framework from [2]

The Drona application, which the programmer implements using the aforementioned ex-
tension to the P language, also consists of four subcomponents. The four subcomponents
include a workspace configuration XML file, and implementation block, a specification block,
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and the test-driver/environment block. The workspace config XML file provides the details
regarding workspace information. This information includes the number of robots present in
the static workspace, the robot starting positions, locations of all static obstacles, the loca-
tions of charging stations for each robot, and any other static workspace related information.
Many of the configuration details of the workspace is Task Planner specific, so depending
on the application goals, the programmer can add additional relevant information. In this
priority mail delivery experiment, designated battery charging stations were added for each
of the robots. The specification block is where application specific correctness properties
are defined. The specifications themselves are implemented as monitors, or spec monitor
machines in the P language. The implementation block is the main collection of P state-
machines where the Task Planner is implemented. This is where the programmer designs
and develops the Task Planner component from the DMR stack based on application specific
goals. Lastly, the test-driver block implements the finite environment state machines that
close the DMR system for verification.

The Drona compiler, which is an extension of the P compiler, generates a translation
of the application into the Zing modeling language. Zing, in this implementation, has been
extended to support mixed-synchronous abstraction to automatically check if the program
satisfies the desired properties expressed in the specification block. The compiler also turns
the DMR application into C code that is compiled by a standard C compiler and linked
against the Drona/P run-time and MAVLink to generate the executable code that can be
deployed on to the robot or the simulator.

One of the biggest drawbacks of the vanilla Drona implementation is that it does not
natively support robotics systems based on the Robot Operating System (ROS). As described
in Chapter 3, one of the main contributions of this research effort has been in migrating Drona
to become much more flexible in supporting a variety of other robot SDKs, namely ROS.

2.3 SOTER Framework

Framework Overview

This implementation of SOTER that supports the Robot Operating System, heavily relies
on the previous work that comes from the original SOTER paper [4], which provides the
theoretical basis for a lot of the work that will be described later. Before that, it is important
to understand the theoretical underpinnings that make the design of such a language possible.
As previously mentioned, there has been a recent movements towards achieving greater
degrees of autonomy and intelligence in robotic systems that also strongly correlates with the
complexity of these systems. Especially with the recent drive towards including third-party
machine learning components, it is extremely challenging to provide design-time certification,
and formal safety guarantees.

One way to minimize the divide between increasingly complex robotic systems and the
safety guarantees that can provided is to incorporate techniques of run-time assurance. This
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is where the programmer builds a system that is able to monitor itself and the environment
at run-time. Using this monitor, the systems should be able to switch to a provably safe
operating mode, even if this means degraded performance and sacrificing non-crucial goals.
A well-known example of a run-time assurance framework is the Simplex Architecture, which
has previously been used for constructing provably-safe avionics [19]. The Simplex architec-
ture is largely based on having 3 main components: (1) the advanced controller (AC) which
is responsible for controlling the robot under normal operation, designed for achieving high-
performance, but is often not provably-safe; (2) the safe controller (SC) that is pre-certified
to keep the robot within a region of safe operation for the robot, but usually at the cost of
lower performance; (3) the decision module (DM) which is also pre-certified to periodically
monitor the state of the robot and its environment to determine when to switch from the
advanced controller to the safe controller so that the system is guaranteed to stay within the
safe region. When the AC is in control of the robot, the DM monitors the system’s state
every ∆ period to check if the system can violate the safe specification, and if so, it switches
control to the SC.

Figure 2.3: RTA Architecture

Desai et. al present SOTER, a programming framework for building safe robotics systems
using run-time assurance [4]. In SOTER, a program consists of a collection of periodic
processes, called nodes, that interact with each other using a publish-subscribe model of
communication. In SOTER, the program consists of at least one run-time assurance (RTA)
module. The RTA module consists of an advanced controller node, a safe controller node,
and a safety specification. If the programmer defines a well-formed RTA module in SOTER,
then the framework guarantees that the system will satisfy the provided safety specification
at run-time. The programmer has the ability to declaritiviely construct an RTA module
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with specified timing behavior, combining provably-safe operation with the feature of using
the advanced controller whenever safe to achieve good performance. SOTER provides a
proper way for the decision module to switch back from the safe controller to the advanced
controller, which extends the traditional RTA framework and providing higher performance,
since it is in the system’s best interest to maximize AC utilization whenever safe to do so.

As mentioned before, SOTER provides a high-level domain specific language. Addition-
ally, it supports compositional construction of RTA systems. The SOTER language includes
constructs that decompose the overall RTA systems into individual RTA modules that are
individually monitored and composed in order to provide overall security guarantees for the
entire system. SOTER also includes a compiler that generates the decision module node
that implements the switching logic. It also generates C code to be directly executed using
robot SDKs, such as MAVLink.

When using the SOTER framework, the programmer first needs an application layer to
specify objectives for the robotic system. For the purpose of this overview, we can use a robot
surveillance system as our application. At the top of the SOTER stack, is the application
layer where the programmer specifies system goals, in this case ensures that all surveillance
points are visited indefinitely. The application creates target locations for a specific robot.
The application layer then communicates with the motion planner to compute a series of
way points for the robot to visit that target point. This motion planner communicates
these way points sequentially to a motion primitives library, which takes each way point and
generates a low level control for the robot to follow the trajectory computed. It is important
to note that the underlying dynamics of these controllers, which have usually not been pre-
certified for safety, causes deviations from the true reference path. When implementing
this application protocol, the programmer often uses many such uncertified components.
Examples include third party solvers or libraries like the Open Motion Planning Library
[23] to compute way points for the robot. Likewise, motion primitives are themselves often
learned using Reinforcement Learning [10], or provided by third-parties without considering
safety [8]. In the presence of such uncertified components, it is difficult to provide formal
guarantees of safety at design time, especially when the components themselves are hard to
verify.

As mentioned, SOTER is a high-level domain specific language based on publish-subscribe
model of communication. A SOTER program is a collection of periodic processes that publish
and subscribe on a variety of topics, or communication channels. Fig. 2.3 is an example
of the SOTER semantics for node creation as well as how nodes publish and subscribe to
specific topics.

In the example provided in Figure 2.4, a topic titled targetWaypoint is created which is a
communication channel that supports messages of type coord, which was previously declared
as a tuple of floats. This is followed by a node declaration with title MotionPrimitive that
subscribes to topics localPosition and targetWaypoint. For the purposes of this example,
the localPostition topic creation has been omitted. The MotionPrimitive node also publishes
onto the controlAction topic as well. The node runs periodically every 10ms, reads messages
from the subscribed topics, performs local computations, and then publishes that control
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Figure 2.4: SOTER Semantics

action on the controlAction topic.
In the real world, the motion primitives, represented by the motion primitive node,

generate control actions to go from the current position to the target position using a third
party controller provided by the robot manufacturer. This controller can be considered
our advanced, unverified controller in the context of the Simplex architecture mentioned
before. These low level controllers often use approximations when modeling the dynamics
of the robot, making the simulation performance optimal, not safety optimal. As mentioned
already, this is the very same motivation to have a run-time assurance module in the SOTER
framework.

Figure 2.5: RTA-Protected Motion Primitive from [4]
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In an example run-time assurance module, as shown in Figure 2.5, the aim is to make the
robot go from wi to wf , where the former is the current location and the latter is the target
location. In this example, the desired safety property is for the robot to always remain inside
the region φsafe. As seen in the diagram, initially the advanced controller node, which based
on our previous example is the MotionPrimitive node, has control over the robot, as shown
with the red line. Since the controller is not formally verified it may generate certain control
actions that push it outside of φsafe. With the run-time assurance module, the decision
module then detects this danger and switches to the safe controller, shown with the blue
line, in a manner such that there is enough time for the safe controller to gain control over
the robot before the robot exists the safe region. This safe controller must be certified to
keep the robot inside φsafe and also move it to a state in φsafer. Once the robot reaches back
to this inner green region of φsafer, the decision module returns control back to the advanced
controller. Figure 2.6 displays the semantics for how to write such a run-time assurance
module in the SOTER language.

Figure 2.6: RTA-Module Declaration

Referencing Figure 2.6, we introduce a new node called the MotionPrimitiveSC as the
safe controller node. Here we also have two functions, the first checking if the current state
of the robot is in φ safer and the second checking whether time to failure, or the time
to reach an unsafe state, is less than 2∆. This function, given a state s, and a predicate
φ ∈ SafeStates , returns true if starting from state s the minimum time after which φ may
not hold is less than or equal to 2∆. With all of these components, it is sufficient to build a
RTA module declared here as SafeMotionPrimitive, and the decision module then takes care
of the switching based on the logic above.

In general, SOTER enables composing multiple RTA modules in order provide larger
security guarantees on the over system. These large robotic system are often built by com-
posing multiple smaller components together SOTER is designed to provide RTA modules
for these smaller components which can then be composed together to provide system wide
run-time assurance. In the robot surveillance example, we want to decompose the stack into
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3 components: (1) an RTA-protected motion planner, (2) a battery safety RTA module, and
(3) an RTA-protected motion primitive module.

Run-Time Assurance Module

Here, we will formalize the different components of the RTA module.
A topic is formally defined a tuple (e, v), where e ∈ E represents the unique name of the

topic and E is the universe of all topic names. v ∈ V is the value that is posted on this topic
from V , the universe of of all possible values that can be communicated using topic e.

A node in SOTER can be described as a period input-output state-transition: at every
time instant, the node reads the values on its input topics, updates its own state, and
publishes values on its output topics. Formally, a node is a tuple (N,I,O,T,C) where (1) N
∈ N is the unique name for the node from the set of all nodes, (2) I ⊂ E is the set of all
topics this node is subscribed to, (3) O ⊆ E is set of all topics which this node publishes
to, (4) T ⊆ L × (I → V ) × L × (O → V ) is the transition relation of the node (the node
listens to I, transitions its local state and publishes to O), (5) C = {(N, t0), (N, t1), ...} is
the time-table representing the times t0, t1, ... at which the node N takes a step.

Moving to the run-time assurance module, let S represent the state space of the system,
i.e. the set of all possible configurations of the system. The desired safety property is
represented as φsafe ⊆ S, meaning the goal is to maintain the robot inside the φsafe set.

The RTA module can be formally represented as a tuple (Nac, Nsc, Ndm,∆, φsafe, φsafer).

1. Nac ∈ N is the AC node

2. Nsc ∈ N is the SC node

3. Ndm ∈ N is the decision module (DM) node

4. ∆ ∈ R+ represents the period of DM

5. φsafe ⊆ S is desired safety property

6. φsafer ⊆ S is stronger safety property

Figure 2.7 below, displays the switching logic that sets which controller is in charge of the
RTA module given the current state of the system. The DM node evaluates this switching
logic once every ∆ time units. We can see that if the robot state is in φsafer, then it switches
from Nsc to Nac. The ReachM(s, *, t) ⊆ S represents the set of all states reachable in time
[0,t] from the current state, using any controller and so the DM checks if the system will
remain inside φsafe in the next 2∆ time. If not, then Nsc must take control until brought
back to φsafer.
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Figure 2.7: Decision Module Logic

2.4 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source, meta-operating system for robots
[18]. Specifically, ROS is a collection of software frameworks for software development of
robotic systems. It provides the robotics middleware with services designed for hardware
abstraction, low-level device control, message passing between processes, package manage-
ment, and many others.

When executing, the ROS-based processes are organized as a graph with a network of
these processes represented as nodes. The processing takes place in nodes, which receive a
variety of messages, including post, control, and planning messages. Between each of these
nodes are edges that are represented by high level ROS communication infrastructure. ROS
communication also follows a publisher-subscriber model of communication. Each of the
nodes publish message data on asynchronous data streams called topics. The robot nodes
also subscribe to a variety of these topics in order to learn information from other nodes
and react accordingly. This communication model is common amongst robotic systems
programming and even in self-driving car architecture [5]. ROS also implements other styles
of communication as well such a synchronous RPC-style communication over services. It
also supports the data storage on a Parameter Server, which is a shared dictionary that
is accessible via network APIs. As a whole, ROS is a distributed framework of several
processes that enables different projects/executables to be individually designed. These
executables are then loosely coupled at run-time, and often times these processes are grouped
into separate packages, which makes sharing and distribution of these nodes much easier.
However, an important note to make is that ROS is not a real-time OS, even though there
is high importance placed on reactivity and low latency robot control. ROS is capable
of integration with real-time code, but because of this lack of native support for real-time
systems, the creators of ROS created ROS 2 [17]. ROS 2 is an overhaul of the ROS API, which
now takes advantage of more modern libraries and technologies for core ROS functionality
and also notably adds support for real-time code and embedded hardware.

The overall ROS ecosystem [18] can be divided into three main subgroups: (1) ROS client
library implementations such as roscpp, and rospy, (2) packages containing application-
related code which uses one or more ROS client libraries [24], and (3) tools for building
and distributing ROS-based software. The ROS client libraries and the language/platform
independent tools for building ROS-based software are open source software that are free
for commercial use. Most of the third-party packages from the ROS community are licensed
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under many open source licenses as well. These packages are often used for common robotic
system functionalities such as robot models, perception, planning, simulation tools, hardware
drivers, mapping, and many other algorithms.

ROS client libraries are primarily built for Unix systems and officially supports the
Ubuntu Linux operating system, because of the open source software dependencies of the
libraries themselves. Other operating systems are “supported” by the community, but are
largely under experimental development.

The overall goal of the Robot Operating System is to facilitate code reuse in robotics
development, and in support of this goal there are a number of features that ROS possesses
that make it a very appealing choice for robotics research. Such features include, easy
testing with ROS’s builtin unit testing framework, language independence with ROS already
having a C++ and Python API, ROS’s thinness making it easy to port and integrate with
other frameworks, ROS-agnostic libraries, and scalability, making it appropriate for large
development processes. All of these features make ROS such a widely used framework for
robotics research as a whole, warranting the shift to ROS for both the Drona and SOTER
implementation.
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Chapter 3

Run-Time Assurance with SOTER on
ROS

This chapter outlines the main contributions of this work, namely the new architecture of
the SOTER framework, how it achieves assurance on robotic systems based on the Robot
Operating System, and the multi-robot surveillance case study we use to evaluate the efficacy
of the framework. The approach we took to designing this framework was to re-design each
component and create a narrow interface of communication between each component and
the Robot SDK, though separate Cpp modules. Using this framework, the user simply
needs to build their program using the SOTER language at the application level, using
the components outlined below, and the SOTER framework will automatically create the
executable Cpp code that interfaces with the ROS ecosystem. Because we specifically focus
on the ROS, we make our framework flexible enough to where any ROS developer can create
their ROS packages in their native catkin workspace, but now using SOTER code. This
architecture makes it a very modular framework that fits perfectly into traditional robotics
development.

3.1 Architecture Overview

The design goal of this new SOTER architecture is to have clearly defined components that
abstract different levels of the generic robotics software stack. As mentioned, a huge concern
for programming and creating highly reactive robotic systems is to properly handle non-
deterministically generated asynchronous events. Hence, we integrate the P state-machine
based programming language as the basis for this SOTER framework. Looking at Figure 3.1,
the general idea of our architecture is to have the programmer simply implement application
logic at a high level using SOTER, and have the rest of our framework use these declarations
to generate the necessary components in order to accomplish those application goals. The
goal is to have the programmer interact with high-level constructs and declaratively build
these robotic systems with monitoring capabilities, and have the framework remove a lot of
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the overhead that comes with building these systems traditionally. Hence, we organize the
architecture as seen in Figure 3.1, with modular components that create many abstractions
between different levels of the framework.

Organizing the various components as P state machines helps simplify the process of
implementing and specifying asynchronous event-driven programs. For this reason, the ar-
chitecture of our refactored version of SOTER on the Robot Operating System borrows from
the original Drona DMR stack with some notable differences. These differences include new
modules in the Software Stack and a completely different methodology for communicating
with the Robot SDK. This new narrow interface of communication to the Robot SDK en-
ables efficient communication, easily monitor-able components, and portability on to other
SDKs.

At a high level, looking at Figure 3.1, the programmer primarily interfaces with the
Task Planner, where they implement application specific goals. The Task Planner will have
one or more robot machines, which are the actual robots used in the application. Each
of these robots maps to destinations using their own motion planner, and these plans are
executed by the plan executor module. For monitoring, the programmer interfaces with
the Sense and Infer module, where they implement monitors that observe certain properties
of the application. Lastly each of these components interface the Robot SDK through a
thin middleware termed Cpp Modules, which abstract away many of the underlying details
needed for ROS programming, and make them accessible in the SOTER language.

The new architecture has been designed such that migrating to new alternatives to ROS
in the future incurs minimal overhead, and is flexible to support even ROS 2 [17], LCM
[16], MAVLink [11], and ZeroMQ [26], just to name a few. We will outline the new SOTER
architecture by first describing each of the components in the framework, as shown in Figure
3.1.

Task Planner

For the purposes of illustrating the different features of the SOTER framework, we will be
using a robot surveillance sample case study. We use this case study for later evaluating
our framework as well. Starting with the top of the stack, we have the application, which
we term the Task Planner. The Task Planner is where the programmer implements all ap-
plication specific goals. In the context of the robot surveillance example, this application
layer implements the robot surveillance protocol that ensures the application specific prop-
erty, which is to have multiple robots visit a series of different points indefinitely. This is
where the programmer includes information on how to instantiate individual robots, what
topics/events they’re are subscribed to, and which points individual robots must visit. The
programmer encodes all of this information using the P language. The Task Planner also
is in charge of setting up the Robot SDK interface, in this case the ROS interface. We
will discuss this more later when discussing the middleware necessary to integrate P into
a ROS-based workflow. It is also important to note that the Task Planner is often imple-
mented as a multi-threaded P state machine, so this much of the communication happens
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asynchronously, especially in the multi-robot case. In the surveillance protocol, the single
instance of the Task Planner is often communicating to two separate robots concurrently in
order to have both robots visit locations simultaneously, covering more workspace area in
less time for our specific application.

Figure 3.1: SOTER Framework Architecture

Robot State Machine

As shown in Figure 3.1, the next components in the SOTER architecture are the Robot
machines. Each of these P based state machines are instantiated from the Task Planner
directly and each one represent a different robot as part of the application. Hence, there
can be multiple instantiations of the generic robot state machine. The robot machine is
responsible for subscribing and listening to events published by the Task Planner for each
individual robot, and to act accordingly. In the robot surveillance example, there are two
instances of the Robot machine and each robot is responsible for listening to locations sent
by the Task Planner. The robot machines also have to initialize themselves with the Robot
SDKs, in this case ROS, as soon as they are instantiated by the Task Planner. This is part
of the middleware necessary to integrate P into the ROS SDK. The robot machines also need
to know the presence of other robots in their workspace, and so the task planner provides
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each robot with the information required to learn the positions and communicate with all of
the other robots in the application.

Motion Planner

Each Robot state machine creates a designated motion planner state machine. The goal
of the motion planner machine is create a path with a series of way points to reach a
particular destination in the workspace. With an instantiation for each robot state machine,
the motion planner accordingly only computes paths for a specific robot. Hence, when a robot
state machine receives a specific destination points from the Task Planner, this information
then gets transmitted to the the respective motion planner to compute the corresponding
path. The reason for this separation and multiple instances of the motion planner in the
stack is again to fulfill the original goal of having the multiple robots survey the workspace
concurrently. With this architecture, each robot can compute its own specific paths for its
own destinations. The separation of the motion planner from the robot itself allows for a
more modular design. This is helpful especially since there are many options for third-party
motion planners; this design allows a programmer to swap motion planners easily without
having to re-architect their full robotics stack. In the robot surveillance case study, we use
the Open Motion Planning Library (OMPL) motion planner [23] in order to compute paths.
In our case, we use the OMPL library out of the box, which also relies on a custom workspace
parser library to take into account the initial locations of the robots, static obstacles, and
other key features of the workspace. This workspace parser reads an XML file to read in
this information. This is also particularly important when using multiple motion planners
concurrently, which is often the case in the Simplex architecture for run-time assurance.
The original SOTER paper has an example with a performant AC motion planner next to
a verifiable, safe motion planner, where control is swapped based of the decision module
[4]. One thing to note about this motion planner design is that it takes advantage of the
P language’s ability to be able to call external function written in the C language, through
foreign functions as described in Chapter 2. These motion planner machines are hence able
to make third party C function calls easily from directly inside the P program, which makes
it even easier to integrate third-party motion planners who have C/Cpp APIs. These foreign
C functions live in a separate C module that can then be compiled with the P program and
executed together. This is the implementation we use in the robot surveillance case study.
We will further discuss the compilation process when describing ROS integration with the
P language.

Plan Executor

Each of the motion planner machines for their respective robots, creates an instance of a Plan
Executor state machine. The Plan Executor machine’s goal is to be able to physically execute
a path, which is defined by a series of way points in order to reach a destination point, on a
specific robot. Hence, each Plan Executor is also uniquely mapped to a specific robot in the
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workspace. The Plan Executor listens for paths from its corresponding motion planner, and
then interfaces with ROS through foreign functions in order to physically execute the path
on to their respective robot. In this case, because ROS only has a Cpp API, we call a Cpp
foreign function that gets masked as a C function later down the line with the compiler. More
on this interface will be discussed later. Now looking at Figure 3.1, we see a clear, ordered,
logical chain of P state machines from the Task Planner, to the Robot State Machines, to
their respective Motion Planners, to their respective Plan Executors. These machines are
intentionally constructed for events to not only be sent down stream, but also upstream. As
mentioned, the overall framework is a multi-threaded application where many aspects of the
program will run asynchronously. However, this flow of sending and executing one location
at a time to the Robot machine needs to be happen sequentially. Hence, we use thread
blocking in P semantics (using the send/receive blocks) to stop further execution of these
machines until notified otherwise. More concretely, once the Motion Planner computes its
path for a specific target destination, the Motion Planner sends this path to its Plan Executor
and then halts all further execution until the Plan Executor finally finishes executing the
ROS goToDestination function, which only terminates when the robot has finally reached
that destination point. The Plan Executor then sends an event to the Motion Planner
notifying its completion, and then the Motion Planner also sends this completion message
further upstream to the Robot machine to signal it to send the next point that as been
queued from the Task Planner. This clearly separated design for the Software Stack enables
this bidirectional communication which is essential, and otherwise difficult to implement in
robotic systems.

ROS Integration

In order to understand the ROS integration into our P based DMR software stack, we must
first overview the traditional ROS development flow using its official build system, catkin
[25]. Catkin is a collection of CMake macros and associated code used to build software
packages, in this case ROS based packages. To build any ROS-based project, you must
first create this project from within a catkin workspace. The catkin workspace is divided
into 3 categories: (1) Source Space, (2) Build Space, and (3) Development Space. The
source space is where all source code of the catkin package resides. The build space is where
CMake is called to build the catkin packages that are found in the source space. CMake is
a cross-platform open source tool to manage the build-process of software using a compiler-
independent method [14]. It can traditionally be used to build C/Cpp based projects, which
is appropriate for ROS Cpp projects. The development space, also termed the devel space, is
where the built targets are placed prior to being installed. There is also an inexplicit install
space, which does not reside in the workspace. This is where targets are installed, once they
are built. Certain packages contain specific nodes, which reside in the source space. These
nodes are specific executable programs within the package. Once these packages are built
and installed, specific nodes can be run using the rosrun package_name node_name command.
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Now before proceeding, we must first overview how traditional P programs are compiled
and executed. This will help motivate the integration process with ROS and the catkin
workspace. Traditionally, P programs are constructed in either one or more .p files using
the semantics described in Chapter 2. These P files are then compiled using the P compiler,
which is a .NET Core application. This compiles all of the P programs automatically into
C code. In order to actually execute the P program, there needs to be a driver C program
with a traditional main method that calls the PrtMkMachine(...) function from the P run-time
directly on the driving P machine found in the P program. This is to tell the executable which
P state machine to start execution from. With this Main.c file along with the newly compiled
C files as a result of calling the P compiler on the relevant P files, we now have at least 2 C
files that need to be built and executed. In P, this done using CMake, so the programmer
is responsible for creating a CMakeLists.txt file with the relevant files and libraries, which
includes all of the P run-time. After running cmake, this generates a traditional executable
of the P program which can then be run from the command line.

Now having described how both ROS and P operate as standalone systems, we can now
describe how to integrate both. We will describe this process in the context of our robot
surveillance case study to concretize the steps taken. To start, we have left the ROS build
system exactly the same with the traditional catkin flow. The only change in the ROS
flow is in the source space for our specific package. We start by creating a stand alone
catkin package for our project, which we call Drona. This Drona package found in the catkin
source space then contains separate nodes for different tasks/applications. Within this Drona

package is where we stray from the traditional ROS development flow. Here we populate
our software stack with a series of P files, one for each of the components of the SOTER
robotics stack. These P state machines have various responsibilities, some of which are very
dependent on the ROS SDK. In these cases, we use foreign function calls from directly in P.
These foreign functions live in separate Cpp modules that directly interact with ROS using
the roscpp API. It is important to note that traditionally P programs only support C foreign
functions, so we need to use the extern "C" declaration for each of our foreign functions. This
makes the function-name in Cpp have C linkage so that the client C code, which will be the
P to C compiled programs, can link to these functions using a compatible C header file that
contains the declarations of these functions. This is enough to be able to call these Cpp
functions from with the P program. Now with the properly formatted foreign functions, the
P program is ready to be compiled to C using the traditional dotnet compiler. We also need
to make a change to the way we create the driver C program that runs the full P program.
Now because the P programs rely on ROS functionality, there is some setup that is required
even before calling PrtMkMachine, on the first driving P machine. Since again this ROS setup
is only possible using the roscpp API, this driver program also now needs to be a cpp file
with all ROS initialization and then the call to PrtMkMachine to initialize the first P machine
which in our case is the TaskPlanner machine. We now have all Cpp files containing foreign
functions, the compiled C files from our P programs, and the driver Cpp program to initialize
the TaskPlanner. We now create the necessary CMake files and incorporate all of these files in
addition to any external dependencies. In our drone surveillance example, we also needed to
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include the P run-time, the OMPL motion planner, and the external workspace parser which
is used by the OMPL motion planner. The combination of multiple CMake files help declare
the executable P program has a ROS executable inside of our Drona catkin package. This
helps then interface with these executable P programs as any traditional ROS executable
and so we can use the rosrun command as before. Even in the traditional ROS development
flow, the programmer often has multiple nodes and packages running simultaneously, with
each package tasked with a specific application. In our case study, we have the Drona package
as the executable robot software and we have a separate multi_robot package that launches a
gazebo simulation of the actual robots used to run our robot surveillance application. This
simulation catkin package is the physical workspace to run experiments, and therefore has to
have the same features as found in the xml workspace file used as part of our OMPL motion
planner.

Overall with this kind of decoupled architecture between the software stack and the
Robot SDK, out SOTER implementation of a generic DMR software stack is now much
more modular, making ports to other Robot SDKs far simpler. Through the use of foreign
functions and CMake, we can easily include any generic 3rd party SDK with a C/Cpp API
easily.

Sense & Infer Module / Run-Time Assurance

Transitioning into run-time assurance for our SOTER implementation, the final component
of our DMR software stack as shown in Figure 3.1 is the Sense and Infer module. The
Sense and Infer module is where the programmer is able to include monitors that use a
variety of sensors from the robot and observe different properties of the system. Monitors
are also responsible for providing run-time assurance based on their observations. Hence,
the monitors also implement the decision module logic where they are able to switch control
from the advanced controller to the safe controller based on the state of the system. The
construction of the monitors themselves is largely dependent on the RTA module and desired
safety specification of the application. In general the monitors also interface with many
properties of the robot or simulation itself which is all available through the ROS SDK, and
hence the Sense and Infer module as a whole also has a dependence on ROS. Like with the
previously described components, the Sense and Infer module is entirely implemented as a
series of P state machines and because of the ROS dependencies, they again use the Cpp
foreign functions from directly within the monitors with a setup similar to that which was
described in the ROS Integration.

To aid in our discussion of what goes into the construction of these P based monitors, we
will now draw upon the specific run-time assurance modules used in our robot surveillance
case study. The first monitor we construct is a Battery monitor that observes battery
percentage of the robot. The desired safety property we want for our software stack is
to provide battery safety, that prioritizes safely bringing the robot to the charging station
when the battery charge falls below a threshold level. Hence, there needs to be a Battery
monitor for each of our robots. The monitor itself first gets initialized by the corresponding
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Robot state machine with the necessary information to observe the corresponding robot.
The battery machines each make foreign Cpp function calls that retrieve the current battery
percentage of the robot. We consider the robot to be in a safer state if its battery percentage
is above 85%. We design our decision logic, the ttf2∆ function, based on the maximum
amount battery discharge that could happen in 2∆ time and the maximum charge required
to bring the robot to its corresponding charging station. We will go into the specifics of the
construction of this RTA in the evaluation section, but given the construction of this function
we repeatedly call this function in a loop every ∆ time and if the monitor senses that the
battery percentage will fall below 85%, then the monitor calls a very specially constructed
Cpp foreign function SwitchACToSC(...) which switches control from the advanced controller,
which receives the current motion plan from the Motion Planner machine and forwards it
to the Plan Executor machine, to the safe controller, which is a certified planner that safely
brings the robot from its current position to the charging station. Once the robot has
safely recharged at the charging station, the decision logic will sense that there is no longer
imminent danger and call another foreign function SwitchSCToAC to return control back to the
advanced controller from the safe controller.

The next P based monitor we use in our robot surveillance case study is a location based
monitor in order to geofence our grid-like workspace. In this experiment, our robots travel
to a variety of points in a 5 x 5 grid. However, we consider the robot to be in the safer
state when in the inner 4 x 4 grid, and safe if in the difference in the outer border, outside
of the 4 x 4, but still within the 5 x 5. If the robot is outside of the 5 x 5, then it is in
an unsafe state. Hence, in order provide such safety guarantees, we construct a P monitor
that exclusively monitors the location of the robot. It is important to note that just like
in the battery monitor case, we have a separate monitor for each of the robots, geofencing
each independently. The monitor itself follows a similar construction to the battery example,
since it also behaves as the decision module. This location based monitor gets instantiated
from each of the respective Robot state machines. The monitor then repeatedly makes a
foreign cpp function call MonitorLocation(...) to observe the robot location. Our ∆ for this
RTA module is 0.5 seconds and we design our design logic using this value in addition to
the current position and the velocities of the robots in order to decide whether the robot
will be in an unsafe state within 2∆. Using this check that happens every ∆ time, we again
use the same foreign function SwitchACToSC(...) to switch to the safe controller when danger
is imminent. In this case the Safe Contoller is a certified planner that safely brings the
robot back towards the center of our workspace, moving away from the geo fenced barrier as
quickly as possible. The monitor still observes the location of the robot and switches back
to the advanced controller once back into a safer state using SwitchSCToAC(...).

The third P based monitor we use in our robot surveillance case study is again another
location based monitor, but this time to prevent collisions between robots. In this case, we
have a separate location monitor that gets spawned, not at the robot level, but at the Task
Planner level, where it monitors locations of all the robots simultaneously. In our robot
surveillance case study, we have two robots simultaneously navigating the workspace and so
we want to make sure that the robots’ paths never cross, causing a collision. In this case,
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the robot is in a safer state if the robot is more than 0.5 units away from any other robot,
and in a safe state if the robot is between 0.3 and 0.5 units away from another robot. If the
robot is less than 0.3 units from another robot, then it is considered in an unsafe state. This
monitor also acts as the decision module for each of the robots and periodically observes each
robot using the MonitorLocation(...) foreign Cpp function every ∆ time, which is again 0.5
seconds. The decision logic again uses the velocity of each robot in addition to each position
to determine if it’s in danger. If so, it calls the SwitchACToSC(...) to switch to the safe
controller which is a certified planner to move the robot back 0.5 units until out of collision
territory. Once the robot is back into a safe state, the monitor calls SwitchSCToAC(...) to
return control to the advanced controller, which is a node that receives the current motion
plan from the planner to move towards to the original destination point and forwards it to
the Plan executor to execute it using the motion primitives provided by the ROS SDK.

P Interrupt Mechanism

In this architecture, the way the decision modules/monitors switch control from the ad-
vanced controller to the safe controller is by interrupting the execution of the Plan Executor
module. At this stage, the Plan executor interfaces with the Cpp modules in order to prop-
erly execute plans provided by the motion planner. Currently, the Sense and Infer module,
which houses the monitors, is indirectly interrupting this flow of execution by switching con-
trol at the Cpp module level. However, ideally we need a mechanism that interrupts the
flow of execution at the P language level. The monitors implemented in the Sense and Infer
modules need to directly interrupt the Plan Executor, rather than interrupting the function
calls the Plan Executor makes from the Cpp modules to interface with ROS. This is so that
we abstract away as much Cpp code as possible and stick to implementing all flows in this
framework using the SOTER language exclusively. Currently, the P language, which we use
for implementation, does not support any sort of interrupt mechanism, where event based
communication and action handlers can be halted in between. We leave this implementation
of an interrupt mechanism in the P language as future work.

3.2 Language/Systems Contributions for SOTER

Integration on ROS

This section builds off the ROS Integration subsection, where we describe the key language
and systems contributions we make in order to support SOTER/P on top of the ROS plat-
form specifically. This section intends to enumerate the specific contributions and capabilities
that are now possible with ROS development using the SOTER framework.
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Compiling P Programs as ROS nodes

Using this refactored SOTER framework, developers can now execute programs in the P
language as traditional ROS nodes. Programmers are able to create ROS packages just as
before, but they can now include P code as part of those packages. Traditionally, ROS
developers have a source space where they include all of the application specific code for a
specific package. This space can now also include P files, which are then compiled down
to executable Cpp ROS executables. These executables can be run just as before with
the command rosrun ros_package ros_executable, which can be called from the ROS catkin
workspace. Traditionally SOTER/P programs are compiled down to executable C code. In
this work, we make modifications to the compilation process of these processes in order to
support the traditional catkin compilation process of ROS. These P programs are compiled
so that they can be executed natively by the ROS Master node.

Dynamic ROS node generation from the P language

Through this SOTER framework, we now have the ability to dynamically create ROS nodes
with their own publishers and ROS callbacks from Task Planner at the P language level. Us-
ing this, you can create a Robot machine in P, and all the setup for its publisher, subscriber,
and call back information will automatically be handled in the Cpp modules, abstracting
away overhead of traditional ROS programming. The publish and subscribe method of
communication is used to control the dynamics of the robot, but is something the SOTER
developer does not have to worry about as they are only concerned with moving the robot
to a series of way points. The callback information is used to provide support for lots of the
monitoring capabilities. Again, the P programmer does not need to concern themselves with
the details of how the monitor is capturing its information. Rather, they have the ability to
simply create monitors that interface with these callbacks. We store all of this P to ROS
information in a series of maps, so that there is a one to one correspondence between the P
program and the ROS nodes.

As part of this dynamic node generation, we split ROS initialization and all the publish/-
subscribe nodes. Traditionally ROS programs have to do some initialization of the master
node and all publishers/subscribers at the start of the main program that drives their en-
tire ROS program. We now have many different components in our software stack that are
written in P and P programs themselves have a driver C program that initializes the main
P machine. In this framework, we decoupled the ROS initialization process between this
driver C program, which now had to be modified to a Cpp program, and moved all other
ROS initialization into Cpp modules that are called dynamically as new components in P
are initialized.
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Cpp Integration for P programs

Through this framework, we had to make some modifications to how P programs are compiled
so that they can be connected to the ROS ecosystem. One of the main changes we needed
to make was to integrate Cpp into P programs, instead of C, since ROS only supports a Cpp
API. P programs traditionally are compiled into executable C code, but this is problematic
with the ROS Cpp API. This required some changes to the P compilation process, which is
now directly integrated with the ROS compilation process. We had to specifically modify the
driver C program for P to support Cpp, the functions associated with this driver program
(mainly used for making the P program multi-threaded), and all the foreign functions to
Cpp, since many had ROS dependencies.

P Integration with third party simulators

Through this framework, in order to actually drive robots using the Robot Operating System,
we needed the P code to interface with third party simulators. This is so that the changes in
the Task Planner at the SOTER/P level, directly resulted in modifications at the simulation
level. Through this refactor, we were able to integrate executable P code with third party
simulators. In our case study, we were able to compile and run our P code on a third party
gazebo simulator.

3.3 Evaluation

We empirically evaluate the SOTER framework by building an RTA protected robot surveil-
lance software stack that satisfies the following safety invariant: φbattery ∧φgeofence∧φcollision.
The goal of our evaluation is to show how this new SOTER framework can be used to
build a safe software stack for a sample case study, where each component provides security
guarantees and satisfies its own safety specification. An important feature of this SOTER
architecture is the ability switch from the advanced controller to the safe controller and
back, in order to maximize performance. We also empirically evaluate our software stack
using rigorous simulation to show that the RTA-protected software stack ensures safety of
the system even in the presence of third party components, where the system would have
otherwise failed.

SOTER Framework / Experimental Setup

The SOTER framework itself is largely built on top of the state machine based programming
language, P. For this reason, it also has the ability to take advantage of many of the tools
built into the P language. Specifically, it uses the compiler, the P run-time, and the backend
systematic testing engine. The compiler first checks that all components are properly formed
and converts the syntax of the P language into executable C code. The P to C run-time then
executes this program by using the C representations of the nodes. The periodic behavior
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of the processes in the RTA modules are implemented with OS timers and the underlying
operating system’s task scheduler. Deploying this case study on a real time operating system
is left as future work.

The P compiler also allows the generated C code to be systematically tested by the
backend testing engine. This engine enumerates all possible executions of the program in
a model checking fashion, controlling the interleaving of nodes using an external scheduler.
The third party components, however, are not included and replaced by their abstractions,
mainly because the controllers themselves are not implemented by SOTER language, but
rather with the middleware used to connect SOTER with the Robot SDK.

The experiments were run on simulation software on two Turtlebot3 robots. We use the
latest stable version of ROS, which is ROS Melodic Morenia, on the Linux operating system,
specifically the Ubuntu 18.04 distribution. The simulations were conducted in the gazebo
simulator environment that has high fidelity models of the Turtlebot3 robot. Videos of our
simulations can be found on https://drona-org.github.io/Drona/ and all implementation of
our framework can be found on https://github.com/Drona-Org/Drona.

RTA modules

RTA-Protected Battery Safety

The first safety guarantee that we would like to provide for our robot surveillance system
is battery safety. We would like to have the stack prioritize safely bringing the robot to
its charging station. In the construction of an RTA module for battery safety, we design
our advanced controller to be a node that receives the current motion plan for the current
destination provided by the Task Planner from the Motion Planner machine and simply
forwards it to the Plan Executor machine that then uses the motion primitives provided by
the ROS SDK to execute that path. The safe controller is a certified planner that safely brings
the robot to its corresponding charging station from the robots current position. We define
the robot to be in a safe state in regards to battery safety as long as the battery percentage
is greater than 0. We define the safer states for the robot when its battery percentage is
above 85%. Because we observe that battery percentage decreases at a relatively slow, we
have a relatively large values for our period ∆.

We design our decision logic, the ttf2∆ function, based on the maximum amount battery
discharge that could happen in 2∆ time and the maximum charge required to bring the
robot to its charging station. We use the maximum charge required to bring the robot from
any point on the workspace as a conservative estimate that is also easy to estimate offline.
We define our ttf2∆ function as the current battery minus maximum discharge that occurs
across in time 2∆. Formally, ttf2∆ = bt −maxucost(u, 2∆), where bt is the current battery
percentage and the cost function is the amount of battery that robot discharges by applying
control, u, for time 2∆. This guarantees the monitor, and specifically the decision module,
switches control to the SC when it anticipates that the robot will not be able to make it to
the charging station safely. It also ensures that the DM switches control back to the AC
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when the robot is sufficiently charged, which only happens once the robot has sufficiently
reached at least 85% charge. Figure 3.2 shows a snapshot from our simulation where robots
are approaching their respective charging stations, abandoning their original destinations,
when battery is low and the monitor senses that the robots may not have enough charge to
reach the destination and arrive at the charging station safely.

Figure 3.2: Battery Simulation

RTA for Geofencing

The second safety guarantee that we would like to provide for our robot surveillance system
is geofencing. We would like the software stack to prioritize safely bringing the robot back
within the safe grounds of the workspace. In the construction of this RTA module for
geofencing, we design our advanced controller to be a node that receives the current motion
plan for the current destination provided by the Task Planner from the motion planner
machine that uses the motion primitives provided by the ROS SDK to execute that path.
The safe controller is a certified planner that safely brings the robot back towards the center
of the workspace, out of the less safe outer boundary of our 5 x 5 grid workspace. We
design the robot to be in a safe state as long as the robot has a longitude and latitude
between 0 and 5, inclusively. Formally, 0 ≤ robotid,x ≤ 5 ∧ 0 ≤ robotid,y ≤ 5. We define
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the safer states for the robot when its in the middle 4 x 4 subgrid within the workspace, or
0.5 ≤ robotid,x ≤ 4.5 ∧ 0.5 ≤ robotid,y ≤ 4.5. Because location of the robot changes quite
rapidly we have the smallest ∆ period possible of 0.5 seconds, since this is the minimum
amount of time needed to refresh the ROS callback in order to read all robots’ positions
from the monitors.

Figure 3.3: Geo-Fence Simulation

We design our ttf2∆ function based on the maximum amount the robot can move in any
direction under any control in 2∆ time. We define our ttf2∆ as the current position of the
robot and the maximum distance change in 2∆ time. This maximum distance is computed
under the hood as a function of ∆, as well as the x and y components of the velocity of the
robot at time t. Because we have also capped the speeds of the robots themselves, we can
easily estimate worst case behavior as a conservative estimate which in turn guarantees that
the decisions module switches control to the SC when the robot is in only the safe region,
and headed outside of the 5 x 5. In this instant, the SC will gain control and bring the robot
from its current position towards the center of the workspace until it reaches the the safer
region, in which the AC will gain control of the robot once again, as it attempts to visit the
next destination provided by the Task Planner. Figure 3.3 is a snapshot from our simulation
and shows the robot moving back to safety and visually depicts the boundaries of what is
safer, safe, and unsafe. The robot is attempting to go back to the gray safer zone, as it was
originally in the yellow safe zone, but on its way to visit a point in the red unsafe zone.
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RTA for Collision Avoidance

The third safety guarantee that we would like to provide for our robot surveillance system is
collision avoidance. We would like the software stack to prioritize safely maneuvering out of
crashes with other robots in the event where their motion plans cause their paths cross. In the
construction of this RTA module for collision avoidance, we design our advanced controller
to be a node that receives the current motion plan for the current destination provided
by the Task Planner from the Motion Planner machine that uses the motion primitives
provided by the ROS SDK to execute that path. The safe controller is a certified planner
that safely moves the robot back by 0.5 units radially from the to be collision point. The
robot is in a safe state if the robot is more than 0.3 units away from the other robot, or
dist(robot1, robot2) ≥ 0.3. The robot is in a safer state if dist(robot1, robot2) ≥ 0.5. Because
location of the robot changes quite rapidly we have the smaller ∆ period of 0.5 seconds.

Figure 3.4: Collision Avoidance Simulation

We design our ttf2∆ function very similar to the geofence version of the ttf2∆ function.
The function is based on the maximum amount the robot can move in any direction under
any control in 2∆ time. We define our ttf2∆ as the current position of the robot and the
maximum distance change in 2∆ time. This maximum distance is computed under the hood
as a function of ∆, as well as the x and y components of the velocity of the robot at time
t. Because we have also capped the speeds of the robots themselves, we can easily estimate
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worst case behavior as a conservative estimate which in turn guarantees that the decision
module switches control to the SC when the robot is in the safe (and not safer) region, and
headed to crash with the other robot. In this instant, the SC will gain control and bring the
robot from its current position radially backwards from the collision point until it reaches
the the safer region and has one robot wait until the other robot completes its plan, in which
the AC will gain control of the robot once again, as it attempts to visit the destination point
provided by the Task Planner. Figure 3.4 is a snapshot from our simulation that shows
robots have successfully avoided colliding into one another, where both robots move radially
out from their original collision point, and one waits as the other completes its plan and
moves on to its next destination.

Rigorous Simulation

Figure 3.5: Results of Rigorous Simulation

To show that the SOTER frameworks aids in building robust robotics systems with secu-
rity guarantees, we conducted rigorous stress testing of the RTA-protected robot surveillance
software stack. We conducted software in the loop simulations, where the 2 autonomous
robots were tasked to visit randomly generated surveillance points in the Gazebo 5 x 5 Grid
workspace, while avoiding static obstacles. Totally, the robots drove for approximately 2
hours of simulation, which was plenty given the relatively small size of our workspace the
robots were exploring. We conducted this simulation 4 times and we found that on average
there were 313 total disengagements, where the advanced controller switched over to the
safe controller to avoid a potential safety violation. The majority of these disengagements
were due to geo-fencing, where robots would try to explore outside of the boundaries of what
is considered safe, and we can attribute this relatively high number again to the relatively
small size of the workspace. The recovery times of geo-fencing was relatively small, so it did
not hurt overall performance. With all three RTA modules in action, we found that that
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several instances of returning control to the AC after recovering the system as well. During
our rigorous simulation, the AC nodes were in control on average 80.2% of the time. Thus,
safety is ensured without sacrificing overall performance of the robotic system as a whole.
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Chapter 4

Conclusion

The focus of this thesis is to provide a language based approach for run-time assurance for
robotic systems based on the Robot Operating System. We present SOTER, an updated
run-time assurance (RTA) framework for building safe, distributed robotic systems on ROS,
but can be generalized to any Robot SDK. In this work, we show that the SOTER frame-
work provides a programming language to implement safe robotic systems using the Simplex
architecture. We also provide results showing how to build the decision module that imple-
ments the switching logic between the advanced controller and the safe controller, and show
its efficacy on a robot surveillance case study. The goal of this thesis is to create a general
strategy that can be used to further build such safe systems on ROS or any other SDK.

4.1 Future Work

This work focused on the overall architecture and design of the SOTER framework to be
compatible with the Robot Operating System. We focus on a fundamental restructure of the
SOTER implementation from its previous iteration and its predecessor Drona, and make it
more flexible in supporting a variety of Robot SDKs. One part of this included manually
including monitors in the Sense and Infer module that observe specific sensor data streams
on the robot in order to decide when to switch from the advanced controller to the safe
controller. An interesting new direction would be to automatically generate these monitors
in the SOTER/P compiler when given provided an RTA module. The goal would be to
have the programmer create an RTA module where they simply define the AC, SC, the
safe/safer states, and the ttd2∆ function. The compiler should then synthesize the monitor
automatically using the RTA language primitives and still function to the standard we present
in this work.

An immediate future direction is to implement an interrupt mechanism in the P pro-
gramming language. Currently, the Sense and Infer module indirectly interrupts the flow
of execution and switches between the AC and SC at the Cpp level, where ROS API’s are
implemented. Ideally, we would like a mechanism that interrupts the flow of execution at
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the P language level. This way the monitors can directly interrupt execution and switch
control before reaching ROS, abstracting away complexity and leaving logic at the SOTER
language level.

Another interesting future direction would be to build a more sophisticated case study.
As mentioned, this work was in part motivated by a research initiative from DARPA’s
Assured Autonomy project in collaboration with Boeing for automated taxiing of their air
crafts [6]. With their work progressing in parallel, it would be nice to incorporate their
advanced controllers and safe controllers for an automated taxiing case study using this
SOTER framework. Ideally, this framework would provide additional security guarantees on
top of their current system.

SOTER also provides a nice fit on top other existing work, such as Introspective Envi-
ronment Modeling [20], where the system can algorithmically generate assumptions on the
environment in which the system can operate correctly. Using this technique, SOTER could
not only understand when the system is safe, but also automatically synthesize a run-time
monitor that can determine when to switch between the AC and SC, a generation process
which the publication details. This would thus reduce what the programmer is responsible
for when creating their software stack. This would provide a nice end-to-end run-time as-
surance system that would be very easy to integrate into any robotic system, allowing us to
make further progress in the field of verified intelligent autonomous systems.
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