
Scalable Techniques for Sampling-Based Falsification

of AI-Based Cyber Physical Systems

Kesav Viswanadha

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-103

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-103.html

May 14, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would like to thank my advisor, Professor Sanjit A. Seshia, for all of his
guidance during this program and for providing me the opportunity to
engage in really interesting research efforts as part of the Learn and Verify
group at UC Berkeley. I would also like to thank my mentors, Edward Kim
and Professor Daniel J. Fremont, for all their invaluable contributions both
to this work and to my research experience. I would also like to thank
Francis Indaheng for his collaboration on the evaluation sections of this
work. Last but not least, I would like to thank my family and friends for
being incredibly supportive throughout this journey. None of this would be
possible without you.



Scalable Techniques for Sampling-Based Falsification of AI-Based Cyber Physical Systems

by

Kesav Viswanadha

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley



 
 

Scalable Techniques for Sampling-Based Falsification of AI-Based 
Cyber Physical Systems 

 
by Kesav Viswanadha 

 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Sanjit A. Seshia 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Venkatachalam Anantharam 
Second Reader 

 
 

(Date) 

Scalable Techniques for Sampling-Based Falsification of AI-Based 
Cyber Physical Systems

by Kesav Viswanadha

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Sanjit A. Seshia
Research Advisor

(Date)

* * * * * * *

Professor Venkatachalam Anantharam
Second Reader

(Date)

5/14/2021



1

Abstract

Scalable Techniques for Sampling-Based Falsification of AI-Based Cyber Physical Systems

by

Kesav Viswanadha

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

As autonomous vehicle (AV) technology grows more widespread, questions still persist about
how to e↵ectively verify their safety. Much progress has been made in developing testing
methodologies such as falsification for autonomous vehicles that interface with driving sim-
ulators to generate rich sets of scenarios. We present extensions to the Scenic scenario
specification language and VerifAI toolkit that improve the scalability of such methods by
allowing for falsification to be done more e�ciently and with more complex models of the end
goal. We first present a parallelized framework that is interfaced with both the simulation
and sampling capabilities of Scenic and the falsification capabilities of VerifAI, reducing the
execution time bottleneck inherently present in simulation-based testing. We then present
an extension of VerifAI’s falsification algorithms to support multi-dimensional objective op-
timization during sampling, using the concept of rulebooks to specify multiple metrics and
a preference ordering over the metrics that can be used to guide the counterexample search
process. Lastly, we evaluate the benefits of these extensions with a comprehensive set of
experiments written in the Scenic language.



i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Novel Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Parallelization of Search Algorithms 9

2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Multi-Dimensional Objectives 21

3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Conclusion 36

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 38



ii

List of Figures

1.1 Example Scenic script which places a pedestrian and car in the environment [4]. 4
1.2 A sampled scene of the script in Figure 1.1 in the CARLA simulator [12]. . . . . 4
1.3 An example of a dynamic scenario written using Scenic [4]. . . . . . . . . . . . . 5

2.1 Example Scenic code snippet instantiating two cars whose x-coordinates are de-
termined by independent uniform random distributions . . . . . . . . . . . . . . 10

2.2 Typical pipeline for falsification using VerifAI. . . . . . . . . . . . . . . . . . . . 10
2.3 Parallelized pipeline for falsification using VerifAI. . . . . . . . . . . . . . . . . . 11
2.4 Centralized sampling architecture for parallel falsification. . . . . . . . . . . . . 12
2.5 Legacy sampling and updating process in active samplers. The nextSample()

function is responsible for updating the internal state by calling update() with
the most recently generated sample. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Decoupled sampling and updating process for parallel active samplers. . . . . . 14
2.7 A screen capture from a simulation run using the Newtonian simulator. . . . . . 16

3.1 Example of a rulebook over six functions ⇢1...⇢6 [9] . . . . . . . . . . . . . . . . 22
3.2 Example of a rulebook that refutes exponential dropo↵ counting scheme. . . . . 24
3.3 Rulebook configuration G used for experimentation. . . . . . . . . . . . . . . . . 32
3.4 A Scenic script partially recreating the Uber crash scenario. . . . . . . . . . . . 34
3.5 Comparison of points sampled in feature space for various samplers. Yellow points

are counterexamples and purple points are safe examples. . . . . . . . . . . . . . 35



iii

List of Tables

2.1 Comparison of serial and parallel falsifiers with cross-entropy and Halton samplers
run in CARLA. The confidence interval ratio measures the ratio of the width of
the parallel falsification confidence interval to the width of the serial falsification
confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Comparison of epsilon-greedy and multi-armed bandit samplers with cross-entropy
and Halton samplers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Comparison of di↵erent rulebooks and the counterexamples found for each. . . . 33



iv

Acknowledgments

I would like to thank my advisor, Professor Sanjit A. Seshia, for all of his guidance during
this program and for providing me the opportunity to engage in really interesting research
e↵orts as part of the Learn and Verify group at UC Berkeley. I would also like to thank my
mentors, Edward Kim and Professor Daniel J. Fremont, for all their invaluable contributions
both to this work and to my research experience. I would also like to thank Francis Indaheng
for his collaboration on the evaluation sections of this work. Last but not least, I would like
to thank my family and friends for being incredibly supportive throughout this journey.
None of this would be possible without you.



1

Chapter 1

Introduction

With the advent of autonomous vehicles (AVs) in recent years, a number of fundamental
questions have arisen about the reliability of self-driving systems, especially given the in-
creased dependence on these systems that has led to reduced human involvement during
driving. The intent of such systems is to perform driving tasks in a way that feels natural,
abides by local tra�c laws, and most importantly, avoids driving errors typically made by
humans that lead to crashes. As such, it is crucial to thoroughly vet AV systems before they
are deemed fit for the road. The question of what needs to be tested and prioritized during
the development phase is an ongoing conversation both in the industry and academia [20].

It is unquestionable that autonomous vehicles are far from perfect. In 2017, Uber pulled
its self-driving vehicles from the road following a crash where the AV perception module failed
to recognize another car with a human driver making a left turn [28]. Similar situations arise
in the news quite frequently, and can sometimes lead to injuries and death. Therefore, formal
verification of autonomous vehicles, and more generally, safety-critical systems, is very much
a necessary step in reducing the number of casualties caused by such systems in the real
world. However, autonomous vehicles rely heavily on complex artificial intelligence (AI) and
machine learning (ML) components, which pose unique challenges for formal methods [30].

The motivation for this work is to improve the scalability of software designed to test
autonomous vehicle systems in simulation. While the rise of open-source and commercial
driving simulators has led to massive improvements in the ability to test driving systems,
systematically finding bugs in an e�cient way is still a major challenge given that simulation
of a full self-driving stack in a complex simulator environment is very computation intensive.

1.1 Problem Definition

E�cient Simulation-Based Falsification

Much of this work is rooted in concepts from formal methods as well as optimization. This
problem can be formulated in a variety of ways, but one natural one that comes to mind is



CHAPTER 1. INTRODUCTION 2

a simulation-based falsification problem. Given a system S and a specification �, the goal
of falsification and fuzz testing is to generate environment inputs x that cause the system
to violate the specification [13]. We draw these inputs from a from a semantic feature space
defined by a Scenic program (more on this in Section 1.2). Interfacing this with a simulator,
we generate a trace, or sequence of states, of the system given the initial input x. We can see
that this formulation is well-suited to the autonomous driving domain; we are given the self-
driving stack S, and it is the job of the developer to develop quantitative metrics to evaluate
the performance of the AV system and provide a set of test inputs to the environment that
represent a wide variety of possible situations that an autonomous vehicle could encounter.
Of course, the space of all possible inputs to the environment is boundless, and part of the
challenge of testing autonomous vehicles is that by nature, some new regions of this search
space are only discovered post-production when unexpected situations arise.

Because of the level of uncertainty introduced by the many neural-network based compo-
nents of autonomous vehicles as well as the space of possible environment inputs being hard
to control, this formal verification process is one of iterative improvement. We attempt to
address some of the numerous challenges presented in formulating specifications and mod-
eling environments in a way that allows for scalable falsification of self-driving systems [30].
One possible goal during verification is to find as many (interesting) corner cases as possible
that cause unexpected behavior in the self-driving stack. However, this poses some problems
as this goal can be reached in a rather simple way; if an input x is found that violates the
specification, we can typically find many inputs x0 that are very similar to x that also violate
the spec. While these inputs are technically di↵erent from each other, there is not much
diversity in the set of generated semantic feature vectors.

To mitigate this, another possible goal that can be formulated for this problem is to
maximize the diversity of inputs that lead to a counterexample. We qualitatively assess this
metric for the methods presented in Chapter 3. We can also consider that in the case that we
are trying to have as comprehensive of a test case suite as possible, we may be interested in
a notion of coverage of a search space. This is particularly important in testing as the space
of possible inputs is very large, so we want sample inputs from a large area of the semantic
feature space defined by the environment. Chapter 2 talks more about the metrics used to
this end and methods we implement for improving these metrics for a set of benchmarks.

Verification with Multiple Metrics

The second part of the problem formulation comes from the motivation that there are typ-
ically multiple metrics involved in the evaluation of an AV system. In this case our specifi-
cation � is a vector of either real or boolean values, where the j-th entry of � corresponds
to the value returned by the specification of the j-th metric. We are given a partial order
over the entries of � in terms of which metrics are violated and their relative importance.
The formal definition of this partial ordering is discussed in Chapter 3. We will now discuss
some of the prior work and foundation for the contributions made towards a solution to the
above problems.



CHAPTER 1. INTRODUCTION 3

1.2 Related Work

This work relies on several tools developed at UC Berkeley; we provide some background on
these tools as they pertain to the contributions made in this paper.

Overview of Scenic and Related Tools

Scenic is a probabilistic programming language developed by Daniel Fremont et al [15, 14].
It allows the specification of abstract scenarios, which are definitions of parameters in an
environment that are generated according to a random distribution. In the domain of AVs,
these parameters could be the locations, positions, and heading of the ego vehicle, other
vehicles, pedestrians, or inanimate objects in the scene; their positions relative to each other;
and other external factors such as the time of day, weather, colors of cars and buildings, etc.
As a programming language, Scenic is very similar to Python, with special syntax added
for easily defining variables in terms of distributions and relating them to each other in an
intuitive way.

For example, consider the simple Scenic program in Figure 1.1. The script is able to
import maps in OpenDrive format [3] as Scenic houses a built-in parser that turns these maps
into road objects internal to Scenic, encoded in the network variable. Scenic also provides an
interface to several open-source driving simulators; in this case we use the CARLA simulator
[12] (see Figure 1.2). We then instantiate an object which uniform randomly samples from
all the possible roads in the network, as well as a lane random uniformly sampled from the
road that is picked. Note that when the scenario is compiled, it still is only encoded as an
abstract scenario; therefore, the select road and select lane values are still not sampled.
This example shows how Scenic is able to internally maintain the dependencies between
randomly sampled variables and only assign them concrete values at runtime.

The program in Figure 1.1 is an example of a static scenario; the initial configurations of
the objects are generated in Scenic, but it is now up to the user to decide how to use these
in a full simulation. Scenic also supports the specification of dynamic scenarios - these are
scenarios for which parameters are time-dependent and sampled by Scenic at every timestep
[16]. Figure 1.3 gives an example of such a dynamic scenario; the ego and parked cars are
both assigned behaviors. These behaviors are also written in the Scenic language and specify
certain ways for a vehicle to drive. The Scenic interface with the simulator then uses these
behaviors to sample the actions at each timestep and converts them into simulator-specific
controls. The simulator then updates the state of world and sends the pertinent information
back to the Scenic interface, and the simulation continues until a maximum number of
timesteps is reached. All of the extensions made to Scenic in this work can be applied to
both dynamic and static scenarios.



CHAPTER 1. INTRODUCTION 4

1 param map = localPath(’../../tests/formats/opendrive/’ +
2 ’maps/CARLA/Town01.xodr’)
3 param carla_map = ’Town01’
4 model scenic.domains.driving.model
5

6 select_road = Uniform(*network.roads)
7 select_lane = Uniform(*select_road.lanes)
8 ego = Car on select_lane.centerline
9

10 right_sidewalk = network.laneGroupAt(ego)._sidewalk
11

12 Pedestrian on visible right_sidewalk
13

Figure 1.1: Example Scenic script which places a pedestrian and car in the environment [4].

Figure 1.2: A sampled scene of the script in Figure 1.1 in the CARLA simulator [12].



CHAPTER 1. INTRODUCTION 5

1 param map = localPath(’../../tests/formats/opendrive/’ +
2 ’maps/CARLA/Town05.xodr’)
3 param carla_map = ’Town05’
4 param time_step = 1.0/10
5

6 model scenic.domains.driving.model
7

8 behavior PullIntoRoad():
9 while (distance from self to ego) > 15:

10 wait
11 do FollowLaneBehavior(laneToFollow=ego.lane)
12

13 ego = Car with behavior DriveAvoidingCollisions(avoidance_threshold=5)
14

15 rightCurb = ego.laneGroup.curb
16 spot = OrientedPoint on visible rightCurb
17 badAngle = Uniform(1.0, -1.0) * Range(10, 20) deg
18 parkedCar = Car left of spot by 0.5,
19 facing badAngle relative to roadDirection,
20 with behavior PullIntoRoad
21

22 require (distance to parkedCar) > 20
23

24 monitor StopAfterInteraction:
25 for i in range(50):
26 wait
27 while ego.speed > 2:
28 wait
29 for i in range(50):
30 wait
31 terminate

Figure 1.3: An example of a dynamic scenario written using Scenic [4].



CHAPTER 1. INTRODUCTION 6

Overview of VerifAI and Related Tools

VerifAI is a toolkit written in the Python language that provides implementations of many
algorithms for the formal verification of AI-based cyber physical systems (CPS) [13]. The
main use case of VerifAI is falsification, which can be loosely defined as the systematic
generation of samples defined by a semantic feature space with the intent of finding coun-
terexamples to a specification over an AV system. Specifications are also written in VerifAI
using what is known as a monitor ; these terms are more formally defined in Chapter 2,
but roughly speaking, VerifAI monitors give users the flexibility to write both simple and
complex metrics to use to evaluate a simulation run.

VerifAI also supports encoding monitors as metric temporal logic (MTL) formulas. These
are similar in nature to linear temporal logic formulas, except that instead of encoding
conditions as booleans, we use real numbers that can quantify how strongly a condition is
satisfied or weakened. An example of this could be the following: "G(collisioncone0 &
collisioncone1 & collisioncone2)" [36]. This can be translated as the three variables
having to be positive over the entire course of the simulation; if any of them become negative,
the sample corresponding to the simulation is considered a counterexample.

VerifAI provides a number of sampling strategies to e�ciently search the feature space de-
fined either directly with VerifAI’s APIs or using a Scenic program. Before this work, VerifAI
only supported the creation of objectives that return a single real number as the definitive
evaluation metric of the AV system. Many of the sampling algorithms implemented, includ-
ing cross-entropy sampling, Bayesian optimization, and simulated annealing, are algorithms
commonly used in the optimization domain that are specifically meant to drive the search
process towards regions of the feature space that have lots of counterexamples.

Other tools have been developed for the falsification of simulated systems on various
platforms [2]. Another related field that has become increasingly popular is adversarial
machine learning - this is particularly useful for the falsification of deep neural networks
(DNNs), as these are di↵erentiable systems and it is possible to perform black-box attacks by
maliciously perturbing inputs in a way that causes incorrect output from the DNN [17]. These
techniques, however, are rather restricted in their scope for autonomous vehicles as they are
only able to falsify specific components of the driving stack, such as perception, prediction,
planning, or control [26]. The techniques we present that extend the capabilities of VerifAI
are intended to work on the system level; users are able to provide specifications over the
end-to-end system as well as independent components that the falsification algorithms will
try to violate.

Overview of Parallelization of Self-Driving Simulations

A big part of this work is in improving the e�ciency of sampling-based falsification meth-
ods, many of which are reliant on being able to run open-source driving simulators such
as CARLA in parallel. Samples, or concrete parameters generated to initialize a simulated
scenario, need to be simulated using a world with a dynamics model, which is a computa-



CHAPTER 1. INTRODUCTION 7

tionally intensive task. Therefore, being able to run many simulations at once in parallel is
beneficial in improving the runtime of a falsifier. The functionality to run many instances
of a simulator is natively available in CARLA [35], and we take advantage of this in our
work on parallelizing the falsification e↵ort, as we are able to easily run multiple instances of
CARLA and have simulations run in each independently. This has also been implemented
by the LGSVL simulator [21], but the current setup involving running simulations on a cloud
cluster makes it more well-suited to coverage testing rather than the active sampling meth-
ods implemented in VerifAI and augmented in this work. There has also been some recent
work on parallel computation over temporal logic formulas. Cralley et al have proposed a
variety of optimization algorithms that can be e�ciently run in parallel for the purposes of
falsification, including annealing algorithms [11], system simulation, and parallel robustness
computations over temporal logic formulas. These robustness computations are akin to the
computations performed by monitors in VerifAI; we apply these algorithms in the context
of end-to-end integration with Scenic, which allows not only the generation of samples but
the simulation of these samples with scenarios generated by Scenic. We discuss more on the
implementation and novel idea of this work below.

Overview of Multi-Dimensional Objective Specification and

Falsification

One use case of falsification that we present involves sampling in a way that optimizes mul-
tiple evaluation metrics at the same time. Censi et al [9] provide a framework for specifying
multi-dimensional objectives using a concept called rulebooks. This concept is elaborated
further in Chapter 3, but the high-level idea is to encode pairwise preferences between dif-
ferent metrics as edges in a directed graph (referred to as the “rulebook”). This graph then
defines a partial pre-order over the dimensions of the objective which can be used to guide
planning algorithms which optimize over these multiple objectives. There are many possible
ways to reconcile the ambiguity present in ordering multi-dimensional metric vectors, and
these are just a few of the ones pertinent to the implementation we present on top of Veri-
fAI for this work. For example, it is also possible to construct a Pareto frontier of samples
that partially violate the multi-dimensional objective, as has been tried in the reinforcement
learning community [25]; however, this does not leverage the preference ordering over metrics
that exists in many practical cases. There is also recent work on formulating principles of
driving, such as “no collisions” or “obey tra�c laws”, in a mathematical sense using specific
metrics [37]. These are particularly useful in applying concepts of multi-dimensional objec-
tive falsification to an AV industry setting, where there may be many objectives to keep in
mind during testing.

There has also been some work in implementing planning algorithms in autonomous
vehicles that simultaneously optimize multiple evaluation metrics. Abstractly speaking,
this is a similar idea to multi-dimensional objective falsification – except instead of finding
optimal trajectories, we are trying to find trajectories that are as suboptimal as possible.



CHAPTER 1. INTRODUCTION 8

For example, Castro et al have designed a planning algorithm called MVRRT* [8] which
incrementally builds up better and better trajectories that minimize a level of unsafety
computed over multiple metrics. Many of the same techniques can be used for both tasks as
it is not hard to formulate one task in terms of the other.

1.3 Novel Contributions and Outline

The novel contribution of this work two-fold: in Chapter 2, we discuss the theory and
implementation of parallelized falsification in the VerifAI toolkit. This work is unique in that
it leverages several di↵erent components involved in the falsification of AV systems into one
pipeline that provides end-to-end service with relative ease on the user’s end. Whereas many
open-source simulators provide the ability to spawn objects in an environment and execute
actions, this pipeline aims to make this process much simpler by allowing the specification
of environment inputs and behaviors at a higher semantic level in a way that is simulator-
agnostic. This e↵ort also incorporates ideas from parallelized optimization to make sure that
the active samplers implemented in VerifAI are able to make use of the parallelism and more
e↵ectively find regions of counterexamples.

In Chapter 3, we discuss the approach and implementation of several new algorithms in
the Scenic and VerifAI toolkits that help improve the scalability of falsification algorithms
by extending them to work with multi-dimensional objectives. This is a key step forward in
AV testing, as it is much more representative of the real world to be evaluating AV systems
on multiple metrics at the same time. We present many novel ideas in the specification and
optimization over these metrics that are built on ideas already discussed in the literature
and partially put forth by Scenic and VerifAI.

We also evaluate the work covered by each of these chapters with a comprehensive set
of Scenic programs that cover a wide range of possible scenarios that an AV system could
encounter in the real world. This library of Scenic programs serves as a benchmark for
the performance of the parallelized falsification pipeline, as well as a basis on which to
demonstrate the e�cacy of the novel multi-dimensional objective falsification algorithms [4,
5].



9

Chapter 2

Parallelization of Search Algorithms

2.1 Approach

Background

Before discussing the implementation of parallelization, we define several pertinent terms
and notations that will be used throughout the rest of this work:

• Let x denote a semantic feature vector sampled by VerifAI, having dimension d.

• The i-th (scalar) value of the feature vector is denoted by xi.

• Define S ✓ Rd as the space of all possible sampled features.

• Let ⇢(x) : S 7! R denote a specification function which takes in a feature vector x and
outputs a scalar value over the trajectory of the system generated from the parameters
x.

• Let ⇢⇤ be the threshold of the specification, such that if ⇢(x) < ⇢
⇤, x is a counterexample

to the specification function. Typically in VerifAI, we set ⇢
⇤ = 0 and normalize the

output of the monitor accordingly.

Common terms used in VerifAI:

• Monitor: A Python function which maps a trajectory to a scalar value, i.e. calculates
⇢(x) after the full trajectory according to the parameters x is generated by the system.

• Scene: An object describing all the objects present (at the current timestep) in the
environment, such as the ego vehicle, other vehicles, pedestrians, buildings, etc. Also
contains information about the current state of various objects, including their current
position and trajectory, as well as information specific to the simulator being used for
falsification, such as the map being used.



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 10

1 ego = Car at VerifaiRange(-5, 5) @ 2, with behavior FollowLaneBehavior
2 car1 = Car at 4 @ VerifaiRange(-1, -2)

Figure 2.1: Example Scenic code snippet instantiating two cars whose x-coordinates are
determined by independent uniform random distributions

Figure 2.2: Typical pipeline for falsification using VerifAI.

• Sampler: Responsible for generating values of the feature vector x according to the
constraints specified in the Scenic program. Can be done in either Scenic or VerifAI
depending on the user’s preference. May or may not maintain internal state as needed
to generate the next sample (i.e. the history of previously sampled values and their
outcomes given the specification).

• Falsifier: An artifact of VerifAI that takes as input a sampler and a monitor, and gen-
erates a certain number of samples (specified by the user), creating an error table and
safe table to store the samples that violate and satisfy the specification, respectively.

• Scenic Server: A property of the falsifier which is responsible for communicating
with the simulator to generate a time-series sequence of actions for a given sample.
This is how the trajectory is generated from a feature vector x.

Figure 2.1 is an example of a Scenic program that instantiates a feature vector in R2;
x1 is the x-coordinate of the ego vehicle, and x2 is the y-coordinate of the of another car
present in the scene. The use of the Scenic syntax VerifaiRange(low, high) allows the use
of VerifAI’s specialized samplers to sample the values of the individual features, constrained
by the continuous range denoted by [low, high].

These specialized samplers broadly fall into two categories: passive samplers, which em-
phasize exploration and coverage of the search space, and active samplers, which emphasize
exploitation and the localization of regions of the search space which result in falsifying
counterexamples, i.e. samples x where ⇢(x) < ⇢

⇤.



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 11

Figure 2.3: Parallelized pipeline for falsification using VerifAI.

Figure 2.2 demonstrates a typical pipeline during the execution of a VerifAI falsifier
driven by a Scenic program. Initial parameters are generated using samplers in either Scenic
or VerifAI; these parameters are then used to open a connection between the Scenic Server
and the driving simulator and generate a trajectory in the simulated world. This trajectory
is then evaluated by the monitor, deemed either a safe example or a counterexample, and
added to the corresponding table in the falsifier.

The biggest bottleneck in this pipeline is the generation of the trajectory from the feature
vector; i.e. the communication between the Scenic Server and the simulator. Empirically, it
was observed that the time to run a CARLA simulation that lasts 30 seconds in simulator
time took almost 30 seconds to run in physical time as well. Many common tasks that involve
falsification, especially for a complex specification, require hundreds or even thousands of
samples to begin seeing meaningful results [19]; this means that a single falsifier run can take
on the order of several hours.

Parallelized Pipeline

To combat the simulation bottleneck, we leverage process-level parallelism to run multiple
simulations at once. Figure 2.3 demonstrates the modified falsification pipeline to include
multiple parallel workers that can all run simulations in tandem. One important aspect to
note about this pipeline is that it requires multiple instances of the simulator to be running;
many widely-used simulators (such as CARLA or LGSVL) listen on specific ports for HTTPS
or WebSocket connections, which means that each simulator instance needs to communicate
with a Scenic Server instance on a di↵erent port.

The parallelization of the falsifier pipeline required significant changes to the underlying
architecture in VerifAI. For instance, the sampling process was decoupled from the trajectory
generation process; this was necessary to ensure that the parallel workers do not perform
repeated work by simulating the same samples. Consider, for example, the Halton sam-



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 12

Figure 2.4: Centralized sampling architecture for parallel falsification.

Figure 2.5: Legacy sampling and updating process in active samplers. The nextSample()
function is responsible for updating the internal state by calling update() with the most
recently generated sample.

pler, which is a passive sampler that partitions the search space into smaller and smaller
intervals over time and samples from the middle of the current interval. Given the vari-
able VerifaiRange(-1, 1), the Halton sampler would generate the following values at each
sample, deterministically:

0,�0.5, 0.5,�0.75,�0.25, 0.25, 0.25, ...

Due to the deterministic nature of the Halton sampler (and many others in VerifAI, including
those that are optimization-based), if each parallel worker generates its own sequence of
samples with its own sampler, they will all simulate the same set of samples, defeating the
purpose of parallelism in the first place. Therefore, we centralize the sampling process in the
Scenic Server; Figure 2.4 shows the modified architecture implemented to support this.

For passive samplers, these changes were su�cient to ensure the same functionality as
the unparallelized sampler, as the sampler only updates its internal state based on the
values generated at sample-time. However, for active samplers, there is a notion of using
the history of previously generated samples and their outcomes in simulation to drive the
internal state (through some form of optimization), and thus, future samples generated as
well. Figure 2.5 shows how active samplers were originally implemented in VerifAI; the key
idea is that they are able to update their internal state at sample-time, as they cache the
most recently generated sample, which without parallelization is the sample that is used
to update the internal state. As a concrete example, consider the following pseudocode for



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 13

the cross-entropy sampler based on work by Sankaranarayanan et al [29], which updates a
probability distribution over a set of continuous intervals:

class CrossEntropySampler(low, high)

discretize the interval (low, high) into N buckets
initialize probability_distribution with probability 1/N for each bucket
initialize bucket_of_last_sample

function sample():
if bucket_of_last_sample was a counterexample:

increase probability of bucket_of_last_sample and re-normalize
sample the next bucket from probability_distribution
cache the sampled bucket in bucket_of_last_sample
return a random uniformly sampled value from that bucket

Looking at this example, we can see that in the parallel setting this will not work due to the
non-determinism of the execution order of parallel processes. When the sample() function
is called, it is not guaranteed that the simulation run corresponding to last sample has
actually finished running. This will cause blocking and make the sampling process ine�cient
in a parallel setting. To mitigate this issue, we decouple the sampling process from the
state updating process, as shown in Figure 2.6. For the sake of consistency, we applied
these changes to the parallelized and unparallelized versions of the various samplers. The
pseudocode for the updated sampler pipeline is as follows:

class CrossEntropySampler(low, high)

discretize the interval (low, high) into N buckets
initialize probability_distribution with probability 1/N for each bucket
initialize bucket_of_last_sample

function sample():
sample the next bucket from probability_distribution
return a random uniformly sampled value from that bucket

function update(bucket_value, rho):
if rho corresponds to a counterexample:

increase probability of bucket_value and re-normalize

In this new setup, the falsifier (which is centralized in one process) is responsible for calling
the sample() and update() functions as simulation runs from the parallel workers finish and
new samples are needed. This way, the sampler does not need to cache any generated samples



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 14

Figure 2.6: Decoupled sampling and updating process for parallel active samplers.

and will only update the probability distribution when simulation runs finish. For example,
a possible execution of this parallelized falsifier could be: sample value1, sample value2,
sample value3, update for value2, update for value1, update for value3. Because
of the nondeterminism of the order that the parallel processes finish, we need to make sure
that we can do an update to the internal state with any sample, not just the most recently
generated sample. To do this, we remove the guarantee that the sampler is always choosing
samples according to the most recently computed probability distribution, as it is possible
for sample1 to be generated and then sample2 to be generated before the simulation cor-
responding to sample1 has finished running. However, this guarantee is not particularly
important in the long run, as the probability distributions will not change much with each
update. Therefore, sampling from a slightly older distribution will not result in much lower
quality samples.

The parallelization was implemented in the source code for the VerifAI Python library
[5] using RAY, a framework that encapsulates process-level parallelism using the concept of
remote actors (classes) and functions, which run in their own process [23]; Figure 2.6 shows
where in the pipeline these actors are used. In this case, the remote functions were responsible
for generating a scene from a sample, and running a simulation with that scene to create a
trajectory. These remote functions are called from the centralized falsifier, creating futures
which can be polled with some frequency to check whether they have finished executing or
not. Once the result of the execution is ready, the update() function is called, a new sample
is generated, and a new future is created in the given worker using the new sample.



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 15

2.2 Evaluation

There are two primary metrics that are logical to benchmark the e↵ectiveness of paralleliza-
tion. One way is to run a falsifier with a fixed number of samples in both a parallel and serial
setting and record the wall clock times of each. Another perhaps more intuitive way, which
is used in the experiments in this section, is to run a falsifier for a fixed amount of time in
both a parallel and serial setting and record the number of counterexamples generated in
each. In either case, the hypothesis prior to experimentation is that the parallel workers will
allow for more e�cient searching over the feature space and lead to counterexamples being
discovered more quickly.

The Newtonian Simulator

One practical but considerable roadblock faced when using VerifAI is the heavy reliance on
computationally intensive driving simulators such as CARLA or LGSVL. These simulators
require a powerful GPU and specific operating systems to be run, and because these sim-
ulators are attempting to be hyper-realistic in simulating the real world, simulation takes
a long time to run. To cut down on experimentation time and facilitate testing of new
features during development, we present a so-called “Newtonian Simulator” which incorpo-
rates a simplistic dynamics model to simulate the motion of vehicles. The controls sent to
a vehicle from either a real-world AV system such as Apollo or a custom-written controller
can be broken down into three simple actions: throttle, brake, and steering. We use
equations relating steering angles to the corresponding angular acceleration given the length
of the car [27], and relate the throttle value to the linear acceleration of the car using an
estimate of typical maximum acceleration for today’s cars. Given this information, as well
as a provided �t which indicates the granularity of the timesteps, we update the position
and velocity vectors of the vehicle using Euler’s method for estimating solutions to ordinary
di↵erential equations.

Figure 2.7 shows a screen capture of a simulation run in the Newtonian simulator. The
simulator supports basic rendering of environment maps using the OpenDrive format [3], as
seen by the lane lines and the turning trajectories plotted in the simulator. The simulator
does not support collision detection or interaction with objects in the environment (such
as pedestrians, buildings, sidewalks, etc); however, one can easily detect collisions between
vehicles with a VerifAI monitor that calculates the distance between the centers of each
vehicle and the heading angle of each vehicle to determine an overlap.

Experiment Setup

A set of Scenic scripts was developed by Francis Indaheng [18] to comprehensively bench-
mark the performance of the parallelism and the advanced sampling/falsification methods



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 16

Figure 2.7: A screen capture from a simulation run using the Newtonian simulator.

described in the next chapter 1. These scripts are based on the list of pre-crash scenar-
ios described by the National Highway Tra�c Safety Administration (NHTSA) [24]. These
include:

1. Ego vehicle goes straight at 4-way intersection and must suddenly stop to avoid collision
when adversary vehicle from oncoming parallel lane makes a left turn.

2. Ego vehicle makes a left turn at 4-way intersection and must suddenly stop to avoid
collision when adversary vehicle from oncoming parallel lane goes straight.

3. Ego vehicle either goes straight or makes a left turn at 4-way intersection and must sud-
denly stop to avoid collision when adversary vehicle from perpendicular lane continues
straight.

4. Ego vehicle either goes straight or makes a left turn at 4-way intersection and must
suddenly stop to avoid collision when adversary vehicle from perpendicular lane makes
a left turn.

5. Ego vehicle waits at 4-way intersection for adversary vehicle from oncoming parallel
lane to complete a left turn before making a right turn.

6. Ego vehicle waits at 4-way intersection for adversary vehicle from perpendicular lane
to pass before making a right turn.

1Source of these Scenic scripts available at https://github.com/findaheng/Scenic/tree/behavior prediction/
examples/carla/Behavior Prediction



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 17

7. Ego vehicle makes a left turn at 3-way intersection and must suddenly stop to avoid
collision when adversary vehicle from perpendicular lane continues straight.

8. Ego vehicle goes straight at 3-way intersection and must suddenly stop to avoid collision
when adversary vehicle makes a left turn.

9. Ego vehicle waits at 3-way intersection for adversary vehicle from perpendicular lane
to pass before making a right turn.

10. Ego Vehicle waits at 4-way intersection while adversary vehicle in adjacent lane passes
before performing a lane change to bypass a stationary vehicle waiting to make a left
turn.

11. Ego vehicle performs a lane change to bypass a slow adversary vehicle before returning
to its original lane.

12. Adversary vehicle performs a lane change to bypass the slow ego vehicle before return-
ing to its original lane.

13. Ego vehicle performs a lane change to bypass a slow adversary vehicle but cannot
return to its original lane because the adversary accelerates. Ego vehicle must then
slow down to avoid collision with leading vehicle in new lane.

14. Ego vehicle performs multiple lane changes to bypass two slow adversary vehicles.

15. Ego vehicle performs multiple lane changes to bypass three slow adversary vehicles.

16. Ego vehicle must suddenly stop to avoid collision when pedestrian crosses the road
unexpectedly.

17. Both ego and adversary vehicles must suddenly stop to avoid collision when pedestrian
crosses the road unexpectedly.

18. Ego vehicle makes a left turn at an intersection and must suddenly stop to avoid
collision when pedestrian crosses the crosswalk.

19. Ego vehicle makes a right turn at an intersection and must yield when pedestrian
crosses the crosswalk.

20. Ego vehicle goes straight at an intersection and must yield when pedestrian crosses the
crosswalk.

The setup for these experiments is as follows: a selected subset of the scenarios above,
encoded in Scenic programs, were run for 30 minutes with a VerifAI falsifier. For all of these
scenarios, the monitor returns the minimum distance in meters between centers of the ego ve-
hicle and an adversary vehicle. Through empirical observation, we decided that the threshold
should be set to p

⇤ = 5 meters. This approximately corresponds to counterexamples being



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 18

logged any time there is a crash. These falsification runs were done on a 20-CPU Ubuntu
server that uses a Titan RTX GPU to run CARLA. All parallelized experiments were run us-
ing 5 workers to perform simulation. This was the maximum the server could handle, as the
single GPU shares resources across all the threads that were running CARLA. Each Scenic
program was run with both a parallel and serial falsifier configuration, as well as a passive
sampler (Halton) and an active sampler (cross-entropy). We benchmark the speedup factor
by computing the ratio of the number of counterexamples found in the parallel falsification
run to the number of counterexamples found in the serial falsification run. For the passive
samplers, we present a metric of coverage in the form of a confidence interval. We consider
sampling to be a Bernoulli process, where the probability of a random sampler violating the
specification is given by some unknown parameter p. Using the Clopper-Pearson method
[10], we generate a 95% confidence interval for the true value of p based on the observed
probability p̂. We compare the width of this interval for both the parallel and serial falsifiers
for each scenario. Table 2.1 shows the observed number of samples and counterexamples
from running these experiments, as well as the ratio of the parallel falsifier to serial falsifier
confidence interval width.

We also benchmark the percentage of time spent in sampling and simulation for each
iteration of the falsifier run. Because the sampling is centralized, the overhead of generating
samples is irreducible by parallelizing the falsifier. Furthermore, the amount of time spent
in sampling is greatly dependent on the scenario; this is because VerifAI uses an algorithm
known as rejection sampling. Given a feature space, not all combinations of feature values
will result in valid scenarios (e.g. a car might be placed on a sidewalk, or two vehicles’
positions might overlap with each other). These validity checks are performed by analyzing
the output from the simulator, which means that we have to keep sampling and rejecting
samples that turn out to be invalid. Because of this, scenarios that have a very small region
of the feature space with valid samples will require lots of rejection sampling to generate a
single valid sample. However, sampling itself is generally relatively fast as it does not require
any computation-intensive operations.

Nevertheless, the sampling time is non-negligible compared to the simulation time, espe-
cially when running the Newtonian simulator which has relatively simple calculations during
simulation. For example, in the case of the Newtonian simulator running scenario 1 in
headless mode (no display), roughly 75% of the total time taken by the falsifier is spent in
sampling. By Amdahl’s law [1], we have that the maximum possible speedup of a program is
given by 1

1�p , where p is the fraction of the program that is parallelizable. Therefore, if only
25% of the program can be parallelized in the Newtonian simulator, we will only see a theo-
retical maximum speedup of 1/0.75 ⇡ 1.33 with infinite compute. Empirically, however, we
observed that the overhead of instantiating multiple workers and coordinating inter-process
communication outweighed the benefits of parallelism, causing parallel falsification to run
slower than serial falsification for the Newtonian simulator in headless mode.

However, the sampling process is much faster than the simulation process for the more
involved simulators such as CARLA; we found that for a variety of scenarios, the sampling



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 19

time was at most 20% of the total time spent running the falsifier. If we consider 80% as
an upper bound on the fraction p of the program that is parallelizable, we have that the
speedup factor s from 5 workers is bounded by:

s 
1

0.2 + 0.8/5
⇡ 2.78

Therefore, we can see that we will not receive exactly 5x speedup from running the
scenarios with 5 workers if the sampling time is significant. This is reflected in the data in
Table 2.1, as the speedup factor is close to but not quite 5 for many scenarios.

(Counterexamples/Total Samples)

Experiment
Name

Halton
(Serial)

Cross-
Entropy
(Serial)

Halton
(Parallel)

Cross-
Entropy
(Parallel)

Confidence
Interval
Width
Ratio

Speedup
Factor

Scenario 1 53/203 72/204 259/831 359/782 0.51 4.94

Scenario 2 92/199 88/187 454/852 422/798 0.48 4.87

Scenario 11 83/106 85/106 322/393 337/428 0.48 3.92

Scenario 12 87/108 92/105 331/448 369/462 0.53 4.15

Scenario 13 32/138 54/128 77/352 159/374 0.61 2.55

Scenario 15 56/107 79/97 180/330 300/334 0.56 3.08

Scenario 16 254/885 662/855 627/2059 1491/2017 0.66 2.33

Table 2.1: Comparison of serial and parallel falsifiers with cross-entropy and Halton samplers
run in CARLA. The confidence interval ratio measures the ratio of the width of the parallel
falsification confidence interval to the width of the serial falsification confidence interval.

We can see that for most of these scenarios, there are approximately 4-5x more coun-
terexamples generated by the parallelized falsifier in the same amount of time as the serial
falsifier. There is some variance in the results, as the runtime of a single simulation is also
dependent on how many other processes are running during the falsification runs (the ma-
chine is a shared machine with many others). Another interesting feature of the data is that
for all of the scenarios, the width of the confidence interval for the parallel Halton sampler is
roughly half of that of the serial Halton sampler. This is approximately what is expected, as



CHAPTER 2. PARALLELIZATION OF SEARCH ALGORITHMS 20

the Clopper-Pearson method generates a confidence interval whose width is inversely propor-
tional to

p
n, where n trials are run. If we consider this confidence interval width to be our

metric of coverage, then the data show that through the parallelized falsification pipeline,
we are able to get roughly double the coverage of the feature space with 5 parallel workers.
It remains to do more extensive experiments with an industrial setup (e.g. dozens or even
hundreds of parallel workers on a cloud instance) and see how this coverage metric scales.



21

Chapter 3

Multi-Dimensional Objectives

3.1 Approach

Background

VerifAI monitors, as described in the previous chapter, are functions Rd
7! R that can only

output a single scalar value to describe the safety of a simulation run. While this has its
uses, in a typical autonomous driving setting, there are many di↵erent metrics of interest for
a given scenario. In a simple case, consider the following scenario: an ego vehicle is following
another vehicle on a city road. One can immediately come up with a few salient metrics
for this scenario; for example, the ego vehicle should not collide with any other vehicles or
objects in the scene, all tra�c laws should be obeyed, and the ego should maintain a certain
minimum safe distance from the vehicle it is following. There are many such metrics that
can be formulated along the same lines, and there are specific equations computing these
metrics given the dynamics of the system over time [37]. The three aforementioned metrics
also implicitly have a priority ordering : it is most important that there is no collision, then
obeying all tra�c laws, then least important is the minimum safe distance. This chapter
discusses the specification and falsification of such multi-dimensional objectives and some
evaluation of these metrics.

The primary use case for these multi-dimensional objectives is in the setting of an active
sampler; we are concerned with algorithms for falsifying as many of these objectives as
possible while keeping in mind the priority ordering that may exist. At first glance, there
are many di↵erent ways to formulate this problem mathematically; we discuss one possibility
here that allows for easy integration with the architecture already present in VerifAI.

Censi et al. describe a way to specify objectives using a concept of rulebooks [9]. To flesh
out this idea, we present some mathematical notations that we will use in this chapter:

• As before, let x denote a feature vector sampled by VerifAI, having dimension d.

• We slightly modify the definition of ⇢(x). It is now a function mapping Rd
7! Rm,

where m is the number of metrics specified.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 22

⇢1✓⌘
◆⇣

⇢3✓⌘
◆⇣

⇢4✓⌘
◆⇣

⇢2✓⌘
◆⇣

⇢5✓⌘
◆⇣

⇢6✓⌘
◆⇣

@
@R

�
� 

@
@R

�
� 

?

?

Figure 3.1: Example of a rulebook over six functions ⇢1...⇢6 [9]

• Let O ✓ Rm denote the space of all possible outputs from ⇢(x).

• We use ⇢j(x) to denote the j-th entry of the objective computed over the the sample
x.

• We keep the notation of ⇢⇤ as a threshold, but it is now a vector over Rm and ⇢
⇤
j

corresponds to the threshold value for ⇢j

• We use the operators � and ⌫ to relate objective vectors, i.e. ⇢(x1) ⌫ ⇢(x2) means
that x1 either violates metrics of higher importance than x2 or they are exactly the
same value. We use � and � as the strict versions of these operators, respectively.

In the single-dimensional case, there is a well-defined notion of comparison; for example,
a sample x1 such that ⇢(x1) = �1 is “more” of a counterexample than a sample x2 having
⇢(x2) = 1. However, in the multi-dimensional case, this comparison is no longer well-defined.
One way to get around this is to have a total ordering over the various components of the
objective; that is, we can re-order the metrics such that ⇢1 is the most important component,
⇢2 the second most important, and so on, with ⇢m being the least important. In this case,
we can definitively compare any two ⇢ values using a lexicographical ordering, i.e.

⇢(x1) � ⇢(x2) , 9k (⇢k(x1) < ⇢k(x2) ^ 8k
0
< k, ⇢k0(x1) = ⇢k0(x2))

However, it is not always practical to create such a total ordering over the components of the
objectives. Censi et al. estimate that a typical autonomous vehicle developer attempting to
cover an urban driving setting will have on the order of several hundred di↵erent metrics [9],
and it is not always clear when looking at pairs of objectives whether one is strictly more
important than the other.

Specification of Objectives using Rulebooks

We present a form of multi-objective sampling that incorporates a rulebook R - which is
defined as a directed graph where the nodes are components of the objective function ⇢j



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 23

and a directed edge from ⇢j to ⇢k means that ⇢j is more important than ⇢k. We denote this
using the >R operator, i.e. ⇢j >R ⇢k. Figure 3.1 shows an example rulebook where we have
six components of the objective function ⇢1...⇢6 [9]. In this example, we can make several
inferences, such as ⇢1 is more important than ⇢3, ⇢3 is more important than ⇢4, and ⇢5 is
more important than ⇢3. However, there are also many pairs of objective components that
cannot be compared; for example ⇢1 and ⇢5. Because of these indeterminate incomparisons,
the rulebook R only provides a partial ordering over the objective components. This makes
it still unclear how to order samples keeping this in mind. We can define our � operator as
follows:

⇢(x1) � ⇢(x2) , 8i, (⇢i(x2) < ⇢i(x1) =) 9j 6= i | ⇢j >R ⇢i ^ ⇢j(x1) < ⇢j(x2))

Intuitively, we can think of this partial ordering as preferring examples that have lower values
of higher priority objectives; however, if there is any indeterminate or higher priority objec-
tive that is higher a result, the� comparison does not hold. As an example, consider our rule-

book from Figure 3.1. Let ⇢(x1) =
h
1 1 1 1 1 1

iT
, and ⇢(x2) =

h
1 1 2 1 0 1

iT
.

In this case we have ⇢(x2) � ⇢(x1) because ⇢5(x2) < ⇢5(x1), and even though ⇢3(x2) > ⇢3(x1),
⇢5 >R ⇢3 according to the rulebook, so the comparison of ⇢5 for the samples takes precedence.

Multi-Dimensional Objective Falsifcation

We saw in chapter 2 an example of how the cross-entropy sampler works on scalar objectives.
In this section, we present several possible approaches to extend this functionality to vector-
valued objectives that were tried before arriving at the final implementation. First, we
consider a näıve approach with a slightly modified update() function, such as the following:

function update(bucket_value, rho):
compute list of booleans b for whether each rho_j < rho_j*
if b is the best possible counterexample:

increase probability of bucket_value and re-normalize

This brings up several interesting points. First o↵, we compute a value b which is a boolean
for each component of the objective vector representing whether or not that component was
falsified, i.e. bj () ⇢j < ⇢

⇤
j . For the sake of consistency with scalar-objective active

samplers, this is what ended up being used in the actual VerifAI implementation of a multi-
dimensional objective sampler. Clearly, we can see that the “best possible counterexample”
as defined by our rulebook is an x such that 8j, ⇢j(x) < ⇢

⇤
j , i.e. every objective is falsified.

However, in almost any real-world use case, it is impossible to falsify every single objective,
and thus this approach is unrealistic and will not learn anything over the course of the
sampling process. Another possibility that was considered is to do several updates, using
exponential decay when traversing through the graph. Pseudocode for this algorithm could
be the following:



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 24

⇢2✓⌘
◆⇣

⇢1✓⌘
◆⇣

⇢3✓⌘
◆⇣

⇢4✓⌘
◆⇣@
@R ?

�
� 

Figure 3.2: Example of a rulebook that refutes exponential dropo↵ counting scheme.

function update(bucket_value, rho):
compute list of booleans b for whether each rho_j < rho_j*
num_falsifications = 0
initialize list skip which is false for every node in the rulebook
for (node, depth) in a DFS traversal of the rulebook:

if skip[node]:
continue

if not b[node]: // node is not falsified
for each subnode in node’s descendants in the rulebook:

skip[subnode] = True
else: // node is falsified

num_falsifications += 1.0 / (2**depth)
increase probability of bucket_value by num_falsifications times
more than in the original cross-entropy sampler
rescale probabilities to sum to 1

This works slightly better, but it is not di�cult to create specific rulebooks where this
algorithm breaks down pretty quickly. For example, consider the rulebook in Figure 3.2. For
this rulebook, ⇢4 will have the highest weight of any node in the exponential dropo↵ counting
scheme (1/2 + 1/2 + 1/2 = 3/2, whereas the others have weight 1), even though it has the
lowest priority. This means that the sampler will actually bias over time towards samples
that falsify ⇢4 first, which defeats the entire purpose of the rulebook. Such patterns as the
above (more source nodes than sink nodes) could occur quite frequently throughout a given
rulebook, so this is definitely a potential drawback of this approach. To avoid using these
heuristics and mitigate some of the issues with the active samplers that are exacerbated in
a multi-dimensional setting, we will discuss a few alternative sampling strategies.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 25

The Epsilon-Greedy Sampler

Most of the samplers available in VerifAI focus either entirely on exploration or entirely on
exploitation; while this worked well in practice for single-dimensional objectives, there are
cases where the active samplers (such as cross-entropy) converge on one specific subregion of
the search space very quickly and potentially miss out on diversity of counterexamples. For
example, the cross-entropy sampler increases the probability of sampling from a bucket any
time a counterexample is found in that bucket; therefore, if counterexample(s) are found in
one specific bucket early on, a positive feedback loop ensues which could cause the sampler
to sample from that bucket more and more without ever exploring any other buckets.

We first present a simple approach to balancing these trade-o↵s: the epsilon-greedy sam-
pler. This algorithm is nearly identical to the cross-entropy sampler, with the di↵erence
being the introduction of a hyperparameter ✏ 2 [0, 1]. With probability ✏, we sample uni-
form randomly across all buckets, and with probability 1 � ✏, we sample from the current
probability distribution computed over the buckets.

There has been much work on epsilon-greedy sampling in the reinforcement learning
domain [32], where the goal is to balance exploration and exploitation over a state-action
space, given some learned policy by the agent ⇡(s). This can be thought of as an equivalent
where the action space is the set of buckets over which we sample, and the reward function
R(s, a) is only dependent on the action a as there is no notion of agent state in VerifAI
sampler. In these cases, the value of ✏ is determined through empirical observation. Typically,
it is important to decrease the value of ✏ over the course of the sampling process; this roughly
corresponds to the increased confidence that we have in our learned probability distribution
as we generate more samples. For decaying the value of epsilon, we typically use ✏ ⇠ 1/t
[33].

The Multi-Armed Bandit Sampler

We present a more robust version of the cross-entropy sampler here called the multi-armed
bandit sampler ; the idea of this sampler is to balance the trade-o↵ between exploitation and
exploration. To understand the motivation for the sampler, we first look at the formulation of
the multi-armed bandit problem. Consider a bandit which has multiple lotteries, or “arms”,
to choose from, each being a random variable o↵ering a probabilistic reward. The bandit does
not know ahead of time which arm gives the highest expected reward, and the idea here is
to learn this information by e�ciently sampling various arms, while also maximizing average
earned reward during the sampling process. This problem can be modeled as minimizing
expected regret, i.e. the di↵erence between the expected earned reward over the sampling
policy A and the expected earned reward of an optimal policy A

⇤ , which is to always choose
the arm that gives the highest expected reward [34]:

argmin
A

Rn(A
⇤)�Rn(A)



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 26

Carpentier et al. show in their landmark paper on the Upper Confidence Bound (UCB)
Algorithm that this quantity can be minimized, subject to a confidence parameter �, by the
implementing the following sampling scheme [7]:

function multi_armed_bandit_sample():
for i in range(N):

compute quantity Q_j for each arm j
sample from the arm corresponding to argmax(Q_j)

Where the quantity Qj is dependent on the number of timesteps t, the number of times the
arm j was sampled Tj(t� 1), the observed reward of arm j given by µ̂j, and the confidence
parameter �:

Qj = µ̂j +

s
2

Tj(t� 1)
ln

✓
1

�

◆

Qualitatively, this works as a balance between exploitation of the reward distribution learned

so far (µ̂j), and exploration of seldom sampled buckets (the
q

2
Tj(t�1) term in the expression

for Qj). We can easily see that this can be readily adapted to our cross-entropy sampler in
VerifAI, taking µ̂j to be the proportion of counterexamples found in bucket j.

Computing µ̂j is a little more complex for the multi-dimensional objective case. Given
the values of b that are computed during the state update, there is a lot of ambiguity in
the way that a counterexample is defined since some metrics may be violated while others
may not. To mitigate this, we present the following incremental algorithm which builds up
counterexamples that falsify more and more objectives (according to the priority order) over
time. The steps of this algorithm are as follows. This assumes that the sampler is responsible
for generating a d-dimensional feature vector.

Setup

1. Split the range of each component of the feature vector into N buckets, as in the
cross-entropy sampler.

2. Initialize matrix T of size d⇥N where Tij will keep track of the number of times that
bucket j was visited for variable xi.

3. Initialize a dictionary cmapping each maximal counterexample found so far to a matrix
cb of size d ⇥ N where cb,ij counts how many times sampling bucket j for variable xi

resulted in the specific counterexample b.

4. Sample from each bucket once initially, updating c and T according to the update
algorithm described below. The purpose of this is to avoid division by zero when
computing Q, as Tj(t� 1) = 0 at initialization [34].



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 27

Sampling

1. Compute a matrix µ̂ where µ̂ij represents the observed reward from sampling bucket
j for variable i by taking

P
b cb,ij.

2. Compute a matrix Q based on the upper confidence bound formula above. For the
confidence parameter, we use a time-dependent value of 1

� = t.

3. To sample xi, take the bucket j
⇤ = argmaxj Qij. Break ties uniformly at random.

This is a key step in the sampling process as it is frequently the case initially that
several buckets will have the exact same Qj value, so we need to avoid bias towards
any specific bucket. Sample uniform randomly within the range represented by bucket
j
⇤.

Updating Internal State

1. Given the objective vector value ⇢, we compute our vector of booleans b as described
above.

2. If b does not exist in the dictionary c and is among the set of maximal counterexamples
found so far, i.e. 8b

0
2 c, b

0
6� b as defined by the rulebook R, add b as a key to the

dictionary c and initialize its value as 0d⇥N .

3. For any b
0
2 c such that b � b

0, remove b
0 from c.

4. Increment the count cb at each position cb,ij for the bucket j sampled from variable xi.

One interesting aspect of this algorithm that is worth noting is that the total number of
counterexamples found in a given bucket can decrease over the course of the sampling process,
as the set of maximal counterexamples is updated to represent the most recently found “best”
counterexample.

Example of Incremental Multi-Dimensional Objective Falsification

Consider again the excerpt of a Scenic script from Figure 2.1. In this example, we instantiate
two cars whose positions each contain a single continuous variable that needs to be sampled
by VerifAI. Below is an example of a multi-objective VerifAI monitor that could be written
to evaluate trajectories generated by Scenic.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 28

def specification(traj):
min_dist = np.inf
N = len(traj)
for i, val in enumerate(traj):

obj1, obj2 = val
min_dist = min(min_dist, obj1.distanceTo(obj2))

angles = np.zeros((N - 1,))
for i in range(1, N):

t1, t2 = traj[i - 1], traj[i]
ego_pos1, _ = t1
ego_pos2, _ = t2
v_ego = (ego_pos2 - ego_pos1) * 10
angle = math.atan2(v_ego.y, v_ego.x)
angles[i - 1] = angle

rho = (min_dist - 5, (10 * math.pi / 180) - np.ptp(angles))
return rho

In this case, the two objectives are that the ego vehicle should maintain some minimum
distance from the other vehicle in the scene, and that it should drive straight without too
much variation in its heading angle. We have no preference for one metric over the other;
therefore, our rulebook R is a completely disconnected graph of 2 nodes. Let our threshold

vector ⇢
⇤ =

h
0 0

i
; this is why we normalize the values in the monitor above, such that

the minimum distance required between the ego and other vehicles is 5 meters, and the
maximum range allowed in the heading angle is 10°.

Using this example, we consider a possible execution of the incremental multi-dimensional
falsification algorithm. For the sake of simplicity, we assume that the samples are given to
us (not necessarily according to the UCB algorithm described above). We follow the state of
the sampler and falsifier over the course of a few samples. A few notes about the algorithm:

• A counterexample is defined as a sample that produces a value of b that is not strictly
worse than any of the highest priority examples b0 found by the sampler so far. There-
fore, it is possible for the number of counterexamples to decrease over the sampling
process as better values of b are found.

• The count matrix is updated by incrementing the all indices (i, j) such that bucket j
was used to sample the value xi.

• The dictionary c contains all maximal values of b (according to the rulebook) found by
the sampler so far.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 29

Initial State of Sampler

Count matrix T :

2

40 0 0 0 0

0 0 0 0 0

3

5

Counterexample dictionary c: {}

Sampling Iteration 1

Indices of Buckets Sampled:
h
4 2

i

⇢(x) =
h
�1 1

i
! b = (True, False)

Sampler State after Iteration 1

Count matrix T :

2

40 0 0 0 1

0 0 1 0 0

3

5

Counterexample dictionary c: {

(True, False):

2

40 0 0 0 1

0 0 1 0 0

3

5

}

Total number of samples: 1
Total number of counterexamples: 1

Sampling Iteration 2

Indices of Buckets Sampled:
h
1 2

i

⇢(x) =
h
�1 1

i
! b = (True, False)

Sampler State after Iteration 2

Count matrix T :

2

40 1 0 0 1

0 0 2 0 0

3

5

Counterexample dictionary c: {

(True, False):

2

40 1 0 0 1

0 0 2 0 0

3

5

}

Total number of samples: 2
Total number of counterexamples: 2

Sampling Iteration 3

Indices of Buckets Sampled:
h
3 3

i

⇢(x) =
h
�1 �1

i
! b = (True, True)

Sampler State after Iteration 3

Count matrix T :

2

40 1 0 1 1

0 0 2 1 0

3

5

Counterexample dictionary c: {

(True, True):

2

40 0 0 1 0

0 0 0 1 0

3

5

}

Total number of samples: 3
Total number of counterexamples: 1



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 30

Discussion

As mentioned earlier, we can see that the total number of counterexamples has decreased
over the course of the sampling process, because sample iteration 3 produced a sample
that violated both metrics, which takes precedence over the first two samples (which were
considered counterexamples up to that point). We now present a few properties of this
algorithm.

Theorem 1 The maximum possible size of the counterexample dictionary c grows on the

order of ⇥
⇣

2mp
m

⌘
.

Proof. It is easy to see that the maximum possible number of boolean vectors b that we
can compute over the metrics is 2m, since b can be thought of as a bit vector of size m. This
means that the tightest bound on the number of keys in c is no higher than O(2m). We
can also show that given m metrics, if there is no preference ordering on these metrics, then
for all k  m, all samples that violate exactly k metrics are incomparable to each other.
That means we will have to potentially keep track of all of these counterexamples in c. This
problem is equivalent to finding a set U of maximal cardinality containing subsets of a set
A where no element of U is a subset of another element of U . By Sperner’s theorem [22],
this maximal cardinality is achieved when U contains all the subsets of A of size k = bm/2c.
This value is given by: ✓

m

bm/2c

◆
=

m!
�
m
2 !
�2

Using Stirling’s approximation [31], we have that:

x! ⇠
p
2⇡x

⇣
x

e

⌘x

Where the ⇠ operator means that the two functions have the same asymptotic growth.
Plugging in, we get: ✓

m

bm/2c

◆
⇠

p
2⇡m

�
m
e

�m

⇡m
�
m
2e

�m

=

r
2

⇡m
2m = ⇥

✓
2m
p
m

◆

This means that the algorithm described above has nearly-exponential memory requirements
in theory; however, in practice, the algorithm is usually much more e�cient for the following
reasons:

1. For a large m, the number of generated samples is several orders of magnitude lower
than the theoretical upper bound on the number of counterexamples;

2. In the majority of cases, patterns arise in the generated samples such that specific sets
of metrics are violated in certain regions of the search space. Therefore, the number
of varied counterexamples that are generated is relatively small;



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 31

3. The rulebook R will typically have many edges describing the preference ordering over
the nodes. This has the e↵ect of creating more pairs of comparable counterexamples
(b1, b2), which means that keys will more frequently be evicted from c. It is easy to see
that if the rulebook describes a total ordering, there will be at most one counterexample
in the dictionary at any given time.

We also present the following theorem, which follows from the incremental nature of the
algorithm:

Theorem 2 The incremental multi-armed bandit algorithm guarantees that at any given
point in the sampling process, the regret metric Rn(A⇤)�Rn(A) is being minimized.

The UCB-1 algorithm shows this result for a scalar reward function [7]. We can look at the
multi-dimensional case as a version of the original UCB-1 algorithm where we essentially
restart the sampling process anytime a reward of a higher priority is discovered. Therefore,
even though the optimization problem is constantly changing as better counterexamples are
discovered, this incremental algorithm is a repeated application of UCB-1 that is constantly
optimizing the regret bound for a given family of reward functions determined by the best
counterexample(s) found so far.

3.2 Evaluation

We first present the same set of experiments as in Chapter 2, run with both the epsilon-
greedy sampler and the multi-armed bandit sampler in a parallel setting. We document
the number of counterexamples generated by each method, compared to the cross-entropy
sampler and the Halton sampler that we tested in the previous section. The results are
shown in Table 3.1.

For the evaluation of the multi-dimensional objective multi-armed bandit sampler, we
used a Scenic program1 that instantiates the ego vehicle, along with m adversarial vehicles
at random positions with respect to a 4-way intersection and has all of them drive towards
the intersection and either go straight or make a turn [18]. The monitor returns an m-
dimensional vector where ⇢j the ego vehicle’s distance in meters from adversarial vehicle j.
Through empirical observations of the scenario runs, we set the threshold vector as ⇢⇤j = 5 8j.
Table 3.2 lists the results of running these experiments with a variety of rulebooks and once
again using the serial and parallel falsification pipelines. The setup and hardware used
for the experiments is the same as in Chapter 2. We use ; to denote a rulebook with no
edges; this means there is no preference between the objectives. We use Lm to denote a
linked list over the m objectives that represents a total ordering; i.e. it assigns the ordering
⇢1 > ⇢2 > ... > ⇢m. We also use G to represent the priority ordering shown in Figure 3.3.

1Source of Scenic programs available at https://github.com/findaheng/Scenic/blob/behavior prediction/
examples/carla/Behavior Prediction/intersection/intersection 11.scenic.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 32

⇢1✓⌘
◆⇣

⇢4✓⌘
◆⇣

⇢5✓⌘
◆⇣

⇢3✓⌘
◆⇣

⇢2✓⌘
◆⇣

?

@
@R

�
� 

?

Figure 3.3: Rulebook configuration G used for experimentation.

For the sake of compactness, we represent the set of maximal counterexamples discovered
by the falsifier as a bit vector; if bit j (1-indexed) is set, that means we have ⇢j(x) < ⇢

⇤
j .

Moreover, because of the di↵erence in the priority of the best counterexamples found, the
number of counterexamples returned by the falsifier may be lower for falsification runs that
were actually better, as better counterexamples may be more rare in the feature space and
may only occur later on during the sampling process.

(Counterexamples/Total Samples)

Experiment
Name

Halton Cross-Entropy Epsilon-Greedy
Multi-Armed

Bandit

Scenario 1 258/831 358/782 313/842 323/803

Scenario 2 454/852 422/798 493/891 399/791

Scenario 11 322/393 337/428 329/404 326/398

Scenario 12 331/448 369/463 334/441 326/435

Scenario 13 77/352 159/374 153/396 123/334

Scenario 15 180/330 300/334 260/345 286/341

Scenario 16 627/2059 1491/2017 1345/1884 1412/1889

Table 3.1: Comparison of epsilon-greedy and multi-armed bandit samplers with cross-entropy
and Halton samplers.

We can also visually show the di↵erences between the various samplers. Figure 3.4



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 33

demonstrates a Scenic program that partially recreates the 2017 Uber crash scenario men-
tioned in the introduction [28]. Figure 3.5 shows a comparison of the points sampled in a
feature space described by a Scenic program for the cross-entropy, Halton, epsilon-greedy,
and multi-armed bandit samplers. We plot the values of the three variables sampled by
VerifAI, namely DISTANCE TO INTERSECTION, UBER SPEED, and HESITATION TIME, for each
iteration. For the sake of computational simplicity, we ran the script which each sampler
for 60 seconds using the Newtonian simulator. Visually, the multi-armed bandit sampler
seems to find a middle ground between the cross-entropy sampler and the Halton sampler.
The cross-entropy sampler zones in on a specific region of the feature space very quickly and
barely tries anything outside that region, but has a counterexample rate of 93%. Meanwhile,
the Halton sampler samples relatively uniformly over the entire feature space but finds lots of
safe examples (the purple points), having a counterexample rate of only 71%. Epsilon-greedy
with ✏ = 0.5 uses random sampling for approximately half the samples and cross-entropy
sampling the other half, resulting in a counterexample rate of 82%. The multi-armed ban-
dit sampler seems to e↵ectively benefit from active and passive sampling strategies, as it
finds a relatively large region with lots of counterexamples but it also tries a lot of points
throughout the feature space as a result of the exploration bonus term, ending with a final
counterexample rate of 89% – only slightly lower than cross-entropy.

Configuration Rulebook Samples Counterexamples
Maximal Coun-
terexample(s)

Found

Serial, m = 5 ; 122 22
11001, 10101,
10011, ...

Parallel, m = 5 ; 638 16
11110, 11101,
11011, 10111,

01111

Serial, m = 5 L5 126 1 11110

Parallel, m = 5 L5 613 1 11111

Serial, m = 5 G 130 3 11101, 11011

Parallel, m = 5 G 613 2 11111

Table 3.2: Comparison of di↵erent rulebooks and the counterexamples found for each.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 34

1

2 # Parameters of the scenario.
3 param DISTANCE_TO_INTERSECTION = VerifaiRange(-20, -10)
4 param HESITATION_TIME = VerifaiRange(0, 10)
5 param UBER_SPEED = VerifaiRange(10, 20)
6

7 # Ego vehicle just follows the trajectory specified later on.
8 behavior EgoBehavior(trajectory):
9 do FollowTrajectoryBehavior(trajectory=trajectory,

10 target_speed=globalParameters.UBER_SPEED)
11 terminate
12

13 # Crossing car hesitates for a certain amount of time
14 # before starting to turn.
15 behavior CrossingCarBehavior(trajectory):
16 while simulation().currentTime < globalParameters.HESITATION_TIME:
17 wait
18 do FollowTrajectoryBehavior(trajectory = trajectory)
19 terminate
20

21 # Find all 4-way intersections and set up
22 # trajectories for each vehicle.
23 ...
24

25 # Spawn each vehicle in the middle of its starting lane.
26 uberSpawnPoint = startLane.centerline[-1]
27 crossingSpawnPoint = otherLane.centerline[-1]
28

29 ego = Car following roadDirection from uberSpawnPoint for
30 globalParameters.DISTANCE_TO_INTERSECTION,
31 with behavior EgoBehavior(trajectory = ego_trajectory)
32

33 crossing_car = Car at crossingSpawnPoint,
34 with behavior
35 CrossingCarBehavior(crossing_car_trajectory)
36

Figure 3.4: A Scenic script partially recreating the Uber crash scenario.



CHAPTER 3. MULTI-DIMENSIONAL OBJECTIVES 35

Figure 3.5: Comparison of points sampled in feature space for various samplers. Yellow
points are counterexamples and purple points are safe examples.



36

Chapter 4

Conclusion

With autonomous vehicles becoming more prevalent on the road, it is increasingly important
to verify AV systems before they hit the road, to ensure the safety of people both in the ego
vehicle and in the surrounding environment. The extensions we have made to Scenic and
VerifAI appear to be increasing e�ciency in finding counterexamples, and will be useful in
the falsification of multiple metrics at once. These contributions appear to be a good start
towards a more e↵ective sampling-based falsifier, and below we present some potential ideas
on how to further the ideas we have presented to provide more functionality.

4.1 Future Work

Random Linearization

One idea that could be interesting to test with the rulebook implementation is to perform
“random linearizations”; that is, choose a random topological sort of the directed acyclic
graphR and impose that as a total ordering over the objectives. This is promising as it would
allow for straightforward falsification as there would only ever be one highest counterexample
found so far. It remains to be shown in experimentation whether this would empirically work
as well as an incremental algorithm over the original rulebook for sampling, and it is also
an open question as to what metrics would be used to benchmark the performance of these
algorithms.

There are also few potential theoretical issues that need to be dealt with in this heuristic.
In general, the problem of counting the number of topological sorts of a DAG is NP-hard [6].
This means that sampling uniform randomly from all topological sorts may not be a tractable
problem in many cases. Therefore, a necessary step of this process would be to come up with
an approximation algorithm to sample topological sorts in a way that is as close to uniform
as possible. Another problem may be that the linearization will impose ordering of pairwise
objectives that was unintended by the user. Because of this, the sampling algorithm may
bias towards one objective while ignoring others that may have originally been considered



CHAPTER 4. CONCLUSION 37

equally important. One way to potentially mitigate this is to re-sample the linearized graph
with some certain frequency to help smooth out the bias towards specific objectives over
time.

Covariance Analysis of Features

The current samplers implemented in VerifAI optimize the sampled values of each feature in-
dividually with the assumption that they are all pairwise independent. In practice, however,
this is generally not the case. Consider for example a simple scenario with an ego vehicle
and an adversary heading toward an intersection from perpendicular directions (without
any collision avoidance for simplicity). We can imagine that in such a scenario, a crash will
happen when the two cars are going at roughly the same speed. If we encode this in VerifAI
as a vector x 2 R2, we can imagine that in the majority of counterexamples, we will have
x1 ⇡ x2. However, this is not a relationship that can be learned by the active samplers in
VerifAI as the assumption is that each feature individually contributes to the value of ⇢(x)
without any interaction with other features. Therefore, one possible way to deal with this
would be to perform covariance analysis on the returned counterexamples from a falsifier run,
and use that to determine if any highly correlated variables should be optimized together
during sampling.

Real-World Testing

Scenic and VerifAI are tools meant to help guide testing in simulation; however, it is crucial
to run a comprehensive set of test cases in the real world as well. Such testing can be
expensive, time-consuming, and prone to error; it would therefore be a big step forward if
the multi-objective sampling in VerifAI can be used to help determine what scenarios are
most challenging for an AV system and place more of an emphasis on those when performing
field testing to make the process more e↵ective. Some progress has already been made on
this front, using VerifAI and Scenic in simulation to define test cases that can be run in the
real world [16].



38

Bibliography

[1] Gene M Amdahl. “Validity of the single processor approach to achieving large scale
computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint computer
conference. 1967, pp. 483–485.

[2] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan.
“S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Parosh Aziz Abdulla
and K. Rustan M. Leino. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 254–
257. isbn: 978-3-642-19835-9.

[3] ASAM OpenDRIVE. url: https://www.asam.net/standards/detail/opendrive/.

[4] BerkeleyLearnVerify. BerkeleyLearnVerify/Scenic
. url: https://github.com/BerkeleyLearnVerify/Scenic.

[5] BerkeleyLearnVerify. BerkeleyLearnVerify/VerifAI
. url: https://github.com/BerkeleyLearnVerify/VerifAI.

[6] Graham Brightwell and Peter Winkler. “Counting Linear Extensions is #P-Complete”.
In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Comput-
ing. STOC ’91. New Orleans, Louisiana, USA: Association for Computing Machinery,
1991, pp. 175–181. isbn: 0897913973. doi: 10.1145/103418.103441. url: https:
//doi.org/10.1145/103418.103441.

[7] Alexandra Carpentier, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos,
and Peter Auer. “Upper-Confidence-Bound Algorithms for Active Learning in Multi-
armed Bandits”. In: Algorithmic Learning Theory. Ed. by Jyrki Kivinen, Csaba Szepesvári,
Esko Ukkonen, and Thomas Zeugmann. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 189–203. isbn: 978-3-642-24412-4.

[8] Luis I. Reyes Castro, Pratik Chaudhari, Jana Tumova, Sertac Karaman, Emilio Fraz-
zoli, and Daniela Rus. “Incremental Sampling-based Algorithm for Minimum-violation
Motion Planning”. In: CoRR abs/1305.1102 (2013). arXiv: 1305.1102. url: http:
//arxiv.org/abs/1305.1102.

https://www.asam.net/standards/detail/opendrive/
https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/VerifAI
https://doi.org/10.1145/103418.103441
https://doi.org/10.1145/103418.103441
https://doi.org/10.1145/103418.103441
https://arxiv.org/abs/1305.1102
http://arxiv.org/abs/1305.1102
http://arxiv.org/abs/1305.1102


BIBLIOGRAPHY 39

[9] Andrea Censi, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry S. Yershov,
Scott Pendleton, James Guo Ming Fu, and Emilio Frazzoli. “Liability, Ethics, and
Culture-Aware Behavior Specification using Rulebooks”. In: CoRR abs/1902.09355
(2019). arXiv: 1902.09355. url: http://arxiv.org/abs/1902.09355.

[10] C. J. CLOPPER and E. S. PEARSON. “THE USE OF CONFIDENCE OR FIDU-
CIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL”. In: Biometrika
26.4 (Dec. 1934), pp. 404–413. issn: 0006-3444. doi: 10.1093/biomet/26.4.404.
eprint: https://academic.oup.com/biomet/article-pdf/26/4/404/823407/26-
4-404.pdf. url: https://doi.org/10.1093/biomet/26.4.404.

[11] Joseph Cralley, Ourania Spantidi, Bardh Hoxha, and Georgios Fainekos. “TLTk: A
Toolbox for Parallel Robustness Computation of Temporal Logic Specifications”. In:
Runtime Verification. Ed. by Jyotirmoy Deshmukh and Dejan Ničković. Cham: Springer
International Publishing, 2020, pp. 404–416. isbn: 978-3-030-60508-7.

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
“CARLA: An Open Urban Driving Simulator”. In: Proceedings of the 1st Annual Con-
ference on Robot Learning. 2017, pp. 1–16.

[13] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-
bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. “VerifAI: A Toolkit for the
Formal Design and Analysis of Artificial Intelligence-Based Systems”. In: 31st Inter-
national Conference on Computer Aided Verification (CAV). July 2019.

[14] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. “Scenic: A Language for Scenario Spec-
ification and Scene Generation”. In: Proceedings of the 40th annual ACM SIGPLAN
conference on Programming Language Design and Implementation (PLDI). June 2019.

[15] Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. “Scenic: A Language for
Scenario Specification and Data Generation”. In: CoRR abs/2010.06580 (2020). arXiv:
2010.06580. url: https://arxiv.org/abs/2010.06580.

[16] Daniel J. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A. Seshia, Atul Acharya,
Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin Mehta. “Formal Scenario-
Based Testing of Autonomous Vehicles: From Simulation to the Real World”. In: 23rd
IEEE International Conference on Intelligent Transportation Systems (ITSC). Sept.
2020.

[17] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.
Tygar. “Adversarial Machine Learning”. In: Proceedings of the 4th ACM Workshop
on Security and Artificial Intelligence. AISec ’11. Chicago, Illinois, USA: Association
for Computing Machinery, 2011, pp. 43–58. isbn: 9781450310031. doi: 10.1145/
2046684.2046692. url: https://doi.org/10.1145/2046684.2046692.

https://arxiv.org/abs/1902.09355
http://arxiv.org/abs/1902.09355
https://doi.org/10.1093/biomet/26.4.404
https://academic.oup.com/biomet/article-pdf/26/4/404/823407/26-4-404.pdf
https://academic.oup.com/biomet/article-pdf/26/4/404/823407/26-4-404.pdf
https://doi.org/10.1093/biomet/26.4.404
https://arxiv.org/abs/2010.06580
https://arxiv.org/abs/2010.06580
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692


BIBLIOGRAPHY 40

[18] Francis Indaheng. A Scenario-Based Approach to Testing Autonomous Vehicle Behav-
ior Prediction Models in Simulated Environments. 2021.

[19] Edward Kim, Divya Gopinath, Corina S. Pasareanu, and Sanjit A. Seshia. “A Pro-
grammatic and Semantic Approach to Explaining and Debugging Neural Network
Based Object Detectors”. In: CoRR abs/1912.00289 (2019). arXiv: 1912.00289. url:
http://arxiv.org/abs/1912.00289.

[20] Philip Koopman and Michael Wagner. “Challenges in Autonomous Vehicle Testing and
Validation”. In: SAE International Journal of Transportation Safety 4.1 (2016), pp. 15–
24. issn: 23275626, 23275634. url: http://www.jstor.org/stable/26167741.

[21] LG and Unity collaborate on autonomous vehicle simulation. url: https://swsolutions.
lge.com/insights/news/lgsvl-simulator.

[22] L. D. Meshalkin. “Generalization of Sperner’s Theorem on the Number of Subsets
of a Finite Set”. In: Theory of Probability & Its Applications 8.2 (1963), pp. 203–
204. doi: 10.1137/1108023. eprint: https://doi.org/10.1137/1108023. url:
https://doi.org/10.1137/1108023.

[23] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, William Paul, Michael I. Jordan, and Ion Stoica. “Ray: A Distributed
Framework for Emerging AI Applications”. In: CoRR abs/1712.05889 (2017). arXiv:
1712.05889. url: http://arxiv.org/abs/1712.05889.

[24] Wassim G Najm, John D Smith, and Mikio Yanagisawa. Pre-Crash Scenario Typology
for Crash Avoidance Research. Apr. 2007. url: https://www.nhtsa.gov/sites/
nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-
07.pdf.

[25] Matteo Pirotta, Simone Parisi, and Marcello Restelli. “Multi-Objective Reinforcement
Learning with Continuous Pareto Frontier Approximation”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 29.1 (Feb. 2015). url: https://ojs.
aaai.org/index.php/AAAI/article/view/9617.

[26] Adnan Qayyum, Muhammad Usama, Junaid Qadir, and Ala I. Al-Fuqaha. “Securing
Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learn-
ing and The Way Forward”. In: CoRR abs/1905.12762 (2019). arXiv: 1905.12762.
url: http://arxiv.org/abs/1905.12762.

[27] Rasmaxim. rasmaxim/pygame-car-tutorial. url: https://github.com/rasmaxim/
pygame-car-tutorial.

[28] George Sandeman. Uber pulls its self-driving cars from the road after accident left
autonomous vehicle on its side. Mar. 2017. url: https://www.thesun.co.uk/news/
3181916/uber-pulls-its-self-driving-cars-from-the-road-after-accident-
left-autonomous-vehicle-on-its-side/.

https://arxiv.org/abs/1912.00289
http://arxiv.org/abs/1912.00289
http://www.jstor.org/stable/26167741
https://swsolutions.lge.com/insights/news/lgsvl-simulator
https://swsolutions.lge.com/insights/news/lgsvl-simulator
https://doi.org/10.1137/1108023
https://doi.org/10.1137/1108023
https://doi.org/10.1137/1108023
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/9617
https://ojs.aaai.org/index.php/AAAI/article/view/9617
https://arxiv.org/abs/1905.12762
http://arxiv.org/abs/1905.12762
https://github.com/rasmaxim/pygame-car-tutorial
https://github.com/rasmaxim/pygame-car-tutorial
https://www.thesun.co.uk/news/3181916/uber-pulls-its-self-driving-cars-from-the-road-after-accident-left-autonomous-vehicle-on-its-side/
https://www.thesun.co.uk/news/3181916/uber-pulls-its-self-driving-cars-from-the-road-after-accident-left-autonomous-vehicle-on-its-side/
https://www.thesun.co.uk/news/3181916/uber-pulls-its-self-driving-cars-from-the-road-after-accident-left-autonomous-vehicle-on-its-side/


BIBLIOGRAPHY 41

[29] Sriram Sankaranarayanan and Georgios Fainekos. “Falsification of Temporal Properties
of Hybrid Systems Using the Cross-Entropy Method”. In: Proceedings of the 15th
ACM International Conference on Hybrid Systems: Computation and Control. HSCC
’12. Beijing, China: Association for Computing Machinery, 2012, pp. 125–134. isbn:
9781450312202. doi: 10.1145/2185632.2185653. url: https://doi.org/10.1145/
2185632.2185653.

[30] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. “Towards Verified Artificial
Intelligence”. In: ArXiv e-prints (July 2016). arXiv: 1606.08514.

[31] Stirling’s Approximation. url: https://mathworld.wolfram.com/StirlingsApproximation.
html.

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[33] The Epsilon-Greedy Algorithm. Dec. 2017. url: https://jamesmccaffrey.wordpress.
com/2017/11/30/the-epsilon-greedy-algorithm/.

[34] The Upper Confidence Bound Algorithm. Sept. 2016. url: https://banditalgs.com/
2016/09/18/the-upper-confidence-bound-algorithm/.

[35] Tra�c Manager. url: https://carla.readthedocs.io/en/latest/adv_traffic_
manager/#multisimulation.

[36] Welcome to VerifAI’s documentation! url: https://verifai.readthedocs.io/en/
latest/?badge=latest.

[37] Je↵rey Wishart, Steven Como, Maria Elli, Brendan Russo, Jack Weast, Niraj Altekar,
and Emmanuel James. “Driving Safety Performance Assessment Metrics for ADS-
Equipped Vehicles”. In: Apr. 2020. doi: 10.4271/2020-01-1206.

https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1145/2185632.2185653
https://arxiv.org/abs/1606.08514
https://mathworld.wolfram.com/StirlingsApproximation.html
https://mathworld.wolfram.com/StirlingsApproximation.html
https://jamesmccaffrey.wordpress.com/2017/11/30/the-epsilon-greedy-algorithm/
https://jamesmccaffrey.wordpress.com/2017/11/30/the-epsilon-greedy-algorithm/
https://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
https://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
https://carla.readthedocs.io/en/latest/adv_traffic_manager/#multisimulation
https://carla.readthedocs.io/en/latest/adv_traffic_manager/#multisimulation
https://verifai.readthedocs.io/en/latest/?badge=latest
https://verifai.readthedocs.io/en/latest/?badge=latest
https://doi.org/10.4271/2020-01-1206

