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Abstract

Susceptibility of neural networks to adversarial at-
tack prompts serious safety concerns for lane detection
efforts, a domain where such models have been widely
applied. Recent work on adversarial road patches have
successfully induced perception of lane lines with ar-
bitrary form, presenting an avenue for rogue con-
trol of vehicle behavior. In this paper, we propose a
modular lane verification system that can catch such
threats before the autonomous driving system is misled
while remaining agnostic to the particular lane detec-
tion model. Our experiments show that implementing
the system with simple convolutional neural networks
(CNN) can defend against a wide gamut of attacks on
lane detection models. We can detect 96% of nonadap-
tive bounded attacks, 90% of adaptive bounded attacks,
and 90% of adaptive patch attacks while preserving ac-
curate identification at least 95% of true lanes using
a 3-layer architecture imposing at most a 10% impact
to inference time. Using ResNet-18 as a backbone, we
can detect 99% of bounded non-adaptive attacks and
98% of bounded adaptive attacks, indicating that our
proposed verification system is effective at mitigating
lane detection security risks.

1. Introduction

End-to-end lane detection methods have shown
great promise; however, their shared foundation with
deep neural networks imply a shared weakness to ad-
versarial examples [17]. Given the importance of accu-
rate lane detection in downstream control decisions for
autonomous vehicles, a successful attack on lane per-
ception could result in undesirable or outright danger-
ous vehicle behavior. In particular, we are interested
in attacks that could interfere with vehicle guidance
through the generation of malicious lane lines, where
attack success is marked not by alarm, as is the case
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when lane lines cannot be found, but by a false sense
of normalcy. With no defense, as is the case with cur-
rent state-of-the-art efforts, a lane detection pipeline
is unable to make any judgement of lane validity, and
thus the perceived adversarial lanes are indistinguish-
able from real lanes. To defend against such attacks, we
propose a system for lane verification as illustrated in
Figure 1, with the goal not to recover the original lanes,
but to minimize instances of lane detection model false
confidence.

Our lane verification model is fast, lightweight, and
applicable to any existing lane detection effort. The
simplicity of our verification model imparts very little
inference overhead, and its modular nature allows for
independent training that avoids the costs associated
with redesigning and retraining the large and complex
neural networks commonly seen in industrial lane de-
tection systems.

The modularity carries the additional benefit of be-
ing lane detection model-agnostic, paving a path for
integration into any lane detection pipeline. Given the
constant improvement and refinement of lane detection
techniques, detaching our defense from a particular ar-
chitecture allows it to remain viable as the underlying
methods become more sophisticated.

Our system is motivated by the framing of secure
lane detection as two complementary tasks: lane pro-
posal and lane verification. The former requires dis-
cerning the locations of a variable number of lanes in a
constantly changing environment; the latter boils down
to binary classification: given a set of lane coordinates,
determine if they correspond to a lane that is either
real or adversarial. Instead of further complicating the
optimization problem faced by existing lane proposal
models by piling on a secondary goal of security on top
of their initial purpose, we propose moving the task
of verification into a separate bespoke model, allowing
each part of the pipeline to focus on maximizing in-
dividual performance without compromise. Since the
task of lane verification can take lane coordinates as
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Figure 1. Our proposed defense augmentation to a general lane detection model.

given and only needs to return a binary result, it can
be accomplished by models much simpler and faster
than those required for lane proposal.

Our experiments show that simple convolutional
models are sufficient to significantly improve lane de-
tection pipeline robustness to both digital and phys-
ical attack as pictured in Figure 2. When evaluated
against a L, bounded attack and two patch-based at-
tacks, variants of our model can detect over 95% of
attacks with minimal impact to model accuracy and
inference time. These results suggest that our system
is capable of defending against a variety of attack types,
including unknown threats.

In summary, strong performance of our defense
against both nonadaptive and adaptive versions of such
threats indicates that such a system could offer security
to lane detection models at very little expense.

Our primary contributions are as follows:

e We propose a simple lane verification defense that
can be integrated into the pipeline of any lane de-
tection effort with no retraining of the underlying
model required. Its independent and lightweight
nature provides marginal inference overhead and
allows for quick security updates when new attacks
arise.

e We show empirically that verification provides sig-
nificant lane detection security with minimal cost.

2. Related Work

While work on lane detection model defenses is
sparse, there is extensive related work on end-to-end

detection models and some work on lane detection at-
tacks which has been summarized below.

2.1. End-to-End Lane Detection Models

Convolutional neural network-based lane detection
models typically frame their core task of lane proposal
as one of image segmentation, with the goal to label
each pixel as one of N classes, each class correspond-
ing to a distinct lane. In the end-to-end formulation,
the segmentation is accompanied by a parallel binary
labelling of lane existence, allowing the model to nar-
row down where exactly the lane is within pixels of the
same segmentation class. By doing so, an end-to-end
lane detection model is able to take a scene and re-
turn predictions of lane line locations. Proposed mod-
els largely differ on neural network architecture choices
and postprocessing cleanup procedures, the details of
which our defense treats as a black box.

Given the methodological similarities between the
top lane detection models on the TuSimple dataset, we
chose to test our proposed defense with LaneNet as
proposed by Neven et al. [11] due to its near state-
of-the-art performance at time of writing and result
reproduction accessibility. We achieve accuracy within
2% of Neven et al.’s results before adding our defense.
Note that due to the lane detection model-agnostic na-
ture of our defense, the results from our experiments
should be applicable to any other model we could have
chosen, such as [6], [7], and [8].



2.2. Image Comprehension Model Attacks and De-
fenses

The framing of lane detection as a task of image seg-
mentation suggests a sharing of similar security weak-
nesses, and recent work has shown image comprehen-
sion models to be very susceptible to adversarial attack.
Adversarial examples, shown to be incredibly effective
for image classification, have been shown to be extend-
able to image segmentation, with [3] specifying a frame-
work generalizing their generation across a variety of
tasks, including segmentation, and [17] finding attack
success across a variety of segmentation networks. Suc-
cessful attack need not change every pixel as discovered
in [2], and classification can easily be corrupted with a
patch a fraction of the total size of the image. Defenses,
such as adversarial training, as suggested and explored
by [4], [10], [12], and [16] against adversarial attack, of-
ten involve retraining the entire model which is costly
given the ever increasing complexity of state-of-the-art
techniques.

2.3. Lane Detection Model Attacks

Regarding adversarial attacks on lane detection
models in particular, recent work has used image seg-
mentation attack methods to great effect. [13] details
how a bounded patch, disguisable in practice as road
dirt, could be used to fool lane detection models be-
fore the passenger catches on. The adversarial patches
we test our defense on differ in their much smaller size
and unboundedness compared to the full lane covering
required by [13]. Although our metric of attack suc-
cess show the patches are unable to achieve our goal of
reshaping all the lanes in the scene, our results do reaf-
firm that patch attack-based lane deviation is a valid
threat necessitating defense.

3. Method
3.1. Defense

Our proposed defense takes place at the end of an
existing lane detection pipeline, at which point a set
of candidate lanes have been proposed by the lane de-
tection model. Upon attack success, these candidate
lanes are corrupted and may include a mix of real and
adversarial lanes. The goal of our defense is to ver-
ify the real lanes and filter out suspicious lanes before
further autonomous vehicle systems make potentially
hazardous decisions based on faulty information.

3.1.1 Stabilizing Lanes

The verifier model takes detected lanes as input; how-
ever, due to the nature of perspective and exacerbated

1.0
—— Average loU of Clean Images and Real Lanes
mmm Unprotected
Defense with Nonadaptive Attack
mmm Defense with Adaptive Attack

0.6

0.4

0.2

- 0.002 0.001

Variable Patch

0031 0.046

0.0 s
Bounded

Average loU with Attack Targets after Verification

Fixed Patch
Attack

Figure 2. Defense Performance. Our defense is able to fil-
ter out all but a handful of adversarial attacks that would
otherwise fool unprotected lane detection models. Intersec-
tion over Union (IoU) between detected lanes and attack
targets is our chosen attack metric due to its measurement
of both how well the induced adversarial lane matches the
target adversarial lane and how much of the original scene
was preserved, providing a sense of amount of control an
attacker has over the scene. The bounded attack before
verification surpasses the IoU achieved by the lane detec-
tion model on real lanes, suggesting the adversarial lanes
are indistinguishable from real ones to the model. While
patch attack IoU is relatively muted compared to that of
bounded attack due to its largely local impact, it can still
cause significant lane deviation as shown in Figure 6.

by the fact that lane lines can curve either left or right,
extracting lanes using masks formed from the pixel-
level segmentation as provided by the lane detection
model results in lane lines that can take an arbitrary
number of forms, lending itself to a classification prob-
lem with an unbounded domain. To address this issue,
we construct a stabilized image of each lane as follows:

1. Given a set of points corresponding to a lane, we
first perform a least squares polynomial regression
to get its underlying shape.

2. For each pixel that lies on the curve, we compute
the derivative of the polynomial at that point, and
extract the pixels corresponding to the line cen-
tered around the point on the curve and rotated
by the angle formed by the derivative and the hor-
izontal axis.

3. Rotating each extracted line such that the pixels
in each line are lined up horizontally, we can then
stack the horizontal lines vertically to obtain a sta-
bilized image of the lane that is not influenced by
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Figure 3. Lane Stabilization. Stabilized lanes are classified
as either real or suspicious by the verification system.

perspective or lane curvature.

While inverse perspective transforms [1] can mitigate
perspective distortions as well, we found little benefit
from applying a fixed homography before extracting
the stabilized lanes. Figure 4 shows examples of pos-
itive and negative samples generated by our stabiliza-
tion process.

3.1.2 Training

Given the absence of applicable existing datasets, to
generate a training dataset for the verifier model, we
extract stabilized real and suspicious lanes from a
dataset labelled for lane detection, using the ground
truth labels as the basis for real lanes and generating
curves that start from real lanes but deviate at arbi-
trary locations as the basis for suspicious lanes. While
each scene has a fixed number of real lanes, an arbi-
trary number of suspicious lanes can be generated from
them, creating a class imbalance. A potential enhance-
ment of the defense could involve tailoring suspicious
lane design in anticipation of specific attacks.

To address the aforementioned class imbalance, the
verifier model is trained using focal loss as described in
[9] with hyperparameters determined experimentally.
To improve robustness, we employ adversarial train-
ing [10] with an emphasis on missed adversarial lane
detection via asymmetric weighting of the loss func-
tion, prioritizing the class of the suspicious lanes.

Positive y
Sample |

Negative
Sample

Figure 4. Examples of positive and negative examples gen-
erated by the lane stabilization process for the defense train-
ing dataset.

3.2. Threat Model

We propose two different threat models dependent
on attacker access to lane detection equipment. The
threats share the goal of perturbing the original scene
such that the binary segmentation component of an
end-to-end lane detection model is disrupted, allow-
ing the attacker to inducing an arbitrary lane existence
pattern of their choosing. Due to the downstream de-
pendence of lane detection models on lane existence,
the attack can fatally disrupt lane detection model
function. All attacks are carried out using Projected
Gradient Descent [10] until convergence.

L-Infinity Threat Model In our first threat model,
the attacker is able to manipulate any pixel in the input
image, but is constrained by a bound on the size of
perturbation for each pixel, akin to digital corruption
of the input or a lens filter over the camera.

Patch Threat Model In our second threat model,
the attacker is able to manipulate a subset of pixels
in the input image, but is not constrained by a bound
on the size of perturbation for each pixel. We can fur-
ther break the subset of pixels into two sizes: fixed and
variable. In a fixed size patch attack, there is a fixed
number of pixels the attacker can modify, akin to hav-
ing a patch on the lens of the camera. In a variable size
patch attack, the number of pixels able to be modified
is a function of distance away from the camera, akin
to being able to lay a physical patch on the road in
the scene. We can simulate such an threat model by
scaling patch size based on pixel height, using the lane
width and lane marker size at a given pixel height as
reference.

3.3. Attacks
3.3.1 Nonadaptive Attacks

Nonadaptive attacks under each threat model aim to
convince the proposal model of the existence of an ad-



versarial lane, but do not explicitly make an attempt
to also convince our verification model that the lane is
real.

3.3.2 Adaptive Attacks

Adaptive attacks [14] seek to fool the proposal model
as in the nonadaptive case, but also take bypassing our
verification model into account.

The lane stabilization procedure is non-
differentiable, which poses an issue when computing
gradients for an end-to-end attack. We instead propose
an adaptive attack that takes place in two stages.
We discuss the attack in the context of an L-infinity
threat model, but the method can easily be extended
to the patch scenario.

1. The first stage is an L-infinity attack on the lane
detection model, with the goal to induce an ar-
bitrary binary segmentation map of our choos-
ing. The output is a perturbed scene in which the
lane proposal model identifies the arbitrary lane
we choose.

2. Once the first stage has converged, the pixels cor-
responding to the arbitrary lane are extracted
from the perturbed scene. The lane is then sta-
bilized as described in the process above, and sub-
ject to the second stage of the attack. The goal
of the second stage is to find a perturbation to
the stabilized lane such that the defense is fooled
into thinking the arbitrary lane is real. Upon con-
vergence of the L-infinity attack on the defense,
the resulting perturbation on the stabilized lane is
mapped back to the original location of the pix-
els that form the stabilized lane in the scene per-
turbed in the first stage.

The final result is a perturbed scene designed to both
convince the lane detection model of the existence of
an adversarial lane and the defense that the perceived
lane is real.

4. Experiments
4.1. Datasets

The lane detection model, LaneNet, is trained on the
TuSimple dataset [15], which consists of 3,626 training
images and 2,782 testing images taken from a camera
mounted on the front of a vehicle. The images are
scaled to be of size 512x288.

The defense is trained on stabilized lanes extracted
from the TuSimple dataset. Each stabilized lane is fit
with a polynomial of degree 3 and resized to be of size
128x40.

4.2. Implementation Details

We test two different architectures for the verifier
model. In the first architecture, the verifier is com-
prised of two convolutional layers and one linear layer.
Both convolutional layers use a 3x3 filter size with
stride 3 and no padding, with BatchNorm and ReLLU
applied after each. Inputs to the this architecture take
the form of stabilized lanes of size 128x40 extracted
from an original image size of 256x512. The second is
a variant of ResNet-18 [5] modified to accept stabilized
lanes of size 256x100 extracted from an original image
size of 720x1280 and to perform binary classification.

Both LaneNet and the defense are trained using one
GPU (GTX 1080). LaneNet is implemented as speci-
fied in [11], with no modifications for robustness, keep-
ing in line with the modular nature of our defense. Ad-
versarial training for the defense is tuned for bounded
threat models and evaluated both bounded and patch
threat models.

All attacks are performed until convergence is
achieved. Some parameter details are as follows:

1. The L-infinity attack is bounded by a per-pixel
perturbation of at most 8/255, where the input
image’s pixels have a range of [0, 1].

2. The fixed size patch attack is a 100x100 square
with no bound on pixel deviations inside the
square. The square is centered around a point on
the targeted arbitrary lane.

3. The variable size patch attack is specified by a
100x100 square at the foot of the camera, corre-
sponding to roughly a 3-foot by 3-foot physical
patch. For each scene, an arbitrary distance from
the camera is selected, and the square is scaled
down accordingly.

Additional information on training details and hyper-
parameters can be found in the appendix.

4.3. Evaluation

We evaluate performance of the defense on the test
set of TuSimple. For each scene in the original dataset,
LaneNet is used to identify lanes in clean and attacked
variants. The identified lanes are stabilized and sup-
plied to the defense for classification. We report ad-
versarial lane missed detection rates (false negative)
and real lane misclassification rates (false positive) at
a classification threshold such that we see a 5% real
lane misclassification rate in a validation set. Addi-
tionally, we report the average Intersection over Union
(IoU) values between all lanes in attacked scenes and
attack targets once flagged lanes have been removed.
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Figure 5. Example of L-infinity bounded attack. From left to right, the vertical pairs of images represent a clean image, a
nonadaptive attack, and an adaptive attack against a 3-layer verification model. The second row shows the proposal output
by the lane detection model superimposed on the scene, and IoU values below. IoU values are with respect to the target
lane binary segmentation map, shown in the upper right, and the resulting stabilized lane is shown below. Under bounded
attack, the attacker is able to assert full control over the scene and induce arbitrary lane configurations.

Table 1. Effectiveness of our defense, with a three-layer ver-
ifier. False positive rate (FPR) refers to real lanes the de-
fense mistakenly flagged as adversarial, whereas false neg-
ative rate (FNR) refers to adversarial lanes the defense be-
lieved to be real. As a measure of post-defense attack suc-
cess, the false negative (FN) average IoU is the average loU
between all attacked scenes and targets once flagged lanes
have removed.

Defense Metrics | Attack Metric

Bounded Attack FPR FNR FN IoU
Unprotected 0 1 0.720
Nonadaptive 0.040 0.039 0.031
Adaptive 0.043 0.098 0.046

Defense Metrics | Attack Metric

Patch Attack FPR FNR FN IoU
Fixed Unprotected 0 1 0.200
Fixed Nonadaptive 0.050 0.025 0.006
Fixed Adaptive 0.049 0.100 0.013
Variable Unprotected 0 1 0.082
Variable Nonadaptive  0.044 0.034 0.002
Variable Adaptive 0.050 0.072 0.001

ToU values were of interest due to their dual purpose
of measuring how much of the target was achieved and
how much of the original scene was preserved, provid-
ing a sense of attacker control over the scene.

5. Results
5.1. L-Infinity Threat Model
5.1.1 3-Layer Verifier

Attacking the lane proposal model nearly always suc-
ceds under bounded attack, with all traces of the
real lanes wiped out and the induced adversarial lanes
matching target adversarial lanes with an average IOU
of 0.720. Note that due to the polynomial fitting dur-
ing lane stabilization, the induced adversarial lane and
the target adversarial lane have almost identical stabi-
lized forms. Examples of scenes and their correspond-
ing binary segmentation maps before and after targeted
attack are in Figure 5.

Table 1 shows the defense is effective at detecting
bounded attacks when used with a 3-layer verifier ar-
chitecture. With an unprotected model, adversarial
lanes slip by undetected 100% of the time. Under non-
adaptive attack, the defense is very capable of detect-
ing adversarial lanes while very rarely mistaking real
lanes for adversarial. We do see some gains in attack
strength under adaptive attack; however, we are still
able to detect 90.2% of adversarial lanes while main-
taining accurate classification of at least 95% of real
lanes. Table 3 shows selected ROC curve data.

5.1.2 ResNet-18 Verifier

Table 2 shows that using a ResNet-18 architecture for
the verifier improves the effectiveness of the defense un-
der bounded attack. Examples of output binary seg-
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Figure 6. Examples of fixed and variable size adaptive patch attacks. Each group of four images has the original and
applied patch on the first row, and the corresponding binary segmentation maps on the second. The target lane is dotted
in green, with the patch’s bounding box outlined in red. IoU values are below each applied patch segmentation map, with
the resulting stabilized lane shown to the right of each group. While full scene control is limited, the results are substantial

enough to cause rogue vehicle behavior.

mentation maps before and after adaptive attack are
shown in Figure 7.

The ResNet-18 verifier yields a marked improvement
over the 3-layer verifier, with detection of 99.3% of non-
adaptive attacks and 98.1% of adaptive attacks. Clas-
sification accuracy on real lanes remains at least 95%.
This demonstrates substantial benefits if constraints on
model size are relaxed. Table 3 shows selected ROC
curve data.

5.2. Patch Threat Model

Results for defense against the patch threat model
are provided only for the 3-layer verifier architecture.
Future work could involve assessing the attacks de-

scribed on the ResNet-18 backbone.

5.2.1 Fixed Size

The fixed patch attack results reveal a strong reliance
of LaneNet on spatially local features. Unlike the pre-
vious L-infinity attack, which could manipulate the en-
tire scene to achieve its goal, the patch attack is un-
able to induce change outside of a small region around
the patch location. An example of the attack can be
found in the first half of Figure 6. Note that while the
patch attack does not do well against our attack suc-
cess metric of full scene control, the achieved result is
still capable of causing undesired lane deviation.
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Figure 7. Example of a bounded attack with a ResNet-18 verifier. From left to right, the vertical pairs of images represent
clean, nonadaptive, and ResNet-18 backbone adaptive attack, accompanied by the corresponding binary segmentation maps
directly below. For each binary segmentation map, the target adversarial lane is superimposed in green, with an IoU value

provided for attacked scenes.

Table 1 shows defense results under fixed patch at-
tack. Similar to the bounded attack, we see strong de-
tection rates for nonadaptive attack with a slight drop
when subject to adaptive attack. Table 3 shows se-
lected ROC curve data for the fixed size adaptive at-
tack.

5.2.2 Variable Size

Variable patch attack success follows a similar trend to
that of the fixed size patch attack, with the region of
effect largely localized around the patch location. An
example of the variable patch attack can be found in
the second half of Figure 6.

Table 1 shows defense results under variable patch
attack. Mirroring both previous attacks, robust non-
adaptive attack detection rates are accompanied by
weaker results when under adaptive attack. Variable
patch sizes are generally smaller than the fixed patch,
which is reflected in the stronger observed defense re-
sults. Table 3 shows selected ROC curve data for the
adaptive attack.

5.3. Speed

The 3-layer varies has a marginal impact on pipeline
inference time, reducing throughput from 29.8 to 27
frames per second. Due to differences in system con-
figuration, we were unable to achieve the 50 frames per
second as presented in [11], but as a rough estimate,
the 3ms inference time of our defense as measured lo-
cally would translate to a drop from 52.6 to 45.5 frames
per second using the timings provided by [11].

Table 2. The effectiveness of our defense with a ResNet-
18 verifier. False positive rate (FPR) refers to real lanes
the defense mistakenly flagged as adversarial, whereas false
negative rate (FNR) refers to adversarial lanes the defense
believed to be real. As a measure of post-defense attack
success, the false negative (FN) average IoU is the average
ToU between all attacked scenes and targets once flagged

lanes have removed.

Defense Metrics | Attack Metric

Bounded Attack FPR | FNR FN IoU
Unprotected 0 1 0.720
Nonadaptive 0.044 | 0.008 0.009
Adaptive 0.047 | 0.019 0.032

5.4. Ablation Studies
5.4.1 Adaptive Attack Cycling

Given that the second stage of the adaptive attack is
unable to assess its impact on the first stage, it is pos-
sible that there exists adverse feedback between the
two stages. We upper bound the extent of this adverse
feedback by using the target adversarial lane in place
of the perceived lane in the ResNet-18 based model. To
evaluate the extent of this feedback, we test a bounded
attack where the stages are cycled up to four times.
Results are in the first half of Table 4. Comparing
them with the figures in Table 1, we note that the false
positive and false negative rates are slightly better for
the defense in the cycled attack, suggesting that while
repeated cycling may be helping first stage output, the
effect is outweighed by an adverse impact to the ef-
ficacy of the second stage. Since polynomial fitting



Table 3. Selected defense ROC curve results. False posi-
tive rate (FPR) refers to real lanes the defense mistakenly
flagged as adversarial, whereas false negative rate (FNR)
refers to adversarial lanes the defense believed to be real.
J - lower is better 1 - higher is better.

3-Layer Arch., Bounded Attack

Nonadaptive Adaptive
FNR at 0.01 FPR | 0.160 0.496
FNR at 0.02 FPR | 0.075 0.210
FNR at 0.05 FPR | 0.036 0.082
FNR at 0.10 FPR | 0.026 0.048
Area Under Curve 7 0.984 0.971

ResNet-18 Arch., Bounded Attack

Nonadaptive Adaptive
FNR at 0.01 FPR | 0.024 0.054
FNR at 0.02 FPR | 0.016 0.042
FNR at 0.05 FPR | 0.007 0.017
FNR at 0.10 FPR | 0.005 0.008
Area Under Curve 1 0.998 0.997

3-Layer, Adaptive Patch Attack
Fixed Size Variable Size

FNR at 0.01 FPR | 0.334 0.200
FNR at 0.02 FPR | 0.196 0.187
FNR at 0.05 FPR | 0.100 0.072
FNR at 0.10 FPR | 0.049 0.034
Area Under Curve 1 0.976 0.973

cleans up much of the noise in the binary segmentation
map, first stage gains may provide marginal benefits to
overall attack strength.

5.4.2 Simpler Defense Architecture

We found that although the philosophy of our defense
encourages simple defense designs, purely linear models
struggle with the task of lane classification as shown in
the second half of Table 4. This result hints again at
the highly local nature of lane detection as previously
seen in Figure 6, a property linear layers are less adept
at taking advantage of compared to the convolutional
layers used in both our 3-layer and ResNet-18 model.

6. Conclusion

Our proposed defense is a modular extension of ex-
isting lane detection models and can defend against
adversarial attacks with minimal impact to underlying
lane detection capabilities.

The orthogonal nature of the defense allows it to be
trained independently from the underlying lane detec-
tion model, eliminating the cost of retraining. Amid
the rising complexity of image processing models, our

Table 4. Ablation results. False positive rate (FPR) refers
to real lanes the defense mistakenly flagged as adversar-
ial, whereas false negative rate (FNR) refers to adversarial
lanes the defense believed to be real. As a measure of post-
defense attack success, the false negative (FN) average IoU
is the average IoU between all attacked scenes and targets
once flagged lanes have removed.
Defense Metrics
FPR FNR
0.042 0.044

Attack Metric
FN IoU
0.030

Cycled Attack
Bounded

Defense Metrics | Attack Metric

Linear Defense FPR FNR FN IoU
Bounded 0.049 0.966 0.720
Fixed Patch 0.045 0.879 0.180
Variable Patch 0.052 0.921 0.075

defense can provide security with very little overhead.
Taking only lane locations as inputs, the defense does
not depend on a particular lane detection model’s fea-
tures or assumptions, streamlining integration into any
lane detection pipeline. The lightweight nature of the
defense promotes fast inference and quick updates as
new attacks arise.

Under a bounded threat model that is able to
fully take over the scene, we show that a simple 3-
layer model employing our defense structure on top of
LaneNet can detect over 90% of attacks while main-
taining a maximum 5% impact to clean accuracy. Un-
der a patch-based threat model where attacker control
is limited but still capable of causing undesired lane
deviation, our defense is able to identify 98% of ab-
normal activity while preserving the same 5% thresh-
old. Relaxing constraints on model size, we find that
a ResNet-18 backbone can boost bounded attack de-
tection to over 98%. Thus, in such situations where
the lane detection model would have otherwise passed
adversarial lanes off as real to the autonomous control
system, our model is able to call attention to poten-
tially malicious actors.

Future work could involve designing a differentiable
adaptive attack and collecting performance of our pro-
posed defense on a larger sample of lane detection mod-
els. An application of transfer learning could be ex-
plored by training the defense on a separate dataset
from the lane detection model and examining perfor-
mance. While our defense is able to alert the vehicle
to the presence of an attack, it does not provide guid-
ance on the safest response, which we leave as an open
question. Variants in the architecture of the verifica-
tion system may also be worth investigating; for ex-
ample, defense model enhanced with domain-specific
knowledge of the highly local nature of lane detection



could see further improvement in verification accuracy.
Finally, a similar system could prove useful for bolster-
ing robustness against corruption.
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Appendix
Verification Model Details

All verification models are trained normally and adversarially using the Adam optimizer with a learning rate of
0.001 and weight decay of 0.001. Each the model is trained normally for 100 epochs. The epoch with the highest
validation accuracy is then adversarially trained for an additional 10 epochs with early stopping.

3-Layer Architecture

We use focal loss as the loss function for both normal and adversarial training, with v = 1 and o = 0.75 during
normal training and v = 1 and a = 0.01 during adversarial training. During adversarial training, the model was
trained on adversarial negative examples and clean positive examples, motivated by the goal of our verification
model to detect adversarial lanes pretending to be real, but not real lanes pretending to be adversarial. The
deemphasis of positive examples during adversarial training was determined to be helpful experimentally.

Adversarial training uses a bounded attack using random starts and e = 8/255. Number of attack iterations are
3 and 100 iterations for the patch and bounded attack defenses, respectively. Attack step size for both is computed
as 2 x ¢/attack iterations.

ResNet-18 Architecture

We use a pretrained implementation of ResNet-18 in PyTorch capable of accepting variable sized inputs, and
modify the last linear layer to return a 1-dimensional output for binary classification.

Normal training is done using focal loss with parameters v = 1 and o = 0.5. Adversarial training is done
on adversarial negative examples and clean positive examples, using a weight of 3 for positive examples during
the binary cross-entropy step required to compute probabilities for focal loss. The attack uses random starts,
e = 8/255, and 20 attack iterations, which we found sufficient for convergence. Attack step size is computed as
2 x e¢/attack iterations.

All ResNet-18 training hyperparameters were determined experimentally.

Adaptive Attack Details

The end-to-end attack uses binary cross-entropy loss as its criterion. For the bounded attack, we use e = 8/255
with a maximum of 100 attack iterations for both the base attack on LaneNet and the adaptive attack on classifier.
For both variable and patch attack, we use 100 attack iterations and an attack step size of 100 for both the base
attack on LaneNet and the adaptive attack on classifier.
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