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Abstract

Comparing Human and AI Behavior in 3D Navigation Environments

by

Jeffrey Liu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

While modern artificial intelligence agents have achieved superhuman performance in specific
tasks, training artificial agents that can efficiently explore and generalize to new tasks remains
an open problem. Recent work has turned to humans as a source of inspiration to tackle this
problem. Humans have shown an ability to explore the world in such a way that translates
to generalizable skills in later life, a trait that modern artificial intelligence has failed to
replicate. Investigating the specific ways in which humans and artificial agents deviate in
behavior may thus lend insight into ways that algorithms can be improved. In this work
we present an online platform to design and carry out experiments comparing human and
agent behavior in 3D navigation tasks. We also present a comparison of behaviors between
humans and agents in both procedurally-designed and human-designed mazes, highlighting
ways in which current algorithms are both similar and distinct from humans.
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Chapter 1

Introduction

Recently, modern techniques in reinforcement learning (RL) and artificial intelligence (AI)
have been able to achieve human-like, and in some cases super-human, performance on tasks
such as Atari games [8]. Such advances often rely on a paradigm of training an artificial
agent from scratch in order to solve a specific task. One question that arises in this context
is one of exploration. How should these agents interact with their environment and gather
information in an intelligent manner? Various techniques have been proposed to guide an
agent’s exploration during training [9, 10], however many state of the art algorithms today
still rely on simple exploration strategies such as ε-greedy. Another question that arises
is one of generalization. While current agents are extremely good at the task they are
trained to accomplish, they often struggle in new or unseen environments. These questions
have long thought to be related, with the underlying principle being that agents that learn
sophisticated exploration strategies will be able to generalize better in new environments.

Recent attempts to tackle these problems have turned to humans as a source of inspira-
tion. From a young age, humans have demonstrated an ability to interact with the world
in a systematically curious fashion [15, 16]. Such exploration has been shown to lead to
overarching generalizations that are transferable to a variety of different contexts and tasks
[18]. As both of these areas are ones in which modern AI struggle in, recent work has tried
to leverage concepts in human behavior such as intrinsic motivation [12] and curiosity [17],
resulting in promising results [11, 2].

Despite these advances, it is not entirely clear whether formulations based on humans
actually do a good job of capturing human-like behavior. Recent work by Kosoy et al. [6]
has suggested the use of 3D navigation environments such as DeepMind Lab [1] as a means
to compare human and agent behavior in simulated exploration tasks. We present extensions
in this direction through 2 main contributions.

1. An online platform for crowd-sourcing maze designs for exploration and running ex-
periments on human subjects within these designs for comparison.

2. A comparison of the exploration behaviors of humans and agents both with and without
curiosity across procedurally-designed and human-designed mazes.
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Chapter 2

Related Work

2.1 Human Agent Comparisons

Many previous works have included the performance of artificial agents on benchmarks such
as Atari games [8] or navigation tasks [7] relative to humans. However, such comparisons are
often very surface level on only measure high-level performance differences, i.e differences
in total reward or success rate. Such works do not typically include analysis on specific
differences in behavior.

Recently, however, there has been more focus placed on investigating these more specific
differences. Comparison of human and agent performance in a video game setting found that
human performance drastically dropped when familiar object priors were masked, suggesting
learning such reusable priors could be critical for more generalizable and efficient AI algo-
rithms [3]. Such insights could potentially result in new and interesting research directions,
and our work aims to provide further contributions in this area.

2.2 Deepmind Lab and Unity environments

DeepMind Lab 2.1a is a learning environment based on the Quake game engine that provides
complex 3D navigation tasks that can be used for both agents and humans. DeepMind Lab
provides interfaces for both agents and humans to explore complex 3D mazes from a first
person point of view, allowing for an interesting way to compare human and agent behavior.
Previous work [6] has argued that such an environment makes for a more ecologically valid
and appropriate setting for human-agent comparisons thanks to three main factors.

1. Rich visuals from a first-person point of view that more closely mirror human experi-
ence, as opposed to 2D Atari games or grid-world like settings.

2. Controlled comparisons that offer more metrics for analysis and different avenues for
research in terms of generalizaiton to new tasks
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3. Customizability that allows for implementation of challenges for both humans and
agents that can be used to test specific behaviors

In addition to DeepMind Lab, we also leverage Unity [5] 3D maze environments to carry
out experiments on humans. Functionally the two environments are similar in that both
contain rich 3D visuals and complex maze configurations, however the textures and physics
engines are slightly different. Nevertheless, the two are similar enough to compare overarch-
ing behavioral trends on.

(a) DeepMind Lab (b) Unity Maze

Figure 2.1: Screenshots of maze environments. We use DeepMind Lab for agent training
and evaluation, while we use Unity for human evaluations

2.3 Intrinsic Curiosity

Recent work in the RL and AI fields has leaned on concepts in developmental psychology
for ideas, with one example being the Intrinsic Curiosity Module (ICM), first presented by
Pathak et al. [11]. Originally designed to help agents solve tasks in which external rewards
are generally sparse, ICM draws upon ideas such as intrinsic motivation [12] and provides a
self-supervised reward to encourage agents to explore their environment. Formally, consider
an agent that receives observation xt from the environment, takes an action at sampled
from a policy π(st; θP ) represented by a neural network with parameters θP , and transitions
to a new state with observation xt+1. ICM introduces two additional modules: an inverse
dynamics module, and a forward dynamics module.

The inverse dynamics module consists of a neural network that is trained to encode the
observation xt into a feature vector φ(xt), as well as a second sub-module that takes feature
encodings φ(xt), φ(xt+1) as inputs and learns to predict the action at that is associated with
the transition. The idea behind this module is to learn features that should be controllable
by the agent, resulting in exploration rewards that should be invariant to noise in the en-
vironment. Such an exploration reward should then encourage the agent to explore truly
novel states, rather than simply stay in states that provide a lot of noisy observations.
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Figure 2.2: Overview of the ICM module, adapted from [11]

The forward dynamics module takes the feature representations learned by the inverse
dynamics module and predicts the representation of the next state conditioned on the previ-
ous observation and action. The intrinsic curiosity exploration reward is defined as the error
between the actual and predicted embeddings, i.e ||f(xt, at)−φ(xt+1)||22 where f is the learned
dynamics module. The agent is then trained to maximize the sum rt = αrit + ret , where rit is
the curiosity reward previously described and ret is the reward given by the environment. α
is a coefficient that is used to scale the magnitude of the intrinsic reward. During training,
the loss from the forward dynamics and inverse dynamics models are jointly optimized for
along with the policy gradient loss.

Intuitively, ICM should incentivize agents to take actions that result in surprising out-
comes for the agent, which should typically come in the form of stumbling across a new
or novel state, mimicking human tendencies to explore and discover novel states. However,
while the method may draw inspiration from human behavior, it is unclear if it is actually
effective in replicating it, which we investigate further in later chapters.
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Chapter 3

Human Data Collection Platform

The following chapter presents joint work with David Chan and Adrian Liu. Due to the
COVID-19 pandemic, collecting human data for comparison presented a difficult task. To
circumvent this, we designed and built a custom platform for human data collection that
can be reused for future work along the same directions. The platform consists primarily of
three components:

1. A maze creation tool for creating custom maze layouts

2. A maze rating tool for quality control

3. An online simulator built using Unity that collects data on human participants as they
navigate through the maze

Our platform is publicly accessible at explore.isx.ai

3.1 Maze Creation

Currently, the dominant paradigm in training AI for navigation tasks is training on large
numbers of procedural levels or designs [13]. However, are there systematic differences in hu-
man and procedural design that can result in downstream behavioral differences in agents?
Do humans encode certain priors into their environment designs that are particularly ex-
ploitable by humans in comparison to artificial agents? Do these specific priors lead to
better generalization in new environments? To answer these questions, we needed a way
to gather a large number of human generated designs, which was the primary motivation
behind the creation of our platform.

In order to gather maze designs, we created a tool that allowed for human participants
to create custom maze designs through a simple web interface. Users are presented with a
set of instructions detailing the basics of the interface as well as some general guidelines for
maze design. Users can then create their own designs from a top-down perspective through a
simple interface as shown in Figure 3.1a. Here, the dark spaces represent walls, white space
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(a) Example maze design (b) Rating example

Figure 3.1: Screenshots of maze design and rating tools

represents explorable areas, the yellow space represents the player’s starting point, and the
red space represents the end goal. The tool implements checks to ensure that designs are
valid, e.g. a path exists from start to finish.

3.2 Maze Rating

While creating an online maze design tool made it easy to enlist large number of participants
to help design mazes, it also presented a problem of quality control. We wanted to make
sure that maze designs were sufficiently interesting and not trivial, e.g. consisting of just a
short straight line. To address this problem, we implemented a design ratings tool into the
platform as well. Users are presented with a set of instructions and are then presented with
a set of mazes to rate on a scale out of 5 stars, as shown in 3.1b. To ensure that raters are
rating in a somewhat reasonable manner, we include two of our own designs in each rating
set. One is designed to be trivially simple, while the other is of reasonable complexity. If
raters did not rate these control mazes above/below certain thresholds, we did not consider
their ratings. When aggregated over multiple raters, these final ratings can then be used to
filter out trivial or uninteresting designs.

3.3 Maze Simulator

The final component of the platform consists of a maze simulator built on top of the Unity
platform. Users can play through different maze layouts on a web browser using their
keyboard to move around the maze. During gameplay, the platform collects data such as
user position and velocity that can be analyzed later. Users can be asked to complete a
customizable set of mazes, allowing for detailed and varied experimental design options.
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Chapter 4

Comparison of Human and AI
Behavior

4.1 Experimental Setup

Maze generation

Beyond comparing human and agent behavior, we were also interested in investigating
differences in behavior in specific types of environments. Specifically, we were interested
in seeing how humans/agents performed in procedurally/human-generated maze designs.
Would humans find human mazes easier than procedural mazes? Would we see the same
trends for artificial agents, or would they be reversed? To answer these questions, we col-
lected 200 human maze designs using the platform presented above, sourcing participants
from Amazon Mechanical Turk. We initially collected more than 200 designs before cut-
ting the final number down by having Mechanical Turk workers rate the different maze
designs and taking the top 200 highest rated ones. We also generated 200 maze designs
in a procedural fashion using an algorithm based on a randomized version of Prim’s algo-
rithm that incrementally adds neighboring cells to the maze until a specific set thresh-
old is reached. Since these maze produces a tree structure, we additionally introduce
loops that are randomly added into the maze to allow for more complex designs. We
enforce a total grid size of 15 x 15 for all maze layouts to ensure that no designs are
much larger or more complex than the others. Code for the algorithm can be found at
https://gist.github.com/DavidMChan/3e839eb9caf8bde5f903dba50045da88. Example
maze designs can be found in Figure 4.1

Maze environments

For agent training and evaluation, we utilize the DeepMind Lab [1] environment, while for
human experiments we utilize the Unity-based online simulator presented earlier. We keep
things as consistent as possible between the two environments by utilizing the same action
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Procedural Human

Figure 4.1: Examples of both procedurally-generated and human-generated mazes. The light
gray squares represent traversable area, while the highlighted squares are the start and goal
locations.
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space (move forward, move backward, look left, and look right), similar textures (both
environments feature a single wall and floor color throughout the entirety of the maze),
and identical maze designs (the human and procedural designs collected earlier) in both
environments. In both environments, there are no intermediate rewards - the only reward
signal from the environment comes from the terminal goal.

Human data collection

To collect human trajectory data on the different maze designs, we again sourced workers
from Amazon Mechanical Turk. Each participant was asked to complete 8 mazes, with 4
designs randomly drawn from the set of procedural mazes and 4 designs randomly drawn
from the set of human-designed mazes. Participants were not paid unless all 8 mazes were
attempted. Participants had 5 minutes to move around and attempt to find the goal for each
maze. We collected data on player position and velocity as they played through each maze
to compare to agent behavior. In total, we collected 810 trajectories from 101 participants.

Agent details

Since our goal was to compare exploratory behaviors between humans and AI, we trained
our artificial agents on a training set of maze layouts consisting of a subset of the designs we
collected from before, and evaluated them on the remaining layouts which they had previ-
ously never seen prior to evaluation-time. This way, agents could learn a general exploration
policy that could be reasonably compared to that of humans on layouts in which neither had
any prior exposure to.

Architecture

We train agents using the Proximal Policy Optimization (PPO) algorithm [14]. In our
experiments, we focus on two architectures that we term Nav PPO and Nav Curiosity.

Nav PPO serves as a baseline and utilizes the same overarching architecture described
in [7], consisting of a convolutional encoder and a two-layer stacked LSTM on top. The
reward from the previous timestep is fed into the first recurrent layer, while the velocity and
previous action are fed into the second recurrent layer. Drawing from the results presented
in [7], we also implement an auxiliary depth prediction loss where depth is predicted from
the top LSTM layer. The problem is formulated as a classification loss where the depth at
each position in a 4x16 depth map is discretised into 8 different bands. The motivation for
such a loss is to help build up feature representations that encode more useful information
about the 3D space, leading to faster and more effective learning. The overall optimization
problem that is being solved during learning is then

min
θP

[
Eπ(xt;θP )[

∑
t

rt] + βLD

]
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Figure 4.2: Overview of network architecture for both Nav PPO and Nav Curiosity, adapted
from [7]

where LD is the auxiliary depth prediction loss and 0 ≤ β ≤ 1 is a scalar that weights the
importance of the depth prediction loss. We refer to this configuration as Nav PPO moving
forward.

Nav Curiosity utilizes the same underlying architecture as Nav PPO, but with the added
components of the aforementioned Intrinsic Curiosity Module added on top. Note that
for our experiments, features were not shared between the policy and the inverse/forward
models. In this formulation, the overall optimization problem then becomes

min
θP ,θI ,θF

[
Eπ(xt;θP )[

∑
t

rt] + βDLD + βILI + βFLF

]
where θI , θF are the parameters of the inverse and forward models, LI , LF are the losses of
the inverse and forward models, and βI , βF > 0 are scalars that weight each loss. The values
for all the training hyperparameters selected for our experiments can be found in Table 4.1

The convolutional embedding networks in both the policy network and ICM were identical
and based on standard architectures used in Atari experiments [8]. The exact specifications
can be found at https://github.com/openai/large-scale-curiosity as we build our
code on top of this open-source implementation. The output of these embedding networks
had size 512 in both cases. We used LSTM layers of size 256 and 512 for the first and second
layers respectively. The depth prediction module consisted of 64 single-layer MLP’s that
were each trained to predict the depth category of a single pixel in the depth map. Since the
environments contain rewards that can be very sparse, we utilize rollouts of 900 steps and
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Nav PPO Nav Curiosity
Learning rate .0001 .0001

PPO entropy coefficient .01 .01
Extrinsic reward coefficient 1 1
Intrinsic reward coefficient .00001 .00001
Depth loss coefficient βD 3.33 3.33

ICM forward loss coefficient βF - 1
ICM inverse loss coefficient βI - 1

Table 4.1: Training hyperparameters

perform 8 optimization epochs per rollout to more quickly latch onto these sparse rewards.
We also run 32 environments in parallel in order to improve training stability and ensure
that our policy did not quickly overfit to a few specific layouts encountered during training.

Training

Agents were trained in DeepMind Lab, using a customized environment that randomly loaded
a maze layout during each episode. For both human and procedural mazes, we sample from
a set of 100 mazes in total, drawing from the same set of mazes that we collected earlier. By
training agents on multiple maze layouts, we hope to learn a generalized exploration policy
rather than simply memorizing specific layouts. The agent receives 84x84 RGBD images
from the environment, however only RGB images xt ∈ R84x84x3 are fed into the policy while
the depth pixels are used purely to supervise the depth-prediction loss. The agent received
agent-relative lateral and rotational velocity vt ∈ R6 from the environment as well. The
agent received a reward of +10 for reaching the terminal goal, and 0 otherwise. By default
DeepMind Lab episodes run for a certain number of timesteps in which agents can reach the
goal multiple times during the episode, however to better mirror the setup that humans were
presented with we modified this so that reaching the goal terminates the episode. Episodes
were capped at 2700 timesteps, which corresponds to 3 minutes of real-world time. We
trained both the Nav PPO and Nav Curiosity algorithms on procedurally-generated mazes
and human-generated mazes separately, resulting in four different agent configurations that
we consider for analysis. For each configuration, we averaged results across eight seeds that
were able to achieve > 90% success rate on the training maze environment when trained to
convergence. The final training performance of each agent setup is presented in Table ??

Evaluation

We evaluated each of the four different agent configurations on the remaining human and
procedural maze layouts (100 each). These maze designs were not seen by any agents during
training, and thus the data collected here represents the zero-shot exploratory behavior of
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Setup Final Training Reward (out of 10)
Nav PPO Procedural 9.60 ±.13

Nav Curiosity Procedural 9.85 ±.08
Nav PPO Human 9.60 ±.17

Nav Curiosity Human 9.56 ±.11

Table 4.2: Final training performance of the different setups, averaged across all seeds. We
see that during training, all algorithms achieve similarly good performance in both types
of environments, indicating that a good general exploration policy that does not overfit to
specific maze layouts is being learned.

the agents. Each agent was run for 20 evaluation trajectories of a maximum length of 1000
steps (roughly one minute of real-world time) on each of the 100 layouts. Similarly to the
humans, we recorded data on position and velocity that allowed us to analyze specific paths
and behaviors of the agents in each maze design.

4.2 Results

In total, we compare results from 810 trajectories for humans and 16, 000 trajectories for
each agent configuration. We report results from humans and from agents across a couple
of metrics that we define and justify below.

Metrics

1. Success Rate: Percentage of trajectories in which the subject reaches the goal. While
not a perfect measure of exploration as subjects can explore many parts of the maze
without finding the goal, this metric does give some indication of how well subjects are
exploring the mazes overall.

2. Steps taken: We discretize each trajectory into different cells and measure the number
of unique cells visited during the trajectory. This provides a measure of pure movement,
as a higher step count indicates more raw area being covered.

3. Percent explored: Using the same discretized trajectory from before, we take the
steps taken metric and divide it by the total number of cells in the maze on a per-
maze basis. This is intended to normalize results across mazes which have more or less
available area compared to others, giving a measure of area being explored relative to
the total possible area in the maze.

4. Percent revisited: Using the same discretized trajectory from before, we measure
the number of cells that were re-visited during the trajectory and divide it by the
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total number of cells visited. A low steps taken number and high percent re-explored
would indicate inefficient exploration behavior for example, as this would mean that
the subject continuously stays in the same areas without exploring new parts of the
maze.

5. Normalized steps taken: The metrics introduced above are sensitive to intrinsic
qualities of the maze such as how many cells are in the maze or how far the goal is
away from the start. To measure how efficiently subjects are exploring the maze in a
way that normalizes for differences in complexity or difficulty, we divide the steps taken
metric by the optimal path lengths in each maze. This metric then compares maze
coverage in comparison to an optimal policy that knows the shortest path beforehand.

Analysis

Procedural vs human mazes

Our results across both humans and agents show that there are indeed specific qualities
being encoded into the human maze designs we collected that make them markedly distinct
from the procedural ones we generated. One of the key differences comes in the form of
distance from the start to the goal. Figure 4.6 shows that the human maze designs have
much longer optimal path distances on average, while also exhibiting a wider variance in path
lengths. In contrast, the longest procedural mazes only end up being slightly longer than
the average human maze length. Our other results provide further evidence to support this
conclusion. Agents that were trained in human mazes, for example, achieved significantly
better performance in new human layouts when compared to agents trained in procedural
mazes. In contrast, the discrepancy in performance in new procedural layouts was much
smaller, suggesting that the human designs had more distinctive characteristics that agents
were able to learn to specifically exploit during training when compared to the procedural
designs.

Despite this discrepancy in maze length, our results suggest that both humans and agents
find the procedural designs more difficult to explore in an efficient manner. For all agent con-
figurations and humans, the normalized steps taken in the procedural mazes is significantly
higher than in the human mazes, suggesting more deviation from the optimal path.

Interestingly, despite the apparently increased complexity of the procedural mazes, the
training performance in Table 4.2 for both Nav PPO and Nav Curiosity is roughly equal in
both procedural and human maze environments, suggesting that both algorithms are able
to learn to explore and solve complicated layouts to a proficient degree by the time they
converge.

Results in Figure 4.5 show that despite the increased maze complexity, humans were
actually more successful in finding the goals in procedural mazes. This could largely be
explained with the path length discrepancy discussed earlier, as humans also took over less
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Figure 4.3: Results of agent evaluations on procedurally generated mazes reported across
the metrics we defined previously. The labels on the x-axis refer to the architecture used
and the set of mazes that were used during training.
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Figure 4.4: Results of agent evaluations on human generated mazes across the metrics we
defined previously. The labels on the x-axis refer to the architecture used and the set of
mazes that were used during training.
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Figure 4.5: Results of human evaluations on both procedural and human mazes. The labels
on the x-axis refer to the set of mazes that were evaluated.
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Figure 4.6: Comparison of optimal path length distributions in procedural and human mazes.
One potential explanation for this discrepancy is that in the maze generation algorithm, start
and goal locations are randomly sampled. However, humans have preconceived notions of
where starts and goals should be located (i.e at the end of hallways and at opposite corners)
which leads to longer maze path lengths overall.

than half as many steps in the procedural mazes, showing that the simple fact that the goals
were closer to the start was enough to offset this structural complexity.

Figure 4.7 shows some interesting qualitative differences in the downstream behaviors
that arise from being trained in the different types of mazes. For instance, the agents
trained in procedural mazes seem to be more inclined to branch off and visit offshooting
paths, while agents trained in human mazes seem much more content to continue on the
main path that they were originally on. Such a behavior could be a result the agent learning
to more efficiently explore the complex grid-like pattern that is often found in the procedural
mazes, compared to the more long-winding paths that are typical of the human mazes, as
evidence in Figure 4.1. The other maze layout shows agents trained in human mazes to
be much more adept at following long paths compared to the agents trained in procedural
mazes, which again is likely an artifact of the discrepancy in maze designs.

Agent generalization across maze types

Our results show that across all metrics, agents explore more effectively and efficiently when
exposed to new maze layouts that are generated in the same way as the mazes that the agent
was trained in, reaching the goal more often and revisiting less of the maze. Since we have
established that the procedural mazes are significantly different from the human mazes, this
is not a surprising result, as we would expect agents to have more difficulty adapting across
distributions. When looking at the differences in agent performance when generalizing across
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different maze types, however, some interesting observations arise.
When looking at how agents behave different when exposed to a different type of maze

structure, agents exhibit a few consistent behaviors. For one, the raw step count goes
up, which holds true even for agents that go from the longer human mazes to the shorter
procedural ones. In addition, they begin to revisit more cells in the maze, both when
compared to their behavior in their native maze structure as well as when compared to the
behavior of the other agent configurations in their native maze structure. This suggests
that certain systematic differences in the new maze structures are confusing the agent and
causing it get stuck in specific areas more often.

Overall, our results show some evidence that agents trained in human mazes are able to
generalize to the other distribution better. If we consider the performance of agents that
were trained and evaluated in the same maze type as the benchmark, then training on human
mazes consistently comes closer to benchmark performance in the procedural mazes when
compared to the reverse direction. Additionally, agents trained in human mazes explore
comparable amounts of the maze compared to the procedural maze benchmark, while agents
trained in procedural mazes end up exploring much less of the maze when compared to the
human maze benchmark.

Effects of curiosity

Our results show the ICM module having small but mostly insignificant impacts on perfor-
mance for agents trained in either setting. Metrics such as success rate remain very similar
across all settings, and while significant differences in steps taken can be observed when look-
ing at agent generalization to different maze types, the trend is not consistent. While agents
that were trained in human mazes seem to be taking less steps in procedural mazes when
trained with curiosity, the direction is reversed when looking at agents that were trained in
procedural mazes being evaluated in human mazes. As such, it is difficult to ascertain the
systematic effects that curiosity is having on generalization performance.

One explanation for such a result could be that during training, as agents get better and
better at solving the training maze the effect of the curiosity reward diminishes. This is
because the agent learns to prioritize the primary external reward provided by the environ-
ment. As such, the ultimate policy that the agent learns ends up being dictated more so by
the design of the environment that the agent is trained in, rather than the specific algorithm
used. This could suggest that variations in environment design could be equally important,
if not more important, than algorithmic modifications when it comes to attaining better
generalization performance for RL agents.

Human agent comparison

Overall, agents and humans exhibited surprisingly similar behavior in a couple of key as-
pects. In procedural mazes especially, when looking at metrics besides success rate, humans
performed very closely in line with the benchmark agent. Interestingly, humans were still
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Nav PPO Procedural

Nav Curiosity Procedural

Nav PPO Human

Nav Curiosity Human

Figure 4.7: We investigate qualitative differences in behavior of different subjects using
heatmaps of all trajectories in a couple of layouts. In the maze layout on the left, while
agents trained on human layouts tend to stick to the outer portion of the maze, agents
trained on procedural layouts explore the inner portions of the maze more consistently. In
the maze layout on the right, we see that while agents trained on procedural mazes have
difficulty following the path all the way down, agents trained on human mazes are able to
do so more consistently.
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able to find the goal much more consistently, despite the close similarity in the rest of the
metrics.

Somewhat surprisingly, human behavior ended up being more similar to agents that were
trained in procedural mazes rather than agents that were trained in human mazes. Both
humans and the benchmark procedural agents demonstrated similar behavior not only in
procedural mazes, but also in human mazes, Both were less successful, took more steps,
started re-visiting more cells, and took a similar amount of normalized steps in the human
mazes when compared to the procedural ones. Again, however, humans were much more
successful at finding the goal in human mazes than the benchmark procedural agents.

The above results indicate that while certain priors are being encoded into the human
designs, these are not priors that humans themselves are particularly good at leveraging. In
fact, agents that were trained in human mazes ended up being more successful in human
mazes than humans across all metrics, as they were able to find the goal more often while
exploring more of the maze layout and taking less normalized steps, suggesting that the
agents were able to more effectively exploit the specific traits of the human layouts better
than humans were able to.
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Chapter 5

Conclusion and Future Work

In this work, we presented two contributions in the space of human-AI comparisons. The
first was an online platform for collecting human maze designs and exploration data that
can be used for future experiments in this line of research. The second was a comprehensive
comparison of the exploration behavior of humans and artificial agents in 3D navigation
environments. We specifically explored the effects of the intrinsic curiosity module [11] on
agent behavior in agent comparisons to determine if it accurately models human behavior.
We also explored differences in behavior of both agents and humans across procedurally
generated and human generated maze designs. Our results showed that while curiosity
ends up having little effect on agent behavior, training agents in different types of maze
environments ends up having drastic effects on exploration behavior in unseen environments
from the same maze distribution as well as unseen environments from a different distribution.
Our results also showed that while certain agent configurations behaved extremely similarly
to humans across many of the metrics we examined, humans were more successful in finding
goals within the mazes as well and more robust to differences in maze distribution.

One interesting line for future work could be the development of metrics that better
describe some of the discrepancies we observed between human and agent behavior. The
fact that humans were more successful at finding goals despite their similarity to agents
across many of our metrics suggests that there are certain modes of behavior not being fully
captured by the metrics we analyzed. The development of metrics to capture this behavior
could lend further insight into what makes human exploration specifically more effective,
which in turn could better inform future algorithms. Another line of future work lies in
modifications to the algorithmic setups that we present. While the results we presented
did not show ICM making a significant difference in agent behavior, other formulations of
curiosity [13] or spatial models [4] could yield different results. Finally, future developments
to the data collection platform, such as the ability to collect video logs of human trajectories,
could aid in the development of new metrics and ultimately allow for more nuanced means
of behavioral comparison.
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