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Abstract

Learning and Logic for Formal Synthesis

by

Benjamin Caulfield

Doctor of Philosophy in Computer Science

University of California, Berkeley

Sanjit A. Seshia, Chair

Program synthesis is the use of algorithms to derive programs that satisfy given specifications. These
specifications are usually given in some form of computer-understandable logic. Specifications are
usually much easier to write than the programs themselves.

By ‘filling in the details’ given by the specification, program synthesis opens the possibility of
creating simple programs to both laypeople and non-programming domain experts.

Recent work in program synthesis has used techniques from ‘exact active learning’, where learning
algorithms are able to pose queries to oracles. In the case of program synthesis, these oracles are
implemented by checking potential programs against the given specification or asking a user for
more inputs.

Another recent development in the field is Syntax-Guided Synthesis (SyGuS), where the space of
potential programs is given by a tree-grammar (or context-free grammar). Specifications are given
in the logic of SMT (satisfiability modulo theories) problems.

This thesis further develops the theory behind exact active learning, program synthesis, and their
intersection. We provide upper and lower bounds, including undecidability results, for SyGuS
problems defined on various SMT theories. We introduce the subject of actively learning equational
theories and show how it can be used to learn constrained EUF formulas. We study the problem of
exact active learning of concepts that are comprised of independent components, and show when
the knowledge that components work independently can significantly reduce learning complexity.
Finally, we introduce new methods for SyGuS solving with respect to cost, where the goal is to find
the minimal cost program satisfying a specification.
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Chapter 1

Introduction

1.1 Program Synthesis
The key idea behind program synthesis is that specifications are easier to write than programs. Users
can write program specifications in high-level specification languages which can be understood
by computers. For example, consider the following specification for the square root function sqrt
adapted from [42]:

sqrt(n) = m where (m ≥ 0) and (m2 = n)

This specification is easy enough to understand: the square root of n is a non-negative number m
whose square is n. The algorithm to actually calculate square root is of course much more difficult
than this one-line specification. A successful synthesis algorithm could take this specification and
find the square root algorithm. This opens the possibility of creating simple programs to both
laypeople and non-programming domain experts.

One important technique for program synthesis OGIS, which will be defined below, can also
be used to make programs clearer and more efficient. Given an unclear or inefficient program, a
program synthesis algorithm can make black-box queries to the program in order to learn a clearer
or more efficient program [33]. This unclear program might even take the form of a neural network.
Extending work on learning automata from neural networks to learning general programs, could
mean that program synthesis might play an important role in the explanation and verification of
neural network behaviors.

Past Work
The first successful instance of program synthesis was demonstrated by Green in 1969, who showed
that theorem proving techniques could be used to solve simple problems like the Tower of Hanoi
[29]. Later, Waldinger & Manna combined techniques from unification, rewriting, and mathematical
induction to create a synthesis framework that stood as the state-of-the-art for decades [42].
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Synthesizer Verifier

Candidate Program

Feedback

Figure 1.1: Inductive synthesis procedure

In addition to the logical specifications given above, program synthesis can also require that a
program match a set of examples representing the way a program should (or should not) work. This
type of synthesis is called inductive synthesis, whereas the former type is called deductive synthesis.

In 2005, Solar-Lezama, Rabbah, Bodı́k, and Ebcioglu introduced sketching, where a partial
program specification is written with holes, which are then filled in by a synthesizer [54]. This
was expanded to general combinatorial sketching in 2006 by Solar-Lezama Tancau, Bodik, Seshia,
and Saraswat [53]. This was later developed by Solar-Lezama into the general synthesis procedure
called counterexample-guided inductive synthesis (CEGIS) as in Figure 1.1 [51]. In this paradigm,
potential programs are compared against the program specification using a verifier. If the program
is incorrect, the verifier returns a counterexample, meaning an input that causes incorrect program
behavior. This counterexample is then used to find a new potential program, and the process
continues.

The exact active learning paradigm learns by posing queries to an oracle that can answer queries
about a target concept, which is drawn from a class of possible concepts. The focus for this
paradigm is to find a solution that exactly matches the target concept. This is particularly useful for
the safety-critical applications often studied in formal methods. A well-known exact active learning
algorithm is Angluin’s polynomial time algorithm for learning finite automata from queries and
counterexamples [5].

In the case of CEGIS, the oracle was answering equivalence queries, by giving counterexamples
showing that the hypothesis concept did not fit the intended solution. By implementing other oracles,
new classes of programs could be quickly learned. In 2012, Seshia showed that active learning
algorithms can be integrated with deductive methods to create effective synthesis procedures [49, 48].
Another early work on oracle-guided synthesis, written by Jha, Gulwani, Seshia, and Tiwari, showed
that a programmer could write an inefficient version of a program, which a synthesis algorithm
could then query in order to learn a better version [34]. A program synthesis algorithm could also
run a difficult-to-read program on different inputs in order to learn a simpler representation of that
program. The use of oracles for program synthesis was further studied in Jha’s PhD thesis [35] and
later formalized by Jha & Seshia as oracle guided inductive synthesis (OGIS), which is the main
form of program synthesis studied in this paper [33]. OGIS is a special case of formal synthesis, the
synthesis of programs that are correct with respect to a high-level specification.

Gulwani, Jha, Tiwari, and Venkatesan have shown that non-trivial programs can be built from
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loop-free compositions of simpler components [30]. In 2013, Alur et. al. introduced Syntax-Guided
Synthesis (SyGuS) as a framework to unify existing synthesis techniques, including component-
based synthesis and sketching [4]. SyGuS is a general framework for synthesizing loop-free
programs that match given specifications which are given in SMT logics. The space of potential
programs is given by a context-free grammar (or tree grammar). By cleverly searching this space,
SyGuS solvers can find terms (i.e., loop-free programs) that match the given specification.

1.2 Contributions
This work presents several new results at the intersection of program synthesis and exact active
learning, including new algorithms and theoretical bounds.

New Algorithms
We present several new algorithms, often for newly studied problems. These include new learning
algorithms for equational theories, as in Chapter 3, and modular learning algorithms as in Chapter
4. We also provide terminating algorithms for several classes of SyGuS problems in Chapter 5.
Among these problems are finite domain theories and a newly introduced subset of EUF called
regular-EUF. Finally, we show new ways to solve SyGuS problems with respect to cost. Chapter 6
argues how an enumeration algorithm from the natural language processing community can be used
to find min-cost SyGuS solutions with respect to certain classes of costs. It also shows how SyGuS
grammars can be adapted to acount for several types of useful costs, including the big-O runtime
and space usage of programs.

Theoretical Bounds
This thesis also presents theoretical bounds, showing limits to the possibilities of learning algorithms
and synthesizers. Chapter 4 presents several bounds on the limitations of modular learning of
crossproducts with respect to different sets of queries. The undecidability of SyGuS with respect to
EUF, Arrays, and unbounded Bitvectors is shown in Chapter 5.

1.3 Organization
The next chapter introduces background material. After this, the thesis is organized into two parts.
Part 1 focuses on results in computational learning theory. Chapter 3 introduces results on learning
equational theories and is based on work with Ashish Tiwari. Chapter 4 studies the problem of
modular concept learning and was developed with Sanjit A. Seshia.

Part 2 discuses new results in Syntax-Guided Synthesis. Chapter 5 gives decidability results for
SyGuS with respect to different background theories and was work with Sanjit A. Seshia, Stavros
Tripakis, and Markus Rabe. Chapter 6 discusses methods for expanding SyGuS to account for costs
and was developed with Nick Spooner, Morris Yau, and Sanjit A. Seshia.
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Chapter 2

Background

2.1 Notation

Symbol Meaning
Σ Alphabet (ranked or unranked)

T (Σ, V ) Set of terms that can be made with symbols Σ and variables V
T (Σ) The set T (Σ, ∅)
G Tree Grammar or String Grammar

L(G), L(A) The set of trees or strings produced by grammar G or automaton A
φ, ψ, Φ, Ψ Formulas
X , Y Space of elements / Instance space

2S Power set: set of all subsets of S
C Concept class (C ⊆ 2X)
c Concept (c ∈ C and c ⊆ X)
c∗ Target concept. The concept to be learned (c∗ ∈ C)
D Probability distribution defined on X
M First-order model

dom(M) Domain of model M
(−)M Interpretation of M

Table 2.1: Mathematical Notation
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Symbol Meaning
DFA Deterministic Finite Automaton
RTG Regular Tree Grammar
CFG Context-Free Grammar
PAC Proably Approximately Correct

Table 2.2: Abbreviations

The above two tables give notation and abbreviations that are used throughout the thesis. Table
2.1 defines mathematical notation and shows conventions for variable names. Table 2.2 shows
acronyms and abbreviations.

The remainder of this section reviews some key definitions and results used in the rest of the
thesis.

Terms and Substitutions
We follow the book by Baader and Nipkow [8]. A signature (or ranked alphabet) Σ consists of
a set of function symbols with an associated arity, a non-negative number indicating the number
of arguments. For example, Σ = {f : 2, a : 0, b : 0} consists of binary function symbol f and
constants a and b. For any arity n ≥ 0, we let Σ(n) denote the set of function symbols with arity n
(the n-ary symbols). We will refer to the 0-ary function symbols as constants.

For any signature Σ and set of variables V such that Σ ∩ V = ∅, we define the set T (Σ, V ) of
Σ-terms over V inductively as the smallest set satisfying:

• Σ(0), V ⊆ T (Σ, V )
• For all n ≥ 1, all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ, X), we have f(t1, . . . , tn) ∈ T (Σ, V ).
We define the set of ground terms of Σ to be the set T (Σ, ∅) (simplified to T (Σ)). We define the

subterms of a term recursively as Subterms(g(s1, . . . , sk)) = {g(s1, . . . , sk)} ∪
⋃
i Subterms(si),

which we lift to sets S of terms, Subterms(S) =
⋃
s∈S Subterms(s). We say that a set S of terms

is subterm-closed if Subterms(S) = S.
For a set y1, . . . , yk of variables (or constants) and terms t1, . . . , tk, s, the term s{t1/y1, . . . , tk/yk}

is formed by replacing each instance of each yi in s with ti. We call σ := {t1/y1, . . . , tk/yk} a
substitution. Substitutions extend in the natural way to formulae, by applying the substitution to
each term in the formula.

We extend substitution to function symbols with arity > 0, where it is also called second-
order substitution. For a function symbol f of arity k, a signature Σ, and a set of variables
{x1, . . . , xk}, a substitution to f in Σ is a term w ∈ T (Σ, {x1, . . . , xk}). Given a term s ∈ T (Σ∪f),
the term s{w/f} is formed by replacing each occurrence of any term f(s1, . . . , sk) in s with
w{s1/x1, . . . , sk/xk} (sometimes written w(s1, . . . , sk)). For example, g(f(a, b)){h(x2, x1, c)/f}
is equivalent to g(h(b, a, c)). We say that x1, . . . , xk are the bound variables of f . Intuitively,
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second-order substitution replaces not only f by w, but also replaces the arguments s1, . . . , sk of
each function application f(s1, . . . , sk) by the bound variables.

A context B is a term in T (Σ, {x}) with a single occurrence of x. For s ∈ T (Σ), we write B[s]
for B{s/x}.

2.2 Logical Theories
A first-order model M in Σ, also called Σ-model, is a pair consisting of a set dom(M) called its
domain and a mapping (−)M . The mapping, called the interpretation, assigns to each function
symbol f ∈ ΣF with arity n ≥ 0 a total function fM : dom(M)n → dom(M), and to each relation
R ∈ ΣR of arity n a set RM ⊆ dom(M)n.

A formula is a boolean combination of relations over terms. The mapping induced by a model
M defines a natural mapping of formulas ϕ ∈ L(Σ) to truth values, written M |= ϕ (we also
say M satisfies ϕ). For some set Φ of first-order formulas, we say M |= Φ if M |= ϕ for each
ϕ ∈ Φ. A theory T ⊆ L(ΣF ∪ ΣR) is a set of formulas. We say M is a model of T if M |= T ,
and use Mod(T ) to denote the set of models of T . A first-order formula ϕ is valid in T if for all
M ∈ Mod(T ), M |= ϕ. A theory is complete if for all formulas ϕ ∈ L(Σ) either ϕ or ¬ϕ is valid.

Given a set of ground equations E ⊆ T (Σ)× T (Σ) and terms s, t ∈ T (Σ), we say that s→E t
if there exists an (l, r) in E and a context C such that C[l] = s and C[r] = t. For example, if
E := {a = g(b)}, then h(a) →E h(g(b)). Let =E be the symmetric and transitive closure of
→E . We will sometimes write E ` s = t instead of s =E t. We will use [s]E to represent the set
{t | s =E t}. Birkhoff’s Theorem states that for any ranked alphabet Σ, set E ⊆ T (Σ) × T (Σ),
and s, t ∈ T (Σ), E ` s = t if and only if for every model M in Σ such that M |=

∧
e∈E e it holds

M |= s = t [8].
In this work, we consider the common quantifier-free background theories of SMT solving:

propositional logic (SAT), bit-vectors (BV), difference logic (DL), linear real arithmetic (LRA), lin-
ear integer (Presburger) arithmetic (LIA), the theory of arrays (AR), and the theory of uninterpreted
functions with equality (EUF). For detailed definitions of these theories, see [10, 9].

For the theory of EUF it is common to introduce the If-Then-Else operator ( ITE) as syntactic
sugar [13, 10, 9]. We follow this tradition and allow EUF formulas to contain terms of the form
ITE(ϕ, t1, t2), where ϕ is a formula, and t1 and t2 are terms. To desugar EUF formulas we introduce
an additional constant cite and add two constraints ϕ→ (cite = t1) and ¬ϕ→ (cite = t2) for each
ITE term ITE(ϕ, t1, t2). As we will see in Section 5.2 the presence of syntactic sugar such as the
ITE operator in the grammar of SyGuS problems has a surprising effect on the decidability of the

SyGuS problem.

2.3 Grammars and Automata
A context-free grammar (CFG) is a tuple G = (N, T, S,R) consisting of a finite set N of non-
terminal symbols with a distinguished start symbol S ∈ N , a finite set T of terminal symbols, and
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a finite set R of production rules, which are tuples of the form (N, (N ∪ T )∗). Production rules
indicate the allowed replacements of non-terminals by sequences over non-terminals and terminals.
The language, L(G), generated by a context-free grammar is the set of all sequences that contain
only terminal symbols that can be derived from the start symbol using the production rules.

A regular tree grammar G = (N,S,Σ, R) consists of a set N of non-terminals, a start symbol
S ∈ N , a ranked alphabet Σ, and a set R of production rules. Production rules are of the form
A→ g(t1, t2, ..., tk), where A ∈ N , g is in Σ and has arity k, and each ti is in N ∪ TΣ. For a given
tree-grammar G we write L(G) for the set of trees produced by G. Note that we will refer to trees
and terms interchangeably in this thesis. For example, g(a, b, c) can be thought of as the tree with
root g and children a, b, and c. The regular tree languages are the languages produced by some
regular tree grammar. Any regular tree grammar can be converted to a CFG by simply treating the
right-hand side of any production as a string, rather than a tree. Thus, the undecidability results for
SyGuS given regular tree grammars extend to undecidability results for SyGuS given CFGs.

We believe that regular tree grammars better represent the space of possible SyGuS solutions
than CFGs. Any CFG whose non-terminals can only produce well-formed strings can be easily
represented as a regular tree grammar. The alternative is to have non-terminals yield strings that are
somewhat unintuitive, such as in the following CFG: S → AB
A→ g(a, B → b).

Let Σ be a signature of a background theory T . We define a tree grammar G = (N,S,Σ, P )
to be T -compatible (or Σ-compatible) if Σ ⊆ ΣF ∪ ΣR and the arities for all symbols in Σ match
those in Σ.

A (deterministic) bottom-up (or rational) tree automaton A is a tuple (Q,Σ, δ, QF ). Here,
Q is a set of states, QF ⊆ Q, and Σ is a ranked alphabet. The function δ maps a symbol
g ∈ Σ(k) and states q1, . . . , qk to a new state q′, for all k. If no such q′ exists, δ(g, q1, . . . , qk) is
undefined. We can inductively extend δ to a function δ∗ on terms, where for all g ∈ Σ(k) and all
s1, . . . , sk ∈ T (Σ), we set δ∗(g(s1, . . . , sk)) := δ(g, δ∗(s1), . . . , δ∗(sk)). The language accepted by
A is the set L(A) := {s | s ∈ T (Σ), δ∗(s) ∈ QF}. There exist fast transformations between regular
tree grammars and rational tree automata [18], and we will sometimes also define SyGuS problems
in terms of rational tree automata rather than regular tree grammars.

2.4 Syntax-Guided Synthesis
We follow the definition of SyGuS given by Alur et al. [4]. Let T be a background theory over
signature Σ, and let G be a class of grammars. Given a function symbol f with arity k, a formula
ϕ over the signature Σ∪̇{f}, and a grammar G ∈ G of terms in T (Σ, {x1, . . . , xk}), the SyGuS
problem is to find a term w ∈ L(G) such that the formula ϕ{w/f} is valid or to determine the
absence of such a term. We represent the SyGuS problem as the tuple (ϕ, T , G, f).

The variables x1, . . . , xk that may occur in the generated term w stand for the k arguments of f .
For each function application of f the second-order substitution ϕ{w/f} then replaces x1, . . . , xk
by the arguments of the function application.
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Note that the original definition of SyGuS allows for universally quantified variables, while our
definition above admits no variables. This is equivalent, since universally quantified variables can
be replaced with fresh constants without affecting validity.

Example 1. Consider the following example SyGuS problem in linear integer arithmetic. Let the
type of the function to synthesize f be int× int 7→ int and let the specification be given by the logical
formula

ϕ1 : ∀x, y f(x, y) = f(y, x) ∧ f(x, y) ≥ x .

We can restrict f(x, y) to be expressions generated by the grammar below:

Term := x | y | Const | ITE(Cond,Term,Term)

Cond := Term ≤ Term | Cond ∧ Cond | ¬Cond | (Cond)

A function computing the maximum over x and y, such as ITE(x ≤ y, y, x), is a solution to the
SyGuS problem.

2.5 Computational Learning Models
Much of this thesis focuses on concept learning: learning representations of sets of elements from a
class of possible representations. This differs from other types of learning in that it does not allow
for more than two labels and it does not attribute probabilities to those labels. An element is either
in the concept or not.

An instance space (sometimes called element space or just space) is a set X , which may be
finite or infinite. A concept in X is some set c ⊆ X . A concept class C over a space X is a finite or
infinite collection of concepts in X . When learning concepts, we assume there is a target concept
c∗, which it is the learning algorithm’s goal to find [37].

For example, when learning regular languages, the input space X would be the set Σ∗: the set
of all finite strings that can be formed from symbols in the alphabet Σ. The concept class C would
be the set of all regular languages, which might be represented, for example, as deterministic finite
automata (DFAs). An individual concept c would then be a specific regular language (i.e., set of
strings) represented by a finite automaton.

Note that although the choice of representation can sometimes be crucial for concept learning,
that is not the case in this thesis. We will specify a fixed representation for each concept class. For
example, unless otherwise stated, regular languages will always be represented by the canonical
minimal DFA.

A learning algorithm (learner) is defined over a fixed space X and concept class C. For any
target concept c∗ ∈ C, the algorithm has access to either queries or examples from c∗ and must
eventually return a representation of c∗. The complexity of learning c∗ is a function of the size of
the representation of c∗. Complexity measures of interest include the amount of time and space
needed to learn, as well as the number of queries or examples that are needed.
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Query Name Symbol Complexity Oracle Definition
Single Positive Query 1Pos n\a Return a fixed x ∈ c∗

Positive Query Pos #Pos(c∗) Return an x ∈ c∗ that has not yet been given
as a positive example (if one exists)

Membership Query Mem #Mem(c∗) Given element x, return ‘true’ iff x ∈ c∗
Equivalence Query EQ #EQ(c∗) Given c ∈ C, return ‘true’ if c = c∗ otherwise

return x ∈ (c\c∗) ∪ (c∗\c)
Subset Query Sub #Sub(c∗) Given c ∈ C, return ‘true’ if c ⊆ c∗ otherwise

return some x ∈ c\c∗
Superset Query Sup #Sup(c∗) Given c ∈ C, return ‘true’ if c ⊇ c∗ otherwise

return some x ∈ c∗\c
Example Query EXD #EX(c∗,D) Samples x from distribution D and returns x

with a label indicating whether x ∈ c∗.

Table 2.3: Types of queries studied in this thesis.

Learner Oracle

x ∈ c∗?
yes / no

c ⊇ c∗?

yes / no + c.e.

Figure 2.1: Learner and Oracle asking and answering membership and superset queries.

Query-Based Learning
Most of the learning done in this thesis will involve the use of queries and oracles as shown in Figure
2.5 [6]. Oracles are objects with knowledge of the target concept c∗. They can answer specific
queries posed by the learning algorithm about c∗. For example, a membership oracle would be given
an element x ∈ X (called a membership query) from the learning algorithm, and would then tell the
algorithm whether or not x ∈ c∗. An equivalence query from a learning algorithm is a set c ∈ C.
The oracle would either tell the learner that c equals c∗ or would give a counterexample, which is an
element of X that demonstrates that c and c∗ are not equivalent. In the case of equivalence queries, a
counterexample is either a positive counterexample x ∈ c∗\c or a negative counterexample x ∈ c\c∗.
The set of queries discussed in this thesis are given in Table 2.3.



10

Part I

Learning
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Chapter 3

Actively Learning Equational Theories

3.1 Overview
Term rewriting systems are among the many formalisms capable of describing all turing-computable
functions. Lambda calculus, combinatory logic, and the theory of turing machines all have very
natural representations as term rewriting systems. Often, the order on rewrite rules is ignored, and
rewrite rules are treated as sets of unordered equations (identities) between terms. Algorithms
such as the Knuth-Bendix algorithm [38] are then applied to such sets of equations to create
term rewriting systems with desirable properties. Because of the close connection between these
equations and programs [59, 44], applying the Knuth-Bendix algorithm to equations can be seen as
a form of program-synthesis [24]. Dershowitz and Reddy have also studied the inductive synthesis
of programs using ordered-rewriting [25]. Although there has also been work on learning term-
rewriting systems [7, 47], there has been much less work on the learning of equational systems,
themselves.

The goal of the present chapter is to learn finite sets of equations over terms using examples
or queries. We focus on exact learning, where the learned equational theory must be equivalent to
the target equational theory. Although we learn equations with variables, we restrict ourselves to
using examples and queries on only ground equations (i.e., equations without variables). We can
think of these ground equations as instantiations of non-ground equations in the “real world”. This
method, however, has the downside that we cannot distinguish between two different equational
theories that agree on ground terms (i.e., terms without variables). For example, given alphabet
Σ := {f : 1, a : 0} consider the equational theories generated by E0 := {f(f(a)) ≈ f(a)} and
E1 := {f(x) ≈ f(y)} for variables x and y. Both presentations agree on all ground equations, but
the equation f(x) ≈ f(y) is provable in E1 but not E0. Therefore we only require that the learned
equational theory be equal to the target theory on all ground terms.

Note that this type of learning fits into the concept learning paradigm. The instance space X
is the set T (Σ) × T (Σ) of pairs between ground terms. For a given presentation, the set of such
pairs that are provably equivalent forms a concept. A concept class can be formed by the set of all
concepts induced by presentations, assuming the presentations follow desired restrictions. So, for
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example, one concept class might be the set of concepts induced by a finite set of ground equations.
Another class might be the set of concepts induced by any finite presentations. Analogous definitions
of positive & negative examples and membership & equivalence queries can be applied to learning
equational theories. So, in the context of learning equational theories, a membership query would
mean ”is this ground equation provable by the target equation”.

This chapter presents polynomial-time algorithms for the exact learning of non-collapsing
shallow theories, which are presentable by equations with variables appearing only at depth 1 .
Shallow theories, which are presentable by equations with variables appearing at depth 0 or 1, were
first introduced by Comon, Haberstrau, and Jouannaud as a non-trivial class of equational theories
with a decidable word problem [19, 20]. Later work by Niewenhuis showed that the word problem
for shallows theories is solvable polynomial time [43]. It seems unlikely that there could exist a
polynomial-time learning algorithm for a class of theories with no polynomial algorithm for the
word problem. Therefore, the set of non-collapsing shallow theories is among the most expressive
classes of theories for which an efficient learning algorithm might reasonably exist.

3.2 Notation and Background
Terms and Substitutions

This section introduces more background on terms and equations. Refer to the background section
at the start of this work for more information.

We follow the book by Baader and Nipkow [8]. A signature (or ranked alphabet) Σ consists of
a set of function symbols with an associated arity, a non-negative number indicating the number
of arguments. For example Σ := {f : 2, a : 0, b : 0} consists of binary function symbol f and
constants a and b. For any arity n ≥ 0, we let Σ(n) denote the set of function symbols with arity n
(the n-ary symbols). We will refer to the 0-ary function symbols as constants.

For any signature Σ and set of variables V such that Σ ∩ V = ∅, we define the set T (Σ, V ) of
Σ-terms over V inductively as the smallest set satisfying:

• Σ(0), V ⊆ T (Σ, V )
• For all n ≥ 1, all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ, V ), we have f(t1, . . . , tn) ∈ T (Σ, V ).

Unless otherwise stated, we will use variations of a, b, and c to denote constants, x, y, and z to
denote variables, and f , g, and h to denote non-constant function symbols. We define the set of
ground terms of Σ to be the set T (Σ, ∅), which we will sometimes write T (Σ). So ground terms are
terms with no variables. Ground equations are equations between ground terms.

The set of positions of a term t, denoted Pos(t), is a set of strings over the alphabet of positive
integers. It is inductively defined as follows:

• If t ∈ V ∪ Σ(0), then Pos(t) := {ε}
• If t = f(t1, . . . , tn), then Pos(t) := {ε} ∪

⋃n
i=1{ip | p ∈ Pos(ti)}

Here, ε represents the empty string and is called the root position of t. For positions p and q, we
say p ≤ q if there exists a position p′ such that pp′ = q. We say p is parallel to q, denoted p‖q, if
p 6≤ q and q 6≤ p. For p ∈ Pos(t), the subterm of t at position p, denoted t|p is defined by:
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• t|ε := t
• t|ip′ := ti|p′ , if t = f(t1, . . . , tn)

For p ∈ Pos(t), the term t[s]p is created by replacing the subterm at position p with s. In other
words:

• t[s]ε := s
• f(t1, . . . , tn)[s]ip′ := f(t1, . . . , ti[s]p′ , . . . , tn)

This can be extended to a set I ⊂ Pos(t) of parallel positions, so t[s]I replaces each term at each
i ∈ I with s. An equation is an ordered-pair of terms s and t, written s ≈ t. Given a set E of
equations, new equations can be derived using the rules of equational logic as follows:

` s ≈ s (reflexive)
s ≈ t ` t ≈ s (symmetric)

s ≈ t, t ≈ u ` s ≈ u (transitive)
s1 ≈ t1, . . . , sk ≈ tk ` f(s1, . . . , sk) ≈ f(t1, . . . , tk) (congruence)

s ≈ t ` sσ ≈ tσ (substitution)

Let Th(E) be the set of equations, s ≈ t, such that E ` s ≈ t. Moreover, let ThG(E) be the
set of ground equations in Th(E). We say two sets of equations, E and E ′, are ground-equivalent
(written E ≡G E ′) if ThG(E) = ThG(E ′). A presentation of T is any finite set E of equations
such that Th(E) = T .

Alternatively, we say that s ≈pe t if there is a substitution σ, an equation e := l ≈ r, and a
position p ∈ Pos(s) such that s|p = lσ and s[rσ]p = t. The equation s ≈e t denotes that there is a
p ∈ Pos(s) such that s ≈pe t. We can think of this as replacing the subterm lσ at position p in s with
rσ. We write s ≈E t if there is a finite sequence of equations and positions (e0, p0), . . . , (ek, pk)
such that s = v0 ≈p0e0 v1 ≈p1e1 · · · ≈

pk
ek
vk+1 = t. It holds that s ≈E t if and only if E ` s ≈ t.

For example, given the presentation E := {e1 := f(x) ≈ f(y), e2 := g(f(a)) ≈ g(b)}, we
can prove g(f(b)) ≈ g(b) by the derivation g(f(b)) ≈1

e1
g(f(a)) ≈εe2 g(b). Given the presentation

E := {e1 := f(x, y) ≈ f(x, x), e2 := f(x, y) ≈ f(y, x)}, we can prove f(f(a, b), f(b, a)) ≈
f(f(b, a), b) by the derivation f(f(a, b), f(b, a)) ≈1

e2
f(f(b, a), f(b, a)) ≈εe1 f(f(b, a), b).

Let EQ(E) denote the set of equivalence classes induced by E. We use [t]E to denote the
equivalence class of E containing the term t and [t] when E is implicitly known. A ground
equivalence class contains at least one ground term, and EQG(E) is the set of ground equivalence
classes of E.

We use V ars(·) to denote the set of variables occurring in any object, such as a term, equation,
or set of equations.

We define the subterms of a term recursively by:

Subterms(g(s1, . . . , sk)) := {g(s1, . . . , sk)} ∪
⋃
i

Subterms(si)
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We lift the definition to sets S of terms:

Subterms(S) :=
⋃
s∈S

Subterms(s)

We say that a set S of terms is subterm-closed if Subterms(S) = S. We say that s appears in t
(resp. t ≈ u) if s ∈ Subterms(t) (resp. Subterms(t) ∪ Subterms(u))

The size of a term is defined by ‖ · ‖ so that ‖f(s1, . . . , sk)‖ := 1 + Σi‖si‖ and ‖a‖ := 1 for all
symbols f of arity k, constants a, and terms s1, . . . , sk. This can be extended to equations, sets of
terms, and sets of equations in the natural way.

The depth of a term t is the length of the largest p ∈ Pos(t). A term s (resp. equivalence
class c) occurs in t at depth d if there is a p ∈ Pos(t) of length d such that t|p = s (resp. s ∈ C
such that t|p = s). A term t is shallow if no variable occurs at a depth greater than or equal to
2. An equation s ≈ t is shallow if s and t are shallow, and a set of equations is shallow if all of
its equations are shallow. For example, f(h(h(a)), x, b) ≈ x and g(x, y, b) ≈ h(x) are shallow,
while f(h(x), a) ≈ x and h(h(x)) ≈ h(x) are not. A theory T is shallow if there exists a shallow
presentation E such that Th(E) = T .

An equation s ≈ t is collapsing if t ∈ V and t ∈ Subterms(s). A set of equations is collapsing
if it contains at least one collapsing equation, and any theory is collapsing if each of it’s presentations
is collapsing. Any equation, set of equations, or theory is non-collapsing if it is not collapsing.
Non-collapsing shallow theories can be presented by equations where variables only appear at depth
1.

For any equivalence class c, and any term s, we use D1Pc(s) to denote the set of depth 1
positions of terms from c in s. In other words, D1Pc(s) is the largest subset of N such that for each
i ∈ D1Pc(s), s|i ∈ c. Define D1Px(s) analogously for any variable, x. Let D1E(s) be the set of E
equivalence classes that appear at depth 1 in s. We define D1E(s ≈ t) := D1E(s) ∪D1E(t) and
D1E(E ′) :=

⋃
s≈t∈E′ D1E(s ≈ t) We drop the subscript E when it is clear from context.

3.3 Properties of Non-Collapsing Shallow Theories
This section investigates some properties of non-collapsing shallow theories that will be useful in
the following sections. We introduce a representation for non-collapsing shallow theories known
as maximally-generalized signature equations. We will show that this representation is canonical
for ground-equivalent theories up to a renaming of variables. This representation can be used
to determine a canonical presentation for non-collapsing shallow theories. Assuming a fixed
signature, we will also show that the size of this representation is polynomial in the size of any
ground-equivalent presentation.

Throughout this section, unless otherwise stated, we will assume that every theory is non-trivial.
This means that there are at least two ground terms that are equivalent and at least two ground terms
that are not equivalent in the target theories.
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Signature Equations
Given an equational theory E, a signature, sig (defined over E), consists of a function symbol
f ∈ Σk and a set of equivalence classes C1, . . . , Ck ∈ EQG(E), represented 〈f, C1, . . . , C2〉. We
call f the head and C1, . . . , Ck the body of the signature.We write sig[i] for each Ci.

An instance of sig is a term f(s1, . . . , sk), where for each i, si ∈ Ci. We write Inst(sig)
to represent the set of instances of sig. We may also represent sig by 〈f, s1, . . . , sk〉 when
f(s1, . . . , sk) ∈ Inst(sig), since each si acts as a representative element of C.

An extended signature, sig′ is defined analogously, but may contain variables in place of
equivalence classes. Moreover, instances of extended signatures may replace like variables with like
terms. When an instance contains all the same variables as its signature, it is a maximall-generalized
instance For example 〈f, a, x, x〉 and 〈f, [a]E, x, x〉 are both representations of the same extended
signature, and f(a, x, x) and f(a, b, b) are instances of this signature, though f(a, x, x) is the only
maximally-generalized instance. Given two signatures, sig1 and sig2, we define the order � such
that sig1 � sig2 if Inst(()sig1) ⊂ Inst(()sig2). We say sig1 ≺ sig2 if sig1 ≺ sig2 but sig2 6≺ sig1.
For example, 〈f, a, b, b〉 ≺ 〈f, a, x, x〉. Likewise, 〈f, a, x, b〉 6≺ 〈g, a, x, b〉 since they have different
heads, and 〈f, a, x, y〉 6≺ 〈f, x, x, y〉. If sig1 ≺ sig2, we say that sig2 is more general than sig1. For
a set I of indices, we write sig[c]I to replace each element at each i ∈ I with c.

A signature equation is an pair of extended signatures, written sig1 ≈ sig2 for signatures sig1

and sig2. An instance of a signature equation sig1 ≈ sig2 is an equation s1 ≈ s2, where s1 is an
instance of sig1 and is an instance s2 of sig2. The signature equation sig1 ≈ sig2 (defined over E)
holds on E if for every ground instance s1 ≈ s2 of sig1 ≈ sig2, s1 ≈E s2. A maximally generalized
signature equation (MGSE) is a signature equation sig1 ≈ sig2 defined over E such that for all
signatures sig′1 and sig′2 such that sig1 � sig′1 and sig2 � sig′2, there is an instance s′1 ≈ s′2 of the
equation such that s′1 6=E s

′
2. The set of maximally generalized signature equations of a theory E is

written MGSE(E). Every pair of ground terms equivalent in E is an instance of some MGSE of E.
Note that for any presentation E ′, it holds that E ≡G E ′ if and only if MGSE(E) = MGSE(E ′)
(up to a renaming of variables). Therefore, we can try to learn an equational theory by learning its
MGSEs.

This will be accomplished by learning the equivalence classes that appear in MGSEs. We say
an equivalence class is essential if appears in the body of some MGSE. An essential term is a term
belonging to an essential class. We will use EC(E) to denote the set of of essential classes in E,
and will use use EC when E is clear from context.

Example 2. Let E := {f(a, x) ≈ b}. This yields MGSE 〈f, a, x〉 ≈ 〈b〉. The equivalence class [a]
is an essential class, since it appears in the body of 〈f, a, x〉 but [b] is not because it appears in the
head of 〈b〉.

Example 3. Let E := {f(x, y) ≈ f(y, x), f(a, b) = c}. This yields MGSEs 〈f, a, b〉 ≈ 〈c〉,
〈f, b, a〉 ≈ 〈c〉, and 〈f, x, y〉 ≈ 〈f, y, x〉. The classes [a] and [b] are essential.
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The Canonical Representation
We will show how MGSEs and signature equations can be used to construct canonical representa-
tions of non-collapsing shallow theories. The learning algorithm will learn these representations.
Bounding the size of these representations will allow us to bound the complexity of our learning
algorithms.

Lemma 1. Given a ground term u, [u] is an essential term if any only if it appears in the body of
some MGSE, sig1 ≈ sig2.

Proof. Assume [u] is an essential term, and let s ≈ t be the ground equation and v be the ground
term such that s[v]I 6≈ t[v]J , where I := D1P[u](s) and J := D1P[u](t). Let sig1 ≈ sig2 be a
signature equation with s ≈ t as an instance. Assume for contradiction that [u] is not in the body of
sig1 ≈ sig2. So there must only be variables at position I in sig1 and position J in sig2. Let x be
any such variable. Assume for contradiction w.l.o.g. that x also appears in sig1 at some position
i not in I . Since i 6∈ I , u 6≈E s|i, so s ≈ t 6∈ Inst(sig1 ≈ sig2). Therefore D1Px(s) ⊆ I and
D1Px(t) ⊆ J , by contradiction. Therefore, s[v]I ≈ t[v]J ∈ Inst(sig1 ≈ sig2). By contradiction,
[u] must be in the body of sig1 ≈ sig2.

Now assume there is an MGSE, sig1 ≈ sig2, with [u] in it’s body at positions I in sig1 and J in
sig2. Let s ≈ t be any instance of sig1 ≈ sig2 such that D1P[u](s) = I and D1P[u](t). Assume for
contradiction that for all v, s[v]I ≈E t[v]J . Then every ground instance of s[x]I ≈ t[x]J holds for
E. Since the choice of s ≈ t was arbitrary, we can replace each [u] in sig1 ≈ sig2 with x, for any
variable x not appearing in sig1 ≈ sig2, to get a new signature that holds for E. Thus sig1 ≈ sig2 is
not an MGSE. By contradiction, there must be a v such that s[v]I 6≈E t[v]J and [u] is essential.

Let < be any total ordering on terms such that for any terms s and t, ‖s‖ < ‖t‖ implies s<t.
For each C ∈ EQG(E), let the representative term of C, called repC , be minimal ground term in
C with respect to <. Let s ≈ t be an equation with variables and representative terms at depth 1.
We say that s ≈ t is a representative equation of E if it contains only variables and representative
terms of essential classes at depth 1 and every ground instance of s ≈ t is provable by E. The
representative presentation Erep is the set of representative equations of E. For a fixed <, we can
see that Erep is canonical up to a renaming of variables. The following proposition shows that Erep
is in fact a presentation of E.

Proposition 1. Given the presentation Erep constructed from E as above with ordering <, Erep ≡G
E.

Proof. It is easy to check that all ground terms that are equivalent in Erep are equivalent in E, by the
definition of Erep. To show the other direction, we will show by induction on k that for all ground
terms s and t such that ‖s‖, ‖t‖ ≤ k, s ≈Erep t if s ≈E t. Base, k = 2: Let a, b ∈ Σ0 be distinct
constants. If a ≈E b, then 〈a〉 ≈ 〈b〉 ∈MGSE(E), so a ≈ b ∈ Erep. Inductive step: Assume for all
ground terms s and t such that ‖s‖, ‖t‖ ≤ k, s ≈E t if and only if s ≈Erep t. Let s := f(s1, . . . , sl)
and t := g(t1, . . . , tr) be terms such that ‖s‖, ‖t‖ ≤ k + 1. If s and t have the same signature in E,
then f = g, l = r, and for all i, si ≈E ti, so s ≈Erep t by the inductive hypothesis. Otherwise, s ≈ t



CHAPTER 3. ACTIVELY LEARNING EQUATIONAL THEORIES 17

is an instance of anMGSE, sig1 ≈ sig2, with representative equation u ≈ v in Erep. For each class
C such that C = sig1[i] (resp. C = sig2[i]), the inductive hypothesis implies that s|i ≈Erep repC
(resp. t|i ≈Erep repC), since ‖repC‖ ≤ ‖s|i‖ ≤ k + 1 (resp. ‖repC‖ ≤ ‖t|i‖ ≤ k + 1) by the
definition of repC and <. For each variable x appearing at positions I ⊆ N in sig1 and I ′ ⊆ N in
sig2, we can choose some i ∈ I (resp. i′ ∈ I ′) and let repx := si (resp. repx := ti′). Using the
inductive hypothesis, we can see that ∀j ∈ I , sj ≈Erep repx and ∀j ∈ I ′, tj ≈Erep repx. Therefore,
we can construct terms s′ := f(s′1, . . . , s

′
l) and t′ := g(t′1, . . . , t

′
r) such that for all j, if sig1[j] (resp.

sig2[j]) is a class C, then s′i := repC (resp. t′i := repC) and if sig1[j] (resp. sig2[j]) is a variable x,
then s′i := repx (resp. t′i := repx). By this construction, we can see that s ≈Erep s

′, t ≈Erep t
′, and

s′ ≈u≈v t′. Since u ≈ v ∈ Erep, this means that s ≈Erep t. Therefore, Erep ≡G E.

The following lemma shows that terms that do not appear at depth 1 in a presentation can be
replaced with variables.

Lemma 2. Let E be any non-collapsing shallow presentation and let s, t be terms in T (Σ, V )
such that s ≈E t. Assume there is a u ∈ T (Σ) such that [u] 6∈ D1(E). Let I := D1P[u](s) and
J := D1P[u](t). Then s[x]I ≈E t[x]J for any x ∈ V \(V ars(s) ∪ V ars(t)).

Proof. Assume s = v0 ≈p0e0 v1 ≈p1e1 . . . vr−1 ≈pr−1
er−1

vr = t. We will prove the lemma by induction
on r. Base r = 0: s = t, so s[x]I = t[x]J . Induction step: Assume s[x]I ≈E vr−1[x]K , where
K := D1P[u](vr−1). We will show that vr−1[x]K ≈E t[x]J for all possible cases of pr−1: I) If
pr−1 ≥ k for some k ∈ K, then vr−1|k ≈E vr|k ∈ [u]. So K = J and vr−1[x]K = t[x]J . II) If
pr−1 ≥ n ∈ N\K, then vr−1[x]I ≈pr−1

er−1
vrt. III) If p = ε, then let s′ ≈ t′ equal er−1. There is

a U ⊂ V such that for each k ∈ K and each j ∈ J , s′|k, t′|j ∈ U (otherwise s′|k or t′|j is in
[u], violating our hypothesis). By the definition of ≈E , there is a substitution sigma such that
vr−1 = s′σ and t = t′σ. Note that this implies that no variable in U appears anywhere other than
K in vr−1 and J in t. We can define σ′ such that σ′(y) := x for each y ∈ U and σ′(y) := σ(y)
for all y ∈ V \U . We then get that s′σ′ = vr−1[x]K and t′σ′ = t[x]J , so vr−1[x]K ≈E t[x]J . Thus
s[x]I ≈E t[x]J .

The following lemma will be useful to prove a bound on the size of Erep in terms of the size of
any other equivalent presentation.

Lemma 3. For any non-collapsing shallow presentation E such that |EQG(E)| ≥ |D1(E)|+ 2d,
EC(E) ⊆ D1(E).

Proof. Assume for contradiction that the lemma is not true. So |EQG(E)| ≥ |D1(E)| + 2d but
EC(E) 6⊆ D1(E). Let c be an essential class that does not appear at depth 1 in E. Since c is
essential, is must appear in the body of some MGSE of E, sig1 ≈ sig2. Choose a variable x′

not in V ars(sig1 ≈ sig2) and form the signature sig′1 ≈ sig′2 by replacing each occurrence of c
in sig1 ≈ sig2 with x′. We will show that sig′1 ≈ sig′2 holds for E, which implies that c is not
essential. For each variable xi 6∈ V ars(sig1 ≈ sig2), choose a new ci ∈ EQG(E)\D1(E) and set
σ(xi) := ti, where ti ∈ ci. We can choose these distinct ci classes since |EQG(E)| ≥ |D1(E)|+2d.
Take any instance s′ ≈ t′ of sig1σ ≈ sig2σ. Since s′ ≈ t′ is ground and sig1 ≈ sig2 holds for E,
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s′ ≈E t′. Let I0 := D1Pc′(s
′) and J0 := D1Pc′(t

′) and set s0 := s′[x′]I0 and t0 := t′[x′]J0 . Since
c′ 6∈ D1(E), we can apply lemma 2 to see that s0 ≈E t0. Now for each xi ∈ V ars(sig1 ≈ sig2)
set Ii := D1Pσxi(s)m Ji := D1Pσxi(s), si := si−1[xi]Ii , and ti := ti−1[xi]Ji . Since σxi is not in
D1(E), we can apply lemma 2 to see that si ≈E ti for each i. If there are r variables in sig1 ≈ sig2,
then it is easy to check that sr ≈ tr is a maximally-generalized instance of sig′1 ≈ sig′2, and sr ≈E tr.
Thus, sig′1 ≈ sig′2 holds for E, and c is not essential by contradiction. So EC(E) ⊆ D1(E).

To understand the above lemma, take for example a presentation E over the alphabet Σ :=
{f : 3, g : 2, a : 1, b : 1, c : 1}. Assume that E has 〈f, y, a, z〉 ≈ 〈g, a, y〉 as an MGSE and
that [a], [b], [c] 6∈ D1(E). We can generalize the signature equation to 〈f, y, x′, z〉 ≈ 〈g, x′, y〉
and consider the instance f(b, a, c) ≈ g(a, b) ∈ ThG(E). We can then apply lemma 2 to
see that f(b, x′, c) ≈E g(x′, b), f(x1, x

′, c) ≈E g(x′, x1), and f(x1, x
′, x2) ≈E g(x′, x1). This

is a maximally-generalized instance of 〈f, y, x′, z〉 ≈ 〈g, x′, y〉, which must hold on E. Thus
〈f, y, a, z〉 ≈ 〈g, a, y〉 must not be an MGSE, and we have a contradiction.

Theorem 1. Let E be any non-collapsing shallow presentation over the alphabet Σ, and let
Erep be the representative presentation formed from the essential classes of E. Then |Erep| ≤
|Σ|2(2d|E|+ 4d)2d.

Proof. Only essential terms and variables can appear at depth one in Erep. Therefore, since there
are at most |2d| variables in any equation in Erep and |Σ|2 possible pairs of root symbols, we get that
|Erep| ≤ |Σ|2(|EC(E)|+ 2d)2d. It remains to be shown that |EC(E)| ≤ (2d|E|+ 2d). This proof
proceeds by cases depending on the size of EQG(E), the equivalence classes of E that contain
at least one ground term. Case 1: |EQG(E)| < |D1(E)|+ 2d. Since all essential classes contain
at least one ground term, EC(E) ⊆ EQG(E). Since at most 2d classes can appear at depth 1 per
equation in E, |D1(E)| ≤ 2d|E|. Thus |EC(E)| ≤ |EQG(E)| < |D1(E)| + 2d ≤ 2d|E| + 2d.
Case 2: |EQG(E)| ≥ |D1(E)| + 2d. By lemma 3, EC(E) ⊆ D1(E), so |EC(E)| ≤ |D1(E)|.
Since |D1(E)| ≤ 2d|E|, we get that |EC(E)| ≤ 2d|E|.

Note that it is not possible to bound |Erep| in terms of ‖E‖. For example, for any positive
integer k, let E := {fk(a) ≈ a}, where fk(a) is the result of applying f to a k times. Then
|E| = |Erep| = 1, but ‖E‖ ≥ k for any k. We can also prove a polynomial bound on ‖Erep‖
depending on ‖E‖ and |E| for any E ≡G Erep.

In the following, given a complexity class c of E let minsizeE(c) represent the value ‖t‖ that is
minimized for all t ∈ c.

Theorem 2. Let E be any non-collapsing shallow presentation over the alphabet Σ, and let
Erep be the representative presentation formed from the essential classes of E. Then ‖Erep‖ ≤
|Erep|(‖E‖(2d)2d + 2).

Proof. Assume |D1(E)|+2d ≤ EQG(E). By lemma 3, EC(E) ⊆ D1(E). Letm′ := maxc∈EC(E){minsizeE(c)}.
Since a term from every essential class must appear in E, we get that m′ ≤ ‖E‖. Each equation
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in Erep contains only variables and essential terms at depth 1, and all essential terms are the
smallest in their equivalence class. Therefore, for each s ≈ t ∈ Erep, ‖s ≈ t‖ ≤ 2dm′ + 2. So
‖Erep‖ ≤ |Erep|(2dm′ + 2) ≤ |Erep|(‖E‖2d+ 2)

Assume |D1(E)|+2d > EQG(E) and let Ĉ := EQG(E)\D1(E). Ifmaxargc∈EC(E){minsizeE(c)} ∈
D1(E), then we can apply the same reasoning above to bound ‖Erep‖. Otherwise, number the ci
in Ĉ such that minsizeE(c1) ≤ minsizeE(c2) ≤ . . . , and let m := maxc∈D1(E){minsizeE(c)}
(note m ≤ ‖E‖). The value of minsizeE(c1) is maximized if its minimal size term contains only
terms of size m and has maximum arity. Therefore, minsizeE(c1) ≤ dm. Likewise, for each
1 ≤ i ≤ |Ĉ|, minsizeE(ci) ≤ d ·minsizeE(ci−1). So minsizeE(c|Ĉ|) ≤ d|Ĉ|m ≤ d2d−1‖E‖. So
‖Erep‖ ≤ |Erep|(2d2d‖E‖+ 2).

3.4 Learning in the Limit
This section investigates the possibility of learning non-collapsing shallow theories in the limit from
ground examples.

In the learning in the limit model, first presented in [28], the learner is trying to learn a target
concept L from a concept class C ⊂ 2X for some space X of elements. The learner is given a
sequence of examples e1, e2, . . . . When learning from positive examples, these examples are drawn
from the target set (i.e., language) L, with the guarantee that every x ∈ L will eventually be seen in
some example. When learning from negative examples, each ei is of the form (xi, bi) where the bi
indicates whether xi is in L, and every x ∈ X will eventually be seen in some example.

After each new example et, the learner is asked to give a hypothesis Lt. It is said to learn in the
limit if the learner eventually converges to the target concept, L.

In this section, X is the set T (Σ) of all ground equations, and the concepts L are theories over
ground terms.

Learning from Positive Examples
Learning ground equational presentations in the limit from positive examples is easy. After seeing
some set of positive ground examples E, simply use E as the hypothesis presentation.

However, when non-ground equations are allowed, even very simple classes of equational
theories are no longer learnable from positive examples. A simple corollary of Gold’s theorem
shows that the set of equational theories that can be presented by ground equations and (optionally)
the equation f(x, y) ≈ f(y, x) is not learnable from positive examples. Since these are all non-
collapsing shallow theories, this implies that the entire class of non-collapsing shallow theories is
not learnable from positive examples.

We restate Gold’s theorem below [28]:

Theorem 3. Let C ′ := {L∞, L0, L1, . . . } be a set of formal languages such that for all i, Li ⊂ Li+1

and L∞ :=
⋃
i Li. Then no class C containing C ′ is learnable from positive examples.
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We will now construct a set C ′ of non-collapsing shallow theories that fits the above conditions.
Let Σ := {a : 0, b : 0, f : 2}. For each i ∈ N , let Ei := {f(s, t) ≈ f(t, s) | depth(s), depth(t) ≤
i} and let Li := ThG(Ei). Let L∞ := ThG({f(x, y) ≈ f(y, x)}). We can see that C ′ :=
{L∞, L0, L1, . . . } satisfies the conditions of the above theorem. Therefore, no class whose theories
can be presented using only ground equations and the equation f(x, y) ≈ f(y, x) can be learned
from positive examples.

Learning from Positive and Negative Examples
This subsection presents an algorithm for learning non-collapsing shallow theories in the limit
from examples of positive and negative ground-equations. The algorithm takes a set S+ of positive
examples and S− of negative examples and returns a hypothesis in time polynomial in ‖S+‖+‖S−‖.
The hypothesis is consistent with all examples. As more examples are added, the algorithm will
eventually converge on the presentation Erep defined with respect to an ordering <.

It is fairly easy to create an algorithm that creates a consistent hypothesis in polynomial
time and learns the theory in the limit. Say enumerate all non-collapsing shallow presentations,
E1, E2, . . . , in order of increasing presentation size, ‖Ei‖. Given some examples (S+, S−) such
that |S+|+ |S−| = n, the algorithm can check if there is an i < n such that Ei is consistent with
(S+, S−). If so, the algorithm returns the first such Ei. If not, the algorithm returns S+. To check if
Ei is consistent with (S+, S−), the learner checks that s ≈Ei

t for each s ≈ t ∈ S+ and it checks
that s 6≈Ei

t for each s ≈ t ∈ S−. This takes polynomial time, since the size of each Ei for i < n is
less than polynomial in n and checking provability of any s ≈ t in a non-collapsing theory takes
polynomial time. Therefore, finding a consistent hypothesis takes polynomial time in the input size.

However, this algorithm is far from practical. There are at Ω(2n) presentations of size less than
n. So, this learning process will require exponentially many examples to learn most theories. The
rest of this sections presents an algorithm that requires polynomially many good examples before
converging on a solution.

Let E be a non-collapsing shallow presentation of the target theory defined over the alphabet Σ.
Let < be an ordering on terms such that for all terms s and t, ‖s‖ < ‖t‖ implies s<t. Given the
examples (S+, S−), the hypothesis Ê is constructed as follows:

• A set A of essential terms is found. (This is described in more detail in the next subsection)
• The algorithm creates a set B of non-collapsing shallow equations with only terms from A

and variables at depth 1.
• For each equation e ∈ B, the algorithm checks whether Ê ∪ {e} ∪ S+ ` u ≈ v for any
u ≈ v ∈ S−. If not, e is added to Ê.

• For all e, e′ ∈ Ê such that e ≺ e′, e is removed from Ê
• The algorithm returns the hypothesis Ê := Ê ∪ {s ≈ t ∈ S+ | s 6≈Ê t}
This algorithm takes inspiration from the RPNI algorithm for learning regular languages from

positive and negative examples [45]. In particular, both algorithms try to generalize as much as
possible without contradicting the known negative examples.
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Identifying Essential Terms

We say that the terms s and t are provably distinct if there is a u ≈ v ∈ S− such that s ≈S+ u and
t ≈S+ v.

We say a ground signature f(s1, . . . , sk) ≈ g(sk+1, . . . , sk+r) is classified if for every si and sj ,
either si ≈S+ sj or si is provably distinct from sj .

Let s ≈ t be a classified equation such that s ≈S+ t, and let u be a term with I := D1P[u](s)
and J := D1P[u](t). If there is a v such that s[v]I ≈ t[v]J is classified and s[v]I is provably distinct
from t[v]J , then u is an essential term by the definition of essential classes.

By finding pairs of equations s ≈ t and s[v]I ≈ t[v]J as above, the algorithm assembles a set A′

of essential terms. Since A′ might contain multiple terms from the same equivalence class, a new
set A is constructed of provably distinct terms is constructed as follows: Set A := ∅. In increasing
order of <, take each s ∈ A′. If s is provably distinct from each element of A, then add s to A′.

Characteristic Samples

A characteristic sample is a pair of sets (S ′+, S ′−) such that whenever S ′+ ⊆ S+ and S ′− ⊆ S−,
the algorithm will yield a correct hypothesis. We will show that the algorithm admits a characteristic
sample for every non-collapsing shallow theory. This implies that the algorithm will learn non-
collapsing shallow theories in the limit.

Note that the algorithm will always yield the correct solution if there is only one equivalence
class.Therefore, we can assume that there are at least two equivalence classes in the target theory.

We will now construct the characteristic sample (S ′+, S ′−) for the non-collapsing shallow theory
ThG(E) with order <. As we describe the construction, we will show that any sample containing
the characteristic sample will cause the algorithm to yield the hypothesis Erep.

For each essential class C, recall that repC is the minimal element of C with respect to <.
For each repC , find an MGSE, sig1 ≈ sig2, C in it’s body and let I and J be the positions of C

in sig1 and sig2, respectively. For a v 6∈ C, find a pair of equations s ≈ t and s[v]I ≈ t[v]J such
that s ≈ t ∈ Inst(sig1 ≈ sig2) and s[v]I 6≈E t[v]J . Add s ≈ t to S+ and add s[v]I ≈ t[v]J to S−.
This guarantees that the algorithm will add repC to A′.

Add the set {repC ≈ repC′ | C,C ′ ∈ EC(E)} to S ′−. This guarantees that the setA will contain
all repC terms for each C ∈ EC(E). No other essential terms will added to A, since they must be in
some C ∈ EC(E) and thus cannot be provably distinct from repC . Therefore, the algorithm will
find the set A := {repC | C ∈ EC(E)}.

For each signature equation sig1 ≈ sig2 that has only variables and essential classes in its body
and does not hold for E, find an equation s ≈ t ∈ Inst(sig1 ≈ sig2) such that s 6≈E t and add
s ≈ t to S−. Thus, the representative equation for sig1 ≈ sig2 will not be added to Ê.

Every representative equation in Erep will be added to Ê, since there can be no equation in S−

to contradict it. By the definition of Erep, all other equations that hold for E are instances of Erep.
Therefore, the algorithm will return Erep as the final hypothesis.
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Examples

Example 4. Let Σ := {f : 1, a : 0}, S+ := ∅, and S− := {f(a) ≈ a}. There are no classified
equations, so no essential terms are identified. The algorithm tries to add f(x) ≈ a, but fails
since it can be used to prove f(a) ≈ a. It then tries f(x) ≈ f(y) and succeeds. The hypothesis
presentation is therefore Ê := {f(x) ≈ f(y)}.

Example 5. Let Σ := {f : 1, a : 0, b : 0}, S+ := {f(a) ≈ f(b)}, and S− := {a ≈ b, f(f(a)) ≈
f(a), f(f(a)) ≈ f(b), f(a) ≈ b, f(a) ≈ a}. The equations, f(a) ≈ f(b), f(f(a)) ≈ f(b), and
f(a) ≈ f(f(a)) are classified. They are used to show that both a and b are essential terms, since
f(a) 6≈E a and f(a) 6≈E b. These terms a and b are provably distinct. Thus, the algorithm tries to
add the following equations: f(a) ≈ f(b) (yes), f(a) ≈ a (no), f(a) ≈ b (no), f(a) ≈ f(x) (no),
f(b) ≈ a (no), f(b) ≈ b (no), f(b) ≈ f(x) (no), f(x) ≈ f(y) (no). The hypothesis presentation is
therefore Ê := {f(a) ≈ f(b)}.

3.5 Learning From Queries and Counter-Examples
This section presents the main result for this chapter: an efficient algorithm to learn non-collapsing
shallow equational theories from ground queries and counter-examples to an oracle. These queries
take the following two forms:

• Membership Query: The algorithm presents a ground equation s ≈ t to the oracle and the
oracle states whether or not s ≈ t ∈ ThG(E),

• Equivalence Query: The algorithm presents a hypothesis presentation E ′ to the oracle and
the oracle states whether or not E ′ ≡G E. If not, the oracle also returns a counter-example
s ≈ t from the set (ThG(E)\ThG(E ′)) ∪ (ThG(E ′)\ThG(E)).

This algorithm will specifically learn the canonical presentation Erep of a theory E over a fixed
alphabet Σ.

Throughout this section, unless otherwise stated, we will assume that every theory is non-trivial.
The algorithm can query the presentations ∅ and {x ≈ y} to the oracle in order to rule out the trivial
cases.

We will first show how to learn using a set of “auxiliary symbols”, Cα := {α1, α2, . . . , α2d},
where d is the maximum arity of any symbol in Σ. The symbols of Cα are all constants. For
each αi ∈ Cα, we have the guarantee that [αi] is not essential.Later, we will see how to learn
non-collapsing shallow theories without assuming such a set Cα exists.

The algorithm runs in iterations, creating a new hypothesis at each iteration. The structure of
each iteration is as follows:

1. Use essential classes and Cα to find all MGSEs of E
2. Find set repEC of minimal terms from each essential class and find a hypothesis Ê for Erep
3. Pose Ê as an equivalence query to the oracle.

• If the oracle returns true return Ê
• Otherwise, we receive a counter-example s ≈ t such that s ≈E t, but s 6≈Ê t.

4. Use the counter-example to find an equation s′ ≈ t′ that is an instance of an unknown MGSE.
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5. Use s′ ≈ t′ to find an unknown essential class
6. Start a new iteration from step 1
Those familiar with Angluin’s algorithm [5] will notice similarities with the above algorithm,

where states are analogous to essential classes and equations are analogous to transitions.

Finding the MGSEs
By the assumptions on Cα, we can use membership queries to infer the location of variables in
each MGSE. For example, if the query f(α1) ≈ g(α1, a) holds, then we know that the signature
equation 〈f, x〉 ≈ 〈g, x, a〉 holds, since otherwise [α1] would be essential. Given a set C of
representative essential terms of E, we can query all (polynomially many) pairs of terms from the
set {f(s1, . . . , sk) | f ∈ Σk,∀i, si ∈ C ∪ Cα}. We can find signature equations (and thus MGSEs)
from the queries that return true.

Finding repEC
We will show how to use the oracle to construct repEC . For simplicity, we do not assume a fixed
ordering < on terms, and just find representative terms of minimal size. The ordering < can be
determined by the choices of representative terms.

Let S be a subterm-closed set containing the smallest known term from each essential class. We
will proceed iteratively, finding a hypothesized representative repj[s] at each step j for each s ∈ S.
At each iteration, we will perform the following actions on each s ∈ S in order of increasing size.
Start with j = 1. If s is a constant and repj[s] is not yet defined, set repj[s] := s. Now assume repj[u]

is defined for each u ∈ S such that ‖u‖ < ‖s‖, but repj[s] is not yet defined. Let s := f(s1, . . . , sk).
Consider each MGSE e of the form sig1 ≈ sig2 such that s is an instance of sig1. We will
construct a term te such that s ≈ te is an instance of sig1 ≈ sig2. Let sig1 := 〈f, c1, . . . , ck〉 and
sig2 := 〈g, d1, . . . , dr〉. Consider each i ∈ {1, . . . , r}. If di is a variable and equal to some cj in
sig1, then set ti := repj[sj ]. If di is a variable that doesn’t appear in sig1 then set ti := a for some

constant a (choose the same constant each time). Otherwise, di is an essential class. If repjdi is not
yet defined, then stop constructing te. Otherwise, set ti := repjdi . Let te := g(t1, . . . , tr). Set repj[s]
equal to the lowest-depth te of all such MGSEs.

Continue this process until repj[s] = repj+1
[s] for all s ∈ S. By induction, it is easy to check that

after each iteration j, all classes with representative elements of size less than or equal to j are
assigned a min-size representative. Therefore, this process completes after maxs∈S{‖s‖} iterations.

Assembling Ê and Handling Counter-Examples
So, assuming that we have identified all essential classes, we can efficiently find a presentation Ê
equal to Erep. If we are missing an essential class, however, then Ê will not correctly identify E and
the oracle will return some counter-example, s ≈ t. This counter-example will be positive, meaning
that s ≈E t, but s 6≈Ê t. This is possible in the following cases, which we will handle differently:
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1. s ≈ t is an instance of an MGSE sig1 ≈ sig2, but the representative equation for this MGSE
cannot be applied to s ≈ t. Either, there is an essential term u at depth 1 such that u 6≈Ê rep[u]

or there are parallel terms u and v at depth 1 such that u ≈E v but u 6≈Ê v. In either case, we
can recurse, treating u ≈ rep[u] or u ≈ v as our new counter-example.

2. s ≈ t is not an instance of any MGSE, and so s ≈ t is an instance of a missing MGSE.
Each time a counter-example is processed in case 1, we obtain a smaller counter-example. By

the construction of Ê, if a counter-example has constants on both sides, it will already be in Ê.
Therefore, this process will always find an instance s′ ≈ t′ of a missing MGSE.

Case 2 can only occur if there is an essential class that is missing from our known set of essential
classes. To find the missing essential class, take any u at depth 1 in s′ or t′ that is not in any known
essential class (use oracle queries to confirm this). Let I := D1P[u](s

′) and J := D1P[u](t
′). Query

s′[α1]I ≈ t′[α1]J to the oracle. By lemma 1, u is essential if and only if this query returns false.
Otherwise, repeat the same process on another non-essential term.

Once the essential class is found, the algorithm begins the next iteration.

Example 6. Let Σ := {g : 1, a : 0, b : 0, c : 0} and assume that the target theory can be presented
by E := {g(a) ≈ g(b), g(b) ≈ c}. The algorithm queries Ê := {x ≈ y} to the oracle and the
oracle returns false (the counter-example is ignored). The current hypothesis is that EC = ∅. The
algorithm creates a hypothesis for MGSE(E) by querying g(α1) ≈ g(α2) (false), g(α1) ≈ a
(false), g(α1) ≈ b (false), and g(α1) ≈ c (false). So the hypothesis for MGSE(E) is ∅ and the
hypothesis presentation Ê := ∅ is passed to the oracle. The oracle returns g(g(a)) ≈ g(g(b)) as
a positive counter-example, meaning g(g(a)) ≈E g(g(b)) but g(g(a)) 6≈Ê g(g(b)). The algorithm
queries all depth-1 terms in the counter-example (i.e., g(a) ≈ g(b) (true) ) to determine that the
signature of the equation with respect to E is 〈g, [g(a)]〉 ≈ 〈g, [g(a)]〉. This signature holds in
Ê, so Ê must fail to prove g(a) ≈ g(b). The equation g(a) ≈ g(b) is treated as the new positive
counter-example and the query a ≈ b (false) shows that its signature is 〈g, [a]〉 = 〈g, [b]〉. This
signature equation must be an instance an unknown MGSE, so there must be an essential class
in its body. To determine which classes are essential, the algorithm queries g(α1) ≈ g(b) (false),
g(α1) ≈ g(α2) (false), and g(a) ≈ g(α1) (false). This implies that 〈g, a〉 ≈ 〈g, b〉 is an MGSE,
and that [a] and [b] are essential classes. The hypothesis set of MGSEs is formed by making the
following queries: g(a) ≈ g(b) (true), g(a) ≈ g(α1) (false), g(α1) ≈ g(b) (false), g(α1) ≈ g(α2)
(false), g(a) ≈ a (false), g(a) ≈ b (false), g(a) ≈ c (true), g(b) ≈ a (false), g(b) ≈ b (false),
and g(b) ≈ c (true). This yields the MGSEs 〈g, a〉 ≈ c, 〈g, b〉 ≈ c, and 〈g, a〉 ≈ 〈g, b〉. The
algorithm chooses a and b as the representative for their respective equivalence classes, yielding
Ê := {g(a) ≈ g(b), g(a) ≈ c, g(b) ≈ c}. This presentation is given to the oracle, which returns
true, and the process completes.

Example 7. Let Σ := {f : 1, a : 0} and assume that the target theory can be presented by
E := {f(x) ≈ f(y)}. The algorithm queries Ê := {x ≈ y} to the oracle and the oracle returns
false (the counter-example is ignored). The current hypothesis is that EC = ∅. The algorithm
creates a hypothesis for MGSE(E) by querying f(α1) ≈ f(α2) (true) and f(α1) ≈ a (false). This
yields the MGSE 〈f, x〉 ≈ 〈f, y〉 and the hypothesis presentation Ê := {f(x) ≈ f(y)}. This is
given to the oracle, the oracle returns true, and the process completes.
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3.6 Learning From Queries Without Auxiliary Symbols
The algorithm from the previous section requires the existence of 2d distinct “auxiliary” symbols.
However, it is likely that an oracle will only be able to answer queries over a given alphabet.
Therefore, it is worthwhile to try to run the above algorithm without the use of these symbols. In
this section, we accomplish this by maintaining a set Tα containing terms t1α, . . . , t

2d
α from distinct

equivalents classes which are believed to be non-essential in E. We will first show how to update
the algorithm, then show how to find new tα terms.

Updating the algorithm

The new algorithm works the same as the old one, using the tα terms in place of the Cα symbols to
infer the location of variables and essential terms. Each time an MGSE is found, the representative
query for that MGSE is stored. The representative query for an MGSE e is a pair (s ≈ t, σ), where
σ maps variables to terms in Tα and s ≈ t is the representative equation of e. Note that there is
only one σ such that sσ ≈ tσ is queried to find e, so the representative query is unique.

Since the tα terms may actually be essential, the learned MGSEs may be more general than
the actual MGSEs. For example, let E := {f(a, x) = g(c)}, t1α := a, t2α := b, and t3α := d. Using
membership queries, the algorithm can determine that f(t1α, t

2
α) 6≈E g(t3α) (i.e., f(a, b) 6≈E g(d)),

but f(t1α, t
2
α) ≈E g(c). This leads the algorithm to conclude that 〈f, x, y〉 ≈ 〈g, [c]〉 is an MGSE of

E, since t1α is believed to mark the place of a variable. However, t1α is actually an essential term,
and the learned MGSE is a generalization of the true MGSE, 〈f, [a], y〉 ≈ 〈g, [c]〉.

Therefore, when a hypothesis Ê is given to an oracle, the oracle may return a negative counter-
example s ≈ t, meaning s ≈Ê t but s 6≈E t.

Assume such a negative counter-example s ≈ t is given. Using the algorithm described below
to find a new term t′α. Using Proposition 1, we can construct a proof that s ≈Ê t of the form
s = u0 ≈p0e0 u1 · · · ≈pr−1

er−1
ur = t. For each i ∈ {0, . . . , r − 1}, query ui ≈ ui+1. Let i′ be

the smallest index such that ui′ 6≈E ui′+1. Such an i′ must exist since otherwise, s ≈E t would
hold. By the construction of Ê in Proposition 1, the equation ei′ used at step i′ in the derivation
must be the representative of some MGSE, sig1 ≈ sig2 . Let (u ≈ v, σ) be the representative
query of sig1 ≈ sig2. Since ui 6≈E ui+1, but ui ≈u≈v ui+1, we know sig1 ≈ sig2 must be an
over-generalization. Therefore, there is a variable in sig1 ≈ sig2 that should be replaced at some
positions with a ground term. For each variable y ∈ V ars(sig1) ∪ V ars(sig2), let xσy := xσ for
all x 6= y and yσy := t′α. Query sσy ≈ tσy. If the query returns false, then yσ must be an essential
term. So set Tα := (Tα\{yσ})∪{t′α} and set EC := EC ∪ {[yσ]}. If no such variable is found, then
t′α must be essential. So set EC := EC ∪ {t′α}, find a new tα term, and repeat the above process.

Finding new tα terms

Throughout the run of this algorithm, we maintain a set C := {C1, . . . , Cr}. Each Ci contains a
set of terms that are equivalent in E, and

⋃
iCi is subterm-closed. Each new tα term is chosen as

follows
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1. If there is a constant c not in C, then for each i choose a ci ∈ Ci. Query ci ≈ c.
• If there is an i such that ci ≈E c, then add c to Ci and restart.
• Otherwise, set C := C ∪ {{c}} and return tα := c

2. For each symbol f of arity k and each (i1, . . . , ik+1) ∈ {1, . . . , r}k+1, query f(ci1 , . . . , cik) ≈
cik+1

, where each ci is in Ci
• If f(ci1 , . . . , cik) ≈E cik+1

, then add f(ci1 , . . . , cik) to Cik+1
.

• If there is no ik+1 such that f(ci1 , . . . , cik) ≈E cik+1
, then set C := C∪{f(ci1 , . . . , cik)}

and return tα := f(ci1 , . . . , cik)
As described above, the learning algorithm first finds a set of 2d different tα terms, then adds at

most one new tα terms for each class in C. Therefore, |C| never exceeds 2d+ |EC|.
If the algorithm does not return any new tα, then the set of classes represented in Ci is closed

under each f application. Thus, every equivalence class is represented in C, and a presentation of
E of size Poly(2d+ |EC|) can be easily inferred.

Each call to this algorithm takes polynomial time assuming fixed Σ.

Example 8. Let Σ := {g : 1, a : 0, b : 0, c : 0} and assume the target theory can be presented by
E := {g(a) ≈ c}. The algorithm queries Ê := {x ≈ y} to the oracle and the oracle returns false.
It then sets t1α := a and t2α := b. To find the MGSEs it queries g(t1α) ≈ g(t2α) (false), g(t1α) ≈ a
(false), g(t1α) ≈ b (false), and g(t1α) ≈ c (true). Since the algorithm believes that t1α (i.e., a) is not
essential, the fact that g(t1α) ≈E c leads it to conclude that 〈g, x〉 ≈ 〈c〉 is an MGSE. It passes
the hypothesis Ê := {g(x) ≈ c} to the oracle. The oracle returns false and gives the negative
counter-example g(g(b)) ≈ c, meaning g(g(b)) 6≈E c but g(g(b)) ≈Ê c. This equation is provable
in Ê by the derivation g(g(b)) ≈g(x)≈c c, implying that the equation g(x) ≈ c should not be in
Ê. Therefore, e := 〈g, x〉 ≈ 〈c〉 is an over-generalization of an actual MGSE of E. Since e was
added because of the representative query e′ := g(t1α) ≈ c, one of the tα terms used in e′ must be
an essential term. The algorithm finds a new term t′α := c and queries g(t′α) ≈ c (false). Since
g(t′α) 6≈E c and g(t1α) 6≈E c, t1α must be an essential term. So the algorithm adds [a] to EC and
sets t1α := c. To find the MGSEs, the algorithm queries g(t1α) ≈ g(t2α) (false), g(t1α) ≈ a (false),
g(t1α) ≈ b (false), g(t1α) ≈ c (false), g(a) ≈ a (false), g(a) ≈ b (false), and g(a) ≈ c (true).
This yields the MGSE 〈g, [a]〉 ≈ 〈c〉. The algorithm sets a to be the representative element of its
equivalence class and queries Ê := {g(a) ≈ c} to the oracle. The oracle returns true and the
process completes.
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Chapter 4

Modular Learning

4.1 Overview
Researchers in the field of exact active learning will often fix a concept class and then study which
queries are needed to learn concepts in that class. When a different concept class is studied, an
entirely new algorithm will need to be developed from scratch, even if it is composed of already
studied concept classes.

This chapter studies the concept of modular learning, which breaks down concept classes into
their components and study the learnability of the larger class in terms of the learnability of the
components. The initial work in this area studies arbitrary boolean combinations of concepts
and only considered equivalence queries [11, 14]. We study a wider range of queries, such as
membership and superset queries. Moreover, we focus on the case when concepts are the cross-
products of component concepts. This occurs when a system can be broken into subsystems that
each act independently of each other. The subsection at the end of this introduction demonstrates
these ideas in terms of learning automata, where Angluin’s algorithm has has particular success in
inductive synthesis [5]. When an automaton is made of several independent components, our results
can reduce the number of equivalence queries exponentially in the number of components.

We will focus on the oracle queries given in Table 2.3. The results are summarized in Table
4.2, and include both upper and lower bounds. We show learning cross-products from superset
queries is no more difficult than learning each individual concept. Learning cross-products from
equivalence queries or subset queries is intractable, while learning from just membership queries is
polynomial, though somewhat expensive. We show that when a learning algorithm is allowed to
make membership queries and is give a single positive example, previously intractable problems
become tractable. Finally, we discuss the computational complexity of PAC-learning and show how
it can be improved when membership queries are allowed.

Introductory Example
To illustrate the learning problem, consider the sketching problem given in Figure 4.1. Here we

want to find the set of possible initial values for x and y that can replace the ?? values so that the
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int x = ??;
int y = ??;
int a = f(x);
int b = g(y);

Φ = φ1(a) ∧ φ2(b) x

y

•(x1, y1)

•(x2, y2)

Figure 4.1: A simple partial program to be synthesized to satisfy a specification Φ (left) and the
correct set of initial values for x and y (right).

program satisfies Φ, using Φ as a black-box oracle mapping x and y inputs to ‘true’ and ‘false’.
Looking at the structure of this program and specification, we can see that the correctness of

these two variables are independent of each other. Correct x values are correct independent of y and
vice-versa. Therefore, the set of settings will be the cross product of the acceptable settings for each
variable. If an oracle can answer queries about correct x or y values separately, then the oracle can
simply learn the acceptable values separately and take their Cartesian product.

If the correct values form intervals, the correct settings will look something like the rectangle
shown in Figure 4.1. An algorithm for learning this rectangle can try to simulate learning algorithms
for each interval by acting as the oracle for each sublearner. For example, if both sublearners need a
positive example, the learner can query the oracle for a positive example. Given the example (x1, y1)
as shown in the figure, the learner can then pass x1 and y1 to the sublearners as positive examples.
However, this does not apply to negative examples, such as (x2, y2) in the figure. In this example,
x2 is in its target interval, but y2 is not. The learner has no way of knowing which subconcept a
negative element fails on. Handling negative counterexamples is one of the main challenges of this
chapter.

Sample Application: Learning Automata
The algorithms presented in Sections 4.4, 4.5, and 4.7 can be applied to the learning of finite
automata. Algorithms 5 and 6 can make black-box queries to Angluin’s well-known algorithm for
learning finite automata [5]. Moreover, Algorithm 8 can use existing algorithms for PAC learning
probabilistic finite automata [17].

Consider, for example, an automaton representing the proper input/output interactions of a
simple vehicle. Say the vehicle can be split into two systems: the headlights and the motor controls.

It may be reasonable to assume that these two systems act independently. So the correct
input/output sequence for motor controls is true regardless of the state of the headlights, and vice-
versa. This allows us to make inferences like “The brakes should always activate after the brake
pedal is pushed, regardless of whether the high-beams are on”.
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Now consider the problem of learning this automaton from oracle interactions or labelled data.
If the labels and oracle answer are subsystem-specific (e.g., “The headlights are incorrect in this
example”), then it might be possible to learn each subsystem separately.

But there are a few reasons why this subsystem-specific feedback might not be possible:
1. If the oracle answers queries by running simulations, it might not be obvious which subsystem

is responsible for the fault. (e.g., “Did the car crash because the high-beams were on or
because the breaks did not function correctly?”)

2. When only learning from labelled examples, the data might not include this subsystem
information.

3. The oracle may be implemented by an existing model which does not have this subsystem
information.

This last case might be relevant in system deobfuscation, where black-box queries are made to a
complex model in order to learn a simple representation of that model. That simpler representation
might be used to explain the model to a human or it might be checked against a logical specification.

In particular, recent work has focused on using Angluin’s algorithm to learn finite automata
from RNNs [62]. If the RNN could be split into independent subsystems, but was not trained on
data with subsystem-specific information, then a naive application of Angluin’s algorithm would
require learning the product automaton.

If the headlights-automaton has n states and the motor control automaton has m states, then
the product of these two automata might be of size mn. Learning this product automaton
from Angluin’s algorithm would require O(mn) equivalence queries. However, we can leverage
the learning algorithms from this chapter to learn the same automaton in O(m + n) equivalence
queries. If an automaton is made of k components of size n, this process can reduce the number
of equivalence queries from O(nk) to O(kn), resulting in an exponential increase in efficiency.

Reusing Component Algorithms

Another important application of this work is the reuse of existing learning algorithms for previously
un-studied concept classes. For example, assume we have a different model of a car, which uses
an interval of acceptable internal temperatures and an automaton representing the car’s motor
controls. Again, we might assume the car’s motor controls are correct regardless of its temperature
and vice-versa. This model might be represented as the cross product of an interval of integers
(representing the acceptable temperatures) and a finite automaton (representing motor controls).
Although it is unlikely that a learning algorithm for this particular type of model would have been
studied, individual learning algorithms for intervals and automata have been. A researcher could
then use these two algorithms as the black-box sublearners to learn the entire model.

4.2 Notation
Refer back to the background section for more on concept learning. In the following proofs,
we assume we are given concept classes C1, C2, . . . , Ck defined over instance spaces X1, X2,
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Qprod = Qsubc Qprod = Qsubc ∪ {Mem, 1Pos}

Qsubc ↓ #q #Mem #q

Pos Not Possible Not Possible Not Possible

Sup
∑

#Supi 0
∑

#Supi

Mem (maxi{#Memi})k
∑

#Memi

∑
#Memi

Sub k
∑

#Subi lg(k)
∑

#Subi
∑

#Subi

EQ k
∑

#EQi lg(k)
∑

#EQi

∑
#EQi

Mem

EQ

#Mem #EQ

(maxi{#Memi + #EQi})k
∑

#EQi

#Mem #EQ∑
#Memi + lg(k)

∑
#EQi

∑
#EQi

Figure 4.2: Final collection of query complexities for learning cross products. The rows represents
the set Qsubc of queries needed to learn each Ci. The columns determine the set Qprod of queries
used to learn the cross product class. In the latter case, the column is separated to also track the
number of membership queries that are needed. The value k denotes the number of dimensions (i.e.,
concept classes) included in the cross-product. In the case when Qsubc = {Mem,EQ}, the meaning
of q is not defined, so the complexity of each case is split into #Mem and #EQ.

. . . , Xk. Each target concept c∗i in each Ci is learnable from algorithm Ai (called sublearners)
using queries to an oracle that can answer any queries in a set Qsubc. This set Qsubc contains
the available types of queries, which are taken from the list of queries shown in Table 2.3. For
example, if Qsubc = {Mem,EQ}, then each Ai can make membership and equivalence queries to
its corresponding oracle.

For each query q ∈ Qsubc, we say algorithm Ai makes #qi (or #qi(c
∗
i )) many q queries to the

oracle in order to learn concept c∗i , dropping the index i when unambiguous. We replace the term
#q with a more specific term when the type of query is specified. For example, an algorithm A
might make #Mem many membership queries to learn c.

Unless otherwise stated, we will assume any index i or j ranges over the set {1 . . . k}. We write∏
Si or S1 × · · · × Sk to refer to the k-ary Cartesian product (i.e., cross-product) of sets Si. We use

Sk to refer to
∏k

i=1 S.
We use vector notation ~x to refer to a vector of elements (x1, . . . , xk), ~x[i] to refer to xi, and

~x[i ← x′i] to refer to ~x with x′i replacing value xi at position i. We define �k
i=1Ci := {

∏
ci |

ci ∈ Ci, i ∈ {1, . . . , k}}. We write ~c or
∏
ci for any element of �k

i=1Ci and will often denote ~c
by (c1, . . . , ck) in place of

∏
ci. The target concept will be represented as c∗ or c∗ which equals

(c∗1, . . . , c
∗
k).

The product oracle is able to answer queries about the target concept c∗. The types of queries
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this oracle can answer are in the set Qprod, which are taken from the queries in Table 2.3. We now
have enough to state the problem of this paper.

Problem Statement: For different sets of queries, Qsubc and Qprod, can we bound
the number of queries needed to learn a concept in �Ci as a function of each query
complexity, #qi, for each q ∈ Qsubc?

There are far too many combinations of sets Qsubc and Qprod to consider in one paper. In
this paper we will mostly focus on the cases when |Qsubc| = 1 and Qprod = Qsubc or Qprod =
Qsubc ∪ {1Pos,Mem}, as these cases are more likely to appear in practice.

The proofs in this paper make use of the following simple observation:

Observation 1. For sets S1, S2, . . . , Sk and T1, T2, . . . , Tk, assume
∏
Si 6= ∅. Then

∏
Si ⊆

∏
Ti

if and only if Si ⊆ Ti, for all i.

4.3 Simple Results
We will start with a simple lower bound on learnability from EQ, Sub, and Mem. See Figure 4.3
for a visual representation of this proposition. We will see later that this lower bound is tight when
learning from membership queries, but not equivalence or subset queries. We will also show that
learning cross products from superset queries is easy.

Proposition 2. There exists a concept C that is learnable from #q many queries posed to Qsubc ⊆
{Mem,EQ,Sub} such that learning Ck requires at least (#q)k many queries when Qprod = Qsubc.

Proof. Let C := {{j} | j ∈ {0 . . . n}}.
We can learn C in n membership, subset, or equivalence queries by querying j ∈ c∗, {j} ⊆ c∗,

or {j} = c∗, respectively. However, a learning algorithm for Ck requires more than nk queries. To
see this, note that Ck contains all singletons in a space of size (n+ 1)k.

So for each subset query {x} ⊆ c∗, if {j} 6= c∗, the oracle will return j as a counterexample,
giving no new information. Likewise, for each equivalence query {j} = c∗, if {j} 6= c∗, the oracle
can return j as a counterexample. Therefore, any learning algorithm must query x ∈ c∗, {x} ⊆ c∗,
or {x} = c∗ for (n+ 1)k − 1 values of x.

We will now show two simple results, learning from positive examples is not always possible
and learning from superset queries is easy.

Proposition 3. There exist concepts C1 and C2 that are each learnable from constantly many
positive queries, such that C1 × C2 is not learnable from any number of positive queries.

Proof. Let C1 := {{a}, {a, b}} and set C2 := {N,Z\N}. To learn the set in C1, pose two positive
queries to the oracle, and return {a, b} if and only if both a and b are given as positive examples.
To learn C2, pose one positive query to the oracle and return N if and only if the positive example
is in N. An adversarial oracle for C1 × C2 could give positive examples only in the set {a} × N.
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Each new example is technically distinct from previous examples, but there is no way to distinguish
between the sets {a} × N and {a, b} × N from these examples.

Proposition 4. If Qprod = Qsubc = {Sup}, then there is an algorithm that learns any concept
c∗ ∈

∏
Ci in

∑
#Supi(c

∗
i ) queries.

Proof. Algorithm 1 learns c∗ by simulating the learning of each Ai on its respective class Ci. The
algorithm asks each Ai for superset queries Si ⊇ c∗i , queries the product

∏
Si to the oracle, and

then uses the answer to answer at least one query to some Ai. Since at least one Ai receives an
answer for each oracle query, at most

∑
#Supi(c

∗
i ) queries must be made in total.

We will now show that each oracle query results in at least one answer to an Ai query (and that
the answer is correct). The oracle first checks if the target concept is empty and stops if so. If no
concept class contains the empty concept, this check can be skipped. At each step, the algorithm
poses query

∏
Si to the oracle. If the oracle returns ’yes’ (meaning

∏
Si ⊇ c∗), then Si ⊇ c∗i for

each i by Observation 1, so the oracle answers ’yes’ to each Ai. If the oracle returns ’no’, it will
give a counterexample ~x = (x1, . . . , xk) ∈ c∗\

∏
Si. There must be at least one xi 6∈ Si (otherwise,

~x would be in
∏
Si). So the algorithm checks xj ∈ Sj for all xj until an xi 6∈ Si is found. Since

~x ∈ c∗, we know xi ∈ c∗i , so xi ∈ c∗i \Si, so the oracle can pass xi as a counterexample to Ai.
Note that once Ai has output a correct hypothesis ci, Si will always equal ci, so counterexamples

must be taken from some j 6= i.

Result: Learn
∏
Ci from Superset Queries

if ∅ ∈ Ci for some i then
Query ∅ ⊇ c∗;
if ∅ ⊇ c∗ then

return ∅
for i = 1 . . . k do

Set Si to initial subset query from Ai
while Some Ai has not completed do

Query
∏
Si to oracle;

if
∏
Si ⊇ c∗ then

Answer Si ⊇ c∗i to each Ai;
Update each Si to new query;

else
Get counterexample ~x = (x1, . . . , xk) for i = 1 . . . k do

if xi 6∈ Si then
Pass counterexample xi to Ai;
Update Si to new query;

for i = 1 . . . k do
if Ai outputs ci then

Set Si := ci;
return

∏
ci;

Algorithm 1: Algorithm for learning from Subset Queries
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4.4 Learning From Membership Queries and One Positive
Example

. . .
(1, 1) (2, 1) (3, 1) (4, 1) (n, 1)

. . .
(1, 2) (2, 2) (3, 2) (4, 2) (n, 2)

. . .

...

(1, n)(2, n)(3, n)(4, n) (n, n)

Figure 4.3: Representation for C × C
in Proposition 2, when k = 2. The
circle around each point represents a
singleton set in C × C.

X1

X2

c∗1

c∗2
•

(x1, x2)

• (y1, y2)

• (y1, x2)

•
(x1, y2)

Figure 4.4: The figure for Example 9 on
handling counter-examples with member-
ship queries.

Ideally, learning the cross-product of concepts should be about as easy as learning all the
individual concepts. The last section showed this is not the case when learning with equivalence,
subset, or membership queries. However, when the learner is given a single positive example and
allowed to make membership queries, the number of queries becomes tractable. This is due to the
following simple observation.

Observation 2. Fix sets S1, S2, . . . , Sk, points x1, x2, . . . , xk and an index i. If xj ∈ Sj for all
j 6= i, then (x1, x2, . . . , xk) ∈

∏
Sj if and only if xi ∈ Si.

This suggests a simple method for handling counterexamples. Given a positive example ~p ∈ c∗
and a counterexample ~x 6∈ c∗, query ~p[j ← xj] ∈ c∗ for each j. Recall that ~p[j ← xj] is the result
of replacing the jth element of ~p with xj . So by the above observation, there will be some j such
that p[j ← xj] 6∈ c∗ and we can infer that xj 6∈ c∗j . This process is better explained in the following
example.

Example 9. Figure 4.4 shows an example of using membership queries to handle a counter-example.
The rectangle represents the target hypothesis c∗ = c∗1 × c∗2. The point ~p = (x1, x2) is a positive
example and (y1, y2) is a negative counter-example. The algorithm wants to find whether y1 6∈ c∗1 or
y2 6∈ c∗2. It the constructs ~p[1← y1] (i.e., (y1, x2)) and queries ~p[1← y1] ∈ c∗. The oracle returns

‘true’, so y1 ∈ c∗1. It then repeats the process and queries ~p[2 ← y2] := (x1, y2) ∈ c∗. The oracle
returns ‘false’, so y2 6∈ c∗2, and the oracle passes y2 to learner A2 as a counterexample.
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This is formalized in Algorithm 2, which shows that counterexamples can be found using
logarithmically many queries.

Input: ~p: positive example (in c∗);
~x: counter example;
Output: i such that ~x[i] 6∈ c∗i ;
HandleCounterexample (~p, ~x):

// lower and upper bounds

low := 1;
up := dk/2e ;
for j = 1 . . . lg(k) do

~p′ := ~p;
~p′[i] := ~x[i] for low ≤ i ≤ up;
size := up− low;
Query ~p′ ∈ c∗;
if ~p′ 6∈ c∗ then

low := up;
up := low + dsize/2e ;

return low ;
Algorithm 2: Find dimension on which counterexample fails

Proposition 5. Let ~x be a negative example. Given a positive example, Algorithm 2 returns an i
such that xi 6∈ c∗i using at most lg(k) membership queries.

Proof. We show by induction that at each step of the algorithm, there is an index i ∈ [low, 2 · up−
low] such that xi 6∈ c∗i . Base: Since up = dk/2e and low = 1 the range [low, 2 · up− low] equals
[1, k]. By Observation 2 there is some xi 6∈ c∗i , since ~x 6∈ c∗. Inductive: assume this has held for all
previous steps. So either there is an i in [low, up] or in [up, 2 · up− low] such that xi 6∈ c∗i . By the
construction of ~p′ and Observation 2, if i ∈ [low, up], then ~p′ ∈ c∗. So the new up (call it up′) will
be set to low + d(up− low)/2e, so [low, up] = [low, 2 · up′ − low] and the property still holds. If
i 6∈ [low, up], then i ∈ [up, 2 ·up− low] and ~p′ 6∈ c∗. In this case, the new low and up (low′ and up′)
will be up and up+ d(up− low)/2e, respectively. So [up, 2 · up− low] = [low′, 2 · (up′)− low′]
and the property still holds. Since the size of up− low decreases by one half each round, after lg(k)
rounds low = up and so i ∈ [low, 2 · up− low] = [low, low].

We now have enough information to present the following theorem.

Theorem 4. In the following statements, we assume Qprod = Qsubc ∪ {Mem, 1Pos}.
• If Qsubc = {Mem}, then c∗ is learnable in

∑
#Memi membership queries.

• If Qsubc = {EQ} (respectively Qsubc = {Sub}), then c∗ is learnable in lg(k) ·
∑

#qi(c
∗
i )

membership queries and
∑

#EQi(c
∗
i ) equivalence queries (respectively

∑
#Subi(c∗i ) subset

queries).
• If Qsubc = {Mem,EQ}, then c∗ is learnable in lg(k) ·

∑
#EQi(c

∗
i ) +

∑
#Memi(c

∗
i ) mem-

bership queries and
∑

#EQi(c
∗
i ) equivalence queries.
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Proof. Proof of Item 1 See Algorithm 4 below. The algorithm learns by simulating each Ai in
sequence, moving on to Ai+1 once Ai returns a hypothesis ci. For any membership query Mi

made by Ai, Mi ∈ c∗i if and only if ~p[i← Mi] ∈ c∗ by Observation 2. Therefore the algorithm is
successfully able to simulate the oracle for each Ai, yielding a correct hypothesis ci.

Proof of Item 2 The learning process for either subset or equivalence queries is described in
Algorithm 3, with differences marked in comments. In either case, once the correct cj is found for
any j, Sj will equal cj for all future queries, so any counterexamples must fail on an i 6= j.

We separately show for each type of query that a correct answer is given to at least one learner
Ai for each subset (resp. equivalence) query to the cross-product oracle. Moreover, at most lg(k)
membership queries are made per subset (resp. equivalence) query, yielding the desired bound.

Subset Queries: For each subset query
∏
Si ⊆ c∗, the algorithm either returns ‘yes’ or gives a

counterexample ~x = (x1, . . . , xk) ∈
∏
Si\c∗. If the algorithm returns ’yes’, then by Observation 1

Si ⊆ c∗i for all i, so the algorithm can return ’yes’ to each Ai. Otherwise, ~x 6∈ c∗, so there is an i
such that xi 6∈ c∗i . Algorithm 2 is used to find the xi 6∈ c∗i in lg(k) queries.

Equivalence Queries: For each equivalence query
∏
Si = c∗, the algorithm either returns ’yes’,

or gives a counterexample ~x = (x1, . . . , xk). If the algorithm returns ‘yes’, then a valid target
concept is learned. Otherwise, either ~x ∈

∏
Si\c∗ or ~x ∈ c∗\

∏
Si. In the second case, as with

superset queries, Algorithm 2 is used to find the xi 6∈ c∗i in lg(k) queries. Once the xi 6∈ c∗i is found
it is given to Ai as a counterexample.

Proof of Item 3 The learning algorithm is described in Algorithm 5. The algorithm uses the
positive example to answer membership queries. By Observation 2, for any membership query xi
made by Ai, xi ∈ c∗i if and only if ~p[i ← xi] ∈ c∗. So each membership query posed by an Ai is
answered with one membership query posed by the cross-product learner.

Membership queries are answered until each Ai poses an equivalence query Si = c∗i (if Ai has
terminated with the correct answer, we just assume Si equals c∗i ). The learning algorithm then
queries

∏
Si = c∗ and receives a counterexample ~x := (x1, . . . , xk) or it receives a ‘yes’ and

terminates. The algorithm checks if ~x ∈
∏
Si and handles each case separately.

If ~x ∈
∏
Si: then ~x ∈ (

∏
Si)\c∗. So there is an i such that xi 6∈ c∗i . Algorithm 2 is used to find

the xi 6∈ c∗i in lg(k) queries. Since ~x ∈
∏
Si, xi ∈ Si\c∗i , so xi is passed to Ai as a counterexample

to the query Si = c∗i . This takes at most k membership queries.
If ~x 6∈

∏
Si: then ~x ∈ c∗\

∏
Si, since it is a counterexample. So there is an i such that

xi 6∈ Si. Since the algorithm has access to each Si, it can check this explicitly without using any
counter-examples.

In either case, at least one Ai receives a counterexample to its equivalence query, so this process
is done at most

∑
#EQi times, using at most k membership queries per process. This yields the

stated bound on query complexity.
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for i = 1 . . . k do
Set Si to initial query from Ai

while Some Ai has not completed do
Query

∏
Si to oracle;

if The Oracle returns ‘yes’ then
Pass ‘yes’ to each Ai;
// If Qsubc = Qprod = {EQ}, each sublearner will immediately complete

else
Get counterexample ~x = (x1, . . . , xk);
if ~x ∈ c∗\

∏
Si then

// Only happens if Qsubc = Qprod = {EQ}
for i = 1 . . . k do

if xi 6∈ Si then
Pass counterexample xi to Ai;
Update Si to new query from Ai;

else
// Calls Algorithm 2

Set i′ := HandleCounterexample(~p, ~x) Pass counterexample xi′ to Ai′;
Set Si′ to be new query from Ai′;

Each Ai returns some ci;
Return

∏
ci;

Algorithm 3: Learn when Qsubc = {EQ} and Qprod = {EQ, 1Pos} (or Qsubc = {Sub} and
Qprod = {Sub, 1Pos} )

Input: ~p: Positive Example in X
Learn (~p):

for i = 1 . . . k do
while Ai has not completed do

Get query xi ∈ c∗i from Ai;
Query ~p[i← xi] ∈ c∗;
Pass answer to Ai;
if Ai returns guess ci then

Break ;
return

∏
ci;

Algorithm 4: Learn from Membership Queries and One Positive Example

4.5 Learning From Only Membership Queries
We have seen that learning with membership queries can be made significantly easier if a single
positive example is given. If no positive example is given, then Proposition 2 gives a lower bound on
the number of membership, subset, or equivalence queries needed. This section gives an algorithm
showing that this bound is tight when Qsubc = Qprod = {Mem} (or {Mem,EQ}). The algorithm
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uses membership queries so that either a positive example is found or the target concept is learned.
Once a positive example is found, the learning algorithm from Section 4.4 can be used.

Somewhat surprisingly, even if Qsubc = {Mem,EQ}, only membership queries are needed to
find a positive example. We present the algorithm for learning when Qsubc = Qprod = {Mem,EQ},
since the algorithm is essentially the same if no equivalent queries are allowed. Unlike the other
algorithms in this chapter, this algorithm assumes that an element from each hypothesis can be
sampled. By “sample”, we mean finding an arbitrary element that is in the hypothesis. There might
not be an efficient algorithm for this sampling (e.g., if the concept class is NP-hard). However, this
sampling will likely be more efficient than checking the equivalence of two concepts. Since the
total number of samples from this algorithm is k ·maxi{#EQi}, this sampling requirement is not
too restrictive. The algorithm is shown in Algorithm 6 with a proof below.

Proposition 6. If Qsubc = Qprod = {Mem,EQ}, then Algorithm 6 can find a positive example
using maxi{(#Memi + #EQi)}k membership queries and at most one equivalence query.

Proof. Since the algorithm might give inconsistent answers to the sublearners, there is no guarantee
that Ai can always give a new query. This is handled in the case marked ”If no possible query” in
the algorithm.

At the start of the algorithm, if the concept class includes the empty concept, the algorithm
queries ∅ = c∗. If ∅ = c∗, the concept is learned. Otherwise, some positive counter-example from
c∗ must be given. The rest of the algorithm then assumes that is not a valid hypothesis.

The remaining part of the algorithm simulates each Ai in parallel until every Ti contains an
element of c∗i . At this point, the algorithm will stop, since all possible elements of

∏
Ti are posed

as membership queries.
For each Ai, either every answer to a query from Ai is correct or at least one answer is incorrect.

We will discuss each case separately. Every answer is correct: In this case Ai will eventually
query the correct hypothesis c∗i . Since c∗i 6= ∅, some element of c∗i will then be added to Ti.
Some answer to Ai is incorrect: If an incorrect answer to a membership query is given, then for
some query xi ∈ c∗i , the answer “False” is incorrect. So xi ∈ c∗i and Ti will contain a positive
example. If an incorrect answer to an equivalence query is given, either the counter-example is
incorrect or the statement that they are not equivalent is incorrect. If an incorrect counterexample yi
to the query Si = c∗i is given, then yi ∈ c∗i , since we already know yi ∈ Si. If the statement Si 6= c∗i
is incorrect, then some element of c∗i will then be added to Ti.

The algorithm adds at most one element to Ti per query and must stop once every Ai has made
enough queries to learn c∗i , yielding the stated bound.

Learning when only membership queries are allowed
As mentioned before, finding a positive example when Qsubc = Qprod = {Mem} is essentially
the same as in Algorithm 6. The main difference is that we make the initial query ∅ = c∗ at the
beginning of the algorithm. For this reason, we need to assume that ∅ 6∈ Ci for all i. If not, there is
no way to distinguish between an empty and non-empty concept. For example consider the classes
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C1 = {{1}, ∅} and C2 = {{j} | j ∈ N}. It is easy to know when we have learned the correct class
in C1 or in C2 using membership queries. However, learning from their cross-product is impossible.
For any finite number of membership queries, there is no way to distinguish between the sets ∅ and
{(1, j)} for some j that has yet to be queried. By substituting in #EQi = 0 for all i in the bound
from Proposition 6, we get the following bound.

Proposition 7. If Qsubc = Qprod = {Mem} and the empty set is not in the concept class, then the
learner can find a positive example using at most maxi{#Memi}k membership queries.

Input: ~p: Positive Example in X
Learn (~p)

while some Ai has not completed do
for each Ai do

// Answer Mem queries until an EQ query is made

while Ai queries xi ∈ Ci for some xi do
Query ~p[i← xi] ∈ c∗;
Return answer to Ai;

Receive query Si = c∗i from Ai;
Query

∏
Si = c∗;

if
∏
Si = c∗ then

return
∏
Si;

else
Receive counterexample ~x := (x1, . . . , xk);

if ~x ∈
∏
Si then

Set i′ := HandleCounterexample(~p, ~x);
Pass xi′ to Ai′ as a counterexample;

else
// ~x ∈ c∗\

∏
Si

for i ∈ {1, . . . , k} do
if xi 6∈ Si then

Pass xi to Ai as a counterexample;
return

∏
Si;

Algorithm 5: Learn when Qsubc = {Mem,EQ} and Qprod = {Mem,EQ, 1Pos}

4.6 Learning from Equivalence or Subset Queries is Hard
The previous section showed that learning cross products of membership queries requires at most
O(maxi{#Memi(ci)}k) membership queries. A natural next question is whether this can be done
for equivalence and subset queries. In this section, we answer that question in the negative. We will
construct a class C that can be learned from n equivalence or subset queries but which requires at least
kn queries to learn Ck. We define C to be the set {c(s) | s ∈ N∗}, where c(s) is defined over strings
such that c(λ) := {λ}×N, c(s) := ({s}×N)∪csub(s), and csub(s ·a) := ({s}×(N\{a}))∪csub(s).
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FindPos()
if ∅ ∈ C then

Query ∅ = c∗;
return counterexample;

Initialize all Ti := ∅;
while True do

for i ∈ {1, . . . , k} do
Ask Ai for query;
if No possible query then

Pass ;
if Ai returns hypothesis ci then

Sample yi ∈ ci;
Add yi to Ti;

if Ai queries xi ∈ c∗i then
Add xi to Ti;
Pass “False” to Ai;

else
Ai queries Si = c∗i ;
Sample yi ∈ Si;
Pass yi as counterexample to Ai;
Add yi to Ti;

for Unqueried ~y ∈
∏
Ti do

Query ~y ∈ c∗;
if ~y ∈ c∗ then

return ~y;
Algorithm 6: Finds positive example when Qsubc = Qprod = {Mem,EQ}

For example, c(1 · 2) = ({1 · 2}×N)∪ ({1}× (N\{2}))∪ ({λ}× (N\{1})). Here, 1 · 2 refers
to the concatenation of symbols 1 and 2. To learn c(s), it is enough to find the underlying string s.
This can be done by constructing longer prefixes of s from the counter-examples given by an oracle.

For example, consider the tree in figure 4.5, where nodes represent potential hypotheses. Arrows
are labelled with potential counterexamples, pointing to the next hypothesis to be considered
given that counterexample. An algorithm learning c(1 · 2) from equivalence queries might start by
querying c(λ) and getting a negative counter-example (λ, 1). It then queries c(1) and gets a negative
counter-example (1, 2). Finally, it queries the correct concept c(1 · 2) and is done.

An important part of the construction of C is that for any two strings s, s′ ∈ N, we have that
c(s) ⊆ c(s′) if and only if s = s′. This implies that a subset query will return true if and only
if the true concept has been found. Moreover, an adversarial oracle can always give a negative
example for an equivalence query, meaning that oracle can give the same counterexample if a subset
query were posed. So we will show that C is learnable from equivalence queries, implying that it is
learnable from subset queries.
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c(λ)

c(1) c(2) ...

c(11) c(12) ...

(λ, 1)
(λ, 2)

(1, 1)
(1, 2)

Figure 4.5: A tree representing Algorithm 7. Nodes are labelled with the queries made at each step,
and edges are labelled with the counterexample given by the oracle.

Result: Learns C
Set s = λ;
while True do

Query c(s) to Oracle if Oracle returns ‘yes’ then
return c(s)

if Oracle returns (s′,m) ∈ c∗\c(s) then
Set s = s′;

if Oracle returns (s,m) ∈ c(s)\c∗ then
Set s = sm;

Algorithm 7: Learning C from equivalence queries.
We can conclude with this proposition.

Proposition 8. There exist algorithms for learning from equivalence queries or subset queries such
that any concept c(s) ∈ C can be learned from |s| queries.

Proof. Algorithm 7 shows the learning algorithm for equivalence queries, and Figure 4.5 show
the decision tree. This algorithm starts by querying c(λ) to an oracle. When learning c(s) for any
s ∈ N∗, the algorithm will construct s by learning at least one new element of s per query. Each new
query to the oracle is constructed from a string that is a substring of s If a positive counterexample
is given, this can only yield a longer substring of s and so learning is done in less than |s| time.

Showing Ck is Hard to Learn
We will prove a lower-bound on learning Ck from subset queries from an adversarial oracle. This
will imply that Ck is hard to learn from equivalence queries, since an adversarial equivalence query
oracle can give the exact same answers and counterexamples as a subset query oracle.
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It is easy to learn C, since each new counterexample gives one more element in the target string
s. When learning a concept,

∏
c(si), it is not clear which dimension a given counterexample applies

to. Specifically, a given counterexample ~x could have the property that ~x[i] ∈ c(si) for all i 6= j, but
the learner cannot infer the value of this j. It must then proceed considering all possible values of j,
requiring exponentially more queries for longer si.

To see this, consider the following example, where a learner must learn c(s1) × c(s2), when
|s1|+ |s2| = 2.

Example 10. First, the learner queries (c(λ), c(λ)) to the oracle and receives a counter-example
((λ, 1), (λ, 2)). It now knows either s1 starts with 1 or s2 starts with 2. The learner queries
(c(1), c(λ)) and receives counterexample ((1, 3), (λ, 4)). If s1 starts with 1, then either s1 = 1 · 3 or
s2 = 4. If s1 does not start with 1, then we’ve learned nothing. The learner queries (c(λ), c(2)) and
receives counterexample ((λ, 5), (2, 6)). At this point, there are four possible solutions: (c(1), c(4)),
(c(1 · 3), c(λ)), (c(5), c(2)) and (c(λ), c(2 · 6)). The learner must query all but one of these in order
to find the correct concept.

A learning algorithm that uses the above strategy would need 2(|s1|+|s2|) queries to learn c(s1)×
c(s2).

Theorem 5. Any algorithm learning Ck from subset (or equivalence) queries requires at least kr

queries to learn a concept
∏

c(si), where r =
∑
|si|. Equivalently, the algorithm takes k

∑
#qi

subset (or equivalence) queries.

We will prove a lower-bound on learning Ck from subset queries from an adversarial oracle.
This will imply that Ck is hard to learn from equivalence queries, since an adversarial equivalence
query oracle can give the exact same answers and counterexamples as a subset query oracle.

First, we need a couple definitions.
A concept

∏
c(si) is justifiable if one of the following holds:

• For all i, si = λ
• There is an i and an a ∈ N and w ∈ N∗ such that si = wa, and the k-ary cross-product c(s1)×
· · · × c(w)× · · · × c(sk) was justifiably queried to the oracle and received a counterexample
~x such that ~x[i] = (w, a).

A concept is justifiably queried if it was queried to the oracle when it was justifiable.

For any strings s, s′ ∈ N∗, we write s ≤ s′ if s is a substring of s′, and we write s < s′ if s ≤ s′

and s 6= s′. We say that the sum of string lengths of a concept
∏

c(si) is of size r if
∑
|si| = r

Proving that learning is hard in the worst-case can be thought of as a game between learner
and oracle. The oracle can answer queries without first fixing the target concept. It will answer
queries so that for any n, after less than kn queries, there is a concept consistent with all given
oracle answers that the learning algorithm will not have guessed. The specific behavior of the oracle
is defined as follows:

• It will always answer the same query with the same counterexample.
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JQ: (c(λ), c(λ))

CE: ((λ, 1), (λ, 2))

JQ: (c(1), c(λ))

CE: ((1, 3), (λ, 4))

JQ: (c(λ), c(2))

CE: ((λ, 5), (2, 6))

JQ: (c(1 · 3), c(λ)) JQ: (c(1), c(4)) JQ: (c(5), c(2)) JQ: (c(λ), c(2 · 6))

1 ≤ s1 2 ≤ s2

1, 3 ≤ s1 4 ≤ s2 5 ≤ s1 2, 6 ≤ s2

Figure 4.6: The tree of justifiable queries used in Example 11. Each node lists the justifiable query
(JQ) and counterexample (CE) given for that query. The edges below each node are labelled with
the possible inferences about s1 and s2 that can be drawn from the counterexample.

• Given any query
∏

c(si) ⊆ c∗, the oracle will return a counterexample ~x such that for all i,
~x[i] = (si, ai), and ai has not been in any query or counterexample yet seen.

• The oracle never returns ‘yes’ on any query.
The remainder of this section assumes that queries are answered by the above oracle. An

example of answers by the above oracle and the justifiable queries it yields is given below.

Example 11. Consider the following example when k = 2. First, the learner queries (c(λ), c(λ))
to the oracle and receives a counter-example ((λ, 1), (λ, 2)). The justifiable concepts are now
(c(1), c(λ)) and (c(λ), c(2)). The learner queries (c(1), c(λ)) and receives counterexample ((1, 3), (λ, 4)).
The learner queries (c(λ), c(2)) and receives counterexample ((λ, 5), (2, 6)). The justifiable con-
cepts are now (c(1), c(4)), (c(1 · 3), c(λ)), (c(5), c(2)) and (c(λ), c(2 · 6)). At this point, these are
the only possible solutions whose sum of string lengths is 2. The graph of justifiable queries is given
in Figure 4.6.

The following simple proposition can be proven by induction on sum of string lengths.

Proposition 9. Let
∏

c(si) be a justifiable concept. Then for all w1, w2, . . . , wk where for all i,
wi ≤ si,

∏
c(wi) has been queried to the oracle.

Proposition 10. If all justified concepts
∏

c(si) with sum of string lengths equal to r have been
queried, then there are kr+1 justified queries whose sum of string lengths equals r + 1

Proof. This proof follows by induction on r. When r = 0, the concept
∏

c(λ) is justifiable.For
induction, assume that there are kr justifiable queries with sum of string lengths equal to r. By
construction, the oracle will always chose counterexamples with as-yet unseen values in N. So
querying each concept

∏
c(si) will yield a counterexample ~x where for all i, ~x[i] = (si, ai) for new
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ai. Then for all i, this query creates the justifiable concept
∏

c(s′j), where s′j = sj for all j 6= i and
s′i = c(si ·ai). Thus there are kr+1 justifiable concepts with sum of string lengths equal to r+1.

We are finally ready to prove the main theorem of this section.
Theorem Any algorithm learning Ck from subset (or equivalence) queries requires at least kr

queries to learn a concept
∏

c(si), whose sum of string lengths is r. Equivalently, the algorithm
takes k

∑
#qi subset (or equivalence) queries.

Proof. Assume for contradiction that an algorithm can learn with less than kr queries and let this
algorithm converge on some concept c =

∏
c(si) after less than kr queries. Since less than kr

queries were made to learn c, by Proposition 10, there must be some justifiable concept c′ =
∏

c(s′i)
with sum of string lengths less than or equal to r that has not yet been queried. By Proposition
9, we can assume without loss of generality that for all wi ≤ s′i,

∏
c(wi) has been queried to the

oracle. We will show that c′ is consistent with all given oracle answers, contradicting the claim that
c is the correct concept. Let cv :=

∏
c(vi) be any concept queried to the oracle, and let ~x be the

given counterexample. If for all i, vi ≤ s′i, then by construction, there is a j with ~x[j] = (vj, aj)
such that vj · aj ≤ s′j , so ~x is a valid counterexample. Otherwise, there is an i such that vi 6≤ s′i.
So ({vi} × N) ∩ c(s′i) = ∅, so ~x is a valid counterexample. Therefore, all counterexamples are
consistent with c′ being correct concept, contradicting the claim that the learner has learned c.

4.7 Efficient PAC-Learning
This sections discusses the problem of PAC-learning the cross products of concept classes.

Previously, [58] have shown the following bound on the VC-dimension of cross-products of
sets:

VC(
∏

Ci) ≤ a1log(ka2)
∑
VC(Ci)

Here a1 and a2 are constants with a1 ≈ 2.28 and a2 ≈ 3.92. As always, k is the number of
concept classes included in the cross-product.

The VC-dimension gives a bound on the number of labelled examples needed to PAC-learn a
concept, but says nothing of the computational complexity of the learning process. This complexity
mostly comes from the problem of finding a concept in a concept class that is consistent with a
set of labelled examples. We will show that the complexity of learning cross-products of concept
classes is a polynomial function of the complexity of learning from each individual concept class.

First, we will describe some necessary background information on PAC-learning.

PAC-learning Background
Definition 1. Let C be a concept class over a space X . We say that C is efficiently PAC-learnable
if there exists an algorithm A with the following property: For every distribution D on X , every
c ∈ C, and every ε, δ ∈ (0, 1), if algorithm A is given access to EX(c,D) then with probability
1− δ, A will return a c′ ∈ h such that error(c′) ≤ ε. A must run in time polynomial in 1/ε, 1/δ,
and size(c).
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We will refer to ε as the ‘accuracy’ parameter and δ as the ‘confidence’ parameter. The value
of error(c) is the probability that for an x sampled from D that c(x) 6= c∗(x). PAC-learners have
a sample complexity function mC(ε, δ) : (0, 1)2 → N. The sample complexity is the number of
samples an algorithm must see in order to probably approximately learn a concept with parameters
ε and δ.

Given a set S of labelled examples in X , we will use A(S) to denote the the concept class the
algorithm A returns after seeing set S .

A learner A is an empirical risk minimizer (ERM) if A(C) returns a c ∈ C that minimizes the
number of misclassified examples (i.e., it minimizes |{(x, b) ∈ S | c∗(x) 6= b}|). The following
theorem is well-known in PAC literature (Theorem 6.7 from [50])

Theorem 6. If the concept class C has VC dimension d, then there is a constant, b, such that
applying an Empirical Risk Minimizer A to mC(ε, δ) samples will PAC-learn in C, where

mC(ε, δ) ≤ b
d · log(1/ε) + log(1/δ)

ε

Essentially, this theorem is stating that an ERM can PAC learn a concept from polynomially
many examples. Our goal is thus to show how to construct an ERM for the cross-products from the
learning algorithms A1 and A2.

Finally, we will review the growth function, which describes how many distinct assignments a
concept class can make to a given set of elements. More formally, for a concept class C and m ∈ N,
the growth function GC(m) is defined by:

GC(m) = max
x1,x2,...,xm

∣∣∣{(c(x1), c(x2), . . . , c(xm)) | c ∈ C}
∣∣∣

Each xi in the above equation is taken over all possible elements of Xi. The VC-dimension of a
class C is the largest number d such that GC(d) = 2d.

We will use the following bound, a corollary of the Perles-Sauer-Shelah Lemma, to bound the
runtime of learning cross-products [50].

Lemma 4. For any concept class C with VC-dimension d and m > d+ 1:

GC(m) ≤ (em/d)d

PAC-Learning Cross-Products
We now have enough background to describe the strategy for PAC-learning cross-products. We will
just describe learning the cross-product of two concepts. As above, assume concept classes C1

and C2 and PAC-learners A1 and A2 are given. We define Ai(ε, δ) as the runtime of the sublearner
Ai to PAC-learn with accuracy parameter ε and confidence parameter δ.

Assume that C1 and C2 have VC-dimension d1 and d2, respectively.
We can use the bound from van Der Vaart and Weller to get an upper bound d on the VC-

dimension of their cross-product. Assume the algorithm is given an ε and δ and there is a fixed
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target concept c∗ = c∗1 × c∗2. Theorem 6 gives a bound on the sample complexity mC1×C2(ε, δ). The
algorithm will take a sample of labelled examples of size mC1×C2(ε, δ). Our goal is to construct
an Empirical Risk Minimizer for C1 × C2. In our case, the target concepts c∗1 and c∗2 are in C1 and
C2, respectively. Therefore, for any sample S, an Empirical Risk Minimizer will yield a concept in
C1 × C2 that is consistent with S. This process is shown in Algorithm 8.

We will now argue that Algorithm 8 is correct. Let S be any such sample the algorithm
takes. This set can easily be split into positive examples S+ and negative examples S−, both in
X1 ×X2. The algorithm works by maintaining sets labeled samples L1 and L2 for each dimension.
For any (x1, x2) ∈ S+, it holds that x1 ∈ c∗1 and x2 ∈ c∗2 so (x1,>) and (x2,>) are added to
L1 and L2 respectively. For any (x1, x2) ∈ S−, we know that x1 6∈ c∗1 or x2 6∈ c∗2 (or both),
but it is not clear which is true. However, since the goal is only to create an Empirical Risk
Minimizer, it is enough to find any concepts C1 and C2 that are consistent with these samples. Let
S−1 := {x | ∃y, (x, y) ∈ S−}, let m = |S−1 | and order the elements of S−1 by x1, x2, . . . , xm. The
following lemma gives a bound on the number of concepts consistent with these examples.

Lemma 5. Given the elements x1, . . . , xm in S−1 as described above, the following bound holds
|{(c(x1), c(x2), . . . , c(xm))| ≤ (em/d)d.

Proof. By the definition of growth function, |{(c(x1), c(x2), . . . , c(xm)) | c ∈ C1}| ≤ GC1(m). By
lemma 4, GC1(m) ≤ (em/d)d.

In other words, there are less than (em/d)d assignments of truth values to elements of S−1 that
are consistent with some concept in C1. If the algorithm can check every c1 ∈ C1 consistent with
S+ and S−1 , it can then call A2 to see if there is any c2 ∈ C2 such that (c1× c2) assigns true to every
element in S+ and false to every element in S−.

Finding these consistent elements of C1 is made easier by the fact that we can check whether
partial assignments to S−1 are consistent with any concept in C1. As mentioned above, it starts
by creating the sets L1 and L2 containing all samples in the first and second dimension of S+,
respectively. It then iteratively adds labeled samples from S−. At each step, the algorithm chooses
one element (x1, x2) ∈ S− at a time and checks which possible assignments to x1 are consistent
with L1. If (x1,⊥) is consistent, it adds (x1,⊥) to L1 and calls RecursiveF indSubconcepts on
L1 and L2. If (x1,>) is consistent with C1, then the algorithm adds (x1,>) to L1 and (x2,⊥) to
L2 and calls RFS (RecursiveFindSubconcepts). In either case, if an assignment is not consistent,
no recursive call is made. We can summarize these results in the following theorem.

Theorem 7. Let concept classes C1 and C2 have VC-dimension d1 and d2, respectively. There exists
a PAC-learner for C1 × C2 that can learn any concept using a sample of size m = ((d1 + d2) ·
log(1/ε) + log(1/δ))/ε. The learner requires time O(md1(A1(1/m, log(δ)) + A2(1/m, log(δ)))).

Efficient PAC-learning with Membership Queries
Although polynomial, the complexity of PAC-learning cross-products from a EX oracle is fairly
expensive. We will show that when a learner is allowed to make membership queries, PAC-learning
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cross-products becomes much more efficient. This is due to the previously shown technique,
which uses membership queries and a single positive example to determine on which dimensions a
negatively labelled example fails.

In this case, assuming that ∅ ∈�Ci, we can ignore the assumption that a positive example is
given. If no positive example appears in a large enough labeled sample, the the algorithm can pose
∅ as the hypothesis.

If S does contain a positive example ~p, then S can be broken down into labeled samples
for each dimension i. The algorithm initialize the sets of positive and negative examples to
S+
i := {~x[i] | (~x,>) ∈ S} and S−i := {}, respectively. For each (~x,⊥) ∈ S, a membership queries
~p[i← ~x[i]] ∈ c∗. If so, ~x[i] is added to S+

i . Otherwise it is added to S−i . This labelling is correct
by Observation 2. The set of labelled examples Si := (S+

i × {>}) ∪ (S−i × {⊥}) is then passed
to the sublearner Ai. Ai is run on Si with accuracy parameter ε′ := ε/k and confidence parameter
δ′ := δ/k .

Proposition 11. The algorithm described above PAC-learns from the concept class �Ci with
accuracy ε and confidence δ. It makes mC(ε, δ) queries to EX, k ·mC(ε, δ) membership queries,
and has runtime O(

∑
Ai(ε/k, δ/k)).
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Result: Find Subconcepts Consistent with Sample
Input: S+: Set of positive examples in X1 ×X2

S−: Set of negative examples in X1 ×X2

δ : Confidence parameter in (0, 1)
FindSubconcepts (S+, S−, δ)

δ′ := δ/(|S−|GC1(|S−|) +GC2(|S−|));
ε′ := 1/|S|;
// L1: Labelled samples in X1

L1 := {(x1,>) | ∃y, (x1, y) ∈ S+};
// L2: Labelled samples in X2

L2 := {(x2,>) | ∃y, (y, x2) ∈ S+};
U := S−;
return RFS(L1, L2, U , ε′, δ′) ;

Algorithm 8: PAC Learning
// Recursive Find Subconcepts

RFS (L1, L2, U , ε′, δ′):
if U = ∅ then

if A2(L2, ε
′, δ′) then

return (A1(L1, ε
′, δ′), A2(L2, ε

′, δ′));
else

return ⊥;
Get (x1, x2) ∈ U ;
U := U\{(x1, x2)};
// Attempts to label x1 as false

if A1(L1 ∪ {(x1,⊥)}, ε′, δ′) 6= ⊥ then
L′1 := L1 ∪ {(x1,⊥)};
c := RFS(L′1, L2, U, ε

′, δ′);
if c 6= ⊥ then

return c;
// Attempts to label x1 as true

if A1(L1 ∪ {(x1,>)}, ε′, δ′) 6= ⊥ then
L′1 := L1 ∪ {(x1,>)};
L′2 := L2 ∪ {(x2,⊥)};
c := RFS(L′1, L

′
2, U, ε

′, δ′);
if c 6= ⊥ then

return c ;
Algorithm 9: Recursive helper function for the PAC-learning algorithm.
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4.8 Conclusion
This chapter studies the problem of learning cross products of concept classes given algorithms
for learning their components. We present tight bounds for several classes of queries, including
membership, subset, superset and equivalence queries. We give a polynomial reduction algorithm
for PAC-learning.
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Part II

Syntax-Guided Synthesis
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Chapter 5

Decidability of SyGuS Theories

5.1 Overview
In this chapter, we present a theoretical analysis of the syntax-guided synthesis problem. We
analyze the decidability of the SyGuS problem for different classes of grammars and logics. For
grammars, we consider arbitrary context-free grammars (used in the first SyGuS paper [4]) and tree
grammars (used in the SyGuS competition [2]). For logics, we consider the major theories studied
in satisfiability modulo theories (SMT) [10], including equality and uninterpreted functions (EUF),
finite-precision bit-vectors (BV), and arrays – extensional or otherwise (AR), as well as theories
with finite domains (FD). Our major results are as follows:

• For EUF, we show that the SyGuS problem is undecidable over tree grammars. These results
extend straightforwardly for the theory of arrays. (See Section 5.2.)

• We present a decidable special case of the SyGuS problem for EUF, called regular-EUF,
which is EXPTIME-complete. We prove that the sets of solutions to regular-EUF problems
can be represented by regular tree languages, and vice versa. This represents the first SyGuS
problem that is decidable, but not trivially decidable. (See Section 5.3.)

• For arbitrary theories with finite domains (FD) defined in Section 5.4, we show that the
SyGuS problem is decidable for tree grammars.

• For BV, we show (perhaps surprisingly) that the SyGuS problem is undecidable for the classes
of context-free grammars and tree grammars. (See Section 5.5.)

See Table 5.1 for a summary of our main results.

5.2 SyGuS-EUF is Undecidable
We use SyGuS-EUF to denote the class of SyGuS problems (ϕ,EUF, G, f) where G is a grammar
generating expressions that are syntactically well-formed expressions in EUF for f . In this section,
we prove that SyGuS-EUF is undecidable. The proof of undecidability is a reduction from the
simultaneous rigid E-unification problem (SREU) [23]. We say that a set E := {e1, . . . , el} of
equations between terms in T (Σ, V ) together with an equation e∗ between terms in T (Σ, V ) forms
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Theory \ Grammar Class Regular Tree Context-free
Finite-Domain D ?

Bit-Vectors U U
Arrays U U
EUF U U

Regular-EUF D ?

Table 5.1: Summary of main results, organized by background theories and classes of grammars.
“U” denotes an undecidable SyGuS class, “D” denotes a decidable class, and “?” indicates that the
decidability is currently unknown.

a rigid expression, denoted E `r e∗. A solution to E `r e∗ is a substitution σ, such that e∗σ and eiσ
are ground for each ei ∈ E and Eσ ` e∗σ. Given a set S of rigid equations, the SREU problem is to
find a substitution σ that is a solution to each rigid equation in S. It is known to be undecidable [23].
We start the reduction with constructing a boolean expression ΦS for a given set of rigid equations
S over alphabet Σ and variables V := {x1, . . . , xm}. Let each ri ∈ S be ei,1, . . . , ei,li `r e∗i ,
where ei,1, . . . , ei,li , and e∗i are equations between terms in T (Σ, V ). We associate with each rigid
expression ri ∈ S a boolean expression ψi :=

(∧
j=1,...,li

ei,jσf ∧
∧
k 6=j ak 6= aj

)
→ ei

∗σf , where
σf is the substitution {f(a1)/x1, . . . , f(am)/xm}. The symbol f is a unary function symbol to be
synthesized and a1, . . . , am are fresh constants (ai /∈ Σ for all i). We set ΦS :=

∧
i ψi.

Next we give the grammar GS , which generates the terms that may replace f in ΦS . We define
GS to have the starting nonterminal A1 and the following rules:

A1 → ITE(x = a1, S
′, A2)

A2 → ITE(x = a2, S
′, A3)

. . .
Am−1 → ITE(x = am−1, S

′, Am−1)
Am → ITE(x = am, S

′,⊥)

where ⊥ is a fresh constant (⊥ /∈ Σ and ⊥ 6= ai for all i). Additionally, for each g ∈ Σ we add a
rule S ′ → g(S ′, . . . , S ′), where the number of argument terms of g matches its arity.

Lemma 6. The SREU problem S has a solution if and only if the SyGuS-EUF problem ρS :=
(ΦS,EUF, GS, f) has a solution over the ranked alphabet Σ.

Proof. The main idea behind this proof is that each f(ai) in ΦS represents the variable xi in S. Any
replacement to f found in GS corresponds to a substitution on all variables xi in S that grounds the
equations in the SREU problem.
→: Let σu := {u1/x1 . . . , um/xm} be a solution to S, where each ui is a ground term in T (Σ).

We consider the term w(x) := ITE(x = a1, u1, ITE(x = a2, u2, . . . , ITE(x = am, um,⊥) . . . ),
which is in the language of the grammar GS . To show that Φs{w/f} is valid, it suffices to show
that for each model M of Σ ∪ {a1, . . . , am} ∪ V and for each ψi we have M |= ψi{w/f}. If
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M 6|= [
∧
j=1,...,li

ei,jσf ∧
∧
k 6=j ak 6= aj]{w/f}, then M |= ψi{w/f} holds trivially. We handle the

remaining case below, giving justifications to the right of each new equation.
1. Assume M |= [

∧
j=1,...,li

ei,jσf ∧
∧
k 6=j ak 6= aj]{w/f}

2. M |=
∧
k 6=j ak 6= aj (1)

3. For each j: M |= w(aj) = uj (2)
4. For each j: M |= (ei,jσf ){w/f} ↔ ei,jσu (3)
5. M |=

∧
j=1,...,li

(ei,jσf ){w/f} (1)
6. M |=

∧
j=1,...,li

ei,jσu (4, 5)
7. {ei,j | j = 1, . . . ,m}σu ` e∗iσu (def. SREU)
8. M |= e∗σu (6,7, Birkhoff’s Thm.)
9. M |= (e∗σf ){w/f} (3,8)

Therefore, M |= ΦS and we get that w is a solution to the SyGuS problem ρS .
←: Let w(x) and σu be defined as before and assume that w is a solution to the SyGuS problem

ρS . Each ui in w is ground, since the nonterminal S ′ in GS can only produce ground terms. Chose
any ri ∈ S. We will show for every model M on Σ ∪ V , that if M |=

∧
j=1,...,li

ei,jσu then
M |= e∗iσu. By Birkhoff’s theorem, this implies ei,1σu, . . . , ei,liσu ` e∗iσu.

1. Assume M |=
∧
j=1,...,li

ei,jσu

2. Let M̂ be a model over Σ ∪ V ∪ {a1, . . . , am} such that M̂ � Σ ∪ V = M and M̂ assigns
each ai to a distinct new element not in dom(M).

3. M̂ |= w(aj) = uj (2)
4. For each j: M̂ |= (ei,jσf ){w/f} ↔ ei,jσu (3)
5. M̂ |=

∧
j=1,...,li

ei,jσu (1,2)
6. M̂ |=

∧
j=1,...,li

(ei,jσf ){w/f} (4,5)
7. M̂ |= ψi{w/f} (w is a SyGuS solution)
8. M̂ |= (e∗iσf ){w/f} (6, 7)
9. M̂ |= e∗iσu (3,8)

10. M |= e∗iσu (2,9)
Thus ei,1σu, . . . , ei,liσu ` e∗iσu and σu is a solution to S.

The main idea behind the proof of Lemma 6 is that each f(ai) in ΦS represents the variable xi
in S. Any replacement to f found in GS corresponds to a substitution on all variables xi in S that
grounds the equations in the SREU problem. Since the SREU problem is undecidable, this lemma
immediately yields the following theorem.

Theorem 8. The SyGuS-EUF problem is undecidable.

A key step in the proof of Lemma 6 is the use of ITE statements to allow a single expressionw to
encode instantiations of multiple different variables. It remains open whether there exist alternative
proofs of EUF undecidability that do not rely on ITE statements. However, we can show that
SyGuS-EUF is undecidable when synthesizing two functions, even when no ITE operators are
used.
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To see this, consider a result from Veanes [61], which states that SREU is undecidable when only
two variables are used. If f and f ′ have arity 0, then replacing them with somew andw′ is equivalent
to replacing first-order variables with ground terms. Given any rigid equation r := e1, . . . , ek `r e∗
with variables x and y, we can create a formula ψr := (

∧
i ei → e∗){f/x, f ′/y}. So, over a set S

of rigid equations, we can create a formula φ :=
∧
ri∈S ψri . If f and f ′ can draw replacements from

any term in T (Σ), then it follows that S has a solution if and only if there are w,w′ ∈ T (Σ) such
that φ{w/f, w′/f ′} is valid.

We use SyGuS-Arrays to denote the class of SyGuS problems (ϕ,Arrays , G, f), where Arrays
is the theory of arrays [10], and G is a grammar such that L(G) are syntactically well-formed
expressions in Arrays for f . There is a standard construction for representing uninterpreted
functions as read-only arrays [10]. Therefore, the undecidability of SyGuS-Arrays follows from
the undecidability of SyGuS-EUF, as we state below.

Corollary 1. The SyGuS-Arrays problem is undecidable.

5.3 Regular SyGuS-EUF
This section describes a decidable special case of the SyGuS-EUF problem, which we call regular-
EUF.

Definition 2. We call (φ,EUF, G, f) a regular-EUF problem if G is a regular tree grammar that
contains no ITE expressions and φ is a regular-EUF formula as defined below.

A regular-EUF formula is a formula φ :=
∧
i ψi over some ranked alphabet Σ, where each ψi

satisfies the following conditions:
1. It is a disjunction of equations.
2. It does not contain any ITE expressions.
3. It contains at most one occurrence of f per equation.
4. It satisfies one of the following cases:

• Case 1: The symbol f only occurs in positive equations.
• Case 2: The symbol f occurs in exactly one negative equation, and nowhere else.

An equation is negative if it appears with a negation before it, and it is positive, otherwise. We
define any disjunction ψ that satisfies the above conditions as regular. We will refer to a regular ψ as
case-1 or case-2, depending on which of the above cases is satisfied. Note that every regular-EUF
formula is in conjunctive normal form.

An interesting case of regular-EUF formulas are of the form:
∧
i ei →

∧
j e
′
j , where each ei

is a positive equation containing no f symbols, and each e′j is a (positive or negative) equation
containing at most one occurrence of an f symbol. We can use the antecedent to specify the
operators of an algebra and the consequent to specify a new function to be built using the operators.

Example 12. Suppose we want to create a binary NAND operator using only the binary OR
and unary NOT operators, we might use the regular-EUF formula: [OR(0, 0) = 0 ∧ OR(0, 1) =

1 ∧ OR(1, 0) = 1 ∧ OR(1, 1) = 1 ∧ NOT (1) = 0 ∧ NOT (0) = 1] → [f(0, 0) = 1 ∧ f(1, 0) =
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1 ∧ f(0, 1) = 1 ∧ f(1, 1) = 0]. The grammar of replacements to f(x,y) would then be given by:
S → NOT (S) | OR(S, S) | x | y

To restrict the solution so that at most two NOT operators are used, we create non-terminals Ai
(for i = 0, 1, 2) such that at most i NOT operators can be produced from Ai:

S → A2 A2 → NOT (A1) | OR(A2, A0) | OR(A0, A2) | OR(A1, A1) | x | y
A1 → NOT (A0) | OR(A1, A0) | OR(A0, A1) | x | y A0 → OR(A0, A0) | x | y

These grammars might yield OR(NOT (x), NOT (y)) as a possible solution.

We will show that for every regular ψi, we can construct a regular tree automaton Aψi
of

polynomial size that accepts precisely the solutions to the SyGuS-EUF problem on ψi. The set of
solutions to φ then becomes L(G) ∩

⋂
i L(Aψi

), where G is the grammar of possible replacements.
The grammar G can be represented as a deterministic bottom-up tree automaton AG whose size
is exponential in |G| [18]. The product-automaton construction can be used to determine if
L(G) ∩

⋂
i L(Aψi

) is non-empty, which implies that a solution exists to the SyGuS problem. This
gives us an algorithm to decide the regular-EUF problem in time O(2|G| ·

∏
i |ψi|).

The connection between sets of ground equations and regular tree languages was first observed
by Kozen [40], who showed that a language L is regular if and only if there exist a set E of ground
equations and collection S of ground terms such that L =

⋃
s∈S[s]E . We now prove the following

(similar) theorem that states that a certain set of equivalence classes of a ground equational theory
can be represented by a regular tree automaton.

Theorem 9. Let E be a set of ground equations over the alphabet Σ, and let C be a subterm-closed
set of terms such that every term in E is in C. There exists a regular tree automaton without
accepting states AE,C := (Q,Σ, δ) such that each state in Q represents an equivalence class of a
term in C. That is, for all terms s, t ∈ T (Σ) such that there exist terms s′, t′ ∈ C so that s =E s

′

and t =E t
′, it holds that s =E t if and only if δ∗(s) = δ∗(t).

Proof. Let Q := {qs | s ∈ C}. For each term g(s1, . . . , sk) ∈ C, for g ∈ Σ(k), let
δ(g, qs1 , . . . , qsk) = qg(s1,...,sk). We define the function merge(q, q′) to operate on AE,C as follows:
First, add δ(g, q1, . . . , qi−1, q, qi+1, . . . , qk)=q′′ to δ for all q1, . . . , qi−1, qi+1, . . . , qk, q

′′ and g with
δ(g, q1, . . . , qi−1, q

′, qi+1, . . . , qk) = q′′. Second, recursively call merge(q′′, q′′′) for all q′′ and q′′′

with δ(g, q1, . . . , qi−1, q
′, qi+1, . . . , qk) = q′′ and δ(g, q1, . . . , qi−1, q, qi+1, . . . , qk) = q′′′. Finally,

remove q′ from Q.
We iteratively construct AE,C by calling merge(qs, qt) for each s = t in E. The following

inductive argument shows that AE,C indeed represents the equivalence classes of terms in C.
We will first show after each call to merge that for any s, t ∈ T (Σ), if δ(s) = δ(t) then s =E t.

If no merges have been called then δ(s) = δ(t) implies s equals t (and thus s =E t). Now assume
the property holds and merge(q, q′) is called for some q, q′ ∈ Q. There are two cases. First, assume
there is a u = u′ ∈ E such that q = δ(u) and q′ = δ(u′). For any s and t such that δ(s) = δ(t) = q
after the merge, either δ(s) = δ(t) before the merge or without loss of generality δ(s) = q and
δ(t) = q′. By our assumption that the property held before the merge, s =E u and u′ =E t, so
s =E t and the property still holds. Now assume that there is no such u = u′ ∈ E. Then there is an
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f ∈ Σ(k) and states q1, . . . , qk such that δ(f, q1, . . . , qk) = q and q′. So if δ(s) = q and δ(t) = q′,
then there are u1, . . . , uk ∈ T (Σ) such that for each i, δ(ui) = qi. So s =E f(u1, . . . , uk) =E t.

For any two s, t ∈ T (Σ) we will show by induction of the derivation from s to t in E that if
s =E t then δ(s) = δ(t). The base case, when s = t, trivially holds. Now assume s ↔E u1 ↔E

· · · ↔E ur ↔E t and the property holds for ally derivations of length r. Since s =E ur, we know
that δ(s) = δ(ur). Since ur ↔E t, there is a context C and an equation u = v ∈ E such that
C[l] = ur and C[r] = t. Thus δ(l) must equal δ(r) after merging, so δ(C[l]) = δ(C[r]). Therefore,
δ(s) = δ(ur) = δ(t).

For any set of ground equations E and set of terms C, we will use AE,C to denote the automaton
constructed from E and C as defined in the above proof.

Solving the SyGuS problem for ψ =
∧
i ψi is the problem of finding a w such that

∧
i ψi{w/f}.

Let ψi := e1 ∨ e2 ∨ . . . ek−1 ∨ ¬ek ∨ · · · ∨ ¬ek+r be a regular formula. We split equalities from
inequalities and let P := {e1, . . . , ek−1} and N := {ek, . . . , ek+r}. We can rewrite ψ to the normal
form (

∧
e∈N e)→ (

∨
e∈P e). Then ψ{w/f} is equivalent to

∨
e∈P N{w/f} ` e{w/f}.

The construction of the automaton Aψi
that represents the solutions to ψi depends on whether

ψi is case-1 or case-2. We start with case-1 and choose some s = t ∈ P . Assume the symbol
f does not occur in s = t. If N ` s = t, then ψi is trivially true. Otherwise, if N 6` s = t,
then s = t can be removed from ψi to yield an equally solvable formula. Now assume f occurs
in s = t. Without loss of generality, f does not occur in t (by condition (3)) and there is a
context B and a set of terms s1, . . . , sarity(f) such that s = B[f(s1, . . . , sarity(f))]. Let C :=
Subterms(N) ∪ Subterms({s1, . . . , sarity(f)}) and let AN,C := (Q,Σ, δ). For each q ∈ Q, there is
a ground term uq such that δ∗(uq) = q. LetQ′ ⊆ Q be the set of states q such that δ∗(B[uq]) = δ∗(t).
By Theorem 9, N ` B[uq] = t if and only if q ∈ Q′. Therefore, for any replacement, w, of f ,
N ` (s = t){w/f} if and only if δ∗(w(s1, . . . , sarity(f))) ∈ Q′.

Let As=t := (Q,Σ ∪ {x1, . . . , xarity(f)}, δ′, Q′) be a tree automaton with accepting states Q′.
We here treat the xi as constants and define, for each xi, δ′(xi) := δ∗(si). And for each u ∈ T (Σ),
define δ′∗(u) := δ∗(u). A simple inductive argument shows that this is a well-founded definition for
δ′ and that, for any replacement w of f , δ∗(w(s1, . . . , sarity(f))) = δ′∗(w(x1, . . . , xarity(f))). Thus,
L(As=t) defines the precise set of terms w such that N ` (s = t){w/f}.

The set of solutions to ψ can be given by the automaton Aψi
whose language is

⋃
s=t∈P L(As=t).

This can be found in time exponential in |N | using the product construction for tree automata [18].

Example 13. Let ψ := (g(a) = b ∧ g(b) = a) → f(a) = g(g(b)). Note that this is a case-1
regular-EUF clause. If we set E := {g(a) = b, g(b) = a} and C := {a, b, g(a), g(b), g(g(b))},
then A := AE,C is the automaton from Figure 5.1 (excluding the accepting state marker and x
transition). Since the argument of f in f(a) = g(g(b)) is a and A parses a to state-1, a transition
from x to state-1 is added to A. Since g(g(b)) parses to state-2 in A, state-2 is set as an accepting
state in A. So A accepts the replacements w to f such that ψ{w/f} is valid.

Assume ψ is case-2 and let s = t be the equation in N that contains f . We choose some
u = u′ ∈ P and show how to construct the automaton accepting the replacements w such that
N{w/f} ` u = u′ holds.
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Figure 5.1: The automaton A1 accepting the solutions to ψ1 in example 13. This method of
displaying tree automata is common in the literature [16]. For example, this automaton maps trees
a, x, and g(g(a)) to state 1 and maps g(a) and g(x) to state 2.

Let N ′ := N\{s = t}, and let C := Subterms(N ′ ∪ P ) ∪ Subterms({t, s1, . . . , sarity(f)}). If
N ′ ` u = u′ for some u = u′ ∈ P , then every replacement to f is a solution.

So assume N ′ 6` u = u′. In this case we need the additional equality s = t with a suitable
replacement w for f to make N{w/f} ` u = u′ hold.

Without loss of generality, we assume that f does not occur in t (by condition (3)) and that
there is a context B and a set of terms s1, . . . , sarity(f) such that s = B[f(s1, . . . , sarity(f))]. Let
s′ := s{w/f}. We say that a term s is N ′-equivalent to some term in C, if there exists a term v ∈ C
such that s′ =N ′ v.

We first show that to construct an automaton accepting the suitable replacements it suffices to
consider the terms in C.

Lemma 7. For every replacement w with N{w/f} ` u = u′ the term w(s1, . . . , sarity(f )) is
N ′-equivalent to some term in C.

Proof. Let C ′ := C ∪ Subterms(s′) and let AN ′,C′ = (Q,Σ, δ). By way of contradiction assume
that there is a replacement w such that N{w/f} ` u = u′ and w(s1, . . . , sarity(f )) is not N ′-
equivalent to any term in C. Since C is subterm-closed, this means that s′ is not N ′-equivalent to
any term in C and that s′ is not a subterm of any term in C. In particular, s′ is not a proper subterm
of any term in C ′ and thus δ∗(s′) has no outgoing edges in δ. By construction, AN ′∪{s′=t},C′ is
equivalent to calling merge(δ∗(s′), δ∗(t)) on AN ′,C′ . Since δ∗(s′) has no outgoing edges, calling
merge(δ∗(s′), δ∗(t)) on AN ′,C′ cannot induce any more merges. Therefore, δ∗(u) and δ∗(u′) are
still not equal after the merge, contradicting the assumption N{w/f} ` u = u′. So s′ and thus
w(s1, . . . , sarity(f )) is N ′-equivalent to some term in C.

We conclude the construction of the automaton in the following lemma.

Lemma 8. The regular-EUF problem is in EXPTIME.

Proof. As mentioned near the start of this section, to solve the regular-EUF problem, it suffices to
construct an Aψ that accepts precisely the replacements w that make ψ valid, for each ψ in φ. We
have how to do this when ψ is case-1 and when ψ is case-2 and N ′ ` u = u′ for some u = u′ ∈ P .
We now handle the remaining case, when N ′ 6` u = u′.
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Figure 5.2: Left: The set of solutions to ψ in Example 14. Right: The resulting automaton (without
x transition and accepting state) after merging states 1 and 3.

Let AN ′,C := (Q,Σ, δ). For each q ∈ Q, there is a ground term uq such that δ∗(uq) = q. Let
Qu=u′ be the set of states such that N ′ ∪ {B[uq′ ] = t} ` u = u′ for each q′ ∈ Qu=u′ . Then by
Lemma 7, for each replacement w, N{w/f} ` u = u′ if and only if δ∗(w) ∈ Qu=u′ .

Let Q′ :=
⋃
e∈P Qe. Let Aψ := (Q,Σ ∪ {x1, . . . , xarity(f)}, δ′, Q′) be a tree automaton with

accepting states Q′. For each xi, let δ′(xi) := δ(si). For all u ∈ T (Σ), let δ′(u) := δ(u). A simple
inductive argument will show that L(Aψ) contains precisely the solutions to ψ.

Example 14. Let ψ := (g(h(g(a))) = a∧ f(g(a)) = a)→ h(g(a)) = a. Note that this is a case-2
regular-EUF clause. If we set E := {g(h(g(a))) = a} and C := {a, g(a), h(g(a)), g(h(g(a)))},
then A := AE,C is the automaton from the left side of Figure 5.2 (excluding the accepting state and
x transition). Since the argument of f in f(g(a)) = a is a and A parses a to state-2, a transition
from x to state-2 is added to A. If we choose a replacement w such that w(g(a)) parses to state-3
in A, then applying the equation w(g(a)) = a merges state-3 with state-1. This, in turn, forces a
merge between the new state and state-2, yielding the automaton on the right side of Figure-5.2.
This automaton parses h(g(a)) and a to the same state, so state-3 is an accepting state. This does
not occur if w(g(a)) parses to state-1 or state-2 in A, so they are not accepting states. So A accepts
the replacements w to f such that ψ{w/f} is valid.

Lemma 9. Let A := (Q,Σ ∪ {x1, . . . , xk}, δ, QF ) be a tree automaton. There exists a regular
disjunctive formula ψA such that L(A) is the set of solutions to ψA.

Proof. Let TQ be a subterm-closed set of terms such that for each state q ∈ Q, there is a term
uq such that δ(uq) = q. Without loss of generality, assume that each uq ∈ TQ is a subterm of
some term in L(A). Let σ := {xi/ci | i ∈ {0, . . . , k}} for some new constants c1, . . . , ck. Let
NQ := {g(uq1σ, . . . , uqrσ) = uq′σ | r ≥ 0, g ∈ Σr, q1, . . . , qr, q

′ ∈ Q, δ(g, q1, . . . , qr) = q′} and
PQ := {f(c1, . . . , ck) = uq | q ∈ QF}. Finally set ψA := (

∧
e∈NQ

e) → (
∨
e∈PQ

e). Using the
construction from theorem 9, it is easy to check that the set of solutions to ψ are precisely L(A).

We can also use the above lemma to show that regular SyGuS-EUF is EXPTIME-complete.

Lemma 10. The regular-EUF problem is EXPTIME-hard.
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Proof. We reduce from the EXPTIME-complete problem of determining whether a set of regular
tree automata have languages with a non-empty intersection [60]. Let A1, . . . , Ak be a set of regular
tree automata over some alphabet Σ. For each automaton Ai, construct the formula ψAi

as described
in Lemma 9. Let φ :=

∧
i ψAi

. Let f be a nullary function symbol to be synthesized, and let G be a
grammar such that L(G) := T (Σ). The solutions to the regular SyGuS-EUF problem (φ,Σ, G, f)
are the members of the set

⋂
i L(Ai). Therefore, (φ,Σ, G, f) has a solution if and only if

⋂
i L(Ai)

is non-empty.

Lemma 8 and Lemma 10 give us the main theorem of Section 5.3.

Theorem 10. The regular-EUF problem is EXPTIME-complete in the size of the grammar and the
specification.

Notice that if the number of occurrences of f is bounded and the grammar allows for all
well-formed replacements, then the regular-EUF problem becomes polynomial. Additionally, the
constructions above provide a novel characterization of regular tree languages.

Theorem 11. A tree language is regular if and only if it is the set of solutions to a regular-EUF
problem.

Note that the construction from Lemma 9 does not require the use of a grammar of possible
solutions. Therefore the regular-EUF formulae themselves provide a means of representing regular
tree languages.

It is worth noting that the case-1 and case-2 restrictions in the definition of regular-EUF are
necessary for the above theorem to hold. Specifically, if the definition of regular-EUF formulas
were altered so that an f -symbol could appear in one positive and one negative equation (violating
case-1) or two negative equations (violating case-2), then the set of possible solutions might not be
a regular tree language.

Case-1 and Case-2 are necessary
While Theorem 11 already suggests that this decidable case of SyGuS cannot be easily generalized,
we want to demonstrate along an example that restrictions in case-1 and case-2 are necessary. The
following example gives a clause that includes one positive and one negative equation in which
an f appears. The set of solutions to the corresponding SyGuS-EUF problem is not a regular tree
language. More specifically:

Let Σ := {g : 1, g′ : 1, h : 1, a : 0, b : 0, c : 0} be a ranked alphabet, and let f be a unary function
symbol to be synthesized. Let N := {f(a) = b, g(a) = a, g′(a) = a, h(a) = b, h(b) = c, g(c) =
c, g′(c)=c} and φ := (

∧
e ∈ Ne)→ f(b)=c (so f(b) = c is positive and f(a) = b is negative in

the disjunctive form of φ). Define G to be the tree grammar with start symbol S and the following
rules: S → g(S)|g′(S)|h(A) and A→ g(A)|g′(A)|x. We will show that the set of solutions to the
regular-EUF problem (φ,Σ, G, f) is not a regular tree language.

Let w(x) ∈ L(G) be a replacement to f and E ′ := E{w/f}. By the rules of G, there must be
a context B and a term t(x) over the alphabet {g : 1, g′ : 1} such that w(x) =B[h(t(x))]. We can
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see that b =E′ w(a) =E′ B[h(t(a))] =E′ B[h(a)] =E′ B[b]. Also, w(b) =E′ c⇔ h(t(b)) =E′ c⇔
t(b) =E′ b. The terms t(x) such that t(b) = b are precisely those of the form B[B[. . . B[x] . . . ]].
Therefore, the set of solutions to the above regular-EUF is L := {B[h(B[B[. . . B[x] . . . ]])] |
B is any context over {g :1, g′ :1}}.

We now use the Myhill-Nerode theorem for regular tree languages [41], stated below:

Theorem 12 (Myhill-Nerode theorem for regular tree languages [18]). Given a tree language L
over ranked alphabet Σ, we define s ≡L t if C[s]⇔ C[t] for each context C and terms s and t over
Σ. The following are equivalent:

1. L is regular
2. ≡L has finitely many equivalence classes
3. L is accepted by a rational tree automaton.

Using this theorem, it is easy to check that L is not regular.
We can use this same example to show that the requirement in case-2 that f appears in at most

one negative equation is also necessary. LetN ′ := N ∪{f(b) = d}. It is easy to check that solutions
to the constraint φ′ := (

∧
e ∈ Ne)→ d=c are precisely the solutions to φ as defined above. Since

N ′ contains both f(b) = d and f(a) = b, we can see that the requirement in case-2 is necessary.

5.4 Finite-Domain Theories
In addition to the “standard” theories, we also consider a family of theories that we term finite-
domain (FD) theories. Formally, an FD theory is a complete theory that admits one domain (up
to isomorphism), and whose only domain is finite. For example, consider group axioms with a
constant a and the statements ∀x : (x = 0) ∨ (x = a) ∨ (x = a · a) and a · a · a = 0. This is an
FD theory, since, up to isomorphism, the only model of this theory is the integers with addition
modulo 3. Also Boolean logic and the theory of fixed-length bit-vectors without concatenation are
FD theories. Bit-vector theories with (unrestricted) concatenation allow us to construct arbitrarily
many distinct constants and are thus not FD theories.

In this section we give a generic algorithm for any complete finite-domain theory for which
validity is decidable. Let T be a such a theory and let M be a model of T with a finite domain
dom(M). Assume without loss of generality that for every element c ∈ dom(M) there is a constant
f in M such that fM = c.

We consider a SyGuS problem with a correctness specification ϕ in theory T , a function symbol
f to synthesize, and a tree grammar G = (N,S,F , P ) generating the set of candidate expressions.
Let a := a1, . . . , ar be the constants occurring in ϕ. The expression e generated by G to replace f
can be seen as a function mapping a to an element in dom(M). If the domain of M is finite there
are only finitely many candidate functions, but it can be non-trivial to determine which functions
can be generated by G. In the following, we describe an algorithm that iteratively determines the
set of functions that can be generated by each non-terminal in the grammar G.

For each V ∈ N , we maintain a set EV of expressions e. In each iteration and for each
production rule V → f(t1, . . . , tk) for V in G, we consider the expressions f(t∗1, . . . , t

∗
k) where
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Iteration# ES EA EB
1 none x y
2 x⊕ y ¬y none

3 ¬y ⊕ y ≡ > none
(x⊕ y)⊕ ¬y ≡ ¬x
(((((((((
(x⊕ y)⊕ x ≡ y

4
¬y ⊕ ¬x

(((((((¬x⊕ x ≡ >
(((((¬¬x ≡ x

none

(((((((>⊕ ¬y ≡ y

(((((((>⊕ x ≡ ¬x
none

5 none none
((((((((((((
(¬y ⊕ ¬x)⊕ ¬y ≡ ¬x

((((((((((
(¬y ⊕ ¬x)⊕ x ≡ y

none

Table 5.2: This table shows the expressions added to the sets ES , EA, and EB when we apply
the algorithm to the SyGuS problem in Example 15. For readability, we simplify the expressions,
indicated by the symbol ‘≡’. Expressions that are syntactically new, but do not represent a new
function are struck out. When no new function is added, “none” is written in the cell.

t∗i := ti if ti is an expression (i.e. ti ∈ TF ) and t∗i ∈ EV ′ if ti is a non-terminal V ′. Given such an
expression e, we compute the function table, that is the result of e{c/a} for each c ∈ dom(M)r,
compare it to the function table of the expressions currently in EV . Our assumption of decidability
of the validity problem for T guarantees that this operation is decidable. If e represents a new
function, we add it to the set EV .

The algorithm terminates, after an iteration in which no set EV changed. As there are only
finitely many functions from dom(M)r to dom(M) and the sets EV grow monotonously, the
algorithm eventually terminates. To determine the answer to the SyGuS problem, we then check
whether there is an expression e in ES , for which ϕ{e/f} is valid.

Theorem 13. Let T be a complete theory for which validity is decidable and which has a finite-
domain model M . The SyGuS problem for T and T -compatible tree grammars is decidable.

Example 15. Consider the SyGuS problem over boolean expressions with the specification ϕ =
x ⊕ f , where ⊕ denotes the XOR operation and f is the function symbol to synthesize from the
following tree grammar (we use infix operators for readability):

S → (A⊕B) A→ ¬B | x B → (S ⊕ A) | y

The grammar generates boolean functions of variables x and y and the updates to EA, EB , and
ES during each iteration of the proposed algorithm are given in Table 5.2. The next step in the
algorithm is to determine if any of the three expressions ES := {x⊕ y,¬y⊕ y,¬y⊕¬x} make the
formula ϕ{e/f} valid, which is not the case.
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5.5 Bit-Vectors
In this section, we show that the SyGuS problem for the theory of bit-vectors is undecidable even
when we restrict the problem to tree grammars. The proof makes use of the fact that we can
construct (bit-)strings with the concatenation operation and can compare arbitrarily large strings
with the equality operation. This enables encoding the problem of determining if the languages of
CFGs with no ε-transitions have non-empty intersection, which is undecidable [31].

Theorem 14. The SyGuS problem for the theory of bit-vectors is undecidable for both the class of
context-free grammars and the class of BV-compatible tree grammars.

Proof. We start with the proof for the class of context-free grammars. Given two context-free
grammars G1 = (N1, S1, T1, R1) and G2 = (N1, S2, T2, R2), we define a SyGuS problem with a
single context-free grammar G = (N,S, T,R) that has a solution iff the intersection of G1 and
G2 is not empty. The proof idea is to express the intersection of the two grammars as the equality
between two expressions, each generated by one of the grammars. The new grammar thus starts
with the following production rule: S → S1 = S2.

We then have to translate the grammars G1 and G2 into grammars G′1 and G′2 that produce
expressions in the bit vector theory instead of arbitrary strings over their alphabets. There is a string
produced by both G1 and G2 if and only if the constructed grammars G′1 and G′2 can produce a pair
of equal expressions. We achieve this by encoding each letter as a bit string of the fixed length
1 + log2 |T1 ∪ T2|, and by intercalating concatenation operators (@) in the production rules: We
encode each production rule (N,P ) with P = p1p2 . . . pn as (N,P ′) with P ′ = p′1@p′2@ . . .@p′n,
where p′i = pi if pi ∈ N , and otherwise p′i are the fixed-length encodings of the terminal symbols.
We then define N = S ∪̇N ′1 ∪̇N ′2, T = {0, 1,@,=}, and R = R′1 ∪ R′2 ∪ {(S, S ′1 = S ′2)}. The
correctness constraint ϕ of our SyGuS problem then only states ϕ := ¬f , where f : B is the function
symbol, a constant, to synthesize. As each character in the alphabets of the context-free grammars
was encoded using bit vectors of the same length, the comparison of bit vectors is equivalent to the
comparison between strings of characters of the grammars G1 and G2 and the SyGuS problem has
a solution if and only if the intersection of the languages of the context-free grammars G1 and G2 is
empty.

Note that the context-free grammar G can also be interpreted as a BV -compatible tree grammar,
where BV is the theory of bit-vectors. Although it is efficiently decidable whether two tree
grammars produce a common tree, the expressions produced by the tree-interpretation of G1 and
G2 will be equivalent as long as their leaves are equivalent. Thus, the equality of the expression
trees in the interpretation of the bit vector theory still coincides with the intersection of the given
context-free grammars G1 and G2.

We only used the concatenation operation of the bit-vector theory for the proof. That is, SyGuS
is even undecidable for fragments of the theory of bit-vectors for which basic decision problems are
easier than the general class; for example, the theory of fixed-sized bit-vectors with extraction and
composition [21] for which satisfiability of conjunctions of atomic constraints is polynomial-time
solvable unlike the general case which is NP-hard.



CHAPTER 5. DECIDABILITY OF SYGUS THEORIES 62

Remark 1. This proof only relies on the comparison of arbitrarily large values in the underlying
logical theory. It may thus be possible to extend the proof to other theories involving numbers,
such as LIA, LRA, and difference logic. The problem here is that these proofs tend to depend on
syntactical sugar. Consider the case of LIA. If the signature allows us to use arbitrary integer
constants, such as 42, it is simple to translate the proof above into a proof of undecidability of
SyGuS for LIA and CFGs. For the standard signature of LIA, however, which just includes the
integer constants 0 and 1 (larger integers can then be expressed as the repeated addition of the
constant 1) the proof scheme above does not apply.

5.6 Other Background Theories
In this section, we remark on the decidability for some other classes of SyGuS problems. These
results are straightforward, but the classes occur in practice, and so the results are worth mentioning.

Linear real arithmetic (LRA) with arbitrary affine expressions.

Consider the family of SyGuS problems where:
i) the specification ϕ is a Boolean combination of linear constraints over real-valued variables
~x := x1, x2, . . . , xn and applications of the function f to be synthesized. For simplicity, we
assume a single function f of arity n; the arguments below generalize.

ii) The grammar G is the one generating arbitrary affine expressions over ~x to replace for
applications of f . Thus, the application f(~t), where ~t := t1, t2, . . . , tn is a vector of LRA
terms, is replaced by an expression of the form a0 +

∑n
i=1 aiti.

Thus, for a fixed set of variables ~x there is a fixed grammar for all formulas ϕ.
This case commonly arises in invariant synthesis when the invariant is hypothesized to be an

affine constraint over terms in a program. In this case, the solution of the SyGuS problem reduces
to solving the ∃∀ SMT problem

∃a0, a1, . . . , an .∀x1x2 . . . xn .
(
ϕ[f(~t)/a0 +

n∑
i=1

aiti]
)

which reduces to a formula with first-order quantification over real variables. Since the theory
of linear real arithmetic admits quantifier elimination, the problem is solvable using any of a
number of quantifier elimination techniques, including classic methods such as Fourier-Motzkin
elimination [22] and the method of Ferrante and Rackhoff [27], as well as more recent methods for
solving exists-forall SMT problems (e.g., [26]).

This decidability result continues to hold for grammars that generate bounded-depth conditional
affine expressions. However, the case of unbounded-depth conditional affine expressions is still
open, to our knowledge.

A similar reduction, for the case of affine expressions, can be performed for linear arithmetic
over the integers (LIA), requiring quantifier elimination for Presburger arithmetic. Thus, this case is
also decidable.
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Finite-precision bit-vector arithmetic (BV) with arbitrary bit-vector functions.

Consider the family of SyGuS problems where:
i) the specification ϕ is an arbitrary formula in the quantifier-free theory of finite-precision

bit-vector arithmetic [9] over a collection of k bit-vector variables whose cumulative bit-width
is w. Let f be a bit-vector function to be synthesized with output bit-width m.

ii) The grammar G is the one generating arbitrary bit-vector expressions over these k variables,
using all the operators defined in the theory. In other words, G imposes no major syntactic
restriction on the form of the bit-vector function f .

Thus, for a fixed set of bit-vector variables there is a fixed grammar for all formulas ϕ.
This class of SyGuS problems has been studied as the synthesis of “bitvector programs” (in

applications such as code optimization and program deobfuscation) from components (bit-vector
operators and constants) [34]. It is easy to see that this class is decidable. A simplistic (but
inefficient) way to solve it is to enumerate all 2m2w possible semantically-distinct bitvector functions
over the k variables and check, via an SMT query, whether each, when substituted for f will make
the resulting formula valid.

5.7 Discussion
The main results of this section are summarized in Table 5.1. We conclude with a few remarks
about the results, connections between them, and their relevance in theory and practice.

Consider the theory of finite-precision bit-vector arithmetic (BV). We have seen that the SyGuS
problem is undecidable when an arbitrary context-free grammar can be used to restrict the space
of bit-vector functions to be synthesized (see Section 5.5). However, it is not hard to see that the
SyGuS problem is decidable when the logical formula is an arbitrary BV formula and the grammar
allows the function to be replaced by any bit-vector function over the constants in the formula.These
results may seem to contradict the intuition that restricting the search space for synthesis with a
grammar makes the problem easier to solve. We thus have to be careful which classes of grammars
we pick to restrict SyGuS problems.

Practical approaches to SyGuS often restrict the grammar to admit only a finite number of
expressions, e.g., by describing the expression with a finite number of bounded, discrete parame-
ters [53], by restricting the number of times each syntactic element may be used [34] or by bounding
the size of the expressions [57]. In this case the SyGuS problem is trivially decidable as long as the
underlying SMT theory is decidable. With the connection to regular tree automata in Section 5.3
and the general algorithm for finite-domain theories in Section 5.4, we present the first non-trivial,
decidable SyGuS problems.

For future work, it would be interesting to study the linear integer and real arithmetic background
theories in more detail. In particular, we would like to determine if these theories are decidable
when grammars are provided, and whether the use of conditionals without bounding expression
tree depth affects the decidability. Further, for SyGuS classes that are decidable, it would be useful
to perform a more fine-grained characterization of problem complexity, especially with regard to
special classes of grammars.
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Chapter 6

SyGuS with Costs

One of the most successful methods for SyGuS solving uses enumeration [4, 1]. An enumerative
SyGuS solver enumerates all of the possible programs given by the grammar until it obtains
one which satisfies the specification. New candidates are checked against counterexamples from
previous calls to the verification oracle to save unnecessary work: if a candidate fails on an existing
counterexample, we can immediately discard it.

A primary factor in the efficiency, and quality of output, of enumerative learning is the number
of calls to the verification oracle required, which is in part determined by the order in which the
enumeration algorithm explores the program space.

The ordering usually considered is program length, roughly the number of tokens in the program
itself. Hence if synthesis succeeds, we obtain a correct program of minimal length [3, 56].

This can be described via a cost metric on programs v; the learning algorithm guarantees that,
for any programs P1, P2, if v(P1) < v(P2) then program P1 is enumerated before program P2. This
in turn guarantees that when we find a program P which satisfies the specification, it is a minimal
such program with respect to v.

The aim of this chapter is to provide an efficient method for enumerative learning with respect
to other complexity metrics, which may be more suitable measures of program quality than the
length. For example, perhaps some atomic operations are more costly than others, or operations
compose in ways which are not represented by program length.

Our contributions
We employ the “k-best parsing” algorithm of [15] in the context of enumerative learning. We recall
that this is a dynamic programming based algorithm for finding the k best derivations of a regular
tree grammar (RTG) with “superior” cost functions. This generalises an algorithm of Knuth [39] for
finding the shortest derivation.

We observe that this algorithm in fact applies to a wider class of cost functions called “weakly
superior” [46]. This includes important cost functions which are not superior, such as the minimum
and constant functions. In more detail, we obtain the following theorem; a weakly superior RTG is
a RTG whose associated cost functions are all weakly superior.
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Theorem 15. Let G be a weakly superior regular tree grammar with M productions, N nonter-
minals and maximum production arity R. Then we can obtain a data structure, from which the k
shortest derivations from G may be obtained in linear time, in time Õ(M + kNR).

Related work
Hu and D’Antoni [32] consider the task of synthesising programs with quantitative objectives
using the formalism of weighted grammars. Their approach, QSyGuS, reduces solving SyGuS
with quantitative constraints over a weighted grammar to solving (standard) SyGuS over a related
unweighted grammar. Minimising a quantitative objective is achieved by repeatedly strengthening
constraints until the problem becomes infeasible. The cost functions supported by QSyGuS are those
which can be expressed by weighted grammars; in particular the cost of a derivation is the product
of the costs of the productions it contains. We believe that our set of supported cost functions is
incomparable to this.

Bornholt et al. [12] devise a general framework for optimal synthesis called metasketches.
A metasketch is an ordered set of sketches (programs with holes [52]) with an associated cost
function and ‘gradient function’. The gradient function, on input a cost bound c, outputs a set of
sketches S such that every program of cost at most c can be obtained from a sketch in S. The
framework supports generic cost functions subject to some finiteness constraint, although the precise
implementation of the gradient function is not discussed, and the cost functions used in the examples
are supported by our algorithm.

6.1 Preliminaries

Grammars and Derivation Trees
Recall the definition of regular tree grammars given in the background section of this thesis, where
a grammar G is a tuple (N,S,Σ, R) defined over a ranked alphabet Σ.

For a grammar G with nonterminal Y , let L(Y ) be the set of all trees derivable from Y in G.
Let L(G) :=

⋃
Y ∈N(G) L(Y ). For a production P , let n(P ) be the nonterminal that appears on the

left-hand side of P . Let G(Y ) := {P ∈ G : n(P ) = Y } be the set of productions from Y in G.
Throughout, we will use M to denote |G|, N to denote |N(G)|, R to denote the maximum size of a
production and L to denote the total length of all productions (in symbols).

A derivation tree T a tree produced by the grammar G that is labelled with the productions used
in its production. We will denote by r(T ) the production which labels the root. We will denote
by P (T1, . . . , Tt) the tree whose root is labelled with P and where the children of the root are the
subtrees T1, . . . , Tt.

Cost Orders
A pre-order (sometimes called a quasi-order) on S is a binary relation� on S×S with the following
properties:
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1. (reflexivity) ∀s ∈ S, s � s
2. (transitivity) ∀u, v, w ∈ S, if u � v and v � w, then u � w
A pre-order is total (sometimes called linear) if for any s and t in S, it holds that s � t or t � s.

Note that there could be distinct s and t in S such that s � t and t � s (we write this as s ≈ t).
We define a cost-order on terms as any total pre-order on the set T (Σ) ∪ {∞} for a ranked

alphabet Σ. The element∞ has the property that for all t ∈ T (Σ), it holds that t � ∞.
A cost-order is called monotone if for all t1, . . . , tr and t′i in T (Σ) and all functions g ∈ Σ, it

holds that if ti � t′i then g(t1, . . . , ti, . . . , tr) � g(t1, . . . , t
′
i, . . . , tr). Intuitively this means that

increasing the cost of a subterm can only make the whole term cost more.
A cost-order is called non-decreasing if for all t1, . . . , tr in T (Σ) and all functions g ∈ Σ it

holds that g(t1, . . . , tr) � ti for all i. Intuitively this means that a term can never cost less than its
subterms.

A cost-order that is both monotone and non-decreasing is called superior. The enumeration of
terms according to superior cost-orders was studied in [15].

In our work, we replace the non-decreasing requirement with the more general weakly non-
decreasing requirement. A cost-order is weakly non-decreasing if t1, . . . , tr in T (Σ) and all
functions g ∈ Σ, whenever g(t1, . . . , ti, . . . , tr) � ti it then follows that g(t1, . . . , ti, . . . , tr) ≈
g(t1, . . . ,∞, . . . , tr). In other words, terms can have smaller cost than their subterms as long as
replacing that subterm with∞ does not change the cost.

Cost Functions
The original work by Knuth did not discuss orders on grammars. Instead, it focused on functions
from terms to the real numbers. While less general than the cost-orders defined above, it can be
intuitive to consider costs as the output of functions on terms.

Knuth specifically considered the setR∗ defined as the non-negative real numbers with a special
∞ symbol, but any cost D with corresponding total pre-order will work. Each function symbol f
can be assigned a cost-function cf defined on elements in D. For each term t = f(t1, . . . , tr) the
cost c(t) is defined recursively by c(f(t1, . . . , tr)) = cf (c(t1), . . . , c(tr)).

For example, to represent term-depth using cost-functions, each constant a is given cost ca = 1,
and each function f is given cost cf (X1, . . . , Xr) = max{X1, . . . , Xr}+ 1. The cost of f(a, g(a))
would then be cf (ca, cg(ca))) = cf (1,max{1}+ 1) = max{1, 2}+ 1 = 3.

We define a cost-function cf to be weakly superior if it is monotone nondecreasing and
for all xi ∈ D, j ∈ [r], whenever cf (x1, . . . , xr) < xj it follows that cf (x1, . . . , xr) equals
cf (x1, . . . , xj−1,∞, xj+1, . . . , xr).

From these we get the following easy remark.

Remark 2. For any set D with total pre-order ≤ and cost functions for each symbol in Σ, let � be
the order defined by t � s iff c(t) ≤ c(s) for s, t ∈ T (Σ). Then � is weakly superior iff each cost
function cf for each f ∈ Σ is weakly superior.
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Knuth’s Algorithm
Knuth [39] gives an algorithm for finding a shortest derivation function for a superior RTG; Rama-
lingam and Reps [46] extend the result to weakly superior RTGs. The approach is a generalisation
of the shortest path algorithm of Dijkstra.

Theorem 16 ([39, 46]). There is an algorithm Knuth that computes a shortest derivation function
for a weakly superior RTG G in time O(M logN + L).

Note that the shortest derivation function is in general not unique. The function τ output by
Knuth’s algorithm has some special properties which do not necessarily follow from the fact that τ
is a shortest derivation function. In particular, if we consider τ as a directed graph whose vertices
are N(G) and where (X, Y ) is an edge if τ(X) has Y on its right hand side, this graph is a DAG. It
hence induces a topological ordering on N(G), which is a property we will rely upon later.

We will assume that Knuth’s algorithm, on input G, deterministically computes some mapping
τ ; in subsequent sections, we will use τ to refer to this mapping in particular. We will write
T ∗Y := Tτ,Y . Note that because the graph of τ is a DAG, T ∗Y is finite.

6.2 Enumeration Algorithm
We present a dynamic programming algorithm for enumerating the k shortest derivations in a weakly
superior RTG.

Theorem 17. Given a weakly superior RTG G, Algorithm 10 runs in time O((M + kNR) log(M +
kNR)) and outputs a data structure from which the k shortest derivations from any nonterminal
can be obtained in time linear in their size.

We say that a set S of derivations from Y is complete if for all derivations T, T ′ from Y with
v(T ) < v(T ′), if T ′ ∈ S then T ∈ S. Note that a complete set of size j contains ‘the j shortest
productions’ with respect to v, for some choice of tiebreaking rule. Let F (Y, [j]) := {F (Y, i) : i ≤
j}. The correctness of the algorithm is implied by the following lemma.

Lemma 11. At the end of iteration (j, Y ), F (Y, [j]) is complete, and F (Y, j) = ⊥ if and only if
|L(Y )| < j.

Proof. We prove this by induction. For the base case, note that F (Y, 1) = T
(1)
Y for all Y . Then

suppose that for all X, i such that either i < j or i = j and X < Y , F (X, [i]) is complete, and
F (X, [i]) = ⊥ if and only if |L(X)| < i, at the end of iteration (i,X). By the structure of the
algorithm, this happens before iteration (j, Y ).

In particular, F (Y, [j − 1]) is complete; if ⊥ ∈ F (Y, [j − 1]) then |L(Y )| < j − 1 and we’re
done, so suppose otherwise. Then F (Y, [j]) does not satisfy the lemma only if for some derivation
T /∈ F (Y, {1, . . . , j−1}) from Y , T ′ is added in iteration (j, Y ) with v(T ′) > v(T ) or no derivation
is added at all. This implies, in both cases, that T /∈ HY at the end of iteration (j, Y ).

Let T = P (T1, . . . , Ts). We will find some T ′′ with v(T ′′) ≤ v(T ) but T ′′ ∈ HY \F (Y, [j− 1]),
which is a contradiction because either the algorithm chose T ′ or emptied HY . First, for any
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Input :A RTG G and bound k ∈ N.
Output :A data structure representing the k shortest derivations from every nonterminal in

G.
τ ← Knuth(G)
compute topological ordering < of N(G) according to τ
for Y ∈ N(G) ordered by < do

set F (Y, 1)← T
(1)
Y

initialize empty min-heap HY

for P ∈ G(Y ) do
HY .push(P (T

(1)
Z1
, . . . , T

(1)
Zt

))
for j = 2, . . . , k do

for Y ∈ N(G) ordered by < do
T = P (T1, . . . , Tt)← F (Y, j − 1)
for ` = 1, . . . , t do

let i` be such that T` = F (Z`, i`)
if F (Z`, i` + 1) 6= ⊥ then

T ′` ← F (Z`, i` + 1)
HY .push(P (T1, . . . , T`−1, T

′
`, T`+1, . . .))

repeat
T ′ ← HY .pop()

until T ′ /∈ F (Y, ∗) or HY is empty
if T ′ /∈ F (Y, ∗) then

F (Y, j)← T ′

return F
Algorithm 10: Algorithm for enumerating the k shortest derivations in a weakly superior RTG.

T` /∈ F (Z`, [j0]), we replace T` with F (Z`, j0) 6= ⊥; note that this cannot increase v(T ) because
F (Z`, [j0]) is complete, nor can it place T in F (Y, [j − 1]). If this places T in HY , we are done.

Note now that for all `, T` = F (Z`, i`) for some i` ≤ j0. We now iterate the following procedure:
while T /∈ HY , find the least ` such that P (T1, . . . , T`−1, F (Z`, i`−1), T`+1, . . . , Ts) /∈ F (Y, [j−1]),
and set i` ← i`−1. When T /∈ HY , such an ` is guaranteed to exist by the structure of the algorithm.
This procedure does not place T into F (Y, [j − 1]), and by monotonicity, it cannot increase v(T ).
Since P (T

(1)
Zs
, . . . , T

(1)
Zs

) ∈ F (Y, [j − 1]), the procedure must terminate with T ∈ HY . This proves
the lemma.

Hence at the end of the algorithm, for all nonterminals Y , F (Y, k) is complete and contains
max(k, |L(Y )|) distinct derivations; this establishes correctness. For the time bound, we assume
that heap operations take logarithmic time and that trees can be compared for equality in constant
time. The number of heap operations is at most

2
(
|G|+ k

∑
Y ∈N(G)

max
P∈G(Y )

|P |
)

= O(M + kNR) ,
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from which the time bound follows.

6.3 Discussion
In this section we present a few notes about the optimality and usefulness of our algorithm.

Weakly Superior Cost Functions
The algorithm presented here requires that the cost-orders be weakly superior. We first consider two
relaxations of this requirement. These discussions already apply to the easier problem of finding a
(single) shortest derivation.
Non-monotone superior cost functions If we place no restriction on cost functions, the problem

of finding a shortest derivation becomes NP-complete. Indeed, fix the grammar X →
f(X1, . . . , Xn), Xi → 0|1. For a given SAT formula φ, we set the cost function f(b1, . . . , bn)
to be φ(b1, . . . , bn) + 1 (with f(b1, . . . , bn) =∞ for b /∈ {0, 1}), and assign bit b cost b. Then
the shortest derivation has value 1 if φ is satisfiable, and 0 otherwise. Note that this is a
‘non-monotone superior’ cost function, in that f(b1, . . . , bn) ≥ max(b1, . . . , bn).

Monotone non-superior cost functions If the only restriction on our cost functions is that they
are monotone, note that a special case of the problem of finding a shortest derivation from
a RTG is finding the shortest path in a graph with negative edge weights. The best known
algorithm for this problem is Bellman-Ford, which runs in time Θ(|V | · |E|); considering the
graph as a RTG, this is Θ(MN). Hence if we were able to remove the superiority condition
without affecting the running time of our algorithm, we would be able to find shortest paths
faster than Bellman-Ford (k and R are both constant in this case). There is some evidence
that this is impossible. [36]

We now give some evidence that weakly superior cost functions are sufficiently expressive for
many applications, by showing that some natural cost functions and RTGs are weakly superior.
Program size The total number of function symbols (including constants) in a term.
Program depth The depth of a term when viewed as a tree (e.g., depth of a is 0, depth of g(g(a), c)

is 2).
Positive linear functions Any cost function of the form

∑
i ciXi + d for ci, d ∈ R∗ is superior.

Non-decreasing polynomial functions Let p be an n-variate polynomial with all coefficients
greater than 1. Then p(max(X1, 1), . . . ,max(Xn, 1)) is superior.

Degree of polynomials A simple grammar representing n-variate polynomials is V → x1 | · · · |
xn | c, F → V + V | V · V . The cost function can then represent the total degree of the
polynomial: productions V → xi have cost 1, V → c (for c in the ring of coefficients) has
cost 0, + has cost max(v1, v2) and · has cost v1 + v2. This is easily seen to be a superior RTG.

Round up to nearest multiple of constant Univariate functions of the form c(bX/cc+ 1), which
rounds X up to the nearest multiple of some constant c. Can be used, for example, in counting
memory usage when memory can only be allocated in increments of 8-bit bytes. So storing
10 bits would require the allocation of 16 bits (2 bytes) of memory.
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Round up to nearest power of constant Univariate functions of the form clogc(X)+1, which rounds
X up to the nearest power of some constant c. Can be used, for example, in tracking memory
usage in C++ vectors, which double memory allocation whenever an array is filled [55].

Finite resources Univariate functions which return X if X ≤ t and∞ otherwise. Can be used to
represent cases when there is a fixed number t of a given resource that can be used.

Constant Functions Any cost function that returns the same value regardless of input is weakly
superior.

Minimum The function min(X1, . . . , Xn) is weakly superior.
Median The function med(X1, . . . , Xn), which outputs the median of {X1, . . . , Xn} is weakly

superior.

Lexicographic Ordering
Weakly superior functions are closed under composition [46]. This means that for any weakly
superior n-ary functions g1, ..., gk and weakly superior k-ary function f , the following function h is
weakly superior:

h(X1, . . . , Xn) = f(g1(X1, . . . , Xn), . . . , gk(X1, . . . , Xn))

Under normal assumptions, the lexicographic product does not actually conserve superiority
and the pointwise product does not conserve totality (the pointwise product of two total functions
might not be total).

Counter-example to lexicographic ordering.
Let f1(x) = dxe and f2(y) = y. Let f1,2(x, y) = (f1(x), f2(y)) (the normal lexicographic

function application). By the lexicographic ordering, (1/2, 1) > (1/3, 2). However, applying the
functions yields f1,2(1/2, 1) = (1, 1) which is less than f1,2(1/3, 2) = (1, 2). So giving a bigger
input yields a smaller output, violating the monotone property.

The problem is that f1(1/2) equals f1(1/3), so while the input points have (1/2, 1) > (1/3, 2),
when the map is applied, the first value is equal, so the second is considered.

If we instead assume that the functions are monotonically increasing, we get conservation under
lexicographic order.

The proof pointwise product does not conserve totality is easy. We could have functions to the
natural numbers in both orders, but then (1, 2) is incomparable to (2, 1).

6.4 Handling Let-Expressions
Syntax-Guided Synthesis allows for the use of ‘let-expressions’ of the form (let[z1 = e1, z2 =
e2, ..., zr = er]er+1), where each zi is a variable and each ei is an expression (term) made from
nonterminals, variables, and alphabet symbols. Consider, for example, the following grammar:
S → (let[z1 = U, z2 = z1 + z1]z2 + 1 U → 0|1|U + U

Here, S yields a set of expressions that representing any odd number. Specifically, it yields
one plus the sum of identical expressions from U . The let-expression is necessary to guarantee the
expressions in the sum are identical.
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Some languages specified using let-expressions, such as the one above, are not regular. We can
convert any such grammar G into a regular tree grammar Gnolet with no let-expressions such that
there is a bijection between the languages produced be each grammar. This bijection matches each
term with another of the same cost. Thus enumerating the minimal-cost terms in the new grammar
is sufficient to enumerate the minimal-cost terms in the original grammar.

To construct Gnolet from G, first add all nonterminals, terminals, function symbols, and let-free
productions from G. Let e′ be any let-expression and let A → e′ be a production in G. Let
[A1, A2, ..., Al] be the list of nonterminals appearing in e′ (with duplicates). A new production
A→ fe′(A1, . . . , Al) is added to Gnolet along with the new function symbol fe′ . For expressions
a1, . . . , al produced from non-terminals A1, . . . , Al, respectively, the cost of fe(a1, . . . , ak) equals
the cost of e′[A1 ← a1, . . . , Al ← al].

The above example would yield the grammar with productions S → fe′(U) and U → 0 |
1|U + U . Using expression size as the original cost, the cost function for fe′ would be cfe′ (x) =
c+(c+(x, x), c1) = 2 · x+ 3.

6.5 SyGuS with Big-O Complexity
Arguably the most common costs that are considered when writing programs are their runtime and
space complexity. These costs are usually written in big-O notation as a function of the input sizes.
In this chapter, we will show how to account for common complexities, such as runtime and space,
when written in big-O notation.

Rather than show how to enumerate terms by increasing complexity, this chapter shows how to
modify a given SyGuS grammar so that it only produces terms less than a given complexity. For
example, this process could yield a grammar that only creates programs with runtime complexity
n · log(n) or less. This new grammar could then be passed to a SyGuS solver. If the solver finds a
satisfying program, that program would be guaranteed to have runtime less than n · log(n). This
process can be applied to any cost-order with a “low number of costs”, such as finding all programs
with depth less than 5.

Cost-Orders with Big-O
One simple cost-ordering we might consider would be based on the big-O notation of the cost, and
would treat all polylog costs as being the same. These would be considered along with constants
and polynomials. So, the set of costs over a variable n might be:

n0 < polylog(n) < n1 < polylog(n) · n1 < n2 < . . .

Here n would be the size of the input to a function. Polylog refers to any function that is made
from logarithm applications and polynomials of those results (e.g., log(n), log2(n), log2(log(n))).

One of the reasons we consider polylog as a single cost, rather than treating each polylogarithmic
function separately, is the log(n) function. This function might appear, for example, as the cost
of popping an element off a heap. It is difficult because creates infinitely decreasing chains (i.e.,
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log(n) > log(log(n)) > log(log(log(n))) > . . . ). This means there might not be a smallest cost
term from a grammar . The use of polylog circumvents this by avoiding the infinite chain, since
polylog(polylog(n)) = polylog(n).

If a function has two inputs of size n and m, we’d get a more complicated ordering.

m0n0 < m0polylog(n) < m0n1 < m0n2 < . . .

polylog(m)n0 < polylog(m)polylog(n) < polylog(m)n1 < polylog(m)n2 < . . .

m1n0 < m1polylog(n) < m1n1 < m1n2 < . . .

Here, m0n1 might be incomparable to m1n0 but both would be less than m1n1.
If we have multiple inputs, but have some guess as to the relationship in size between these

inputs, we can collapse the costs down into a single total linear order again. For example, if we
believe that m ≈ n2, then the cost m2n1 would be about (n2)2n1 = n5.

This technique would be applied to the input-markers to the SyGuS function. For example,
consider this grammar:

S → ITE(C, S, S) | x | y | 0 | 1 | S + S

C → S ≤ S | ¬S | S ∧ S
The input-markers here are x and y, meaning the grammar might produce the function f(x, y) =

ITE(x ≤ y, x, y). Say the cost of this f(x, y) were m2n1, where n and m were the sizes of x
and y respectively. If we thought m ≈ n2 then the cost of f(x, y) (i.e., m2n1) would be about
(n2)2n1 = n5.

In order to properly track the runtime of a function, we need to track the output sizes of
subfunctions. Take for example the following grammar with start symbol List:

List→ sort(List) | makeList(Elt) | x

Elt→ makeElt(List) | pop(List)
The function f(x) := sort(makeList(pop(x))) could come from the above grammar. This

function takes the first element of a list, treats it as a list itself, and sorts it. So f([1, 2, 3]) would
yield the list [1]. The runtime for sort() would be polylog(X) ·X , where X is size of the input to
sort(). However, in the function f , sort is always given a list of constant size. It does not make
sense to calculate the runtime of this function as a function of the size of the input x.

The solution is to track the size of the output for each subterm, as well as the runtime up to
that point. So for each term s, the cost of s would be a pair (size(s), time(s)). The runtime for
sort(s) would be the runtime for calculating s plus the runtime for running sort on the output of s,
or time(s) + polylog(size(s)) · size(s) = max{time(s), polylog(size(s)) · size(s)} (for big-O
notation, addition is equivalent to max). The output size of sort(s) would be the same as the output
size for s, which is size(s) (sorting lists does not change their size). The output for pop(s) would
be (const, const).

Applying this reasoning to the term f(x) = sort(makeList(pop(x))) would yield the costs
size(f(x)) = const and time(f(x)) = const.



CHAPTER 6. SYGUS WITH COSTS 73

Modifying the SyGuS Grammars
Most of the big-O costs that we care about in practice are fairly small (e.g., n2 or nlog(n)) and there
are very few costs less than them according to the order described (there are only 4 costs less than
n2). We can take advantage of this to expand a given SyGuS grammar to account for big-O cost.

More specifically, given a tree grammar where all the functions have big-O cost as described
above, we can create a new tree grammar (called the cost-grammar) such that the only programs
that can be generated by the grammar have runtime or space usage less than a given cost (called
the target cost). I’ll use runtime as an example here, but everything also applies to space (or to
minimizing over both runtime and space).

For example, consider this grammar over lists:

List→ sort(List) | append(List, Int) | [ ] | x
Int→ pop(List) | Int+ Int | 0 | 1

Each function has the most natural cost associated with it as a function of its input. For example:

size(append(X, Y )) := size(X)

time(append(X, Y )) := const

Say we want to search for possible programs that are at most linear in size(x) (define n :=
size(x)). We can create a new grammar where nonterminals are labelled based on the size of their
output. So the nonterminal List[n] would produce all programs yielded from List above which
have output size less than or equal to O(n). Performing the actual conversion is not very difficult.
Just assemble all possible nonterminal-cost pairs less than the target cost and check which functions
map to what size outputs.

Applying this conversion to the above grammar yields:

List[const]→ sort(List[const]) | append(List[const], Int[const]) | [ ]

List[n]→ append(List[n]) | List[const] | x
Int[const]→ pop(List[n]) | Int[const] + Int[const] | 0 | 1

In this grammar, note that sort is allowed on the outputs of List[const], since sorting a constant-
size list takes constant time. It is not allowed on outputs of List[n] since that would take time
n · polylog(n), which is greater than target-cost.

The nonterminals, List[polylog(n)], Int[polylog(n)] and Int[n] are not included, since they
yield equivalent programs to one of the above nonterminals. E.g., Int[n] would yield the same set
of programs as Int[const], since all integer-yielding programs yield outputs of size const.

Notice that we only need to track the output size from each nonterminal, not the runtime (or
space usage). This is because runtime and space are both non-decreasing. If a subprogram (i.e.,
subterm) takes time, say, n2, then the larger program must also take time at least n2. So it is enough
to construct the cost-grammar so that every program that is generated from any nonterminal has
runtime (or space) less than the target cost.
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Chapter 7

Conclusion and Future Work

This thesis has presented several results related to program synthesis and exact active learning. We
have described the first algorithms for learning equational theories. We’ve shown how modular
programming can be used to learn the cross-products of concept spaces. Decidability results for
SyGuS have been described. And finally, we’ve demonstrated a new way to run SyGuS with respect
to costs. Each of these results raises open questions and new directions.

Part one, which focuses on concept learning, raises many new questions on which concept
classes to learn and new techniques for learning. Having presented the first work on learning
equational theories, there remain many classes of equational theories for which active learning
algorithms can be developed. Non-collapsing shallow theories only allow variables at depth one,
but different restrictions on the placement of variables in equations may lead to more interesting
classes of learnable equational theories. There is also a very close connection between equational
theories and EUF, and learning algorithms for equational theories might be adapted to learning EUF
specifications. The work on modular learning answered questions on learning cross-products for
some small sets of queries, but there are many more combinations of query-sets for which learning
reductions are undecidable. There are also many more ways besides cross-products to combine
concepts, which might be studied.

Part two raises new questions on SyGus decidability and ways to account for program costs. It
remains open whether SyGuS is decidable modulo linear integer arithmetic and linear real arithmetic.
We presented an enumeration algorithm for SyGuS programs according to weakly superior cost
orders. However, the state-of-the-art for SyGuS solvers involves additional techniques in order
to use enumeration as a synthesis tool. Future work will account for these techniques. We will
also understand more about what programs can be synthesized with respect to big-O notation.
The thesis used lists as an example, but it might be possible to synthesize programs from a more
robust programming language that can describe general data structures and types. This new way of
representing costs could yield significant improvements to the creation of more efficient programs.

Finally, as neural networks play a more important role in our world, there is much exciting work
to be done on modeling them for explanations and verification. It is my belief that techniques from
program synthesis, particularly OGIS, can be used to model neural network behavior as programs,
making them safer and more understandable.
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