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� Introduction

Estimating high-dimensional distributions from true samples is a long-standing challenge problem
in machine learning and statistics. Such a distribution estimate requires a model to capture
interdependencies between a collection of variables, such as the dimensions of a random vector.
Access to a parametric distribution estimate enables almost magical e�ects when applied to real-
world data. When the distributions describe images, these applications include unconditional image
generation e.g. synthesizing in�nite arti�cial data, image generation conditioned on some known
properties, photo editing, enhancements such as superresolution or inpainting, domain translation
and more. Deep generative models also drive progress in other data modalities including speech
synthesis, music generation and natural language generation.

Much of the research in deep generative models focuses on the estimation of an unconditional
parametric distribution p� (x), measuring progress by task-independent sample quality and like-
lihood metrics. Still, the appeal of generative modeling lies in the �exibility of the prior p� to
transfer to downstream tasks, where we usually have access to some conditioning information like
a class label � or corrupted observation x̃. In these settings, it is crucial to be able to access desired
conditional distributions with low computational cost, such as p� (x|x̃). General-purpose inference
algorithms can sample from the desired conditionals in some cases given only the prior, but we
would ideally like a family of generative models that readily exposes controllable generation knobs
and gives the practitioner �exibility to adapt to various downstream tasks cheaply.

Our overall goal in this work is to show how generative image models can be made more �exible
and adaptable, �rst by removing architectural limitations, then by easing data requirements
for estimation via prior knowledge. First, in Chapter �, we propose a variant of the PixelCNN
autoregressive model architecture that supports image completion applications with arbitrary
conditional distributions over data dimensions. Our modi�ed architecture, the Locally Masked
PixelCNN, allows parameter sharing across an ensemble that improves density estimation. Still,
autoregressive models are powerful density estimators, but su�er from poor sample quality at small
scale, are slow to sample, and are fairly in�exible for conditional generation tasks. In particular,
autoregressive models like PixelCNNs sample only one data dimension at a time, typically with a
full neural network forward pass that is wasteful.
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In Chapter �, we study di�usion probabilistic models, a family of generative models based on a
parametric Markov chain, and propose a variant called DDPM that achieves high sample quality.
We show that di�usion probabilistic models generalize autoregressive models but can sample
multiple data dimensions in parallel, giving them more �exibility. This allows DDPM to scale up
to high resolution images, with faster sampling than a corresponding autoregressive model. We
develop a network architecture that signi�cantly improves sample quality. We also show that
di�usion models are connected to the estimation of energy-based models via denoising score
matching, motivating a simpli�ed reweighted variational objective that achieves better results.
Finally, in Chapter �, we explore a challenging application of image synthesis: the novel view

synthesis problem. In novel view synthesis, our goal is to interpolate sparse views of a scene
from new camera poses. Given sparsely sampled observed views, existing approaches based on
neural radiance �elds estimate the parameters of a neural network that encodes a speci�c scene’s
geometry and appearance. Then, volumetric rendering is used to generate novel views. In our
work, we propose an auxiliary loss in feature space that allows prior knowledge from large image
encoders to be transferred to the view synthesis problem. This gives neural radiance �elds the
ability to extrapolate to unseen regions—an important capability for generative models. Using the
auxiliary loss to constrain the scene representation also improves the quality of view synthesis
with as few as � to � observed images. Transferring prior knowledge from self-supervised models
or classi�ers is a promising approach to improve the data e�ciency, �exibility and controllability
of generative models.
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� Locally Masked Convolution for
Autoregressive Models

Work by Ajay Jain, Pieter Abbeel, and Deepak Pathak

High-dimensional generative models have many applications including image com-
pression, multimedia generation, anomaly detection and data completion. State-
of-the-art estimators for natural images are autoregressive, decomposing the joint
distribution over pixels into a product of conditionals parameterized by a deep neural
network, e.g. a convolutional neural network such as the PixelCNN. However, PixelC-
NNs only model a single decomposition of the joint, and only a single generation order
is e�cient. For tasks such as image completion, these models are unable to use much
of the observed context. To generate data in arbitrary orders, we introduce LMC���:
a simple modi�cation to the standard �D convolution that allows arbitrary masks to
be applied to the weights at each location in the image. Using LMC���, we learn an
ensemble of distribution estimators that share parameters but di�er in generation
order, achieving improved performance on whole-image density estimation (�.�� bpd
on unconditional CIFAR��), as well as globally coherent image completions. Our code
is available at https://ajayjain.github.io/lmconv.

�.� Introduction

Learning generative models of high-dimensional data such as images is a holy grail of machine
learning with pervasive applications. Signi�cant progress on this problem would naturally lead to a
wide range of applications, including multimedia generation, compression, probabilistic time series
forecasting, representation learning, and missing data completion. Many generative modeling
frameworks have been proposed. Current state-of-the-art models for high-dimensional image
data include (a) autoregressive models [�, ��], (b) normalizing �ow density estimators [���], (c)
generative adversarial networks (GANs) [��], (d) latent variable models such as the VAE [��,

��
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Figure �.�: The ideal autoregressive joint distribution decomposition and sampling order are task-
dependent. We learn to generate images under multiple orderings with the same
parameters via locally masked convolutions (top), enabling global coherence for image
completion (bottom).

���] and (e) energy-based models e.g. [��, ��, ��, ���]. While GANs, VAEs and EBMs have had
great success in high-dimensional image generation, exact likelihoods are generally intractable.
Likelihood estimation is key for many practical applications from uncertainty estimation, robust-
ness, reliability and safety perspectives. In contrast, autoregressive and �ow models estimate
exact likelihoods and can be used for uncertainty estimation, though still have room for improved
generation quality. In this work, our focus is on autoregressive models.
Given n variables, one can generate n! autoregressive decompositions of the joint likelihood,

each corresponding to a forward sampling order, and more if we assume conditional independence.
Early autoregressive texture synthesis [��, ���] work could support multiple orders. However,
recent CNN-based autoregressive models for images [��, ��, ���] capture only one of these orders
(typically left-to-right raster scan, Fig. �.�) for practical computational e�ciency. Training and
testing with a single order will not support all scenarios. Consider the image completion task in
�rst row of Figure �.�. If the top half of the image is missing, a raster scan generation order from
left-to-right and top-to-bottom does not allow the model to condition on the context given in the
observed bottom half of the image as the required conditionals are not estimated by the model.
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In this work, we propose a scalable, yet simple modi�cation to convolutional autoregressive
models to estimate more accurate likelihoods with a minor change in computation during training.
Our goal is to support arbitrary orders in a scalable manner, allowing more precise likelihoods
by averaging over several graphical models corresponding to orders (a form of Bayesian model
averaging). Some past works have supported arbitrary orders in autoregressive models by learn-
ing separate parameters for each model [��], or by masking the input image to hide successor
variables [��]. A more e�cient approach is to estimate densities in parallel across dimensions
by masking network weights [��] di�erently for each order. However, all these methods are still
computationally ine�cient and di�cult to scale beyond fully-connected networks to convolutional
architectures.
In this work, we perform order-agnostic distribution estimation for natural images with state-

of-the-art convolutional architectures. We propose to support arbitrary orderings by introducing
masking at the level of features, rather than on inputs or weights. We show how an autoregressive
CNN can support and learn multiple orders, with a single set of weights, via locally masked
convolutions that e�ciently apply location-speci�c masks to patches of each feature map. These
local convolutions can be e�ciently implemented purely via matrix multiplication by incorporating
masking at the level of the im�col and col�im separation of convolution [��].
Arbitrary orders allow us to customize the traversal based on the needs of the task, which we

evaluate in experiments. For instance, consider the examples shown in Fig. �.�. The �exibility
allows us to select the sampling order that exposes the maximum possible context for image
completion, choose orderings that eliminate blind-spots (unobservable pixels) in image generation,
and ensemble across multiple orderings using the same network weights. Note that such a model
is able to support these image completions without training on any inpainting masks.
In experiments, we show that our approach can be e�ciently implemented and is �exible

without sacri�cing the overall distribution estimation performance. By introducing order-agnostic
training via LMC���, we signi�cantly outperform PixelCNN++ on the unconditional CIFAR��
dataset, achieving code lengths of �.�� bits per dimension. We show that the model can generalize
to some novel orders. Finally, we signi�cantly outperform raster-scan baselines on conditional
likelihoods relevant to image completion by customizing the generation order.

�.� Background

Deep autoregressive models estimate high-dimensional data distributions using samples from the
joint distribution over D-dimensions pdata(x�, . . . , xD ). In this setting, we wish to approximate
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Figure �.�: The three pixel generation orders and corresponding local masks that we consider in
this work.

the joint with a parametric model p� (x�, . . . , xD ) by minimizing KL-divergence DKL(pdata | |p� ), or
equivalently by maximizing the log-likelihood of the samples. As a general modeling principle, we
can divide high-dimensional variables into many low-dimensional parts such as single dimensions,
and capture dependencies between dimensions with a directed graphical model. Following the
notation of [��], these autoregressive (AR) models represent the joint distribution as a product of
conditionals,

p� (x) = p� (x�, . . . , xD )

= p� (x� (�))
D÷
i=�

p�
�
x� (i) | Pa(x� (i))

�
(�.�)

where � : [D] ! [D] is a permutation de�ning an order over the dimensions, Pa(x� (i)) =
x� (�), . . . , x� (i��) de�nes the parents of x� (i) in the graphical model, and � is a parameter vector.
As any joint can be decomposed in this manner according to the product rule, this factorization
provides the foundation for many models including ours. The primary challenge in autoregressive
models is de�ning a su�ciently expressive family for the conditionals where parameter estimation
is e�cient. Deep autoregressive models parameterize the conditionals with a neural network that
is provided the context Pa(x� (i)).
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θ, π1

(a) Graphical model for suffix completion 
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θ, π2

(b) Graphical model for prefix completion (c) Locally masked convolutions

Figure �.�: (a) A graphical model where the �nal, unobserved variables x�, x� can be e�ciently
completed via forward sampling conditioned on the observed variables x�, x�. (b) When
x� is observed, we sample x�, x�, and x� in the second graphical model using the same
parameters. (c) LMC��� de�nes the model with masks at each �lter location.

Decomposition (�.�) converts the joint modeling problem into a sequence modeling problem.
Forward (ancestral) sampling draws root variable x� (�) �rst, then samples the remaining dimensions
in order x� (�), . . . , x� (D) from their respective conditionals. Given a particular autoregressive
decomposition of the joint, forward sampling supports a single data generation order. The joint
model density for an observed variable can be computed exactly by evaluating each conditional,
allowing density estimation and maximum likelihood parameter estimation,

L(� ) = Ex⇠pdata
D’
i=�

logp�
�
x� (i) | x� (�), . . . , x� (i��)

�

�
⇤ = arg� maxL(� ) (�.�)

With some choices of network architecture, the conditionals can be computed in parallel by
masking weights [��, ��]. In the PixelCNN model family, masked convolutions are causal: the
features output by a masked convolution can only depend on features earlier in the order.
While the choice of order is arbitrary, temporal and sequential data modalities have a natural

ordering from the �rst dimension in the sequence to the last. For spatial data such as images,
a natural ordering is not clear. For computational reasons, a raster scan order is generally used
where the top left pixel is modeled unconditionally and generation proceeds in row-major fashion
across each row from left to right, depicted in Figure �.�, second column.

�.� Image Completion with Maximum Receptive Field

For estimating the distribution of �D images, a raster scan ordering is perhaps as good of an order
as any other choice. That said, the raster scan order has necessitated architectural innovations to
allow the neural network to access information far back in the sequence such as two-dimensional
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PixelRNNs [��], two-stream shift-based convolutional architectures [��], and self-attention com-
bined with convolution [��]. These structures signi�cantly improve test-set likelihoods and sample
quality, but marry network architectures to the raster scan order.
Fixing a particular order is limiting for missing data completion tasks. Letting � (i) = i denote

the raster scan order, PixelRNN and PixelCNN architectures can complete only the bottom part of
the image via forward sampling: given observations x�, . . . , xd , raster scan autoregressive models
sequentially sample,

x̂i ⇠ p� (xi | x�, . . . , xd , x̂d+�, . . . , x̂i��). (�.�)

If all dimensions other than xi are observed, ideally we would sample x̂i using maximum condi-
tioning context,

x̂i ⇠ p� (xi | x<i , x>i ). (�.�)

Unfortunately, the raster scanmodel only predicts distributions of the formp� (xi | x<i ), and ignores
observations x>i during completion. In the worst case, a model with a raster scan generation order
cannot observe any of the context for an inpainting task where the top half of the image is unknown
(Figure �.�, PixelCNN++). This leads to image completions that do not respect global structure.
Small numbers of dimensions could be sampled by computing the posterior, e.g. for i = �,

p� (x̂� | x>�) =
p� (x̂�, x>�)Õ
x 0� p� (x 0�, x>�)

, (�.�)

but this is expensive as each summand requires neural network evaluation, and becomes intractable
when several dimensions are unknown. Instead of approximating the posterior, we estimate
parameters � that achieve high likelihood with multiple autoregressive decompositions,

LOA(� ) = Ex⇠pdataE�⇠p� logp� (x�, . . . , xD ;� )
�
⇤ = arg� maxLOA(� ) (�.�)

with p� denoting a uniform distribution over several orderings. The joint distribution under �
factorizes according to (�.�). The resulting conditionals are all parameterized by the same neural
network. By choosing order prior p� that supports a � such that � (D) = i , we can use the network
with such an ordering to query (�.�) directly.

During optimization with stochastic gradient descent, we make single-sample estimates of the
inner expectation in (�.�) according to order-agnostic training [��, ���]. A single order is used
within each batch.
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For a test-time task where {xi : i 2 Tobs} are observed, we select a � that the model was trained
with such that

{� (�), . . . , � (|Tobs |)} = Tobs,

i.e. the �rst |Tobs | dimensions in the generation order are the observed dimensions, then sample
according to the rest of the order so that the model posterior over each unknown dimension is
conditioned either on observed or previously sampled dimensions.

�.� Local Masking

In this section, we develop locally masked convolutions (LMC���): a modi�cation to the standard
convolution operator that allows control over generation order and parallel computation of
conditionals for evaluating likelihood. In the �rst convolutional layer of a neural network, Cout

�lters of size k ⇥ k are applied to the input image with spatial invariance: the same parameters
are used at all locations in a sliding window. Each �lter has k� ⇤ Cin parameters. For images
with discretized intensities, convolutional autoregressive networks transform a spatial H ⇥W ,
multi-channel image into a tensor of log-probabilities that de�ne the conditional distributions
of (�.�). These log-probabilities take the form of an H ⇥W image, with channel count equal
to the number of color channels times the number of bins per color channel. The output log-
probabilities at coordinate i, j in the output de�ne the distribution p� (xi , j | Pa(p(xi , j )). Critically,
this distribution must not depend on observations of successors in the Bayesian network, or the
product of conditionals will not de�ne a valid distribution due to cyclicity.

NADE [��] circumvents the problem by masking the input image, though requires independent
forward passes to compute each factor of the autoregressive decomposition (�.�). Instead, the
PixelCNN model family controls information �ow through the network by setting certain weights
of the convolution �lters to zero, similar to how MADE [��] masks the weight matrices in fully-
connected layers. We depict masked convolutions for the �rst convolutional layer in Figure �.�. As
a single mask is applied to the Cin ⇥ k ⇥ k parameter tensor de�ning each convolutional �lter, the
same masking pattern is in e�ect applied at all locations in the image. The architectural constraint
that the masking pattern is shared limits the possible orders supported by the PixelCNN model
family, and leads to blind spots which the output distribution is unable to condition upon.

In practice, convolutions are implemented through general matrix multiplication (GEMM) due
to widely available, heavily optimized and parallelized implementations of the operation on GPU
and CPU. To use matrix multiplication, the input to a layer is rearranged in memory via the im�col
algorithm, which extracts Cin ⇥ k ⇥ k patches from the Cin ⇥ H ⇥W input at each location that a
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Figure �.�: A comparison of standard weight masked convolutions and the proposed locally masked
convolution.

convolutional �lter will be applied. Assuming padding and a stride of � is used, the rearrangement
yields matrix X with Cin ⇤ k� rows and H ⇤W columns. To perform convolution, the framework
left-multiplies weight matrix W, storing Y =WX , adds a bias, and �nally rearranges Y into a
spatial format via the col�im algorithm.
We exploit this data rearrangement to arbitrarily mask the input to the convolutional �lter at

each location it is applied. The inputs to the convolution at each location, i.e. the input patches,
form columns of X . For a given generation order, we construct mask matrix M of the same
dimensions as X and set X = M � X prior to matrix multiplication. In particular, our locally
masked convolution masks patches of the input to each layer, rather than masking weights and
rather than masking the initial input to the network. LMC��� combines the �exibility of NADE
and the parallelizability of MADE and PixelCNN. The LMC��� algorithm is summarized in
Algorithm �, and mask construction is detailed in Algorithm �.

We implement two versions of the layer with the PyTorch machine learning framework [���].
The �rst is an implementation that uses autodi�erentiation to compute gradients. As only the
forward pass is de�ned by the user, the implementation is under �� lines of Python.
However, reverse-mode autodi�erentiation incurs signi�cant memory overheads during back-

propagation as the output of nearly every operation during the forward pass must be stored until
gradient computation [��, ��]. Data rearrangement with im�col is memory intensive as features
patches overlap and are duplicated. We implement a custom, memory e�cient backward pass that
only stores the input, the mask and the output of the layer during the forward pass and recomputes
the im�col operation during the backward pass. Recomputing the im�col operation achieves �.�⇥
memory savings at a �.�⇥ slowdown.
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Algorithm � LMC���: Locally masked �D convolution
�: Input: image x , weightsW, bias b, generation order � . x is B ⇥Cin ⇥ H ⇥W dimensional andW is

Cout ⇥Cin ⇤ k� ⇤ k� dimensional
�: Create mask matrixM with Algorithm �
�: Extract patches: X = im2col(pad(x),k�,k�)
�: Mask patches: X =M � X
�: Perform convolution via batch MM: Y =WX + b
�: Assemble patches: � = col2im(Y )
�: return �

Algorithm � Create input mask matrix
�: Input: Generation order � (·), constants Cin,k�,k�, dilation d , is this the �rst layer?
�: Start with an empty set of generated coordinates
�: InitializeM as k� ⇤ k� ⇥ H ⇤W zero matrix
�: for i from � to H ⇤W do
�: Let (r , c) be coordinates of dimension � (i)
�: for o�sets �r ,�c in k� ⇥ k� kernel do
�: if (r + d�r , c + d�c ) has been generated then
�: Allow output location (r , c) to access features at (r + d�r , c + d�c ) in previous layer: set

Mk��r+�c ,Wr+c = �
�: end if
��: end for
��: Add (r , c) to generated coordinates
��: end for
��: if not the �rst layer then
��: Allow previous layer features to be observed at all locations: set center row b k�⇤k�� c ofM to �
��: end if
��: Repeat rows ofM, Cin times
��: return binary mask matrixM

Using locally masked convolutions, we can experiment with many di�erent image generation
orders. In this work, we consider three classes of orderings: raster scan, implemented in baseline
PixelCNNs, an S-curve order that traverses rows in alternating directions, and a Hilbert space-
�lling curve order that generates nearby pixels in the image consecutively. Alternate orderings
provide several bene�ts. Nearby pixels in an image are highly correlated. By generating these
pixels close in a Hilbert curve order, we might expect information to propagate from the most
important, nearby observations for each dimension and reduce the vanishing gradient problem.
If the image is considered a graph with nodes for each pixel and edges connecting adjacent

pixels, a convolutional autoregressive model using an order de�ned by a Hamiltonian path over
the image graph will also su�er no blind spot in a D layer network. To see this, note that the
features corresponding to dimension x� (i) in the Hamiltonian path order will always be able to
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observe the previous layer’s features corresponding to x� (i��). After at least D layers of depth,
the features for x� (i) will incorporate information from all i � � previous dimensions. In practice,
information propagates with fewer required layers in these architectures as multiple neighbors are
observed in each layer. Finally, we select multiple orderings at inference and average the resulting
joint distributions to compute better likelihood estimates.

�.� Architecture

We use a network architecture similar to PixelCNN++ [���], the best-in-class density estimator
in the fully convolutional autoregressive PixelCNN model family. Convolution operations are
masked according to Algorithm �. While our locally masked convolutions can bene�t from
self-attention mechanisms used in later work, we choose a fully convolutional architecture for
simplicity and to study the bene�t of local masking in isolation of other architectural innovations.
Wemake three modi�cations to the PixelCNN++ architecture that simplify it and allow for arbitrary
generation orders. Gated PixelCNN uses a two-stream architecture composed of two network
stacks with b k� c ⇥ � and b k� c ⇥ k convolutions to enforce the raster scan order. In the horizontal
stream, Gated PixelCNN applies non-square convolutions and feature map shifts or pads to extract
information within the same row, to the left of the current dimension. In the vertical stream, Gated
PixelCNN extracts information from above. Skip connections between streams allow information to
propagate. PixelCNN++ uses a similar architecture based on a U-Net [���] with approximately ��M
parameters. We replace the two streams with a simple, single stream with the same depth, using
LMC��� to maintain the autoregressive property. Masks for these convolutions are computed
and cached at the beginning of training. Due to the regularizing e�ect of order-agnostic training,
we do not use dropout.

Second, we use dilated convolutions [���] at regular intervals in the model rather than down-
sampling the feature map. Downsampling precludes many orders, as the operation aggregates
information from contiguous squares of pixels together without a mask. Dilated convolutions
expand the receptive �eld without limiting the order, as local masks can be customized to hide or
reveal speci�c features accessed by the �lter.
Finally, we normalize the feature map across the channel dimension by applying positional

normalization [��]. Normalization allows masks to have varying numbers of ones at each spatial
location by rescaling features to the same scale.
As in PixelCNN++, our model represents each conditional with a mixture of �� discretized

logistic distributions that imposes a distribution over binned pixel intensities. For the binarized
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Table �.�: Average negative log likelihood of binarized and grayscale MNIST digits under baselines
and our model. Lower is better.

BINARIZED MNIST, ��x�� NLL (nats)
DARN (Intractable) [��] ⇡��.��
NADE [���] ��.��
EoNADE �hl (��� orders) [���] ��.��
EoNADE-� �hl (��� orders) [���] ��.��
MADE �hl (�� orders) [��] ��.��
PixelCNN [��] ��.��
PixelRNN [��] ��.��
Ours, S-curve (� order) ��.��
Ours, S-curve (� orders) ��.��

GRAYSCALE MNIST, ��x�� NLL (bpd)
Spatial PixelCNN [�] �.��
PixelCNN++ (� stream) �.��
Ours, S-curve (� order) �.��
Ours, S-curve (� orders) �.��

MNIST dataset [���], we instead use a softmax over two logits. We train with � variants of an
S-curve (zig-zag) order that traverses each row of the image in alternating directions so that
consecutively generated pixels are adjacent, and so that locally masked CNNs with su�cient depth
can achieve the maximum allowed receptive �eld.

Across all quantitative experiments, we use a model with approximately ��M parameters, trained
with the Adam optimizer with a learning rate of � ⇤ ���� decayed by a factor of � � � ⇤ ���� per
iteration with clipped gradients. For CelebA-HQ qualitative results, we increase �lter count and
train a model with ���M parameters. More details are provided in the appendix.

�.� Experiments

To evaluate the bene�ts of our approach, we study three scienti�c questions: (�) do locally masked
autoregressive ensembles estimate more accurate likelihoods on image datasets than single-order
models? (�) can the model generalize to novel orders? and (�) how important is order selection for
image completion?
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Table �.�: Average negative log likelihood of CIFAR�� images under our model. Lower is better.

CIFAR��, ��x�� NLL (bpd)

Uniform Distribution �.��
Multivariate Gaussian [��] �.��
A�ention-based
Image Transformer [���] �.��
PixelSNAIL [��] �.��
Sparse Transformer [��] �.��
Convolutional
PixelCNN (� stream) [��] �.��
Gated PixelCNN (� stream) [��] �.��
PixelCNN++ (� stream) �.��
PixelCNN++ (� stream) [���] �.��
Ours, S-curve (� stream, � order) �.��
Ours, S-curve (� stream, � orders) �.��

We estimate the distribution of three image datasets: ��⇥�� grayscale and binary [���] MNIST
digits, ��⇥�� �-bit color CIFAR�� natural images, and high-resolution CelebA-HQ �-bit color face
photographs [��]. Unlike classi�cation, density estimation remains challenging on these datasets.
We train the CelebA-HQ models at ���⇥��� resolution to compare with prior density estimation
work, and at a bilinearly downsampled ��⇥�� resolution.

Our locally masked model achieves better likelihoods than PixelCNN++ by using multiple
generation orders. We then show that the model can generalize to generation orders that it has not
been trained with. Finally, for image completion, we achieve the best results over strong baselines
by using orders that expose all observed pixels.

�.�.� Whole-image Density Estimation

Tractable generative models are generally evaluated via the average negative log likelihood (NLL)
of test data. For interpretability, many papers normalize base � NLL by the number of dimensions.
By normalizing, we can measure bits per dimension (bpd), or a lower-bound for the expected
number of bits needed per pixel to losslessly compress images using a Hu�man code with p(x)
estimated by our model. Better estimates of the distribution should result in higher compression
rates. Tables �.� and �.� show likelihoods for our model and prior models.
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Table �.�: Average conditional negative log likelihood for Top, Left and Bottom half image com-
pletion.

BINARIZED MNIST ��x�� (nats) T L B

Ours (adversarial order) ��.�� ��.�� ��.��
Ours (� max context order) ��.�� ��.�� ��.��
Ours (� max context orders) ��.�� ��.�� ��.��

CIFAR�� ��x�� (bpd) T L B

PixelCNN++, � stream �.�� �.�� �.��
PixelCNN++, � stream �.�� �.�� �.��
Ours (� stream, adversarial order) �.�� �.�� �.��
Ours (� stream, � max context order) �.�� �.�� �.��
Ours (� stream, � max context orders) �.�� �.�� �.��

On binarized MNIST (Table �.�), our locally masked PixelCNN achieves signi�cantly higher
likelihoods (lower NLL) than baselines, including neural autoregressive models NADE, EoNADE,
and MADE that average across large numbers of orderings. This is due to architectural advantages
of our CNN and increased model capacity. Our model also outperforms the standard PixelCNN,
which su�ers from a blind spot problem due to sharing the same mask at all locations. Likelihood
is further improved by using ensemble averaging across � orders that share parameters. These
results are also observed on grayscale MNIST where each pixel has one of ��� intensity levels.
On CIFAR��, we achieve �.�� bpd test set likelihood when averaging the joint probability of �

graphical models, each de�ned by an S-curve generation order. Our results outperform the state-of-
the-art convolutional autoregressive model, PixelCNN++. We signi�cantly outperform a � stream
architectural variant of PixelCNN++ that has the same number of parameters as our model and
uses a similar architecture, di�ering only in that it uses a single raster scan order. By introducing
order-agnostic ensemble averaging to convolutional autoregressive models, we combined the
best of fully-connected density estimators that average over orders, and the inductive biases of
CNNs. These results could further improve with self-attention mechanisms and additional capacity,
which have been observed to improve the performance of singe-order estimation, marking an
opportunity for future research.

Our model is also scalable to high resolution distribution estimation. On the CelebA-HQ ���x���
dataset at �-bit color depth, our model achieves �.�� bpd with a single S-curve order, outperforming
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Figure �.�: CIFAR�� image completions using our locally-masked convolutions with a specialized
ordering.

Glow [��], an exact likelihood normalizing �ow. In comparison, the state-of-the-art model, SPN
[��], achieves �.�� bpd by using self-attention and a specialized architecture for high resolutions.

�.�.� Generalization to Novel Orders

Ideally, an order-agnostic model would be able to generate images in orders that it has not been
trained with. To understand generalization to novel orders, we evaluate the test-set likelihood of a
CIFAR�� model that achieves �.�� bpd with a single S-curve order and �.�� bpd with � S-curve
orders under a raster scan decomposition. The model achieves �.�� bpd with � raster scan order
(��% increase) and �.�� bpd with � raster scan orders (��% increase). While the novel order degrades
compression rate, the model was trained with � �xed orders of the same S-curve type, which are
fairly di�erent from a raster scan.

To study generalization to more similar orders, we trained a model on Binarized MNIST with �
S-curves for ��� epochs. On the test set, the model has �.��� bpd using each train order. Testing
with the held out (�th) S-curve, the model achieves �.��� bpd, only �% higher.
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Figure �.�: Completions of �� ⇥ �� px CelebA-HQ images at �-bit color depth. Up to � samples are
shown to the right of each half-obscured face provided to the model. Missing pixels are
generated along an S-curve that �rst traverses the observed region. Additional samples
and ground truth completions are provided in the appendix.

�.�.� Image Completion

To quantitatively assess whether control over generation order improves image completions, we
measure the average conditional negative log likelihood of hidden regions of held-out test images
on the MNIST and CIFAR�� datasets, measured in bits per dimension. We compute the NLL of the
top half, left half, and bottom half of the image conditioned on the remainder of the image. The
hidden region is set to zero in the model input, as well as hidden via masks used in each model.

Table �.� shows average NLL on binary MNIST and CIFAR��. Top half inpainting is challenging
for PixelCNN baselines that use a raster scan order, as model conditional p� (xi |x<i ) does not
condition on observed pixels that lie below xi in the image. Similarly, our architecture under an
adversarial order, a single S-shaped curve from the top left to bottom left of the image, achieves
�.�� bpd on CIFAR in the T setting. In contrast, using the same parameters, when we decomposes
the joint favorably for maximum context with an S-curve generation order from the bottom left
to the top left of the image, we achieve �.�� bpd. Averaging over two maximum context orders
further improves log likelihood to �.�� bpd. A similar trend is observed for the other completion
tasks, L and B.

�.�.� �alitative Results

Figure �.� shows completions of MNIST and CelebA-HQ ��⇥�� images. PixelCNN++ produces
MNIST digits that are inconsistent with the observed context. With a poor choice of order, our
model only respects some attributes of the input image, but not overall facial structure. The model
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distributions over each missing pixel should condition on the entire observed region. This is
accomplished when the missing region is generated last via a maximum context order. With this
order, completions by our model are consistent with the given context.

Figures �.� and �.� show completions of held-out CIFAR�� ��⇥�� and CelebA-HQ ��⇥�� images
for four di�erent missing regions. The masked input to the model (Obs), our sampled completion
(Ours) and the ground truth image (GT) are shown. Missing image regions are generated in a
maximum context order. While samples have some artifacts such as blurring due to long sequence
lengths, images are globally coherent, with matching colors and object structure (CIFAR��) or
facial structure (CelebA-HQ). Across datasets and image masks, our model e�ectively uses available
context to generate coherent samples.

�.� Related Work

Autoregressive models are a popular choice to estimate the joint distribution of high-dimensional,
multivariate data in deep learning. [��] proposes logistic autoregressive Bayesian networks
where each conditional is learned through logistic regression, capturing �rst-order dependencies
between variables. While di�erent orders had similar performance, averaging densities from ��
di�erently ordered models achieved small improvements in likelihood. [�] extend this idea, using
arti�cial neural networks to capture conditionals with some parameter sharing. [��] propose the
neural autoregressive distribution estimator (NADE) for binary and discrete data, reducing the
complexity of density estimation from quadratic in the number of dimensions to linear. [���] extend
NADE to real-valued vectors (RNADE), expressing conditionals as mixture density networks. The
autoregressive approach is desirable due to the lack of conditional independence assumptions,
easy training via maximum likelihood, tractable density, and tractable, though sequential, forward
sampling directly from the conditionals.
These works all use a single, arbitrary order per estimated model. However, it is possible

to use the same parameters to de�ne a family of di�erently ordered autoregressive Bayesian
networks. [���] propose EoNADE, an ensemble of input-masked NADE models trained with
an order-agnostic training procedure that achieve higher likelihoods when averaged and allows
forward sampling of arbitrary regions. Each iteration, EoNADE chooses a random pre�x of an
ordering � (�), . . . , � (d), sample a training example x and maximize the likelihood of xd under their
model. ConvNADE [���] adapts EoNADE with a convolutional architecture and conditions the
model on the input mask de�ning the order. Still, NADE, EoNADE and ConvNADE are serial: only
a single conditional is trained at a time, and density estimation requires D passes. [��] propose
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an order-agnostic MADE that masks the weights of a fully connected autoencoder to estimate
densities with a single forward pass by computing conditionals in parallel. While MADE supports
multiple orders, it is limited by a fully-connected architecture. Our Locally Masked PixelCNN can
be seen as a generalization of MADE that supports convolutional inductive bias.
Other deep autoregressive models use recurrent, convolutional or self-attention architectures.

In language modeling, autoregressive recurrent neural networks (RNNs) predict a distribution over
the next token in a sequence conditioned on a recurrently updated representation of the previous
words [��]. [��] extend this idea to images, proposing a multi-dimensional, sequential PixelRNN for
image generation and discrete distribution estimation, and a parallelizable PixelCNN. Subsequent
works capture correlations between pixels in an image with convolutional architectures inspired by
the PixelCNN [��, ��, ���, ���], often improving the ability of the network to capture long-range
dependencies. The PixelCNN family can generate entire high-�delity images and, until recently,
achieved state-of-the-art test set likelihood among tractable, likelihood-based generative models.
PixelCNNs have also been used as a prior for latent variables [���], and can be sampled in parallel
using �xed-point methods [���, ���]. While convolutions process information locally in an image,
self-attention mechanisms have been used to gain global receptive �eld [��, ��, ���] for improved
statistical performance.
Normalizing �ows [���] are parametric density estimators that give exact expressions for

likelihood using the change-of-variables formula by transforming samples from a simple prior
with learned, invertible functions. If tractable densities are not required, other families are
possible. Implicit generative models such as GANs [��] have been applied to high resolution image
generation [��] and inpainting [���]. Nonparametric approaches have also been successful for
inpainting [�, ��, ��]. Partial convolutions [��] improve CNN inpainting quality by rescaling
�lter responses that access missing pixels, but are not causal unlike LMC���. Latent-variable
models like the VAE [��, ���] jointly learn a generative model for data x given latent z and an
approximation for the posterior over z. Other latent-variable models are based on Markov chains
[�, ��, ���].

�.� Conclusion

In this work, we proposed an e�cient, scalable and easy to implement approach for supporting
arbitrary autoregressive orderings within convolutional networks. To do so, we propose locally
masked convolutions that allow arbitrary orderings by masking features at each layer while si-
multaneously sharing �lter weights. This formulation can be e�ciently implemented purely via
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matrix multiplication. Our work is a synthesis of prior lines of inquiry in autoregressive models.
Locally Masked PixelCNNs support parallel estimation, convolutional inductive biases, and control
over order, all with one simple layer. Foundational work in this area each supported some of these,
but with incompatible architectures. As an additional bene�t, arbitrary orderings allow image
completion with diverse regions. We achieve globally coherent image completions by choosing a
favorable order at test time, without speci�cally training the model to inpaint.
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� Denoising Di�usion Probabilistic Models

Work by Jonathan Ho, Ajay Jain, and Pieter Abbeel

We present high quality image synthesis results using di�usion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between di�usion probabilistic
models and denoising score matching with Langevin dynamics, and our models
naturally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR�� dataset, we
obtain an Inception score of �.�� and a state-of-the-art FID score of �.��. On ���x���
LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is
available at https://github.com/hojonathanho/diffusion.

�.� Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, �ows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [�, ��, ��,
��, ��, ��, ��, ��, ��, ��, ��, ���, ���], and there have been remarkable advances in energy-based
modeling and score matching that have produced images comparable to those of GANs [��, ���].
This paper presents progress in di�usion probabilistic models [���]. A di�usion probabilistic

model (which we will call a “di�usion model” for brevity) is a parameterized Markov chain trained
using variational inference to produce samples matching the data after �nite time. Transitions of
this chain are learned to reverse a di�usion process, which is a Markov chain that gradually adds
noise to the data in the opposite direction of sampling until signal is destroyed. When the di�usion
consists of small amounts of Gaussian noise, it is su�cient to set the sampling chain transitions to
conditional Gaussians too, allowing for a particularly simple neural network parameterization.
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Figure �.�: Generated samples on CelebA-HQ ��� ⇥ ��� (left) and unconditional CIFAR�� (right)

Di�usion models are straightforward to de�ne and e�cient to train, but to the best of our
knowledge, there has been no demonstration that they are capable of generating high quality
samples. We show that di�usion models actually are capable of generating high quality samples,
sometimes better than the published results on other types of generative models (Section �.�). In
addition, we show that a certain parameterization of di�usion models reveals an equivalence with
denoising score matching over multiple noise levels during training and with annealed Langevin
dynamics during sampling (Section �.�.�) [���, ���]. We obtained our best sample quality results
using this parameterization (Section �.�.�), so we consider this equivalence to be one of our primary
contributions.
Despite their sample quality, our models do not have competitive log likelihoods compared to

other likelihood-based models (our models do, however, have log likelihoods better than the large
estimates annealed importance sampling has been reported to produce for energy based models
and score matching [��, ���]). We �nd that the majority of our models’ lossless codelengths
are consumed to describe imperceptible image details (Section �.�.�). We present a more re�ned
analysis of this phenomenon in the language of lossy compression, and we show that the sampling
procedure of di�usion models is a type of progressive decoding that resembles autoregressive
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Figure �.�: The directed graphical model considered in this work.

decoding along a bit ordering that vastly generalizes what is normally possible with autoregressive
models.

�.� Background

Di�usion models [���] are latent variable models of the form p� (x�) B
Ø
p� (x�:T )dx�:T , where

x�, . . . , xT are latents of the same dimensionality as the data x� ⇠ q(x�). The joint distribution
p� (x�:T ) is called the reverse process, and it is de�ned as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N(xT ; �, I):

p� (x�:T ) B p(xT )
T÷
t=�

p� (xt�� |xt ), p� (xt�� |xt ) B N(xt��; µ� (xt , t), �� (xt , t)) (�.�)

What distinguishes di�usion models from other types of latent variable models is that the approxi-
mate posterior q(x�:T |x�), called the forward process or di�usion process, is �xed to a Markov chain
that gradually adds Gaussian noise to the data according to a variance schedule ��, . . . , �T :

q(x�:T |x�) B
T÷
t=�

q(xt |xt��), q(xt |xt��) B N(xt ;
p
� � �txt��, �t I) (�.�)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� logp� (x�)]  Eq

� log p� (x�:T )

q(x�:T |x�)

�
= Eq


� logp(xT ) �

’
t ��

log
p� (xt�� |xt )
q(xt |xt��)

�
C L (�.�)

The forward process variances �t can be learned by reparameterization [��] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p� (xt�� |xt ), because both processes have the same functional form when
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�t are small [���]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation �t B � � �t and �̄t B

Œt
s=� �s , we have

q(xt |x�) = N(xt ;
p
�̄tx�, (� � �̄t )I) (�.�)

E�cient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (�.�) as:

Eq


DKL(q(xT |x�) k p(xT ))|                      {z                      }

LT

+
’
t>�

DKL(q(xt�� |xt , x�) k p� (xt�� |xt ))|                                     {z                                     }
Lt��

� logp� (x� |x�)|            {z            }
L�

�
(�.�)

(See Section �.� for details. The labels on the terms are used in Section �.�.) Equation (�.�) uses KL
divergence to directly compare p� (xt�� |xt ) against forward process posteriors, which are tractable
when conditioned on x�:

q(xt�� |xt , x�) = N(xt��; µ̃t (xt , x�), �̃t I), (�.�)

where µ̃t (xt , x�) B
p
�̄t���t
� � �̄t

x� +
p
�t (� � �̄t��)
� � �̄t

xt and �̃t B
� � �̄t��
� � �̄t

�t (�.�)

Consequently, all KL divergences in Eq. (�.�) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

�.� Di�usion models and denoising autoencoders

Di�usion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the
reverse process. To guide our choices, we establish a new explicit connection between di�usion
models and denoising score matching (Section �.�.�) that leads to a simpli�ed, weighted variational
bound objective for di�usion models (Section �.�.�). Ultimately, our model design is justi�ed by
simplicity and empirical results (Section �.�). Our discussion is categorized by the terms of Eq. (�.�).
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�.�.� Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead �x them to constants (see ?? for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

�.�.� Reverse process and L�:T��

Now we discuss our choices in p� (xt�� |xt ) = N(xt��; µ� (xt , t), �� (xt , t)) for � < t  T . First, we
set �� (xt , t) = �

�
t I to untrained time dependent constants. Experimentally, both �

�
t = �t and

�
�
t = �̃t =

���̄t��
���̄t �t had similar results. The �rst choice is optimal for x� ⇠ N(�, I), and the

second is optimal for x� deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [���].
Second, to represent the mean µ� (xt , t), we propose a speci�c parameterization motivated by

the following analysis of Lt . With p� (xt�� |xt ) = N(xt��; µ� (xt , t),� �
t I), we can write:

Lt�� = Eq


�
�� �

t
kµ̃t (xt , x�) � µ� (xt , t)k�

�
+C (�.�)

where C is a constant that does not depend on � . So, we see that the most straightforward
parameterization of µ� is a model that predicts µ̃t , the forward process posterior mean. However,
we can expand Eq. (�.�) further by reparameterizing Eq. (�.�) as xt (x�, �) =

p
�̄tx� +

p
� � �̄t� for

� ⇠ N(�, I) and applying the forward process posterior formula (�.�):

Lt�� �C = Ex�,�

�
�� �

t

����µ̃t
✓
xt (x�, �),

�p
�̄t

(xt (x�, �) �
p
� � �̄t�)

◆
� µ� (xt (x�, �), t)

����
��

(�.�)

= Ex�,�


�
�� �

t

���� �p
�t

✓
xt (x�, �) �

�tp
� � �̄t

�

◆
� µ� (xt (x�, �), t)

����
��

(�.��)

Equation (�.��) reveals that µ� must predict �p
�t

⇣
xt � �tp

���̄t
�
⌘
given xt . Since xt is available as

input to the model, we may choose the parameterization

µ� (xt , t) = µ̃t

✓
xt ,

�p
�̄t

(xt �
p
� � �̄t�� (xt ))

◆
=

�p
�t

✓
xt �

�tp
� � �̄t

�� (xt , t)
◆

(�.��)

where �� is a function approximator intended to predict � from xt . To sample xt�� ⇠ p� (xt�� |xt )
is to compute xt�� = �p

�t

⇣
xt � �tp

���̄t
�� (xt , t)

⌘
+ �t z, where z ⇠ N(�, I). The complete sampling
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Algorithm � Training
�: repeat
�: x� ⇠ q(x�)
�: t ⇠ Uniform({�, . . . ,T })
�: � ⇠ N(�, I)
�: Take gradient descent step on

r�
��� � �� (p�̄tx� + p� � �̄t�, t)���

�: until converged

Algorithm � Sampling

�: xT ⇠ N(�, I)
�: for t = T , . . . , � do
�: z ⇠ N(�, I) if t > �, else z = �
�: xt�� = �p

�t

⇣
xt � ���tp

���̄t
�� (xt , t)

⌘
+ �t z

�: end for
�: return x�

procedure, Algorithm �, resembles Langevin dynamics with �� as a learned gradient of the data
density. Furthermore, with the parameterization (�.��), Eq. (�.��) simpli�es to:

Ex�,�


�
�
t

�� �
t �t (� � �̄t )

��� � �� (p�̄tx� + p� � �̄t�, t)���
�

(�.��)

which resembles denoising score matching over multiple noise scales indexed by t [���]. As
Eq. (�.��) is equal to (one term of) the variational bound for the Langevin-like reverse process (�.��),
we see that optimizing an objective resembling denoising score matching is equivalent to using
variational inference to �t the �nite-time marginal of a sampling chain resembling Langevin
dynamics.
To summarize, we can train the reverse process mean function approximator µ� to predict µ̃t ,

or by modifying its parameterization, we can train it to predict � . (There is also the possibility of
predicting x�, but we found this to lead to worse sample quality early in our experiments.) We have
shown that the �-prediction parameterization both resembles Langevin dynamics and simpli�es
the di�usion model’s variational bound to an objective that resembles denoising score matching.
Nonetheless, it is just another parameterization of p� (xt�� |xt ), so we verify its e�ectiveness in
Section �.� in an ablation where we compare predicting � against predicting µ̃t .

�.�.� Data scaling, reverse process decoder, and L�

We assume that image data consists of integers in {�, �, . . . , ���} scaled linearly to [��, �]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting
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from the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the
reverse process to an independent discrete decoder derived from the GaussianN(x�; µ� (x�, �),� �

� I):

p� (x� |x�) =
D÷
i=�

π �+(x i� )

��(x i� )
N(x ; µi� (x�, �),�

�
� )dx

�+(x) =
8>><
>>:
1 if x = �

x + �
��� if x < �

��(x) =
8>><
>>:
�1 if x = ��
x � �

��� if x > ��

(�.��)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [��, ���], our choice here ensures
that the variational bound is a lossless codelength of discrete data, without need of adding noise
to the data or incorporating the Jacobian of the scaling operation into the log likelihood. At the
end of sampling, we display µ� (x�, �) noiselessly.

�.�.� Simplified training objective

With the reverse process and decoder de�ned above, the variational bound, consisting of terms
derived from Eqs. (�.��) and (�.��), is clearly di�erentiable with respect to � and is ready to
be employed for training. However, we found it bene�cial to sample quality (and simpler to
implement) to train on the following variant of the variational bound:

Lsimple(� ) B Et ,x�,�
⇥��� � �� (p�̄tx� + p� � �̄t�, t)���⇤ (�.��)

where t is uniform between � and T . The t = � case corresponds to L� with the integral in
the discrete decoder de�nition (�.��) approximated by the Gaussian probability density function
times the bin width, ignoring � �

� and edge e�ects. The t > � cases correspond to an unweighted
version of Eq. (�.��), analogous to the loss weighting used by the NCSN denoising score matching
model [���]. (LT does not appear because the forward process variances �t are �xed.) Algorithm �
displays the complete training procedure with this simpli�ed objective.
Since our simpli�ed objective (�.��) discards the weighting in Eq. (�.��), it is a weighted vari-

ational bound that emphasizes di�erent aspects of reconstruction compared to the standard
variational bound [��, ��]. In particular, our di�usion process setup in Section �.� causes the
simpli�ed objective to down-weight loss terms corresponding to small t . These terms train the
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Table �.�: CIFAR�� results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [��] �.�� ��.�
JEM [��] �.�� ��.�
BigGAN [�] �.�� ��.��
StyleGAN� + ADA (v�) [��] ��.�� �.��

Unconditional

Di�usion (original) [���]  �.��
Gated PixelCNN [��] �.�� ��.�� �.�� (�.��)
Sparse Transformer [��] �.��
PixelIQN [���] �.�� ��.��
EBM [��] �.�� ��.�
NCSNv� [���] ��.��
NCSN [���] �.��±�.�� ��.��
SNGAN [��] �.��±�.�� ��.�
SNGAN-DDLS [��] �.��±�.�� ��.��
StyleGAN� + ADA (v�) [��] �.�� ± �.�� �.��
Ours (L, �xed isotropic �) �.��±�.�� ��.��  �.�� (�.��)
Ours (Lsimple) �.��±�.�� �.��  �.�� (�.��)

Table �.�: Unconditional CIFAR�� reverse
process parameterization and
training objective ablation.
Blank entries were unstable
to train and generated poor
samples with out-of-range
scores.

Objective IS FID

µ̃ prediction (baseline)

L, learned diagonal � �.��±�.�� ��.��
L, �xed isotropic � �.��±�.�� ��.��
k µ̃ � µ̃� k� – –

� prediction (ours)

L, learned diagonal � – –
L, �xed isotropic � �.��±�.�� ��.��
k�̃ � �� k� (Lsimple) �.��±�.�� �.��

network to denoise data with very small amounts of noise, so it is bene�cial to down-weight them
so that the network can focus on more di�cult denoising tasks at larger t terms. We will see in
our experiments that this reweighting leads to better sample quality.

�.� Experiments

We set T = ���� for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [���, ���]. We set the forward process variances to
constants increasing linearly from �� = ���� to �T = �.��. These constants were chosen to
be small relative to data scaled to [��, �], ensuring that reverse and forward processes have
approximately the same functional form while keeping the signal-to-noise ratio at xT as small as
possible (LT = DKL(q(xT |x�) k N(�, I)) ⇡ ���� bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [���,
���] with group normalization throughout [���]. Parameters are shared across time, which is
speci�ed to the network using the Transformer sinusoidal position embedding [���]. We use
self-attention at the �� ⇥ �� feature map resolution [���, ���]. Details are in Section �.�.
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Figure �.�: LSUN Church samples. FID=�.�� Figure �.�: LSUN Bedroom samples. FID=�.��

�.�.� Sample quality

Table �.� shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths) on
CIFAR��. With our FID score of �.��, our unconditional model achieves better sample quality than
most models in the literature, including class conditional models. Our FID score is computed with
respect to the training set, as is standard practice; when we compute it with respect to the test set,
the score is �.��, which is still better than many of the training set FID scores in the literature.
We �nd that training our models on the true variational bound yields better codelengths than

training on the simpli�ed objective, as expected, but the latter yields the best sample quality. See
Fig. �.� for CIFAR�� and CelebA-HQ ��� ⇥ ��� samples, Fig. �.� and Fig. �.� for LSUN ��� ⇥ ���
samples [���], and Section �.� for more.

�.�.� Reverse process parameterization and training objective ablation

In Table �.�, we show the sample quality e�ects of reverse process parameterizations and training
objectives (Section �.�.�). We �nd that the baseline option of predicting µ̃ works well only when
trained on the true variational bound instead of unweighted mean squared error, a simpli�ed
objective akin to Eq. (�.��). We also see that learning reverse process variances (by incorporating
a parameterized diagonal �� (xt ) into the variational bound) leads to unstable training and poorer
sample quality compared to �xed variances. Predicting � , as we proposed, performs approximately
as well as predicting µ̃ when trained on the variational bound with �xed variances, but much
better when trained with our simpli�ed objective.
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Algorithm � Sending x�
�: Send xT ⇠ q(xT |x�) using p(xT )
�: for t = T � �, . . . , �, � do
�: Send xt ⇠ q(xt |xt+�, x�) using p� (xt |xt+�)
�: end for
�: Send x� using p� (x� |x�)

Algorithm � Receiving
�: Receive xT using p(xT )
�: for t = T � �, . . . , �, � do
�: Receive xt using p� (xt |xt+�)
�: end for
�: return x�

�.�.� Progressive coding

Table �.� also shows the codelengths of our CIFAR�� models. The gap between train and test is at
most �.�� bits per dimension, which is comparable to the gaps reported with other likelihood-based
models and indicates that our di�usion model is not over�tting (see Section �.� for nearest neighbor
visualizations). Still, while our lossless codelengths are better than the large estimates reported for
energy based models and score matching using annealed importance sampling [��], they are not
competitive with other types of likelihood-based generative models [��].

Since our samples are of high quality, we conclude that di�usion models have an inductive bias
that makes them excellent lossy compressors. Treating the variational bound terms L� + · · · + LT
as rate and L� as distortion, our CIFAR��model with the highest quality samples has a rate of �.��
bits/dim and a distortion of �.�� bits/dim, which amounts to a root mean squared error of �.�� on
a scale from � to ���. More than half of the lossless codelength describes imperceptible distortions.

Progressive lossy compression We can probe further into the rate-distortion behavior of our
model by introducing a progressive lossy code that mirrors the form of Eq. (�.�): see Algorithms �
and �, which assume access to a procedure, such as minimal random coding [��, ��], that can trans-
mit a sample x ⇠ q(x) using approximately DKL(q(x) k p(x)) bits on average for any distributions
p and q, for which only p is available to the receiver beforehand.

When applied to x� ⇠ q(x�), Algorithms � and � transmit xT , . . . , x� in sequence using a total
expected codelength equal to Eq. (�.�). The receiver, at any time t , has the partial information xt
fully available and can progressively estimate:

x� ⇡ x̂� =
⇣
xt �
p
� � �̄t�� (xt )

⌘
/
p
�̄t (�.��)

due to Eq. (�.�). (A stochastic reconstruction x� ⇠ p� (x� |xt ) is also valid, but we do not consider it
here because distortion is more di�cult to evaluate.) Figure �.� shows the resulting rate-distortion
plot on the CIFAR�� test set. At each time t , the distortion is calculated as the root mean squared
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Figure �.�: Unconditional CIFAR�� test set rate-distortion vs. time. Distortion is measured in root
mean squared error on a [�, ���] scale. See Table �.� for details.

Figure �.�: Unconditional CIFAR�� progressive generation (x̂� over time, from left to right). Ex-
tended samples and sample quality metrics over time in the appendix (Figs. �.� and �.�).

error
p
kx� � x̂�k�/D, and the rate is calculated as the cumulative number of bits received so far at

time t . The distortion decreases steeply in the low-rate region of the rate-distortion plot, indicating
that the majority of the bits are indeed allocated to imperceptible distortions.

Progressive generation We also run a progressive unconditional generation process given by
progressive decompression from random bits. In other words, we predict the result of the reverse
process, x̂�, while sampling from the reverse process using Algorithm �. Figures �.� and �.� show
the resulting sample quality of x̂� over the course of the reverse process. Large scale image features
appear �rst and details appear last. Figure �.� shows stochastic predictions x� ⇠ p� (x� |xt ) with xt
frozen for various t . When t is small, all but �ne details are preserved, and when t is large, only
large scale features are preserved. Perhaps these are hints of conceptual compression [��].

Connection to autoregressive decoding Note that the variational bound (�.�) can be rewrit-
ten as follows:

L = DKL(q(xT ) k p(xT )) + Eq
"’
t ��

DKL(q(xt�� |xt ) k p� (xt�� |xt ))
#
+ H (x�) (�.��)
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Figure �.�: When conditioned on the same latent, CelebA-HQ ��� ⇥ ��� samples share high-
level attributes. Bottom-right quadrants are xt , and other quadrants are samples from
p� (x� |xt ).

(See Section �.� for a derivation.) Now consider setting the di�usion process length T to the
dimensionality of the data, de�ning the forward process so that q(xt |x�) places all probability
mass on x� with the �rst t coordinates masked out (i.e. q(xt |xt��) masks out the t th coordinate),
setting p(xT ) to place all mass on a blank image, and, for the sake of argument, taking p� (xt�� |xt )
to be a fully expressive conditional distribution. With these choices, DKL(q(xT ) k p(xT )) = �, and
minimizing DKL(q(xt�� |xt ) k p� (xt�� |xt )) trains p� to copy coordinates t + �, . . . ,T unchanged
and to predict the t th coordinate given t + �, . . . ,T . Thus, training p� with this particular di�usion
is training an autoregressive model.

We can therefore interpret the Gaussian di�usion model (�.�) as a kind of autoregressive model
with a generalized bit ordering that cannot be expressed by reordering data coordinates. Prior
work has shown that such reorderings introduce inductive biases that have an impact on sample
quality [��], so we speculate that the Gaussian di�usion serves a similar purpose, perhaps to
greater e�ect since Gaussian noise might be more natural to add to images compared to masking
noise. Moreover, the Gaussian di�usion length is not restricted to equal the data dimension; for
instance, we use T = ����, which is less than the dimension of the �� ⇥ �� ⇥ � or ��� ⇥ ��� ⇥ �
images in our experiments. Gaussian di�usions can be made shorter for fast sampling or longer
for model expressiveness.

�.�.� Interpolation

We can interpolate source images x�, x0� ⇠ q(x�) in latent space using q as a stochastic encoder,
xt , x0t ⇠ q(xt |x�), then decoding the linearly interpolated latent x̄t = (� � �)x� + �x0� into image
space by the reverse process, x̄� ⇠ p(x� |x̄t ). In e�ect, we use the reverse process to remove artifacts
from linearly interpolating corrupted versions of the source images, as depicted in Fig. �.� (left).
We �xed the noise for di�erent values of � so xt and x0t remain the same. Fig. �.� (right) shows
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Figure �.�: Interpolations of CelebA-HQ ���x��� images with ��� timesteps of di�usion.

interpolations and reconstructions of original CelebA-HQ ��� ⇥ ��� images (t = ���). The reverse
process produces high-quality reconstructions, and plausible interpolations that smoothly vary
attributes such as pose, skin tone, hairstyle, expression and background, but not eyewear. Larger t
results in coarser and more varied interpolations, with novel samples at t = ���� (Fig. �.�).

�.� Related Work

While di�usion models might resemble �ows [��, ��, ��, ��, ��, ��, ���] and VAEs [��, ��, ���],
di�usionmodels are designed so thatq has no parameters and the top-level latent xT has nearly zero
mutual information with the data x�. Our �-prediction reverse process parameterization establishes
a connection between di�usion models and denoising score matching over multiple noise levels
with annealed Langevin dynamics for sampling [���, ���]. Di�usion models, however, admit
straightforward log likelihood evaluation, and the training procedure explicitly trains the Langevin
dynamics sampler using variational inference (see Section �.� for details). The connection also
has the reverse implication that a certain weighted form of denoising score matching is the same
as variational inference to train a Langevin-like sampler. Other methods for learning transition
operators of Markov chains include infusion training [�], variational walkback [��], generative
stochastic networks [�], and others [��, ��, ��, ���, ���, ���].

By the known connection between score matching and energy-based modeling, our work could
have implications for other recent work on energy-based models [��, ��, ��, ��, ��, ��, ���, ���,
���, ���]. Our rate-distortion curves are computed over time in one evaluation of the variational
bound, reminiscent of how rate-distortion curves can be computed over distortion penalties in
one run of annealed importance sampling [��]. Our progressive decoding argument can be seen
in convolutional DRAW and related models [��, ��] and may also lead to more general designs for
subscale orderings or sampling strategies for autoregressive models [��, ���].
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�.� Conclusion

We have presented high quality image samples using di�usion models, and we have found con-
nections among di�usion models and variational inference for training Markov chains, denoising
score matching and annealed Langevin dynamics (and energy-based models by extension), au-
toregressive models, and progressive lossy compression. Since di�usion models seem to have
excellent inductive biases for image data, we look forward to investigating their utility in other
data modalities and as components in other generative models and machine learning systems.

Broader Impact

Our work on di�usion models takes on a similar scope as existing work on other types of deep
generative models, such as e�orts to improve the sample quality of GANs, �ows, autoregressive
models, and so forth. Our paper represents progress in making di�usion models a generally useful
tool in this family of techniques, so it may serve to amplify any impacts that generative models
have had (and will have) on the broader world.
Unfortunately, there are numerous well-known malicious uses of generative models. Sample

generation techniques can be employed to produce fake images and videos of high pro�le �gures
for political purposes. While fake images were manually created long before software tools were
available, generative models such as ours make the process easier. Fortunately, CNN-generated
images currently have subtle �aws that allow detection [���], but improvements in generative
models may make this more di�cult. Generative models also re�ect the biases in the datasets
on which they are trained. As many large datasets are collected from the internet by automated
systems, it can be di�cult to remove these biases, especially when the images are unlabeled. If
samples from generative models trained on these datasets proliferate throughout the internet, then
these biases will only be reinforced further.

On the other hand, di�usion models may be useful for data compression, which, as data becomes
higher resolution and as global internet tra�c increases, might be crucial to ensure accessibility of
the internet to wide audiences. Our work might contribute to representation learning on unlabeled
raw data for a large range of downstream tasks, from image classi�cation to reinforcement learning,
and di�usion models might also become viable for creative uses in art, photography, and music.
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� Pu�ing NeRF on a Diet: Semantically
Consistent Few-Shot View Synthesis

Work by Ajay Jain, Ma�hew Tancik, and Pieter Abbeel

We present DietNeRF, a �D neural scene representation estimated from a few images.
Neural Radiance Fields (NeRF) learn a continuous volumetric representation of a
scene through multi-view consistency, and can be rendered from novel viewpoints
by ray casting. While NeRF has an impressive ability to reconstruct geometry and
�ne details given many images, up to ��� for challenging ���� scenes, it often �nds a
degenerate solution to its image reconstruction objective when only a few input views
are available. To improve few-shot quality, we propose DietNeRF. We introduce an
auxiliary semantic consistency loss that encourages realistic renderings at novel poses.
DietNeRF is trained on individual scenes to (�) correctly render given input views from
the same pose, and (�) match high-level semantic attributes across di�erent, random
poses. Our semantic loss allows us to supervise DietNeRF from arbitrary poses. We
extract these semantics using a pre-trained visual encoder such as CLIP, a Vision
Transformer trained on hundreds of millions of diverse single-view, �D photographs
mined from the web with natural language supervision. In experiments, DietNeRF
improves the perceptual quality of few-shot view synthesis when learned from scratch,
can render novel views with as few as one observed image when pre-trained on a
multi-view dataset, and produces plausible completions of completely unobserved
regions. Our project website is available at https://www.ajayj.com/dietnerf.

�.� Introduction

In the novel view synthesis problem, we seek to rerender a scene from arbitrary viewpoint given a
set of sparsely sampled viewpoints. View synthesis is a challenging problem that requires some
degree of �D reconstruction in addition to high-frequency texture synthesis. Recently, great
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Figure �.�: Neural Radiance Fields are trained to represent a scene by supervising renderings from

the same pose as ground-truth observations (MSE loss). However, when only a few
views are available, the problem is underconstrained. NeRF often �nds degenerate
solutions unless heavily regularized. Based on the principle that “a bulldozer is a
bulldozer from any perspective”, our proposed DietNeRF supervises the radiance
�eld from arbitrary poses (DietNeRF cameras). This is possible because we compute a
semantic consistency loss in a feature space capturing high-level scene attributes, not
in pixel space. We extract semantic representations of renderings using the CLIP Vision
Transformer [���], then maximize similarity with representations of ground-truth
views. In e�ect, we use prior knowledge about scene semantics learned by single-view
�D image encoders to constrain a �D representation.

progress has been made on high-quality view synthesis when many observations are available. A
popular approach is to use Neural Radiance Fields (NeRF) [��] to estimate a continuous neural scene
representation from image observations. During training on a particular scene, the representation
is rendered from observed viewpoints using volumetric ray casting to compute a reconstruction
loss. At test time, NeRF can be rendered from novel viewpoints by the same procedure. While
conceptually very simple, NeRF can learn high-frequency view-dependent scene appearances and
accurate geometries that allow for high-quality rendering.

Still, NeRF is estimated per-scene, and cannot bene�t from prior knowledge acquired from other
images and objects. Because of the lack of prior knowledge, NeRF requires a large number of input
views to reconstruct a given scene at high-quality. Given � views, Figure �.�B shows that novel
views rendered with the full NeRF model contain many artifacts because the optimization �nds a
degenerate solution that is only accurate at observed poses. We �nd that the core issue is that
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(A) NeRF
100 views

(B) NeRF
8 views

(C) Simplified NeRF
8 views

(D) Simplified NeRF
14 similar views

Figure �.�: Few-shot view synthesis is a challenging problem for Neural Radiance Fields.
(A) When we have ��� observations of an object from uniformly sampled poses, NeRF
estimates a detailed and accurate representation that allows for high-quality view
synthesis purely from multi-view consistency. (B) However, with only � views, the
same NeRF over�ts by placing the object in the near-�eld of the training cameras,
leading to misplaced objects at poses near training cameras and degeneracies at novel
poses. (C) We �nd that NeRF can converge when regularized, simpli�ed, tuned and
manually reinitialized, but no longer captures �ne details. (D) Finally, without prior
knowledge about similar objects, single-scene view synthesis cannot plausibly complete
unobserved regions, such as the left side of an object seen from the right. In this work,
we �nd that these failures occur because NeRF is only supervised from the
sparse training poses.

prior �D reconstruction systems based on rendering losses are only supervised at known poses,
so they over�t when few poses are observed. Regularizing NeRF by simplifying the architecture
avoids the worst artifacts, but comes at the cost of �ne-grained detail.

Further, prior knowledge is needed when the scene reconstruction problem is underdetermined.
�D reconstruction systems struggle when regions of an object are never observed. This is partic-
ularly problematic when rendering an object at signi�cantly di�erent poses. When rendering a
scene with an extreme baseline change, unobserved regions during training become visible. A view
synthesis system should generate plausible missing details to �ll in the gaps. Even a regularized
NeRF learns poor extrapolations to unseen regions due to its lack of prior knowledge (Figure �.�D).
Recent work trained NeRF on multi-view datasets of similar scenes [���, ���, ���, ���, ���] to

bias reconstructions of novel scenes. Unfortunately, these models often produce blurry images
due to uncertainty, or are restricted to a single object category such as ShapeNet classes as it is
challenging to capture large, diverse, multi-view data.
In this work, we exploit the consistency principle that “a bulldozer is a bulldozer from any

perspective” : objects share high-level semantic properties between their views. Image recognition
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models learn to extract many such high-level semantic features including object identity. We
transfer prior knowledge from pre-trained image encoders learned on highly diverse �D single-view
image data to the view synthesis problem. In the single-view setting, such encoders are frequently
trained on millions of realistic images like ImageNet [��]. CLIP is a recent multi-modal encoder that
is trained to match images with captions in a massive web scrape containing ���M images [���].
Due to the diversity of its data, CLIP showed promising zero- and few-shot transfer performance
to image recognition tasks. We �nd that CLIP and ImageNet models also contain prior knowledge
useful for novel view synthesis.

We propose DietNeRF, a neural scene representation based on NeRF that can be estimated from
only a few photos, and can generate views with unobserved regions. In addition to minimizing
NeRF’s mean squared error losses at known poses in pixel-space, DietNeRF penalizes a semantic
consistency loss. This loss matches the �nal activations of CLIP’s Vision Transformer [��] between
ground-truth images and rendered images at di�erent poses, allowing us to supervise the radiance
�eld from arbitrary poses. In experiments, we show that DietNeRF learns realistic reconstructions
of objects with as few as � views without simplifying the underlying volumetric representation,
and can even produce reasonable reconstructions of completely occluded regions. To generate
novel views with as few as � observation, we �ne-tune pixelNeRF [���], a generalizable scene
representation, and improve perceptual quality.

�.� Background on Neural Radiance Fields

A plenoptic function, or light �eld, is a �ve-dimensional function that describes the light radiating
from every point in every direction in a volume such as a bounded scene. While explicitly storing
or estimating the plenoptic function at high resolution is impractical due to the dimensionality
of the input, Neural Radiance Fields [��] parameterize the function with a continuous neural
network such as a multi-layer perceptron (MLP). A Neural Radiance Field (NeRF) model is a
�ve-dimensional function f� (x, d) = (c,� ) of spatial position x = (x,�, z) and viewing direction
(� ,�), expressed as a �D unit vector d. NeRF predicts the RGB color c and di�erential volume
density � from these inputs. To encourage view-consistency, the volume density only depends
on x, while the color also depends on viewing direction d to capture viewpoint dependent e�ects
like specular re�ections. Images are rendered from a virtual camera at any position by integrating
color along rays cast from the observer according to volume rendering [��]:

C(r) =
π tf

tn
T (t)� (r(t))c(r(t), d)dt (�.�)
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where the ray originating at the camera origin o follows path r(t) = o + td, and the transmittance
T (t) = exp

⇣
�
Ø tf
tn

� (r(s))ds
⌘
weights the radiance by the probability that the ray travels from the

image plane at tn to t unobstructed. To approximate the integral, NeRF employs a hierarchical
sampling algorithm to select function evaluation points near object surfaces along each ray. NeRF
separately estimates two MLPs, a coarse network and a �ne network, and uses the coarse network
to guide sampling along the ray for more accurately estimating (�.�). The networks are trained
from scratch on each scene given tens to hundreds of photos from various perspectives. Given
observed multi-view training images {Ii } of a scene, NeRF uses COLMAP SfM [���] to estimate
camera extrinsics (rotations and origins) {pi }, creating a posed dataset D = {(Ii , pi )}.

�.� NeRF Struggles at Few-Shot View Synthesis

View synthesis is a challenging problem when a scene is only sparsely observed. Systems like
NeRF that train on individual scenes especially struggle without prior knowledge acquired from
similar scenes. We �nd that NeRF fails at few-shot novel view synthesis in several settings.

NeRF overfits to training views Conceptually, NeRF is trained by mimicking the image-
formation process at observed poses. The radiance �eld can be estimated repeatedly sampling a
training image and pose (I , pi ), rendering an image Îpi from the same pose by volume integration
(�.�), then minimizing the mean-squared error (MSE) between the images, which should align
pixel-wise:

Lfull(I , Îpi ) =
�

HW
kI � Îpi k�� (�.�)

In practice, NeRF samples a smaller batch of rays across all training images to avoid the computa-
tional expense of rendering full images during training. Given subsampled rays R cast from the
training cameras, NeRF minimizes:

LMSE(R) =
�
|R |

’
r2R
kC(r) � Ĉ(r)k�� (�.�)

With many training views, LMSE provides training signal to f� densely in the volume and does not
over�t to individual training views. Instead, the MLP recovers accurate textures and occupancy
that allow interpolations to new views (Figure �.�A). Radiance �elds with sinusoidal positional
embeddings are quite e�ective at learning high-frequency functions [���], which helps the MLP
represent �ne details.
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Unfortunately, this high-frequency representational capacity allows NeRF to over�t to each
input view when only a few are available. LMSE can be minimized by packing the reconstruction
Îp of training view (I , p) close to the camera. Fundamentally, the plenoptic function represen-
tation su�ers from a near-�eld ambiguity [���] where distant cameras each observe signi�cant
regions of space that no other camera observes. In this case, the optimal scene representation
is underdetermined. Degenerate solutions can also exploit the view-dependence of the radiance
�eld. Figure �.�B shows novel views from the same NeRF trained on � views. While a rendered
view from a pose near a training image has reasonable textures, it is skewed incorrectly and has
cloudy artifacts from incorrect geometry. As the geometry is not estimated correctly, a distant
view contains almost none of the correct information. High-opacity regions block the camera.
Without supervision from any nearby camera, opacity is sensitive to random initialization.

Regularization fixes geometry, but hurts fine-detail High-frequency artifacts such as spu-
rious opacity and rapidly varying colors can be avoided in some cases by regularizing NeRF. We
simplify the NeRF architecture by removing hierarchical sampling and learning only a single MLP,
and reducing the maximum frequency positional embedding in the input layer. This biases NeRF
toward lower frequency solutions, such as placing content in the center of the scene farther from
the training cameras. We also can address some few-shot optimization challenges by lowering the
learning rate to improve initial convergence, and manually restarting training if renderings are
degenerate. Figure �.�C shows that these regularizers successfully allow NeRF to recover plausible
object geometry. However, high-frequency, �ne details are lost compared to �.�A.

No prior knowledge, no generalization to unseen views As NeRF is estimated from scratch
per-scene, it has no prior knowledge about natural objects such as common symmetries and object
parts. In Figure �.�D, we show that NeRF trained with �� views of the right half of a Lego vehicle
generalizes poorly to its left side. We regularized NeRF to remove high-opacity regions that
originally blocked the left side entirely. Even so, the essential challenge is that NeRF receives no
supervisory signal from LMSE to the unobserved regions, and instead relies on the inductive bias
of the MLP for any inpainting. We would like to introduce prior knowledge that allows NeRF to
exploit bilateral symmetry for plausible completions.
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�.� Semantically Consistent Radiance Fields

Motivated by these challenges, we introduce the DietNeRF scene representation. DietNeRF uses
prior knowledge from a pre-trained image encoder to guide the NeRF optimization process in the
few-shot setting.

�.�.� Semantic consistency loss

DietNeRF supervises f� at arbitrary camera poses during training with a semantic loss. While
pixel-wise comparison between ground-truth observed images and rendered images with LMSE is
only useful when the rendered image is aligned with the observed pose, humans are easily able to
detect whether two images are views of the same object from semantic cues. We can in general
compare a representation of images captured from di�erent viewpoints:

LSC,`�(I , Î ) =
�

�
k�(I ) � �(Î )k�� (�.�)

If �(x) = x , Eq. (�.�) reduces to Lfull up to a scaling factor. However, the identity mapping is
view-dependent. We need a representation that is similar across views of the same object and
captures important high-level semantic properties like object class. We evaluate the utility of two
sources of supervision for representation learning. First, we experiment with the recent CLIP
model pre-trained for multi-modal language and vision reasoning with contrastive learning [���].
We then evaluate visual classi�ers pre-trained on labeled ImageNet images [��]. In both cases, we
use similar Vision Transformer (ViT) architectures.

A Vision Transformer is appealing because its performance scales very well to large amounts of
�D data. Training on a large variety of images allows the network to encounter multiple views
of an object class over the course of training without explicit multi-view data capture. It also
allows us to transfer the visual encoder to diverse objects of interest in graphics applications,
unlike prior class-speci�c reconstruction work that relies on homogeneous datasets [��, ��]. ViT
extracts features from non-overlapping image patches in its �rst layer, then aggregates increasingly
abstract representations with Transformer blocks based on global self-attention [���] to produce a
single, global embedding vector. ViT outperformed CNN encoders in our early experiments.
In practice, CLIP produces normalized image embeddings. When �(·) is a unit vector, Eq. (�.�)

simpli�es to cosine similarity up to a constant and a scaling factor that can be absorbed into the
loss weight �:

LSC(I , Î ) = ��(I )T�(Î ) (�.�)
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Algorithm � Training DietNeRF on a single scene
�: Input: Observed viewsD = {(I , p)}, semantic embedding function�(·), pose distribution � , consistency

interval K , weight �, rendering size, batch size |R |, lr �it
�: Result: Trained Neural Radiance Field f� (·, ·)
�: Initialize NeRF f� (·, ·)
�: Pre-compute target embeddings {�(I ) : I 2 D}
�: for it from � to num_iters do
�: Sample ray batch R, ground-truth colors C(·)
�: Render rays Ĉ(·) by (�.�)
�: L  LMSE(R,C, Ĉ)
�: if it % K = � then
��: Sample target image, pose (I , p) ⇠ D
��: Sample source pose p̂ ⇠ �

��: Render image Î from pose p̂
��: L  L + LSC(I , Î )
��: end if
��: Update parameters: �  Adam(� ,�it ,r�L)
��: end for

We refer to LSC (�.�) as a semantic consistency loss because it measures the similarity of high-level
semantic features between observed and rendered views. In principle, semantic consistency is
a very general loss that can be applied to any �D reconstruction system based on di�erentiable
rendering.

�.�.� Interpreting representations across views

The pre-trained CLIP model that we use is trained on hundreds of millions of images with captions
of varying detail. Image captions provide rich supervision for image representations. On one
hand, short captions express semantically sparse learning signal as a �exible way to express
labels [��]. For example, the caption “A photo of hotdogs” describes Fig. �.�A. Language also
provides semantically dense learning signal by describing object properties, relationships and
appearances [��] such as the caption “Two hotdogs on a plate with ketchup and mustard”. To be
predictive of such captions, an image representation must capture some high-level semantics that
are stable across viewpoints. Concurrently, [��] found that CLIP representations capture visual
attributes of images like art style and colors, as well as high-level semantic attributes including
object tags and categories, facial expressions, typography, geography and brands.

In Figure �.�, we measure the pairwise cosine similarity between CLIP representations of views
circling an object. We �nd that pairs of views have highly similar CLIP representations, even for
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diametrically opposing cameras. This suggests that large, diverse single-view datasets can induce
useful representations for multi-view applications.

�.�.� Pose sampling distribution

We augment the NeRF training loop with LSC minimization. Each iteration, we compute LSC

between a random training image sampled from the observation dataset I ⇠ D and rendered
image Îp from random pose p ⇠ � . For bounded scenes like NeRF’s Realistic Synthetic scenes
where we are interested in ���� view synthesis, we de�ne the pose sampling distribution � to be
a uniform distribution over the upper hemisphere, with radius sampled uniformly in a bounded
range. For unbounded forward-facing scenes or scenes where a pose sampling distribution is
di�cult to de�ne, we interpolate between three randomly sampled known poses p�, p�, p� ⇠ D
with pairwise interpolation weights ��,�� ⇠ U(�, �).

�.�.� Improving e�iciency and quality

Volume rendering is computationally intensive. Computing a pixel’s color evaluates NeRF’s MLP
f� at many points along a ray. To improve the e�ciency of DietNeRF during training, we render
images for semantic consistency at low resolution, requiring only ��-��% of the rays as a full
resolution training image. Rays are sampled on a strided grid across the full extent of the image
plane, ensuring that objects are mostly visible in each rendering. We found that sampling poses
from a continuous distribution was helpful to avoid aliasing artifacts when training at a low
resolution.

In experiments, we found thatLSC converges faster thanLMSE for many scenes. We hypothesize
that the semantic consistency loss encourages DietNeRF to recover plausible scene geometry early
in training, but is less helpful for reconstructing �ne-grained details due to the relatively low
dimensionality of the ViT representation �(·). We exploit the rapid convergence of LSC by only
minimizing LSC every k iterations. DietNeRF is robust to the choice of k , but a value between
�� and �� worked well in our experiments. StyleGAN� [��] used a similar strategy for e�ciency,
referring to periodic application of a loss as lazy regularization.
As backpropagation through rendering is memory intensive with reverse-mode automatic

di�erentiation, we render images for LSC with mixed precision computation and evaluate �(·) at
half-precision. We delete intermediate MLP activations during rendering and rematerialize them
during the backward pass [��, ��]. All experiments use a single �� GB NVIDIA V��� or �� GB
���� Ti GPU.
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Figure �.�: CLIP’s Vision Transformer learns low-dimensional image representations through
language supervision. We �nd that these representations transfer well to multi-view
�D settings. We sample pairs of ground-truth views of the same scene and of di�erent
scenes from NeRF’s Realistic Synthetic object dataset, then compute a histogram of
representation cosine similarity. Even though camera poses vary dramatically (views are
sampled from the upper hemisphere), views within a scene have similar representations
(green). Across scenes, representations have low similarity (red)

Since LSC converges before LMSE, we found it helpful to �ne-tune DietNeRF with LMSE alone
for ��-��k iterations to re�ne details. Alg. � details our overall training process.

�.� Experiments

In experiments, we evaluate the quality of novel views synthesized by DietNeRF and baselines
for both synthetically rendered objects and real photos of multi-object scenes. (�) We evaluate
training from scratch on a speci�c scene with � views §�.�.�. (�) We show that DietNeRF improves
perceptual quality of view synthesis from only a single real photo §�.�.�. (�) We �nd that DietNeRF
can reconstruct regions that are never observed §�.�.�, and �nally (�) run ablations §�.�.

Datasets The Realistic Synthetic benchmark of [��] includes detailed multi-view renderings of
� realistic objects with view-dependent light transport e�ects. We also benchmark on the DTU
multi-view stereo (MVS) dataset [��] used by pixelNeRF [���]. DTU is a challenging dataset that
includes sparsely sampled real photos of physical objects.

Low-level full reference metrics Past work evaluates novel view quality with respect to
ground-truth from the same pose with Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [���]. PSNR expresses mean-squared error in log space. However, SSIM
often disagrees with human judgements of similarity [���].
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Table �.�: Quality metrics for novel view synthesis on subsampled splits of the Realistic Synthetic
dataset [��]. We randomly sample � views from the available ��� ground truth training
views to evaluate how DietNeRF performs with limited observations.

Method PSNR " SSIM "LPIPS #FID #KID #
NeRF ��.��� �.��� �.��� ���.� �.���
NV ��.��� �.��� �.��� ���.� �.���
Simpli�ed NeRF ��.��� �.��� �.��� ���.� �.���
DietNeRF (ours) ��.��� �.��� �.��� ��.� �.���
DietNeRF, LMSE ft ��.��� �.��� �.��� ��.� �.���

NeRF, ��� views ��.��� �.��� �.��� ��.� �.���

Perceptual metrics Deep CNN activations mirror aspects of human perception. NeRF measures
perceptual image quality using LPIPS [���], which computes MSE between normalized features
from all layers of a pre-trained VGG encoder [���]. Generative models also measure sample quality
with feature space distances. The Fréchet Inception Distance (FID) [��] computes the Fréchet
distance between Gaussian estimates of penultimate Inception v� [���] features for real and fake
images. However, FID is a biased metric at low sample sizes. We adopt the conceptually similar
Kernel Inception Distance (KID), which measures the MMD between Inception features and has
an unbiased estimator [�, ��]. All metrics use a di�erent architecture and data than our CLIP ViT
encoder.

�.�.� Realistic Synthetic scenes from scratch

NeRF’s Realistic Synthetic dataset includes � detailed synthetic objects with ��� renderings from
virtual cameras arranged randomly on a hemisphere pointed inward. To test few-shot performance,
we randomly sample a training subset of � images from each scene. Table �.� shows results. The
original NeRF model achieves much poorer quantitative quality with � images than with the full
��� image dataset. Neural Volumes [��] performs better as it tightly constrains the size of the
scene’s bounding box and explicitly regularizes its scene representation using a penalty on spatial
gradients of voxel opacity and a Beta prior on image opacity. This avoids the worst artifacts, but
reconstructions are still low-quality. Simplifying NeRF and tuning it for each individual scene also
regularizes the representation and helps convergence (+�.� PSNR over the full NeRF). The best
performance is achieved by regularizing with DietNeRF’s LSC loss. Additionally, �ne-tuning with
LMSE even further improves quality, for a total improvement of +�.� PSNR, -�.� LPIPS, and -���
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DietNeRF, fine-tuned (ours)Neural Volumes Simplified NeRF

Figure �.�: Novel views synthesized from eight observations of scenes in the Realistic Synthetic
dataset.

FID over NeRF. This shows that semantic consistency is a valuable prior for high-quality few-shot
view synthesis. Figure �.� visualizes results.

�.�.� Single-view synthesis by fine-tuning

NeRF only uses observations during training, not inference, and uses no auxiliary data. Accurate
�D reconstruction from a single view is not possible purely from LMSE, so NeRF performs poorly
in the single-view setting (Table �.�).
To perform single- or few-shot view synthesis, pixelNeRF [���] learns a ResNet-�� encoder

and a feature-conditioned neural radiance �eld on a multi-view dataset of similar scenes. The
encoder learns priors that generalize to new single-view scenes. Table �.� shows that pixelNeRF
signi�cantly outperforms NeRF given a single photo of a held-out scene. However, novel views
are blurry and unrealistic (Figure �.�). We propose to �ne-tune pixelNeRF on a single scene using
LMSE alone or using both LMSE and LSC. Fine-tuning per-scene with MSE improves local image
quality metrics, but only slightly helps perceptual metrics. Figure �.� shows that pixel-space MSE
�ne-tuning from one view mostly only improves quality for that view.
We refer to �ne-tuning with both losses for a short period as DietPixelNeRF. Qualitatively,

DietPixelNeRF has signi�cantly sharper novel views (Fig. �.�, �.�). DietPixelNeRF outperforms
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Input: 1 view Novel views from pixelNeRF Novel views from DietPixelNeRF (ours)NeRF, 3 views

Figure �.�: Novel views synthesized from a single input image from the DTU object dataset.
Even with � input views, NeRF [��] fails to learn accurate geometry or textures
(reprinted from [���]). While pixelNeRF [���] has mostly consistent object geom-
etry as the camera pose is varied, renderings are blurry and contain artifacts like
inaccurate placement of density along the observed camera’s z-axis. In contrast, �ne-
tuning with DietNeRF (DietPixelNeRF) learns realistic textures visually consistent with
the input image, though some geometric defects are present due to the ambiguous
nature of the view synthesis problem.

baselines on perceptual LPIPS, FID, and KID metrics (Tab. �.�). For the very challenging single-
view setting, ground-truth novel views will contain content that is completely occluded in the
input. Because of uncertainty, blurry renderings will outperform sharp but incorrect renderings
on average error metrics like MSE and PSNR. Arguably, perceptual quality and sharpness are
better metrics than pixel error for graphics applications like photo editing and virtual reality as
plausibility is emphasized.

�.�.� Reconstructing unobserved regions

We evaluate whether DietNeRF produces plausible completions when the reconstruction problem
is underdetermined. For training, we sample �� nearby views of the right side of the Realistic
Synthetic Lego scene (Fig. �.�, right). Narrow baseline multi-view capture rigs are less costly than
���� captures, and support unbounded scenes. However, narrow-baseline observations su�er from
occlusions: the left side of the Lego bulldozer is unobserved. NeRF fails to reconstruct this side of
the scene, while our Simpli�ed NeRF learns unrealistic deformations and incorrect colors (Fig. �.�,
left). Remarkably, DietNeRF learns quantitatively (Tab. �.�) and qualitatively more accurate colors
in the missing regions, suggesting the value of semantic image priors for sparse reconstruction
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Table �.�: Single-view novel view synthesis on the DTU dataset. NeRF and pixelNeRF PSNR,
SSIM and LPIPS results are from [���]. Finetuning pixelNeRF with DietNeRF’s semantic
consistency loss (DietPixelNeRF) improves perceptual quality measured by the deep
perceptual LPIPS, FID and KID evaluation metrics, but can degrade PSNR and SSIM
which are local pixel-aligned metrics due to geometric defects.

Method PSNR SSIM LPIPS FID KID

NeRF �.��� �.��� �.��� — —
pixelNeRF ��.��� �.��� �.��� ���.� �.���
pixelNeRF, LMSE ft ��.��� �.��� �.��� ���.� �.���
DietPixelNeRF ��.��� �.��� �.��� ���.� �.���

pixelNeRF

Fine-tuned

Fine-tuned

Input view and
reconstructions

Ground
truth

LMSE
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Novel views

(ours)

Figure �.�: Semantic consistency improves perceptual quality. Fine-tuning pixelNeRF with
LMSE slightly improves a rendering of the input view, but does not remove most
perceptual �aws like blurriness in novel views. Fine-tuning with both LMSE and LSC
(DietPixelNeRF, bottom) improves sharpness of all views.
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unobserved regions
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of observed
regions

from
overhead

NeRF

DietNeRF,
fine-tuned

Input: 14 views

Figure �.�: Renderings of occluded regions during training. �� images of the right half of the
Realistic Synthetic lego scene are used to estimate radiance �elds. NeRF either learns
high-opacity occlusions blocking the left of the object, or fails to generalize properly to
the unseen left side. In contrast, DietNeRF �lls in details for a reconstruction that is
mostly consistent with the observed half.

Table �.�: Extrapolation metrics. Novel view synthesis with observations of only one side of
the Realistic Synthetic Lego scene.

Views Method PSNR " SSIM " LPIPS #
�� NeRF ��.��� �.��� �.���
�� Simpli�ed NeRF ��.��� �.��� �.���
�� DietNeRF (ours) ��.��� �.��� �.���
�� DietNeRF + LMSE ft ��.��� �.��� �.���

��� NeRF [��] ��.��� �.��� �.���

problems. We exclude FID and KID since a single scene has too few samples for an accurate
estimate.

�.� Ablations

Choosing an image encoder Table �.� shows quality metrics with di�erent semantic encoder
architectures and pre-training datasets. We evaluate on the Lego scene with � views. Large ViT
models (ViT L) do not improve results over the base ViT B. Fixing the architecture, CLIP o�ers a
+�.� PSNR improvement over an ImageNet model, suggesting that data diversity and language
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Table �.�: Ablating supervision and architectural parameters for the ViT image encoder
�(·) used to compare image features. Metrics are measured on the Realistic Synthetic
Lego scene.

Semantic image encoder PSNR " SSIM " LPIPS #
ImageNet ViT L/��, ���� ��.��� �.��� �.���
ImageNet ViT L/��, ���� ��.��� �.��� �.���
ImageNet ViT B/��, ���� ��.��� �.��� �.���
CLIP ViT B/��, ���� ��.��� �.��� �.���

Table �.�: Varying the number of iterations that DietNeRF is fine-tuned with LMSE on
Realistic Synthetic scenes. All models are initially trained for ���k iterations with
LMSE and LSC. Further minimizing LMSE is helpful, but the model can over�t.

Method PSNR " SSIM " LPIPS #
DietNeRF, no �ne-tuning ��.��� �.��� �.���
DietNeRF, LMSE ft ��k iters ��.��� �.��� �.���
DietNeRF, LMSE ft ��k iters ��.��� �.��� �.���
DietNeRF, LMSE ft ���k iters ��.��� �.��� �.���
DietNeRF, LMSE ft ���k iters ��.��� �.��� �.���

supervision is helpful for �D tasks. Still, both induce useful representations that transfer to view
synthesis.

Varying LMSE fine-tuning duration Fine-tuning DietNeRF with LMSE can improve quality
by better reconstructing �ne-details. In Table �.�, we vary the number of iterations of �ne-tuning
for the Realistic Synthetic scenes with � views. Fine-tuning for up to ��k iterations is helpful, but
reduces performance with longer optimization. It is possible that the model starts over�tting to
the � input views.

�.� Related work

Few-shot radiance fields Several works condition NeRF on latent codes describing scene
geometry or appearance rather than estimating NeRF per scene [���, ���, ���]. An image encoder
and radiance �eld decoder are learned on a multi-view dataset of similar objects or scenes ahead of
time. At test time, on a new scene, novel viewpoints are rendered using the decoder conditioned
on encodings of a few observed images. GRAF renders patches of the scene every iteration to
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supervise the network with a discriminator [���]. Concurrent to our work, IBRNet [���] also
�ne-tunes a latent-conditioned radiance �eld on a speci�c scene using NeRF’s reconstruction loss,
but needed at least �� views. Rather than generalizing between scenes through a shared encoder
and decoder, [��, ���] meta-learn radiance �eld weights that can be adapted to a speci�c scene in
a few gradient steps. Meta-learning improves performance in the few-view setting. Similarly, a
signed distance �eld can be meta-learned for shape representation problems [���]. Much literature
studies single-view reconstruction with other, explicit �D representations. Notable recent examples
include voxel [���], mesh [��] and point-cloud [���] approaches.

Novel view synthesis, image-based rendering Neural Volumes [��] proposes a VAE [��, ���]
encoder-decoder architecture to predict a volumetric representation of a scene from posed image
observations. NV uses priors as auxiliary objectives like DietNeRF, but penalizes opacity based on
geometric intuitions rather than RGB image semantics. TBNs [��] learn an autoencoder with a �-
dimensional latent that can be rotated to render new perspectives for a single-category. SRNs [���]
�t a continuous representation to a scene and also generalize to novel single-category objects if
trained on a largemulti-view dataset. It can be extended to predict per-point semantic segmentation
maps [��]. Local Light Field Fusion [��] estimates and blends multiple MPI representations for
each scene. Free View Synthesis [���] uses geometric approaches to improve view synthesis in
unbounded in-the-wild scenes. NeRF++ [���] also improves unbounded scenes using multiple
NeRF models and changing NeRF’s parameterization.

Semantic representation learning Representation learning with deep supervised and unsu-
pervised approaches has a long history [�]. Without labels, generative models can learn useful
representations for recognition [��], but self-supervised models like CPC [��, ���] tend to be
more parameter e�cient. Contrastive methods including CLIP learn visual representations by
matching similar pairs of items, such as captions and images [��, ���], augmentated variants of an
image [��], or video patches across frames [��].

�.� Conclusions

Our results suggest that single-view �D representations transfer e�ectively to challenging, un-
derconstrained �D reconstruction problems such as volumetric novel view synthesis. While
pre-trained image encoder representations have certainly been transferred to �D vision applica-
tions in the past by �ne-tuning, the recent emergence of visual models trained on enormous ���M+
image datasets like CLIP have enabled surprisingly e�ective few-shot transfer. We exploited this
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transferrable prior knowledge to solve optimization issues as well as to cope with partial observ-
ability in the NeRF family of scene representations, o�ering notable improvements in perceptual
quality. In the future, we believe “diet-friendly” few-shot transfer will play a greater role in a wide
range of �D applications.
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� Appendix: Locally Masked Convolution for
Autoregressive Models

�.� Order visualization

Figure �.�: Eight variants of
the S-curve gener-
ation order.

Figure �.� shows three image generation orders and corresponding
local masks used by the �rst DietNeRF layer in the autoregressive
generator. On the left, we show the raster scan, S-curve and Hilbert
curve orders over the pixels of a small �⇥� image. On the right,
we show the corresponding, local �⇥� binary masks applied to
image patches in the �rst layer. Masks applied to zero-pad pixels
are colored green as their value is arbitrary. The center pixel
in each image patch is masked out (set to �), so that the network
cannot include ground truth information in the representation of its
context. The raster scan masks are the same for all image patches,
so weights can be masked rather than image patches. However,
other orders require diverse masks to respect the autoregressive
property of the model. Figure �.� shows the � variants of the
S-curve generation order used for order-agnostic training.

�.� Mask conditioning

ConvNADE [���] is a convolutional neural autoregressive distribution estimator that can be
trained with di�erent masks on the input image. ConvNADE concatenates the mask with the
image, allowing the model to distinguish between a zero-valued pixel and a zero-valued mask.
Locally masked convolutions can also condition upon the mask in each layer. Algorithm � is an
adaptation of Algorithm � that supports mask conditioning, with modi�cations shown in green.
Algorithm � applies a learned weight matrix WM to the �rst Cin rows of the mask matrix as the

��



Algorithm � LMC��� with mask conditioning
�: Input: image x , weightsWX ,WM , bias b, generation order � . x is B ⇥Cin ⇥ H ⇥W ,WX is

Cout ⇥Cin ⇤ k� ⇤ k�, and WM is Cout ⇥ k� ⇤ k�.
�: Create mask matrix M with Algorithm �
�: Extract patches: X = im2col(pad(x),k�,k�)
�: Mask patches: X =M � X
�: Perform convolution: Y =WXX+WMM�:Cin + b

�: Assemble patches: � = col2im(Y )
�: return �

mask is repeated k� ⇤ k� times by Algorithm �. Equivalently, the mask M�:Cin can be concatenated
with X after masking.

We evaluate mask conditioning on the Binarized MNIST dataset with � S-curve orders. After
training for �� epochs (not converged for the purposes of comparison), the model without mask
conditioning achieves a test NLL of ��.�� nats, while the mask conditioned model achieves a
comparable test NLL of ��.�� nats. However, mask conditioning could improve generalization to
novel orders.

�.� Experimental setup

We tune hyperparameters such as the learning rate and batch size as well as the network ar-
chitecture (Section �.�) on the Grayscale MNIST dataset, and train models with the exact same
architecture and hyperparameters on Binarized MNIST, CIFAR and CelebA-HQ. We used a batch
size of �� images, learning rate � ⇥ ����, and gradient clipping to norm � ⇥ ���. The exception
is that we use batch size � on CelebA-HQ to save memory and �-way softmax output instead of
logistics for binary data. CelebA-HQ [��] contains ��,��� ��� ⇥ ��� �-bit color celebrity photos.
For experiments, we use the same CelebA-HQ data splits as Glow [��], with ��,��� training images
and �,��� validation images at reduced �-bit color depth.

We trained the � stream baseline and our model for about the same number of epochs. Longer
training improves performance, perhaps because order-agnostic training and dropout regularize, so
epoch count was determined by time limitations. Most models are trained with � V��� or Quadro
RTX ���� GPUs. We train our CIFAR�� model for �.�M steps (���� epochs) with order-agnostic
training over � precomputed S-curve variants, then average model parameters from the last ��
epochs of training. Early in our experimental process, we compared Hilbert curve generation
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Figure �.�: Unconditionally generating MNIST digits with two Hilbert curve orders, starting at the
top or bottom left.

orders against the S-curve, visualized for small images in Figure �.�, but did not see improved
results.

For qualitative results, we train the ���M parameter �� ⇥ ��CelebA-HQmodel for ���K iterations
at batch size ��. Inspired by Progressive GAN [��], we train themodel at a reduced ��⇥�� resolution
for the �rst ���K iterations. As the architecture is fully convolutional, it is straightforward to
increase image resolution during training.

�.� Additional samples

Figure �.� shows intermediate states of the forward sampling process for unconditional generation
of grayscale MNIST digits. We samples pixels along a Hilbert space-�lling curve. As Hilbert
curves are de�ned recursively for power-of-two sized grids, we use a generalization of the Hilbert
curve [��] for �� ⇥ �� image generation. Our Locally Masked PixelCNN is optimized via order-
agnostic training with eight variants of the order. Two variants are used for sampling digits in
Fig. �.�. The top two digits are sampled beginning at the top left of the image, and the bottom
two digits are sampled beginning at the bottom left of the image. Images are shown at intervals
of roughly ��� sampling steps. With the same parameters, the model is able to unconditionally
generate plausible digits in multiple orders.

Figure �.� shows uncurated image completions using the large CelebA-HQmodel. Initial network
input is shown to the left of two image completions sampled from our Locally Masked PixelCNN
with an S-curve variant that generates missing pixels last. The input images are taken from the
validation set. The rightmost column contains the original image, i.e. the ground truth image
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completion. Two samples with the same context vary due to the stochasticity of the decoding
process, e.g. varying in terms of hairstyle, facial hair, attire and expression.

�.� Implementation

Locally Masked Convolutions are simple to implement using the basic linear algebra subprograms
exposed in machine learning frameworks, including matrix multiplication. It also requires an imple-
mentation of the im�col operation. We provide an abbreviated Python code sample implementing
DietNeRF using the PyTorch library in Figure �.�. The full source including gradient computation,
parameter initialization and mask conditioning is available at https://ajayjain.github.io/lmconv.
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Figure �.�: Uncurated CelebA-HQ ��x�� completions.
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import math

import torch
import torch.nn as nn
import torch.nn.functional as F

class _locally_masked_conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, x, mask, weight, bias=None, dilation=1, padding=1):

# Save values for backward pass
ctx.save_for_backward(x, mask, weight)
ctx.dilation, ctx.padding = dilation, padding
ctx.H, ctx.W = x.size(2), x.size(3)
ctx.output_shape = (x.shape[2], x.shape[3])
out_channels, in_channels, k1, k2 = weight.shape

# Step 1: Unfold (im2col)
x = F.unfold(x, (k1, k2), dilation=dilation, padding=padding)
# Step 2: Mask x. Avoid repeating mask in_channels times by reshaping x
x_channels_batched = x.view(x.size(0) * in_channels,

x.size(1) // in_channels, x.size(2))
x = torch.mul(x_channels_batched, mask).view(x.shape)
# Step 3: Perform convolution via matrix multiplication and addition
weight_matrix = weight.view(out_channels, -1)
x = weight_matrix.matmul(x)
if bias is not None:

x = x + bias.unsqueeze(0).unsqueeze(2)
# Step 4: Restore shape
return x.view(x.size(0), x.size(1), *ctx.output_shape)

@staticmethod
def backward(ctx, grad_output):

x, mask, weight, mask_weight = ctx.saved_tensors
...
if ctx.needs_input_grad[2]:

# Recompute unfold and masking to save memory
x_ = F.unfold(x, (k1, k2), dilation=ctx.dilation, padding=ctx.padding)
...

...

class locally_masked_conv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation, bias):

super(locally_masked_conv2d, self).__init__()
...
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.bias = nn.Parameter(torch.Tensor(out_channels)) if bias else None
self.reset_parameters()

def reset_parameters(self):
...

def forward(self, x, mask):
return _locally_masked_conv2d.apply(x, mask, self.weight,

self.bias, self.dilation, self.padding)

Figure �.�: A memory-e�cient PyTorch v�.�.� implementation of DietNeRF. Gradient calculation
is omitted for brevity. See https://ajayjain.github.io/lmconv for full code.
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� Appendix: Denoising Di�usion
Probabilistic Models

Extra information

LSUN FID scores for LSUN datasets are included in Table �.�. Scores marked with ⇤ are reported
by StyleGAN� as baselines, and other scores are reported by their respective authors.

Table �.�: FID scores for LSUN ��� ⇥ ��� datasets
Model LSUN Bedroom LSUN Church LSUN Cat

ProgressiveGAN [��] �.�� �.�� ��.��
StyleGAN [��] �.�� �.��⇤ �.��⇤
StyleGAN� [��] - �.�� �.��

Ours (Lsimple) �.�� �.�� ��.��
Ours (Lsimple, large) �.�� - -

Progressive compression Our lossy compression argument in Section �.�.� is only a proof of
concept, because Algorithms � and � depend on a procedure such as minimal random coding [��],
which is not tractable for high dimensional data. These algorithms serve as a compression
interpretation of the variational bound (�.�) of [���], not yet as a practical compression system.
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Table �.�: Unconditional CIFAR�� test set rate-distortion values (accompanies Fig. �.�)

Reverse process time (T � t + �) Rate (bits/dim) Distortion (RMSE [�, ���])
���� �.����� �.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����
��� �.����� ��.�����

�.� Extended derivations

Below is a derivation of Eq. (�.�), the reduced variance variational bound for di�usion models.
This material is from [���]; we include it here only for completeness.
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The following is an alternate version of L. It is not tractable to estimate, but it is useful for our
discussion in Section �.�.�.
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�.� Experimental details

Our neural network architecture follows the backbone of PixelCNN++ [���], which is a U-Net [���]
based on a Wide ResNet [���]. We replaced weight normalization [���] with group normaliza-
tion [���] to make the implementation simpler. Our ��⇥��models use four feature map resolutions
(�� ⇥ �� to � ⇥ �), and our ��� ⇥ ��� models use six. All models have two convolutional residual
blocks per resolution level and self-attention blocks at the �� ⇥ �� resolution between the convo-
lutional blocks [��]. Di�usion time t is speci�ed by adding the Transformer sinusoidal position
embedding [���] into each residual block. Our CIFAR�� model has ��.� million parameters, and
our LSUN and CelebA-HQ models have ��� million parameters. We also trained a larger variant of
the LSUN Bedroom model with approximately ��� million parameters by increasing �lter count.

We used TPU v�-� (similar to � V��� GPUs) for all experiments. Our CIFAR model trains at ��
steps per second at batch size ��� (��.� hours to train to completion at ���k steps), and sampling
a batch of ��� images takes �� seconds. Our CelebA-HQ/LSUN (����) models train at �.� steps
per second at batch size ��, and sampling a batch of ��� images takes ��� seconds. We trained on
CelebA-HQ for �.�M steps, LSUN Bedroom for �.�M steps, LSUN Cat for �.�M steps, and LSUN
Church for �.�M steps. The larger LSUN Bedroom model was trained for �.��M steps.

Apart from an initial choice of hyperparameters early on to make network size �t within memory
constraints, we performed the majority of our hyperparameter search to optimize for CIFAR��
sample quality, then transferred the resulting settings over to the other datasets:
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• We chose the �t schedule from a set of constant, linear, and quadratic schedules, all con-
strained so that LT ⇡ �. We set T = ���� without a sweep, and we chose a linear schedule
from �� = ���� to �T = �.��.

• We set the dropout rate on CIFAR�� to �.� by sweeping over the values {�.�, �.�, �.�, �.�}.
Without dropout on CIFAR��, we obtained poorer samples reminiscent of the over�tting
artifacts in an unregularized PixelCNN++ [���]. We set dropout rate on the other datasets
to zero without sweeping.

• We used random horizontal �ips during training for CIFAR��; we tried training both with
and without �ips, and found �ips to improve sample quality slightly. We also used random
horizontal �ips for all other datasets except LSUN Bedroom.

• We tried Adam [��] and RMSProp early on in our experimentation process and chose the
former. We left the hyperparameters to their standard values. We set the learning rate to
� ⇥ ���� without any sweeping, and we lowered it to � ⇥ ���� for the ��� ⇥ ��� images,
which seemed unstable to train with the larger learning rate.

• We set the batch size to ��� for CIFAR�� and �� for larger images. We did not sweep over
these values.

• We used EMA on model parameters with a decay factor of �.����. We did not sweep over
this value.

Final experiments were trained once and evaluated throughout training for sample quality.
Sample quality scores and log likelihood are reported on the minimum FID value over the course of
training. On CIFAR��, we calculated Inception and FID scores on ����� samples using the original
code from the OpenAI [���] and TTUR [��] repositories, respectively. On LSUN, we calculated FID
scores on ����� samples using code from the StyleGAN� [��] repository. CIFAR�� and CelebA-HQ
were loaded as provided by TensorFlow Datasets (https://www.tensorflow.org/datasets),
and LSUN was prepared using code from StyleGAN. Dataset splits (or lack thereof) are standard
from the papers that introduced their usage in a generative modeling context. All details can be
found in the source code release.
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�.� Discussion on related work

Our model architecture, forward process de�nition, and prior di�er from NCSN [���, ���] in subtle
but important ways that improve sample quality, and, notably, we directly train our sampler as a
latent variable model rather than adding it after training post-hoc. In greater detail:

�. We use a U-Net with self-attention; NCSN uses a Re�neNet with dilated convolutions. We
condition all layers on t by adding in the Transformer sinusoidal position embedding, rather
than only in normalization layers (NCSNv�) or only at the output (v�).

�. Di�usion models scale down the data with each forward process step (by a
p
� � �t factor)

so that variance does not grow when adding noise, thus providing consistently scaled inputs
to the neural net reverse process. NCSN omits this scaling factor.

�. Unlike NCSN, our forward process destroys signal (DKL(q(xT |x�) k N(�, I)) ⇡ �), ensuring a
close match between the prior and aggregate posterior of xT . Also unlike NCSN, our �t are
very small, which ensures that the forward process is reversible by a Markov chain with
conditional Gaussians. Both of these factors prevent distribution shift when sampling.

�. Our Langevin-like sampler has coe�cients (learning rate, noise scale, etc.) derived rigorously
from �t in the forward process. Thus, our training procedure directly trains our sampler to
match the data distribution afterT steps: it trains the sampler as a latent variable model using
variational inference. In contrast, NCSN’s sampler coe�cients are set by hand post-hoc,
and their training procedure is not guaranteed to directly optimize a quality metric of their
sampler.

�.� Samples

Additional samples Fig. �.�, �.�, �.�, �.�, �.��, and �.�� show uncurated samples from the
di�usion models trained on CelebA-HQ, CIFAR�� and LSUN datasets.

Latent structure and reverse process stochasticity During sampling, both the prior xT ⇠
N(�, I) and Langevin dynamics are stochastic. To understand the signi�cance of the second source
of noise, we sampled multiple images conditioned on the same intermediate latent for the CelebA
���⇥ ��� dataset. Fig. �.� shows multiple draws from the reverse process x� ⇠ p� (x� |xt ) that share
the latent xt for t 2 {����, ���, ���, ���}. To accomplish this, we run a single reverse chain from
an initial draw from the prior. At the intermediate timesteps, the chain is split to sample multiple
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images. When the chain is split after the prior draw at xT=����, the samples di�er signi�cantly.
However, when the chain is split after more steps, samples share high-level attributes like gender,
hair color, eyewear, saturation, pose and facial expression. This indicates that intermediate latents
like x��� encode these attributes, despite their imperceptibility.

Coarse-to-fine interpolation Fig. �.� shows interpolations between a pair of source CelebA
��� ⇥ ��� images as we vary the number of di�usion steps prior to latent space interpolation.
Increasing the number of di�usion steps destroys more structure in the source images, which the
model completes during the reverse process. This allows us to interpolate at both �ne granularities
and coarse granularities. In the limiting case of � di�usion steps, the interpolation mixes source
images in pixel space. On the other hand, after ���� di�usion steps, source information is lost and
interpolations are novel samples.

1000 steps

875 steps

750 steps

625 steps

500 steps

375 steps

250 steps

125 steps

0 steps

Source Rec. λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 Rec. Source

Figure �.�: Coarse-to-�ne interpolations that vary the number of di�usion steps prior to latent
mixing.
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Figure �.�: Unconditional CIFAR�� progressive sampling quality over time
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Figure �.�: CelebA-HQ ��� ⇥ ��� generated samples
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(a) Pixel space nearest neighbors

(b) Inception feature space nearest neighbors

Figure �.�: CelebA-HQ ���⇥ ��� nearest neighbors, computed on a ���⇥ ��� crop surrounding the
faces. Generated samples are in the leftmost column, and training set nearest neighbors
are in the remaining columns.
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Figure �.�: Unconditional CIFAR�� generated samples
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Figure �.�: Unconditional CIFAR�� progressive generation

��



(a) Pixel space nearest neighbors

(b) Inception feature space nearest neighbors

Figure �.�: Unconditional CIFAR�� nearest neighbors. Generated samples are in the leftmost
column, and training set nearest neighbors are in the remaining columns.
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Figure �.�: LSUN Church generated samples. FID=�.��
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Figure �.�: LSUN Bedroom generated samples, large model. FID=�.��
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Figure �.��: LSUN Bedroom generated samples, small model. FID=�.��
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Figure �.��: LSUN Cat generated samples. FID=��.��
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� Appendix: Pu�ing NeRF on a Diet

�.� Experimental details

View selection For most few-view Realistic Synthetic experiments, we randomly subsample �
of the available ��� training renders. Views are not manually selected. However, to compare the
ability of NeRF and DietNeRF to extrapolate to unseen regions, we manually selected �� of the ���
views mostly showing the right side of the Lego scene. For DTU experiments where we �ne-tune
pixelNeRF [���], we use the same source view as [���]. This viewpoint was manually selected and
is shared across all �� scenes.

Simplified NeRF baseline The published version of NeRF [��] can be unstable to train with
� views, often converging to a degenerate solution. We found that NeRF is sensitive to MLP
parameter initialization, as well as hyperparameters that control the complexity of the learned
scene representation. For a fair comparison, we tuned the Simpli�ed NeRF baseline on each Realistic
Synthetic scene by modifying hyperparameters until object geometry converged. Table �.� shows
the resulting hyperparameter settings for initial learning rate prior to decay, whether the MLP f�

is viewpoint dependent, number of samples per ray queried from the �ne and coarse networks,
and the maximum frequency sinusoidal encoding of spatial position (x,�, z). The �ne and coarse
networks are used in [��] for hierarchical sampling. 7 denotes that we do not use the �ne network.

Implementation Our implementation is based on a PyTorch port [���] of NeRF’s original
Tensor�ow code. We re-train and evaluate NeRF using this code. For memory e�ciency, we use
���⇥��� images of the scenes as in [���] rather than full-resolution ���⇥��� images. NV is trained
with full-resolution ��� ⇥ ��� views. NV renderings are downsampled with a �x� box �lter to
��� ⇥ ��� to compute metrics. We train all NeRF, Simpli�ed NeRF and DietNeRF models with the
Adam optimizer [��] for ���k iterations.

Metrics Our PSNR, SSIM, and LPIPS metrics use the same implementation as [���] based on
the scikit-image Python package [���]. For the DTU dataset, [���] excluded some poses from the
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Table �.�: Simplified NeRF training details by scene in the Realistic Synthetic dataset. We tune
the initial learning rate, view dependence, number of samples from �ne and coarse
networks for hierarchical sampling, and the maximum frequency of the (x,�, z) spatial
positional encoding.

Scene LR View dep. Fine Coarse Max freq.

Full NeRF � ⇥ ���� 3 ��� �� ��

Lego � ⇥ ���� 3 7 ��� ��
Chair � ⇥ ���� 7 7 ��� ��
Drums � ⇥ ���� 7 7 ��� ��
Ficus � ⇥ ���� 7 7 ��� ��
Mic � ⇥ ���� 7 7 ��� ��
Ship � ⇥ ���� 7 7 ��� ��
Materials � ⇥ ���� 7 7 ��� ��
Hotdog � ⇥ ���� 7 7 ��� ��

validation set as ground truth photographs had excessive shadows due to the physical capture
setup. We use the same subset of validation views.
For both Realistic Synthetic and DTU scenes, we also included FID and KID perceptual image

quality metrics. While PSNR, SSIM and LPIPS are measured between pairs of pixel-aligned images,
FID and KID are measured between two sets of image samples. These metrics compare the
distribution of image features computed on one set of images to those computed on another set. As
distributions are compared rather than individual images, a su�ciently large sample size is needed.
For the Realistic Synthetic dataset, we compute the FID and KID between all ���� ground-truth
images (across train, validation and testing splits and across scenes), and ��� rendered test images
at the same resolution (�� test views per scene). Aggregating across scenes allows us to have a
larger sample size. Due to the setup of the Neural Volumes code, we use additional samples for
rendered images for that baseline. For the DTU dataset, we compute FID and KID between ���
rendered images (�� per scene across �� validation scenes, excluding the viewpoint of the source
image provided to pixelNeRF) and ���� ground-truth images (�� images including the source
viewpoint across ��� training and validation scenes). FID and KID metrics are computed using the
torch-fidelity Python package [��].
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Table �.�:�ality metrics for each scene in the Realistic Synthetic dataset with � ob-
served views.

PSNR " Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF �.��� ��.��� ��.��� ��.��� ��.��� ��.��� �.��� ��.���
NV [��] ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.���
Simpli�ed NeRF ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.���
DietNeRF (ours) ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.���
DietNeRF, LMSE ft (ours) ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.���

NeRF, ��� views ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.��� ��.���

SSIM " Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
NV [��] �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
Simpli�ed NeRF �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
DietNeRF (ours) �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
DietNeRF, LMSE ft (ours) �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

NeRF, ��� views �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

LPIPS # Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
NV [��] �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
Simpli�ed NeRF �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
DietNeRF (ours) �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
DietNeRF, LMSE ft (ours) �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

NeRF, ��� views �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
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Figure �.�: CLIP ViT embeddings are more similar between views of the same scene than
across di�erent scenes. We show a �D histogram for each pair of Realistic Synthetic
scenes comparing ViT embedding similarity and the distance between views. The
dashed line shows mean cosine similarity, and green histograms have mean similarity
is greater than �.�. On the diagonal, two views from the upper hemisphere of the same
scene are sampled. Embeddings of di�erent views of the same scene are generally
highly similar. Nearby (distance �) and diagonally opposing (distance �) views are most
similar. In comparison, when sampling views from di�erent scenes (lower triangle),
embeddings are dissimilar.

�.� Per-scene metrics

Embedding similarity In Figure �.�, we compare the cosine similarity of two views with the
distance between their camera origins for each pair of scenes in the Realistic Synthetic dataset.
When sampling both views from the same scene, views have high cosine similarity (diagonal). For
� of the � scenes, there is some dependence on the relative poses of the camera views, though
similarity is high across all camera distances. For views sampled from di�erent scenes, similarity
is low (cosine similarity around �.�).
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�ality metrics Table �.� shows PSNR, SSIM and LPIPS metrics on a per-scene basis for the
Realistic Synthetic dataset. FID and KID metrics are excluded as they need a larger sample size.
We bold the best method on each scene, and underline the second-best method. Across all scenes
in the few-shot setting, DietNeRF or DietNeRF �ne-tuned for ��k iterations with LMSE performs
best or second-best.

�.� �alitative results and ground-truth

In this section, we provide additional qualitative results. Figure �.� shows the ground-truth training
views used for �-shot Realistic Synthetic experiments. These views are sampled at random from
the training set of [��]. Random sampling models challenges with real-world data capture such as
uneven view sampling. It may be possible to improve results if views are carefully selected.

In Figure �.�, we provide additional renderings of Realistic Synthetic scenes from testing poses
for baseline methods and DietNeRF. Neural Volumes generally converges to recover coarse object
geometry, but has wispy artifacts and distortions. On the Ship scene, Neural Volumes only recovers
very low-frequency detail. Simpli�ed NeRF su�ers from occluders that are not visible from the
� training poses. DietNeRF has the highest quality reconstructions without these distortions or
occluders, but does miss some high-frequency detail. An interesting artifact is the leakage of green
coloration to the back of the chair.

Finally, in Figure �.�, we show renderings from pixelNeRF and DietPixelNeRF on all DTU dataset
validation scenes not included in the main paper. Starting from the same checkpoint, pixelNeRF is
�ne-tuned using LMSE for ��k iterations, whereas DietPixelNeRF is �ne-tuned using LMSE + LSC

for ��k iterations. DietPixelNeRF has sharper renderings. On scenes with rectangular objects
like bricks and boxes, DietPixelNeRF performs especially well. However, the method struggles to
preserve accurate geometry in some cases. Note that the problem is under-determined as only a
single view is observed per scene.

�.� Adversarial approaches

While NeRF is only supervised from observed poses, conceptually, a GAN [��] uses a discriminator
to compute a realism loss between real and generated images that need not align pixel-wise. Patch
GAN discriminators were introduced for image translation problems [��, ���] and can be useful
for high-resolution image generation [��]. SinGAN [���] trains multiscale patch discriminators on
a single image, comparable to our single-scene few-view setting. In early experiments, we trained
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Lego Chair Drums Ficus Mic Ship Materials Hotdog

Figure �.�: Training views used for Realistic Synthetic scenes. These views are randomly
sampled from the available ��� views. This is a challenging setting for view synthesis
and �D reconstruction applications as objects are not uniformly observed. Some views
are mostly redundant, like the top two Lego views. Other regions are sparsely observed,
such as a single side view of Hotdog.

patch-wise discriminators per-scene to supervise f� from novel poses in addition to LSC. However,
an auxiliary adversarial loss led to artifacts on Realistic Synthetic scenes, both in isolation and in
combination with our semantic consistency loss.
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Lego Chair Drums Ficus Mic Ship Materials Hotdog

Neural
Volumes

Simplified
NeRF

Ground
truth
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Figure �.�: Additional renderings of Realistic Synthetic scenes.
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Input: 1 view Novel views from pixelNeRF, fine-tuned w/ MSE Novel views from DietPixelNeRF (ours) Ground truth (unseen)

Figure �.�: One-shot novel view synthesis: Additional renderings of DTU scenes generated
from a single observed view (left). Ground truth views are shows for reference, but are
not provided to the model. pixelNeRF and DietPixelNeRF are pre-trained on the same
dataset of other scenes, then �ne-tuned on the single input view for ��k iterations with
LMSE alone (pixelNeRF) or LMSE + LSC (DietPixelNeRF).
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