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Abstract

Fast Low-Overhead Logging Extending Time

by

Anusha Dandamudi

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein

ML model development has become increasingly challenging due to the rapid increase in
the scale and complexity of models and model workloads, making standard logging and
debugging practices insu�cient. Due to the impracticality of exhaustive logging during model
training as well as the infeasibility of a complete re-execution of model training for debugging
purposes, we turn to hindsight logging. Hindsight logging is an e�cient post-hoc logging
method that periodically collects checkpoints during model training and performs parallelized
checkpoint resume for context recovery during debugging. With hindsight logging, model
developers can defer logging overhead and postpone considering which execution data they
may need for analysis until model training completes.

However, model developers and machine learning researchers and practitioners are faced with
a continually evolving landscape of datasets, processing pipelines, analysis frameworks, and
models to explore and investigate. In this paper, we introduce FlorET (Fast Low-Overhead
Recovery Extending Time), a system for empowering model developers to perform hands-
free analysis and debugging over multiple model training sessions. The key features that
facilitate this advancement consist of (i) automatic version control, (ii) robust log statement
propagation, and (iii) parallelized inter-version replay. We evaluate the e�cacy of log state-
ment propagation and code alignment techniques for temporal hindsight logging and then
conduct system overhead analysis.
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Chapter 1

Introduction

ML model development has become increasingly challenging due to the rapid increase in
the scale and complexity of models and model workloads [3]. Model developers track and
visualize time series data, often with the help of tools like WandB [14] and Tensorboard
[9], in order to identify core ML issues evident during model training. However, standard
logging and debugging practices are not su�cient for model development. The challenges
that accompany model development and debugging often exceed those of regular software
development in both complexity and obscurity, especially because of the incapability of mod-
ularization in deep learning and the increased dependence of model training on data. As
such, the “possible error surface,” specifically when working with deep models, is substan-
tially larger [10]. Hence, model developers, when encountered with bugs, turn to analyzing
data such as training metrics and gradient magnitudes for debugging their model pipelines.

Recovering execution data of model training is an indispensable part of model analysis
and debugging. Model developers often forgo heavy logging during training since moving
execution data from GPU to DRAM results in significant overhead. Instead, they attempt
to hand-select which execution data to log, but there are many situations where they neglect
a key piece of information necessary for pinpointing an issue that could arise in the future.
Due to this potential for high miss rates, model developers are usually forced to rerun model
training from scratch to obtain the critical missing information.

Such cyclic debugging leads to prohibitive latency as model training runtimes can be lengthy.
Also, the cost of re-running model training in its entirety for solely debugging purposes is
often problematic in terms of compute. Hence, a purely logical approach, where the required
execution data is recomputed, is impractical. Model developers must therefore turn to track-
ing key time series data such as training metrics, tensor histograms, and images/overlays [3].
However, a purely physical approach, where all execution data is stored and then recovered
from disk, is also infeasible because such a logging mechanism would be too prohibitive in
terms of latency and storage. Additionally, since model developers cannot be expected to
predict in advance which execution data they will need to debug a future problem, we need a
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mechanism that allows querying any execution data. A hybrid between a physical approach,
which takes partial checkpoints during training with minimal logging overhead, and a logical
approach, which uses these checkpoints to considerably speed up re-execution of training, is
ideal. This approach to execution data recovery is called hindsight logging [3].

Hindsight logging is a method that enables model developers to defer logging overhead
and postpone considering which execution data they may need for analysis until they begin
debugging. By periodically saving checkpoints at sparse intervals during training, we can
keep logging overhead to a minimum, while also enabling e�cient future context recovery
via checkpoint resume. This way, selective logging can be performed post-hoc and model
developers can query any execution data after model training completes without performing
exhaustive logging during training. Queries can be answered by extracting relevant data
directly from checkpoints if available or resuming execution from a checkpoint until all rele-
vant data becomes available.

Nonetheless, model developers and machine learning researchers and practitioners are faced
with a continually evolving landscape of datasets, processing pipelines, analysis frameworks,
and models to explore and investigate [12]. As a result, they regularly update, expand, and
evolve their ML codebases throughout the lifecycle of their analyses. Rather than strictly
following a predefined experimental procedure, the speed of development in machine learning
necessitates a dynamic, investigative, and evolving approach to research and development.
A low-e↵ort, high-reward mechanism for answering queries through comparison and/or vi-
sualization of the e↵ects of code changes through the project version tree would provide
the insights necessary to correct and improve code, producing high-accuracy, generalizable
models more e�ciently.

FlorET (Fast Low-Overhead Recovery Extending Time) is a system that allows machine
learning developers to query any state post-hoc across multiple versions of code with mini-
mal e↵ort from their side. It enables model developers to query any execution data without
a complete program re-execution, with the additional capability of querying over a history of
model training runs. If the model developer has some insight into what the problem is and
what in the execution data to investigate, then debugging and anomaly detection with fast
low-overhead recovery over a single version would su�ce. However, if this is not evident to
the model developer, then FlorET can guide hindsight logging via cross-comparison between
the execution data from the current model training run and historical ones.

From their standpoint, model developers simply run model training with the FlorET harness
and insert a log statement in their most recent code version to indicate their query and to
recover execution data from a history of code versions. This minimizes technical debt as the
model developer can avoid the laborious and more error-prone process of manually inserting
the relevant log statement in the sequence of prior versions as well as individually performing
checkpoint resume on that sequence of prior versions.
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In this paper, we discuss a key scenario that motivated FlorET as well as describe important
related work. We then introduce FlorET’s architecture, and examine its key components,
including the version control engine, the log statement propagation engine, and the inter-
version parallel replay. Next, we test the e↵ectiveness of our log statement propagation
techniques on both synthetic and ecological benchmarks, evaluating it on its correctness and
robustness. Lastly, we assess the overhead accumulated by each of the key components of
FlorET.
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Chapter 2

Background

Because model development can fail either silently or due to a series of accumulated changes,
the model developer may need to perform root-cause analysis over a series of model training
runs to identify the training run the bug was initially introduced. We present a motivating
scenario where a model developer, finding a decrease in accuracy and normal gradient mag-
nitudes, wishes to investigate the bounding box outputs of their object detection model over
the history of code changes.

2.1 Motivating Scenario

Suppose a model developer wishes to build a new computer vision model for the task of
object detection. After constructing the model and specifying the optimizer and loss func-
tion as well as performing data augmentation, the model developer trains their model. Once
training completes, the model developer, equipped with checkpoints of training metrics,
recognizes that the model accuracy prematurely plateaued. Suspecting that they set their
learning rate too high, they retrain using an exponential learning rate scheduler, but still
see no improvement. After a couple more iterations of adjusting the learning rate and other
hyperparameters in addition to increasing the width and depth of the model, the model
developer sees a drop in accuracy.

They decide to discontinue ad-hoc adjustments and turn to a more methodical approach to
perform root-cause analysis. They begin by examining the gradient magnitudes via check-
point resume on the most recent code version to discern if they have encountered the vanish-
ing gradients problem. Finding the gradient magnitudes to be normal, they decide to inspect
the bounding boxes instead. However, model developers typically avoid logging bounding
boxes until all other training metrics, tensor histograms, etc. are checked and found to be
insu�cient in identifying the problem since logging bounding boxes for every image during
each epoch is a high-overhead activity. Having neglected logging bounding boxes, the model
developer retrieves them from the most recent training run via checkpoint resume. They find
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that the bounding box of an object, say a dog, captures only a fraction of it, say its ear. The
model developer now asks, “Has this been happening in all my code versions or is this just
a consequence of my most recent change?” Specifically, they wish to determine if the most
recent change, an accumulation of changes, or both caused the bounding box discrepancy.

To visualize the bounding boxes from the previous model training runs, the model developer
can pose their query by simply inserting a post-hoc log statement in only their most recent
code version, leaving FlorET to automate this log statement’s propagation to previous ver-
sions and run checkpoint resume for each. This circumvents the need to manually add log
statements to all prior versions as well as perform checkpoint resume separately for each by
the model developer. The methodology used to achieve this is described in more detail in
Chapter 4.

In addition, FlorET can assist the model developer in searching over historical execution
data to determine whether the detected anomaly is present in all n code versions, in k of
the n code versions, or just the latest code version. This information is useful when trying
to understand the reasons why code changes in the project version tree resulted in an un-
successful training run. Being able to identify the most recent working version in addition
to determining whether the same underlying problem caused subsequent versions to fail is
especially valuable during exploratory model development and debugging.

2.2 Related Work

FlorET is an extension of prior work by Garcia et al. called Fast Low-Overhead Recovery
(Flor) [3]. Flor enables post-hoc logging of a single version of training code to e�ciently
recover execution data after-the-fact, using a two-phase mechanism called hindsight logging
enabled by the following steps:

1. Record phase. The record phase is characterized by the e�cient capture and mate-
rialization of periodic checkpoints during training. Specifically, the side-e↵ects of each
training loop are checkpointed to enable e�cient replay. An adaptive periodic check-
pointing mechanism is used to control record overhead to remain within user-specified
thresholds. Background materialization, in which a separate, short-lived child pro-
cess handles the serialization of the checkpoint and materialization to disk, enables
the parent process to continue with model training and prevents significant latency
overhead.

2. Replay phase. The replay phase enables e�cient context recovery of key times se-
ries data such as training metrics, tensor histograms, and images/overlays [3]. The
checkpoints captured during the record phase eliminate inter-iteration dependencies
making training replay fully parallelizable across epochs. This is because context re-
covery from any checkpoint to its subsequent one can now be run independently of
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the others. Thus, model developers can quickly replay their code from the beginning
with no additional code changes, and Flor will intelligently skip recomputation of some
loops by loading the relevant checkpoints from disk.

Flor’s automatic code instrumentation, necessary for methodical hindsight logging, decreases
the technical debt that model developers incur and also reduces the error surface by elimi-
nating developer-induced manual errors.
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Chapter 3

System Overview

FlorET extends Flor to a new dimension – time. FlorET facilitates query serving and
analytics over the code changes across project versions and provides model developers with
the insight necessary to help answer their questions about their model training sessions.
After surveying the literature and talking to data scientists and experts in the field, we
derive the following requirements for the FlorET system.

• Automatic version control. Version control is necessary in order to replay histor-
ical versions and support inter-version queries posed by the model developer during
debugging. We provide version control of the code and checkpoints collected during
the record phase. We rely on Git for code versioning and S3 for storing the versioned
checkpoint files. The code version is linked to its corresponding checkpoint files and we
describe the mechanism used to link them together in Chapter 4.1. Furthermore, due
to the continuously evolving datasets, we need to provide data versioning in addition
to code-data coupling. The mechanism used to do this is also described in more detail
in Chapter 4.1. Without this advanced version control, replay over the history of code
versions would not be possible.

• Log statement propagation. To provide increased usability and productivity to
model developers performing exploratory model development, we provide a mechanism
for them to insert a log statement in a single version of code and backpropagate this
log statement to any number of prior versions. Since code can change drastically across
multiple versions, backpropagating a log statement becomes particularly challenging.
FlorET’s insertion of the log statement into past versions requires identifying the blocks
in past versions corresponding to the block in the current version the log statement
was manually inserted into. This relies on robust code alignment techniques, which
we describe in detail in Chapter 4.2. Such an automated log propagation technique
notably reduces tedium as well as human propensity for error when compared to its
manual counterpart.
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• Record and parallelized inter-version replay. FlorET uses Flor internally during
initial execution of model training to periodically collect and materialize checkpoints.
When the model developer queries time series data across many versions, we can paral-
lelize replay of each past version, either by recovering historical data or by augmenting
existing log files. Note that there are multiple versions of parallelization at play here:
inter-version parallel replay by FlorET, as well as intra-version parallel replay by Flor.
Both levels of parallelization significantly speed up the multi-version replay, thus en-
abling e�cient hindsight logging across time. In view of the recent explosion in the
popularity of cloud computing [2], accelerated by new cloud programming frameworks
[4, 8, 11], parallel processing powered by cloud computing has become increasingly
accessible. Hence, our multi-version replay can be executed at increasingly parallel
rates o✏ine in the cloud.

We now demonstrate the objective driving FlorET’s development and the advantages it
provides to Flor. With just Flor, inter-version querying across n training sessions requires
numerous operations to be performed by the model developer. They have to first checkout
each of the n versions of code, checkpoints, and data corresponding to each training session.
Next, they have to insert n log statements, one for each code version, and last, they have to
replay model training using Flor n times, one for each training session. Thus, a single inter-
version query over n versions requires 3n developer-initiated steps. In contrast, FlorET
performs the same task but with a single insertion of the log statement and a single call
to replay execution, invariant to the number of versions involved. Though the number of
operations executed by the system remain the same regardless of whether it be with Flor or
FlorET, FlorET ultimately minimizes the number of steps the model developer must perform
to accomplish the same task from 3n to just 2. It is important to note that this process
of historical replay is query driven and does not mandate replay across all prior versions,
but solely those relevant to answering queries posed by the model developer. We leave the
optimizations to reduce the space of what we replay for future work. Figure 3.1 illustrates
FlorET’s workflow with a small fragment of code.

With the above fundamental requirements in place, we can support additional features to
increase usability, minimize technical debt, and increase system e�ciency. Some potential
features and optimizations are introduced below, a subset of which are described in more
detail in Chapter 6.3.

• Query-cost highlighting. We can provide query cost highlighting to steer the model
developer to faster queries and better equip them with the knowledge to make alter-
native, lower-overhead queries when possible.

• Search and sampling. We can use a search or sampling method to more quickly
and e�ciently locate regions in training that the model developer could potentially be
interested in. We can also more e�ciently detect anomalies in key training execution
data by performing search and sampling over their values.
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Figure 3.1: Flowchart of FlorET. The red box and arrows demonstrate log statement

insertion and propagation, respectively. The flag icon indicates retrieval of code, data,

and checkpoints. The dashed blue lines indicate Flor context recovery via replay.

• Adaptive checkpointing. We can use adaptive checkpointing to stay within developer-
specified resource constraints, while taking checkpoints in a way to enable finer-grained
replay and hence increased parallelization. Just as Flor ensures overhead limitations
are met for each execution, FlorET can ensure overhead does not exceed constraints
for a group of executions. The overhead incurred does not have to be homogeneous
across these executions. Instead, aggressive logging in some versions can be o↵set by
minimal logging in others.

• Multi-stage execution. We can use multi-stage execution when answering queries i.e.
we try to answer queries via static analysis and if unsuccessful, we move to single-epoch
replay, a higher cost alternative. But if both approaches are unsuccessful in answering
the query, we turn to hindsight logging. Hence, with multi-stage execution, we can
further limit the overhead from hindsight logging, with no reduction in applicability
and usability.
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Chapter 4

System Architecture

4.1 Version Control Engine

The version control engine provides versioning of the code, data, and checkpoints collected
during the record phase of model training. Version control is necessary in order to replay
historical versions and support inter-version queries posed by the model developer for de-
bugging purposes.

For the model developer to be able to run queries over a history of code versions, we begin
by ensuring that their code is versioned. This is su�cient to enable inter-version queries,
but we will need additional mechanisms to make the query performance acceptable.

As a start, we need a mechanism to associate each code version with the related Flor
checkpoints produced during its model training session. When the model developer queries
execution data at a later time, they can be sure that re-execution will be accelerated with
the checkpoints produced during the initial execution of the same session. Abiding by the
Flor API, the model developer first runs model training with Flor on their current code. As
the model trains, periodic checkpoints are saved to its designated location within the Flor
hidden directory. Once the model training session completes, FlorET must commit and also
link the code with the generated checkpoints. We rely on Git to help with code versioning.
Given the precedent that model developers do not like systems committing to their repo and
tarnishing their commit history, we create a separate Flor branch and operate on it instead.
We commit the code to that branch once model training completes. We then spool the
checkpoints saved locally in the Flor hidden directory to S3. We associate the checkpoints
with the code that produced them by using the code’s Git hash as the name of the parent
directory on S3 under which the checkpoint file is stored.

FlorET requires a mechanism for versioning data to guarantee no discrepancy in data exists
between execution and re-execution. To this end, FlorET requires that, during execution,
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the model developer provide an S3 location of the data they will use for a particular train-
ing session. In case the model developer does not have the data stored on S3, they can
instead provide the POSIX filepath to the data and let the background spooler, responsible
for transferring the checkpoints to S3, also handle moving the data to S3. The data used for
training is linked to the code by storing this S3 path to the data in the directory having the
code’s Git hash as its name. Storing the checkpoints file and the path to the data under this
directory ensures that the same checkpoints and data can be automatically retrieved during
FlorET’s re-execution.

Because S3 buckets are by default mutable, correct re-execution is contingent on the train-
ing data on S3 not being altered between execution and re-executions. But if the model
developer modifies the training data after execution, FlorET, having saved the hash of the
original training data, can detect these changes before attempting re-execution. The model
developer is thus not restricted from overwriting their training data, but with the caveat
that future re-executions may fail.

4.2 Log Statement Propagation Engine

A key component of the FlorET system is the log statement propagation engine, which allows
model developers to query across multiple versions of code in one shot. Given a model and
its version history, when a developer inserts a log statement in the latest (or any) version,
we aim to insert an equivalent log statement in a subset of the code’s prior versions. How-
ever, as projects or models evolve, the internal code structure may change too drastically,
rendering certain log statements in one version without an equivalent in another. In such
cases, a notification to the model developer is issued and the system exits.

We achieve resilient log statement propagation by using a variant of a two-step GumTree
di�ng algorithm [1] proposed by Falleri et al. for fine-grained source code di↵erencing.
The first step, the top-down phase, finds all isomorphic subtrees between two code files,
sorts them in decreasing height, and creates mappings, called anchor mappings, between the
nodes of the matched subtrees. The second step, the bottom-up phase, creates mappings,
called container mappings, between nodes if their descendants have a large number of com-
mon anchor mappings. Any unmatched descendants of two nodes that match are linked via
recovery mappings. The aggregate of these mappings are used for code alignment.

We then perform a post-processing step to increase resilience to code refactoring and variable
renaming by taking advantage of the syntactic structure of the code. We use this matching
algorithm to find the block in past versions that most closely resembles the one containing
the log statement in the current version. We then adjust the log statement by taking the
most common renames over the entire file and applying them to any identifiers present. The
GumTree-based propagation algorithm, outlined in Figure 4.1, is resilient to formatting or



CHAPTER 4. SYSTEM ARCHITECTURE 12

Figure 4.1: Pseudocode for the GumTree-based log statement propagation technique.

documentation changes as it operates on the syntax tree. In addition, it is capable of diver-
gence detection i.e. if a block was deleted or merged, it is likely the architecture has changed
making propagation invalid, so GumTree is unlikely to find a spurious code block match in
such cases.

We investigated a number of other approaches with varying runtimes and complexities be-
fore choosing the GumTree approach. We describe below these alternative approaches and
highlight their shortcomings.

We initially began investigating ways to achieve log statement propagation that were Git
reliant because FlorET relies on Git to handle version control of code, data, and checkpoints.
Due to FlorET’s versioning, each training session run with Flor involves tracking the his-
tories of the code, data, and checkpoints. As such, the log statement the model developer
later inserts on top of the most recent code commit can be cherry-picked and applied to
prior code versions. Though straightforward and having low-overhead, this approach has a
key drawback: cherry-picking a log statement from the current version to prior versions is
prone to merge conflicts, exacerbated in cases where version-to-version di↵s are adjacent to
the location where the log statement is to be inserted. As with regular merge conflicts, the
model developer could resolve them by hand, but this, to a large extent, nullifies our goal of
making inter-version querying and debugging hands-free.

Due to similarities between our log statement propagation process and that of the cre-
ation and propagation of software patches, our next approach consisted of generating a “log
patch” by applying the Myers di↵ algorithm [5] on the code. We then attempted to apply
this patch to the previous code versions using the linux “patch” command, which takes into
consideration the line number of the log statement as well as the context from adjacent lines.
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However, similar to the Git reliant approach above, this approach often failed when lines
directly before or after the log statement were modified between code versions.

A more robust solution involved the use of Google’s best-e↵ort patching algorithm, di↵-
match-patch (DMP) [7], which achieves code alignment by using a character error heuristic
for identifying relevant code regions to apply the patch on. Since the di↵-match-patch
utility is language agnostic, changes in indentation between code versions introduced syn-
tactic errors after applying the patch: the log statement propagated to prior versions is also
inserted in a language and syntax agnostic manner. Therefore, we require an additional
post-processing step to ensure syntactic correctness of the program. For most cases, this
resulted in a simple and e�cient solution, but the GumTree-variant propagation method
still proved to be more resilient as shown in Chapter 5.2.

4.3 Parallelized Replay

Once we have propagated the developer-inserted log statement to prior versions, we must
replay every version to answer the query and assist with analysis over execution data. Given
the code, data, and checkpoints used for the initial execution of a particular model training
run, re-execution of each version is independent. Hence, using Flor, we can replay each
model training run on a separate core and with no overlapping overhead. This results in a
linear scale-up, limited only by the number of cores the model developer has available.
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Chapter 5

Results

In this section, we begin by detailing the methodology to evaluate the accuracy of our log
statement propagation techniques, followed by an analysis of their robustness. We then
assess the overhead of FlorET in the context of versioning, log statement propagation, and
parallelized replay. Specifically, we will address the following in our evaluation:

1. What was the methodology used for testing the log statement propagation accuracy?

2. How do the log statement propagation algorithms compare with each other? What is
their overall e↵ectiveness?

3. What is the additional overhead incurred when using FlorET over Flor?

5.1 Synthetic and Ecological Benchmarks

Because the approach to use log statement propagation to enable analysis across time is
a novel one, no benchmarks exist for testing accuracy or performance of this. We took a
three-tiered approach when designing a set of baselines, consisting of:

1. A diverse set of hand-constructed toy examples. These include atomic programs
that test a variety of program di↵s including single-line insertions, single-line deletions,
appending log statements to newly added conditionals, and variable renaming.

2. A group of randomly generated variations of Pytorch programs. Starting
with a base Python program, we introduce an annotation over the program that allows
three stochastic operations: (i) renaming variables, (ii) adding irrelevant statements
(noise), (iii) randomly permuting lines. We then randomly generate multiple versions
of the base program by applying these three operations in sequence.

3. A set of popular codebases obtained through a Github scrape. These include
popular Pytorch examples from GitHub, looking across a number of di↵erent versions
across time, particularly a few smaller repos [13] and a large industrial codebase [6].
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The first two are part of the synthetic benchmark suite, while the latter is ecological.

We use synthetic benchmarks to provide the ability to experiment with contrived, chal-
lenging examples to conduct a more thorough investigation. On the other hand, ecological
benchmarks have been used to focus on domain-specific examples. Because of the sheer vari-
ability in general Python programs, enabling log statement propagation e�ciently is complex
and perhaps infeasible in general. But by specializing on machine learning code, we hope to
leverage the relatively simple control structures, like long-running training loops. Focusing
on model training narrows the scope considerably, allowing us to measure the more relevant
use cases.

5.2 Log Statement Propagation Accuracy

To evaluate the e�cacy of log statement propagation, we test both the GumTree based tech-
nique and Myers-algorithm-based di↵-match-patch technique on the synthetic and ecological
benchmarks described above. The auto-generated benchmarks as well as both the small and
large ecological benchmarks proved to be well-suited for log statement propagation over prior
versions of code in the machine learning domain. As shown in Figure 5.1, the GumTree al-
gorithm outperforms the Myers di↵ algorithm on the toy and auto-generated benchmarks
primarily due to its robustness to code refactoring, specifically major logic changes, am-
biguity from deletions, and variable renaming. In the ecological benchmark for large files,
the Myers di↵ algorithm also falls behind its counterpart. This di↵erence in the accuracy
between the two was not due to the incorrect placement of the log statement in the file by
the Myers di↵ algorithm, but due to it indenting the log statement incorrectly.

Figure 5.2 below summarizes key di↵erences between the two algorithms on a couple of toy
examples. The first example demonstrates the challenge that arises when there are con-
siderable changes in the control flow from one version to the next. The expectation when
propagating the log statement from version 2 to version 1 is that it is inserted after i is
incremented, as shown in the column V1-Ground truth. The AST-based GumTree algo-
rithm is able to infer this and insert the log statement correctly, while the Myers-di↵-based
algorithm is not able to.

The second example illustrates another challenge during log statement propagation i.e. am-
biguity from deletions. To unambiguously propagate the log statement from version 2 to
version 1, we need to know which of the two increments of i was deleted in version 1 to
get version 2. Both the algorithms propagated the log statement but we cannot determine
which propagation the model developer actually intended. This may not be a situation that
a model developer frequently faces, but an important one to consider.
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Figure 5.1: Histogram of accuracies of two log statement propagation techniques on the

synthetic and ecological benchmarks. The ecological benchmarks are separated into eco-

small and eco-large depending on the size of the file.

5.3 System Overhead

Overall, the FlorET system incurs minimal additional storage, compute, and latency over-
head. We discuss below the specifics of the overhead incurred for performing versioning, log
statement propagation, and parallel multiversion replay.

5.3.1 Versioning Overhead

FlorET achieves code, checkpoint, and data versioning with minimal running-time overhead.
Code versioning is already fairly e�cient as Git only snapshots modified files. Noting that
time and storage are the factors contributing to the overhead, we conclude that both are
negligible compared to the time and storage resources consumed by model training and hind-
sight logging with Flor.

FlorET does not incur any additional overhead from checkpoint versioning because collect-
ing, materializing, and spooling checkpoints is already handled by Flor. Additionally, Flor’s
checkpoint spooling to S3 avoids long-term local storage overhead. Moreover, spooling to S3
is a non-blocking operation, so the model developer can avoid latency overhead by allocating
a background process for this task.
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Figure 5.2: Two example code fragments illustrating the performance of the GumTree

and Myers-di↵ based log statement propagation techniques over two code versions (V1
and V2). The print statements in red represents log statements. The print statements

in column V2-Log stmt are developer-inserted, while the ones in columns V1-Myers
and V1-GumTree are algorithm-inserted.
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Figure 5.3: Latency incurred by performing log statement propagation on a single file

to one previous version for the synthetic and ecological benchmarks. We performed log

statement propagation for each of the categories for a total of five times and averaged the

latencies. The latency of log statement propagation to a sequence of previous versions

scales linearly with the number of versions.

FlorET handles data versioning with minimal time and storage overhead as well. Even
though data versioning is performed once for each model training run, the dataset is not
replicated and saved in its entirety each time. Only the S3 file location of the data is saved.

5.3.2 Log Statement Propagation Overhead

The algorithms used to achieve log statement propagation vary in both complexity and
overhead. As briefly mentioned in Chapter 4.2, the Myers-di↵-based di↵-match-patch tech-
nique achieves quicker completion times than the AST-di↵ based GumTree algorithm when
performing code alignment. However, the GumTree algorithm typically proves to be more
robust to larger code refactors. Figure 5.3 shows the average completion times of both algo-
rithms on a number of synthetic and ecological examples.

The toy and auto-generated examples we used have ⇠10 and ⇠100 lines of code in each file,
respectively, while the ecological small and ecological large have ⇠100-250 and 1200+ lines
of code. As the file size increases, the task of performing code alignment and log statement
propagation becomes increasingly time-consuming. However, the main training loop is where
model developers usually insert their post-hoc log statements and the file size containing this
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code is approximately the size of the examples in the ecological small benchmark. So model
developers would incur a ⇠1.26 second delay for every version they need to propagate the
log statement to. If log statement propagation must be performed across large files, we can
decompose the file in a way that the new decomposed file containing the log statement is
smaller, thus limiting the latency overhead incurred.

It is important to note that if the model developer has to do log statement propagation
across versions by hand, the time overhead would significantly exceed that of FlorET’s au-
tomatic log statement propagation. Also, extending FlorET’s capability by adding non-lazy
code alignment, described in more detail in Chapter 6.1, could further reduce the latency of
its log statement propagation engine.

5.3.3 Parallel Replay Overhead

FlorET’s inter-version replay phase involves automatically running Flor’s replay across mul-
tiple versions. The time overhead incurred here is no di↵erent than the model developer
running Flor on the multiple versions independently. However, considering the enhanced
capability of FlorET, which exploits the fact that the re-execution of each model training
session is independent of the prior and subsequent sessions, it can achieve speedup, linear in
the number of available cores, simply by allocating a core to each version that needs to be
replayed.
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Chapter 6

Future Work

We have thoroughly investigated and tested various approaches for semantic code alignment
when developing FlorET. However, there still exists potential for further optimizations and
additional features to improve the overall e�ciency and usability of the system. In this
section, we begin by describing optimizations that can be made to the current FlorET
system. We follow by detailing the features for increasing the usability and e�ciency such
as query-cost highlighting and search and sampling, as previously mentioned in Chapter 3.
Lastly, we discuss our plan to extend our work to support delta pruning for iterative model
development.

6.1 Optimizations and Improvements

One important thing to note is that GumTree operates on many code versions. As such,
increasing the level of parallelism as well as decreasing the memory overhead can make the
system less prohibitive when working over these many versions.

We hope to incorporate the following changes in the future to facilitate the goals above:

1. Parallelize the GumTree algorithm. By parallelizing the GumTree algorithm, we
can further limit the latency the model developer faces during log statement propaga-
tion. As mentioned before, while the GumTree approach of log statement propagation
is more robust than others, it does incur perceivable latency overhead when compared
to simpler, more naive approaches. Hence, decreasing its completion time can make
the tool more plausible for a large number of use cases.

2. Non-lazy code alignment. A large fraction of the latency when using FlorET comes
from performing code alignment over a series of code versions. To reduce latency
at query time, we can perform code alignment between the current version and its
predecessor once the execution of model training completes. This operation can be
made non-blocking via the use of a background process. With this modification, we
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hypothesize that the typical model developer will not perceive any latency at execution
time or query time in most cases.

In addition, since our log statement propagation relies only on the end syntactic structure
of the code before attempting to propagate semantic changes, we may encounter a number
of edge cases. In particular, heavy use of metaprogramming, pervasive changes that a↵ect
a high percentage of lines, or subtle changes that a↵ect control or data flow can a↵ect the
insertion or correctness of log statements. To increase robustness in the face of complex
code versions and data lineages, we plan to investigate potential modifications to our code
alignment algorithm with a goal to enable hindsight logging extending time for any ML-
specific Python code. Furthermore, considering that the manual counterpart of automated
log statement propagation is error-prone, we believe the benefits of automation outweigh the
costs.

6.2 Usability-Enabling Features

FlorET provides inter-version querying and debugging capabilities with minimal e↵ort from
the model developer. We can further increase the usability of FlorET by prioritizing its ease
of operation. We plan on developing a complementary extension to facilitate the querying
and debugging process by the model developer.

6.2.1 IDE Integration for Version Navigation

To support a model developer in propagating log statements over a history of changes and
verifying their placement, we plan to integrate the automatic log statement propagation
facility into the model developer’s IDE. We envision this integration to allow the model
developer to more easily inspect and dynamically adjust the placement of log statements,
to exclude code versions from code alignment and propagation, as well as to export logs
produced by FlorET’s replay for manually inspecting and visualizing. Figure 6.1 illustrates
the proposed design.

6.3 E�ciency-Enabling Features

Another important goal of FlorET has been to enable debugging in an e�cient manner. We
plan to continue working on this goal by adding new e�ciency-centric features, which we
discuss below.

6.3.1 Query-Cost Highlighting

With the current FlorET system, we can e�ciently query any execution data across a history
of code versions. However, FlorET provides no insight to the model developer about the cost
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Figure 6.1: Proposed design of the IDE integration. The model developer can select any version

(bottom blue bar) and inspect the placement of the log statements, dynamically adjust the

placement of the log statement by dragging the newly inserted statement (in green) to the

desired location, and export the query results (top right toolbar) as a table or as a CSV file.

of each potential query. If the model developer is able to estimate the cost of querying some
specific execution data, they would then be able to make a more informed decision when
selecting the appropriate query for any given problem. In other words, the model developer
could select low cost queries over expensive alternatives. An example of this would be
querying for the gradient magnitudes once per epoch instead of querying for tensors such as
the weights, gradients, or activations in every update step. By color-coding execution data
to indicate the cost of querying it, we can guide the model developer to lower cost queries,
as shown in Figure 6.2. We plan to utilize Flor’s capability of calculating replay latency
factored on the position of the hindsight logging statements in the model training code to
enable FlorET’s query-cost estimation.

6.3.2 Search and Sampling

There may be times when a model developer may not require full replay of model training to
gain the insight necessary to debug a problem. In such cases, search and sampling methods
can be a much more e�cient alternative than replaying the entirety of code from checkpoints
for a number of model training sessions. FlorET currently does not support such an alterna-
tive, but considering how Flor enables parallel replay via checkpoints, extending FlorET to
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Figure 6.2: Query-cost highlighting. The pseudocode above illustrates that the cost of querying

the gradient magnitudes once per epoch (in green) is significantly lower than querying for the

gradients every update step (in red).

support search and sampling optimizations over these checkpoints is a viable option. In other
words, we can search and sample over the checkpoints to determine which, if any, epochs
and/or versions need to be re-executed for anomaly detection because (i) replay execution
from one checkpoint to the next is independent of all other segments of model training and
(ii) replay execution of one version is independent of all others. Performing binary search
over checkpoints and checkpoint sampling serve to help narrow down problematic portions
of model training with greater speed. We plan to support this capability for enabling more
e�cient detection of anomalies in key execution data.

6.4 Delta Pruning

FlorET currently enables model developers to perform post-hoc logging across a number of
code versions. However, once model developers have resolved the issue after debugging via
FlorET, making a new change, and retraining the model, they have no way of selecting the
minimum viable set of changes that achieve approximately identical results. Model develop-
ers cannot discard the code changes that are irrelevant to model accuracy because FlorET
currently does not support delta pruning, where the code changes that do not positively
contribute to expected results are dropped while only the promising ones are kept.

Being able to identify a subset of changes in the model training code becomes particu-
larly useful in giving the model developer insight into the fundamentals of model training in
addition to providing certain intuition into when a similar problem reoccurs in the future.
The value of adding delta pruning to FlorET lies in the fact that no tools providing delta
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pruning currently exist for us to use. A couple of approaches we hope to explore to support
delta pruning include changeset analysis and changeset quality estimation via deep learning
methods.
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Chapter 7

Conclusion

Logging and debugging practices for ML model development need to be di↵erent than those
used for normal software development. With model training runtimes being lengthy and
model training failing silently and requiring far more than syntactic correctness to succeed,
standard logging and debugging practices prove insu�cient in most cases. Saving check-
points during model training and achieving context recovery via checkpoint resume proved
to be a more viable approach. This approach, called hindsight logging, is not only well-
suited for model debugging, but also enables post-hoc data restoration e�ciently via the
record-replay phases. However, when debugging complex problems that could span multiple
versions in the project version tree, hindsight logging – restricted to a single code version
– can be limiting. Performing hindsight logging for each version separately does not scale
well, so we facilitated the process of multiversion hindsight logging.

In this paper, we introduced the FlorET system for empowering model developers to per-
form hands-free analysis and debugging, by enabling e�cient record-replay of model training
over the evolution of projects. The key features that facilitate this advancement consist of
(i) automatic version control, (ii) robust log statement propagation, and (iii) parallelized
inter-version replay. We evaluated the e�cacy of the log statement propagation and code
alignment techniques requisite for temporal hindsight logging. We analyzed the overhead
incurred by the version control engine, the log statement propagation engine, and the inter-
version parallelized replay and found the performance overhead to be acceptable.
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