
Snaps: A Tool for Understanding Students in Large

Computer Science Classes

Itai Smith

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-118

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-118.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Snaps: A Tool for Understanding Students in Large Computer Science

Classes

by Itai Smith

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Josh Hug
Research Advisor

05/14/2021

* * * * * * *

Professor John DeNero
Second Reader

05/14/2021

 14-May-2021

John DeNero
05/14/2021

Snaps: A Tool for Understanding Students in
Large Computer Science Classes

Itai Smith
University of California, Berkeley

iasmith@berkeley.edu

ABSTRACT
As computer science courses continue to grow in size,
instructors inevitably rely more on automatic assign-
ment grading and asynchronous modes of instruction,
reducing the amount of direct interaction with students.
As a result, instructors’ have limited ability to effec-
tively temperature check their students, identify stu-
dents who are falling behind in a timely manner, and
make informed decisions about the effectiveness of as-
signments.
In this paper, we present Snaps, a tool for collecting

intermediate snapshots of student work on program-
ming assignments, for any IntelliJ based IDE. We also
present how we used the snapshots collected by this
tool in UC Berkeley’s CS 2 course to identify struggling
students, assess the workload administered to students,
and evaluate the effectiveness of course design choices.

1 INTRODUCTION
In recent years, universities across the country have
seen a tremendous increase in the number of students
pursuing Computer Science. This increase is felt most
dramatically in introductory classes such as CS 1 and
CS 2, which are often offered to all interested under-
graduates. In UC Berkeley, the introductory courses,
CS 61A and CS 61B, peaked at 2,000 and 1,600 enrolled
students respectively in the past 2 years [1].
As teaching staff are faced with limited resources,

these large enrollment numbers lead many CS courses
to rely on auto-gradable assignments and asynchronous
offerings of lecture and section content. As a result,
instructors are mostly blind to students’ development
process and can only temperature check the class after
final submissions of assignments or when exam scores
become available [2].
Under these circumstances, instructors’ ability to

monitor student progress is limited. They are unable, for

example, to detect misconceptions that thwart students
when completing assignments, which will eventually
lead to poor performance on exams. Additionally, it be-
comes difficult to assess the workload and the amount
of time spent by different students on each assignment.
These issues are particularly pronounced in courses
that administer large programming assignments that
span multiple weeks.
Moreover, the reality of large CS courses is most

disadvantageous to students who are members of un-
derrepresented communities in CS. These students are
less likely to ask for help, and are more likely to be
overwhelmed by large programming assignments and
the barriers for seeking help in large classes [3].
To combat these issues, we developed Snaps, a tool

that allows instructors to collect snapshots of the in-
termediate steps students take as they complete pro-
gramming assignments. The data produced by this tool
can then be used to reason about students’ working
habits, and extract useful information about the paths
each student explores from starting an assignment to
completion.
In this paper, we describe how Snaps was developed

and used in CS 61B, UC Berkeley’s Data Structures
course (CS 2), and the insights we were able to gain
from using the Snaps tool in the academic year 2020-
2021.

2 RELATEDWORK
The Snaps tool was inspired by the work of Yan et al.
[4], who developed TMOSS, a system that captures in-
termediate snapshots of students’ code for enhanced
plagiarism detection. In TMOSS, snapshots were used
to gain evidence for excessive collaboration. With the
intermediate snapshots of the coding process available,
instructors could detect whether one student copied
code from another, or from an online resource, for ex-
ample.

Our original goal was to create a similar tool for en-
hanced plagiarism detection for CS 61B, which uses
the JetBrains’ IntelliJ IDE, as TMOSS was developed
for the Eclipse IDE. Instead, we decided to take a more
general approach, and provide a framework for extract-
ing useful information about students’ working habits
from the intermediate snapshots. We believe the data
collected by our tool would assist instructors in scaling
CS education and gain insight into student progress
in their courses. Additionally, the tool we developed
would work on other JetBrains IDEs, and thus can be
used in courses taught in programming languages other
than Java [5].

3 SNAPS
The Snaps tool was developed for CS 61B at UC Berke-
ley, and was designed to integrate as seamlessly as pos-
sible into the existing workflow that students follow
in the course. In this section, we describe the struc-
ture of CS 61B, the Snaps tool and its integration into
the course, and finally, some results we were able to
gather from the data, and how they helped us evaluate
different components of the course.

3.1 CS 61B
CS 61B is UC Berkeley’s Data Structures class, and is
the second course in the lower division introductory
CS series. The three major populations of students en-
rolling in this course are those pursuing a BS in Elec-
trical Engineering and Computer Science, BA in Com-
puter Science, and BA in Data Science. CS 61B is also
a prerequisite course for virtually all upper division
CS and Data Science courses. We conducted the study
described in this paper during two offerings of CS 61B.
In Fall 2020 (1062 students) and in Spring 2021 (1542
students).
Throughout the semester, CS 61B students complete

weekly lab assignments, in which they implement data
structures and algorithms introduced in lecture. These
assignments don’t require complete correctness for full
credit, and are designed to be completed in approxi-
mately two hours. Students also complete 4 large soft-
ware engineering projects that span multiple weeks.
Usually, the last two projects involve a design compo-
nent.
The data in this paper was collected in Spring 2021

[6], in which the course projects were:

(1) 2048 - students were given the skeleton code for a
Java based 2048 game, and had to implement the
logic for merging blocks on the board according
to the game’s defined behavior.

(2) Data Structures - students were given the specifi-
cation for the Deque interface, and were tasked
to provide a linked list and an array based imple-
mentation of the interface with no skeleton code
provided. Students were also expected to write
their own tests to verify the correctness of their
implementations.

(3) Gitlet - students implemented a lite version of
the Git version control system. The course staff
provided detailed descriptions of the commands
Gitlet should support and minor suggestions for
the classes students should use in their program,
but otherwise the entire design of the program
was left to the students’ discretion.

(4) BYOW - given a graphic rendering engine, stu-
dents implemented a program for generating ran-
dom explorable worlds, supporting user keyboard
interaction. No skeleton code was provided for
the world generation engine and students came
up with their own designs.

At the beginning of the semester, the course staff sets
up Git repositories, on which students complete their
assignments. Students also add a separate Git repos-
itory as a remote, from which they pull the skeleton
code for the different assignments. CS 61B is taught
in Java, and students use the intelliJ IDE to complete
their assignments. During the first lab section of the
semester, students are instructed to clone their personal
repository, learn basic Git commands for interacting
with it and with the skeleton repository, and install
intelliJ on their personal machines.
From our experience teaching an introductory course

of the scale of CS 61B over multiple semesters, we iden-
tified three major challenges, which we set to combat
using our Snaps tool.

3.1.1 The Workload Mystery. Evidently, CS 61B is a
coding heavy course and students often report that
they spend well over the university’s recommended
number of hours for a 4-unit course (6 hours of outside
lecture or section work) [7]. Additionally, since CS 61B
has a grade requirement for declaring the CS major in
Berkeley, some students often report that the workload
of the course causes them considerable stress. Hence,

2

these student anecdotes pose serious concerns around
the workload administered by the instructor.
Assuming that the majority of time students spend

in CS 61B is dedicated to writing code, this challenge is
most obviously solved by the Snaps tool. Given all the
snapshots of the intermediate steps students take when
completing programming assignments, we can confi-
dently determine howmuch time students are spending
on CS 61B, and adjust the workload accordingly if nec-
essary. Additionally, being able to identify the students
who are more burdened by the course’s workload, can
allow us to target them for supporting resources such
as priority in office hours or extra tutorials offered by
the course staff.

3.1.2 The Unknown Paths to Success. Every semester
we see students with a strong background in program-
ming and those who achieved higher grades in the
prerequisite course (CS 1, CS 61A in Berkeley), per-
form better in CS 61B. Beyond these somewhat obvious
dry metrics, we don’t have much insight into what
makes students successful in our class, mainly due to
the course’s large population and limited interaction
with students during their development process. We
hypothesize that the data collected by the Snaps tool
may help us uncover what are the habits of successful
students and what helps them stand out. We hope to
answer questions like: do students who test their code
perform better? How early do successful students begin
assignments? Andmore.We also believe that answering
these questions will help us inform our syllabus design,
and to put more students on their path to success.

3.1.3 The Perils of Auto-Complete. The different cod-
ing assignments in CS 61B (labs and projects) are de-
signed to give students hands-on experience with the
material introduced in lecture. And while the absolute
majority of students are able to get full credit on the
coding assignments, many are unable to perform as well
on exams. Specifically, on exams, students are unable
to demonstrate understanding of concepts that were
meant to be reinforced by the coding assignments.
We believe that intelliJ, the IDE used by students,

plays a role here. A simple example of this case can be
illustrated with Java interfaces. Many students would
lose points on an exam for trying to instantiate an in-
terface

List<Integer> list = new List<>()

However, if they wrote the same line in intelliJ, the
IDE would prompt a compiler error, and suggest to
modify the line to something like

List<Integer> list = new ArrayList<>()

Under the pressure of finishing an assignment, stu-
dents are likely to accept this suggestion without rec-
ognizing their misconception.
Given visibility to students’ development process

with the Snaps tool, we believe that we can help stu-
dents identify such misconceptions, and assure that the
learning goals of our coding assignments are met.

3.2 The Snaps Plugin
In order to capture the intermediate steps taken by
students in programming assignments, we developed a
plugin for intelliJ that interacts with the files currently
open on a student’s editor. The plugin listens to “save”
events that are accessible by the intelliJ API [8]. A save
event occurs when a student initiates a manual save, an
autosave occurs (every few seconds or so, if changes are
made to a file), andwhen a student compiles code.When
a save event occurs, the plugin initiates the snapshot
taking procedure.
The snapshots taken by the plugin are Git commits.

When the snapshot procedure is invoked, the plugin
copies the contents of all the open files in intelliJ into a
separate Git repository, the “Snaps repository”, stages
the files, and creates a commit. The commit message
contains metadata about that snapshot, like what files
were included. If the files open in intelliJ don’t exist
yet in the Snaps repository, the plugin will create them.
The plugin will only try to take snapshots if the current
working directory is a CS 61B student repository.
We chose Git as the snapshot taking and storing

mechanism to minimize the logic the plugin has to
handle, and thus have minimal to no effect on the stu-
dent experience when writing code [9]. For example,
the plugin can just attempt to commit all open files,
without keeping track of what changes were made. Git
will then reject any files to which no changes were
made before making a new commit [10]. Additionally,
Git offers many useful features for future data analy-
sis, like navigating between snapshots, generating diffs
between snapshots, running autograder tests on past
versions, and more. Finally, since intelliJ plugins can be
written in Java, we were able to use JGit, a lightweight

3

Java library implementing Git, to easily interact with
Git repositories programmatically [11].
The downside of using a separate Git repository for

our snapshots is that the plugin needs to become aware
of its location on the student’s machine. We achieve this
through having students set an environment variable,
SNAPS_REPO, with the path to their Snaps repository.
The plugin queries the value of this environment vari-
able upon installation and caches it for future runs.
The installation of the Snaps plugin was integrated

into the regular set up process for CS 61B. In the tra-
ditional set up, students clone their CS 61B student
repository, and download some intelliJ plugins used in
the course, like our custom style checker. The plugins
are installed through JetBrains’ plugins marketplace
[12]. In the new set up, students just need to clone an
additional repository, and install an additional plugin.
They then follow instructions to set their SNAPS_REPO
environment variable, which is the only major differ-
ence from the aforementioned traditional set up. Finally,
after completing an introductory assignment, they push
the commits from their Snaps repository, and run an
autograder test that verifies that snapshots were made
successfully.
In practice, we found that the additional step of man-

ually defining the SNAPS_REPO environment variable
burdened the installation process and was prone to er-
rors. The installation process occurs at the beginning
of the semester, when students are not yet comfortable
interacting with their terminal. Furthermore, instruc-
tions for setting environment variables vary between
operating systems and shell types. We are currently ex-
ploring options for students to provide the plugin with
the path to their Snaps repository through intelliJ’s user
interface.
In Fall 2020, we rolled out the plugin to CS 61B stu-

dents and monitored its performance. We wanted to
verify that the Snaps repository’s size remains accept-
able and that the plugin does not affect the user experi-
ence on intelliJ. At the end of the semester, we found
that Snaps repositories averaged at 1.5 MB on disk. Stu-
dents also reported that they experienced no latency
issues while writing code in intelliJ, when the plugin
was enabled.
We also found that the intermediate snapshots were

taken at a very fine granularity. For example, figures 1
through 4 show snapshots of a student starting to work
on a constructor in one of Project 1’s classes. In this

sequence of events, the student is attempting to initial-
ize an array of a generic type in Java. In Figure 1, we
can see that the student is starting their attempt to ini-
tialize the items instance variable, which was declared
as an array of a generic type. In Figure 2, the student
is preparing to cast the initialization as a generic type
array to agree with the declaration. In Figure 3, the
student erroneously uses parentheses, (), instead of
brackets, [], to initialize a Java array. Finally, in Fig-
ure 4, the student corrects their error and successfully
initializes the instance variable.
To get the snapshots from students’ local Snaps repos-

itories, we asked them to push their commits at 4 check-
points throughout the semester, usually after one of the
large projects was due. We set up a server with all the
Snaps repositories cloned, and pulled the commits on
our end after each such checkpoint. We also developed
a set of modules for extracting data of interest from
the Snaps repositories in the form of CSV files. For ex-
ample, instructors can provide a list of assignments to
the AssignmentTimes module to get a breakdown of
how many minutes, over how many days, each student
spent on each assignment.
Finally, while the Snaps plugin was designed to work

with IntelliJ, it can be installed and become functional
for any IntelliJ-based IDE, such as PyCharm (for Python),
CLion (for C), etc [5]. Hence, courses which use pro-
gramming languages other than Java can also use Snaps
to collect data from students.

4 RESULTS
4.1 Course Workload
The first questionwewere eager to answer was whether
the CS 61B workload matches the university guidelines
for a 4-unit course. We assume that students spend 3
hours a week watching lecture, 2 hours attending a
lab section and completing the lab assignments, and
1 hour a week attending a discussion section. Under
these assumptions, they should spend around 6 hours
a week working on the programming projects.
Using the Snaps data, we tallied the number of min-

utes a student spends writing code in intelliJ for snap-
shots made in each week. We iterate over the commits
in each Snaps repository, and find gaps of 10 minutes or
more between two commits. Once such a gap is found,
we add the total number of minutes counted so far to a
running counter, excluding the gap time. For example,

4

Figure 1: First student snapshot. Starting to initialize the items array.

Figure 2: Second student snapshot. Preparing to cast an Object array as a generic type array.

Figure 3: Third student snapshot. Attempts to initialize an array of Objects, but incorrectly initializes
an Object.

Figure 4: Fourth student snapshot. Recti�es the error from the previous snapshot, using brackets to
initialize the array properly.

5

Figure 5: Times spent by students in intelliJ by
week.

say we see a sequence of 100 snapshots, with the first
starting at 2:00:00, second at 2:00:10 PM, etc., with the
last snapshot at 2:10:00 PM. We so far counted 10 min-
utes. If the 101st snapshot was committed at 2:30:00 PM,
we add 10 minutes to the current total time tallied and
reset the counter. This procedure essentially identifies
continuous time periods in which a student was writing
code, and sums them up per week, or per assignment.
The threshold for identifying a continuous coding

session, 10 minutes, was chosen somewhat arbitrarily.
However, we did not find distinguishable differences in
our data when experimenting with lower thresholds.
The box plot in Figure 5 shows how many hours

students were spending coding in intelliJ every week.
For context, Project 0 spanned weeks 1 and 2. Project 1
spanned weeks 3 to 5, with Midterm 1 taking place in
week 4. Project 2 spanned weeks 5 to 11, with an extra
credit opportunity due during week 8.
Overall, across all weeks the mean time students

spent coding on intelliJ is 4.6 hours per week, the me-
dian is 4.3 hours, the first quartile is at 3.2 hours and
the third is at 6 hours. This data suggests that overall,
the workload we administered matches the amount rec-
ommended by the university, assuming that beyond
coding time, students also allocate time for reading the
specs of assignments, sketching solutions, reviewing
material, etc.
Often, instructors’ perspective on course workload

gets skewed since they interact most frequently with
students from extreme ends of the spectrum, either

those who find the class too easy, or those who find it
too challenging. The availability of the Snaps data was
very reassuring, as it showed that overall, the course’s
workload is manageable for most students.
The exception is evident during week 11, when the

course’s large design project, Gitlet, was due. This pro-
vided evidence that either syllabus changes are needed
to incentivize students to start the project earlier, or
that the project is inappropriate in the course’s current
format.
In a similar manner, we were also able to use Snaps

data to get the time and the number of days students
spent on each assignment. Table 1 shows the statistics
for lab completion times in hours. Again, we were able
to verify that lab assignments overall meet their allot-
ted 2 hour limit. The exception to this rule in Spring
2021 was Lab 6, which was a preparatory assignment
for Project 2, Gitlet. In this assignment students learned
how to use Java to interact with the file system, and
about the concept of persistence. We assume the lab
took students more time to complete as it featured con-
cepts not formally introduced in lecture.
Lab 4 and Lab 5 show relatively low completion times,

since they were short non-coding assignments. Lab 4
was mostly an exercise in Git, with a short debugging
portion completed on intelliJ. In Lab 5, TAs presented
the staff solution to Project 1, and students had to an-
swer a few questions reflecting on their solution, com-
paring it with that presented in lab. Some students chose
to write their answers using intelliJ.
Table 2 lists the completion time statistics for each

project. Again, it is clear that students spent an abnor-
mal amount of time on Project 2.
Table 3 shows the amount of days students invested

in each project. Days are counted from the first snapshot
in which a student edited one of the skeleton files, to the
last snapshot containing files under the assignment’s
directory. With the exception of Project 0, we can see
that the course staff has been successful in incentivizing
students to start the projects early in some capacity, as
students made use of almost all the days available to
them.
In fact, Project 0 may be credited for this desired stu-

dent behavior. In previous semesters, Project 0 was a
simple exercise in object oriented programming, de-
signed mainly to familiarize students with Java syntax.
In Spring 2021, we decided to change Project 0 to in-
clude a more serious algorithmic challenge early in the

6

Table 1: Lab assignment completion times in
hours

Lab Mean 25% 50% 75%

Lab 1 0.36 0.12 0.23 0.48
Lab 2 1.16 0.78 1.05 1.4
Lab 3 2.25 1.33 1.93 2.74
Lab 4 0.34 0.15 0.28 0.45
Lab 5 0.39 0.23 0.35 0.48
Lab 6 2.53 1.23 2.15 3.5
Lab7 1.92 1.28 1.8 2.38
Lab 8 2.17 1.25 1.97 2.68

Average 1.39 0.8 1.22 1.77

Table 2: Project completion times in hours

Project Mean 25% 50% 75%

Project 0 5.2 2.76 4.23 6.38
Project 1 14.32 9.58 13.12 18.03
Project 2 32.18 20.03 31.12 42.27

semester, in order to set students’ expectation for the
rigour of the course in following weeks. In a survey
conducted after the project’s due date, many students
noted that they wish they started earlier. The Snaps
data shows that overall they corrected their behavior
for the subsequent projects. As a teaching staff, we were
pleased to see this changed behavior evident from the
Snaps data.

Table 3: Days spent on projects

Project Days Provided Mean 25% 50% 75%

Project 0 9 2 1 1 3
Project 1 15 11.93 11 13 14
Project 2 42 35.01 34 37 38

4.2 Paths to Success
A common predictor of success in CS 61B is student’s
grade in the preceding introductory course, CS 61A
[13]. Beyond this crude anecdotal detail, we don’t have
a good understanding of what leads different kinds of
students to success. To see what story the Snaps data
tells in this regard, we trained a decision tree classifier

using the Snaps data along with demographic and ex-
perience information that students self reported. Since
the hierarchy of features used in a decision tree reflects
their importance [14], we were curious to discover what
were the factors of success according to our collected
data.
At the beginning of the semester, we released a pre-

semester survey, in which students self reported in-
formation such as CS 61A grade (if taken), gender, per-
ceived programming level, knowledge of Java, andmore.
Together with the data collected from Snaps about com-
pletion time of assignments and weekly workload, we
trained a decision tree classifier. To provide a label to
each student, we divided the student population into 10
groups, 0-9, based on their current grade in the course.
Students in group 9 were those with the highest grades.
It is important to note that most variance in grades
existed in exam scores (Midterm 1 and Midterm 2), and
Project 2 grades, which was an abnormally challenging
project.
Figure 6 shows a snippet of the graphical represen-

tation of our classifier. As expected, the first splitting
feature is students’ CS 61A grade. However, the paths
down the tree tell an interesting story. From the figure,
consider high performing students (class 8), who got a
grade of B, or below in CS 61A. These make up 20% of
the students in class 8.

(1) They spent 34 hours or less on Project 2, less than
the class average of 35 hours.

Then, these students are split by their working hours
during week 2, when Project 0 was due. Students in the
first group:

(2) worked 5.6 hours or less during week 2, suggest-
ing that they completed the project early during
the first week of classes.

(3) invested an hour or less on Lab 6, the preparatory
assignment for Project 2. However, in week 7 they
worked more than some of their peers, perhaps
getting a head start on Project 2, and working
toward completing the extra credit opportunity
for Project 2, due in week 8.

Students in the second group:

(2) worked more than 5.6 hours week 2, suggesting
that they started Project 0 late, and submitted it
near the deadline.

7

Figure 6: Snippet of the graphical representation of a decision tree classifier trained on Snaps data.

(3) worked on Project 1 for about 9 hours or less,
which was less than the class average of 14.32
hours.

(4) invested 25 minutes or less on Lab 1, suggesting
that they were stronger programmers coming into
CS 61B than their peers (who are in class 5 under
the same previous splits). Lab 1 included a short
assignment, requiring students to define a Java
method to determine whether an input year is a
leap year.

While these are mostly conjectures based on our data
and anecdotal evidence, we believe that this type of us-
age of Snaps data can help uncover what makes differ-
ent students in a large course successful. Additionally,
having access to this information during the semester,
can help instructors understand why certain students
are falling behind and encourage them to improve their
studying habits or provide additional resources.

5 FUTUREWORK
For the past year, we invested our efforts in building
the Snaps plugin, the infrastructure to support the data

collection, and used the data to inform our decisions
around workload adjustment. However, as we devel-
oped Snaps we recognized that there are many oppor-
tunities to expand its functionality and the use of the
rich data collected from students.

5.1 Live Streams
This past year, in order to get the snapshots from stu-
dents we instructed them to push the commits in their
Snaps repositories at four designated checkpoints. How-
ever, we initially intended on having the Snaps plugin
automatically push the commits it creates in the back-
ground. In order to do so, the plugin would need ac-
cess to students’ authentication credentials for Github,
which we use to host the CS 61B repositories. We felt
that requiring students to provide these credentials
would be too invasive, as they may be regular users
of Github, outside of their CS 61B work. Additionally,
there was no easy way to circumvent this requirement
without considerably interrupting the course’s existing
infrastructure.

8

We believe that given more research and/or consider-
ation of diverting the course’s infrastructure away from
Github, we can enable live streams of snapshots from
students. This will allow the teaching staff to take action
in a timely manner based on Snaps data. For example,
if a student spends excessive time on an assignment,
or exhibits multiple misconceptions in their code, they
could be targeted for additional support. While simi-
lar action can be taken based on the Snaps data that
comes after projects’ completion, targeting struggling
students early can aid in minimizing frustration and
stress, and provide timely help for those who need it
the most.

5.2 Plagiarism Detection
In the original work by Yan et al. [4], TMOSS, a snap-
shotting tool was used to improve the detection of ex-
cessive collaboration between students. For example,
if a student copied code from another student, or from
a solution found online, there would be a snapshot of
the copied work, before the student adds “noise” to
evade traditional plagiarism detectors. In TMOSS, ev-
ery snapshot from every student would be compared
to all final submissions. The researchers showed that
using intermediate snapshots for plagiarism detection,
yields nearly twice as many hits compared with tradi-
tional methods, which only compare final submissions.
The traditional tool, MOSS, found 35 students out of
1420, and TMOSS, using intermediate snapshots, found
61 students. However, while MOSS ran in 0.03 hours,
TMOSS ran for 9.77 hours.
We believe that since the Snaps snapshots are taken

at a very high frequency, the runtime for plagiarism
detection can be improved significantly, by targeting
snapshots where the amount of code added to the editor
by a student is large. Such snapshots would suggest that
code was copied and pasted. From our inspection, we
have seen that snapshots taken by Snaps mostly show-
case line-by-line modifications made by students, and
snapshots with many lines of code added can be easily
detected. For example, consider the snapshot in Figure
7, taken after intelliJ automatically implemented the
Deque interface methods for a student. Compared with
the snapshots included above, it is clear that dozens of
lines of code were added all at once.

Figure 7: A snapshot showing a large amount of
code added at once.

5.3 Other Uses of Snaps Data
In the past year, we performed bulk analysis on Snaps
data as a first step in exploring the usefulness of the
snapshots. However, we believe that there are many
exciting ways to analyze Snaps data to uncover what
makes students successful in CS 61B. Some ideas to
explore are:

• Analyzing students’ code for semantic style. De
Ruvo et al. [15] introduced semantic style indica-
tors that may be manifestations of poor knowl-
edge of some programming concepts. Using Snaps

9

data, we can explore howmany of these indicators
appear and are rectified over time. The appearance
of these indicators can also help us understand
what course concepts we don’t teach effectively.

• Understanding student methods for testing code.
From our analysis of the Snaps data, we couldn’t
find strong correlation between the amount of JU-
nit tests (the formal testing method taught in CS
61B) written by students and performance in the
course. This suggests that the effectiveness of our
current teaching of JUnit testing is questionable,
and that students test their code using methods
like ad-hoc testing, print statements, and others.
Further investigation into students’ testing meth-
ods can help us improve this important part of
our syllabus.

• Uncover more metrics for success. In our results
from this study, we demonstrated how Snaps data
can be used to obtain a better understanding of the
study habits of different types of students in CS
61B. We believe that by extracting more metrics
from the Snaps data, we can keep uncovering the
parameters that help different students achieve
success.

6 CONCLUSION
As computer science classes continue to grow in size,
being able to reason about student behavior in large
classes becomes a difficult challenge. In this paper we
presented Snaps, a tool for capturing the intermediate
steps students take when completing programming as-
signments. We have also shown how we used Snaps
data to assess the effectiveness of syllabus changes, and
inform future design choices. Finally, we have discussed
how Snaps data can be used to identify struggling stu-
dents, uncover what factors contribute to student suc-
cess, and lay out a path for more efficient and effective
plagiarism detection.
We are also excited to keep expanding Snaps’ func-

tionality to allow real time feedback for students. We
believe that by catching misconceptions on time, or
detecting students burdened by our workload, we can
put many more students on the path to success.

7 ACKNOWLEDGEMENTS
This project would not have been possible without the
incredible mentorship, support, and friendships I was

fortunate to find in my 5 years in UC Berkeley. I would
like to thank

• Josh Hug, my advisor, for all his guidance, invalu-
able mentorship, and encouragement throughout
the past 4 years.

• Paul Hilfinger, teaching with whom was a great
honor and a great learning experience.

• Matthew Owen, Michelle Hwang, Connor Laf-
ferty, Omar Khan, and Henry Maier, for their
friendship and support throughout the comple-
tion of this project.

• The CS 61B staff, for their hard work and dedica-
tion to students, and allowing Snaps to become a
reality.

8 REFERENCES
[1] Berkeley Student Information Systems, https://sis.

berkeley.edu
[2] Jeffrey Forbes, David J. Malan, Heather Pon-Barry,

Stuart Reges, and Mehran Sahami. 2017. Scaling
Introductory Courses Using Undergraduate Teach-
ing Assistants. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Sci-
ence Education (SIGCSE ’17). Association for Com-
puting Machinery, New York, NY, USA, 657–658.
DOI:https://doi.org/10.1145/3017680.3017694

[3] Nathaniel Titterton, & M. Clancy (2007). Adding
Some Lab Time is Good, Adding More Must be
Better: the Benefits and Barriers to Lab-Centric
Courses. In FECS.

[4] Lisa Yan, Nick McKeown, Mehran Sahami, and
Chris Piech. 2018. TMOSS: Using Intermediate
Assignment Work to Understand Excessive Col-
laboration in Large Classes. In Proceedings of
the 49th ACM Technical Symposium on Com-
puter Science Education (SIGCSE ’18). Association
for Computing Machinery, New York, NY, USA,
110–115. DOI:https://doi.org/10.1145/3159450.3159490

[5] IDEs based on the IntelliJ platform, IntelliJ Plat-
form SDK, JetBrains Docs. https://plugins.jetbrains.
com/docs/intellij/intellij-platform.html#ides-based-
on-the-intellij-platform

[6] CS 61B at Berkeley, Spring 2021, https://sp21.datastructur.
es.

[7] Designation of Unit Value, Berkeley Academic
Senate, https://academic-senate.berkeley.edu/coci-
handbook/2.3.1

10

https://sis.berkeley.edu
https://sis.berkeley.edu
https://plugins.jetbrains.com/docs/intellij/intellij-platform.html#ides-based-on-the-intellij-platform
https://plugins.jetbrains.com/docs/intellij/intellij-platform.html#ides-based-on-the-intellij-platform
https://plugins.jetbrains.com/docs/intellij/intellij-platform.html#ides-based-on-the-intellij-platform
https://sp21.datastructur.es
https://sp21.datastructur.es
https://academic-senate.berkeley.edu/coci-handbook/2.3.1
https://academic-senate.berkeley.edu/coci-handbook/2.3.1

[8] File Document Manager Listener, IntelliJ API,
https://upsource.jetbrains.com/idea-ce/file/idea-ce-
7b9b8cc138bbd90aec26433f82cd2c6838694003/platform/
platform-api/src/com/intellij/openapi/fileEditor/
FileDocumentManagerListener.java

[9] Optimizing Performance, IntelliJ Platform SDK,
JetBrains Docs, https://plugins.jetbrains.com/docs/
intellij/performance.html.

[10] Recording Changes to the Repository, Git Docu-
mentation, https://git-scm.com/book/en/v2/Git-
Basics-Recording-Changes-to-the-Repository.

[11] The JGit Project, The Eclipse Foundation, https:
//www.eclipse.org/jgit.

[12] JetBrains PluginMarketplace, https://plugins.jetbrains.
com.

[13] Allen Guo .Analysis of Factors and Interventions
Relating to Student Performance in CS1 and CS2.

EECSDepartment, University of California, Berke-
ley. May 2020. http://www2.eecs.berkeley.edu
/Pubs/TechRpts/2020/EECS-2020-22.html

[14] Riccardo Guidotti, Anna Monreale, Salvatore Rug-
gieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. 2018. A Survey of Methods for Explain-
ing Black Box Models. ACM Comput. Surv. 51, 5,
Article 93 (January 2019), 42 pages. DOI: https:
//doi.org/10.1145/3236009

[15] GiuseppeDe Ruvo, Ewan Tempero, Andrew Luxton-
Reilly, Gerard B. Rowe, and Nasser Giacaman.
2018. Understanding semantic style by analysing
student code. In Proceedings of the 20th Aus-
tralasian Computing Education Conference (ACE
’18). Association for Computing Machinery, New
York, NY, USA, 73–82. DOI:https://doi.org/10.1145/
3160489.3160500

11

https://plugins.jetbrains.com/docs/intellij/performance.html
https://plugins.jetbrains.com/docs/intellij/performance.html
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://www.eclipse.org/jgit
https://www.eclipse.org/jgit
https://plugins.jetbrains.com
https://plugins.jetbrains.com
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1145/3160489.3160500

	Abstract
	1 Introduction
	2 Related Work
	3 Snaps
	3.1 CS 61B
	3.2 The Snaps Plugin

	4 Results
	4.1 Course Workload
	4.2 Paths to Success

	5 Future Work
	5.1 Live Streams
	5.2 Plagiarism Detection
	5.3 Other Uses of Snaps Data

	6 Conclusion
	7 Acknowledgements
	8 References

