
Designing an Assistive Mouse for Human Computer

Interaction Using Hand Gestures

Michael Qi

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-119

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-119.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Professor Brian Barsky for his guidance throughout
this project. I would also like to thank the team members of my research
group: Master of Engineering students Frank Cai, Sihao Chen, Xuantong
Liu, Weili Liu, Yizhou Wang, and Shiqi Wu as well as undergraduates Yash
Baldawa, Raghav Gupta, Rohan Hajela, Varun Murthy, Viansa
Schmulbach, Mengti Sun, and Sirinda Wongpanich.

Designing an Assistive Mouse for Human Computer Interaction Using
Hand Gestures

Michael Qi

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Brian Barsky
Research Advisor

13 May 2021

(Date)

* * * * * * *

Professor Eric Paulos
Second Reader

14 May 2021

(Date)

Abstract

While computers have become increasingly prevalent in recent years, they are not accessible

to all people. Although technology has advanced tremendously, human computer interaction

systems have not evolved to the same degree since their conception. In fact, the traditional

computer mouse used today was first designed more than 50 years ago. However, as computer

users grow increasingly diverse, the limitations of the mouse become more apparent. To

provide a greater degree of flexibility for a wide variety of people, we must develop alternative

systems of human computer interaction.

We propose an assistive mouse for people who are unable to use a traditional mouse com-

fortably due to physical limitations. It uses hand tracking and gesture recognition to enable

cursor movement and mouse actions, respectively. Furthermore, it incorporates anti-shake

filters to help people with essential tremors. Through our evaluation, we have confirmed

that each of the component modules achieves high accuracy and precision. As a result, the

system is currently operable.

i

Contents

Contents i

List of Figures ii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Related Work . 2

2 Methods 4
2.1 Image Processing Algorithms . 4
2.2 Deep Learning Algorithms . 10
2.3 Assistive Mouse Design . 13
2.4 User Research . 17

3 Results 18
3.1 Hand Tracking Analysis . 18
3.2 Gesture Recognition Analysis . 19
3.3 Limitations . 20

4 Discussion 22
4.1 Future Work . 22
4.2 Conclusion . 24

Bibliography 25

ii

List of Figures

1.1 Hand key point layout of Google’s MediaPipe model 2

2.1 Canny edge detection . 5
2.2 Background, captured frame, and background subtraction 6
2.3 Background subtraction, image mask, and color segmentation 7
2.4 Face removal, dilation, and hand segmentation 8
2.5 Segmented hand, distance transformation, and maximum inscribed circle 9
2.6 Segmented hand and convexity defects . 10
2.7 Complete image processing algorithm . 10
2.8 Captured frame, key points, and palm centroid 11
2.9 Moving average and Kalman filters . 16

3.1 Percentage of samples below error . 18

1

Chapter 1

Introduction

1.1 Motivation

For people with disabilities, interacting with computers using conventional methods can

be a challenge. In 2012, an estimated 10 million people suffered from essential tremors

in the United States alone [9]. Similarly, certain individuals lack the fingers required to

comfortably operate a physical mouse. Alongside its potential for causing hand strain [17],

the shortcomings of the traditional mouse have become increasingly evident. While it is the

most popular method of computer control by far, it is by no means perfect.

Unfortunately, there are currently very few alternatives to the traditional mouse. Al-

though several unorthodox devices do exist for people with disabilities [33] and ergonomic

options are offered, many of them are quite expensive. Furthermore, recent years have seen a

shift away from hardware solutions in favor of software ones. Our research group developed

a camera-based assistive mouse controlled by hand movements and gestures as an alternative

method of human computer interaction.

1.2 Background

In our system, we aim to emulate the two main components of a mouse. The first, cur-

sor movement, can be achieved through hand tracking. Meanwhile, mouse actions such as

clicking and dragging will be performed through gesture recognition.

Hand tracking identifies the pixels corresponding to hands in a picture. Under specified

circumstances, researchers have seen success using algorithms such as background subtraction

CHAPTER 1. INTRODUCTION 2

[30, 38] and color segmentation [10, 35] to solve this problem. However, with the recent

advent of deep learning, neural networks have surged in popularity as a more powerful

and flexible approach to hand tracking. Given enough labelled data, convolutional neural

networks can detect hands more accurately and reliably than image processing techniques

[32]. Also, many neural networks also deviate from prior image processing approaches to

hand tracking by identifying only the locations of specified hand key points [21, 39]. These

models summarize hands as skeletons of their most important joints to greatly accelerate

labelling and training time.

Figure 1.1: Hand key point layout of Google’s MediaPipe model

Meanwhile, the goal of gesture recognition is to classify the hand action performed in an

image. Image processing approaches accomplish this by using the specific shape of fingers

[7] or identifying convexity defects [8, 37]. However, these methods tend to only work with a

small number of static gestures. In contrast, machine learning algorithms operating on video

input can support dynamic gestures while also offering greater classification accuracy. Some

models, known as single shot detectors, report only the predicted gesture from the input

[18]. However, more efficient systems first track the hand, then apply a classifier to a subset

of the image which is determined by the bounding box of the hand [22, 31]. Finally, using a

smaller input of key points instead of the entire image can greatly improve the performance

speed of gesture recognition.

1.3 Related Work

Currently, the most prevalent solutions for assistive mouse software are built on head track-

ing. For example, both Camera Mouse [3] and Apple [20] have developed systems to control

the cursor using head movements. However, head tracking does not support a wide range of

clicking functionality. While facial expression analysis has been explored to mitigate this [13],

CHAPTER 1. INTRODUCTION 3

it is limited to a small number of classes. In our proposed system, we hope to offer greater

flexibility in movement and features by recognizing hand motion and gestures, respectively.

In addition, due to the computational intensity required for many machine learning meth-

ods, researchers often choose to instead use image processing techniques for hand tracking

and gesture recognition to perform at a sufficient number of frames per second (FPS) [37,

38]. However, optimizations in neural network architecture have allowed recent models to

run quickly without the need for graphics processing unit (GPU) hardware. We explore both

approaches to create a robust assistive mouse for human computer interaction that operates

in real time.

A proof of concept for the assistive mouse has already been demonstrated [2]. It provides

a overview of hand tracking and gesture recognition by examining the advantages and lim-

itations of various approaches. To build on this foundation, we incorporate more complex

algorithms and recent machine learning developments into our system. In this work, we also

focus on the transition from these modules to human computer interaction to provide an

intuitive assistive mouse solution.

4

Chapter 2

Methods

2.1 Image Processing Algorithms

Failed Approaches

Contour-Based Solutions

An ideal hand tracking system can detect hands in an image without the need for calibration.

In Canny edge detection [5], this can be achieved by locating areas of high contrast. Through

the use of image gradients and hysteresis thresholding, this algorithm identifies the most

prominent lines and contours in a picture. Depending on their shape, specific objects can

then be recognized and segmented.

Unfortunately, this method alone is insufficient for locating hands in a complex back-

ground. Given an image, Canny edge detection only outputs the pixels with high local

contrast, and it does not provide any insight on their context. As a result, there is no

guarantee that each contour only belongs to a single object. However, pixel variations, and

by extension, edges, are often created by the intersection of multiple objects. Determining

which portions of the contours correlate to hands is a challenging problem that cannot be

solved by Canny edge detection.

Furthermore, in images with many objects, the hand rarely corresponds to a single con-

nected contour. Instead, it is often comprised of many smaller line segments. Despite our

attempts to consolidate these pieces into a cohesive outline, we were unable to find a method

to reliably perform this task. Morphological operations [12] such as dilation can close small

gaps, but they also connect the hand with unrelated nearby contours. Similarly, clustering

CHAPTER 2. METHODS 5

Figure 2.1: Canny edge detection

algorithms exhibit the same limitations when grouping edges. While their parameters can be

adjusted to successfully segment the hand on individual images, this approach is not robust

to even small variations. Finally, decreasing hysteresis parameters or using adaptive thresh-

olding can detect weaker edges. Even so, this also creates additional noise. As a result, we

ultimately concluded edge detection was not a reliable enough approach to hand tracking.

CamShift

CamShift [1] is an alternative method for hand tracking that utilizes the temporal nature

of video input. After defining a bounding box in an initial image, the algorithm locates the

region in subsequent frames with the most similar pixel distribution. In other words, it can

follow any object it is initialized to. Furthermore, it will even adjust the size of its bounding

box to better fit the current image.

While inconvenient, the calibration required in CamShift is not a major drawback. Man-

ual initialization of the hand is possible, but this can be challenging for users of an assistive

mouse. Since the operation only needs to be performed once, a better solution is to use

a stronger machine learning classifier for the initial frame. Even weaker hardware will not

experience a noticeable decline in performance with a single hand detection, and CamShift

can proceed smoothly afterwards.

However, the CamShift algorithm also has multiple limitations. To begin with, its de-

pendence on raw pixel colors makes it difficult to ensure robustness. For example, in images

where the background is colored similarly to the hand, CamShift will frequently lose track of

the hand and instead focus on a stationary point. In addition, although CamShift supports

changing object sizes, it is less flexible to changes in shape. Users perform a variety of ges-

tures to trigger actions in our assistive mouse, making CamShift unsuitable for this purpose.

Lastly, CamShift is unable to consider negative samples. For our assistive mouse, recognizing

the absence of hands is as important as detecting their presence. Otherwise, erratic behavior

CHAPTER 2. METHODS 6

will occur, rendering the system disruptive when hands are not in the frame. This problem

could be solved defining a similarity threshold for pixel distributions, but it does not address

CamShift’s other drawbacks.

Proposed Method

Background Subtraction

Background subtraction is a straightforward yet effective algorithm for hand tracking. First,

the algorithm captures an initial frame of the background. All subsequent frames are sub-

tracted from this image, and by calculating the difference between the two, contrasting pixels

can easily be identified [30, 38]. As a result, background subtraction can quickly recognize

hand movements from when it is initialized.

Due to small variations in lighting conditions and camera error, the result of background

subtraction will often include minor noise. To address this issue, we apply a threshold on

the intensity of the pixel differences so that only major changes are detected.

Another limitation of background subtraction is that it only functions when the user’s

background remains static. In other words, it will fail if the user moves their camera or

changes their lighting conditions. However, we concluded users of the assistive mouse were

unlikely to adjust their background frequently, if at all. Therefore, background subtraction

would still serve as an effective approach to hand tracking.

Figure 2.2: Background, captured frame, and background subtraction

Color Segmentation

Color segmentation [10, 35] is a another useful technique to track hands. Given an image,

it preserves only the pixels within a specified range of colors. In other words, minimum and

maximum color values can be defined to detect skin, and consequently, hands, in a picture.

CHAPTER 2. METHODS 7

In practice, research [19] has shown that the HSV color space is better suited than the RGB

color space for this purpose.

However, skin color can vary widely, and selecting a narrow range of values will cause

skin detection to fail for certain people. On the other hand, a greater number of unwanted

background objects will be retained with a wider color range. To address this, we introduced

a convolutional neural network to locate the hand when it first enters the image. Our system

then sets its thresholds by sampling the detected hand, allowing the approach to support all

skin colors. If lighting conditions change or a different user operates the assistive mouse, the

color segmentation module can be quickly and easily recalibrated.

Finally, we combined background subtraction and color segmentation to create a more

effective hand tracking system. Background subtraction eliminates background elements

that fall within the defined color range. Meanwhile, color segmentation removes factors such

as clothes. The resulting image will only contain pixels corresponding to the user’s skin,

including hands.

Figure 2.3: Background subtraction, image mask, and color segmentation

Haar Cascade Classifiers

Haar cascade classifiers are lightweight machine learning models that can be used to detect

patterns in images [34]. Unlike neural networks that learn features in hidden layers, cascade

classifiers operate using a set of predefined Haar features. Given a large amount of training

data, the algorithm can determine whether a specific pattern exists in a picture. Face

detection, in particular, has emerged as a prominent application of Haar classifiers, which

are able to learn the similarities of human facial features.

In our hand tracking system, the only objects left in the image after color segmentation

are the hand and face. Using Haar face detection, the two can be differentiated, and the

face can be removed from the image. After applying a dilation filter to close small gaps [29],

CHAPTER 2. METHODS 8

only one large shape remains. By extracting this contour, we can successfully segment the

hand from the original image.

Figure 2.4: Face removal, dilation, and hand segmentation

However, since Haar cascade classifiers are designed to identify patterns, a more straight-

forward approach would be to recognize hands directly. Unfortunately, this does not work

well in practice. While faces generally maintain the same shape, hands exhibit more variation

while performing different gestures. Therefore, a single Haar classifier would be insufficient

for hand tracking. Instead, every hand position would require its own model, and the compu-

tational cost of applying each one to an image would invalidate the performance advantages

of the classifier. In addition, Haar classifiers are not especially robust. Although it is not

evident in face detection, the algorithm does not support rotations. If the head is turned or

tilted around even 30 degrees, a Haar classifier will fail to locate it. This is a minor issue for

face detection, but much more problematic for hand tracking. One objective of the assistive

mouse is to increase flexibility, and this is not possible with a Haar cascade classifier for

hands. Even so, face detection can still be used to segment hands.

Palm Center Location

With the hand successfully segmented, our assistive mouse can use its position for cursor

control. However, the hand is comprised of numerous pixels, and they must be reduced to

a single coordinate. We chose to use the palm center for this purpose. The fingertips and

mean pixel will frequently change by performing different gestures even if the hand position

has not changed, making precision controls difficult. Meanwhile, the palm center remains

relatively constant no matter what hand gesture is being performed [37].

A common approach to locate the palm center and radius is to calculate the maximum

inscribed circle of the hand [23]. By finding the largest circle contained with the contour, the

palm can be approximated while ignoring the fingers. In continuous space, exact solutions

to this problem achieve O(n log n) complexity with respect to the number of points on the

CHAPTER 2. METHODS 9

contour. As the size of the hand increases, so does the time required to determine the

maximum inscribed circle.

Fortunately, in discrete pixel space, a more straightforward method exists to locate the

palm center. The distance transform calculates the space from each white pixel to the

nearest black pixel. Therefore, by applying it to a filled hand contour, we can identify the

palm center and radius in θ(n) time [7]. If the contour were not filled, gaps in the segmented

hand would lead to incorrect results. However, filling the hand also inadvertently closes space

in gestures such as hand circles. While inconvenient, this is a trivial drawback compared to

the robustness provided by the fill operation.

Finally, in the case that the user is wearing short sleeves, there are situations where the

maximum inscribed circle is located on the forearm near the elbow. To prevent this, we limit

our search to the top of the hand. More specifically, pixels below 150% of the hand’s width

are not considered when calculating the maximum inscribed circle.

Figure 2.5: Segmented hand, distance transformation, and maximum inscribed circle

Static Gesture Recognition

The segmented hand is also used to perform static gesture recognition. By analyzing the

hand’s shape, we can determine the number of fingers shown in an image. Sharp angles in

the hand contour often correspond to the space between fingers, and these points can be

located using convexity defects [8]. First, a convex hull is constructed containing all the

pixels of the segmented hand. Next, any large deviations from this polygon are classified as

the space between fingers. Since there is always one more finger than defect, we can use this

method to effectively count the number of fingers shown. In the case when no defects are

identified, we conclude the user is making a fist.

However, this approach is unable to distinguish between one and two fingers because both

gestures consist of a single convexity defect. To differentiate the two, we compare their areas

relative to the palm radius. A gesture with one finger will create a much larger convexity

CHAPTER 2. METHODS 10

defect than a gesture with two fingers. Therefore, we can set a threshold such that the

system correctly classifies these gestures.

There are several limitations to our gesture recognition module. For example, it only

identifies the number of fingers shown, not which ones are raised. Therefore, only six gestures

are available, but additional ones could be defined by using more complex geometry. Also,

our image processing algorithms cannot recognize dynamic gestures. While this provides less

flexibility, we believe it is actually beneficial to the assistive mouse as a whole. If dynamic

gestures were supported, they would conflict with the hand tracking module. In other words,

it would be difficult for our system to distinguish between a hand movement and a swipe

gesture. As a result, we decided not to pursue dynamic gesture recognition for the assistive

mouse.

Figure 2.6: Segmented hand and convexity defects

For reference, our proposed method in its entirety is as follows.

Figure 2.7: Complete image processing algorithm

2.2 Deep Learning Algorithms

Key Point Detection

Deep learning is a more powerful and robust approach to hand tracking than image pro-

cessing algorithms [24, 28]. Previously, neural networks required GPU hardware to support

CHAPTER 2. METHODS 11

the computational intensity of their models. However, recent optimizations have enabled

detectors to operate in real time using only CPU resources.

Instead of locating all the pixels corresponding to the hand, these models only identify the

most important hand points [6, 39]. Furthermore, the predicted coordinates also include an

estimate of depth. Although some image information is lost during inference, an additional

axis is added. By learning fewer parameters, these neural networks can converge more quickly

than convolutional models. As a result, they are affected less by picture noise.

In fact, the hand skeleton is even more useful than the hand’s pixels for palm tracking.

Key points are more stable than the distance transform, which is sensitive to segmentation

noise. Although none of the key points correspond directly to the palm center, it can be

calculated using nearby key points. To do so, we construct a polygon from the points

surrounding the palm. Using Gauss’s area formula, we can determine its centroid. With the

key point detector, palm tracking is easily achievable.

Figure 2.8: Captured frame, key points, and palm centroid

Key Point Gesture Recognition

Key points can also be used to perform gesture recognition. While it is possible to use a

geometric analysis similar to convexity defects for this purpose, machine learning methods

are far more robust. In addition, key points are a much smaller input than the segmented

hand. Therefore, training machine learning models can be completed more quickly and with

less data. Finally, unlike the segmented hand, key points can be easily preprocessed. For

each sample, we rotate the hand to an upright position and normalized its size before using

it as input to our algorithms. Wu et al. compared the classification accuracies of several

machine learning algorithms to find the best model for gesture recognition [36].

CHAPTER 2. METHODS 12

Support Vector Machines

A support vector machine (SVM) finds boundaries to separate data in higher dimensional

space [14]. In our assistive mouse, the optimal hyperplanes partition the samples from each

gesture into different areas of the space. However, since the data are not linearly separable,

SVMs are unable to achieve perfect accuracy. To address this issue, we use a radial basis

function kernel. This adds dimensionality to the training data, allowing the model to learn

some nonlinearities.

Decision Trees and Random Forests

Instead of treating each data point as a single input vector, decision trees perform classi-

fications by evaluating one feature at a time [25]. Depending on their value relative to a

threshold, different gestures will be predicted, and decision trees can learn nonlinearities

quickly using this approach.

Random forests build on decision trees by also incorporating ensemble learning. Increas-

ing the number of classifiers reduces the variance of predictions, which in turn leads to greater

accuracy [4]. However, if given the same data, all the decision trees will be identical. To

create heterogeneity among the classifiers, each tree is only given a random subset of the

features. As a result, their accuracies will vary, and stronger classifiers will be given greater

weight in the final prediction.

Neural Networks

Neural networks have become a popular approach to many classification problems such as

gesture recognition because of their ability to fit models to high dimensional data [27]. Using

hidden weights, this method performs gradient descent to minimize the cost function of its

parameters on the training data. Since neural networks are able to model nonlinearities well,

we also included the angles between hand key points as input. Next, we used a multilayer

perceptron (MLP) network [26] to calculate the probability of each gesture given the key

points and angles of each frame. Finally, the gesture associated with the highest value was

selected as the prediction. While neural network training can be slow, our models converged

quickly due to the small number of features in the data.

However, this approach to gesture recognition classifies each frame independently. Since

users are unlikely to change gestures quickly, a better model would leverage the temporal

nature of video to make its predictions. A long short-term memory (LSTM) network [15]

CHAPTER 2. METHODS 13

uses feedback connections to maintain a hidden state in its weights. In other words, key

points in previous frames will impact the current prediction, creating a more accurate and

robust gesture recognition model. However, out training data did not fit this architecture

as well as the other models. If key point detection failed in a single image, we could remove

the sample from the training data, which did not affect classifiers that considered each input

independently. For the LSTM network, these samples were retained in the training data.

Since the model was trained on consecutive sequences of frames, these points could not be

discarded.

2.3 Assistive Mouse Design

Cursor Control Methods

Absolute Cursor Control

In absolute cursor control, the palm’s position in the frame is mapped proportionally to the

screen. It provides an intuitive method for the user to control the mouse because the cursor

always moves in the same direction as the hand.

However, there are several limitations to absolute cursor control. Since web camera image

resolution is often lower than the screen resolution, this approach is sensitive to noise. Even

small hand movements or shaking will cause the cursor to move across many pixels. As a

result, maintaining stability can be difficult for users, especially with those who suffer from

conditions such as essential tremors.

Furthermore, mapping the entirety of the frame to the entirety of the screen is not ideal.

When controlling the assistive mouse, most users will align their body in the center of the

frame. Without a loss of generality, this means a right-handed user must reach across their

body to move the cursor to the left side of screen. This problem makes the assistive mouse

less accessible to some groups and generates unnecessary inconvenience for users who are

able to perform this action. Finally, it is difficult to move the cursor to certain areas of the

screen with absolute hand tracking. For example, users will move their hand to the upper

corner of the camera frame to close a window. However, if the user’s palm is at the corner

of the image, their fingers are not visible. Therefore, hand detection will fail, making it

impossible to move the cursor to the edge of the screen.

To solve both these problems, we limit absolute cursor control to a smaller area of the

image. A window with size equal to one third the image width is visualized on the frame

CHAPTER 2. METHODS 14

to represent the boundaries of the cursor control. If the hand is detected outside this area,

it is moved to the corresponding edge of the screen. Depending on their preferences or

handedness, users can adjust the position of this window.

While this solution does make the entire screen accessible, limiting absolute cursor control

to an even smaller region of the frame further increases the sensitivity of the approach. Users

found it difficult to keep the cursor in one spot and tended to overshoot precise movements.

As a result, we concluded the method was not an effective approach to cursor control.

Relative Cursor Control

Relative cursor control uses the temporal relationship between video frames to move the

mouse. Instead of treating each input independently, it moves the cursor based on the change

in hand position over the past few frames. As the speed of the hand motion increases, so

does the speed of cursor.

This was implemented by retaining the positions of previous palm centers. For each new

input coordinate, we computed its difference with the average of the queue. Afterwards,

the cursor would move in this direction with distance proportional to the magnitude of the

vector.

However, relative cursor control is ineffective when there is a linear relationship between

the difference vector and cursor movement. For example, moving the hand five pixels over five

frames will result in the same cursor movement as moving the hand five pixels in one frame.

A more intuitive system will move the cursor a greater distance as the hand speed increases.

To achieve this, for a change ∆x, the cursor is moved horizontally c∆x2 pixels where c is a

scalar constant. By establishing a quadratic relationship between hand movement and cursor

control, users can manipulate the mouse more flexibly. Furthermore, the sensitivity c can

be adjusted to fit the user’s habits. With c = 1, the entire screen can be accessed without

reaching across the user’s body while still offering precision controls. Since small hand

movements barely move the cursor, this approach is also robust to minor noise. Similarly, a

threshold can be set to ignore small changes in position.

Joystick Cursor Control

Joystick cursor control is inspired by video game systems. The user defines a point on the

image as the center, and subsequent cursor movement is informed by the palm’s position

relative to this point. For example, if the hand is located to the left of the center, the cursor

CHAPTER 2. METHODS 15

will move left until the hand is moved. In addition, the cursor’s speed is controlled by the

distance from the hand to the center. The greater this separation, the quicker the cursor

movement.

Out of our three cursor control methods, the joystick is the least sensitive to variation.

In absolute control, detection error directly determines the cursor’s position, but noise only

affects the direction vector in joystick control. In addition, these small pixel variations are

generally insignificant relative to the magnitude of this vector. Therefore, even with noise,

the cursor will continue to move in the intended direction. This allows the joystick method

to function as an extremely robust method of cursor control.

However, the joystick is also the least intuitive of our cursor control systems. Unlike the

other approaches, cursor movement can be achieved by keeping the hand still. Similarly,

cursor movement does not always correspond to the same direction as hand movement. If

the user’s hand moves right, the cursor will move left as long as the palm is left of the center.

Even so, users were able to familiarize themselves with joystick control with practice.

In addition, maintaining stability can be a challenge with joystick cursor control. Since

the direction vector will only be zero if the palm is exactly at the center, there is often slight

cursor drift. To solve this problem, we set a threshold for the magnitude of the vector. Any

points within this radius are ignored, creating a small dead zone around the center. As a

result, the user can place their palm within this circle to keep the cursor stationary.

Tremor and Anti-Shake Filtering

To make our assistive mouse accessible to people with essential tremors, we implemented

multiple anti-shake filters. Even if the user attempts to keep their hand steady, noise is

unavoidable in hand tracking. Therefore, all users can benefit from filtering.

Simple Moving Average Filter

A simple moving average filter stores the palm centers of the previous frames. It acts as

a sliding window, and upon receiving a new coordinate, the mean position is recalculated.

This approach blurs the frequency of the hand tracking signal, resulting in smoother motion.

In fact, even absolute cursor control is relatively stable after filtering. Depending on the

number of frames used to calculate the mean position, control can be tuned to fit the user’s

preferences. Averaging over a larger number of frames improves stability at the cost of cursor

speed, and the opposite holds for a smaller window.

CHAPTER 2. METHODS 16

Kalman Filter

The Kalman filter [16] is a more complex approach that uses prior knowledge of the system

to predict and filter. Unlike the simple moving average filter, which only stores previous

positions, the Kalman filter also tracks velocity. As a result, it is more resistant to changes

in direction. The filter also assumes its input will have errors, and both process and mea-

surement uncertainty are considered when receiving a new input. However, tuning these

parameters can be a challenge. It requires a good understanding of the uncertainty, but this

will vary among users and computers. Even so, some users found the Kalman filter more

effective than the simple moving average.

Figure 2.9: Moving average and Kalman filters

Mouse Actions

Mouse functionality can be achieved using our gesture classification models. All of the

gestures are mapped to a different mouse action, such as clicking or dragging. When these

gestures are recognized, their corresponding action is performed. However, although gesture

recognition runs in every frame, the commands should not be executed at the same frequency.

For example, the assistive mouse should not continuously click if the correct gesture is shown.

Therefore, the system only performs an action when it is first recognized. Users can also

remap gestures to different commands according to their preferences and abilities.

Since our gesture recognition models do not achieve perfect accuracy, there will be pre-

diction errors. For mouse actions, recognizing the wrong gesture for even one frame can be

extremely disruptive. To solve this issue, similar to cursor control, we also store previous

classifications to improve robustness. However, since we cannot calculate a gesture average,

we instead use a finite state machine. When the system recognizes a new gesture, it is put

in an intermediate state. The corresponding action is performed only after it has been pre-

CHAPTER 2. METHODS 17

dicted in a sufficient number of frames. Furthermore, we modified this requirement for each

gesture depending on how frequently it is used. While this approach adds a slight delay to

mouse functionality, the difference is imperceptible. The system operates with high FPS,

and users are unable to distinguish between the finite state machine and immediate mouse

actions. Meanwhile, the better stability greatly enhances user experience.

Lastly, we chose palm tracking over alternatives such as fingertip tracking because of

its consistency when performing gestures. However, this was not true in practice, and most

gestures move the palm center slightly. For example, changing from an open palm to a closed

fist lowered the hand position using both image processing methods and key point detection.

In absolute cursor control, this is especially problematic. Users found it challenging to

execute the desired action at the correct location using certain gestures. To successfully

do so, they were required to offset their hand before making the gesture, which is both

unintuitive and inconvenient. For relative cursor control, we solve this problem by clearing

the queue of previous palm centers. This way, the cursor will remain stationary when the

user performs gestures and respond with the expected behavior. However, this is not an

issue for joystick cursor control. Most mouse actions are performed when the cursor is still,

and this approach utilizes a dead zone. If it is large enough, users can position their hand

such that even if the palm center changes, there will be no cursor movement. Therefore,

stable mouse functionality can easily be achieved with the joystick.

2.4 User Research

Lastly, we conducted a small, informal survey to gather feedback on the design of our assistive

mouse. Previously, our choices had been informed by personal experience, but they were

not representative of our target audience. By receiving input from potential users, we could

better comprehend the complications involved in their situations and develop our system to

more accurately meet their needs.

As a whole, interviewed participants found our assistive mouse easy to understand. Most

of them currently used voice assistants for human computer interaction, and they recognized

circumstances where hand tracking would be more advantageous. In addition, they also

emphasized the importance of creating an intuitive gesture recognition system. A common

suggestion was to assign gestures to logically related functionality, such as holding the thumb

down to close a window. Although we address this by allowing users to assign gestures to

mouse actions based on their preferences, our system is limited to a set of predefined gestures.

18

Chapter 3

Results

3.1 Hand Tracking Analysis

Evaluation Methods

We evaluated the accuracy of both the image processing and deep learning hand tracking

methods on the stereo hand tracking dataset provided by [40]. This dataset offers hand

counting poses across six scenes with different backgrounds. For each image, we calculated

the average distance between our identified palm center and the given label in millimeters.

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 All

Image Processing 10.99 14.54 309.88 11.89 13.43 76.99 72.95

Key Point Detection 9.52 11.89 11.98 11.31 12.26 11.61 11.43

To illustrate the distribution of hand tracking error, we also determined the percentage

of hand tracking samples below various millimeter thresholds.

Figure 3.1: Percentage of samples below error

CHAPTER 3. RESULTS 19

In most scenes, our image processing methods provide accuracy comparable to that of

key point detection. However, they fail to correctly locate the hand in two scenes. Key point

detection is able to identify the palm center in these backgrounds, and it outperforms our

image processing algorithms in all six scenes.

We also performed a performance analysis on both approaches to hand tracking uncon-

strained by the I/O time required to read images.

Method Frames per Second

Image Processing 26.44

Key Point Detection 47.36

Key point detection also outperforms our image processing methods in its runtime. In

theory, the computation saved in hand tracking can be dedicated to a more complex gesture

recognition system. However, the average web camera only captures 30 frames per second,

limiting the performance of key point detection. As a result, the difference in processing

time will be negligible for most users. Even so, the superior accuracy of key point detection

make it the better choice for hand tracking.

3.2 Gesture Recognition Analysis

Evaluation Methods

We trained and evaluated the accuracy of our gesture recognition models on the EgoGesture

[41] dataset. To replicate a mouse’s functionality, we only required 11 of the 83 available

gestures. While dynamic gestures can provide greater intuition for certain commands, we

chose to instead use static gestures. Their greater simplicity allows models to classify them

more quickly and accurately.

Method Classification Accuracy

Support Vector Machine 86.25%

Random Forest 92.36%

Multilayer Perceptron Network 88.54%

Long Short-Term Memory Network 82.88%

Support vector machines create the simplest boundaries and have the most difficulty

modeling nonlinearities. Although they did not perform as well as our best models, they

CHAPTER 3. RESULTS 20

still achieved reasonably high accuracy. Our results suggest that hyperplanes alone are

insufficient to address the complexity present in hand gestures.

Random forests generated the highest classification accuracy out of all our models. The

key points detected for a single gesture frequently exhibit the same spatial patterns, making

decision trees and random forests a strong approach to gesture recognition. While slightly

less accurate, MLP networks were able to learn these patterns and converge to accurate

weights with only a few hidden layers and epochs of training.

Unlike the other models, LSTM networks predict gestures using multiple frames. Al-

though this can lead to greater accuracy, it is also more difficult to train and converges

mores slowly. Furthermore, it is more dependent on the accuracy of key point detection,

making its predictions less robust to outliers. In simpler models, hand tracking errors will

only affect a single frame. Similarly, no classification will occur if key point detection fails.

However, in LSTM networks, each frame is used for several predictions. Errors will persist

for longer, and the system must compensate when no key points are identified. As a re-

sult, training a robust LSTM network requires much greater complexity, leading to its low

accuracy in gesture recognition.

3.3 Limitations

As mentioned above, image processing is not as robust as deep learning for tracking hands.

Multiple components in our proposed image processing method require initialization to func-

tion properly. If the setting is changed even slightly, recalibration may be necessary, and this

can lead to a poor user experience. Similarly, our proposed method does not support use of

the assistive mouse in a dynamic background although this is not a major inconvenience for

most users.

Another limitation of image processing algorithms is that they can lead to unpredictable

behavior when the face is occluded by the hand. Since we use the Haar cascade classifier to

remove the face from the image, some of the hand will also be removed in certain situations. If

the two barely overlap, only parts of the fingers will be lost. While this does not impact hand

tracking, it can affect our gesture recognition module. However, if the there is substantial

facial occlusion, hand tracking also becomes unstable. When face detection succeeds, its

pixels are removed from the image. Therefore, the hand is also lost, and neither palm

tracking nor gesture recognition can be executed. Meanwhile, if the face is not detected,

the resulting hand contour is misshapen. As a result, palm tracking will fail, and gesture

CHAPTER 3. RESULTS 21

recognition will be unable to identify fingers. While some work has been done to mitigate

this, these approaches are not very robust [11]. For example, they depend on keeping the

user’s face and body still, but this can be difficult with the assistive mouse. If their hand is

obstructing their view, users will naturally move to see the screen clearly. Another potential

solution is to direct the user’s camera away from their body. Since most users will use their

web camera to operate the assistive mouse, this is generally not a practical option. Even so,

some users can benefit from using a separate camera.

Overall, deep learning is a better basis for the assistive mouse than image processing.

However, neural networks are also more prone to false positives in hand tracking. In other

words, they occasionally recognize hands when none are present in the frame. As a result,

the cursor will move erratically on the screen. In addition, gesture recognition is performed

whenever key points are identified. Due to a false positive hand detection, unexpected mouse

actions can be executed. Fortunately, the probability of this occurrence is decreased by the

gesture recognition finite state machine.

22

Chapter 4

Discussion

4.1 Future Work

Haar Cascade Classifiers

Although we discussed the drawbacks of using Haar cascade classifiers for hand detection,

we were unable to verify this quantitatively. To do so, a dataset with the supported gestures

must first be constructed. Unfortunately, the EgoGesture dataset is insufficient for this

purpose. While it can be used to generate key point data, it is less useful for image processing.

Since all its images are taken from an egocentric point of view, only the backs of the hands

are visible. Haar wavelets detect features such as edges, so a classifier trained on these

images will likely not apply to frames depicting the palm and knuckles. Even so, if a suitable

dataset existed, it could be possible to perform hand tracking and gesture recognition in a

single step. As a result, both the latency and computational resources required to operate

the assistive mouse would decrease.

Dynamic Gesture Recognition

Currently, the assistive mouse only supports static gestures. For the majority of gesture

recognition models, they are easier to learn. In addition, changes in static gestures are

well defined. Despite these advantages, they are not as intuitive as dynamic gestures. For

example, it is easier for users to remember swiping up to scroll down than showing three

fingers. Therefore, implementing a dynamic gesture recognition model could greatly improve

user experience.

CHAPTER 4. DISCUSSION 23

However, it also carries additional challenges. More specifically, the system must be able

to distinguish dynamic gestures from cursor movement. One potential solution is to make

cursor control situational. In other words, it would only be enabled when a specific gesture

is performed. While moving the cursor would require additional steps, it would likely be

necessary so the hand tracking and gesture recognition modules do not conflict.

Custom Gestures

Another limitation of the assistive mouse is that it only supports a set of predefined gestures.

Although they were selected for their simplicity, some users might find them difficult to

perform. Similarly, users might prefer alternative methods of human computer interaction.

Consequently, the system could be improved by allowing users to define their own gestures.

Incorporating them into the existing models could be challenging, but this approach offers

better flexibility. Meanwhile, also allowing users to remove unused gestures and decreasing

the number of classes could improve the model’s accuracy. This would enable users to

customize the assistive mouse to fit their needs and abilities.

Speech Recognition

Speech recognition is a relatively unexplored research area for the assistive mouse. While it

could be useful for cursor control, it is likely better as an alternative to gesture recognition for

mouse actions. For users who lack hand mobility or find many gestures uncomfortable, speech

recognition provides another option for them to interact with the computer. Furthermore,

it would not suffer from the limitation of moving the palm and cursor to execute an action.

Systems such as Apple’s Siri and Microsoft’s Cortana already enable functionality such as

opening applications using voice controls, and speech recognition would extend this further.

Depth Cameras

Depth cameras have become more popular in recent years to provide additional details in

problems such as hand tracking. Although some key point detectors estimate this informa-

tion, depth cameras accurately do so for each pixel in the image. With a greater number of

features, more complex models for hand tracking and gesture recognition can be designed.

However, these improvements would not be accessible for all users because they require

external hardware.

CHAPTER 4. DISCUSSION 24

4.2 Conclusion

We present an assistive mouse for human computer interaction built on capturing hand

movements. It serves as an alternative system that can help people who experience chal-

lenges using a traditional mouse. Through hand tracking and gesture recognition, the same

functionality can be realized. Since it only requires a camera, it can easily be used by a wide

range of people.

As technology becomes more accessible, it is even more important to develop intuitive

systems for human computer interaction. Doing so allows more people to benefit from its

capabilities. We believe the assistive mouse represents a step in the right direction towards

making computers available for everyone.

25

Bibliography

[1] John Allen and Richard Xu. “Tracking Using CamShift Algorithm and Multiple Quan-
tized Feature Spaces.” In: Jan. 2003, pp. 3–7.

[2] Toby Baker, Weihao Dong, Xun Lin, Ayusman Saha, Fangping Shi, and Brian Barsky.
Camera-Based Cursor Control to Increase User Accessibility. MEng report. EECS De-
partment, University of California, Berkeley, May 2020.

[3] M. Betke, J. Gips, and P. Fleming. “The Camera Mouse: visual tracking of body fea-
tures to provide computer access for people with severe disabilities”. In: IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering 10.1 (2002), pp. 1–10. doi:
10.1109/TNSRE.2002.1021581.

[4] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.
issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/10.1023/
A:1010933404324.

[5] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679–698. doi:
10.1109/TPAMI.1986.4767851.

[6] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. 2019. arXiv:
1812.08008 [cs.CV].

[7] Zhi-hua Chen, Jung-Tae Kim, Jianning Liang, Jing Zhang, and Yu-Bo Yuan. “Real-
Time Hand Gesture Recognition Using Finger Segmentation”. In: The Scientific World
Journal 2014 (June 2014), p. 267872. issn: 2356-6140. doi: 10.1155/2014/267872.
url: https://doi.org/10.1155/2014/267872.

[8] Amiraj Dhawan and Vipul Honrao. “Implementation of Hand Detection based Tech-
niques for Human Computer Interaction”. In: (Dec. 2013). doi: 10.5120/12632-9151.

[9] International Essential Tremor Foundation. Facts About Essential Tremor. 2013. url:
https://www.essentialtremor.org/wp-content/uploads/2013/07/FactSheet012013.

pdf.

[10] Frédérick Gianni, C. Collet, and P. Dalle. “Robust Tracking for Processing of Videos
of Communication’s Gestures”. In: Gesture Workshop. 2007.

BIBLIOGRAPHY 26

[11] Matilde Gonzalez, Christophe Collet, and Rémi Dubot. “Head Tracking and Hand
Segmentation during Hand over Face Occlusion in Sign Language”. In: Sept. 2010.
doi: 10.1007/978-3-642-35749-7_18.

[12] R. M. Haralick, S. R. Sternberg, and X. Zhuang. “Image Analysis Using Mathematical
Morphology”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-9.4 (1987), pp. 532–550. doi: 10.1109/TPAMI.1987.4767941.

[13] Head Mouse Software for Hands-Free Mouse Control via Web Camera. url: https:
//smylemouse.com/.

[14] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. “Support vector
machines”. In: IEEE Intelligent Systems and their Applications 13.4 (1998), pp. 18–28.
doi: 10.1109/5254.708428.

[15] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[16] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45. issn: 0021-9223. doi: 10.
1115/1.3662552. url: https://doi.org/10.1115/1.3662552.

[17] Peter Keir, Joel Bach, and David Rempel. “Effects of computer mouse design and
task on carpal tunnel pressure”. In: Ergonomics 42 (Nov. 1999), pp. 1350–60. doi:
10.1080/001401399184992.

[18] Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, and Gerhard Rigoll. Real-time Hand
Gesture Detection and Classification Using Convolutional Neural Networks. 2019. arXiv:
1901.10323 [cs.CV].

[19] Qiong Liu and Guang-zheng Peng. “A robust skin color based face detection algo-
rithm”. In: 2010 2nd International Asia Conference on Informatics in Control, Au-
tomation and Robotics (CAR 2010). Vol. 2. 2010, pp. 525–528. doi: 10.1109/CAR.
2010.5456614.

[20] Move the pointer using head pointer on Mac. url: https://support.apple.com/
guide/mac-help/move-the-pointer-using-head-pointer-mchlb2d4782b/mac.

[21] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath
Sridhar, Dan Casas, and Christian Theobalt. “GANerated Hands for Real-Time 3D
Hand Tracking from Monocular RGB”. In: Proceedings of Computer Vision and Pat-
tern Recognition (CVPR). June 2018. url: https://handtracker.mpi-inf.mpg.de/
projects/GANeratedHands/.

[22] Pradyumna Narayana, Ross Beveridge, and Bruce A. Draper. “Gesture Recognition:
Focus on the Hands”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2018.

BIBLIOGRAPHY 27

[23] José Manuel Palacios, Carlos Sagüés, Eduardo Montijano, and Sergio Llorente. “Human-
computer interaction based on hand gestures using RGB-D sensors”. In: Sensors (Basel,
Switzerland) 13.9 (Sept. 2013), pp. 11842–11860. issn: 1424-8220. doi: 10 . 3390 /

s130911842. url: https://doi.org/10.3390/s130911842.

[24] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. “Realtime and Robust
Hand Tracking from Depth”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2014.

[25] J. R. Quinlan. “Induction of decision trees”. In: Machine Learning 1.1 (Mar. 1986),
pp. 81–106. issn: 1573-0565. doi: 10.1007/BF00116251. url: https://doi.org/10.
1007/BF00116251.

[26] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–
536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://doi.org/10.1038/
323533a0.

[27] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In: CoRR
abs/1404.7828 (2014). url: http://arxiv.org/abs/1404.7828.

[28] Toby Sharp, Yichen Wei, Daniel Freedman, Pushmeet Kohli, Eyal Krupka, Andrew
Fitzgibbon, Shahram Izadi, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie
Shotton, David Kim, Christoph Rhemann, Ido Leichter, and Alon Vinnikov. “Accurate,
Robust, and Flexible Real-time Hand Tracking”. In: Apr. 2015, pp. 3633–3642. doi:
10.1145/2702123.2702179.

[29] K Sreedhar. “Enhancement of Images Using Morphological Transformations”. In: In-
ternational Journal of Computer Science and Information Technology 4.1 (Feb. 2012),
pp. 33–50. issn: 0975-4660. doi: 10.5121/ijcsit.2012.4103. url: http://dx.doi.
org/10.5121/ijcsit.2012.4103.

[30] Ekaterini Stergiopoulou, Kyriakos Sgouropoulos, Nikos Nikolaou, Nikos Papamarkos,
and Nikos Mitianoudis. “Real time hand detection in a complex background”. In:
Engineering Applications of Artificial Intelligence 35 (2014), pp. 54–70. issn: 0952-
1976. doi: https://doi.org/10.1016/j.engappai.2014.06.006. url: https:
//www.sciencedirect.com/science/article/pii/S0952197614001286.

[31] J. Sun, T. Ji, S. Zhang, J. Yang, and G. Ji. “Research on the Hand Gesture Recognition
Based on Deep Learning”. In: 2018 12th International Symposium on Antennas, Prop-
agation and EM Theory (ISAPE). 2018, pp. 1–4. doi: 10.1109/ISAPE.2018.8634348.

[32] Ao Tang, Ke Lu, Yufei Wang, Jie Huang, and Houqiang Li. “A Real-Time Hand
Posture Recognition System Using Deep Neural Networks”. In: ACM Trans. Intell.
Syst. Technol. 6.2 (Mar. 2015). issn: 2157-6904. doi: 10.1145/2735952. url: https:
//doi.org/10.1145/2735952.

[33] Pretorian Technologies. Mouse Alternatives for Disabled Users - Assistive Technology.
2021. url: https://www.pretorianuk.com/mouse-alternatives.

BIBLIOGRAPHY 28

[34] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of simple
features”. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001. Vol. 1. 2001, pp. I–I. doi: 10.1109/
CVPR.2001.990517.

[35] Robert Y. Wang and Jovan Popović. “Real-time hand-tracking with a color glove”. In:
ACM Transactions on Graphics 28.3 (2009).

[36] Shiqi Wu, Sihao Chen, Weili Liu, Frank Cai, Yizhou Wang, Xuantong Liu, and Brian
Barsky. Assistive Technology for Navigation, Selection, Pointing, and Clicking in a
Mouse-free Environment. MEng report. EECS Department, University of California,
Berkeley, May 2021.

[37] Pei Xu. A Real-time Hand Gesture Recognition and Human-Computer Interaction Sys-
tem. 2017. arXiv: 1704.07296 [cs.CV].

[38] Hui-Shyong Yeo, Byung-Gook Lee, and Hyotaek Lim. “Hand tracking and gesture
recognition system for human-computer interaction using low-cost hardware”. In: Mul-
timedia Tools and Applications 74.8 (Apr. 2015), pp. 2687–2715. issn: 1573-7721. doi:
10.1007/s11042-013-1501-1. url: https://doi.org/10.1007/s11042-013-1501-
1.

[39] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung,
Chuo-Ling Chang, and Matthias Grundmann. MediaPipe Hands: On-device Real-time
Hand Tracking. 2020. arXiv: 2006.10214 [cs.CV].

[40] J. Zhang, J. Jiao, M. Chen, L. Qu, X. Xu, and Q. Yang. “A hand pose tracking
benchmark from stereo matching”. In: 2017 IEEE International Conference on Image
Processing (ICIP). 2017, pp. 982–986. doi: 10.1109/ICIP.2017.8296428.

[41] Yifan Zhang, Congqi Cao, Jian Cheng, and Hanqing Lu. “EgoGesture: A New Dataset
and Benchmark for Egocentric Hand Gesture Recognition”. In: IEEE Transactions on
Multimedia 20.5 (2018), pp. 1038–1050. doi: 10.1109/TMM.2018.2808769.

