
Joining Interactive Graphics and Procedural Modeling

for Precise Free-Form Designs

Randy Fan
Carlo H. Séquin, Ed.
Ren Ng, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-125

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-125.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to express my deepest gratitude to my advisor, Professor Carlo
H. Séquin. His support and mentorship over the past few years have
helped me grow into a well-rounded engineer. His passion for 3D modeling
is contagious and has made me appreciate the beautiful connection
between art and mathematics. Most of all, I would like to thank him for the
life values that he has instilled in me through our wonderful discussions -
among many are pursuing things in life that interest me and leading teams
skillfully.

I would also like to thank Professor Ren Ng for being an amazing role
model and helping me reach my potential. He has supported me both
academically and professionally on many occasions, and his courses
inspired me to delve deeper into the field of computer graphics.

Joining Interactive Graphics and Procedural Modeling for Precise Free-Form
Designs

by Randy Fan

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of
Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Carlo H. Séquin
Research Advisor

05/08/2021

(Date)

* * * * * * *

Professor Ren Ng
Second Reader

05/12/2021

(Date)

1

Joining Interactive Graphics and Procedural Modeling for Precise Free-Form Designs

Randy Fan

Electrical Engineering and Computer Science, University of California, Berkeley

randyfan@berkeley.edu

Abstract

JIPCAD (Joint-Interactive-Procedural CAD) is a 3D procedural CAD tool used for programmatically

creating geometries with a shape description language. Users can interactively modify the scene in a

graphical user interface and save modifications back into the corresponding file as reusable code; a

reopening of the enhanced file will reproduce the latest graphical state, and the user can continue in either

a graphical manner or by textual changes in the .jip file.

JIPCAD combines procedural and interactive modeling, making it easier for users to model 2-manifold

free-form surfaces of high complexity and inherent regularity. In this report, we will discuss JIPCAD and

the development of its shape description language and graphical editing capabilities over the past year.

Key contributions include generalized progressive sweeps along arbitrary 3D space curves, dynamic

scenes, advanced shape generators for tori, error catching, graphical editing and saving capabilities, and

advanced rendering options.

1. Introduction

There are many existing 3D modeling tools out there in the market, such as Blender, OpenSCAD, and

Maya; however, these tools do not strike a good balance between procedural shape creation and

interactive graphical editing capabilities. For example, Maya and Blender rely heavily on a click and drag

user interface, which is imprecise compared to a procedural method.

OpenSCAD is an open-source script-based 3D CAD tool that can be used for precisely placing objects in

the scene and easily modifying their parameters [1]; for example, if a user wants to adjust the size or

number of wheels on a truck model, this could be as simple as changing the corresponding parameter

values in the script used to generate the scene. In OpenSCAD and script-based CAD tools in general, the

scene’s corresponding code is text-readable and can be reused easily by other designers.

However, OpenSCAD has several limitations that make the tool inflexible for modeling 2-manifold free-

form surfaces. OpenSCAD’s user interface does not allow shapes to be interactively modified via a mouse

2

cursor. The cursor cannot be used to select mesh faces and vertices in the window and can only be used

for navigating the scene. This is problematic for designers who want to customize and configure their

models after deployment. Furthermore, creating subdivided shapes is difficult with OpenSCAD without

explicit merge and subdivision functions available.

OpenSCAD also has a limited set of 2D and 3D shape generators, containing only basic primitives such

as circle, square, cube, and cylinder generators [1]. This limitation makes it difficult for users to construct

more complex shapes such as a torus knot, which could have been easily constructed if there were

existing tori generators.

Blender, a free and open-source 3D modeling tool used in many animated films, added Python scripting

as an option to automate certain design tasks, but the scripting does not preserve the scene hierarchy when

the objects are rendered [2]. This means changes that are made interactively in the GUI cannot be

efficiently saved back into the code file when the scene is created using their Python scripts.

Berkeley SLIDE (Scene Language for Interactive Dynamic Environments) is a CAD tool originally

developed in the early 2000’s and can be used to construct abstract geometrical sculptures with a shape

description language [3]. However, it has not been maintained for over a decade and is not compatible

with recent versions of operating systems. Implementation-wise, SLIDE represents meshes as two-sided

surfaces, so it is limited in its ability to subdivide and offset single-sided surfaces, such as Möbius bands

and Klein bottles.

In 2018, NOME (Non-Orientable Manifold Editor) was introduced to handle singled-side, non-orientable

surfaces and to add interactive graphical editing capabilities [4]. The initial version of NOME offered

only a few of the procedural shape generators that were available in SLIDE, and it was difficult to save

the changes that were made graphically in a form compatible with the procedural scene description file.

Also, its implementation code was rather “ad-hoc” and made it difficult to enhance NOME’s capabilities.

These past efforts and related tools have not found a good balance between procedural mesh generation

and interactive GUI modifications. Thus, we have developed a new modeling tool, called JIPCAD (Joint-

Interactive-Procedural CAD), that extends NOME by re-implementing it on a more robust, well-

structured code base and by enhancing the library of predefined shape generators. Many additional

modification modes were added to the graphical user interface, and the means of saving those changes

and appending it to the original procedural JIPCAD file were improved. The challenges involved are not

only generating the shapes and preserving their hierarchical relationships, but also saving interactive

3

changes back into the code for reuse. We decided to rebrand NOME as JIPCAD since the tool’s ability to

handle non-orientable surfaces is no longer its distinguishing feature.

Figure 1: The “3-2-1” Sculpture: (a) Sculpture by Tord Tengstrand; (b) B-splines added; (c) intermediate

construction step; (d) completed construction; (e) sharp subdivision applied. (see Appendix A3)

Since I joined the JIPCAD project in 2019, we have made the tool more robust and introduced features

such as generalized progressive sweeps along arbitrary 3D space curves, dynamic scenes, advanced shape

generators for tori, graphical editing and saving capabilities, error catching, a user-friendly crystal ball

interface [5], advanced rendering options, and more. We have also fixed the mesh data structure to handle

various non-orientable surfaces while being compatible with our newly added features. JIPCAD users can

generate topologically complex 2-manifolds through an iterative workflow, which may start with

procedurally generated B-spline curves, to which discrete surface facets are added through a graphical

user interface. This is demonstrated in the construction of the “3-2-1” Sculpture by Tord Tengstrand [6] in

Figure 1.

2. Basic Commands

The three basic entities in JIPCAD are point, face, and polyline. These entities are often assembled to

form meshes and are initialized using the following generator commands:

Point: point id (x y z) endpoint

Polyline: polyline id (point_idlist) [closed] [surface surface_id] endpolyline

Face: face id (point_idlist) [surface surface_id] endface

4

All generator commands are specified with their command type (e.g., polyline), an id that can be used to

reference the entity, and the entity’s parameters. The id needs to be unique; JIPCAD uses a single

assignment language that does not allow for duplicate names. Command types and parameter names are

reserved and cannot be used as ids. For example, face cannot be used as an id.

Parameters enclosed in parentheses are required while parameters enclosed in brackets are optional. In the

above commands, the point’s parameters are the x, y, z coordinates, while the polyline and face’s

parameters are the ids of their associated points. The list of point ids must have length of at least 2 for

polylines and at least 3 for faces. The polyline and face can optionally be assigned a color by passing in a

surface identifier. The exact coloring convention is described in the Hierarchical Coloring Scheme

section. Lastly, all commands end with an end statement concatenated with their command type (e.g.,

endpolyline).

A user can instantiate any of the above entities as well as other shape generators by using the instance

command.

Instance: instance instance_id target_id [rotate (rx ry rz) {in degrees}] [scale (sx sy sz)] [translate (tx ty

tz)] [surface surface_id] [LOD LOD_type] [shading shading_type] endinstance

The instance command creates an instance of the target geometry, which flags the geometry to be

rendered in the scene. One can optionally rotate, scale, translate the instance, and specify the shape’s

color, level-of-detail (LOD), and rendering mode.

Detailed descriptions for all commands can be found in the JIPCAD language reference [7].

3. JIPCAD Hierarchies

3.1 Hierarchical Constructs

JIPCAD users can assemble shapes in group or mesh commands. This is useful for defining scenes in a

hierarchical manner where identical geometries and symmetrical components can be defined once and

reused.

Group:

group id

 instance id1 object_id1 [instance_parameters] endinstance

 …

5

 instance idN object_idN [instance_parameters] endinstance

endgroup

The group command defines a collection of shape or other group instances and is the most general

hierarchical construct designed to introduce hierarchy into the scene description. When a group gets

instantiated via an instance command, the group’s collection of instances gets added to the scene.

Mesh:

mesh id

 point pointId1 id1 (x y z) endpoint

 …

 point pointIdN (x y z) endpoint

 face faceId1 (point_idlist1) [surface surface_id] endface

 ...

 face faceIdN (point_idlistN) [surface surface_id] endface

endmesh

The mesh command defines a collection of points and/or faces. The faces can be optionally colored by

referencing an existing surface entity. Faces within mesh commands can be referred to in the .jip file with

a hierarchical name: id.faceId. This is useful if a user wants to perform further operations on the face or

reuse the face in another command.

In Figure 2, a cube is created by defining a mesh consisting of a single square face and then instantiating

that mesh six times within a group construct; each instance of the mesh is applied the proper rotation

transformation to ensure the faces together form a cube. We can then instantiate the entire group to render

all its components and form the cube. Orange is the default surface color.

Figure 2: Cube and corresponding .jip file.

6

3.2 Hierarchical Scene Graph

A directed scene graph is used to keep track of the hierarchical relationships present in a scene, giving us

a method to identify entities located within hierarchical constructs, such as group or mesh commands.

Any entity can be referenced by its scene graph path and its own name separated by periods. Vertices are

defined once and can be referenced by multiple faces (references are depicted as arrows in Figure 3). The

green box in the bottom right of Figure 3 is referencing the vertex v3 underlined green named by using

the identifier .g5.g3.o3.v3. This means changes made to the original vertex v3 (e.g., modifying its position

with a slider) are propagated across the hierarchy. The yellow box is referencing the vertex v4 underlined

yellow via the identifier .g7.g9.mE.v4.

The root node of the graph is labeled RENDER WORLD, and its children are the global instance nodes.

Global instances are instances not found within a group. An instance node’s child is its target geometry,

which can be a group, mesh, or pre-defined shape generator. Each target geometry has its own set of

children. For example, a group node’s children are its instance commands, and a mesh node’s children are

its associated faces and points.

Figure 3: Scene Graph [4].

3.3 Hierarchical Coloring Scheme

The surface command is used to assign colors to objects. It has an id and user-defined RGB value in the

range [0, 1].

Surface color: surface id (R G B) endsurface

7

Key geometrical constructs such as faces, polyline-related entities (polylines, B-splines, and Bézier

curves), and all instances can be assigned a surface color by passing in the surface surface_id as an

argument.

JIPCAD follows a hierarchical coloring scheme convention. This means that entities that have been

assigned a surface color will not change their color when a higher-up group or instance that they are part

of gets re-colored. For groups, only elements that have not yet been colored will accept the new group

color.

In Figure 4, the cube’s top face is assigned a green surface color while the entire cube group is assigned

blue. Since the top face is within the group, the green surface color overrides blue for the top face. The

other cube faces are colored blue because they are not assigned any colors lower in the hierarchy. If we

assigned the surface color red to the mesh face f1, then the whole cube would become red as f1 is

positioned relatively lower in the scene graph hierarchy than the group and global instance commands f1

is a part of.

Figure 4: Colored cube and corresponding .jip file.

4. Sliders

Sliders can be used to interactively change numerical parameter values in the scene description. A user

can simply click and drag a slider in the GUI and alter the slider’s associated value. This is useful for

interactively modifying a scene and determining which combination of shape parameter values can create

the desired output. After the slider has been adjusted, the user can click on the “Commit Changes” button

in the GUI as shown in Figure 5 and then type “Ctrl+S” or click “Save” to save the altered parameter

8

value as the new default slider value upon reloading. This means the slider’s default value in the .jip file

is updated to reflect this change.

Bank:

bank bankID

 set setID1 default_value1 start1 end1 step_size1

 ...

 set setIDN default_valueN startN endN step_sizeN

endbank

Banks are a collection of sliders. The bank’s sliders can be used in any generator command by setting

$bankId.setID as the numerical parameter value. In Figure 5, the torus knot’s default starting p value is

four as specified in its corresponding .jip file. If we move the slider such that p becomes eight, the torus

knot in the scene updates accordingly. We can then save the changes back into the .jip file so the torus

knot’s new default starting p value is eight.

Figure 5: Modifying the p parameter via sliders and updating the .jip file.

5. JIPCAD Language Development

Over the past year, we have added dozens of new commands and features to the JIPCAD language. The

new commands that have been the most impactful to the design and display of non-manifold surfaces are

listed below along with a few non-traditional surface generators. The following subsections describe these

9

commands more in-depth. The full language reference describes all commands including those not listed

here [7].

Frame: $frame

Time: $time

Bézier Curve: beziercurve id (point_idlist) segs endbeziercurve

B-Spline: bspline id order (point_idlist) segs endbspline

Sweeps: sweep id crosssection id [reverse] [begincap] [endcap] endcrosssection path id [mintorsion]

[azimuth a_angle] [twist t_angle] endpath [brep brep-type] endsweep

Control Point: controlpoint id point id scale (sx sy sz) rotate (rx ry rz) [startreverse or endreverse] cross

id endcontrolpoint

General Cartesian Surface: gencartesiansurf id func (x_min x_max y_min y_max x_segs y_segs)

endgencartesiansurf

General Implicit Surface: genimplicitsurf id func (x_min x_max y_min y_max z_min z_max x_segs y_segs

z_segs) endgenimplicitsurf

General Parametric Surface: genparametricsurf id func (u_min u_max v_min v_max u_segs, v_segs)

endgenparametricsurf

Subdivision: subdivision id [sd_type sd_flag] sd_level [instances] endsubdivision

Offset: offset id [offset_type offset_flag] height width [instances] endoffset

Torus: torus id (rad_maj rad_min theta_max phi_min phi_max segs_theta segs_phi) endtorus

Torus Knot: torusknot id (symm turns rad_maj rad_min rad_tube segs_circ segs_sweep) endtorusknot

We have also implemented generator commands for a disk, cylinder, cone, ellipsoid, sphere, Möbius strip,

and Dupin cyclide. The command descriptions can be found in the JIPCAD language reference.

Light: light id type (JIP_AMBIENT or JIP_DIRECTIONAL) color (R G B) endlight

Camera: camera id projection (JIP_PARALLEL or JIP_PERSPECTIVE) frustum (min_triple)

(max_triple) endcamera

Window: window Window (xmin ymin) (xsize ysize) background (R G B) endwindow

Viewports: viewport vp (xmin ymin) (xmax ymax) background (R G B) endviewport

Include: include file_name.jip endinclude

5.1 Dynamic Scenes

We have introduced two global variables, $time and $frame, to handle time-varying models. These

variables can be used in any expression that evaluates a numerical value in JIPCAD. $frame is an integer

10

value that gets incremented by +1 after every rendering of the scene. All expressions comprising $frame

get updated before the scene is rendered again. $time is a real value that keeps track of elapsed time in

seconds. After a rendering, the system-clock is interrogated and compared to the remembered system

clock value after the previous rendering. The time difference is then added to the $time variable, and all

expressions comprising $time get updated before the scene is rendered again.

5.2 Path Entities

Polylines, B-splines, and Bézier-curves are three path entities available in JIPCAD. These entities can be

instantiated and rendered as piecewise linear segments or used as a sweep path in the sweep command.

Polyline: polyline id (point_idlist) [closed] [surface surface_id] endpolyline

B-spline: bspline id order (point_idlist) segs [closed] [surface surface_id] endbspline

Bézier curve: beziercurve id (point_idlist) segs [closed] [surface surface_id] endbeziercurve

A B-spline has an order parameter, which is an integer that sets the B-spline's degree to be order-1. The

point_idlist is a list of point ids, and the referenced points behave as the B-spline’s control points. Note

the number of control points has to be greater than or equal to order. For closed curves, there must be at

least order-1 control points.

Given a degree order-1 with n+1 control points (c0, c1, …, cn), the points of the B-spline can be obtained

using the following function:

𝐵(𝑡) = ∑ 𝑐𝑖𝐵𝑖,𝑛(𝑡)

𝑛

𝑖=0

where t ∈ [0, 1] and 𝐵𝑖,𝑛(𝑡) is defined as the basis defined as following for n = 0:

𝐵𝑖,0(𝑡) = {
 1, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For n ≠ 0:

𝐵𝑖,𝑘(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑘−1
𝐵𝑖,𝑘−1(𝑡) +

𝑡𝑖+𝑘 − 𝑡

𝑡𝑖+𝑘−1 − 1
𝐵𝑖+1,𝑘−1(𝑡)

B-splines are useful for constructing the edges of curved surfaces as shown in Figure 6.

11

A Bézier curve’s point_idlist references a list of point entities that are used as the curve’s control points.

According to De Casteljau’s algorithm, a Bézier curve with n+1 control points (c0, c1, …, cn) can be

evaluated at a point using the following function:

𝐵(𝑡) = ∑ 𝑐𝑖𝑏𝑖,𝑛(𝑡)

𝑛

𝑖=0

Where t ∈ [0, 𝑛 + ({𝑜𝑟𝑑𝑒𝑟} − 1] and b is defined as the basis defined as following for n = 0:

𝑏𝑖,𝑛(𝑡) = (
𝑛

𝑖
) (1 − 𝑡)𝑛−𝑖𝑡𝑖

In both the B-spline and Bézier curve commands, segs is the number of segments into which they are

sampled.

Figure 6: Three B-splines defining part of the edge structure of the in the Tord Tengstrand

sculpture [6], each shown as a 12-segment polyline, with highlighted vertices, through which new

surface facets may be defined.

5.3 Sweeps

We have introduced a sophisticated sweep procedure that can sweep an arbitrary 2D cross-section along a

sweep path. The cross-section and the sweep path must be a polyline, Bézier curve, B-spline, or circle.

Sweep:

sweep id

 crosssection id [reverse] [begincap] [endcap] endcrosssection

 path id [mintorsion] [azimuth a_angle] [twist t_angle] endpath

12

 [brep brep-type]

endsweep

Each path has a set of Frenet frames (tangents, normals, and binormals) that are used to determine how

the crosssection will twist along the path. The user can control the twist in four ways: mintorsion

minimizes the twisting of the intrinsic Frenet frame, azimuth is the angle about the tangent through which

all Frenet frames will be rotated, twist is the angle about the tangent that specifies the overall amount of

twist from the first Frenet frame to the last, and warp sets each twist angle explicitly at specified

controlpoints in the path.

Control Point: controlpoint id point id scale (sx sy sz) rotate (rx ry rz) [startreverse or endreverse] cross

id endcontrolpoint

The controlpoints also permit rotating and non-uniformly scaling of the crosssection at their locations. At

any sample points between adjacent controlpoints, the transformation variables are interpolated in the

same way that the x, y, z coordinates are being interpolated (e.g., by a cubic polynomial for the cubic B-

spline). Given a list of control points, we can tag a control point as startreverse and another as

endreverse; then, the orientation of all sweep faces between these two control points are reversed, turning

their generated brep-surface inside out. Control points can also reference a cross section by assigning a

path-related entity id to cross. Regular path points act like control points with no additional

transformations.

begincap and endcap can be used to draw the starting and ending faces of sweeps along an open path

(with outward normal) respectively.

Figure 7: A sweep with local profile inversions. (see Appendix A1)

13

5.4 Surfaces Generated from Mathematical Expressions

JIPCAD users can also define surfaces in 3D space via mathematical expressions that define points in

general Cartesian or in parametric coordinate spaces, or in an implicit form [8].

General Cartesian Surface: gencartesiansurf id func (x_min x_max y_min y_max x_segs y_segs)

endgencartesiansurf

General Implicit Surface: genimplicitsurf id func (x_min x_max y_min y_max z_min z_max x_segs y_segs

z_segs) endgenimplicitsurf

General Parametric Surface: genparametricsurf id func (u_min u_max v_min v_max u_segs, v_segs)

endgenparametricsurf

The Cartesian generator’s func parameter takes in an equation of the form z = f(x,y). The generator has

parameters for the minimum and maximum x and y values and the number of segments in the x and y

ranges.

The implicit surface’s func is the equation f(x,y,z) = b, where b is the isolevel; a user can define the upper

and lower bounds of x, y, and z and the number of segments in each axis range.

The parametric generator’s func is based on the three expressions: x(u,v) | y(u,v) | z(u,v). It also has

parameters to define the lower and upper bounds for the u, v domain and for the number of segments in

both the u and v ranges.

Basic operators and mathematical functions are supported in the func parameters. Figure 8 shows

examples of each type of the three general shape generators.

Figure 8: General shape generators: (a) Cartesian “humps”, (b) implicit “blobs”, (c) parametric “leaves”

(See Appendix A2)

14

5.5 Tori generators

Among the various shape generators we have introduced are the torus and torus knot generators.

Torus: torus id (rad_maj rad_min theta_max phi_min phi_max segs_theta segs_phi) endtorus

Torus Knot: torusknot id (symm turns rad_maj rad_min rad_tube segs_circ segs_sweep) endtorusknot

The rad_maj and rad_min refer to the major and minor radii for both the torus and torus knot. The torus

generator has the parameter theta_max, which is specified in degrees and determines how far the minor

circle cross section is swept starting at the x-axis and circling the z-axis by the angle theta until the

theta_max is reached. The torus generator also has a phi_min and phi_max which determine the starting

and terminating angle in degrees around the minor circle. segs_theta and segs_phi correspond to the

number of segments along the major radius and minor radius, respectively.

The torus knot generator has a symm parameter that determines the number of sweeps through the donut

hole, which is equivalent to the rotational symmetry of the knot. turns indicates the number of turns

around the donut hole. The rad_tube specifies the radius of the swept circle. If the rad_tube is equal to 0,

the torus knot takes the form of a polyline, which can be used as a sweep path. segs_circ specifies the

number of segments on the circular cross section and segs_sweep is the number of segments along the

sweep path.

Behind the scenes, the parametric equations used to create a torus with handle radius a and large radius c

are x = (c + a cos v) cos u, y = (c + a cos v) sin u, and z = a sin v, where u and v are substituted with t, as

t runs from 0 to theta_max. The torus knot has additional p and q parameters: x = (c + a cos(p*v)) cos

(q*u), y = (c + a cos(p*v)) sin (q*u), and z = a sin(p*v). Figure 9 depicts three intersecting torus knots on

a torus, creating the embedded graph K7.

Figure 9: Three different torus knots on a torus, creating the embedded graph K7.

15

6. Mesh Operations

Well-formed meshes are the starting point for operations such as subdivision (to form smoother surfaces)

and offsetting (to thicken mathematical surfaces into slabs that can be fabricated on a 3D printer).

Composite meshes that comprise assemblies of sub-meshes or of individual facets need to be merged first.

6.1 Merge

The merge operation combines overlapping meshes into a single mesh. It can be activated through a pull-

down menu in the GUI as shown in Figure 10. Two meshes are considered overlapping if there exists at

least one mesh vertex located within 0.001 units of the other mesh’s vertices. Merge is useful for

subdividing or offsetting overlapping shapes that are defined separately but should be combined and

operated on together.

Figure 10: Merge and subdivide buttons in the GUI.

In the scene shown in Figure 2, the cube faces appear connected, but each face is its own separate mesh

instance due to the usage of the group construct. If we were to subdivide this group of faces before

merging, we would get six disjoint, rounded faces. To treat the six mesh instances as a single mesh

instance, we need to click on the merge button. When we subsequently click on the subdivide button and

specify the subdivision level in the pop-up window, the cube will get subdivided and output a spherical

shape shown in Figure 11.

6.2 Subdivision

In addition to interactively subdividing shape in the user interface, smaller parts of the scene can also be

subdivided procedurally in the .jip file by using the subdivision command. The subdivision command

automatically merges all instances in its collection, so there is not a need for an explicit merge

command.

16

Subdivision:

subdivision id

 [sd_type sd_flag] sd_level

 instance id1 object_id1 [xform & color] endinstance

 ...

 instance idN object_idN [xform & color] endinstance

endsubdivision

The sd_flag denotes the type of subdivision algorithm used: JIP_SD_CatmullClark is the plain and

simple Catmull-Clark subdivision and JIP_SD_CC_sharp is Catmull-Clark subdivision respecting

“sharp” flags in the mesh. Sharp subdivision is an extension of Catmull-Clark subdivision and models

sharp creases on a surface [9]. sd_level is the integer number of iterated subdivision steps, and [xform &

color] are the optional parameters for instance transformations and coloring.

Figure 11: Subdivided cube resulting from the merged mesh shown in Figure 1.

For sharp subdivision, each edge in the underlying mesh data structure carries an integer tag denoting for

how many more subdivision steps this edge should not be smoothed. This tag is decremented in each

subdivision step. When the integer reaches zero, the edge receives no further special treatment and is

smoothed with simple Catmull-Clark subdivision.

The preparatory process that constructs the above mesh data structure sets the appropriate flags for all

edges. If an edge does not have a user-defined sharpness tag, then the tag is set to zero. Therefore, it is

useful to have a SD_type flag that says whether we want to do sharp subdivision or just simple Catmull-

Clark subdivision. In the latter case, all user-introduced sharpness tags are ignored, and the tags on all the

winged-edge structures are set to zero. In a .jip file with several objects, which may be subdivided

differently with different goals, the flag JIP_SD_CatmullClark can then save the effort of looking for

sharpness tags; all edges are simply treated as if they had a tag “zero”.

There are two ways that a user can set some non-zero sharpness tags. In an interactive mode, the user

selects some edges and sets their tags to the desired value in the range [1,9]. An alternative method is

specifying sharpness information in the .jip file. For example, at the end of a mesh that contains some

17

sharp edges, we could add an explicit list of edges with their sharpness tags:

sharp flagValue vertex1 vertex2 endsharp

This can be specified for a whole chain of edges or for a closed loop:

sharp flagValue vertex1 vertex2 vertex3 … vertexN endsharp

sharp flagValue vertex1 vertex2 vertex3 … vertexN vertex1 endsharp

6.3 Offset

A surface mesh of zero thickness can be thickened into a thicker sheet surrounded by a water-tight B-rep

with the following offset command.

Offset:

offset id

 [offset_type offset_flag] height width

 instance id1 object_id1 [xform & color] endinstance

 ...

 instance idN object_idN [xform & color] endinstance

endoffset

The offset_flag defines the type of thickened surface generated: JIP_OFFSET_DEFAULT offsets the

starting mesh inward and outward symmetrically. Each facet in the original mesh maps to two facets in

the offset mesh; the inner one with reversed orientation. Each boundary edge of an open polyhedron will

map to a quadrilateral facet.

In default offset, every vertex is duplicated, and these vertices are shifted in opposite directions along an

Averaged Vertex Normal (AVN). The AVN is found by averaging the face normals of all the faces that

share that vertex as shown in Figure 11. The weight by which each face contributes to the AVN is the

angle that the face has at the shared vertex. Vertices that only have small sliver angles count less in this

averaging process.

18

Figure 11: Vertex normal calculation using weighted face normals [4].

A gridded sheet of some specified thickness can be produced when the edges of a polyhedron are

converted into prismatic structures. However, we are not actually thickening the edge themselves, but

instead create first a thin gridded surface by cutting out the inner portions of all the facets and then

applying a normal offset operation to thicken this gridded surface. The inner cutout in every face is

defined to produce bands of exactly the specified width. This can be done by creating a new inner vertex

at every face-vertex that lies on the angle bisector at that vertex and shifted by the desired width divided

by the cosine of the half-angle. These new vertices are connected to form the inner cutout contours. All

the open edges in this polyhedral surface are replaced with quadrilaterals that connect the inner and outer

surfaces. [xform & color] are the optional parameters relating to transformations and coloring.

7. Rendering Control

JIPCAD has rendering control commands to specify lights and cameras. The light command can be used

to create ambient or directional light sources. Ambient light is a colored light source that affects all

surfaces regardless of orientation. A directional light is located at infinity and shines in the direction of

the negative z-axis; it can be re-directed by applying a rotation to any instances of it.

Ambient or Directional light: light id type [JIP_AMBIENT or JIP_DIRECTIONAL] color (R G B)

endlight

The camera command creates a virtual camera object that can be positioned in the scene via an instance

command.

19

Camera:

camera id

 projection (JIP_PARALLEL or JIP_PERSPECTIVE)

 frustum (min_triple) (max_triple)

endcamera

The camera projection can be either JIP_PARALLEL or JIP_PERSPECTIVE. Parallel projection models

a viewer that is infinitely far away from the scene; it is often useful to check the alignment of different

geometrical elements in a complicated scene. Perspective projection models an ideal pinhole camera,

mimicking the functionality of an eye located a finite distance from the point of interest.

The frustum is used for defining the geometry of the viewing volume. Specifically, the x and y

components of both the min_triple and max_triple are used to define the rectangular window on the

projection plane, and the z components define the near and far planes.

JIPCAD specifies a window into which all displays are mapped. xmin and ymin define the origin in the

Normalized Device Coordinates (NDC). xsize and ysize determine the horizontal and vertical scale of the

window.

Window: window Window (xmin ymin) (xsize ysize) background (R G B) endwindow

Inside the display window, users can define one or more rectangular viewports, which are specified as

fractions of the display window. For instance, two separate, side-by-side viewports could be specified to

generate a cross-eye stereo display of a 3D object. The extent of the viewport in the window is defined by

the xmin, ymin and xmax, ymax parameters.

Viewport:

viewport id

 (xmin ymin) (xmax ymax)

 background (R G B)

endviewport

All scene geometry and possibly some lights are gathered in a group called world. The render command is

then used to specify a camera, perhaps some additional lights to further customize a specific viewport’s

illumination, and a viewport into which the results are projected. If we want three cameras in the world

(perhaps to render “top”, “front”, and “side” views of an object), we simply use three render commands,

each with its own camera instance and destination viewport properly placed in the display window.

20

world world_id

 instance id1 geometry … endinstance

 instance id2 lightId_1 [xform] endinstance

 instance id3 lightId_2 [xform] endinstance

endworld

render

 instance id1 world_id [xform] endinstance

 instance id2 camera_id [xform] endinstance

 instance id3 lightId_1 [xform] endinstance

 instance id4 lightId_2 [xform] endinstance

 …

 viewport id (xmin,ymin) (xmax,ymax) background (R G B) endviewport

endrender

7.1 Include Files

Sometimes users may want to reuse their personally developed rendering controls in different .jip files.

To avoid lengthy monolithic file structures, users can import partial .jip files with an include command.

Include: include file_name.jip endinclude

This is useful for users to create their preferred .jip files that define surface colors, important geometry,

coordinates axes, collections of camera, lights, and window/viewport specifications, etc., and then simply

include these files in several of their active .jip files. Figure 12 depicts a generic coordinate axis file that

is often imported into active .jip files.

Figure 12: Generic coordinate axes at the world origin.

21

8. Graphical Editing

When JIPCAD displays the contents of an active .jip file, interactive graphical editing features can be

toggled on in the toolbar as shown in Figure 13. Toggling on these features allow the user to make

changes interactively by primarily using the mouse cursor. The core graphical editing options are

described below.

Figure 13: The drop-down selection menu.

8.1 Interactive Addition of Faces and Polylines

Users can add faces and polylines interactively into the scene and save them back into a corresponding

.jip file as reusable code, which will then display the same graphical state that was on the screen just

before the save operation, so that additional graphical editing can continue.

Surface patches can be constructed by selecting existing vertices in the scene to form a clockwise

polygonal outline of a desired face and clicking the “Add Face” button as shown in Figure 13. Similarly,

users can add a polyline by selecting vertices and clicking on the “Add Polyline” button. Vertices are

selected based on their closeness to the current cursor ray; they are then identified by their hierarchical

name in the scene graph and entered correspondingly into the emerging JIPCAD scene.

The added entities can be saved by first clicking on the “Commit Changes” button and then clicking on

“Save” to add all committed entities into the chosen .jip file as regular JIPCAD commands.

Corresponding instance commands are created along with the needed generator commands so that these

entities can be properly rendered when reloading the file. Each newly added face and/or polyline is

assigned a placeholder name based on the order in which they were added. An example of adding a face

and saving the face as JIPCAD code is shown in Figure 14. The code is inserted at the end of the .jip file.

The user is encouraged after each such save operation to edit the saved .jip file to substitute their own

preferred names for the new faces of polylines and to move these new entities into their most appropriate

places in the hierarchically structured .jip file.

22

Figure 14: Adding a face between two cubes and saving it as JIPCAD code.

Interactively adding faces into a design is useful because often only a small fraction of the surface needs

to be constructed as a mesh. Multiple instances of those faces can then be grouped together with the

proper symmetry operations to form the whole symmetrical surface. The resulting composite polyhedral

surface can then be merged and smoothed with a subdivision operation.

8.2 Interactively Add Points

Users can also add new points into the scene while in the interactive graphical editing mode. From a user

experience perspective, it would not make sense to manually specify x, y, z coordinates of the newly

added point while in the interactive graphics mode, because the user could just type the point

specification in the .jip file instead. What is needed are ways to add points graphically based on what can

be seen on the screen, without explicit reference to any coordinate values.

After toggling on the “Add Point” option in the GUI, the user can first put the cursor in the desired

location and simply click. This casts a physical line in space from your eye/camera to the cursor on which

the point must lie. The user then rotates the scene, so that this temporary line can be seen from the

side. Another cursor-click somewhere on that line then defines a 3D point location; the original cursor

line can then be turned off. Since two lines in 3D space are unlikely to intersect each other directly, we

look for the closest intersection point by finding the shortest line segment connecting the initial cursor ray

and the second “select point” ray [10]. The shortest line segment between these lines is guaranteed to be

perpendicular to both lines as shown in Figure 15.

23

Figure 15: Shortest line segment connecting two skewed lines in 3D space.

Let the points 𝑃𝑎 and 𝑃𝑏 be written as points along the rays, represented as two finite line segments in

Figure 15:

𝑃𝑎 = 𝑃1 + 𝑚𝑢𝑎(𝑃2 − 𝑃1)

𝑃𝑏 = 𝑃3 + 𝑚𝑢𝑏(𝑃4 − 𝑃3)

𝑚𝑢𝑎 and 𝑚𝑢𝑏 range from negative to positive infinity and represent how far along the ray the intersection

points are. We can then write the following equations using the perpendicular property of the shortest line

segment.

(𝑃𝑎 − 𝑃𝑏) ⋅ (𝑃2 − 𝑃1) = 0

(𝑃𝑎 − 𝑃𝑏) ⋅ (𝑃4 − 𝑃3) = 0

Expanding the above equations using the line equations:

(𝑃1 − 𝑃3 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) − 𝑚𝑢𝑏(𝑃4 − 𝑃3)) ⋅ (𝑃2 − 𝑃1) = 0

(𝑃1 − 𝑃3 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) − 𝑚𝑢𝑏(𝑃4 − 𝑃3)) ⋅ (𝑃4 − 𝑃3) = 0

Expanding the equations in terms of the x, y, z coordinates results in the following:

𝑑1321 + 𝑚𝑢𝑎𝑑2121 − 𝑚𝑢𝑏𝑑4321 = 0

𝑑1343 + 𝑚𝑢𝑎𝑑4321 − 𝑚𝑢𝑏𝑑4343 = 0

where

𝑑𝑚𝑛𝑜𝑝 = (𝑥𝑚 − 𝑥𝑛)(𝑥𝑜 − 𝑥𝑝) + (𝑦𝑚 − 𝑦𝑛)(𝑦𝑜 − 𝑦𝑝) + (𝑧𝑚 − 𝑧𝑛)(𝑧𝑜 − 𝑧𝑝)

24

Lastly, we can solve for 𝑚𝑢𝑎 and 𝑚𝑢𝑏, which we can then use to determine the coordinates of 𝑃𝑎 and 𝑃𝑏:

𝑚𝑢𝑎 =
(𝑑1343𝑑4321 − 𝑑1321𝑑4343)

(𝑑2121𝑑4343 − 𝑑4321𝑑4321)

𝑚𝑢𝑏 =
(𝑑1343 + 𝑚𝑢𝑎𝑑4321)

(𝑑4343)

To make the point visible and to capture it in the JIPCAD file, we simply click “Commit Changes” and

“Save” to save the added point as a point command. Multiple added points can be saved at once.

If we add the point directly onto a mesh’s surface, our newly added point will be declared in the mesh

construct as follows.

mesh TEMP

 point id (x y z) endpoint

endmesh

8.3 Vertex Selection and Movement

Once a vertex has been selected, the user is able to move it by clicking on the “Move Vertex” button. A

right-mouse-down would “grab” the vertex and move it in a plane parallel to the window plane, following

the cursor movement. Another mode “duplicates” a selected vertex and creates a new vertex that can then

be moved to a new location.

8.4 Crystal Ball Interface

Selecting objects in the scene requires a user-friendly interface. To make navigating the scene easier, we

implemented a crystal ball interface [5] that simulates a world in which a viewer is looking into a

transparent crystal sphere from the outside-in. The crystal ball is centered around the world origin with a

diameter of 90% of the height of the graphics window. The cursor controlled by the left mouse button is

used to rotate this ball by changing the orientation part of the viewing matrix correspondingly.

In the general case, the 3D rotation axis always goes through the world origin as shown in Figure 16. We

assume, the cursor is in contact with the crystal ball of radius R. Moving a surface point by distance D,

rotates the ball through angle α. With the left mouse button down, a small incremental cursor movement

in the display window is converted to a simple small rotation. If the cursor falls outside the projection of

25

the crystal ball, we perform a pure Z-rotation. If the cursor moves inside the projection of the crystal ball,

we do a rotation around a properly slanted rotation axis.

Figure 16: Scene rotation based on crystal ball interface.

The right mouse button is used for positioning as the cursor drags the object parallel to the x-y-plane. The

left mouse button is used for adjusting the view orientation as the cursor rotates the world around its

origin with the crystal ball GUI, and the mouse wheel is used for zooming in and out of the scene by

changing the scale of the object. Moving the wheel upwards increases the scale and results in zooming

into the scene.

As long as the cursor is active in the crystal ball display window, the scene geometry does not

change. Thus, the hierarchically flat display-list remains unchanged and can be reused in subsequent

frames.

9. Data Structures and Implementation Details

We considered using OpenMesh’s half-edge data structure [11] for storing vertices, edges, faces, and

connectivity information in a highly efficient manner. However, the half-edge data structure is most

efficient when adjacent mesh entities (edges and faces) share the same orientation; it is less convenient to

handle single-sided, non-orientable surfaces. It is technically possible to modify the half-edge data

structure to handle non-orientable surfaces with a variety of complicated conditional statements and

attributes, but we found this approach to be too unwieldy and convoluted. Therefore, we decided to use

the winged edge data structure as shown in Figure 17, since it can represent single-sided surfaces with a

few simple adjustments.

Each edge is assigned an edge type based on the orientation of its adjacent face(s). If the edge is shared by

two faces with the same orientation, it is classified as a regular edge. If the two adjacent faces have

opposite orientations, it is a Möbius edge. Lastly, if the edge is only used by one face, it is considered a

26

boundary edge. These edge types are useful in determining which face properties to use when performing

mesh operations on a single-sided surface. For example, when JIPCAD is computing vertex normals via

weighted face normals, JIPCAD iterates through the vertex’s adjacent faces and simply reverses the

direction of the face normal when encountering a face located between two Möbius edges. Thus, by using

the winged edge data structure, JIPCAD can apply mesh operations to non-orientable surfaces.

The first iteration of the NOME prototype in 2018 had also used the winged edge data structure [4]. In

continuing with this data structure, we have made its implementation more robust as well as compatible

with our new mesh operations (e.g., sharp subdivision) and interactive graphical editing capabilities.

Figure 17: Winged edge data structure [13].

9.1 Implementation Details

JIPCAD is a Qt-based application [12] that uses OpenGL [13] and Qt 3D modules to easily build and

interact with 3D generated scenes. ANTLR [14] is used to walk parse trees constructed from a custom .g4

grammar file designed for the JIPCAD language. We used Git [15] for version control and AppVeyor

[16] as a continuous integration service for automated builds; these tools were important in ensuring our

JIPCAD development efforts were scalable and well synchronized.

10. JIPCAD Design Examples

“3-2-1” is a sculpture created by Tord Tengstrand (Fig.17a), showcased in the Bridges 2020 Art

Exhibition [6]. The sculpture has 3 edges, 2 vertices, and a single face. It is of genus-2 and has a 3-fold

rotational symmetry around the long axis. Given its high degree of symmetry, JIPCAD is the ideal tool to

construct a complete model of this sculpture. As a start, we can create a JIPCAD file that captures the

27

three edge curves that emerge from the vertex. Then, the first manual task is to add some facets between a

pair of these curves. Three copies of this, rotated around the z-axis in steps of 120° leads to Figure 18b,

and flipping this trio upside down produces Figure 18c; with overall geometry properly captured in a

crude polyhedral shape, we can now use subdivision to produce a smooth surface. To keep the edges

sharp and clean we label those edges as “sharp” before we apply the sharp subdivision process. The final

result is shown in Figure 18d.

(a) (b) (c) (d)

Figure 18: The “3-2-1” Sculpture: (a) Sculpture by Tord Tengstrand; (b) intermediate construction step;

(c) completed construction; (d) sharp subdivision applied. (see Appendix A3)

Figure 19 depicts a (3, 4) torus knot sculpture created by Carlo H. Séquin. The sculpture was constructed

using JIPCAD sweeps with B-spline paths.

Figure 19: (3, 4) Torus knot via sweeps. (see Appendix A4)

28

11. Interactive Workflow

The typical JIPCAD workflow begins with the user creating a procedural scene description in the form of

a .jip file. Users may have the Language Reference [7] open to assist with the language syntax. Upon

opening the .jip file in JIPCAD.exe, a text window will notify the user if there were any syntactic or

semantic errors in the input file. If there were no errors, the scene will display on the graphics screen, and

the user can then navigate the scene through the crystal ball interface and modify the scene geometry with

the cursor.

A commonly used interactive modeling operation is adding faces between curves or other previously

defined vertices. Adding faces is enabled by toggling on “Enable Vertex Selection” as shown in Figure

13, selecting the target vertices, and clicking on the “Add Face” button. Users may add individual faces in

small batches and save those faces back into the file. The saving mechanism is activated by clicking on

the “Commit Changes” button in the GUI as shown in Figure 10 and then typing “Ctrl+S” or clicking on

“Save”.

The JIPCAD code produced for the newly added faces is inserted at the bottom of the .jip file. For added

faces, the code consists of a mesh command containing the various faces along with an instance command

to ensure the faces get re-rendered upon reloading the file, as shown in Figure 14. Note the added mesh

and face(s) are named with a “Temp” prefix. This is intended to be a placeholder name, and the user can

replace it with a more descriptive name later. The faces’ point names are obtained and saved based on

their location within the scene graph hierarchy and adhere to JIPCAD’s point naming convention as

described in the Hierarchical Scene Graph section.

The user may move the new face definitions into a larger, pre-existing mesh construct that contains a

more complete version of the unique surface swath that the user aims to construct. This whole surface

swath may be instantiated more than once if the envisioned shape has some symmetry. By placing the

new faces into the proper hierarchical context, the user can verify that the latest batch indeed fulfills their

intended role in the overall CAD model. The user can then return to the graphics display to add some

more faces or to eliminate faces that may overlap inadvertently. This iterative process is illustrated in

Figure 18, where the intermediate construction step depicts several faces connected to the B-spline edge

curves.

Adding polylines is similar to the process of adding faces. The key difference is added polylines are saved

as individual polyline commands rather than grouped together in a hierarchical mesh construct. Polylines,

individual edges, or vertices can be marked as “sharp”, so that surfaces with some sharp creases can be

29

designed as described in the Subdivision section. This can be done through the graphical interface or with

appropriate textual annotations in the .jip file.

During all these design phases, the overall geometry of the emerging shape can be fine-tuned by adjusting

some slider values that might move some vertices, or which stretch or warp a whole section of the overall

sculpture. With any “save” operation the latest values of all the sliders will get entered into the .jip file as

the default settings in the corresponding parameter banks.

Typically, these manually constructed surfaces are coarse polyhedral forms. Optionally, such surface can

be subjected to one or more subdivision steps to smooth out the dihedral edges between adjacent faces.

Users can activate the subdivision process through the GUI’s “Merge” and “Subdivide” buttons as shown

in Figure 10. Alternatively, subdivision of specific parts of the overall scene can be specified textually in

the JIPCAD file with the subdivision command.

Similarly, mathematically thin 2-manifolds can be thickened with the offset operation. This operation can

also be launched through the GUI, or it can be specified in the JIPCAD file itself.

A final step in the design process may be to orient the sculpture into a more informative or aesthetically

satisfying orientation and to adjust the lights that illuminate the whole scene – and then to save a snapshot

of the display.

12. Conclusion

We have developed a dual-mode design environment for geometrical shapes by extending and

robustifying the previous NOME system [4]. One part is a procedural shape description language that

makes it easy to define precise geometry as well as combining geometrical elements in a hierarchical

manner. The other part is an interactive graphical display that allows the user to enter geometrical

modification based on cursor controlled selections and movements. The key achievement is to commit

and save any such changes with suitable annotations to the original .jip file, so that a reopening of the

enhanced file will reproduce the latest graphical state and thus allow the user to continue in either a

graphical manner or by textual changes in the .jip file.

This system has allowed users with limited computer graphics experience to make highly complex,

precise geometrical models.

30

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Carlo H. Séquin. His support and

mentorship over the past few years have helped me grow into a well-rounded engineer. His passion for

3D modeling is contagious and has made me appreciate the beautiful connection between art and

mathematics. Most of all, I would like to thank him for the life values that he has instilled in me through

our wonderful discussions - among many are pursuing things in life that interest me and leading teams

skillfully.

I would also like to thank Professor Ren Ng for being an amazing role model and helping me reach my

potential. He has supported me both academically and professionally on many occasions and has been

pivotal in my personal development. His courses inspired me to delve deeper into the field of computer

graphics, which ultimately led me to work on the JIPCAD project.

I am also very grateful for all the URAP members who participated in the JIPCAD project in 2020-2021.

In alphabetical order: Brandon Lee, Brian Kim, Monica Tang, Rohan Sood, Toby Chen, Vishnu Pamula,

Xinyu Zhang, Zachary Yin. These are exceptional students and their assistance with the development and

testing of JIPCAD was crucial.

31

References

[1] OpenSCAD Documentation. - https://openscad.org/documentation.html

[2] Python Blender Documentation. - https://docs.blender.org/api/current/

[3] J. Smith. SLIDE design environment. 2003. - http://www.cs.berkeley.edu/~ug/slide/

[4] G. Dieppedalle. Interactive CAD Software for the Design of 2-manifold Free-form Surfaces. 2018. -

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-48.pdf

[5] C. Sequin. Crystal Ball Interface. 2004. -

https://people.eecs.berkeley.edu/~sequin/CS184/LECT04/L13.htm

[6] T. Tengstrand. 3-2-1 Sculpture. 2020. - http://gallery.bridgesmathart.org/exhibitions/2020-bridges-

conference/tordtengstrandteliacom

[7] JIPCAD Language Reference. - https://tinyurl.com/9ds62ee2

[8] General Shape Generator Description. - https://brandonyli.github.io/

[9] T. DeRose, M. Kass, and T. Truong. Subdivision Surfaces in Character Animation. 1998. -

https://graphics.pixar.com/library/Geri/paper.pdf

[10] P. Bourke. Points, Lines, and Planes. 1998. - http://paulbourke.net/geometry/pointlineplane/

[11] OpenMesh Documentation. - https://www.graphics.rwth-

aachen.de/media/openmesh_static/Documentations/OpenMesh-5.2-Documentation/a00016.html

[12] Qt, Qt Homepage. - https://www.qt.io/

[13] OpenGL, OpenGL Homepage. - https://www.opengl.org

[14] ANTLR, ANTLR Homepage. - https://www.antlr.org/

[15] Github, Github Homepage. - https://github.com/

[16] AppVeyor, AppVeyor Homepage. - https://www.appveyor.com/

[17] Y. Wang. Robust Geometry Kernel and UI for Handling Non-orientable 2-Mainfolds. 2016. -

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html

https://www.openscad.org/
https://docs.blender.org/api/current/
http://www.cs.berkeley.edu/~ug/slide/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-48.pdf
https://people.eecs.berkeley.edu/~sequin/CS184/LECT04/L13.htm
http://gallery.bridgesmathart.org/exhibitions/2020-bridges-conference/tordtengstrandteliacom
http://gallery.bridgesmathart.org/exhibitions/2020-bridges-conference/tordtengstrandteliacom
https://tinyurl.com/9ds62ee2
https://brandonyli.github.io/
https://graphics.pixar.com/library/Geri/paper.pdf
http://paulbourke.net/geometry/pointlineplane/
https://www.graphics.rwth-aachen.de/media/openmesh_static/Documentations/OpenMesh-5.2-Documentation/a00016.html
https://www.graphics.rwth-aachen.de/media/openmesh_static/Documentations/OpenMesh-5.2-Documentation/a00016.html
https://www.qt.io/
https://www.opengl.org/
https://www.antlr.org/
https://github.com/
https://www.appveyor.com/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html

32

Appendix: Some Example JIPCAD Files

This appendix contains the complete JIPCAD files that produce some of the figures shown earlier in the

main text. It shows the use of some of the special generators, of hierarchical constructs, and of general

mesh-refinement processes.

A1: Sweep with Profile Inversion (Figure 7)

Sliders

bank p

 set radius 1.2 1 5 0.1

 set twist 0 0.1 360 1

 set azimuth 0 0.1 360 1

endbank

Cross Section

point cp0 ({expr $p.radius * cos(0)} {expr $p.radius * sin(0)} 0) endpoint

point cp1 ({expr $p.radius * cos(0.0174533 * 45)} {expr $p.radius * sin(0.0174533 * 45)} 0) endpoint

point cp2 ({expr $p.radius * cos(0.0174533 * 90)} {expr $p.radius * sin(0.0174533 * 90)} 0) endpoint

point cp3 ({expr $p.radius * cos(0.0174533 * 135)} {expr $p.radius * sin(0.0174533 * 135)} 0) endpoint

point cp4 ({expr $p.radius * cos(0.0174533 * 180)} {expr $p.radius * sin(0.0174533 * 180)} 0) endpoint

point cp5 ({expr $p.radius * cos(0.0174533 * 225)} {expr $p.radius * sin(0.0174533 * 225)} 0) endpoint

point cp6 ({expr $p.radius * cos(0.0174533 * 270)} {expr $p.radius * sin(0.0174533 * 270)} 0) endpoint

point cp7 ({expr $p.radius * cos(0.0174533 * 315)} {expr $p.radius * sin(0.0174533 * 315)} 0) endpoint

polyline profile (cp7 cp6 cp5 cp4 cp3 cp2 cp1 cp0) closed endpolyline

Sweep Path

point point0 (-5.5 4 0) endpoint

point point1 (-5 4 0) endpoint

point point2 (5 4 0) endpoint

point point3 (5.5 4 0) endpoint

point point4 (5 4 0) endpoint

point point5 (-10 4 0) endpoint

point point6 (-10 -6 0) endpoint

point point7 (10 -6 0) endpoint

point point8 (10 4 0) endpoint

point point9 (-5 4 0) endpoint

Control Points

controlpoint sc0 point point0 scale (1.5 1.5 0) rotate(0 0 0) endcontrolpoint

controlpoint sc1 point point1 scale (1.1 1.1 0) rotate(0 0 0) endcontrolpoint

controlpoint sc2 point point2 scale (1.1 1.1 0) rotate(0 0 0) endcontrolpoint

controlpoint sc3 point point3 scale (0.8 0.8 0) rotate(0 0 0) endcontrolpoint

controlpoint sc4 point point4 scale (0.5 0.5 0) rotate(0 0 0) startreverse endcontrolpoint

controlpoint sc5 point point5 scale (0.6 0.6 0) rotate(0 0 0) endcontrolpoint

controlpoint sc6 point point6 scale (1.0 1.0 0) rotate(0 0 0) endcontrolpoint

controlpoint sc7 point point7 scale (1.4 1.4 0) rotate(0 0 0) endcontrolpoint

controlpoint sc8 point point8 scale (1.8 1.8 0) rotate(0 0 0) endcontrolpoint

controlpoint sc9 point point9 scale (1.9 1.9 0) rotate(0 0 0) endreverse endcontrolpoint

33

polyline sweeppath (sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9) closed endpolyline

Sweep

sweep s0

 crosssection profile endcrosssection

 path sweeppath mintorsion azimuth {expr $p.azimuth} twist {expr $p.twist} endpath

endsweep

instance sweepinst s0 endinstance

A2: Examples of General Shape Generators (Figure 8)

gencartesiansurf humps (7*x*y)/exp((x^2)+(y^2)) (-2 2 -2 2 40 40) endgencartesiansurf

surface R color (0.7 0.2 0) endsurface # Red

instance ihump humps surface R endinstance

genimplicitsurf blobs (x^4+y^4+z^4-x^2-y^2-z^2+0.5) (-2 2 -2 2 -2 2 30) endgenimplicitsurf

surface G color (0 0.7 0.2) endsurface # Green

instance iblob blobs translate (0 5 0) surface G endinstance

genparametricsurf leaves (sin(v)*(2+cos(3*u))*cos(2*u) | sin(v)*(2+cos(3*u))*sin(2*u)

 | sin(v)*cos(v)*(sin(3*u)) (0 6.28318 0 1.0472 60 20) endgenparametricsurf

surface B color (0 0.2 0.7) endsurface # Blue

instance ileaf leaves rotate (0 1 0)(180) translate (0 10 0) surface B endinstance

A3: 3-2-1 Sculpture Using Sharp Subdivision (Figure 18)

Tord_SD.jip

Reconstructing the Tord_sculpture from his original 3-2-1 Sculpture at Bridges2020.

A different way of structuring the facets sinto 6 coherent surface pieces.

Consolidated with added sharpness specifications.

CHS 2020/12/4

Some Surface colors #############################

surface M color (0.9 0 1) endsurface # Magenta

surface Z color (1 0 0.6) endsurface # Zinnober

surface R color (1 0.1 0) endsurface # Red

surface O color (1 0.6 0) endsurface # Orange

surface Y color (1 1 0) endsurface # Yellow

surface L color (0.5 1 0) endsurface # Lime

surface G color (0 0.9 0) endsurface # Green

surface A color (0 0.9 0.7) endsurface # Aqua

surface C color (0 1 1) endsurface # Cyan

surface U color (0 0.6 1) endsurface # Uniform

surface B color (0 0.3 1) endsurface # Blue

surface V color (0.3 0 1) endsurface # Violet

34

surface P color (0.6 0 1) endsurface # Purple

surface W color (1 1 1) endsurface # White

surface S color (0.7 0.7 0.7) endsurface # Snow

surface D color (0.4 0.4 0.4) endsurface # Dark

surface K color (0 0 0) endsurface # Black

coordinate system #############################

point ooo (0 0 0) endpoint

point xoo (1 0 0) endpoint

point oyo (0 1 0) endpoint

point ooz (0 0 1) endpoint

polyline xax (ooo xoo) endpolyline

polyline yax (ooo oyo) endpolyline

polyline zax (ooo ooz) endpolyline

group coord_axes

 instance ixax xax surface R endinstance

 instance iyax yax surface B endinstance

 instance izax zax surface G endinstance

endgroup

Some test B-spline ############################

bank p

 set mrd 0.8 0 2 0.01

 set msl 0.2 0 2 0.01

 set wdx -0.5 -1 2 0.1

 set wdz 1.5 0 3 0.1

 set wex -0.4 -1 2 0.1

 set wey 0.0 -1 2 0.1

 set wez 1.5 0 3 0.1

 set wfx -0.2 -2 2 0.1

 set wfy -1.2 -2 2 0.1

 set wfz 0.8 -2 2 0.1

 set yrot 0 -180 180 1

 set slicesN 9 0 20 1

endbank

point eaR (0.3 6 0) endpoint

point eb (0 4 0) endpoint

point ecR (-0.3 2 0) endpoint

point wd ({expr $p.wdx} 1 {expr $p.wdz}) endpoint

point we ({expr $p.wex} {expr $p.wey} {expr $p.wez}) endpoint

point wf ({expr $p.wfx} {expr $p.wfy} {expr $p.wfz}) endpoint

point wg ({expr $p.mrd} -0.5 {expr $p.msl}) endpoint

point wh ({expr $p.mrd} 0 0) endpoint

point wi ({expr $p.mrd} 0.5 {expr -$p.msl}) endpoint

35

###

These are the 3 edges connecting the two vertices in Trord Tengstrand's sculpture.

Some segments have been selectively de-activated to reduce clutter when adding faces between the

curves.

It is only necessary to create 1/6 of the hole surface; the rest is generated by applying D3 symmetry.

bspline bs order 4 (eaR eb ecR wd we wf wg wh wi) segs 12 endbspline

instance bsR bs surface R rotate(0 1 0)({expr $p.yrot}) endinstance

instance bsRu bs surface O rotate(1 0 0)(180) rotate(0 1 0)({expr $p.yrot}) endinstance

instance bsG bs surface G rotate(0 1 0)({expr $p.yrot+120}) endinstance

instance bsGu bs surface L rotate(1 0 0)(180) rotate(0 1 0)({expr $p.yrot+120}) endinstance

instance bsB bs surface B rotate(0 1 0)({expr $p.yrot-120}) endinstance

instance bsBu bs surface U rotate(1 0 0)(180) rotate(0 1 0)({expr $p.yrot-120}) endinstance

>>> The task now is to manually add quads and triangles between adjacent edge curves and

combine them into a mesh.

Six copies of that mesh will then make the complete sculpture surface.

interactively added faces, cleaned up, combined into one mesh:

mesh surf

 face fa (.bsR.v0 .bsR.v1 .bsG.v1) endface

 face fb (.bsR.v1 .bsR.v2 .bsG.v2 .bsG.v1) endface

 face fc (.bsR.v2 .bsR.v3 .bsG.v3 .bsG.v2) endface

 face fd (.bsR.v3 .bsBu.v9 .bsBu.v8 .bsG.v3) endface

 face fe (.bsR.v3 .bsR.v4 .bsBu.v10 .bsBu.v9) endface

 face ff (.bsR.v4 .bsR.v5 .bsBu.v11 .bsBu.v10) endface

 face fg (.bsR.v5 .bsR.v6 .bsB.v12 .bsBu.v11) endface

 face fh (.bsR.v6 .bsR.v7 .bsB.v11 .bsBu.v12) endface

 face fi (.bsR.v7 .bsR.v8 .bsB.v10 .bsB.v11) endface

 face fj (.bsR.v8 .bsR.v9 .bsB.v9 .bsB.v10) endface

 face fm (.bsBu.v8 .bsBu.v7 .bsG.v4 .bsG.v3) endface

 face fn (.bsBu.v7 .bsBu.v6 .bsG.v5 .bsG.v4) endface

 sharp 9 (.bsR.v0 .bsR.v1 .bsR.v2 .bsR.v3 .bsR.v4 .bsR.v5 .bsR.v6 .bsR.v7 .bsR.v8 .bsR.v9) endsharp

##<<< sEa

 sharp 9 (.bsG.v0 .bsG.v1 .bsG.v2 .bsG.v3 .bsG.v4 .bsG.v5) endsharp ##<<< sEb

 sharp 9 (.bsB.v9 .bsB.v10 .bsB.v11 .bsB.v12) endsharp ##<<< sEc

 sharp 9 (.bsBu.v6 .bsBu.v7 .bsBu.v8 .bsBu.v9 .bsBu.v10 .bsBu.v11 .bsBu.v12) endsharp ##<<< sEd

endmesh

mesh rimfill

 face fp (.bsBu.v6 .bsBu.v5 .bsG.v6 .bsG.v5) endface

 sharp 9 (.bsBu.v6 .bsBu.v5) (.bsG.v6 .bsG.v5) endsharp

36

endmesh

mesh polecaps

 face fq (.bsBu.v9 .bsGu.v9 .bsRu.v9) endface

 face fr (.bsG.v9 .bsB.v9 .bsR.v9) endface

endmesh

inner polar caps:

instance ipolecaps polecaps surface W endinstance

missing patches in the 3 arms:

instance i0fp rimfill surface S endinstance

instance i1fp rimfill surface S rotate(0 1 0)(120) endinstance

instance i2fp rimfill surface S rotate(0 1 0)(240) endinstance

instance surf1 surf surface Y endinstance

instance surf2 surf surface O rotate(0 1 0)(120) endinstance

instance surf3 surf surface C rotate(0 1 0)(240) endinstance

instance surf4 surf surface G rotate(1 0 0)(180) endinstance

instance surf5 surf surface R rotate(1 0 0)(180) rotate(0 1 0)(120) endinstance

instance surf6 surf surface B rotate(1 0 0)(180) rotate(0 1 0)(240) endinstance

############### END ##

A4: (3, 4) Torus knot (Figure 19)

TK_3-4_simple.jip

a C-shaped cross section swept along a "triangular" torus-knot path

CHS 2021/04/26

surface O color (1 0.5 0.2) endsurface

############### Define the C-shaped profile ###################################

point pa (0.010168 -0.522839 0) endpoint

point pb (0.149077 -0.435194 0) endpoint

point pc (0.257372 -0.311707 0) endpoint

point pd (0.326136 -0.162547 0) endpoint

point pe (0.349704 0.000000 0) endpoint

point pf (0.326136 0.162547 0) endpoint

point pg (0.257372 0.311707 0) endpoint

point ph (0.149077 0.435194 0) endpoint

point pi (0.010168 0.522839 0) endpoint

point pj (-0.021651 0.512500 0) endpoint

point pk (-0.014695 0.479775 0) endpoint

point pl (0.087675 0.385145 0) endpoint

point pm (0.165126 0.269232 0) endpoint

37

point pn (0.213377 0.138441 0) endpoint

point po (0.229763 0.000000 0) endpoint

point pp (0.213377 -0.138441 0) endpoint

point pq (0.165126 -0.269232 0) endpoint

point pr (0.087675 -0.385145 0) endpoint

point ps (-0.014695 -0.479775 0) endpoint

point pt (-0.021651 -0.512500 0) endpoint

polyline pProfile (pa pb pc pd pe pf pg ph pi pj pk pl pm pn po pp pq pr ps pt) closed endpolyline

###################### The sweep path ##

point C ({expr 3.0*cos(-100*0.01745) } 3.0 {expr 3.0*sin(-100*0.01745) }) endpoint # -60

point D ({expr 7.0*cos(0*0.01745) } 0.0 {expr 7.0*sin(0*0.01745) }) endpoint # 0

point C2 ({expr 3.0*cos(100*0.01745) } -3.0 {expr 3.0*sin(100*0.01745) }) endpoint # 60

point B2 ({expr 2.0*cos(-200*0.01745) } -1.4 {expr 2.0*sin(-200*0.01745) }) endpoint # -180

point A2 ({expr 1.5*cos(-120*0.01745) } 0.0 {expr 1.5*sin(-120*0.01745) }) endpoint # -120

point B3 ({expr 2.0*cos(-40*0.01745) } 1.4 {expr 2.0*sin(-40*0.01745) }) endpoint # -60

point C3 ({expr 3.0*cos(-340*0.01745) } 3.0 {expr 3.0*sin(-340*0.01745) }) endpoint # -300

point D3 ({expr 7.0*cos(-240*0.01745) } 0.0 {expr 7.0*sin(-240*0.01745) }) endpoint # -240

point C4 ({expr 3.0*cos(-140*0.01745) } -3.0 {expr 3.0*sin(-140*0.01745) }) endpoint # -180

controlpoint cpC point C scale(0.2 0.2 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpD point D scale(3.0 3.0 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpC2 point C2 scale(0.2 0.2 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpB2 point B2 scale(1.4 1.4 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpA2 point A2 scale(1.0 1.0 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpB3 point B3 scale(1.4 1.4 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpC3 point C3 scale(0.2 0.2 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpD3 point D3 scale(3.0 3.0 1.0) rotate (0 0 0) endcontrolpoint

controlpoint cpC4 point C4 scale(0.2 0.2 1.0) rotate (0 0 0) endcontrolpoint

bspline sweeppath

 order 4

 (cpC cpD cpC2 cpB2 cpA2 cpB3 cpC3 cpD3 cpC4)

 segs 90

endbspline

################# DEFINING THE SWEPT RIBBON ###############################

#crosssection crossX

type polyline pProfile

#endcrosssection

bank p

 set s_twist 55.10 0.1 360 1

 set s_azimuth 0 0.1 360 1

endbank

sweep ribbon

 crosssection pProfile endcrosssection

 path sweeppath mintorsion azimuth {expr $p.s_azimuth} twist {expr $p.s_twist} endpath

38

endsweep

####### ASSEMBLY ######################################

group knot

 instance r0 ribbon rotate(0 1 0) (120) endinstance

 instance r1 ribbon endinstance

 instance r2 ribbon rotate(0 1 0) (-120) endinstance

endgroup

group assembly

 instance k0 knot surface O rotate(1 0 0) (90) rotate(0 0 1) (-90) endinstance

endgroup

####### RENDERING ######################################

instance a0 assembly scale (0.4 0.4 0.4) endinstance

###########################

