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Abstract 

JIPCAD (Joint-Interactive-Procedural CAD) is a 3D procedural CAD tool used for programmatically 

creating geometries with a shape description language. Users can interactively modify the scene in a 

graphical user interface and save modifications back into the corresponding file as reusable code; a 

reopening of the enhanced file will reproduce the latest graphical state, and the user can continue in either 

a graphical manner or by textual changes in the .jip file.  

JIPCAD combines procedural and interactive modeling, making it easier for users to model 2-manifold 

free-form surfaces of high complexity and inherent regularity. In this report, we will discuss JIPCAD and 

the development of its shape description language and graphical editing capabilities over the past year. 

Key contributions include generalized progressive sweeps along arbitrary 3D space curves, dynamic 

scenes, advanced shape generators for tori, error catching, graphical editing and saving capabilities, and 

advanced rendering options. 

1. Introduction  

There are many existing 3D modeling tools out there in the market, such as Blender, OpenSCAD, and 

Maya; however, these tools do not strike a good balance between procedural shape creation and 

interactive graphical editing capabilities. For example, Maya and Blender rely heavily on a click and drag 

user interface, which is imprecise compared to a procedural method.  

OpenSCAD is an open-source script-based 3D CAD tool that can be used for precisely placing objects in 

the scene and easily modifying their parameters [1]; for example, if a user wants to adjust the size or 

number of wheels on a truck model, this could be as simple as changing the corresponding parameter 

values in the script used to generate the scene. In OpenSCAD and script-based CAD tools in general, the 

scene’s corresponding code is text-readable and can be reused easily by other designers. 

However, OpenSCAD has several limitations that make the tool inflexible for modeling 2-manifold free-

form surfaces. OpenSCAD’s user interface does not allow shapes to be interactively modified via a mouse 
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cursor. The cursor cannot be used to select mesh faces and vertices in the window and can only be used 

for navigating the scene. This is problematic for designers who want to customize and configure their 

models after deployment. Furthermore, creating subdivided shapes is difficult with OpenSCAD without 

explicit merge and subdivision functions available.  

OpenSCAD also has a limited set of 2D and 3D shape generators, containing only basic primitives such 

as circle, square, cube, and cylinder generators [1]. This limitation makes it difficult for users to construct 

more complex shapes such as a torus knot, which could have been easily constructed if there were 

existing tori generators. 

Blender, a free and open-source 3D modeling tool used in many animated films, added Python scripting 

as an option to automate certain design tasks, but the scripting does not preserve the scene hierarchy when 

the objects are rendered [2]. This means changes that are made interactively in the GUI cannot be 

efficiently saved back into the code file when the scene is created using their Python scripts. 

Berkeley SLIDE (Scene Language for Interactive Dynamic Environments) is a CAD tool originally 

developed in the early 2000’s and can be used to construct abstract geometrical sculptures with a shape 

description language [3]. However, it has not been maintained for over a decade and is not compatible 

with recent versions of operating systems. Implementation-wise, SLIDE represents meshes as two-sided 

surfaces, so it is limited in its ability to subdivide and offset single-sided surfaces, such as Möbius bands 

and Klein bottles. 

In 2018, NOME (Non-Orientable Manifold Editor) was introduced to handle singled-side, non-orientable 

surfaces and to add interactive graphical editing capabilities [4]. The initial version of NOME offered 

only a few of the procedural shape generators that were available in SLIDE, and it was difficult to save 

the changes that were made graphically in a form compatible with the procedural scene description file. 

Also, its implementation code was rather “ad-hoc” and made it difficult to enhance NOME’s capabilities. 

These past efforts and related tools have not found a good balance between procedural mesh generation 

and interactive GUI modifications. Thus, we have developed a new modeling tool, called JIPCAD (Joint-

Interactive-Procedural CAD), that extends NOME by re-implementing it on a more robust, well- 

structured code base and by enhancing the library of predefined shape generators. Many additional 

modification modes were added to the graphical user interface, and the means of saving those changes 

and appending it to the original procedural JIPCAD file were improved. The challenges involved are not 

only generating the shapes and preserving their hierarchical relationships, but also saving interactive 
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changes back into the code for reuse. We decided to rebrand NOME as JIPCAD since the tool’s ability to 

handle non-orientable surfaces is no longer its distinguishing feature. 

 

Figure 1: The “3-2-1” Sculpture: (a) Sculpture by Tord Tengstrand; (b) B-splines added; (c) intermediate 

construction step; (d) completed construction; (e) sharp subdivision applied. (see Appendix A3) 

Since I joined the JIPCAD project in 2019, we have made the tool more robust and introduced features 

such as generalized progressive sweeps along arbitrary 3D space curves, dynamic scenes, advanced shape 

generators for tori, graphical editing and saving capabilities, error catching, a user-friendly crystal ball 

interface [5], advanced rendering options, and more. We have also fixed the mesh data structure to handle 

various non-orientable surfaces while being compatible with our newly added features. JIPCAD users can 

generate topologically complex 2-manifolds through an iterative workflow, which may start with 

procedurally generated B-spline curves, to which discrete surface facets are added through a graphical 

user interface. This is demonstrated in the construction of the “3-2-1” Sculpture by Tord Tengstrand [6] in 

Figure 1.  

2. Basic Commands 

The three basic entities in JIPCAD are point, face, and polyline. These entities are often assembled to 

form meshes and are initialized using the following generator commands: 

Point: point id (x y z) endpoint  

Polyline: polyline id (point_idlist) [closed] [surface surface_id] endpolyline  

Face: face id (point_idlist) [surface surface_id] endface  
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All generator commands are specified with their command type (e.g., polyline), an id that can be used to 

reference the entity, and the entity’s parameters. The id needs to be unique; JIPCAD uses a single 

assignment language that does not allow for duplicate names. Command types and parameter names are 

reserved and cannot be used as ids. For example, face cannot be used as an id. 

Parameters enclosed in parentheses are required while parameters enclosed in brackets are optional. In the 

above commands, the point’s parameters are the x, y, z coordinates, while the polyline and face’s 

parameters are the ids of their associated points. The list of point ids must have length of at least 2 for 

polylines and at least 3 for faces. The polyline and face can optionally be assigned a color by passing in a 

surface identifier. The exact coloring convention is described in the Hierarchical Coloring Scheme 

section. Lastly, all commands end with an end statement concatenated with their command type (e.g., 

endpolyline). 

A user can instantiate any of the above entities as well as other shape generators by using the instance 

command. 

Instance: instance instance_id target_id [rotate (rx ry rz) {in degrees}] [scale (sx sy sz)] [translate (tx ty 

tz)] [surface surface_id] [LOD LOD_type] [shading shading_type] endinstance 

The instance command creates an instance of the target geometry, which flags the geometry to be 

rendered in the scene. One can optionally rotate, scale, translate the instance, and specify the shape’s 

color, level-of-detail (LOD), and rendering mode. 

Detailed descriptions for all commands can be found in the JIPCAD language reference [7].  

3. JIPCAD Hierarchies  

3.1 Hierarchical Constructs  

JIPCAD users can assemble shapes in group or mesh commands. This is useful for defining scenes in a 

hierarchical manner where identical geometries and symmetrical components can be defined once and 

reused. 

Group:  

group id  

    instance id1 object_id1 [instance_parameters] endinstance  

    … 
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    instance idN object_idN [instance_parameters] endinstance  

endgroup 

The group command defines a collection of shape or other group instances and is the most general 

hierarchical construct designed to introduce hierarchy into the scene description. When a group gets 

instantiated via an instance command, the group’s collection of instances gets added to the scene. 

Mesh:  

mesh id 

    point pointId1 id1 (x y z) endpoint  

    … 

    point pointIdN (x y z) endpoint 

    face faceId1 (point_idlist1) [surface surface_id] endface  

    ...  

    face faceIdN (point_idlistN) [surface surface_id] endface 

endmesh 

The mesh command defines a collection of points and/or faces. The faces can be optionally colored by 

referencing an existing surface entity. Faces within mesh commands can be referred to in the .jip file with 

a hierarchical name: id.faceId. This is useful if a user wants to perform further operations on the face or 

reuse the face in another command. 

In Figure 2, a cube is created by defining a mesh consisting of a single square face and then instantiating 

that mesh six times within a group construct; each instance of the mesh is applied the proper rotation 

transformation to ensure the faces together form a cube. We can then instantiate the entire group to render 

all its components and form the cube. Orange is the default surface color. 

 

 

 

 

 

Figure 2: Cube and corresponding .jip file. 
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3.2 Hierarchical Scene Graph 

A directed scene graph is used to keep track of the hierarchical relationships present in a scene, giving us 

a method to identify entities located within hierarchical constructs, such as group or mesh commands. 

Any entity can be referenced by its scene graph path and its own name separated by periods. Vertices are 

defined once and can be referenced by multiple faces (references are depicted as arrows in Figure 3). The 

green box in the bottom right of Figure 3 is referencing the vertex v3 underlined green named by using 

the identifier .g5.g3.o3.v3. This means changes made to the original vertex v3 (e.g., modifying its position 

with a slider) are propagated across the hierarchy. The yellow box is referencing the vertex v4 underlined 

yellow via the identifier .g7.g9.mE.v4. 

The root node of the graph is labeled RENDER WORLD, and its children are the global instance nodes. 

Global instances are instances not found within a group. An instance node’s child is its target geometry, 

which can be a group, mesh, or pre-defined shape generator. Each target geometry has its own set of 

children. For example, a group node’s children are its instance commands, and a mesh node’s children are 

its associated faces and points.   

 

 

 

 

 

 

  

Figure 3: Scene Graph [4]. 

3.3 Hierarchical Coloring Scheme 

The surface command is used to assign colors to objects. It has an id and user-defined RGB value in the 

range [0, 1].  

Surface color: surface id (R G B) endsurface  
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Key geometrical constructs such as faces, polyline-related entities (polylines, B-splines, and Bézier 

curves), and all instances can be assigned a surface color by passing in the surface surface_id as an 

argument.  

JIPCAD follows a hierarchical coloring scheme convention. This means that entities that have been 

assigned a surface color will not change their color when a higher-up group or instance that they are part 

of gets re-colored. For groups, only elements that have not yet been colored will accept the new group 

color.  

In Figure 4, the cube’s top face is assigned a green surface color while the entire cube group is assigned 

blue. Since the top face is within the group, the green surface color overrides blue for the top face. The 

other cube faces are colored blue because they are not assigned any colors lower in the hierarchy. If we 

assigned the surface color red to the mesh face f1, then the whole cube would become red as f1 is 

positioned relatively lower in the scene graph hierarchy than the group and global instance commands f1 

is a part of. 

Figure 4: Colored cube and corresponding .jip file. 

4. Sliders  

Sliders can be used to interactively change numerical parameter values in the scene description. A user 

can simply click and drag a slider in the GUI and alter the slider’s associated value. This is useful for 

interactively modifying a scene and determining which combination of shape parameter values can create 

the desired output. After the slider has been adjusted, the user can click on the “Commit Changes” button 

in the GUI as shown in Figure 5 and then type “Ctrl+S” or click “Save” to save the altered parameter 
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value as the new default slider value upon reloading. This means the slider’s default value in the .jip file 

is updated to reflect this change. 

Bank:  

bank bankID  

    set setID1 default_value1 start1 end1 step_size1   

    ...  

    set setIDN default_valueN startN endN step_sizeN   

endbank 

Banks are a collection of sliders. The bank’s sliders can be used in any generator command by setting 

$bankId.setID as the numerical parameter value. In Figure 5, the torus knot’s default starting p value is 

four as specified in its corresponding .jip file. If we move the slider such that p becomes eight, the torus 

knot in the scene updates accordingly. We can then save the changes back into the .jip file so the torus 

knot’s new default starting p value is eight.  

 

Figure 5: Modifying the p parameter via sliders and updating the .jip file.  

5. JIPCAD Language Development 

Over the past year, we have added dozens of new commands and features to the JIPCAD language. The 

new commands that have been the most impactful to the design and display of non-manifold surfaces are 

listed below along with a few non-traditional surface generators. The following subsections describe these 
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commands more in-depth. The full language reference describes all commands including those not listed 

here [7]. 

Frame: $frame 

Time: $time 

Bézier Curve: beziercurve id (point_idlist) segs endbeziercurve 

B-Spline: bspline id order (point_idlist) segs endbspline  

Sweeps: sweep id crosssection id [reverse] [begincap] [endcap] endcrosssection path id [mintorsion] 

[azimuth a_angle] [twist t_angle] endpath [brep brep-type] endsweep 

Control Point: controlpoint id point id scale (sx sy sz) rotate (rx ry rz) [startreverse or endreverse] cross 

id endcontrolpoint 

General Cartesian Surface: gencartesiansurf id func (x_min x_max y_min y_max x_segs y_segs) 

endgencartesiansurf 

General Implicit Surface: genimplicitsurf id func (x_min x_max y_min y_max z_min z_max x_segs y_segs 

z_segs) endgenimplicitsurf 

General Parametric Surface: genparametricsurf id func (u_min u_max v_min v_max u_segs, v_segs) 

endgenparametricsurf 

Subdivision: subdivision id [sd_type sd_flag] sd_level  [instances] endsubdivision 

Offset: offset id [offset_type offset_flag] height width  [instances] endoffset 

Torus: torus id (rad_maj rad_min theta_max  phi_min  phi_max  segs_theta  segs_phi) endtorus  

Torus Knot: torusknot id (symm turns rad_maj rad_min rad_tube segs_circ segs_sweep) endtorusknot 

We have also implemented generator commands for a disk, cylinder, cone, ellipsoid, sphere, Möbius strip, 

and Dupin cyclide. The command descriptions can be found in the JIPCAD language reference. 

Light: light id type (JIP_AMBIENT or JIP_DIRECTIONAL) color (R G B) endlight 

Camera: camera id projection (JIP_PARALLEL or JIP_PERSPECTIVE) frustum (min_triple) 

(max_triple) endcamera 

Window: window Window (xmin ymin) (xsize ysize) background (R G B) endwindow 

Viewports: viewport vp (xmin ymin) (xmax ymax) background (R G B) endviewport      

Include: include file_name.jip endinclude 

5.1 Dynamic Scenes 

We have introduced two global variables, $time and $frame, to handle time-varying models. These 

variables can be used in any expression that evaluates a numerical value in JIPCAD. $frame is an integer 
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value that gets incremented by +1 after every rendering of the scene. All expressions comprising $frame 

get updated before the scene is rendered again. $time is a real value that keeps track of elapsed time in 

seconds. After a rendering, the system-clock is interrogated and compared to the remembered system 

clock value after the previous rendering. The time difference is then added to the $time variable, and all 

expressions comprising $time get updated before the scene is rendered again. 

5.2 Path Entities 

Polylines, B-splines, and Bézier-curves are three path entities available in JIPCAD. These entities can be 

instantiated and rendered as piecewise linear segments or used as a sweep path in the sweep command. 

Polyline: polyline id (point_idlist) [closed] [surface surface_id] endpolyline  

B-spline: bspline id order (point_idlist) segs [closed] [surface surface_id] endbspline 

Bézier curve: beziercurve id (point_idlist) segs [closed] [surface surface_id] endbeziercurve 

A B-spline has an order parameter, which is an integer that sets the B-spline's degree to be order-1. The 

point_idlist is a list of point ids, and the referenced points behave as the B-spline’s control points. Note 

the number of control points has to be greater than or equal to order. For closed curves, there must be at 

least order-1 control points.  

Given a degree order-1 with n+1 control points (c0, c1, …, cn), the points of the B-spline can be obtained 

using the following function: 

𝐵(𝑡) = ∑ 𝑐𝑖𝐵𝑖,𝑛(𝑡)

𝑛

𝑖=0

 

where t ∈ [0, 1] and 𝐵𝑖,𝑛(𝑡) is defined as the basis defined as following for n = 0: 

𝐵𝑖,0(𝑡) = {
   1, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 

For n ≠ 0:   

𝐵𝑖,𝑘(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑘−1
𝐵𝑖,𝑘−1(𝑡) +

𝑡𝑖+𝑘 − 𝑡

𝑡𝑖+𝑘−1 − 1
𝐵𝑖+1,𝑘−1(𝑡) 

B-splines are useful for constructing the edges of curved surfaces as shown in Figure 6.  
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A Bézier curve’s point_idlist references a list of point entities that are used as the curve’s control points. 

According to De Casteljau’s algorithm, a Bézier curve with n+1 control points (c0, c1, …, cn) can be 

evaluated at a point using the following function: 

𝐵(𝑡) = ∑ 𝑐𝑖𝑏𝑖,𝑛(𝑡)

𝑛

𝑖=0

 

Where t ∈ [0, 𝑛 + ({𝑜𝑟𝑑𝑒𝑟} − 1] and b is defined as the basis defined as following for n = 0: 

𝑏𝑖,𝑛(𝑡) = (
𝑛

𝑖
) (1 − 𝑡)𝑛−𝑖𝑡𝑖 

In both the B-spline and Bézier curve commands, segs is the number of segments into which they are 

sampled. 

 

 

 

 

  

  

Figure 6: Three B-splines defining part of the edge structure of the in the Tord Tengstrand 

sculpture [6], each shown as a 12-segment polyline, with highlighted vertices, through which new 

surface facets may be defined. 

5.3 Sweeps  

We have introduced a sophisticated sweep procedure that can sweep an arbitrary 2D cross-section along a 

sweep path. The cross-section and the sweep path must be a polyline, Bézier curve, B-spline, or circle. 

Sweep:  

sweep id   

    crosssection id [reverse] [begincap] [endcap] endcrosssection 

    path  id [mintorsion] [azimuth a_angle] [twist t_angle] endpath 
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    [brep brep-type] 

endsweep 

Each path has a set of Frenet frames (tangents, normals, and binormals) that are used to determine how 

the crosssection will twist along the path. The user can control the twist in four ways: mintorsion 

minimizes the twisting of the intrinsic Frenet frame, azimuth is the angle about the tangent through which 

all Frenet frames will be rotated, twist is the angle about the tangent that specifies the overall amount of 

twist from the first Frenet frame to the last, and warp sets each twist angle explicitly at specified 

controlpoints in the path. 

Control Point: controlpoint id point id scale (sx sy sz) rotate (rx ry rz) [startreverse or endreverse] cross 

id endcontrolpoint 

The controlpoints also permit rotating and non-uniformly scaling of the crosssection at their locations. At 

any sample points between adjacent controlpoints, the transformation variables are interpolated in the 

same way that the x, y, z coordinates are being interpolated (e.g., by a cubic polynomial for the cubic B-

spline). Given a list of control points, we can tag a control point as startreverse and another as 

endreverse; then, the orientation of all sweep faces between these two control points are reversed, turning 

their generated brep-surface inside out. Control points can also reference a cross section by assigning a 

path-related entity id to cross. Regular path points act like control points with no additional 

transformations. 

begincap and endcap can be used to draw the starting and ending faces of sweeps along an open path 

(with outward normal) respectively.  

 

 

 

  

  

 

Figure 7: A sweep with local profile inversions.  (see Appendix A1) 
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5.4 Surfaces Generated from Mathematical Expressions 

JIPCAD users can also define surfaces in 3D space via mathematical expressions that define points in 

general Cartesian or in parametric coordinate spaces, or in an implicit form [8].  

General Cartesian Surface: gencartesiansurf id func (x_min x_max y_min y_max x_segs y_segs) 

endgencartesiansurf 

General Implicit Surface: genimplicitsurf id func (x_min x_max y_min y_max z_min z_max x_segs y_segs 

z_segs) endgenimplicitsurf 

General Parametric Surface: genparametricsurf id func (u_min u_max v_min v_max u_segs, v_segs) 

endgenparametricsurf 

The Cartesian generator’s func parameter takes in an equation of the form z = f(x,y). The generator has 

parameters for the minimum and maximum x and y values and the number of segments in the x and y 

ranges.  

The implicit surface’s func is the equation f(x,y,z) = b, where b is the isolevel; a user can define the upper 

and lower bounds of x, y, and z and the number of segments in each axis range. 

The parametric generator’s func is based on the three expressions: x(u,v)  |  y(u,v)  |  z(u,v). It also has 

parameters to define the lower and upper bounds for the u, v domain and for the number of segments in 

both the u and v ranges. 

Basic operators and mathematical functions are supported in the func parameters. Figure 8 shows 

examples of each type of the three general shape generators. 

 

 

 

 

 

Figure 8: General shape generators: (a) Cartesian “humps”, (b) implicit “blobs”, (c) parametric “leaves” 

(See Appendix A2) 
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5.5 Tori generators 

Among the various shape generators we have introduced are the torus and torus knot generators. 

Torus: torus id (rad_maj rad_min theta_max  phi_min  phi_max  segs_theta  segs_phi) endtorus 

Torus Knot: torusknot id (symm turns rad_maj rad_min rad_tube segs_circ segs_sweep) endtorusknot 

The rad_maj and rad_min refer to the major and minor radii for both the torus and torus knot. The torus 

generator has the parameter theta_max, which is specified in degrees and determines how far the minor 

circle cross section is swept starting at the x-axis and circling the z-axis by the angle theta until the 

theta_max is reached. The torus generator also has a phi_min and phi_max which determine the starting 

and terminating angle in degrees around the minor circle. segs_theta and segs_phi correspond to the 

number of segments along the major radius and minor radius, respectively.  

The torus knot generator has a symm parameter that determines the number of sweeps through the donut 

hole, which is equivalent to the rotational symmetry of the knot. turns indicates the number of turns 

around the donut hole. The rad_tube specifies the radius of the swept circle. If the rad_tube is equal to 0, 

the torus knot takes the form of a polyline, which can be used as a sweep path. segs_circ specifies the 

number of segments on the circular cross section and segs_sweep is the number of segments along the 

sweep path. 

Behind the scenes, the parametric equations used to create a torus with handle radius a and large radius c 

are x = (c + a cos v) cos u, y = (c + a cos v) sin u, and z = a sin v, where u and v are substituted with t, as 

t runs from 0 to theta_max. The torus knot has additional p and q parameters: x = (c + a cos(p*v)) cos 

(q*u), y = (c + a cos(p*v)) sin (q*u), and z = a sin(p*v). Figure 9 depicts three intersecting torus knots on 

a torus, creating the embedded graph K7.    

  

 

 

  

  

Figure 9: Three different torus knots on a torus, creating the embedded graph K7.  
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6. Mesh Operations 

Well-formed meshes are the starting point for operations such as subdivision (to form smoother surfaces) 

and offsetting (to thicken mathematical surfaces into slabs that can be fabricated on a 3D printer).  

Composite meshes that comprise assemblies of sub-meshes or of individual facets need to be merged first. 

6.1 Merge 

The merge operation combines overlapping meshes into a single mesh. It can be activated through a pull-

down menu in the GUI as shown in Figure 10. Two meshes are considered overlapping if there exists at 

least one mesh vertex located within 0.001 units of the other mesh’s vertices. Merge is useful for 

subdividing or offsetting overlapping shapes that are defined separately but should be combined and 

operated on together. 

 

  

  

  

  

  

Figure 10: Merge and subdivide buttons in the GUI. 

In the scene shown in Figure 2, the cube faces appear connected, but each face is its own separate mesh 

instance due to the usage of the group construct. If we were to subdivide this group of faces before 

merging, we would get six disjoint, rounded faces. To treat the six mesh instances as a single mesh 

instance, we need to click on the merge button. When we subsequently click on the subdivide button and 

specify the subdivision level in the pop-up window, the cube will get subdivided and output a spherical 

shape shown in Figure 11.  

6.2 Subdivision 

In addition to interactively subdividing shape in the user interface, smaller parts of the scene can also be 

subdivided procedurally in the .jip file by using the subdivision command. The subdivision command 

automatically merges all instances in its collection, so there is not a need for an explicit merge 

command.   
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Subdivision:  

subdivision id  

    [sd_type sd_flag] sd_level  

    instance id1 object_id1 [xform & color] endinstance  

    ...   

    instance idN object_idN [xform & color] endinstance  

endsubdivision  

The sd_flag denotes the type of subdivision algorithm used: JIP_SD_CatmullClark is the plain and 

simple Catmull-Clark subdivision and JIP_SD_CC_sharp is Catmull-Clark subdivision respecting 

“sharp” flags in the mesh. Sharp subdivision is an extension of Catmull-Clark subdivision and models 

sharp creases on a surface [9]. sd_level is the integer number of iterated subdivision steps, and [xform & 

color] are the optional parameters for instance transformations and coloring. 

 

  

  

Figure 11: Subdivided cube resulting from the merged mesh shown in Figure 1. 

For sharp subdivision, each edge in the underlying mesh data structure carries an integer tag denoting for 

how many more subdivision steps this edge should not be smoothed. This tag is decremented in each 

subdivision step. When the integer reaches zero, the edge receives no further special treatment and is 

smoothed with simple Catmull-Clark subdivision. 

The preparatory process that constructs the above mesh data structure sets the appropriate flags for all 

edges. If an edge does not have a user-defined sharpness tag, then the tag is set to zero. Therefore, it is 

useful to have a SD_type flag that says whether we want to do sharp subdivision or just simple Catmull-

Clark subdivision. In the latter case, all user-introduced sharpness tags are ignored, and the tags on all the 

winged-edge structures are set to zero. In a .jip file with several objects, which may be subdivided 

differently with different goals, the flag JIP_SD_CatmullClark can then save the effort of looking for 

sharpness tags; all edges are simply treated as if they had a tag “zero”. 

There are two ways that a user can set some non-zero sharpness tags. In an interactive mode, the user 

selects some edges and sets their tags to the desired value in the range [1,9]. An alternative method is 

specifying sharpness information in the .jip file. For example, at the end of a mesh that contains some 
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sharp edges, we could add an explicit list of edges with their sharpness tags: 

sharp  flagValue  vertex1  vertex2 endsharp 

This can be specified for a whole chain of edges or for a closed loop: 

sharp  flagValue  vertex1  vertex2  vertex3  …  vertexN endsharp 

sharp  flagValue  vertex1  vertex2  vertex3  …  vertexN  vertex1 endsharp 

6.3 Offset 

A surface mesh of zero thickness can be thickened into a thicker sheet surrounded by a water-tight B-rep 

with the following offset command. 

Offset: 

offset id 

    [offset_type offset_flag] height width 

    instance id1 object_id1 [xform & color] endinstance 

    ... 

    instance idN object_idN [xform & color] endinstance 

endoffset 

The offset_flag defines the type of thickened surface generated: JIP_OFFSET_DEFAULT offsets the 

starting mesh inward and outward symmetrically. Each facet in the original mesh maps to two facets in 

the offset mesh; the inner one with reversed orientation. Each boundary edge of an open polyhedron will 

map to a quadrilateral facet.  

In default offset, every vertex is duplicated, and these vertices are shifted in opposite directions along an 

Averaged Vertex Normal (AVN). The AVN is found by averaging the face normals of all the faces that 

share that vertex as shown in Figure 11. The weight by which each face contributes to the AVN is the 

angle that the face has at the shared vertex. Vertices that only have small sliver angles count less in this 

averaging process. 
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Figure 11: Vertex normal calculation using weighted face normals [4]. 

A gridded sheet of some specified thickness can be produced when the edges of a polyhedron are 

converted into prismatic structures. However, we are not actually thickening the edge themselves, but 

instead create first a thin gridded surface by cutting out the inner portions of all the facets and then 

applying a normal offset operation to thicken this gridded surface. The inner cutout in every face is 

defined to produce bands of exactly the specified width. This can be done by creating a new inner vertex 

at every face-vertex that lies on the angle bisector at that vertex and shifted by the desired width divided 

by the cosine of the half-angle. These new vertices are connected to form the inner cutout contours. All 

the open edges in this polyhedral surface are replaced with quadrilaterals that connect the inner and outer 

surfaces. [xform & color] are the optional parameters relating to transformations and coloring. 

7. Rendering Control 

JIPCAD has rendering control commands to specify lights and cameras. The light command can be used 

to create ambient or directional light sources. Ambient light is a colored light source that affects all 

surfaces regardless of orientation. A directional light is located at infinity and shines in the direction of 

the negative z-axis; it can be re-directed by applying a rotation to any instances of it.  

Ambient or Directional light: light id type [JIP_AMBIENT or JIP_DIRECTIONAL] color (R G B) 

endlight 

The camera command creates a virtual camera object that can be positioned in the scene via an instance 

command.  
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Camera:  

camera id  

    projection (JIP_PARALLEL or JIP_PERSPECTIVE)  

    frustum (min_triple) (max_triple)  

endcamera 

The camera projection can be either JIP_PARALLEL or JIP_PERSPECTIVE. Parallel projection models 

a viewer that is infinitely far away from the scene; it is often useful to check the alignment of different 

geometrical elements in a complicated scene. Perspective projection models an ideal pinhole camera, 

mimicking the functionality of an eye located a finite distance from the point of interest.  

The frustum is used for defining the geometry of the viewing volume. Specifically, the x and y 

components of both the min_triple and max_triple are used to define the rectangular window on the 

projection plane, and the z components define the near and far planes.  

JIPCAD specifies a window into which all displays are mapped. xmin and ymin define the origin in the 

Normalized Device Coordinates (NDC). xsize and ysize determine the horizontal and vertical scale of the 

window.    

Window: window Window (xmin ymin) (xsize ysize) background (R G B) endwindow 

Inside the display window, users can define one or more rectangular viewports, which are specified as 

fractions of the display window. For instance, two separate, side-by-side viewports could be specified to 

generate a cross-eye stereo display of a 3D object. The extent of the viewport in the window is defined by 

the xmin, ymin and xmax, ymax parameters. 

Viewport:  

viewport id  

     (xmin ymin) (xmax ymax)  

      background (R G B)   

endviewport    

All scene geometry and possibly some lights are gathered in a group called world. The render command is 

then used to specify a camera, perhaps some additional lights to further customize a specific viewport’s 

illumination, and a viewport into which the results are projected. If we want three cameras in the world 

(perhaps to render “top”, “front”, and “side” views of an object), we simply use three render commands, 

each with its own camera instance and destination viewport properly placed in the display window.  
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world world_id   

    instance id1 geometry …  endinstance  

    instance id2 lightId_1 [xform] endinstance  

    instance id3 lightId_2 [xform] endinstance 

endworld 

render 

    instance id1 world_id [xform] endinstance 

    instance id2 camera_id [xform] endinstance 

    instance id3 lightId_1 [xform] endinstance 

    instance id4 lightId_2 [xform] endinstance 

    … 

    viewport id (xmin,ymin) (xmax,ymax) background (R G B) endviewport 

endrender 

7.1 Include Files 

Sometimes users may want to reuse their personally developed rendering controls in different .jip files. 

To avoid lengthy monolithic file structures, users can import partial .jip files with an include command.  

Include: include file_name.jip endinclude  

This is useful for users to create their preferred .jip files that define surface colors, important geometry, 

coordinates axes, collections of camera, lights, and window/viewport specifications, etc., and then simply 

include these files in several of their active .jip files. Figure 12 depicts a generic coordinate axis file that 

is often imported into active .jip files. 

 

 

 

 

 

 

Figure 12: Generic coordinate axes at the world origin. 
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8. Graphical Editing 

When JIPCAD displays the contents of an active .jip file, interactive graphical editing features can be 

toggled on in the toolbar as shown in Figure 13. Toggling on these features allow the user to make 

changes interactively by primarily using the mouse cursor. The core graphical editing options are 

described below. 

 

 

  

Figure 13: The drop-down selection menu. 

8.1 Interactive Addition of Faces and Polylines 

Users can add faces and polylines interactively into the scene and save them back into a corresponding 

.jip file as reusable code, which will then display the same graphical state that was on the screen just 

before the save operation, so that additional graphical editing can continue.  

Surface patches can be constructed by selecting existing vertices in the scene to form a clockwise 

polygonal outline of a desired face and clicking the “Add Face” button as shown in Figure 13. Similarly, 

users can add a polyline by selecting vertices and clicking on the “Add Polyline” button. Vertices are 

selected based on their closeness to the current cursor ray; they are then identified by their hierarchical 

name in the scene graph and entered correspondingly into the emerging JIPCAD scene. 

The added entities can be saved by first clicking on the “Commit Changes” button and then clicking on 

“Save” to add all committed entities into the chosen .jip file as regular JIPCAD commands. 

Corresponding instance commands are created along with the needed generator commands so that these 

entities can be properly rendered when reloading the file. Each newly added face and/or polyline is 

assigned a placeholder name based on the order in which they were added. An example of adding a face 

and saving the face as JIPCAD code is shown in Figure 14. The code is inserted at the end of the .jip file. 

The user is encouraged after each such save operation to edit the saved .jip file to substitute their own 

preferred names for the new faces of polylines and to move these new entities into their most appropriate 

places in the hierarchically structured .jip file. 
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Figure 14: Adding a face between two cubes and saving it as JIPCAD code. 

Interactively adding faces into a design is useful because often only a small fraction of the surface needs 

to be constructed as a mesh. Multiple instances of those faces can then be grouped together with the 

proper symmetry operations to form the whole symmetrical surface. The resulting composite polyhedral 

surface can then be merged and smoothed with a subdivision operation. 

8.2 Interactively Add Points  

Users can also add new points into the scene while in the interactive graphical editing mode. From a user 

experience perspective, it would not make sense to manually specify x, y, z coordinates of the newly 

added point while in the interactive graphics mode, because the user could just type the point 

specification in the .jip file instead. What is needed are ways to add points graphically based on what can 

be seen on the screen, without explicit reference to any coordinate values. 

After toggling on the “Add Point” option in the GUI, the user can first put the cursor in the desired 

location and simply click. This casts a physical line in space from your eye/camera to the cursor on which 

the point must lie. The user then rotates the scene, so that this temporary line can be seen from the 

side. Another cursor-click somewhere on that line then defines a 3D point location; the original cursor 

line can then be turned off. Since two lines in 3D space are unlikely to intersect each other directly, we 

look for the closest intersection point by finding the shortest line segment connecting the initial cursor ray 

and the second “select point” ray [10]. The shortest line segment between these lines is guaranteed to be 

perpendicular to both lines as shown in Figure 15.  
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Figure 15: Shortest line segment connecting two skewed lines in 3D space. 

Let the points 𝑃𝑎 and 𝑃𝑏 be written as points along the rays, represented as two finite line segments in 

Figure 15: 

𝑃𝑎 = 𝑃1 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) 

𝑃𝑏 = 𝑃3 + 𝑚𝑢𝑏(𝑃4 − 𝑃3) 

𝑚𝑢𝑎 and 𝑚𝑢𝑏 range from negative to positive infinity and represent how far along the ray the intersection 

points are. We can then write the following equations using the perpendicular property of the shortest line 

segment. 

(𝑃𝑎 − 𝑃𝑏) ⋅ (𝑃2 − 𝑃1) = 0 

(𝑃𝑎 − 𝑃𝑏) ⋅ (𝑃4 − 𝑃3) = 0 

Expanding the above equations using the line equations: 

(𝑃1 − 𝑃3 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) − 𝑚𝑢𝑏(𝑃4 − 𝑃3)) ⋅ (𝑃2 − 𝑃1) = 0 

(𝑃1 − 𝑃3 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) − 𝑚𝑢𝑏(𝑃4 − 𝑃3)) ⋅ (𝑃4 − 𝑃3) = 0 

Expanding the equations in terms of the x, y, z coordinates results in the following: 

𝑑1321 + 𝑚𝑢𝑎𝑑2121 − 𝑚𝑢𝑏𝑑4321 = 0 

𝑑1343 + 𝑚𝑢𝑎𝑑4321 − 𝑚𝑢𝑏𝑑4343 = 0 

where 

𝑑𝑚𝑛𝑜𝑝 = (𝑥𝑚 − 𝑥𝑛)(𝑥𝑜 − 𝑥𝑝) + (𝑦𝑚 − 𝑦𝑛)(𝑦𝑜 − 𝑦𝑝) + (𝑧𝑚 − 𝑧𝑛)(𝑧𝑜 − 𝑧𝑝) 
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Lastly, we can solve for 𝑚𝑢𝑎 and 𝑚𝑢𝑏, which we can then use to determine the coordinates of 𝑃𝑎 and 𝑃𝑏: 

𝑚𝑢𝑎 =
(𝑑1343𝑑4321 − 𝑑1321𝑑4343)

(𝑑2121𝑑4343 − 𝑑4321𝑑4321)
 

𝑚𝑢𝑏 =
(𝑑1343 + 𝑚𝑢𝑎𝑑4321)

(𝑑4343)
 

To make the point visible and to capture it in the JIPCAD file, we simply click “Commit Changes” and 

“Save” to save the added point as a point command. Multiple added points can be saved at once.   

If we add the point directly onto a mesh’s surface, our newly added point will be declared in the mesh 

construct as follows.   

mesh TEMP 

    point id (x y z) endpoint    

endmesh 

8.3 Vertex Selection and Movement  

Once a vertex has been selected, the user is able to move it by clicking on the “Move Vertex” button. A 

right-mouse-down would “grab” the vertex and move it in a plane parallel to the window plane, following 

the cursor movement. Another mode “duplicates” a selected vertex and creates a new vertex that can then 

be moved to a new location. 

8.4 Crystal Ball Interface 

Selecting objects in the scene requires a user-friendly interface. To make navigating the scene easier, we 

implemented a crystal ball interface [5] that simulates a world in which a viewer is looking into a 

transparent crystal sphere from the outside-in. The crystal ball is centered around the world origin with a 

diameter of 90% of the height of the graphics window. The cursor controlled by the left mouse button is 

used to rotate this ball by changing the orientation part of the viewing matrix correspondingly.  

In the general case, the 3D rotation axis always goes through the world origin as shown in Figure 16. We 

assume, the cursor is in contact with the crystal ball of radius R. Moving a surface point by distance D, 

rotates the ball through angle α. With the left mouse button down, a small incremental cursor movement 

in the display window is converted to a simple small rotation. If the cursor falls outside the projection of 
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the crystal ball, we perform a pure Z-rotation. If the cursor moves inside the projection of the crystal ball, 

we do a rotation around a properly slanted rotation axis. 

 

 

 

 

  

Figure 16: Scene rotation based on crystal ball interface. 

The right mouse button is used for positioning as the cursor drags the object parallel to the x-y-plane. The 

left mouse button is used for adjusting the view orientation as the cursor rotates the world around its 

origin with the crystal ball GUI, and the mouse wheel is used for zooming in and out of the scene by 

changing the scale of the object. Moving the wheel upwards increases the scale and results in zooming 

into the scene. 

As long as the cursor is active in the crystal ball display window, the scene geometry does not 

change. Thus, the hierarchically flat display-list remains unchanged and can be reused in subsequent 

frames.  

9. Data Structures and Implementation Details 

We considered using OpenMesh’s half-edge data structure [11] for storing vertices, edges, faces, and 

connectivity information in a highly efficient manner. However, the half-edge data structure is most 

efficient when adjacent mesh entities (edges and faces) share the same orientation; it is less convenient to 

handle single-sided, non-orientable surfaces. It is technically possible to modify the half-edge data 

structure to handle non-orientable surfaces with a variety of complicated conditional statements and 

attributes, but we found this approach to be too unwieldy and convoluted. Therefore, we decided to use 

the winged edge data structure as shown in Figure 17, since it can represent single-sided surfaces with a 

few simple adjustments. 

Each edge is assigned an edge type based on the orientation of its adjacent face(s). If the edge is shared by 

two faces with the same orientation, it is classified as a regular edge. If the two adjacent faces have 

opposite orientations, it is a Möbius edge. Lastly, if the edge is only used by one face, it is considered a 
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boundary edge. These edge types are useful in determining which face properties to use when performing 

mesh operations on a single-sided surface. For example, when JIPCAD is computing vertex normals via 

weighted face normals, JIPCAD iterates through the vertex’s adjacent faces and simply reverses the 

direction of the face normal when encountering a face located between two Möbius edges. Thus, by using 

the winged edge data structure, JIPCAD can apply mesh operations to non-orientable surfaces.  

The first iteration of the NOME prototype in 2018 had also used the winged edge data structure [4]. In 

continuing with this data structure, we have made its implementation more robust as well as compatible 

with our new mesh operations (e.g., sharp subdivision) and interactive graphical editing capabilities. 

 

Figure 17: Winged edge data structure [13].   

9.1 Implementation Details  

JIPCAD is a Qt-based application [12] that uses OpenGL [13] and Qt 3D modules to easily build and 

interact with 3D generated scenes. ANTLR [14] is used to walk parse trees constructed from a custom .g4 

grammar file designed for the JIPCAD language. We used Git [15] for version control and AppVeyor 

[16] as a continuous integration service for automated builds; these tools were important in ensuring our 

JIPCAD development efforts were scalable and well synchronized. 

10. JIPCAD Design Examples 

“3-2-1” is a sculpture created by Tord Tengstrand (Fig.17a), showcased in the Bridges 2020 Art 

Exhibition [6]. The sculpture has 3 edges, 2 vertices, and a single face. It is of genus-2 and has a 3-fold 

rotational symmetry around the long axis. Given its high degree of symmetry, JIPCAD is the ideal tool to 

construct a complete model of this sculpture. As a start, we can create a JIPCAD file that captures the 
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three edge curves that emerge from the vertex. Then, the first manual task is to add some facets between a 

pair of these curves. Three copies of this, rotated around the z-axis in steps of 120° leads to Figure 18b, 

and flipping this trio upside down produces Figure 18c; with overall geometry properly captured in a 

crude polyhedral shape, we can now use subdivision to produce a smooth surface. To keep the edges 

sharp and clean we label those edges as “sharp” before we apply the sharp subdivision process. The final 

result is shown in Figure 18d. 

             

(a)                                     (b)                                   (c)                                   (d) 

Figure 18: The “3-2-1” Sculpture: (a) Sculpture by Tord Tengstrand; (b) intermediate construction step; 

(c) completed construction; (d) sharp subdivision applied. (see Appendix A3)  

Figure 19 depicts a (3, 4) torus knot sculpture created by Carlo H. Séquin. The sculpture was constructed 

using JIPCAD sweeps with B-spline paths.  

 

 

 

 

 

Figure 19: (3, 4) Torus knot via sweeps. (see Appendix A4) 
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11. Interactive Workflow 

The typical JIPCAD workflow begins with the user creating a procedural scene description in the form of 

a .jip file. Users may have the Language Reference [7] open to assist with the language syntax. Upon 

opening the .jip file in JIPCAD.exe, a text window will notify the user if there were any syntactic or 

semantic errors in the input file. If there were no errors, the scene will display on the graphics screen, and 

the user can then navigate the scene through the crystal ball interface and modify the scene geometry with 

the cursor.  

A commonly used interactive modeling operation is adding faces between curves or other previously 

defined vertices. Adding faces is enabled by toggling on “Enable Vertex Selection” as shown in Figure 

13, selecting the target vertices, and clicking on the “Add Face” button. Users may add individual faces in 

small batches and save those faces back into the file. The saving mechanism is activated by clicking on 

the “Commit Changes” button in the GUI as shown in Figure 10 and then typing “Ctrl+S” or clicking on 

“Save”.  

The JIPCAD code produced for the newly added faces is inserted at the bottom of the .jip file.  For added 

faces, the code consists of a mesh command containing the various faces along with an instance command 

to ensure the faces get re-rendered upon reloading the file, as shown in Figure 14. Note the added mesh 

and face(s) are named with a “Temp” prefix. This is intended to be a placeholder name, and the user can 

replace it with a more descriptive name later. The faces’ point names are obtained and saved based on 

their location within the scene graph hierarchy and adhere to JIPCAD’s point naming convention as 

described in the Hierarchical Scene Graph section.  

The user may move the new face definitions into a larger, pre-existing mesh construct that contains a 

more complete version of the unique surface swath that the user aims to construct. This whole surface 

swath may be instantiated more than once if the envisioned shape has some symmetry. By placing the 

new faces into the proper hierarchical context, the user can verify that the latest batch indeed fulfills their 

intended role in the overall CAD model. The user can then return to the graphics display to add some 

more faces or to eliminate faces that may overlap inadvertently. This iterative process is illustrated in 

Figure 18, where the intermediate construction step depicts several faces connected to the B-spline edge 

curves.  

Adding polylines is similar to the process of adding faces. The key difference is added polylines are saved 

as individual polyline commands rather than grouped together in a hierarchical mesh construct. Polylines, 

individual edges, or vertices can be marked as “sharp”, so that surfaces with some sharp creases can be 
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designed as described in the Subdivision section. This can be done through the graphical interface or with 

appropriate textual annotations in the .jip file.  

During all these design phases, the overall geometry of the emerging shape can be fine-tuned by adjusting 

some slider values that might move some vertices, or which stretch or warp a whole section of the overall 

sculpture. With any “save” operation the latest values of all the sliders will get entered into the .jip file as 

the default settings in the corresponding parameter banks.  

Typically, these manually constructed surfaces are coarse polyhedral forms. Optionally, such surface can 

be subjected to one or more subdivision steps to smooth out the dihedral edges between adjacent faces.  

Users can activate the subdivision process through the GUI’s “Merge” and “Subdivide” buttons as shown 

in Figure 10. Alternatively, subdivision of specific parts of the overall scene can be specified textually in 

the JIPCAD file with the subdivision command.  

Similarly, mathematically thin 2-manifolds can be thickened with the offset operation. This operation can 

also be launched through the GUI, or it can be specified in the JIPCAD file itself.  

A final step in the design process may be to orient the sculpture into a more informative or aesthetically 

satisfying orientation and to adjust the lights that illuminate the whole scene – and then to save a snapshot 

of the display. 

12. Conclusion 

We have developed a dual-mode design environment for geometrical shapes by extending and 

robustifying the previous NOME system [4]. One part is a procedural shape description language that 

makes it easy to define precise geometry as well as combining geometrical elements in a hierarchical 

manner. The other part is an interactive graphical display that allows the user to enter geometrical 

modification based on cursor controlled selections and movements. The key achievement is to commit 

and save any such changes with suitable annotations to the original .jip file, so that a reopening of the 

enhanced file will reproduce the latest graphical state and thus allow the user to continue in either a 

graphical manner or by textual changes in the .jip file. 

This system has allowed users with limited computer graphics experience to make highly complex, 

precise geometrical models.  
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https://www.graphics.rwth-aachen.de/media/openmesh_static/Documentations/OpenMesh-5.2-Documentation/a00016.html
https://www.graphics.rwth-aachen.de/media/openmesh_static/Documentations/OpenMesh-5.2-Documentation/a00016.html
https://www.qt.io/
https://www.opengl.org/
https://www.antlr.org/
https://github.com/
https://www.appveyor.com/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html
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Appendix: Some Example JIPCAD Files 

 
This appendix contains the complete JIPCAD files that produce some of the figures shown earlier in the 

main text. It shows the use of some of the special generators, of hierarchical constructs, and of general 

mesh-refinement processes. 

 

 

A1: Sweep with Profile Inversion (Figure 7)   

 

# Sliders 

bank p 

    set radius    1.2   1         5     0.1 

    set twist       0     0.1   360     1 

    set azimuth  0     0.1   360     1 

endbank 

 

### Cross Section 

point cp0 ({expr $p.radius * cos(0)} {expr $p.radius * sin(0)} 0) endpoint 

point cp1 ({expr $p.radius * cos(0.0174533 * 45)}  {expr $p.radius * sin(0.0174533 * 45)} 0) endpoint 

point cp2 ({expr $p.radius * cos(0.0174533 * 90)}  {expr $p.radius * sin(0.0174533 * 90)} 0) endpoint 

point cp3 ({expr $p.radius * cos(0.0174533 * 135)} {expr $p.radius * sin(0.0174533 * 135)} 0) endpoint 

point cp4 ({expr $p.radius * cos(0.0174533 * 180)} {expr $p.radius * sin(0.0174533 * 180)} 0) endpoint 

point cp5 ({expr $p.radius * cos(0.0174533 * 225)} {expr $p.radius * sin(0.0174533 * 225)} 0) endpoint 

point cp6 ({expr $p.radius * cos(0.0174533 * 270)} {expr $p.radius * sin(0.0174533 * 270)} 0) endpoint 

point cp7 ({expr $p.radius * cos(0.0174533 * 315)} {expr $p.radius * sin(0.0174533 * 315)} 0) endpoint 

 

polyline profile (cp7 cp6 cp5 cp4 cp3 cp2 cp1 cp0) closed endpolyline 

 

### Sweep Path 

point point0 (-5.5 4 0) endpoint 

point point1 (-5 4 0) endpoint 

point point2 (5 4 0) endpoint 

point point3 (5.5 4 0) endpoint 

point point4 (5 4 0) endpoint 

point point5 (-10 4 0) endpoint 

point point6 (-10 -6 0) endpoint 

point point7 (10 -6 0) endpoint 

point point8 (10 4 0) endpoint 

point point9 (-5 4 0) endpoint 

 

### Control Points 

controlpoint sc0 point point0 scale (1.5 1.5 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc1 point point1 scale (1.1 1.1 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc2 point point2 scale (1.1 1.1 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc3 point point3 scale (0.8 0.8 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc4 point point4 scale (0.5 0.5 0) rotate(0 0 0) startreverse endcontrolpoint 

controlpoint sc5 point point5 scale (0.6 0.6 0) rotate(0 0 0) endcontrolpoint   

controlpoint sc6 point point6 scale (1.0 1.0 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc7 point point7 scale (1.4 1.4 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc8 point point8 scale (1.8 1.8 0) rotate(0 0 0) endcontrolpoint 

controlpoint sc9 point point9 scale (1.9 1.9 0) rotate(0 0 0) endreverse endcontrolpoint 
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polyline sweeppath (sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9) closed endpolyline 

 

### Sweep 

sweep s0 

    crosssection profile endcrosssection 

    path sweeppath mintorsion azimuth {expr $p.azimuth} twist {expr $p.twist} endpath 

endsweep 

 

instance sweepinst s0 endinstance 

 

 

A2: Examples of General Shape Generators (Figure 8) 

 

gencartesiansurf humps (7*x*y)/exp((x^2)+(y^2)) (-2 2 -2 2 40 40) endgencartesiansurf 

surface R  color  (0.7  0.2 0  ) endsurface   # Red 

instance ihump humps surface R endinstance 

 

genimplicitsurf blobs (x^4+y^4+z^4-x^2-y^2-z^2+0.5) (-2 2 -2 2 -2 2 30) endgenimplicitsurf 

surface G  color  (0  0.7 0.2 ) endsurface   # Green 

instance iblob blobs  translate (0 5 0) surface G endinstance 

 

genparametricsurf leaves ( sin(v)*(2+cos(3*u))*cos(2*u)  |  sin(v)*(2+cos(3*u))*sin(2*u) 

   |  sin(v)*cos(v)*(sin(3*u) ) (0 6.28318 0 1.0472 60 20) endgenparametricsurf 

surface B  color  (0  0.2 0.7 ) endsurface   # Blue 

instance ileaf leaves  rotate (0 1 0)(180)  translate (0 10 0) surface B endinstance 

 

 

A3: 3-2-1 Sculpture Using Sharp Subdivision (Figure 18) 

 

## Tord_SD.jip 

## 

## Reconstructing the Tord_sculpture from his original 3-2-1 Sculpture at Bridges2020. 

## A different way of structuring the facets sinto 6 coherent surface pieces. 

## Consolidated with added sharpness specifications. 

## 

## CHS 2020/12/4 

 

#### Some Surface colors ############################# 

 

surface M  color  (0.9 0   1  ) endsurface   # Magenta 

surface Z  color  (1   0   0.6) endsurface   # Zinnober 

surface R  color  (1   0.1 0  ) endsurface   # Red 

surface O  color  (1   0.6 0  ) endsurface   # Orange 

surface Y  color  (1   1   0  ) endsurface   # Yellow 

surface L  color  (0.5 1   0  ) endsurface   # Lime 

surface G  color  (0   0.9 0  ) endsurface   # Green 

surface A  color  (0   0.9 0.7) endsurface   # Aqua 

surface C  color  (0   1   1  ) endsurface   # Cyan 

surface U  color  (0   0.6 1  ) endsurface   # Uniform 

surface B  color  (0   0.3 1  ) endsurface   # Blue 

surface V  color  (0.3 0   1  ) endsurface   # Violet 
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surface P  color  (0.6 0   1  ) endsurface   # Purple 

surface W  color  (1   1   1  ) endsurface   # White 

surface S  color  (0.7 0.7 0.7) endsurface   # Snow 

surface D  color  (0.4 0.4 0.4) endsurface   # Dark 

surface K  color  (0   0   0  ) endsurface   # Black 
 

######  coordinate system  ############################# 

 

point ooo (0 0 0) endpoint 

point xoo (1 0 0) endpoint 

point oyo (0 1 0) endpoint 

point ooz (0 0 1) endpoint 

 

polyline xax ( ooo xoo ) endpolyline 

polyline yax ( ooo oyo ) endpolyline 

polyline zax ( ooo ooz ) endpolyline 

 

group coord_axes 

    instance ixax xax  surface R  endinstance 

    instance iyax yax  surface B  endinstance 

    instance izax zax  surface G  endinstance 

endgroup 

 

######  Some test B-spline  ############################ 

bank p 

    set mrd     0.8      0       2     0.01 

    set msl     0.2      0       2     0.01 

    set wdx    -0.5     -1       2     0.1 

    set wdz     1.5      0       3     0.1 

    set wex    -0.4     -1       2     0.1 

    set wey     0.0     -1       2     0.1 

    set wez     1.5      0       3     0.1 

    set wfx    -0.2     -2       2     0.1 

    set wfy    -1.2     -2       2     0.1 

    set wfz     0.8     -2       2     0.1 

    set yrot    0     -180     180     1 

    set slicesN 9       0       20     1 

endbank 

 

point eaR ( 0.3   6   0 )  endpoint 

point eb  (  0    4   0 )  endpoint 

point ecR ( -0.3  2   0 )  endpoint 

 

point wd  ( {expr  $p.wdx}   1              {expr  $p.wdz} )  endpoint 

point we  ( {expr  $p.wex}  {expr  $p.wey}  {expr  $p.wez} )  endpoint 

point wf  ( {expr  $p.wfx}  {expr  $p.wfy}  {expr  $p.wfz} )  endpoint 

 

point wg  ( {expr  $p.mrd}   -0.5  {expr  $p.msl} )  endpoint 

point wh  ( {expr  $p.mrd}    0     0 )              endpoint 

point wi  ( {expr  $p.mrd}    0.5  {expr -$p.msl} )  endpoint 
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#####################################################################################

# 

##  These are the 3 edges connecting the two vertices in Trord Tengstrand's sculpture. 

##  Some segments have been selectively de-activated to reduce clutter when adding faces between the 

curves. 

##  It is only necessary to create 1/6 of the hole surface; the rest is generated by applying D3 symmetry. 

 

bspline bs  order 4 ( eaR eb ecR  wd we wf wg wh wi )   segs 12  endbspline 

 

instance bsR  bs    surface R                       rotate(0 1 0)({expr $p.yrot}) endinstance 

instance bsRu bs    surface O  rotate(1 0 0)(180)   rotate(0 1 0)({expr $p.yrot}) endinstance 

 

instance bsG  bs    surface G                       rotate(0 1 0)({expr $p.yrot+120})  endinstance 

instance bsGu bs    surface L  rotate(1 0 0)(180)   rotate(0 1 0)({expr $p.yrot+120})  endinstance 

 

instance bsB  bs    surface B                       rotate(0 1 0)({expr $p.yrot-120})  endinstance 

instance bsBu bs    surface U  rotate(1 0 0)(180)   rotate(0 1 0)({expr $p.yrot-120})  endinstance 

 

 

##################################################################################### 

## >>>   The task now is to manually add quads and triangles between adjacent edge curves and 

combine them into a mesh. 

##       Six copies of that mesh will then make the complete sculpture surface. 

 

## interactively added faces, cleaned up, combined into one mesh: 

mesh surf 

   face fa ( .bsR.v0 .bsR.v1 .bsG.v1 ) endface 

   face fb ( .bsR.v1 .bsR.v2 .bsG.v2 .bsG.v1 ) endface 

   face fc ( .bsR.v2 .bsR.v3 .bsG.v3 .bsG.v2 ) endface 

   face fd ( .bsR.v3 .bsBu.v9 .bsBu.v8 .bsG.v3 ) endface 

   face fe ( .bsR.v3 .bsR.v4 .bsBu.v10 .bsBu.v9 ) endface 

   face ff ( .bsR.v4 .bsR.v5 .bsBu.v11 .bsBu.v10 ) endface 

   face fg ( .bsR.v5 .bsR.v6 .bsB.v12 .bsBu.v11 ) endface 

   face fh ( .bsR.v6 .bsR.v7 .bsB.v11 .bsBu.v12 ) endface 

   face fi ( .bsR.v7 .bsR.v8 .bsB.v10 .bsB.v11 ) endface 

   face fj ( .bsR.v8 .bsR.v9 .bsB.v9 .bsB.v10 ) endface 

   face fm ( .bsBu.v8 .bsBu.v7 .bsG.v4 .bsG.v3 ) endface 

   face fn ( .bsBu.v7 .bsBu.v6 .bsG.v5 .bsG.v4 ) endface 

 

  sharp 9 ( .bsR.v0 .bsR.v1 .bsR.v2 .bsR.v3 .bsR.v4 .bsR.v5 .bsR.v6 .bsR.v7 .bsR.v8 .bsR.v9 ) endsharp   

##<<< sEa 

  sharp 9 ( .bsG.v0 .bsG.v1 .bsG.v2 .bsG.v3 .bsG.v4 .bsG.v5 ) endsharp   ##<<< sEb 

  sharp 9 ( .bsB.v9 .bsB.v10 .bsB.v11 .bsB.v12 ) endsharp   ##<<< sEc 

  sharp 9 ( .bsBu.v6 .bsBu.v7 .bsBu.v8 .bsBu.v9 .bsBu.v10 .bsBu.v11 .bsBu.v12) endsharp   ##<<< sEd 

 

endmesh 

 

mesh rimfill 

   face fp ( .bsBu.v6 .bsBu.v5 .bsG.v6 .bsG.v5 ) endface 

  sharp 9  ( .bsBu.v6 .bsBu.v5 ) ( .bsG.v6 .bsG.v5 ) endsharp    
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endmesh 

 

mesh polecaps 

   face fq ( .bsBu.v9 .bsGu.v9 .bsRu.v9 ) endface 

   face fr ( .bsG.v9 .bsB.v9 .bsR.v9 ) endface 

endmesh 

 

## inner polar caps: 

instance ipolecaps polecaps  surface W  endinstance 

 

## missing patches in the 3 arms: 

instance i0fp rimfill  surface S  endinstance 

instance i1fp rimfill  surface S  rotate(0 1 0)(120)  endinstance 

instance i2fp rimfill  surface S  rotate(0 1 0)(240)  endinstance 

 

instance surf1 surf  surface Y         endinstance 

instance surf2 surf  surface O  rotate(0 1 0)(120)  endinstance 

instance surf3 surf  surface C  rotate(0 1 0)(240)  endinstance 

 

instance surf4 surf  surface G  rotate(1 0 0)(180)     endinstance 

instance surf5 surf  surface R  rotate(1 0 0)(180)   rotate(0 1 0)(120)  endinstance 

instance surf6 surf  surface B  rotate(1 0 0)(180)   rotate(0 1 0)(240)  endinstance 

 

###############  END  ###################################################### 

 

 

A4: (3, 4) Torus knot (Figure 19) 

 

# TK_3-4_simple.jip 

# a C-shaped cross section swept along a "triangular" torus-knot path 

# 

# CHS 2021/04/26 

########################################################################## 

 

surface O  color (1 0.5 0.2)    endsurface 

 

###############  Define the C-shaped profile ################################### 

 

point pa   ( 0.010168 -0.522839 0) endpoint 

point pb   ( 0.149077 -0.435194 0) endpoint 

point pc   ( 0.257372 -0.311707 0) endpoint 

point pd   ( 0.326136 -0.162547 0) endpoint 

point pe   ( 0.349704 0.000000 0) endpoint 

point pf   ( 0.326136 0.162547 0) endpoint 

point pg   ( 0.257372 0.311707 0) endpoint 

point ph   ( 0.149077 0.435194 0) endpoint 

point pi   ( 0.010168 0.522839 0) endpoint 

point pj   (-0.021651 0.512500 0) endpoint 

point pk   (-0.014695 0.479775 0) endpoint 

point pl   ( 0.087675 0.385145 0) endpoint 

point pm   ( 0.165126 0.269232 0) endpoint 
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point pn   ( 0.213377 0.138441 0) endpoint 

point po   ( 0.229763 0.000000 0) endpoint 

point pp   ( 0.213377 -0.138441 0) endpoint 

point pq   ( 0.165126 -0.269232 0) endpoint 

point pr   ( 0.087675 -0.385145 0) endpoint 

point ps   (-0.014695 -0.479775 0) endpoint 

point pt   (-0.021651 -0.512500 0) endpoint 

 

polyline pProfile ( pa pb pc pd pe pf pg ph pi pj pk pl pm pn po pp pq pr ps pt) closed endpolyline 

 

######################  The sweep path  ######################################## 

 

point C   ( {expr 3.0*cos(-100*0.01745) }   3.0   {expr 3.0*sin(-100*0.01745) } )  endpoint #  -60 

point D   ( {expr 7.0*cos(   0*0.01745) }   0.0   {expr 7.0*sin(   0*0.01745) } )  endpoint #    0 

point C2  ( {expr 3.0*cos( 100*0.01745) }  -3.0   {expr 3.0*sin( 100*0.01745) } )  endpoint #   60 

point B2  ( {expr 2.0*cos(-200*0.01745) }  -1.4   {expr 2.0*sin(-200*0.01745) } )  endpoint # -180 

point A2  ( {expr 1.5*cos(-120*0.01745) }   0.0   {expr 1.5*sin(-120*0.01745) } )  endpoint # -120 

point B3  ( {expr 2.0*cos( -40*0.01745) }   1.4   {expr 2.0*sin( -40*0.01745) } )  endpoint #  -60 

point C3  ( {expr 3.0*cos(-340*0.01745) }   3.0   {expr 3.0*sin(-340*0.01745) } )  endpoint # -300 

point D3  ( {expr 7.0*cos(-240*0.01745) }   0.0   {expr 7.0*sin(-240*0.01745) } )  endpoint # -240 

point C4  ( {expr 3.0*cos(-140*0.01745) }  -3.0   {expr 3.0*sin(-140*0.01745) } )  endpoint # -180 

 

controlpoint cpC   point C     scale( 0.2  0.2  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpD   point D     scale( 3.0  3.0  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpC2  point C2    scale( 0.2  0.2  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpB2  point B2    scale( 1.4  1.4  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpA2  point A2    scale( 1.0  1.0  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpB3  point B3    scale( 1.4  1.4  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpC3  point C3    scale( 0.2  0.2  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpD3  point D3    scale( 3.0  3.0  1.0 ) rotate (0 0 0)  endcontrolpoint 

controlpoint cpC4  point C4    scale( 0.2  0.2  1.0 ) rotate (0 0 0)  endcontrolpoint 

 

bspline sweeppath 

  order 4 

  ( cpC  cpD cpC2 cpB2  cpA2  cpB3 cpC3 cpD3  cpC4 ) 

  segs 90 

endbspline 

 

################# DEFINING THE SWEPT RIBBON  ############################### 

 

#crosssection crossX 

#  type polyline pProfile 

#endcrosssection 

bank p 

 set s_twist 55.10 0.1 360 1 

 set s_azimuth 0 0.1 360 1 

endbank 

 

sweep ribbon 

  crosssection pProfile  endcrosssection 

  path sweeppath mintorsion azimuth {expr $p.s_azimuth} twist {expr $p.s_twist}  endpath 
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endsweep 

 

####### ASSEMBLY  ###################################### 

 

group knot 

   instance r0 ribbon rotate(0 1 0) (120) endinstance 

   instance r1 ribbon endinstance 

   instance r2 ribbon rotate(0 1 0) (-120) endinstance 

endgroup 

 

group assembly 

  instance k0 knot surface O rotate(1 0 0) (90) rotate(0 0 1) (-90) endinstance 

endgroup 

 

####### RENDERING ###################################### 

 

instance a0 assembly   scale (0.4 0.4 0.4)   endinstance 

 

########################### 


