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Abstract
Spatiotemporal Algorithms for Neural Activity Tracking with Diffuser-Based Microscopes
by
Tiffany Chien
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Laura Waller, Chair

Genetically encoded calcium indicators cause neurons to fluoresce when they fire. Combined
with optical imaging techniques, they have become a key tool for modern neuroscience,
enabling in vivo tracking of neural activity in model organisms from zebrafish to mice.
Diffuser-based fluorescence microscopes are a great choice for calcium imaging because they
enable single-shot (fast) 3D imaging, by encoding 3D information into a 2D measurement
that can then be computationally extracted. But solving that 3D sparsity-constrained de-
convolution problem frame-by-frame is difficult and slow, and tends to fail when the sample
is not sparse enough. Spatiotemporal algorithms process all the frames at once, leveraging
information about the temporal behavior of the emissions. Jointly solving for the spatial
and temporal domains is very powerful because they share so much information; for exam-
ple, pixels that are part of the same neuron probably flash at the same times, and neurons
overlapping in space can be separated if they have different temporal signals. However,
spatiotemporal algorithms are challenging to apply because they are tackling a large and
non-convex optimization problem. In this project, we use prior and domain knowledge to
guide the optimization towards a meaningful solution, by testing and improving the robust-
ness of initialization procedures. We also precisely interrogate what features of experimental
data (e.g. noise, background, or sparsity) cause the algorithms to fail, along with how and
why. With this knowledge, we achieve promising results extracting neural activity traces
from both simulated and experimental diffuser-based calcium imaging data.
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Chapter 1

Introduction

Understanding the dynamics of networks of neurons firing together in response to stimuli is a
fundamental line of inquiry in neuroscience. Genetically encoded calcium indicators make it
possible to genetically modify model organisms such that their neurons fluoresce when they
fire, based on changes in the concentration of calcium ions in their cells [3]. In order to image
neural activity using these indicators, optical microscopy techniques have been challenged
to record at single-cell resolution, at sufficiently fast time scales, and across a large field of
view (FOV). Imaging in 3D is also crucial for more complex samples, as networks of neurons
are not necessarily planar. With advances in both the indicators and the imaging systems,
calcium imaging has become a vital and well-established tool for neuroscience, successfully
recording neuronal activity from entire nervous systems of small model organisms like C.
elegans [18], as well as from large regions deep inside the scattering mouse cortex [21],
leading to advances in areas like neurobiology [2], behavior [7], and development [6]. Figure
1.1 shows an example of a calcium image of mouse cortex.

Diffuser microscopes like the Fourier DiffuserScope [10] and the Miniscope3D [22] achieve
single-shot 3D imaging by placing a thin diffuser element in the pupil plane of a microscope
objective, and the image sensor directly after the diffuser. The measurement can then be
modeled as a convolution of the sample with the diffuser’s point spread function (PSF) at
each plane. Because the diffuser has different PSFs at different depth planes, it encodes 3D
information into a 2D measurement (more details in Section 2.2). That information can then
be computationally extracted into a full 3D reconstruction of the sample [1].

One major advantage of single-shot 3D imaging is high temporal resolution: unlike stan-
dard confocal or two-photon microscopy, there is no scanning and the entire volume is excited
and captured at once. Therefore, temporal resolution is essentially limited only by signal-
to-noise ratio (SNR) and the detector frame rate. Unlike scanning methods, there is also no
coupling or tradeoff between temporal resolution, spatial resolution, and 3D field of view.
Temporal resolution is important to capture fast transient activity, but even when speed
is not a limiting factor per se, higher temporal resolution also improves spatial sparsity;
fewer neurons will be firing within a single frame, which is beneficial to any downstream
computational processing. Another advantage of diffuser microscopes is that their physical
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Figure 1.1: A two-photon calcium image of the somatosensory cortex of a mouse, averaged
over many frames to see many neurons lit up [13].

form factor can be made small; light, and relatively cheaply: the Miniscope3D is just 2.5
grams and 17 millimeters across, which is ideal for applications like in-vivo imaging of freely
moving mice [22].

The challenge for diffuser microscopes is computationally recovering the object from a
scrambled raw measurement: reconstructing a 3D volume from a single 2D image is a fun-
damentally underdetermined problem. This is tackled with techniques from compressed
sensing [5]: enforcing sparsity priors while iteratively solving a nonlinear and generally chal-
lenging optimization problem. In particular, the current reconstruction method for diffuser
microscopes is to deconvolve the measurement one frame at a time [10]. This is not only
computationally expensive, but also tends to fail when the sparsity assumption does not
hold strongly enough. With no information from other frames over time, the sparsity prior
has to be quite strong for the deconvolution to yield a high-quality reconstruction.

However, for neuroscientists, the goal of imaging is not just to generate a good recon-
struction, but to extract the neurons’ temporal traces. This motivates methods that di-
rectly extract that information. Spatiotemporal algorithms do just that, and additionally
incorporate information from many frames at a time (unlike frame-by-frame deconvolution).
Combining temporal and spatial information is very powerful, as the two domains are highly
intertwined and priors can be applied in each dimension. For example, nearby pixels that
flash at about the same times are probably part of the same neuron. Or, neurons whose spa-
tial footprints overlap can be ‘demixed’ if they have different time signals. These correlations
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(or lack thereof) can only be taken advantage of with spatiotemporal algorithms.

The goal of this project is to explore spatiotemporal algorithms for tracking the 3D
activity of neurons over time in calcium images taken by diffuser microscopes. We focus on
the class of algorithms based on nonnegative matrix factorization (NMF), which is dominant
in recent years for this application. There are many choices to be made when applying these
algorithms, and we want to explore the often complex tradeoffs implicit in those choices.
We are also interested in when and how the algorithms fail: what exactly makes specific
data hard? What difficulties or imperfections (e.g. noise, background, sparsity) are the
algorithms robust to, and which cause them to fail catastrophically? This detailed failure
analysis could inform future physical design choices when building systems or taking data.
For example, how much effort should we spend on reducing background? What about noise?
How densely labeled can a sample be?

This report will be structured as follows: Chapter 2 will start with a description of
the simulation framework that we built, which includes the image formation or forward
model of the diffuser system. Chapter 3 will outline the mathematical framework that
underlies spatiotemporal algorithms, and then conduct a lengthy exploration of how to solve
the problem in practice, and some of the main challenges we encountered. Chapter 4 will
present results and discussion on both simulated and experimental data. Lastly, Chapter 5
will briefly discuss future directions.



Chapter 2

Simulation and Image Formation
Model

This chapter will give a detailed description of the framework that we built to generate
simulated measurements for calcium imaging of in wvivo neuronal activity using a diffuser
microscope. Simulated data is an essential tool for algorithm testing because it provides
data with ground truth information, and we have full control over all of its parameters, both
of which are not possible in experiment. While the algorithms have only been tested in 2D
so far, the simulation framework can generate 3D data, which is what will be described here.

2.1 Simulation of Sample

We start by simulating a space-time cube that imitates the typical properties of a neural
sample fluorescing according to the dynamics of calcium indicators.

The simulated neurons can either be single pixels, small squares (e.g. 2x2 or 3x3 pixels),
or ovals (of random size), scattered randomly in the volume. In our algorithm analysis, we
focus on data generated with small squares because they match the experimental data better
at the resolution we are working at.

Next, calcium dynamics are not direct measures of neuronal activity; they are a proxy
for the underlying firing of neurons. We model the underlying firing as a binary signal: at
each time point, a neuron is firing (1) with probability p, and inactive (0) otherwise. Each
neuron is assigned a value of p uniformly randomly in the range (0.05,0.22]. The spikes are
then used to generate the calcium signals that determine the fluorescence emission from each
neuron, modeling the decay dynamics with an autoregressive model [17]. Different neurons
are assigned different maximum brightnesses by multiplying each one’s trace by a random
integer between 1 and 10. Both the random activeness (p) and brightness reflect the dramatic
heterogeneity in activity levels of neurons in a real sample, with values approximately chosen
by inspecting experimental data [13]. Lastly, a small amount of additive Gaussian noise
(variance 0.1) is added to the time traces because even before the noise in the imaging
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Figure 2.1: Simulation of fluorescence emissions from calcium indicators tracking neural
activity in vivo. The top row shows the simulation of the neural sample volume, starting
with a) randomly scattered neurons (small squares), each with a random calcium trace. The
flashing neurons are added to b), a background with a blurry spatial footprint and a linearly
decreasing temporal trace. That gives ¢) a video of the sample over time, representing the
ground truth. The bottom row shows the image formation model, which (for a 2D plane)
is to convolve each frame with the PSF at that plane, resulting in d) the final simulated
measurement (Poisson noise is also added).

process, there is some noise in the calcium dynamics [17].

Along with the fluorescing neural activity in the volume, we also simulate background
light. Sources of background in experimental data include fluorescence that is out-of focus or
from outside the field of view (usually the dominant source), autofluorescence, and stray light
from elsewhere in the imaging system. The simulated background has a spatial footprint
and a time signal, just like a neuron. This means that in the mathematical formulation
presented in Chapter 3, the background contributes a single rank-1 component. The spatial
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footprint is made up of a few random large ovals, blurred by a large Gaussian filter; it is
spatially much larger and lower spatial frequency than the neurons. Then the time signal is
a linear decrease, roughly simulating photobleaching over time, and very different from the
high frequency spiking of the neurons. An important feature of the background in real data
is that it is not constant over time, i.e. it is not just a constant that can be subtracted from
all the frames. The brightness of the background compared to the neurons is changeable,
varying from 10 — 40% of the intensity of the brightest neurons. Our simulated background
matches some of the characteristics of real background, namely low spatial frequency and
slow temporal dynamics, but as will be discussed in Section 3.3, real background does not
seem to be rank-1, causing the background removal part of the algorithm to perform more
poorly on experimental data.

Combining the neurons, their time signals, and the background, we get a simulated video
of the sample’s fluorescence over time that represents the ground truth for our algorithms
to recover.

2.2 Simulation of Imaging System

Given the simulated ground truth video of the sample, I will now describe how to simulate
imaging it with a diffuser microscope, which will also serve as a description of the diffuser
microscope’s forward model.

This simulation is specifically modeled after the Fourier DiffuserScope [10], which is a
desktop version of a diffuser microscope. Because the diffuser is a relatively weak phase object
and the objective has no major aberrations, it is accurate to model the system as laterally
(within each plane) linear and shift invariant (LSI). Each plane in 3D has a different point
spread function (PSF). These PSFs can be measured experimentally with a fluorescent bead
at each depth of interest. Given an LSI model, the image formed by a single plane is equal
to the convolution of that plane’s PSF with the object at that plane. The slight subtlety is
that instead of a discrete circular convolution, PSFs from points near the edge of the field
of view are cropped by the image sensor. This can be modeled by padding the object with
zeros, performing a circular convolution, and then cropping the final image. Finally, the
image formed by a 3D volume is the sum over the images formed by each plane. This does
not account for scattering which could be significant at depth in thick samples.

The last component of the simulation is to model noise in the imaging system. Fluo-
rescence microscopy is generally shot-noise limited, so we model the noise using a Poisson
distribution. The video is first normalized, and then multiplied by some maximum photon
count (in the range of 5000-15000 [12]). Then, every pixel (in every frame) gets independent
additive noise that has a Poisson distribution with mean equal to that pixel’s value.

In this project, we have not worked with experimental data from an actual diffuser
microscope. Instead, for the purpose of this report, ‘experimental’ data will refer to two-
photon data that has been put through the image formation forward model of the diffuser
system as described above, i.e. each frame is convolved with a diffuser PSF. The two-
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photon data comes from the Neurofinder competition, an online calcium imaging competition
[13] (specifically dataset 00.04). We downsampled the data to be easier to work with: in
time, every five frames are averaged to help improve SNR, while in space, each frame is
downsampled by 4x (512x512 to 128x128).

This creates an intermediate between fully simulated and fully experimental data: the
sample is now real (with real biological and fluorescence characteristics), but the diffuser
image formation is still simulated. There are certainly ways that this is not realistic. For
example, some two-photon data has streaking artifacts from the scanning beam, while the
diffuser system is single-shot (no scanning). More generally, two-photon data could have
different noise and background characteristics. However, there are good reasons to work
with this partially experimental data. First, two-photon data is more directly interpretable
than raw measurements from a diffuser system. For example, while we still do not have
ground truth for the neuron’s temporal traces, they can be approximately extracted from
the raw two-photon video, just by manually selecting the pixels of a neuron. Secondly, we
are isolating the non-idealities of the sample from those of the diffuser system (with some
confounding from two-photon’s particular non-idealities). For example, the diffuser system
is not perfectly shift invariant in reality, but in our generated data it is. This makes it useful
to work with alongside both fully simulated and fully experimental data.



Chapter 3

Nonnegative Matrix Factorization

Now that we have raw data that indirectly encodes information about the sample, we need in-
verse algorithms that can extract the ground truth neural activity from those measurements.
This project focuses on the class of spatiotemporal algorithms that frames the problem of
extracting neural activity as a numerical decomposition problem called nonnegative ma-
trix factorization (NMF'). Algorithms solving NMF are chosen for this problem over older
techniques like independent component analysis [11] due to better detection of neurons and
robustness to cross-talk between neighboring neurons [14]. NMF has applications across
many fields [15, 16, 8], and algorithms to solve it have been widely studied [20].

The primary reason that NMF is a non-trivial problem is because it is highly non-convex.
This is in contrast to decompositions that may have unique and analytic solutions like
singular value decomposition (SVD). While this makes NMF more challenging to solve, it
also gives us flexibility to reach a solution that is meaningful in the context of our application.
In order to guide the optimization to a ‘good’ solution, we need to design a combination of
imatialization and regularization procedures that rely on strong prior and domain knowledge.
In contrast, the actual iterative optimization algorithms used to solve NMF are generic and
not problem-specific.

In this chapter, I will begin by introducing the problem statement and its interpretation
in the context of neural signals. Then, I will split up how to solve NMF into three sections. I
will start with some options for the generic iterative optimization algorithms. Then, I will go
into the more challenging part, and where most of my work has been focused, the problem of
initialization, including background processing and choosing the number of neurons. Lastly,
I will discuss some promising and potentially powerful ideas for regularization.
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3.1 Problem Statement
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Figure 3.1: Graphical representation of NMF: decomposing the measurement video Y into
n spatial and temporal components that each represent a neuron, either stacked in matrices
S and T (containing space and time, respectively), or summed over. Notation from [14].

First, we write the measurement video as a matrix Y by flattening each frame (p pixels)
into a column (¢ frames into ¢ columns). The goal of NMF is then to approximate Y as
the product of two nonnegative matrices, S and T, which represent the space and time
components, respectively. The inner matrix dimension n is the number of components used
to approximate Y, which in this case represents the number of active neurons in the sample.
An alternative statement of NMF is to decompose Y into a sum of n rank-1 components,
each representing a neuron as an outer product of a spatial footprint and a time trace. As
a formal optimization problem (with a squared error cost function), NMF looks like:

mingr||Y — ST||% s.t.S>0,T>0.

In general, the number of components n < p,t, so that the NMF solution provides a low-
rank approximation of Y. In this project, some reasonable values for these dimensions are
p = 1282 = 16384, = 100, n = 20 — 50.

In short, the NMF model is that each neuron has some spatial footprint that flashes
over time, and the video is the sum over all the neurons. An assumption that underlies
this problem formulation is that every neuron’s footprint is consistent over time: there is no
movement, and all the pixels within a footprint always fire together. This assumption holds
well for the samples and spatiotemporal resolution that we are working with, but it could be
broken. For example, the motion of freely moving samples is not accounted for. More subtly,
biologically speaking, the concentration of calcium does not change all at once throughout
a neuron; the change propagates along the cell starting from a synapse. However, that kind
of motion is entirely blurred out at the spatial and temporal resolution of our system (and
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that of most calcium imaging systems), which is sufficient based on the kind of scientific
questions being investigated.

3.2 Iterative Optimization

More details about initialization procedures will be in the next section, but after initializa-
tion, the general strategy to solve NMF is to alternate updating the two matrices: matrix
S is kept constant and T is updated, and then vice versa. Alternating is necessary because
solving the whole problem at once and updating everything simultaneously is computation-
ally infeasible. Though these individual updates are straightforward to solve and make the
problem tractable, there is no guarantee of them being a good step towards the global (non-
convex) optimal solution for both matrices. There a variety of different algorithms for solving
NMF, most of which differ primarily in the kind of individual updates they choose to take.
Here, T will discuss two that we have tested: alternative nonnegative least squares (used
in seeded iterative demixing [14]) and coordinate descent, which was designed to be more
computationally efficient [4].

Alternative Nonnegative Least Squares (ANLS)
The procedure of ANLS (with projected gradient descent) is as follows:
1. Initialize S with something meaningful, and 7" with all zeros.

2. Temporal update: ming||Y — ST||% s.t. T >0
Use gradient descent to solve for 7" all the way to convergence, replacing any negatives
with 0 (projection step) at every gradient update.

3. Spatial update: ming||Y — ST||3 s.t. S >0
4. Repeat from step 2 until loss stops decreasing.

Because the loss function is convex in each individual matrix, the update steps are convex
and therefore easy and fast to solve. The projection step is also guaranteed to give the optimal
nonnegative solution to the subproblem (assuming a reasonable step size) [9].

We found that ANLS worked well for small simulation problems (number of neurons
< 10), but totally stopped working at larger problems, both simulated and experimental.
After initialization, the spatial footprints would not change at all, as if the initialization of
S plus the first round of updating 7" froze the optimization. Inspecting the gradients for the
spatial update, it seemed like the gradient wanted to change the footprints but was stopped
by the nonnegativity projection, forcing them to stay constant. We interpret this as a case
where the optimal nonnegative solution to S for a given subproblem is not a good global
step, and perhaps a weakened nonnegativity constraint that strengthened over time could
give the algorithm space to move into a more desirable place. We did not end up testing
this idea, as the next algorithm worked better and faster out of the box.
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Coordinate Descent (CD)

CD is part of a class of NMF algorithms called Hierarchical Alternating Least Squares
(HALS) algorithms, introduced in [4]. It relies on the formulation of NMF as a sum of rank-
1 components (see Figure 3.1), updating only one of these components at a time instead of
the entire matrices S and 7.

More specifically, after initialization, for ¢ = 1...n, we first update column 7 of matrix
S and then update row ¢ of matrix T (where n is the number of components in the NMF
decomposition). Because only one row or column is updated at a time, the updates are
analytic and done in a single step (see [4] for details). Nonnegativity is again enforced with
a simple projection. This loop is repeated through all n components until convergence.

We used an implementation from scikit-learn in Python [19]. Because the update
order was a bit unclear, I initialize S with the procedures described in Section 3.3, but I also
initialize T' by solving the convex optimization problem in step 2 of ANLS above. Overall,
this implementation of CD worked much better and faster than my implementation of ANLS.
See results in Chapter 4.

3.3 Initialization

Basic Procedure

NMF only requires one of the two matrices to be initialized, and the spatial one makes more
sense because we cannot get temporal traces without knowing where neurons are. The basic
procedure that I use (shown graphically in Figure 3.2) comes from an algorithm known as
seeded iterative demixing (SID) [14]:

1. Subtract background. (more details in next subsection)

2. Take the pixel-wise standard deviation (SD) of the measurement video over time to
get a single image that (ideally) contains all neuron footprints.

3. Deconvolve that image with the system PSF.
4. Use local max peak finding on the deconvolved image to identify n possible neurons.

5. Convolve each of those peaks (single pixels) with the PSF to get n initial spatial
footprints. Flatten and stack the footprints into the columns of S.

This procedure works fine in some cases, but I will now explore two major challenges:
background removal and choosing the number of neurons n.
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measurement with standard deviation deconvolved standard
background removed of video over time deviation image
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initial spatial footprints

local max peak finding

Figure 3.2: Outline of initialization procedure from SID [14], applied to simulation data.

Background Removal

In my experience, dealing with the background is the most difficult aspect of working with
experimental data. The background can be quite bright and not temporally constant, coming
primarily from out-of-focus fluorescence. This means that it will show up brightly in the
standard deviation image, so the peak-finding step will identify some ‘peaks’ that are actually
background, while some actual neurons will be lost in the background.

In SID [14], the background is extracted as a rank-1 approximation of the measurement
video. The idea is that the background is the largest rank-1 contributor to the measure-
ment, so the first (left and right) singular vector of a singular value decomposition (SVD)
is a good estimate of the background. Standard SVD is not nonnegative, so in practice
I use the scikit-learn implementation of NMF initialized with Nonnegative Double Sin-
gular Value Decomposition (’nndsvd’) [19]. Figure 3.4 shows this background subtraction
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Figure 3.3: If there is no extra NMF component (row/column in each matrix) that represents
the background, all of the components’ temporal traces are dominated by background fluo-
rescence. a) shows a representative subset of temporal traces (different colors are different
components) learned when there was no component representing the background: they have
very similar shapes and high baseline amplitude because the background was so dominant.
What we want is for each component to only represent a neuron’s fluorescence trace over
the background, which is accomplished by adding a dedicated background component. This
is shown in b): different components (different colors) have different temporal traces, and
they all have a baseline close to zero. In that case, the background component learns the
time trace shown in ¢), and it matches the shape of the traces in a), as expected.

method having some success on experimental data (in simulation, the rank-1 assumption
holds perfectly, so this works great). The regions of background that are still present after
subtraction suggest that the background is not truly rank-1, i.e. that not all the pixels that
are part of the background share the same temporal trace.

After the background is extracted and removed for initialization, it is added back into the
optimization as an extra row or column in each of the two matrices, like an extra ‘neuron’.
Because the background is assumed to be rank 1, it makes sense to represent it as only one
NMF component. In this way, the background (space and time components) can be jointly
updated with the neurons through optimization, and signal can be ‘reallocated’ as necessary
between the background and the neurons. This extra component is crucial for the rest of
the components to learn real neurons. Figure 3.3 shows what happens without it: all the
components’ learned temporal traces are entirely dominated by the background.
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No background Rank-1 background Background
subtraction (SD image) footprint subtracted (SD image)

Figure 3.4: Result of rank-1 background subtraction: on the left, the deconvolved standard
deviation (SD) image has background that can interfere with peak-finding. In the middle is
the spatial footprint of a rank-1 approximation of the measurement video. It is multiplied by
its corresponding temporal trace and subtracted from the raw measurement. The SD image
of this new video is on the right. The three circled neurons in the background footprint stay
pretty much constantly bright throughout the measurement, so the procedure did the right
thing by considering them background.

Raw measurement space

Deconvolved

There are many possible alternatives to background subtraction that utilize different
assumptions about the background’s characteristics. First, perhaps the background is low
rank but not rank-1. While this is likely the case, I found that the next few rank components
in the SVD (or some similar decomposition) tend to correspond not to background, but
to bright neurons, so we do not want to subtract them off. This means that the other
components of the background are not as bright or dominant as some neurons. In fact,
in experiment, I observed that over the course of optimization, a few of the components
initialized as neurons do tend to spread their footprints out into hazy regions that appear
to be representing another component of the background (examples in Section 4.2). This
shows that it is somewhat acceptable to explicitly dedicate only one NMF component to
the background during optimization; the challenge to focus on is background subtraction for
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Figure 3.5: Comparison of two background subtraction methods on experimental data (all
images are SD images): the rank-1 background subtraction removes background well in
the central region of the frame, but leaves some background above and below, probably
because those regions have a different time signal. On the other hand, the spatially filtered
background subtraction removes the background more uniformly across the frame. However,
the rank-1 method is able to remove inactive neurons, while the spatial filtering cannot
(inactive neurons still look like neurons spatially).

initializing neuron locations, prior to optimization.

Moving away from rank, it is also natural to assume that the background tends to be
lower in spatial and/or temporal frequency: larger, blurrier structures that do not flash as
quickly. Under this assumption, extracting the background corresponds to low-pass filtering
or averaging in space and/or time. In our experimental data, the primary source of back-
ground is neurons firing outside the FOV, which are similar temporally but blurrier spatially
than neurons in the FOV. So we perform spatial filtering by Gaussian filtering each frame
to estimate the background video, then subtracting 0.7x that video from the raw measure-
ment. Figure 3.5 compares this method with the rank-1 method. Spatial filtering provides
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slightly more complete and uniform background removal, which is desirable for improving
peak-finding across the frame, but the rank-1 method is able to distinguish and remove in-
active neurons (using temporal information). An even better approach could be to combine
these two methods.

Spatial filtering raw diffuser measurements is more challenging than in traditional mi-
croscopes because neurons do not have a small, contained shape, and instead all the neuron
footprints are dramatically overlapping with each other. For example, a procedure that works
for traditional data is to perform matched or bandpass filtering: only pass objects that are
shaped and sized like neurons. This approach would not be applicable to raw diffuser data,
though it could be useful for cleaning up the SD image.

Overall, the methods outlined here are sufficient for this data; see results in Chapter 4.
Designing procedures that generalize across different data is another challenge, though for
spatial filtering we did find that the results were not very sensitive to changes in filter size.

Choosing the Number of Neurons

A second challenge for initialization is setting the number of NMF components n, which
represents the number of neurons that will be solved for. It is chosen by the peak-finding
step of the initialization procedure (which occurs on the deconvolved standard deviation
image after background subtraction). More specifically, a pixel is chosen as a peak if it is
a local maximum, its intensity is above some absolute threshold, and it is not too close to
another peak. The last two criteria are parameters that can be adjusted, e.g. lowering the
threshold increases the number of pixels that are identified as peaks. Due to noisy data and
incompletely removed background, adjusting these parameters can lead to arbitrarily many
neurons being identified; see Figure 3.6.

Given that we can choose peak-finding parameters to find any number of peaks, how
should we go about it? It is helpful to think of each neuron initialized as a “degree of
freedom” for the optimization algorithm. Clearly, having too few neurons does not give the
algorithm enough expressive power to produce a sufficient solution. For example, it will be
forced to cram multiple neurons into a single rank-1 component. However, it turns out that
initializing too many neurons leads to a poor solution as well; in this case the algorithm
has too much expressive power. Specifically, the algorithm will split up single neurons into
multiple components. Figure 3.7 shows a case in noiseless simulation data: the region that
these two neurons’ footprints overlap has a different temporal signal than the rest of each
neuron, so the algorithm uses its extra components to split up the Venn diagram of these
two neurons into three components. From the perspective of the optimization, this is in fact
just as good of a minima as the ‘real’ solution. In experimental data, a similar result can
occur when noise or uneven fluorophore distribution causes different pixels of a single neuron
to have slightly different temporal traces.

Beyond the problem of neurons getting split into multiple components, limited SNR
in experimental data means that even initializing the exact right number of neurons (or
less) does not mean all the components will converge to represent neurons. There is a
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74 peaks identified

41 peaks identified

Deconvolved SD image Ground truth: 445 neurons!

Figure 3.6: An example of how changing peak-finding parameters can dramatically change
the number of neurons identified (n). a) On the left is a deconvolved standard deviation
image from experimental data. Increasing the absolute intensity threshold for peak-finding
by just 5% nearly halves the number of peaks identified. Upon closer inspection, we can see
that the top image discovered more dim neurons correctly, but also has some false positives
in the central region. It is not clear which (or neither) is the best, or how to generalize
such a decision across different data. In reality, both choices shown here missed neurons: b)
shows the hand-labeled ‘ground truth’ of all the neurons in the field of view. Some may be
inactive, but many are also just extremely dim, highlighting the dynamic range challenge
inherent in selecting a threshold.

noise floor below which the algorithm gives up on representing particularly dim neurons.
Figure 3.8a shows some components that the algorithm learned instead of real neurons:
the footprints are very messy and the time signal suggests that this component essentially
represents information from only one frame (time point) of the data. This problem may be
alleviated by improved initialization (though super dim neurons are rather hard to find in
initialization too), but it is mostly a fundamental and unfortunate SNR limitation.

To sum up the problem of choosing the number of components in the NMF decomposition,
n, when the true number or neurons is not known, one must find a balance between giving
the algorithm too little or too much expressive power in order to get correct and meaningful
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Learned footprint 1 Learned footprint 2

All footprints (ground truth)

Figure 3.7: An example of a neuron getting split into multiple components on simulated data
without noise or background. On the left is the superposition of the four neurons’ footprints.
When NMF was initialized with n > 4, two of the footprints it learned are shown on the right:
clearly, they are parts of the same neuron, but the algorithm put the overlapping region into
a separate component. There is another learned footprint representing the topmost neuron,
missing the same overlapping region.

results. One possibility to alleviate this challenge is to run multiple rounds of the algorithm:
first extract the bright neurons, subtract them out of the measurement, and then move on
to the dimmer neurons. This seems like a promising idea, but still challenging to do robustly
in practice without a huge amount of manual trial and error; for example, how to avoid
subtracting out the dim neurons that make their way into bright neurons’ footprints.

3.4 Regularization

So far in this project, the regularization I have used has been very basic: 1 use some mild
l; regularization on both the temporal traces and the spatial footprints. This performs
slightly better than without regularization, especially for the spatial footprint, though the
heterogeneity of the neurons’ brightness and activeness can make it difficult to choose the
degree of thresholding, but that is a universal problem for any regularizer. However, we
believe that there should be more optimal ways to regularize this problem.

Because NMF explicitly splits the data into the space and time components of individual
neurons, it reveals new domains in which to apply priors and regularization, compared to
the standard deconvolution problem on a single frame. Along with initialization, this is a
powerful place to inject information we have about what neurons look like and how they
behave. For example, we know that the time signal has the shape of calcium decay and
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Figure 3.8: a) An example of two components for which the algorithm gave up on explaining
neurons and represented a single frame instead (left = learned spatial footprint for each
component, right = learned temporal trace). In this case, the chosen n was definitely still
less than the actual number of active neurons in the frame, but some of those neurons were
just not brighter than noise. b) In synthetic data that was essentially pure noise, we see the
extreme of a), where the ‘spatiotemporal’ decomposition the algorithm chooses is for each
component to represent one frame. If n > ¢ (number of frames), this solution is a ‘perfect’
(from the perspective of the optimization cost) but not meaningful one that you hopefully
avoid via initialization.

can deconvolve into relatively sparse spikes. Similarly, we know that the individual neurons’
spatial footprints should deconvolve into a very small and contained shape, a much stronger
spatial sparsity constraint than could be applied to a full video frame as captured by a
diffuser microscope.

The question of how to regularize the spatial footprints in the deconvolved space (rather
than the raw measurement space) relates to the fact that (after initialization) the current
NMF model does not incorporate any information about the forward (convolution) model
of the diffuser system. This leads to output footprints that clearly (to our eyes) are not
realistic diffuser measurements, e.g. only half of a PSF as in Figure 3.7. We can rewrite the

NMF cost function with the forward model (call it some function A(-) that convolves each
column of S with the PSF):

Y — AS)T|% st ST >0

In this formulation, each component of the matrix S is a neuron’s footprint in deconvolved
space, exactly where we want to apply some sparsity regularization. The main challenge is
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that applying the forward operator A (or its Hermitian) in every gradient update would be
very computationally intensive. In particular, the single-step individual updates of the CD
algorithm would completely lose their speed. Overall though, I think this idea could be very
powerful, and if it turns out to take infeasible computation time, we can try less rigorous but
faster ways to regularize in the deconvolved space, such as deconvolving and thresholding
periodically throughout gradient updates.

The same idea could be extended to the temporal traces: incorporating the calcium decay
forward model would allow for regularization in the space of spikes. However, it is likely that
regularizing perfectly in both space and time is not necessary, because in general, when the
footprints look good, the temporal traces look good, and vice versa. This makes sense given
the fact that fixing one matrix and solving for the other one is straightforward.

In summary, the non-convexity of NMF makes it challenging to ensure the optimization
lands in a solution that is correct and meaningful to our particular context. Initialization is
one route to provide guidance that we have explored deeply, and regularization is the other
that we are looking forward to exploring more.
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Chapter 4

Results

I will now show some results achieved by the algorithms and initialization procedures de-
scribed in the previous chapter, with the goal of extracting individual neurons’ spatial foot-
prints and temporal traces from a raw diffuser measurement video, as shown in Figure 4.1.
I first show results on fully simulated data and then on partially experimental data.

4.1 Simulated Data

The parameters of the simulated data used here are as follows (generation procedure de-
scribed in Chapter 2):

e Number of neurons n = 50.

Neuron shape: 3 x 3 squares
e Neuron maximum brightness uniformly randomly ranging from 10% — 100% of max

Rank-1 background, with intensity 20% — 40% of max

e Maximum photon count (for Poisson noise) = 10, 000

During initialization, 45 peaks were identified, so the NMF solved for 46 total components
(one component representing background). For pictures of what the steps of initialization
looked like for this data, see Figure 3.2. Of the 45 non-background components, about half
successfully converged to components that represent single neurons (which is what we want
all the components to do). Those successes all look very much like the examples shown in
Figure 4.2: the footprints contain just one neuron (a square convolved with the PSF), with
noise in the background. That noise is the cause of the imperfection in the learned temporal
traces, in particular the clipping towards zero of small values. Below some intensity threshold,
it is better for the optimization to zero the whole footprint than to try to explain the neuron.
Ideally, we would like the footprints learned to not have the noisy background, and instead
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Figure 4.1: The goal for our algorithms is to decompose the diffuser measurement video
(left, simulated data) into components that each represent a single neuron, with a spatial
footprint and a temporal trace (right).

let the noise live in the optimization’s error. However, the algorithm currently still chooses
to try to explain noise, probably noise that is coincidentally slightly correlated with each
neuron’s real time signal. Stronger or better-targeted spatial regularization could alleviate
this problem, encouraging the algorithm’s solution to avoid noise.

Even though the number of components initialized is almost equal to the number of
neurons (45 components, 50 neurons), about half of the components do not converge to
represent single neurons, as seen in Figure 4.3. Some represent information from essentially
only a single frame. Others represent multiple neurons; these are harder to interpret, but
everything that appears in a single footprint probably has somewhat correlated temporal
traces. It is important to point out that the error achieved by the optimization is very low
(~ 3); the solution it found is a good local minima from its perspective. Again, adjusting
the optimization cost function with regularization that encourages single-neuron footprints
could be beneficial.

The primary cause of failure in this case seems to be limited SNR: increasing the photon
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count by 50% (to 15,000 max photon count) increases the number of neurons identified by
almost 50% (from 23 to ~34 out of 50). Sources of noise are shot noise from the neurons
themselves, plus the background’s shot noise. In this simulated situation where the back-
ground matches the rank-1 assumption (and can therefore be removed well except for its
shot noise), increasing the brightness of the background only really worsens the algorithm’s
performance by decreasing SNR with its shot noise.

Overall on simulated data, initialization goes smoothly because background extraction
goes smoothly, so the algorithm performs well up to a limit of SNR (which is definitely
always a challenge in fluorescence settings). Better regularization would probably improve
its performance to some degree.
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Figure 4.2: Simulated data: Four components (each row is a component) learned by the
algorithm that successfully converged to represent a single neuron. On the left is the compo-
nent’s learned spatial footprint, in the middle is that footprint deconvolved with the diffuser
PSF (represents the ‘reconstruction’ of that neuron), and on the right is a comparison of
the learned (blue) vs. ground truth (orange) temporal trace for that neuron. The spatial
footprints have different magnitude because the neurons have different brightnesses; the tem-
poral traces are normalized. About 23 (out of 45) of the NMF components looked like this
(successfully converged to represent single neurons).
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Figure 4.3: Simulated data: Four components (each row is a component) learned by the al-
gorithm that failed to converge to represent a single neuron. On the left is the component’s
learned spatial footprint, in the middle is that footprint deconvolved with the diffuser PSF,
and on the right is the component’s temporal trace (not matching any ground truth neu-
ron). Of the 45 NMF components, about 10 look like the top two: noisy spatial footprints,
and temporal traces that have basically only one spike, meaning that they only represent
information from a single frame. Meanwhile, about 12 components look like the bottom two:
spatial footprints contain multiple neurons, and temporal signals are some combination of
all those neurons’ true temporal traces.
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4.2 Experimental Data

As a reminder, ‘experimental’ data here refers to two-photon data that was put through
the forward model of the diffuser system (i.e. convolved with the diffuser PSF). The results
on this data are similar to fully simulated data in some ways and different in others. The
true number of active neurons is unknown, but is definitely much larger than the number of
components I initialized with (n = 40); see Figure 3.6 for pictures.

About half (19) of the components successfully converge to represent single neurons;
Figure 4.4 shows some examples. About 6 out of the 40 components look like the top two:
low background noise, clear PSF shape, and deconvolving into small and contained neuron
shapes (much like the simulation successes in Figure 4.2). However, about 13 of them are
much noisier: their footprints look round (like the PSF), but the higher-frequency details
of the PSF are blurred out. When these are deconvolved, we see that they are representing
only about one bright pixel, surrounded by some dimmer points, but spatially localized.
These may represent dimmer neurons, or possibly neurites, projections from the neuronal
cell body that will develop into axons and dendrites (similar tiny objects were identified in
[14]). Perhaps the surrounding dim cloud is due to scattering. The ‘true’ temporal signals
shown on the right in Figure 4.4 are extracted from the two-photon data with the baseline
subtracted off (causing a few negatives). The signal is averaged over the brightest pixels
in the deconvolved footprint. The bright, low-noise footprints have temporal signals that
match well with the true measurement. The ‘true’ traces for the noisier components are
only extracted from the brightest pixels in the footprint (not the dim cloud), making it
unsurprising that the learned trace only matches somewhat.

Moving on to components that are not representing single neurons (Figure 4.5), about
17 components end up quite dim, containing parts of the footprints of multiple neurons plus
other hazy noise. Similar results occurred in simulation, so the cause is likely the limited
SNR of these neurons that are crowding together in single components. Unlike in simulation,
no components learned single frames (temporal signals with only one spike), suggesting that
the experimental data is significantly higher in complexity and rank, in some sense, than
the simulation data. This seems true given how many more neurons we know are actually
in the sample. Lastly, a few components learned footprints that look like large regions of
haze, which we interpret as extra components of the background (outside of the rank-1
approximation). The fact that they are somewhat spatially localized suggests that they are
due to out-of-focus fluorescence from neurons firing in a different plane, explaining why they
need to be represented by separate rank components.

Overall, the algorithm achieves significant success extracting neurons from this partially
experimental data, but the complexity and messiness still leaves room for improvement.
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Figure 4.4: Experimental data: Four components (each row is a component) learned by
the algorithm that successfully converged to represent a single neuron. On the left is the
component’s learned spatial footprint, in the middle is that footprint deconvolved with the
diffuser PSF (represents the ‘reconstruction’ of that neuron), and on the right is a comparison
of the learned (blue) vs. ground truth (orange) temporal trace for that neuron. The ‘truth’
traces are extracted from the two-photon data. The top two components are representing
brighter neurons, while the bottom two are dimmer neurons or possibly neurites.
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Figure 4.5: Experimental data: Four components (each row is a component) learned by the
algorithm that failed to converge to represent a single neuron. On the left is the component’s
learned spatial footprint, in the middle is that footprint deconvolved with the diffuser PSF,
and on the right is the component’s learned temporal trace. Of the 40 NMF components,
about 17 look like the top two: dim and noisy spatial footprints containing parts of multiple
neurons. Meanwhile, about 4 components look like the bottom two: spatial footprints with
large regions of haze and temporal traces that are rarely zero, suggesting that these are
representing extra components of the background.
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Chapter 5

Conclusion and Future Directions

There are a few promising future directions for this project. First, as mentioned in Section
3.4, better-targeted regularization could be a huge help. Another direction is to explore
different diffusers that cast different PSFs. The PSF I worked with here has smooth caustic
patterns, like the one in the original DiffuserCam used for computational photography [1].
However, diffuser-based fluorescence microscopes [10, 22] actually use arrays of microlenses
(of varying focal lengths for 3D), whose PSFs are just a few sharp points at each plane.
This is far superior to the smooth diffuser for SNR reasons, as the light is less spread out.
Furthermore, the measurement does not look like a blurring out of everything, and instead
looks like discrete copies of the sample, much more like a traditional image. This could make
parts of the algorithm like background extraction and regularization more straightforward
and probably more successful. The other future directions are to test these algorithms in 3D
and on real experimental data.

One common thread through prior work is that these algorithms are very picky, requiring
precise pre-processing steps that were often somewhat weakly motivated and data-specific,
but that were crucial to the algorithms’ success. In this project, we have somewhat figured
out this manual tuning on our data, but it would also be beneficial to work towards defining
and generalizing what a truly robust initialization looks like.

To conclude, spatiotemporal techniques are clearly a promising direction to significantly
improve the performance of diffuser microscopes on a wider range of samples. But with the
great power and promise of utilizing all the information, comes the grand challenge of taming
a large non-convex optimization problem. While I would say that there is still a journey
ahead, the exploration done here has definitely uncovered a wealth of understanding into the
algorithms’ inner workings.
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