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Abstract

Neural Guidance in Constraint Solvers

by

Gil Lederman

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Edward A. Lee, Co-chair

Professor Sanjit A. Seshia, Co-chair

Boolean Constraint Satisfaction Problems naturally arise in a variety of fields in Formal
Methods and Artificial Intelligence. Constraint Solvers, the specialized software tools that
solve them, are therefore a core enabling technology in industry and research. They are
normally used as black-box components, applied to practical problems such as hardware
and software verification, test generation, planning, synthesis and more. Based on classical
algorithms that have been optimized over decades by researchers, there is a noticeable gap
between Constraint Solvers and the technology of Deep Learning, which over the last decade
found its way into countless domains, outperforming established domain-specific algorithms.

This thesis aims to narrow this gap, and by using Deep Neural Networks, teach classical
Constraint Solvers to “learn from experience”. The research I present in this thesis starts by
addressing the challenge of representation, using a Graph Neural Networks based architecture
to process propositional formulas as graphs. I will then show how to automatically learn
a solver’s branching heuristic by mapping it to a Markov Decision Process and training it
using Deep Reinforcement Learning. I will present an implementation based on different two
competitive solvers, and experiments showing automatically learned heuristics to outperform
the state of the art in the two domains.
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Chapter 1

Introduction

There was a joke running around as the previous millennium was coming to a close. It went
something like this: Bill Gates recently said at a conference that “If GM had kept up with the
technology like the computer industry has, we would all be driving $25.00 cars that got 1,000
miles to the gallon.”. In reply, GM issued a press release1 saying that if GM had developed
technology like Microsoft, we would be driving cars that spontaneously crash twice a day,
require an engine re-installation after the road had been repainted, and occasionally lock us
out of the car and refuse to let us in until we simultaneously lift the door handle, turn the
key, and grab the radio antenna.

Almost two and half decades later, this joke still packs a bit of a punch. The gap between
Computers and Cars has rapidly narrowed since then, as did the gap between computers and,
well, practically everything. For the most part, we survived. People don’t get locked out
of their car twice a day, even though most modern vehicles are literally mobile computing
platforms. However, there is a deeper truth to this joke, beyond the quip at Microsoft’s
expense. Complex hardware and especially software systems are notorious for having bugs, in
a way that products of other engineering disciplines don’t. We don’t expect bridges or mines
to have unexpected edge cases. A combustion engine may degrade due to wear and tear and
fail over time, but it is uncommon that an unknown “vulnerability” would be detected in
its design after two years of use. Structural engineers are able to give guarantees about the
structure they build, in a way programmers often cannot. At the most abstract level, this
problem could be attributed to a lack of some level of mathematical rigour in day-to-day
programming, that is present in other engineering disciplines.

Good programmers are aware of this deficiency of software development, and tend to
compensate for it through processes, methodologies, and tools of software development.
Testing, code review processes, continuous integration and development are used to detect
errors in the software. Using proven design patterns, strongly typed programming languages,
or a uniform coding style are techniques that provide the programmer with “freedom from
choice,” and aim to reduce the probability of bugs occurring in the first place, sometimes

1In reality He didn’t, and they didn’t. It would be funnier if it were true, but it’s made up.
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entirely eliminating certain types of bugs (For example, eliminating some types of memory
bugs in moving from C to Java and dropping pointers). Moreover, the infinite flexibility of
software tends to help, since a bug found today would just be fixed in tomorrow’s patch.
And so in many circumstances, this lack of rigour does not pose a great problem. Many
pieces of software are not critical, and as long as they work mostly as expected, we’ve grown
accustomed to occasional small glitches in our smart devices, cryptic error messages on the
web, or having to reboot our PCs from time to time for good measure.

For critical systems, where the cost of failure is high, and could be sometimes measured
in human lives, we often look for a stronger degree of guarantees. Formal Methods is the
discipline within computer science that allows us to derive some precise guarantees regarding
software and hardware systems, and formally prove things about them (or rather their models).
It is a collection of methods based on defining formal mathematical structures that describe
the specification, operation and various properties of computations. These mathematical
structures can take many forms, such as Finite State Machines (FSM), Petri Nets, Actor
model, or an abstract machine. They come in different styles, matching those of program
semantics, denotational, operational, and axiomatic. But invariably, many of the techniques
that verify properties or relationships between those structures end up reducing them to
Boolean functions and recasting the search for a solution or proof as a Boolean Constraint
Satisfaction Problem (CSP).

1.1 Boolean Constraint Satisfaction Problems

The most well-known CSP is the Boolean Satisfiability Problem, called SAT [85]. It is, given
a Boolean propositional formula φ such as (¬x∨ y)∧ (¬y∨ (¬x∧ y)), the problem of deciding
whether there is an assignment to the variables which satisfies φ. It was the first problem to
be proved NP-complete. All CSP are NP-hard, and in fact SAT is the easiest, which is also
why it is the most well-studied and widely used.

The reason SAT and other CSP are important (from a practical point of view), is that
many useful problems can be reduced to them. For example, throughout the processes
of producing microprocessors, logic circuits, which implement Boolean functions, undergo
complex transformations. To verify that the transformed circuit still implements the same
function, we have to show that the circuits are functionally equivalent. If we have two
circuits on the same inputs, C1(x), C2(x), we can reduce the question of their equivalence to
the (un)satisfiability of the circuit C3(x) = C1(x)⊕ C2(x). Another important example is
Transition Systems. If the set of states is S, and |S| = 2n, we can express the transition relation
over the states δ : S×S 7→ {0, 1} as a Boolean function over 2n inputs (the variables for current
and next state), Fδ(x, y). This encoding of transition systems allows for example for Bounded
Model Checking - checking whether a state is reachable within T steps. We define T copies of
the n state variables, say, x1 . . . , xT . Now, if FI(x) is a formula that defines the initial states
and Fs(x) defines the target set, the formula FI(x1)∧Fδ(x1, x2)∧ . . . ,∧Fδ(xT−1, xT )∧Fs(xT )
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represents the reachability problem. Closely related is the reduction of AI planning problems
to SAT [68, 44].

Another type of CSP is Quantified Boolean Formula (QBF), which is, given a propositional
formula with quantifiers such as ∀x∃y(¬x ∨ y) ∧ (¬y ∨ (¬x ∧ y)), whether it is true, where
∀x is understood as ”For all x” and ∃y as ”There exists y”. It is harder than SAT, and
is in fact the canonical PSPACE-complete problem. Its interchanging quantifiers make it
suitable for modeling 2-person games, or for example planning in presence of non-deterministic
environment. We can ask whether there exists some policy x such that a safety property
holds no matter what y the environment throws at us. Similarly, synthesis problems can be
reduced to QBF, where we ask to find an implementation x such that a property Q(x, y)
holds for all possible inputs y (see for example in Solar-Lezama et al. [132]).

For a given Boolean formula, we can also ask not just whether it is satisfiable, but how many
solutions it has. This is called the #SAT problem, and it is the canonical #P-complete problem.
It naturally lends itself to questions of probabilities. Problems of probabilistic inference can
be reduced to model counting through weighted model counting [115], or sometimes directly
through unweighted counting [149]. Satisfiability Modulo Theory (SMT) [15] expands SAT to
transcend propositional logic and include other background theories. It allows us to replace
variables in the propositional formula with predicates that are interpreted over another theory,
for example 3x+ 2y ≥ 5 over Linear Real Arithmetic, or theories of arrays and bitvectors
which help model software.

Despite the fact that these CSP are NP-hard, there exist algorithms and tools that
(sometimes) solve them in practice. They are called Constraint Solvers (CS), or just solvers.
State of the art SAT solvers are routinely used to solve industrial problems, many times
through SMT (as in, SMT relies on SAT). More complex CS such as QBF and Model Counting
solvers are not as common in industry yet, but are used and researched in academia (see Biere,
Heule, and Maaren [23]).

1.2 Learning from Experience

It so happened that the developer of one such CS, A QBF solver called Cadet, is a colleague
of mine. He showed me a graph produced by Cadet as a certificate for a solution of a problem,
which looked something like Fig. 1.1, and I immediately wondered about what seemed like
repeating patterns in it. Following the discussion that ensued I learned that repeating patterns
would not be unlikely given that problems are encoded from logical circuits. It turned out
though that Cadet, like other CS, are completely oblivious to this fact. It can solve a 1000
circuit problems with the same repeating common components, yet this “experience” doesn’t
register, nor does it effect a single decision cadet will make when it solves the next problem.

This stands in stark contrast to how humans solve problems - we tend to adapt our
techniques to the problems we see. Many times we can acquire valuable experience from
solving small “toy problems,” experience that serves us well when we face harder similar
problems. This obliviousness to experience is also quite peculiar from the perspective of
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modern techniques in Artificial Intelligence (AI). A few decades ago, classic AI was more
about tools like cadet and others, which performed logic inference and reasoning according
to fixed rules, early AI researcher’s idea of what intelligence is. Since then however, AI
based on symbolic manipulation had receded, and over the last decade Machine Learning
(ML) and specifically “Deep Learning” [47] have taken the stage. Over the last decade, Deep
Neural Networks (DNN, or just NN) have achieved super-human performance in a number
of important tasks in various fields such as vision, speech, natural language, robotics and
games. In all cases, the success of the NN architectures is based to a large part on learning
from, or “experiencing” the data. Without any prior knowledge they managed to outperform
algorithms crafted by domain experts. A classic example is AlphaZero [127], a (partly)
NN architecture that, by playing against itself, managed to go from knowing nothing about
games such as Chess or Go to defeating world champions.

Figure 1.1: Satisfiability Certificate
from Cadet.

The purpose of this thesis is to try and bridge that
gap between NN and symbolic reasoning. Specifically,
to combine the techniques of modern Deep Learning
in a state of the art CS, in a way that allows it to
learn from experience and become better than the
manually-designed heuristics. It is part of a long line
of research that focuses on leveraging ML towards
improving CS from many different angles. There have
been works using classical ML methods to choose be-
tween encodings for SAT by classifying formulas [124],
approaches that automatically tune the many param-
eters of SAT solvers [57], portfolio methods [158] that

classify formulas in order to choose the solving algorithm, and approaches that model SAT
as a multi-armed bandit problem [80]. While this thesis focuses on QBF and model counting,
a lot of work recently had been directed towards improving SMT through ML by learning to
choose tactics [13] or solvers [118].

1.3 Overview

We turn first to the Deep Learning side. Chapter 2 starts with necessary background on
NN, and reviews the previous attempts to apply them to logical reasoning. It presents
the representation challenges that arise when trying to apply NN to logical formulas, and
proposes a solution that addresses those challenges based on a Graph NN architecture. It
then presents some empirical results that validate it, and a conjecture trying to explain
the architecture’s success in deciding satisfiability. Once we have a suitable representation
of logical formulas, we turn to integrating it within Cadet in Chapter 3. It starts with
background on the DPLL algorithm and CDCL-based solvers, then discusses the details of
bridging the two different worlds, of NN and CS. It then describes Cadet, and shows how
to map its branching heuristic to the Reinforcement Learning settings. Finally, it describes
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experimental results of a Cadet-based implementation, outperforming the state of the art
by an order of magnitude (10x) on some challenging problem families. Chapter 4 shows
how this method can be adapted to SharpSAT, a modern competitive exact model solver. It
starts with some background on Model Counting, and then presents Neuro#, A model counter
augmented with a learning component for its branching heuristic. It discusses the idea of
semantic features and how they may be implemented in problems of modeling dynamical
systems. It shows experimental results of Neuro# improving on the state of the art, and
offers some interpretation of the learned heuristic. Chapter 5 describes attempts to apply
these ideas to the important domain of SAT. It covers the challenges and several approaches
attempted, which so far have achieved very partial success or none at all. Chapter 6 contains
a discussion of several potentially fruitful directions for future work, and some concluding
remarks.

Collaborators

I am indebted to quite a few colleagues and mentors for their involvement and contribution
to the research presented in this thesis. The pronoun ’We’ refers to myself and all respective
Co-Authors of relevant material, as listed below:

• Chapter 2 is based on unpublished material, and the ideas in it are based on discussions
with Markus Rabe, Edward Lee, and Sanjit Seshia.

• Chapter 3 is adapted from the Paper ”Learning Heuristics for Quantified Boolean
Formulas through Reinforcement Learning” [78], Co-authored with Markus Rabe,
Edward Lee, and Sanjit Seshia.

• Chapter 4 is adapted from the Paper ”Learning Branching Heuristics for Propositional
Model Counting” [146], Co-authored with Pashootan Vaezipoor, Yuhuai Wu, Faheim
Bacchus, Sanjit Seshia, Roger Grosse, and Chris Maddison.

• Chapter 5 is based on unpublished work done with Pashootan Vaezipoor, and discussions
wih Faheim Bacchus and Roger Grosse
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Chapter 2

Representation

The first challenge facing us when trying to incorporate neural networks into constraint
solvers is one of representation. Specifically, while there are many moving parts in modern
state of the art logical constraint solvers, which we discuss in detail throughout the next
chapters, the main entity common to all of them is the propositional Boolean logical formula,
for example:

(a ∨ b) ∧ ¬c→ ¬a ∧ (c ∨ a) (2.1)

In this chapter we develop a representation of such Boolean formulas, and the corresponding
Neural Network architecture which can process it.

We will start with some background on the concepts of representation, embedding and
induced bias in the NN literature, review previous attempts at representing Boolean formulas
growing out of the Natural Language Processing (NLP) literature, and build upon them
to come up with a new representation and architecture that better match the structure of
propositional logic. We will then present experiments and empirical results to establish some
properties of the new representation, and discuss its remarkable success in the specific task
of deciding satisfiability.

2.1 Neural Networks Preliminaries

Terminology and Notation

Neural Networks, as the name implies, were originally roughly motivated by the connectivity
structure of biological Neurons in the brains of living creatures. However, from an abstract
mathematical point of view, they can be considered as a specific type of parametrized
function. Indeed, they are referred to as function approximators. We will often represent
them schematically as a computation graph. For example, the most well-known basic example
is the Perceptron, represented graphically in Fig 2.1 [112]:
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Figure 2.1: Computation Graph of a Perceptron

Equivalently, we can define the same operation in a functional notation. The Perceptron
is then viewed as a function P parameterized by W1, . . . ,Wn,Wb. Parameters in Neural
Networks are also called weights, and when clear from context we will abuse notation and
denote W as an entire vector or matrix of parameters, hence the parameterized function
defining the perceptron is denoted PW :

o = PW (i1, . . . , in) = H
( k=n∑

k=1

Wkik +Wb

)
(2.2)

H(x) =

{
0 x < 0

1 x ≥ 0
(2.3)

Where H(x) is the Heaviside step function. In the context of neural networks, H is called,
quite intuitively, an activation function. It controls whether the perceptron is “activated”.
The single weight Wb is called the bias of the perceptron (not to be confused with the concept
of bias in Neural Networks, to be introduced shortly). Mathematically, it is clear that the
n + 1 parameters define an Affine Hyperplane in Rn, and PW defines the function which
outputs 0 or 1, depending on which half-space the point (i1, . . . , in) resides in.

A generalized version of the Perceptron is called a Neuron, the basic unit of a Neural
Network. The only difference is that we relax the definition of the activation function1, and
allow it to be some univariate function other than the Heaviside function. Common activation
functions used in practice are tanh , ReLU(x) = max (0, x), Sigmoid(x) = 1

1+e−x
.

Since the neuron is the basic building bloc of neural networks, its scheme of “apply an
activation function to a shifted weighted sum of the inputs” is so common that it is often
omitted from graphical representations of larger NN. The next simplest construction, called

1The Perceptron was inspired by the biological neuron, and so the Heaviside function represented the
neuron “firing” or not.
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Figure 2.2: A single feed-forward layer with 3 inputs and 2 neurons

a feed-forward layer, is an arrangement of multiple neurons in parallel. As seen in Fig 2.2, it
is often represented schematically in the literature, such that the sum, the activation, and
the bias weights are implicit. Since the sum is assumed as part of the Neuron, the weights
are associated with the incoming edges. For larger networks, weights are also omitted and
specified separately.

Functionally, a single layer can be represented using matrix arithmetic in vector notation.

O = f(WI +Wb) (2.4)

Where f ∈ R 7→ R is any activation function, lifted pointwise to Rm 7→ Rm. I ∈ Rn

and O ∈ Rm are vectors in Euclidean Spaces, and W,Wb are the network weights (Wb is
usually implicit in graphical representation). In the example of Fig 2.2 we would have
I ∈ R3, O,Wb ∈ R2,W ∈ R2×3.

The next construction generalizes the single layer, and is called an n-layer feed forward
network, or multi-layer perceptron (MLP), and is simply a functional composition of such
layers. Note, the architecture of a MLP is specified entirely by layers’ width, which induces
the dimensions of its parameter matrices. It could be thought as the “signature”, or “type“
of the MLP component. For example, Fig 2.3 depicts the component MLP (2, 3, 1). The
single layer in Fig 2.2 is MLP (3, 2). MLP components can be sequentially composed with
each other as long as their input/output dimensions match. Multi-layered NN are sometimes
called “Deep Neural Networks”.

Training Neural Networks

Definitions

Before NN can be usefully employed, they have to be trained to become good at their task.
In Supervised Learning, the goal is to learn a function based on input-output examples.
More formally, Let us denote a network as fW (where W stands for all of its parameters,
regardless of partition or dimensions), its input domain as X and output domain as Y . We
train networks on A Training Set, which is a set of example tuples {(xi, yi)}ni=1, such that for
input xi, the correct answer is yi. We define a Loss function L : Y × Y 7−→ R. Intuitively,
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it is a measure of distance2 in the space Y , which lets us measure “how far” the network’s
output is from the correct answer for a given input. The network loss for a tuple (x, y) is
then L(fW (x), y), and the entire Training loss is defined to be:

Ltraining(W ) =
1

n

n∑
i=1

Li(W ) (2.5)

Li(W ) := L(fW (xi), yi) (2.6)

Finally, training a NN means optimizing the parameters W with the objective of minimizing
the training loss.

Gradient Descent Optimization and Batching

The actual optimization of the NN is usually done with a variant of the Gradient Descent
(GD) algorithm. Intuitively, GD is a simple first-order hill-climbing (or rather descending)
algorithm which can be used to iteratively find a local optimum of a differentiable scalar
function f : Rn 7−→ R. It starts with some guess x0 ∈ Rn, and at every round moves a small
step in the direction of the steepest incline (decline) of f , i.e, in the direction of its gradient
at x. In the context of NN, fixing the training set and the network architecture, the training
loss in Eq. 2.5 can be seen as a scalar function on the space of network weights W . The only
thing we now need to apply GD to optimize the network’s weights is to be able to efficiently
compute the derivative

dLtraining
dW

, which, since derivative is a linear operator, is reduced to

computing dLi
dW

. The GD update rule with step size η is then:

w := w − η∇Ltraining(w) = w − η

n

n∑
i=1

∇Li(w) (2.7)

In practice though, NN are not optimized with “vanilla” GD, mainly due to two compli-
cations:

• It is highly unlikely for any non-trivial problem to have a loss function that is convex
over the parameter space. In the common non-convex case, GD will get “stuck” at a
sub optimal local optimum, and in practice would depend entirely on initialization.

• As seen in Eq 2.7, the loss is a sum over the entire training set. In practice, n could be
tens of millions of examples. To compute the gradient of the sum we must compute the
gradient of Li, the loss for each example, and this for every single gradient step.

The Stochastic Gradient Descent (SGD) algorithm solves both of these problems by
introducing randomness. Intuitively, instead of calculating the exact loss gradient over n
examples, we calculate a cheap approximation to the gradient by considering only one random

2While similar to distance, loss functions are generally not in fact metrics in the formal topological sense
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sample from the training set. More formally, given a random permutation {σ(1), . . . , σ(n)},
the update rule of SGD on the ith step is:

w := w − η∇Lσ(i)(w) (2.8)

SGD only has to compute gradient at one sample point for each step, and while it is
still not guaranteed to converge to global optimum (unless the function is convex, a highly
unusual case in NN), with appropriately decreasing step size it is guaranteed to converge to a
local optimum, and its noisiness makes it less likely to get stuck at a bad local minimum in
practice. SGD however has its own inefficiencies:

• Convergence in practice can be slow and noisy. A single example gives a poor approxi-
mation of the real gradient.

• Gradients are computed using fast hardware (GPUs) and software libraries that support
vectorization. Computing gradients one at a time is highly inefficient.

And so in practice we use a hybrid of SGD and GD (which in this context is called batched
Gradient Descent). Instead of using either one sample or all of them per gradient step, we set
a Batch Size hyperparameter, and on every step we sample an entire mini-batch (or just batch
if clear from context) and compute the gradient on them. This both stabilizes the convergence,
and efficiently utilizes modern frameworks implementation. To a large extent, NN became
popular as modeling components because they facilitate the efficient computation of those
derivatives using the well-known backpropagation algorithm [113], allowing for first-order
optimization. Moreover, the advent of popular auto-diff frameworks such as TensorFlow and
PyTorch [101] (see at App. A.4) makes computing the gradient of networks with respect to
weights a straightforward matter.

Classification and Regression

We will be using NN for ultimately one of two tasks - regression or classification. Regression
means the network’s output is in Rn. The standard loss function used in training for such
tasks is the Mean Squared Error (MSE), which is simply scaled squared l2 norm. For x, y ∈ Rn

it is:

MSE :=
1

n

n∑
i=1

(xi − yi)2 =
1

n
‖x− y‖2

2 (2.9)

The classification scenario is slightly more involved, since NN are by their nature a
smooth construction. Suppose our training set is made of tuples (x, y) such that x ∈ Rn, y ∈
{1, . . . ,m}. We use a NN to classify its inputs into m discrete categories by computing m
outputs (and so there are m neurons in the last layer). Those outputs are called logits, and
let us denote them li, 1 ≤ i ≤ m. On top of this layer, we apply a Softmax function, from
Rm to Rm:
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Figure 2.3: Multi-layer Perceptron with dimensions 2, 3, 1.

pi = Softmax(l)i :=
eli∑m
j=1 e

lj
(2.10)

The softmax ensures that the final m outputs are all positive, and sum to one. We treat
them as parameters for a multinomial probability distribution over the m categories. We
next proceed to represent y in one-hot representation. That means mapping y ∈ {1, . . . ,m}
to (y1, . . . , ym) ∈ {0, 1}m:

onehot(y) := (y1, . . . , ym) (2.11)

yi =

{
1 i = y

0 i 6= y
(2.12)

And finally define the Cross-Entropy Loss function as:

CE := −
m∑
i=1

yi log pi = C(l)− li=y, C(l) = log
m∑
i=1

eli (2.13)

This loss term is slightly less intuitive, but it is in fact the cross-entropy between the
distribution concentrated on the single correct answer and the distribution over the categories
produced by the network, (p1, . . . , pm). Cross Entropy between two distributions p, q, also
called relative entropy, is defined to be H(p, q) = −Ep log q = −

∑m
i=1 pi log qi. In our case,

the loss is H(y, p), where y is the point mass distribution on the correct answer. The cross
entropy, up to a constant, is the Kullback-Leibler Divergence (KL) between the distributions.
Specifically, KL(p‖q) = H(p, q)−H(p) While the KL divergence is not exactly a metric in the
space of distributions3 , we can still think of it intuitively as “distance between distributions”.
It grows smaller as distributions become similar, and KL(p‖q) = 0 ⇐⇒ p = q.

3It is asymmetric, but converges to be symmetric as q gets infinitesimally close to p.
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2.2 Representation and Architecture in Neural

Networks

One of the main strengths of NN is their flexibility with respect to the modalities of data
they can process. Beginning with Krizhevsky, Sutskever, and Hinton [73], they have been
repeatedly used to achieve state of the art results in different domains - Images & Video [152],
Natural Language [97], Robotics [140], Speech [99], Combinatorial Games [127] and mode,
often surpassing established domain-specific algorithms. Many factors have contributed to
the rise of deep neural networks in those various domains. One of the main ones, which is
used to incorporate domain knowledge into a network architecture and will become important
in our context, is referred to in the literature as Induced Bias.

Expressiveness

As reviewed in section 2.1, a NN can be seen as a parametrized function fW : Rn 7−→ Rm.
Fixing an architecture implicitly induces a mapping from R|W | to Rn 7→ Rm. A natural
question that arises is what functions are in the range of this mapping, or equivalently, what
functions the NN could possibly approximate. This notion is informally called ‘expressiveness’.
It seems intuitive that the more parameters, the more “expressive” the network is. And
indeed, the Universal Approximation Theorem [] formalizes this intuition. It shows that
under mild conditions, any function in f : Rn 7−→ Rm can be approximated arbitrarily close
by MLP (n, k,m) as k → ∞. That is, for every “reasonable” f ∈ {Rn 7→ Rm} and ε > 0
there exists k and appropriate weights W such that ‖MLPW (n, k,m)− f‖ < ε.

And so, just about any function can be approximated arbitrarily well by a simple network
architecture - just a 2-layer feed-forward network. Indeed, with k large enough, it can be
as expressive as we’d like. Visually, it is easy to see that feed-forward connectivity between
layers is the “most general”, every neuron in a layer is connected to every neuron in the
following layer.4 However, naive expressiveness like that doesn’t come for free - as k goes
up, so does the number of weights in the network. More weights increase the dimension of
the optimization space, and accordingly the amount of time, computing resources, and most
importantly, data, required for training. And so a fundamental trade off in NN design is
between expressiveness and size. We address it by leveraging domain knowledge.

Induced Bias

How can a network be both expressive and efficient with respect to number of weights?
The key observation is that a specific NN is never required to approximate “any arbitrary
function”, but rather a much more constrained function, where the constraints depend on
the expected properties of the data distribution, and embedded either implicitly or explicitly
in the structure of the data. Reflecting and leveraging those constraints in the architecture is

4More formally, the weights are the full cross-product of the two layers
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Figure 2.4: The Convolution operation of the image I with the 3× 3 filter K computes at
every (2D) coordinate the inner product of K with the local neighborhood of that coordinate
in the input (in red).

referred to as Inducing Bias on the network. We will describe two classic network architectures
as examples of inducing bias:

Processing Images with Convolutional NN

Consider the task of processing and acting on visual data. Suppose our input data are 100×100
black and white images we are tasked with classifying (for example, detecting whether some
object is in the image). A naive implementation could simply use a MLP (104, k, 2) for some
k. We “flatten” the 100× 100 input matrix into a 104 dimensional input vector, and send it
through the MLP .

However, this naive solution ignores some important structure that is common to all
images in the real world. The most notable is the spatial locality bias. The meaning of a
single pixel (or a small rectangle of pixels) is far more dependent on its surrounding pixels
than on pixels far away. While our input space is, in theory, 210000, in practice the distribution
of inputs the network will process is biased towards only those inputs that have this spatial
locality property. Furthermore, this meaning derivation is (mostly) invariant to translations.
A triangle is a triangle, whether its on the left side or the right side of the image. The MLP
cannot capture those constraints. Think for example on MLP (104, 104, 2), where each unit in
the second layer can be intuitively thought of as computing the “meaning” of the respective
pixel. Because we flattened the input and the connections between consecutive layers is their
cross product, Every pixel by definition depends on all other pixels, and has to learn the
locality principle on its own.

A Convolutional Neural Network (CNN) [] addresses these issues by learning a set of
small, local filters, and convolving them along the 2D image, as seen in Fig 2.4. Each such
application of filters is called a Convolutional Layer, and a network processing visual data is
usually composed of several of these layers composed on top of each other. For our purposes,
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it is enough to note that by matching the structure of the data, the architecture has several
advantages compared to the naive solution with MLP:

• By construction, each output of a convolutional layer only depends on its local neigh-
borhood in the input.

• By construction, since the same K is convolved along the entire input, the output is
invariant to translations.

• The size of filters (hence number of weights to optimize over) are orders of magnitude
less than what we would get by a cross-product connectivity like in MLP .

By using pre-existing domain knowledge to constrain the network’s expressiveness, we
make it more efficient. By making it respect by construction the invariants of the data, we
save weights (because the network doesn’t have to re-learn the same translated property over
and over. The same small kernels are applied to all locations). This is a theme to keep in
mind when thinking of processing logical formulas, one that repeats itself throughout NN
architecture and design. The good architecture follows the data.

Processing Sequential Data with Recurrent NN

A second example of an induced bias is the use of Recurrent NN (RNN) for the processing
of sequential data. It is often applied to processing a sequence of words in the field of
Neural Language Processing (NLP)[]. The difference compared to MLP or CNN mirrors
the difference between image and text input domains. When processing still images (unlike
video), there is no temporal dependency between the inputs. How the network processes
a given image is completely independent on the previous image and will have no effect
on the next. With language, the meaning of a word in a sentence clearly depends on the
previous ones.5 RNNs (Fig 2.5a) match this structure by incorporating feedback and state
variables (sometimes called hidden state), making their output depend on both the input
and the previous state. The diagram in Fig 2.5b is showing the RNN unrolled through time.
Functionally, the network approximates the function (ik, sk−1) 7−→ (ok, sk).

Low Dimensional Embeddings

NN often deal with extremely high-dimensional input domains. For example, If a language
has 100k words, every word can be represented as a one-hot vector of dimension 100k. Every
sentence is a sequence of such vectors. In the image domain described in section 2.2 every
image is a 10k dimensional vector. However, the actual input distribution in the input domain
is sparse. In the language example, though the input domain is R105 , there are only 100k
different inputs, each, one-hot encoded, along just a single dimension.6 Generally, in other

5Sometimes also on future words, but this is a less important detail in our exposition.
6In general, NN treat all numbers as floating point. Even if it is a black-and-white image or a one-hot

encoded vector composed only of {0, 1}
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Figure 2.5: Recurrent NN

domains, it is less clear how precisely the input is distributed, but it is assumed to be
distributed along a low-dimensional sub-manifold of the input domain. For example, in the
image domain, we do not expect to encounter any input that looks like random noise, because
it contradicts the “spatial locality” principle. Mathematically, a low-dimensional manifold is
said to be embedded in Rn.

Informally, part of what NN do is to “invert” this embedding. They take input in a high
dimensional space, and apply a sequence of non-linear transformations to produce a low
dimensional representation. For example, MLP (n, . . . , k) takes input in Rn, transforms it
through a sequence of layers and produces output in Rk where k << n. Through a slight
abuse of (mathematical) notation, these are referred to in the literature as Low Dimensional
Embeddings, Dense Embeddings, or just Embeddings.

Word Embeddings

The special case of words in a language encoded as one-hot vectors is worth describing in
more detail, as it will become the starting point of our investigation into representing logical
formulas. As described in Section 2.2, a sentence is processed by an RNN as a sequence, one
word at a time.7 However, NN process inputs in Rm (in practice, m floating point numbers),
so we must encode the words somehow as m dimensional vectors, called word embeddings.

One hot encoding (see Eq. 2.11) is used to represent categorical information, where the
input domain is a discrete space, which generally has no natural ordering.8 And so, as seen
in Fig 2.6, we look up each word in a dictionary, and encode its index as a one-hot vector.
Note that a m-dimensional one-hot vector processed by a feed-forward layer MLP (m,n) (we
assume the Identity function as activation. That is, no activation) is equivalent to multiplying
the vector by an m× n weight matrix. If we encode the integer k, it is equivalent to choosing
the kth row of the matrix, which is therefore known as an embedding matrix.

7In practice modern NLP models use more elaborate techniques and process sentences also from the end
towards the beginning, or all at once [147]. But this simple approach outlines the motivation and basic idea

8A note able exception is Integers, which are often also modeled as categorical data in one-hot, even
though they are ordered
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Figure 2.6: Encoding a word into an n-dimensional vector. (1) Lookup A word’s index in
a dictionary. (2) Encode the index as a one-hot vector. (3) Multiply by an “Embeddings
Matrix” to effectively choose a raw as an embedding for the index.

Learning Embeddings

Embeddings in practice are learned in one of two ways. If we have enough labeled data
and computing power, the straightforward approach is to learn directly during supervised
training from what is referred to as the Downstream Task. In an NLP task, this effectively
means treating the embedding matrix as normal parameters. We initialize them randomly,
train the entire model, and the resulting word vectors (the rows of the embedding matrix) at
the end of training are the embeddings. The intuition is that during the training process,
words are automatically mapped to the Rk embedding space in such a way that is of the
most benefit towards performing the specific task. This simple approach produces the best
embeddings towards the specific task, but for a few caveats. NN effectiveness is known to
grow with the size of the model. Training large models from scratch in a supervised setting
requires large amounts of two expensive resources - labeled data, and computing power.
The size of both must grow with the number of model parameters in order to effectively
train. Additionally, there is the problem of transfer. The embeddings learned are generally
task-specific. Embeddings learned from training on a sentiment analysis task (which tries
to judge the “positiveness” of a sentence) aren’t necessarily effective for translation from
English to French.

A method that gets around these difficulties is Transfer Learning (TL). In the context of
NN, TL means training on some foundational (semi-)supervised task with enough labeled
data and computing power, and using parts of the trained model for other downstream tasks.
The canonical example is image classification task on ImageNet [37], a dataset of millions
of images labeled into thousands of categories. Large reference architectures [49, 128, 138]
are trained at a considerable cost, and are made publicly available.9 Users download these
pre-trained models, remove the last layer (which performs the actual classification), and use

9https://pytorch.org/docs/stable/torchvision/models.html
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what’s left as a general-purpose feature extractor, upon which they build and train their own
architectures for other downstream tasks, such as image captioning, object manipulation,
etc’. The intuition behind this approach is that because the ImageNet task is foundational
and difficult, the learned features are transferable, and useful for many other vision tasks. A
similar technique is used in NLP, with the main difference being that models are trained in an
unsupervised (arguably semi-supervised) manner, so there is no lack of data. This is because
A text corpus comes with its own labels, so to speak, the structure of sentences in a language.
And so semi-supervised tasks used towards this purpose are invariably a variation of a ’cloze’
task̃footnoteThe cloze task was used in tests given to humans long before it found use in
NLP - predicting some masked words based on their context. Increasingly sophisticated and
large10 architectures [91, 108, 102, 38] are used to learn pre-trained word embeddings. We
will review one class of them in more detail shortly, the RNN-based Language Models.

2.3 Representing Logical Formulas

Every advancement in science has a history, and context. When it comes to representing
logical formulas for processing by NN, this history is firmly rooted in the NLP literature.
Unsurprisingly so, perhaps, because logical formulas (and mathematical objects in general)
are usually represented as text to us humans, ML researchers included. We will start with
describing how these early attempts grew, the tools they used, and their shortcomings when
applied to the domain of logical formulas solved by modern CDCL based constraint solvers.
We will then see how to address these shortcomings by our proposed graph-based architecture.

Structured Text as. . .Text

The early attempts to process logical formulas by NN were based on a simple premise -
from an abstract point of view, logical and algorithmic tasks are nothing but structured,
arguably unnatural, natural language tasks. They can be seen in the context of a still ongoing
research effort, aiming to apply the standard toolkit of NLP to tasks involving text that
is more structured than natural language, such as predicting output of code snippets [165],
mathematical identities [164], symbolic integration [77], Boolean formulas [3]. We will start
by describing two of the main tools used throughout these attempts, Language models and
the Sequence-to-Sequence framework, and how they were applied.

Language Models

RNN-based Language Models are trained directly on sentences, learn to model the distribution
of sentences in a language, and can efficiently sample from them. More Formally, we assume

10The largest NLP models tend to be an order of magnitude larger than models used for vision tasks, up
to 1011 parameters
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Figure 2.7: A simple language model trained on a sentence.

a language of n tokens. Now, considering a sequence of tokens X = (x1, . . . , xk) as a random
variable, the RNN learns to model the distribution as:

P (X ) = P (x1)
k∏
i=2

P (xi | x1, . . . , xi−1) (2.14)

Where the dependency on previous tokens factors through the hidden state of the network
(Fig. 2.7). Recall from Sec.2.2 that the RNN is a function (ik, sk−1) 7−→ (ok, sk). We make
sure the dimension of ok is precisely the number of tokens in the language n, and treat it as
logits representing the output distribution of the the k-th word in the sentence, which allows
us to use classification loss (where each token in the dictionary is a class). Language Models
trained this way can capture the structure and style of natural language texts, and are often
used as pre-trained feature extractors for other downstream NLP tasks. With enough data
they can be trained to produce texts that mimic anything from Obama’s speeches to Chinese
poetry, and perform related tasks (for example, classify a paragraph to those two categories).
This versatility motivated researchers to apply it to more unnatural languages. For example,
what if we train a model on a text corpus in the “style” of C programs? These were the first
steps towards whats called today “Big Code” [2] - training models on a large set of computer
programs, and using them towards a host of coding related tasks - from actual Program
Synthesis [94], to correcting syntax errors [19], obfuscating programs [81], improved error
reporting [29], and more.

While our focus in this work is on RNNs as a starting point towards our goal of representing
formulas, its worth mentioning that more recently, it was discovered that transformer-based
language models scaled up to the order of 1011 parameters achieve state of the art results on
many different language tasks [38, 109], even without additional task-specific training! [28]
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Sequence to Sequence Tasks

Sequence to Sequence, sometimes called seq2seq, is an approach originally developed by
Google to be used in machine translation [136], and later used for other language tasks such
as question answering and text summarization [126]. As the name implies, the approach
is suitable for problems which can be formulated as processing a sequence of tokens, and
producing another sequence. Indeed, the classical example is machine translation, where the
input is a sentence, say, in English, and the output is the translation in French.11

The model is built from two parts, an Encoder and a Decoder. Both of them are RNNs.
The Encoder processes the sentence in English one word at a time, where each word is
embedded as described in section 2.2. The last hidden state, containing information about
the entire sentence, is passed to the Decoder. The decoder in turn takes in the state from the
encoder as its initial hidden state, and starts producing the translation, one word at a time.
This is done the opposite way to how we encoded the input sentence - the decoder outputs
on each step a logits vector the size of the French dictionary, and a softmax layer assigns
probability to each potential word. At each time step, the decoder receives the hidden state
from the previous step, and the previous word it emitted. This goes in until the decoder
chooses to emit an “End Sequence” token, whereas the translation is complete. While similar
to a Language Model in its architecture, the decoder uses the encoder-provided hidden state
as its h0, rather than a fixed initial state. The other main difference is the training - an
encoder-decoder model is trained using labeled, task-specific data.

The seq2seq approach and its variants achieved impressive results on machine translation
and was flexible enough to be used successfully in other contexts - for example, for Image
Captioning, only the decoder part is used, and the hidden state is the output of a convolutional
network rather than the encoder. For sentiment analysis, where the output is a single score,
only the encoder is used. This success motivated researchers to test whether this approach
could work on more structured tasks. As seen in Fig. 2.8, any list manipulation algorithm
such as sorting or inverting a list can be seen as doing “translation”. In fact, any terminating
computer program with inputs and outputs can be formulated similarly. What if we train
an Encoder-Decoder model on a lot of such pairs of sequences (there’s certainly no shortage
of data!) and then evaluate it on a sequence it hasn’t seen before? It turns out that the
Encoder-Decoder architecture does not perform very well. The code snippet in example
no. 3 in the figure comes from Zaremba and Sutskever [165]. While the RNN can learn
to ”translate” short programs, the authors discovered it has severe limitations. Such a
translation works only when trained and tested on a limited subset of extremely simple
programs, with bounded nesting (no double loops), a few operations, and ending with a
print statement. When trained to invert or sort sequences, the main limitation of RNNs is
generalization to longer sequences. It can be trained to invert sequences of up to 20 elements,
but fails entirely when tested on sequences longer than those seen in training [48].

11Modern state of of the art machine translation is done today using Transformers, not RNNs as in the
time of the writing
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7, 14, 9, 3, 2, 8 2, 3, 7, 8, 9, 14(1)

(2)

(3)

2, 8, 4, 1, 33 33, 1, 4, 8, 2

j =8584
for x in range ( 8 ) :

j+=920
b=(1500+ j )
print ( ( b+7567))

2, 5, 0, 1, 1

Figure 2.8: Algorithmic “Translation” examples. (1) Sorting a list of Integers. (2) Inverting
a list of integers. (3) Computing the output of a Python program (code snippet taken
from Zaremba and Sutskever [165])

Text as Trees

Another two relevant lines of research in the NLP literature grew from the prevalence of
structure and logical patterns within natural language, both stemming from the role of
composition in language.

Syntax Trees and Recursive Tree NN

Researchers in Linguistics have long ago learned the structure common to sentences in a
language. Words in the English language for example, belong to one of 9 different categories
called Parts of Speech (POS), among them nouns, verbs, adjectives, etc’. These different
categories of words serve different functions in a sentence, and importantly, are intertwined
with the implied tree structure of a sentence, called a Parse Tree, or Syntax Tree. For example,
using the standard POS tagger of the popular NLP toolkit nltk [84], the sentence “The quick
brown fox jumps over the lazy dog” is parsed into the syntax tree in Fig. 2.9. Syntax parsing
has long played an important part in computational language processing, and was used to
derive semantic representations of sentences. Within the context of NN, it meant that the
input of models in NLP are oftentimes trees rather than sequences.

In accordance with the induced bias principle of Section 2.2, it is not surprising therefore
to find Tree-like NN architectures designed to process variable-sized syntax trees. There are
several variants in the literature [130, 139], and all are forms of a Recursive12 NN. At the
heart of these architectures is the notion of learning how to compose. The intuition is not too

12Note the difference from Recurrent NN. Recurrent NN are a subclass of Recursive NN.
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Figure 2.9: Parse Tree
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( , ) 7−→

Figure 2.10: A Binary Tree-NN processing (a binary parse tree of) the beginning of a sentence.
What the network actually learns is the combination function C. A simple implementation
uses a single shared network for C. Incorporating more domain knowledge, we can learn
multiple different combination functions according to the types (POS tags) non-leaf nodes.

different from the Recurrent case. The recursive element in a sequence processing RNN is
also learning how to compose, albeit in a sequential, fold-like manner. It composes the hidden
state which encapsulates the aggregated history with the current input, to produce a new
hidden state. Similarly, A Binary Tree-NN builds an aggregate representation of its input tree
by recursively composing representations of children into that of the parent (Fig. 2.10) via a
learned composition function of type Rd × Rd 7−→ Rd, where d is the embedding dimension
of each node (leaves are words, and non-leaf nodes are combination of words, up to the entire
sentence). In a non-binary Tree-NN, two common techniques are used for composition. Either
a maximum number of children per node are assumed and required padding added, or an
aggregation function is used, which is defined on a variable number of inputs - for example
sum, average, or more generally attention-based mechanisms (see App. A.2). Every non-leaf
node can have its own learned composition function
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Informal Logic in Natural Language

The effort to discern and distill logical patterns from natural language has its roots run all
the way back to the Syllogism of Aristotle. While these patterns need not be as rigid as
formal propositional or predicate logic, most speakers of a language still recognize that the
word ’not’ preceding an adverb inverts its meaning, or that double negation cancels itself.
Words and patterns like ’and’, ’or’, ’if X then Y’, ’unless’, ’all’, ’implies’, are interpreted by
speakers of the language as operators in the “naive” predicate logic of everyday use. Question
Answering, an important NLP task, is well known for requiring reasoning (”Socrates is a man.
All men are mortal. Is Socrates mortal?”), but even more mundane tasks such as automatic
sentiment analysis of movie reviews implicitly require reasoning about logical operators and
composition. A tree structured NN is suitable for capturing those patterns, as demonstrated
in Socher et al. [131]. For example, in the sentence ”not a very good movie”, the model would
give the intermediate node ”good movie” a positive score. Composing the word ‘very‘ would
give “(a) very good movie” an even higher positive score, yet the composition with the word
‘not‘ inverts the sentiment, and produces an overall negative score at the root node.

Logical Formulas as Trees

From some perspectives, learning the semantics of formal propositional operators is a trivial
task for A Tree-NN. So much so, that it is used as a sort of a sanity test in Socher et al.
[131], where they train a Tree-NN to evaluate binary expressions represented as shallow
binary trees over the dictionary {true, false,¬,∧}. They found that with no more than 6
such training examples, they could learn weights for the two operators that achieve zero
training error (and of course, zero error on all such deeper trees, by the compositional nature
of the problem). This is somewhat unsurprising, as NLP usually deals with the “forward”
problem, of evaluating a sentence. The difficulty is in the ambiguity of the language, not in
the underlying computational problem, which is clearly in P . When we remove the ambiguity
of natural language, the expressiveness of NN easily captures the semantics of negation and
conjunction as non-linear functions.

In Allamanis et al. [3], the authors explicitly set out to to learn a dense embedding for
logical formulas, addressing some of the issues that arise once we tackle problems more
complex than evaluation. The authors present a tree-NN based architecture called SemVecs,
which learns to represent propositional formulas with variables, and more generally symbolic
expressions such as polynomials. In their settings13, the input data is composed of Boolean
propositional formulas over a fixed set of named variables {a, b, c, . . . }, such as:

¬c ∧ (a ∧ (a ∨ c) ∧ b) (2.15)

Their goal is to find vector embeddings for formulas like Eq. 2.15 such that they would
overcome the mismatch between syntax and semantics. Specifically, Boolean propositional

13We will focus only the logical propositional formulas part of that work.
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formulas on n variables are a function of type 2n 7−→ 2. There are 22n different such
functions, yet there are far more syntactically correct formulas over n variables (technically
there are infinite such formulas, think of (a, a ∧ a, a ∧ a ∧ a, . . . )). And so we say two
such formulas are equivalent if they induce the same function, and this equivalence relation
partitions all formulas to 22n equivalence classes. For example, a∨ b and b∨a are semantically
equivalent, even though as a sequence of tokens they’re different. In fact, it is easy to
see that equivalent formulas can have drastically different syntax. Ideally, we’d want the
representation of formulas to be depend on semantics only, and be invariant to the syntax.
What this amounts to in the context of learning embeddings, is that the Euclidean distance
between the vector representations of two semantically equivalent formulas in Rd is small.
With such an embedding, if we check the nearest neighbors of a formula, we should expect to
find many of them are from the same equivalence class.

Given such an embedding which clusters equivalent formulas together, it should be
relatively easy to learn on top of it a classifier. And so, at least in theory, we could also
invert this intuition - if we train a model to classify formulas into their equivalence classes, it
should learn embeddings that are productive towards this downstream task. After all, the
same phenomenon, to some degree, exists in natural language processing. Sentences with
more or less the same meaning can be composed of largely different words and expressions.
And yet, models trained on downstream tasks such as translation that learn embeddings of
entire sentences learn to overcome this, and cluster similar expressions/sentences together.
While this could theoretically work for formulas as well, In Allamanis et al. [3] the authors
show that at least with modest amounts of data (and accordingly, computation), this is
not enough. Standard RNNs and Tree-NN architectures are too attached to the syntax.
In order to achieve good clustering, or “invariance to syntax”, they extend the standard
Tree-NN architecture with a component that explicitly encourages a clustering behaviour on
the embeddings (with respect to equivalence classes).

The authors observe a connection between semantics and reversibility. Specifically, if
we have a formula F (a, b) = F1(a, b) ∨ F2(a, b), knowing the semantic equivalence class of
F, F1 allows us to predict the equivalence class of F2 better than it allows for predicting its
syntax. Translating this observation to the embedding space, reconstructing F2’s embedding
from those of F, F1 will be easier if those embeddings represent semantics rather than
syntax. They exploit this observation by introducing a denoising autoencoder component
(See Appdendix A.1) they call SubExpAe. At each non-leaf node of a tree, they combine
the children embeddings (rc0 , . . . , rck) into rp as described in Sec. 2.3, using a different
function (that is, weight matrices) for different operators, so in practice we have multiple
combine functions such as COMBINE∨,COMBINE∧ at different non-leaf nodes. They then
randomly choose a child node (WLOG, c0), and then use SubExpAe to reconstruct rck from
(rc1 , . . . , rck , rp). They add the reconstruction loss as a regularization to the classification loss.
On several synthesized datasets of boolean formulas, they show this specialized component
significantly improves on the standard Tree-NN baseline when measuring how clustered
together are the embeddings of semantic equivalence classes.
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Challenges of Formula Representation in the Context of
Constraint Solvers

When it comes to representing formulas in the context of modern Constrain Solvers, the
approaches we’ve reviewed from the literature have some significant shortcomings. Let us go
over the challenges of representation in this domain.

Invariance

We’ve seen invariance, where the convolution operation in a CNN reflects the invariance to
translation in images - A triangle is a triangle, however we translate it across the image.
The convolution bakes this assumption into the architecture. There are other invariants
in image processing however, that are not reflected in the CNN. Rotation, for example, or
inversion, should probably not change the meaning of an image (or, in practice, the class of
an ImageNet data point). One way practitioners make NN “invariant” to these operations is
by Data Augmentation. We can, for each image, synthesize new versions of it by randomly
applying the operations we want to NN to be invariant to, and add those synthesized versions
to the training set under the same class. The intuition is that by training on the downstream
classification task, the “invariance” is baked into the parameters of the network.

A bit more formally, we have the input space X , a function f : X 7−→ Y , and a family of
mappings µi∈I : X 7−→ X . We say f is invariant to µ if ∀i ∈ I, x ∈ X we have f(µi(x)) = f(x).
For another function g : X 7−→ Z (representing the NN), invariance to operations in µ is
defined the same. We say g is invariant to f if f(x1) = f(x2) =⇒ g(x1) = g(x2).

Armed with our new definitions, let us turn to invariants in Boolean formulas. The work
described in Sec. 2.3 defines f to be the mapping that sends an element of X - formula
over n variables - to its interpretation, which can be seen as a number in {1 . . . , 22n} (the
semantic equivalence classes). The SemVecs architecture is the function g, which takes
inputs in X and outputs the formula’s embedding in Z = Rd. Note, the architecture does
not incorporate any domain knowledge about the invariance of formulas - for example,
their COMBINE∨ function is not symmetric in its variables, so it has to learn that ∨ is
symmetric on its own, through training.14 Of course, no amount of training with SGD will
ever make a NN truly invariant by our definition. For x1 6= x2 we shouldn’t generally expect
a NN g to output g(x1) = g(x2). But by means of the SubExpAe and the downstream
task itself, the training process encourages g to be “approximately invariant” to f . That
is, f(x1) = f(x2) =⇒ g(x1) ≈ g(x2). In words, embeddings for semantically equivalent
formulas should be ”close” to each other. It should be noted though, that even encouraging a
network to be approximately invariant to syntax is a technique with inherent limitations. The
computational task of deciding whether two formulas are semantically equivalent is NP-hard
- it is at least as difficult as deciding equivalence to an UNSAT formula. In general, a NN
implements a bounded computation graph. There are no magic weights that can make it

14Though, this is quite probably on purpose, since their point was explicitly to learn the invariants by
means of the SubExpAe component.
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solve the problem as we scale the number of variables. And UNSAT is just one equivalence
class, as we recall their total number grows doubly exponential.

Variables

The approaches we’ve seen so far have one unwanted legacy from their NLP origins. In Alla-
manis et al. [3], the formulas the network learns to embed are interpreted over a fixed set
of variables, {a, b, c, . . . }. Both the variables and the Boolean operators (∨,∧,¬, =⇒ ) are
taken as tokens, as if they were words of a sentence. For the operators this makes sense -
logical OR has the same meaning in two different formulas. This is similar to the word “dog”
having more or less the same meaning in every sentence, with some statistical relation to
other words from the dictionary, for example “cat” or “bark”. It therefore makes sense to
learn a word embedding for “dog” which stands for the word any time its being processed.
However, the variables in formulas in the context of CS work differently. They are anything
but a fixed set, and they take a very different role from a word in a sentence. The variable x1

in one formulas has absolutely no relation to the variable x1 in a different formula. Much
like i in a for loop block, it is a bounded variable, meaningful only within the context of a
single formula. It makes no sense to learn a unique embedding for x1 and another for x2 as if
they were distinct words. In fact, in most scenarios, A CS couldn’t care less if we exchange
every occurrence of x1 with x2 and vice versa - it does not change the satisfiability of the
formula, nor its number of solutions. For all practical purposes, a SAT solver is invariant to
variable names.

Computational Limitations

RNNs, and to a lesser degree Tree-NN, have some practical and conceptual limitations with
scale. RNNs were always prone to the infamous “vanishing/exploding gradient” optimization
problem (see App A.3). Due to their “back propagation through time” (BPTT), from the
perspective of computing gradients, RNNs have as many layers as the length of the input
sequence. The optimization problems were largely solved by popular RNN variants like the
“Long Short Term Memory” (LSTM) networks [53], but both computation and memory grow
linearly with sequence length, and since the RNN architecture is sequential by nature, it
cannot be easily parallelized [89]. They have technical difficulties with what is called in
NLP jargon Long-term dependencies [144], remembering relevant information that will only
be used many time steps in the future. Some of these problems can be overcome with the
Transformer architecture [147, 161], but at the price of O(n2) computation complexity.

If we write down a typical formula solved by a modern CS, it’d easily be a sequence of
≥ 106 tokens. This is about 3 orders of magnitude above what is considered standard for
LSTM networks. A constraint appearing at the beginning of a formula can easily “become”
critical a million tokens later, as in ¬x1 ∧ · · · ∧ (x1 ∨ ¬x37931).
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Formulas as Graphs

The challenges outlined above are all related to the inherent mismatch between sequence
processing architectures and the structure of logical formulas. We address them drawing
inspiration directly from the design of CS, and how they represent propositional formulas.

CNF Representation

We start with describing propositional (i.e. quantifier-free) Boolean logic. Propositional
Boolean logic allows us to use the constants 0 (false) and 1 (true), variables, and the standard
Boolean operators like ∧ (“and”), ∨ (“or”), and ¬ (“not”). We assume that the reader is
familiar with their semantics and that it is clear that all other Boolean operators can be
defined in terms of these operators.

A literal of variable v is either the variable itself or its negation ¬v. By l̄ we denote the
logical negation of literal l. P (v, c) ∈ {+,−,⊥} returns the polarity of variable v in c (or
⊥ if v 6∈ c). A clause c of length s is a disjunction of s literals, l1 ∨ · · · ∨ ls. We say that
s is the size of c, and that l ∈ c if c contains the literal l. A formula Γ is said to be in
conjunctive normal form (CNF) if it is a conjunction of clauses, Γ = c1 ∧ · · · ∨ ct. We then
say that ci ∈ Γ. Any Boolean formula can be efficiently transformed into CNF. The Tseitin
Transformation [145] considers a formula as a circuit, and replaces each operator with a fixed
small set of clauses on the inputs and a new auxiliary variable which represents the output.
This increases the size only linearly, which is quite fortunate, as it turns out (for reasons we
will explore in the next chapter) that CNF is precisely how CDCL based CS expect their
input formulas to be represented. For the time being, we thus assume that all formulas are
given in CNF.

Incidence Graphs

An (undirected) Graph is a tuple G = (V,E), where V is a set of nodes, and E ⊆ V × V is a
symmetric relation on V . A bipartite graph is a tuple (V1, V2, E) such that E ⊆ V1 × V2. A
Heterogeneous Graph is a graph where both nodes and edges are labeled. They are a tuple
(V1, . . . , Vj, E1, . . . , Ek), understood as j node types and k edge types. Note, our definition
of heterogeneous graph also generalizes a Multigraph - we allow to differently typed edges
between the same pair of nodes. With a slight abuse of notation, we will say of a heterogeneous
graph that it is bipartite if it has exactly 2 node types, and all edges go between the partitions.
It is well known (and cleverly used in the design of SAT solver heuristics) [7] that a CNF
formula can be represented as a graph in a few variants. They are called CNF Incidence
Graphs, or, in this work, CNF Graphs (see Fig. 2.11):

Definition (Variable Incidence Graph (VIG)). Given a CNF formula c1 ∧ · · · ∧ ct over
the set of variables X = {x1, . . . , xn}, the Variable Incidence Graph is a (X,E), where
(xi, xj) ∈ E ⇐⇒ ∃c xi, xj ∈ c
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Figure 2.11: CNF Incidence Graphs of (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

Definition (Clause-Literal Incidence Graph (CLIG)). Given a CNF formula c1 ∧ · · · ∧ ct
over the set of variables X = {x1, . . . , xn}, the Clause-Literal Graph is a bipartite graph
(X ∪ X̄, C,E), where X̄ = {x̄1, . . . , x̄n}, C is the set of clauses, and E = {(l, c)|l ∈ c}.

Definition (Clause-Variable Incidence Graph (CVIG)). Given a CNF formula c1∧· · ·∧ct over
the set of variables X = {x1, . . . , xn}, the Clause-Variable Graph is a Heterogeneous Graph
(X,C,Ep, En), where C is the set of clauses, Ep = {(x, c)|x ∈ c}, and En = {(x, c)|x̄ ∈ c}.

Processing CNF graphs

According to the “induced bias” principle, to process input data in the form of graphs,
we should be looking for an architecture that mirrors this structure. Unsurprisingly, the
architecture that is most helpful here is called a Graph Neural Network (GNN). First described
in Scarselli et al. [117], it resurfaced a few years later based on modern ML components and
pipeline in Li et al. [79], and have since been used in many domains [16]. We will describe
the architecture in general, and then its specific application to CNF graphs.

A Gentle Introduction to Graph Neural Networks

Hundreds of variants of GNNs have been described in the literature over the past few years.
This is not meant to be a thorough review of this still developing field (we direct the interested
reader to Battaglia et al. [16]), but rather enough intuition and definitions to understand
the application to CNF graphs. A GNN is a network that takes as its input a graph, and
produces an embedding for each of its nodes. It does so iteratively, for n iterations, the final
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, where 3 messages from x1’s neighbors are combined to generate its k’th embedding.

iteration being the output embedding. At iteration i, every node rebuilds its embeddings
according to the (i− 1)’th embeddings of itself, and its neighbors in the graph (see Fig. 2.12).

Formally, Let us assume an (undirected) Graph G = (X,E), where X = {x1, . . . , xn},
and the existence of an edge between xi, xj is equivalent to (xi, xj) ∈ E. We denote the k’th
iteration embedding of xi as xki ∈ Rd, and Xk = {xk1, . . . , xkn}. The equation defining the
GNN (up to X0) is:

xki = F (xk−1
i , A({Mk

ij|(xi, xj) ∈ E})) (2.16)

Mk
ij = M(xk−1

i , xk−1
j ) (2.17)

Where F and M are transformations, and A is an aggregation function, symmetric in its
arguments. All of them are learned functions implemented by NN. This equation is rather
general, but its meaning is quite intuitive. Mk

ij can be thought of as a Message sent to xi
from each of its neighbors in iteration k.

Formally, A, the aggregation function is a mapping finite sets of vectors in Rd to Rd.
Less formally, its an operation that takes a variable number of vectors and produces a single
aggregate vector. Common choices are sum, max, or more generally some form of learned
attention mechanism as described in App A.2. A aggregates all the messages Mk

ij that arrive
from xi’s neighbors. Finally F takes the result and combines it with the previous iteration’s
embedding of xi to get the k’th version. The remaining undefined component is X0, the
initial embeddings of the nodes. There are two ways to bootstrap this initial embedding.
One option is to use a fixed random vector for all the nodes in the graph. This makes
sense when the nodes are featureless, and it incorporates the principle that the nodes are
indistinguishable apart from the topology of their neighborhood. In this scenario, the final
k’th node embeddings of two nodes with isomorphic k-neighborhoods are identical. A second
option is to initialize each node according to its features in the relevant domain. We will see
examples of both uses soon.
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In different contexts, one of two interpretations of the GNN’s operation tend to be useful15:

• A GNN learns to execute a message-passing algorithm. F,M,A as defined above induce
a “message-update” rule. Specifically, as has been demonstrated in Dai, Dai, and Song
[35], A GNN can learn message-update that are akin to variational inference algorithms
in graphical models, like mean field inference or loopy belief propagation.

• In every iteration every node gathers information from its direct neighbors, and after
k iterations, each node potentially has information from all nodes up to k hops away.
And so A GNN with k iterations can be seen as performing a convolution of size k,
building an embedding for each node based on a patch of size k around it. If the graph
is a perfect grid, we get the regular convolution16 on images. There’s a big difference
between grids and general graphs though - the pooling part. In a grid, its quite obvious
how to “compress” the grid by down-sampling between convolution layers. It is not at
all clear how that down-sampling works in general graphs.

Processing CNF graphs with GNN

While a GNN is usually defined on a general graph, we can adjust it to fit the specific
structure of CNF graphs. Of the incidence graphs, we chose to concentrate on the CVIG and
CLIG, the two non-lossy representations (It is generally impossible to recover a formula from
its VIG representation). Both variants of the CNF graph are bipartite, and so we match this
structure with a 2-step message propagation process.

Let us consider a CLIG. It has two types of nodes, or two partitions, which we denote
L and C, literals and clauses respectively. As our goal is learning branching heuristics, we
are chiefly interested in literal embeddings, so we start with them. We split each iteration
into two half-iterations, going from literals to clauses, and back again (see Fig. 2.13). Since
clauses and variables/literals have inherently different meanings, we also choose to propagate
distinct messages from them. Formally, this means we “double” the edges between literals
and clauses, getting G = (L,C,Elc, Ecl) (Alternatively, we can think of it as a directed
bipartite graph). For CVIG, we do the same “doubling” of the edges, thus ending up with
G = (V,C,E+

vc, E
−
vc, E

+
cv, E

−
cv).

Graphs vs. Sequences

The graph structure addresses the challenges of representing formulas in a way that is useful
for a CS. It abstracts away by construction much of the spurious syntax in formulas as
sequences of tokens - Invariance over order, and variable names. As we shall see, in CLIG

15There’s also a popular Harmonic Analysis point of view, but it is not used in this work.
16More or less the regular convolution. There’s no padding, and the function is parameterized differently.

For example, within a regular convolution patch, distance doesn’t matter, there’s no actual message-passing
going on, the entire patch is looked at “together”. Whereas in a GNN there’s clear difference between how
information from different hop-distances is processed.
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Figure 2.13: Processing the k’th iteration of a CLIG - from Literals to Clauses and back
again.

we can achieve invariance to negation. The graph computation is local - the embedding of
each node only considers its τ -neighborhood. Thus, it can be parallelized by partitioning
the graph. This locality also means that unlike in sequences or trees, the path of gradient
propagation is bounded by τ , unrelated to the size of the problem.

Implementation

We implemented our model in PyTorch. Its dynamic graph auto-differentiation [101] makes
it possible to support variable size of graphs.17 We begin with the structure of the input and
how to batch it. We then present a simple implementation of an encoder to illustrate its
structure, and proceed with several variations around this structure.

Input and Batching

Each of our data points is a bipartite graph, which represents a formula in CNF format.
Suppose it has n variables and m clauses, both ordered. It is specified as a tuple of matrices
(V,C,A), where:

• V is a matrix in Rn×dv0 , where dv0 is the dimension of initial variable feature vector. It
can be zero, which represents identical, featureless nodes.

17At the time of implementation (2017) PyTorch was unique in that respect compared to static autodiff
frameworks. By now other frameworks such as TensorFlow 2.0 have this functionality.
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• C is a matrix in Rm×dc0 , where dc0 is the dimension of initial clause feature vector. It
can be (and often is) zero.

• A is the adjacency matrix of the bipartite CNF graph, of dimension m× n. We will
sometimes speak of its first and second dimensions as “clause dimension” and “variable
dimension”, respectively. It is a sparse matrix, using the default sparse representation
of PyTorch, which saves a list of indices and values instead of the dense matrix. We
define it as:

Aij =


1 if vj ∈ ci
−1 if v̄j ∈ ci
0 otherwise.

As mentioned in Sec. 2.1, in practice most times training is done using batching. When
the input is a tensor of fixed dimension, batching is an easy matter of stacking a bunch of
tensors along a new dimension. With variable-sized graphs we have to work a bit more. The
main observation is that multiple graphs can be seen as distinct connected components of a
single graph made of their union.

Suppose we are given a batch of b samples ((V (1), C(1), A(1)), . . . , (V (b), C(b), A(b))), where
each sample is from a different formula with ni variables and mi clauses. We take the adjacency
matrices (A

(1)
n1×m1

, . . . , A
(b)
nb×mb), and put them along the diagonal of a single adjacency matrix

Abatch∑
i ni×

∑
imi

, as seen in Fig. 2.14. With the sparse representation in mind, this reduces

to renumbering the k’th graphs indices vector by adding
∑k−1

i=1 ni
∑k−1

i=1 mi to its clause
and variable dimensions respectively. We concatenate (V1, . . . , Vb) along their existing ni
dimension, and (C1, . . . , Cb) along its mi dimension, to get V batch∑

i ni×dv0
and Cbatch∑

imi×dc0
.

Model Implementation

Our main component is called an Encoder. It takes a graph as the tuple described above
(which could in fact be a set of graphs batched as described above), and returns an embedding
for each node in the variable/literal partition. It implements the functions F,M,A defined in
Sec. 2.3, and as outlined there, we will specify how to compute a single, i’th iteration, where
the total number of iterations τ is a hyperparameter.

CVIG Implementation In CVIG representation, we have a heterogeneous graph with
two different edge types, positive and negative, which are then doubled to get G =
(V,C,E+

vc, E
−
vc, E

+
cv, E

−
cv). Accordingly, we split the adjacency matrix A into A = A+ − A−,

the positive and negative adjacency matrix, respectively, where A+
ij = max(0, Aij). We define

the GNN iteration as:
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Figure 2.14: Batching adjacency matrices

c̃(t) = ReLU

(∑
v∈c

W P (v,c)
vc v(t−1) +BP (v,c)

vc

)
(2.18)

ṽ(t) = ReLU

(∑
v∈c

W P (v,c)
cv c(t) +BP (v,c)

cv

)
(2.19)

v(t) = GRU(v(t−1), ṽ(t)), c(t) = GRU(c(t−1), c̃(t)) (2.20)

Where matrices denotedW+
vc,W

−
vc ∈ Rdc×dv ,W+

cv,W
−
cv ∈ Rdv×dc , B+

vc, B
−
vc ∈ Rdc , B+

cv, B
−
cv

∫
Rdv

are learned parameters, and GRU is A Gated Recurrent Unit with the appropriate dimen-
sions. We compute the sum over negative occurrences and positive occurrences of variables
separately with A+, A−. For example, for the sum in the computation of c̃(t) we multiply
A+ by the matrix in which the i’th column is W+

vcv
(t−1)
i , A− by the matrix in which the i’th

column is W−
vcv

(t−1)
i , and add the two terms. This way the actual computation is done using

efficient vector operations.

CLIG Implementation In the CLIG representation the two node types are literals and
clauses, and after doubling we have just two edge types, in G = (L,C,Evc, Ecv). The GNN
iteration is defined a little differently:
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c̃(t) = ReLU

(∑
l∈c

Wlcl
(t−1) +Blc

)
(2.21)

l̃(t) = ReLU

(∑
l∈c

Wclc
(t) +Bcl

)
(2.22)

l̂(t) = [l̃(t), ˜̄l(t)] (2.23)

l(t) = GRU(l(t−1), l̂(t)), c(t) = GRU(c(t−1), c̃(t)) (2.24)

Where Wlc ∈ Rdc×2dv ,Wcl ∈ Rdv×dc , Blc ∈ Rdc , Bcl ∈ Rdv . The main difference from CVIG
is Eq. 2.23, that “ties” the two literals by concatenating them. The intuition behind this
step is twofold. Unlike in the CVIG, there’s nothing in the graph itself that relates a literal x
to its negation x̄. “Tying” the literals between iterations represents the connection between
them that is missing in CLIG. When we tie them using concatenation (or a function of it),
we also make the resulting embedding invariant to negation, in that if we rename a variable
x to ā (and so x̄ = a), the resulting literal embeddings are equal. Note, this doubles the
actual literal embedding dimension to 2dv, and accordingly, the respective dimension in the
parameter matrices.

To implement this computation with vector operations we again split the adjacency matrix
into A+, A−, but this time we stack them along the variable axis, to get a m×2n literal-clause
adjacency matrix, which we multiply by the 2n× dv matrix of the literal embeddings from
the previous iteration (see Fig. 2.15).

Model Variations

There are multiple variants of the model(s) described above, all of them sharing a similar
structure, but with different components. More importantly, they are motivated by several
design choices. We describe the former through the latter.

Message-update Note that the functions F,A,M defined in Eq. 2.17, 2.16 are independent
of the iteration. This makes sense when viewing a GNN as learning a message-passing
algorithm - these are usually run an unspecified number of iterations, “until convergence”.
Indeed, in the original GNN paper, the function on the entire graph had to be a contraction
in order to assure convergence. But when running a fixed number of iterations, it is easy to
relax this constraint and define a different message-update per iteration. Technically, in our
(CLIG) implementation from Eq. 2.22, 2.21, it means changing the matrices Wlc,Wcl to be

parametrized by iteration, W
(t)
lc ,W

(t)
cl . This makes the network more expressive, at the usual

cost of more weights, computation time, etc’.
The messages in Eq. 2.22, 2.21 and as shown in Fig. 2.15 are represented as a 1 layer

MLP for simplicity. In practice they can be efficiently implemented by deeper networks. This
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Figure 2.15: Efficient implementation of CLIG half-iterations. Dimensions in the figure are:
dc = 2, dv = 2, n = 2,m = 3.

too increases the expressiveness of the GNN at the cost of more weights. The total number of
parameters in the message-update is therefore proportional to both the number of parameters
the message-update and to the number of iterations.

Propagation When using several iterations in a GNN, there’s the issue of information
propagation through the network to think of. Let us denote kth (out of τ) iteration embedding
of variables as V (k), and the iteration itself (both halves) denoted I s.t V (k+1) = I(V (k)) =
Ik+1(V (0)). For example, if τ = 2, it is possible that some information about a variable that
can be gathered from its 1-hop neighbors (thus appearing already in V (1)) is important for the
downstream task that only sees V (2). In theory, if V (1) contains an important feature, the next
propagation should be able to preserve it. In practice, its been shown that NN have issues with
implementing an identity function, therefore just “passing” information [50]. This has been
addressed in the literature with either residual connections (basically, redefining a network
component representation from y = f(x) to y = x + f(x)), or gating mechanisms. We’ve
tested both residual and GRU cells. We can also, instead of trying to preserve and propagate
the information, simply include it. One approach is to concatenate all the intermediate
embeddings of a variable as the final embedding we pass to the downstream task. So in a 2
iteration GNN, the final embeddings would be [V (0), V (1), V (2)]. However, this way only the
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downstream task has access to intermediate embeddings. Its also possible for each iteration
to have access to all the previous intermediate embeddings, by defining different message
updates for different iterations as described above.

2.4 Empirical Results

Our ultimate goal is to use our CNF formulas representation within a CS. However, before we
turn to that, we’ve implemented the architecture described above, and run several experiments
to test its different variations. The results we detail here do not fall under what is usually
termed “experiments” in machine learning literature. The main difference is that we do not
include comparison to any other baselines on the tasks we describe.

The main reason we do not (yet) compare to any baseline is our motivation. We are
interested in measurable improvements to specific CS, on real-world tasks, what is referred to
as “industrial problems” in the Formal Methods literature [6]. The ultimate usefulness of a
representation is derived backwards from its contribution to that real-world task. “Being good
in representing logical formulas” is not a meaningful, measurable property of an architecture
independent of what its used for.18 And so, there is no natural baseline to compare to.

Our motivation in this section is rather to develop an understanding the properties of
the architecture, and its behaviour under different hyper-parameters. We tested on two
downstream tasks that, if not of practical use in themselves, would seem to require the ability
to represent CNF graphs.

Equivalence Experiments

The first downstream task is taken directly from the work we described in Sec. 2.3. It is to
classify a set of Boolean formulas over some named variables (also called “grounded” variables,
or input variables) into their equivalence class.

Data

We start with the boolean8 dataset from Allamanis et al. [3]. It contains formulas over 3
variables, {a, b, c}, which fall into one of 193 (out of 265 possible) equivalence classes. There
is a total of 146488 formulas in the training set, unequally divided between the classes. The
largest class (’True’) has over 17k formulas, the smallest, only 15. We filter the training set to
include only classes with a minimal number of representatives. We bias the sampling during
training so that the model is equally probable to see a sample from any given equivalence
class. There are also validation and test sets, of 36508 and 60929 formulas, respectively.

Each formula is composed of the 3 variables and the operators (And, Or, Not, Xor, Implies).
For each formula, we transform it into CNF using the Tseitin transformation [145]. This

18At least not yet. When there will be enough downstream tasks that involve processing formulas, a
meaningful measure of how good a ”general representation” could be developed, just like for natural language.
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introduces new tseitin variables into the formula, so we note which variables are the grounded
ones. We also note the topmost tseitin variable, which evaluates to the formula.

Implementation Specifics

There are a still few missing pieces to the implementation, as described in Sec 2.3. First, note
that while the encoder model goes from the i’th embedding to the i+ 1’th one, it doesn’t
include the initial, 0’th iteration embeddings, which we call “ground embeddings”. These are
set according to the domain in which the GNN is used. What should the ground embeddings
be in our case? Surely they must allow the model to distinguish between the ground variables.
after all a is not equivalent to b, and for the model to have any hope of classifying them, they
must seem different to it. The tseitin variables, however, do not have a fixed name across
formulas, they are created as necessary, and are therefore indistinguishable except by the
topology of their neighborhood. We therefore denote a, b, c with id’s 1, 2, 3, and all other
tseitin variables with id 4, making them interchangeable. We represent their id’s in one-hot
encoding as l(0).

Second, note that a GNN produces an embedding for each of its nodes. For CNF graphs,
we produce an embedding per variable (or literal), and every formula can have a different
number of variables. The downstream task though is to predict one (equivalence) class for
the entire graph. How do we go from n embeddings to predicting one class?

Transforming a formula to CNF creates additional tseitin variables, which are all in fact
a function of the ground variables(a, b, c). One of those additional variables is the “top
level” variable, meaning, as a function of the ground variables, it is of the same equivalence
class as the entire original formula. And so, one approach to classifying the graph is to
focus only on the final embedding of the top level variable, which at least in theory contains
information about the entire original formula. If the variable dimension is dv and the number
of equivalence classes is K, a final layer of MLP (dv, K) will take the top variable embedding
and produce classes logits.

A more general technique can be used whenever we have to reduce a variable number
of n d-dimensional embeddings {xi}1≤i≤n to a single d-dimensional vector. In fact, we note
that as part of the GNN computation we already do something similar - we combine any
number of a node’s neighbors previous embeddings from iteration t− 1 into its new t’th level
embedding. In Li et al. [79] they exploit this fact by adding a new auxiliary node to the
graph, that is connected by directed edges to every other node (they have to be directed
so that the auxiliary node doesn’t change the topology of information propagation within
the graph, it only receives information). By definition, the embedding of this auxiliary node
gathers information from all nodes in the graph, which is a little bit like simulating a “top
level variable”. Equivalently, we just take the final n variable (2n literal) embeddings and
combine them directly. We use a parametrized (i.e, learned) combination of the final n
embeddings by implementing a computation somewhat similar to gating mechanisms. If the
final embeddings are denoted {v0, . . . , vn}, we output:
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Depth Accuracy
1 0.76
2 0.885
3 0.889
4 0.891
5 0.901
6 0.918
7 0.915
8 0.92

Table 2.1: Accuracy on 8 classes increases with depth of models

Vaggregate =
1

n

∑
1≤i≤n

Ivi ∗ Sigmoid(Jvi) (2.25)

Where I, J are two dv × dv matrices. I transforms the embedding, and J , through a
Sigmoid function which maps its input to (0, 1), is used as a point-wise “gating” mechanism.
Once we have Vaggregate, we compute the K logits as before.

Protocol and Results

We started by comparing the different hyperparameters on an easy problem - we filtered the
dataset for the 8 largest equivalence classes. We trained using a small embedding dimension
of 10. We trained the CVIG model described in 2.3, and found a clear pattern when it came
to the number of iterations, or “depth” of the GNN. As can be seen in Table 2.1, increasing
the depth of the model improves the overall accuracy. We can also see that the the big gains
are when going from 1 to 2 iterations, which is not surprising considering in this dataset, a
2-hop neighborhood is exactly the size of the entire formula. It should be noted that this
increased accuracy involves no increase in the number of weights, but does increase both
training and inference time. At this point it is not of much interest to us, but inference time
will come to play a larger part when we embed a network into an optimized CS. It should
also be noted that we found deeper models to be more difficult to train. Training is more
prone to “fail” the deeper the model is, as in, getting stuck in some local minimum of the
loss function (this can be detected early and aborted, so doesn’t cost much computation
time). The results in the table are averages over 8 successful runs. The variance in results
also increases with number of iterations. This instability makes sense, and had been observed
in other deep NN. The parameterized function I8

W is more sensitive to W than IW is.
We make the task more challenging by increasing the number of classes. The same

pattern persists with regards to the number of iterations when we train on 28 classes and
45 classes, but the accuracy drops. The highest accuracy (achieved with 8 iterations) on 28
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# Classes Embedding Dimension Accuracy
28 20 0.99
45 32 0.989
95 38 0.988
130 44 0.987
164 64 0.965

Table 2.2: Accuracy of 3 iterations model with varying embedding size

and 45 classes, respectively, was 0.56 and 0.24. It turns out that in order to classify formulas
into more classes, we need to increase the embedding space dimension. Higher embedding
dimensions get better accuracy, until at some point it saturates. In Table. 2.2, we report the
accuracy and the embedding dimension required to achieve it for different number of classes.
All results are achieved using 3 iterations of the same model. With a modest embedding
dimension of 64, we can get 96% accuracy classifying formulas into 164 classes! Following
this logic, it seems reasonable that classifying formulas into fewer classes requires less space.
Indeed, going the other way, we tested what is the minimal embedding dimension that allows
us to classify just two classes. We used the same dataset, but classified all formulas into the
class False, and all other classes. Effectively, this means classifying formulas according to
their satisfiability. We found that with an embedding dimension of 2, accuracy of 97% was
achieved.

In conclusion, the boolean8 dataset of 3 variable formulas turned out to be quite trivial
for a GNN to classify. As detailed earlier, classifying formulas to equivalence classes is not a
useful task in itself, and we do not compare to other baselines. We did compare our results
against a standard LSTM network, to get an idea of how difficult the task is for a sequential .
It should be noted that it is not entirely clear what a “fair” comparison should be in this
context - to test our model, we reduce each formula to a CNF graph. This plays to the
strengths of a GNN, but should hardly help an LSTM network. Quite the contrary, the CNF
representation, when viewed as a sequence, is longer (up to 5x tokens) than the original
formula. We ended up testing an LSTM network with cell dimension 128, both on the original
formulas tokens and on their equivalent CNF representation. We used 164 classes, and the
accuracy achieved was 21% and and 13%, respectively, compared to 96.5% with the GNN.

Random Structured SAT Experiments

Given the results on classifying formulas on 3 variables to their equivalence classes, we decided
to test the model on more challenging formulas. We had two issues to consider - first, it is not
trivial to generate Boolean formulas over many variables while making sure there are enough
samples per equivalence class. Second, the formulas we will eventually want to represent are
of a different nature - they do not include any fixed named variables with a meaning that
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transcends a single formula. And so with this in mind, we decided to focus on random SAT
problems.

Data

We generated larger random formulas (though still toy problems in the context of modern
SAT solvers - every one of them was solved by Minisat in under 2ms) using fuzzsat19, which
generates random Boolean circuits, translates them into CNF, and adds some random clauses
for good measure. We generated around 100k random formulas over 4-8 input variables, split
evenly into SAT and UNSAT (using rejection sampling) with an average of 33 variables and
96 clauses (compared to an average of 6 and 13 for the equivalence classes classification task).
We split them randomly into training, validation and test set (70/15/15).

Implementation Specifics

The problems synthesized by fuzzsat do not have any fixed, named variables, and so in this
dataset, there’s nothing that distinguishes between variables apart from the topology of their
neighborhood (at least in the CNF representation). And so, we define the ground embeddings
of all variables to be the same learned parameter vector of size dv. To go from the per-variable
embedding produced by the encoder to the final 2-class decision, we use the same aggregation
as in Eq. 2.25.

Several encoder versions give very similar results, but the one we ended up using a
variation of the CLIG model with d := dv = dc:

c(t) = Mlc

(
c(t−1) +

∑
l∈c

l(t−1)

)
(2.26)

l̃(t) = l(t−1) +
∑
l∈c

c(t)) (2.27)

l(t) = Mcl

(
[l̃(t), ˜̄l(t)]

)
(2.28)

Where Mlc is a two-layer MLP with layer normalization, specifically, MLPLN(d, d, d).
Mcl is similar, but for the different first dimension, MLPLN(2d, d, d). Note that for both
half-iterations, we aggregate not only the neighbors embedding, but also the embedding
of the node itself from the previous iteration. MLPLN is similar to the standard MLP
seen before, but with added Layer Normalization [10] after every non-linearity. Specifi-
cally, MLPLN(d, d, d)(x) := W2(LayerNorm(ReLU(W1x + B1))) + B2, where W1,W2 ∈
Rd×d, B1, B2 ∈ Rd. No GRU was necessary.

Results

19http://fmv.jku.at/fuzzsat/
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Figure 2.16: Accuracy of classifying SAT/UN-
SAT on random circuits

We’ve seen a similar pattern for the SAT
classification as we have for the previous ex-
periment with the Boolean8 dataset. As in,
more iterations result in better accuracy. To
a lesser degree, increased embedding dimen-
sion also improves accuracy. As can be seen
in the scatter plot in Fig. 2.16, all encoder
versions with d ≥ 16 and number of iterations
τ ≥ 2 achieved an accuracy of > 80% on the
test set. Consistently, the accuracy was 2-
10% higher on the UNSAT instances than on
the SAT. The best performance was achieved
by training a 8 iterations model with d = 32,
which achieved a combined accuracy of 86%,
with 90% on the UNSAT instances and 84%
on the SAT. Number of iterations seemed
to be more important than embeddings size.
A model with just a single iteration and a

(relatively) large embedding size of 128 (not seen in the scatter plot) achieved an accuracy of
72%, whereas a model with 6 iterations and embedding size of merely 8 achieved an accuracy
of 82%.

Solving SAT through Message-Passing

NeuroSAT As this was not the main focus of this work, in our SAT classification exper-
iments we didn’t go above 8 iterations of the encoder, nor tested other, more challenging
datasets. In contemporary work20, using a similar GNN architecture called NeuroSAT [121],
the authors have thoroughly investigated the problem of classifying SAT/UNSAT problem
instances on several synthesized datasets. They trained on a cleverly crafted dataset they call
SR(n), which contains randomly generated pairs of problems, where each pair includes to
problems, one SAT, one UNSAT, and the difference between them is, by design, the polarity
of a single variable in a single clause. The intuition behind this dataset is that the pair
constructed this almost syntactically indistinguishable, making the task more challenging for
the network. They demonstrated several properties of such a classification task, which shed
some more light on how a GNN based model might be solving it:

• Instead of aggregating the topmost embedding of the literals and then deriving a decision
from it, they first derived a single scalar per literal, which can then be interpreted as
that literal’s “vote”. They then average the votes to get a global decision.

• They showed a qualitative difference between embeddings in SAT and UNSAT instances.
Essentially, on SAT instances, the literals eventually settle into a confident decision after

20At the time of writing
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some iterations. On UNSAT instances, literals remain perplexed, not very confident in
their (negative) decision, regardless of how many iterations are run. Moreover, in SAT
instances, oftentimes a satisfying assignment can be decoded from the embeddings of
the literals, as it turns out the topmost literal embeddings are clustered according to
some satisfying assignment.

• They used a larger model, larger dataset (with more variables and clauses, 40/200 on
average), and more GNN iterations during training, 26, to be exact. Moreover, they
showed that once trained, the network can solve larger problems, up to SR(200) (albeit
with a lower accuracy of about 25%), by simply increasing the number of iterations, up
to hundreds of them!

• They showed the same model trained on SR(40) can then solve problems from different
synthesized families, such as k-coloring, clique detection and vertex cover of random
graphs from several distributions. Those problems were up to 2.5 larger than those the
model was trained on.

It is interesting to note that our model achieved an accuracy on the fuzzsat-generated
dataset that is on the same order of magnitude as NeuroSAT achieved on the SR(40)
dataset, yet with fewer iterations (8 compared to 26), and a smaller embedding dimension
(32 vs 128). We believe this is due to the difference in the nature of the datasets - SR(40)
has little internal regularity in its structure - they generate it by manually sampling clauses
of some (random, smallish) size k, each clause being entirely independent of the others. Our
fuzzsat dataset, on the other hand, is generated as a random Boolean circuit, which is then
reduced to CNF through the Tseitin transformation. The result is quite different, and much
more regular. There is a small finite number of Boolean gates types, and each gate type is
transformed into an identical set of clauses (on different literals, obviously). The result is
anything but independent clauses - all problem graphs in our dataset contain the same small
isomorphic subgraphs that originate from the Boolean gates.

SAT Instances as Factor Graphs What exactly is going on here? How might a GNN
classify SAT/UNSAT problems, or in the case of NeuroSAT, even come up with a satisfying
assignment as a certificate? There are usually no mathematical proofs when dealing with
NN, but we might set forth a conjecture that explains the rough outlines of how this might
be done by a GNN.

What we called the Clause-Variable Incidence Graph (see Fig .2.11a) has another, more
general name - A Factor Graph. Factor graphs [74] are graphical models that represent
multi-variable functions which can be factored, such as (see Fig. 2.17):

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x4, x5)

The function g represented by factor graphs is usually of one of two types - either a
set-membership indicator function, or a probability function. The factor graph of a satisfiable
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fA fB fC fD fE

x1 x2 x3 x4 x5

Figure 2.17: Factor graph of fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x4, x5)

SAT instance represents both functions, which are the same up to a scalar. To see that,
we add some new definitions related to a SAT problem in CNF. Following Maneva, Mossel,
and Wainwright [86], let V,C represent sets of indices of variables and clauses, such that
|V | = n, |C| = m. We will use i, j, k to denote variable indices, and a, b, c for clause indices.
We abuse notation and use i or a as the variables and clauses themselves when clear from
context. For a set of indices S, xS := {xi|i ∈ S}. Now, the clause indexed by a ∈ C is defined
by a tuple (V (a), Ja). V (a) ⊆ V is a set of k variable indices. Ja := (Ja,i|i ∈ V (a), where
Ja,i ∈ {0, 1} represents the polarity of the variable i in a. It is 0 for positive polarity of i in a,
1 if negative. The clause indexed by a is satisfied if and only if xV (a) 6= Ja (note, V (a) is a set
of variable indices. xV (a) is a k-tuple denoting the an actual partial assignment to variables
in the a). Let δ(x, y) be the indicator function for the event {x = y}, and now we can define
the function:

ψJa(x) := 1−
∏

i∈V (a)

δ(Ja,i, xi) (2.29)

And it is clear that for an assignment x, a is satisfied if and only if ψJa = 1. The function
g(x) =

∏
a∈C ψJa(x) can now be seen as the indicator function of the SAT problem defined

by V,C. It can be transformed into a probability function by scaling:

p(x) :=
1

Z

∏
a∈C

ψJa(x) (2.30)

Where Z =
∑

x∈{0,1}n
∏

a∈C ψJa(x) is the normalization factor, sometimes called Partition
Function. This definition only makes sense for satisfiable instances, and in that case it has
a clear interpretation - It is the uniform distribution over the satisfying assignments. Tt
assigns zero to every non-satisfying assignment, and 1

Z
to every satisfying assignment, where

Z is the total number of solutions.
One common computational task in factor graphs is inference of (conditional) marginal

probabilities. That is, given a factored joint probability function p(x) on variables x =
(x1, . . . , xn) and two disjoint subsets of indices S1, S2 ⊂ {1, . . . , n}, compute p(xS1|xS2). (a
common case is where xS2 are observed variables and xS1 some Latent variables). In the
context of a SAT instance, we are interested in the unconditional marginal probabilities p(xi).
If we had an oracle that can compute the exact marginals, finding a satisfying assignment
becomes trivial. p(x1 = 0) is the fraction of satisfying assignments in which x1 = 0. Since
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p(x1 = 0) + p(x1 = 1) = 1, one of the two assignments to x1 has a probability greater than
zero, and so can be completed to at least one full assignment that satisfies the formula. So
we assign it, and solve the residual formula, which is also guaranteed to be SAT, using the
same process. This iterative technique is called “decimation”.

However, computing the exact marginals is intractable for most graphs. There are message-
passing algorithms on factor graphs that approximate the marginals, such as the Sum-Product
algorithm, also known as Belief Propagation [153] (BP). It is exact on trees, and while not
guaranteed to converge on graphs with loops, in practice tends to work surprisingly well [96],
and there are a few theoretical explanations as to why that is the case [40]. In the case of SAT
instances, computing (approximate) marginals is known also as the Belief Propagation (BP)
algorithm. Another algorithm on factor graphs which can be implemented as message passing
is the Min-Sum algorithm, which approximates the mode of a function. In the context of SAT,
it is called Warning Propagation (WP), which, if it converges, produces a satisfying solution.
Another message-passing algorithm which approximates marginals is Survey Propagation [27,
86] (SP), which can be seen as BP on different probability functions.21 Both BP and SP can
be used in decimation loops to arrive at a satisfying assignment.

Could a GNN be approximating such a message-passing algorithm that can compute
marginals or mode for some given distribution of factor graphs? Is it enough? In Dai, Dai,
and Song [35], the authors offer an interpretation of GNN iterations as doing just that. Based
on some rather fancy math [129], it can be shown that probability distributions can be
embedded into some (possibly infinite) Hilbert Space, and that the message-updates of those
distributions can be embedded as operations in said space. Specifically, they show that A
GNN can compute marginals, learning to represent the probability distributions sent as the
messages in the graph, and the message-update transformation, based on the distribution of
the data its trained on, plausibly approximating BP by performing computations in a finite
dimension embedding space. And so, we conjecture that classifying and solving SAT/UNSAT
problems can be seen as a special case of Dai, Dai, and Song [35] in the domain of CNF
factor graphs.

21It is a correction to the assumptions of BP, based on the the structure of the solution space of random
3 − SAT problems past some clause to variable threshold, which tends to fracture into distant clusters,
therefore eluding local search methods.
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Chapter 3

Learning Branching Heuristics for
QBF

Having developed A neural representation for CNF formulas, we now turn to integrating it
within a modern Constraint Solver (CS). We begin by describing our domain - we go over
the operation of a basic Conflict-Driven Clause Learning (CDCL) SAT solver and its related
Heuristics. Next we discuss the considerations underlying the interfacing of CS and NN -
What other approaches were attempted, what are our goals, and how to measure them. We
make the case that the process of solving a CS problem can be mapped to the Reinforcement
Learning settings, and that the 2-QBF solver Cadet [105] is a good candidate for such a
method. We briefly discuss how Cadet works as a CDCL based CS, and then present an
implementation and experimental results of a version of cadet which incorporates a learning
component. We conclude with a discussion of the results.

3.1 Anatomy of a SAT Solver

The satisfiability problem of propositional Boolean logics (SAT) is to find a satisfying
assignment for a given Boolean formula or to determine that there is no such assignment.
SAT is the canonical NP-complete problem and many other problems in NP can be easily
reduced to it. There are no efficient algorithms for solving SAT of course, but modern SAT
solvers are quite good at solving large, practical industrial problems. We will introduce the
concepts of DPLL, Clause Learning and their related Heuristics in the context of the SAT
problem, that in which they appeared.

DPLL

Modern SAT solvers such as minisat [39] and Glucose [8] are able to solve instances of
industrial problems that are of up to millions of variables/clauses. Perhaps surprisingly, the
core of these modern tools is still the 1962’ Davis–Putnam–Logemann–Loveland (DPLL)
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algorithm [36], a complete, backtracking search algorithm that either gives a satisfying
assignment or proves UNSAT.

First, let us consider the effect of assigning a variable on the individual clauses in a CNF
problem. Formally, let Φ(x) be a formula over x = (x1, . . . , xn). We denote Φx1=1 the formula
over (x2, . . . , xn) resulting from assigning x1 = 1. To go from the CNF representation of Φ
to that of Φx1=1, we go over the clauses. The ones that do not contain x1 at all, we leave
unchanged. If a clause contains x1, we can safely remove it, because x1 already satisfies it.
If a clause contains x̄i, we remove the literal x̄i from the clause, because for any Boolean
formula A, A ∨ 0 ≡ A.

At the heart of DPLL is a ’naive’ backtracking search algorithm over a binary tree. It
chooses a variable and assignment, such as x1 = 1, and updates the clauses accordingly as
described above. This is also called Branching on a variable, or a branching decision. We
continue to branch, working our way down the tree, until one of two things happen. If we
assign all variables successfully, we end up with no clauses left, and have found a satisfying
assignment. If when updating the clauses after setting xi = 1 we find ourselves with an
empty clause, that is a conflict. We backtrack and set xi = 0. If that also leads to a conflict,
we backtrack one step further. We continue until we find an assignment or finish searching
the tree. DPLL takes this basic search algorithm and enhances it with two steps after each
branching decision, meant to propagate entailment relations between the variables:

• Unit Propagation (UP) is performed when we have unit clauses, clauses with a single
literal. A unit clause essentially forces an assignment. UP is the process of doing these
forced assignments (an assignment can create new unit clauses which continue the
propagation). Iterated application of UP is called Boolean Constraint Propagation
(BCP).

• Pure literal elimination is a step that assigns any variable that happens to appear
in the formula always in the same polarity, by deleting the clauses it appears in.

Its easier to understand DPLL by example. Fig. 3.1 shows DPLL running on a small
CNF problem. Note the change in notation of clauses, where negation is denoted with ‘ and
logical or with +.

CDCL

In 1997, Grasp [88] introduced the idea of Clause Learning, which leveraged conflicts to
learn new clauses through conflict analysis. The intuition behind it is to find the cause of the
conflict, and add a new clause that represents the conflict and prevents further searching.
And so Conflict analysis adds new clauses over time, which cuts off large parts of the search
space and thereby speeds up the search process. Continuing with the previous example from
where a conflict was detected, Fig. 3.2 shows the steps of analysing the conflict, learning a
clause, and backtracking in CDCL.
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(a) Step 1, we branch on x1 = 0. On the left pane, we mark x1 red. This makes
the clause x1 + x4 a unit clause, and so through UP we set x4 = 1 and add it to
the implication graph.

(b) Branching on x3 = 1 forces x8 = 0 through the clause x1 + x′3 + x′8, then
x12 = 1 through the clause x1 + x8 + x12.

(c) After two more branching decisions, x2 = 0 and then x7 = 1, we reach a
conflict on x9. At this point, DPLL backtracks, sets x7 = 0, and continues as
before.

Figure 3.1: States of DPLL solving a formula. In each state there are 3 panes. On the left
are the clauses, with literals colored according to their satisfaction. Green satisfies the clause,
Red constrains it, and Black is not yet set. The green and red literals are “deleted” from
their clauses. The middle pane shows the Decision Graph. This is effectively the search
tree, and it shows what variables are set, by branch or propagation. In the right pane is the
Implication Graph. It keeps track of implications, the results of UP.
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(a) Conflict Analysis finds the literal assignments involved in the two clauses
that caused the conflict, x3 = 1, x7 = 1, x8 = 0.

(b) Negating the 3 assignments that led to the conflict produces the learned
clause, which we add to the problem clauses.

(c) After learning the clause, CDCL backtracks to the earliest decision variable
involved in the conflict, in this case, x3.

Figure 3.2: CDCL diverges from the DPLL algorithm when a conflict is detected. Rather than
just backtracking, it analyses the conflict, learns a clause, and backtracks non-chronologically,
to the earliest decision variable in the learned clause.
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Since its introduction, countless refinements of CDCL have been explored and clever data
structures improved its efficiency significantly [93, 39, 46]. Today, the top-performing SAT
solvers, such as Lingeling [20], Crypominisat [133], Glucose [8], and MapleSAT [80], all rely
on CDCL and they solve formulas with millions of variables for industrial applications such
as bounded model checking [22].

SAT Branching Heuristic

Solvers of SAT (and other constraint problems) are non-deterministic. At run-time, solvers
employ specially crafted Heuristics to make choices, and different heuristics can have drastically
different run-times. The most important heuristic in a SAT solver is the Branching Heuristic,
choosing the next variable to branch on [67]. A number of branching heuristics have been
developed over the years, such as DLIS, MOM, Jeroslow-Wang (JW) (see [87] for details).
The intuition behind most of these heuristics is to (greedily) branch on literals that appear
in or satisfy many clauses, preferably small ones. However, beginning with Chaff [93], the
preferred branching heuristic became the Variable State Independent Decaying Sum (VSIDS),
which is highly coupled with the occurrence of conflicts, and the CDCL algorithm.

VSIDS gives an initial score to each variable (or, originally in Chaff, to each literal)
according to the number of clauses it appears in, and then periodically scales the scores of
all variables by a constant smaller than 1, making them decay exponentially to 0. For every
clause learned (the result of a conflict), VSIDS increments the score of the variables in the
new clause. The end result is a heuristic that concentrates on variables that took part in
recent conflicts. Despite being a highly successful heuristic for solving industrial problems
(unlike k-CNF problems for example, for which it adds very little), after 20 years there is
still no definitive explanation for its success. There are a few theories backed by empirical
evidence [56], mostly attributing the success of CDCL+VSIDS on industrial instances to
the special structure of such problems - specifically, their “community structure” [7, 95] (A
technical definition to do with the distribution of vertex degrees in the graph).

3.2 Combining Learning and Symbolic Reasoning

The question of whether (deep) learning can be effectively used for symbolic reasoning as in
CS is intriguing for both theoretical and practical problems, and the benefits of combining
deductive reasoning with inductive learning for automated reasoning and in formal methods
for system design have been noted before (e.g., see [123]). In this section we present previous
approaches that tackled this question, and discuss our goals and guiding motivation in our.

Existing Approaches

There exists an entire spectrum of approaches aiming to combine learning with CS, with
different levels of integration: One extreme is to use learning for predicting which of a small
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pool of algorithms (or heuristics) performs best, and run only that one to solve the given
problem (e.g. SATzilla [158]). There’s very little integration between the learning component
and the actual solver in this case - they work separately. This approach is effective, but
clearly limited by the availability of handwritten algorithms and heuristics (i.e. it can only
solve problems for which we have written at least one algorithm that can solve it, based on
expertise of human experts). On the other extreme, there are solutions where the classical CS
side is eliminated entirely, and formulas are analyzed solely with deep learning architectures [3,
41, 121, 5]. While these approaches are intriguing from the ML perspective, even the best
results are orders of magnitude below the state-of-the-art in the respective domains, despite
the recent breakthroughs in deep learning. It is highly unlikely they will scale on their own.

There are a multitude of approaches that can work in different contexts. For example,
if a good but expensive heuristic is known, such as in Mixed Integer Programming (MIP)
problems, it is possible to learn a cheap approximation of it, as in [69], thereby speeding up
the solver. There are works that enhance the VSIDS heuristic by using learning within a
single run of the solver on a single formula, by means of optimizing a proxy [80] measure called
Learning Rate (not to be confused with learning rate in SGD), the propensity of a variable to
generate learned clauses. Other works [134] use supervised learning to approximate several
proxies that should be important for the solving process, such as “clause usefulness”. The
downside of these approaches is that it is not entirely clear whether the proxies are indeed
good enough. Of course, the more evidence there is for the usefulness of a proxy the better,
but the fact is that for SAT, and more so for more complex CS, no such perfect proxy is
known. Learning more clauses can be good, or bad, depending on the learned clauses, the
formula, the solver state, and even other heuristics in the solver such as branching or restart
policy. And so training a NN to approximate some manually designed proxy is not very
different from manually designing a heuristic. See more on related work in Sec. 3.6.

Goals and Motivation

Instead of relying entirely on deep learning or on the availability of good handwritten
algorithms, we explore the middle ground. We argue for tighter integration between deep
learning and formal reasoning algorithms, which has the potential to both be unlimited by
available manually designed heuristics, yet potentially scalable to real industrial problems. In
the Boolean CS we’re interested in, heuristics are generally fast, in fact, orders of magnitude
faster beyond what a NN can achieve. That means that if we want to solve harder formulas,
we need a smarter heuristic, not a faster approximation of an existing one. For that reason,
our approach is intuitively more suited to complex solvers, where the branching heuristics
cumulative running time is relatively a small part of the entire solving process.

We aim to avoid proxies, and concentrate on optimizing, directly, two goals, in decreasing
order of importance: 1. Solve the problem. 2. Solve it fast. These goals are in fact derived
from how solvers are tested in practice. Because solvers are complete, given enough time,
any problem will be solved. Since we don’t have unbounded time to run on every problem, in
practice solvers are tested on a set of benchmark problems, where every problem is attempted
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up to some bound, and then aborted and considered as failed to be solved. Judging the
performance of solvers is therefore reduced to a combination of how many problems were
solved within the bound, and the average time it took to solve them. And, of course, on the
choice of the benchmark problems.

Speaking of sets of benchmark problems brings up another mismatch between performance
measurements in the fields of ML and Formal Methods, which we have to address. In ML,
the distribution of the data is explicitly considered, even “baked into” the formalism. For
example, in supervised learning, We have a training, validation, and test set. All three sets
are assumed to be drawn from the same data distribution. A trained model is said to have
achieved “generalization” if it achieves an accuracy on the test set that is close to that of the
training set, or, conversely, said to be “overfitting” if it achieves high accuracy on the training
set but considerably lower accuracy on the unseen test set (The validation set is supposed
to alert us to such overfitting, and there are techniques to deal with it, e.g, regularization).
Generally speaking, if the input data is drawn from a different distribution, all bets are off.

With CS solvers, the distribution of the data isn’t so neatly and explicitly defined, at
least not in the context that is of interest to us. In the case of combinatorial problems such
as random k-CNF on n variables and m clauses, there is indeed an explicit data distribution,
where a problem instance is a random graph, where each of the m clauses, over k literals,
is drawn uniformly from the

(
n
k

)
options. But we’re interested in industrial problems, and

things there are not as clear. Solvers are often used as black-box tools, and are expected to
work well on “all” industrial problems. Benchmarks are composed of CNF formulas that
come from several different families of problems suggested by members of the community [51,
52, 104], each with their own encoding. They are either generated by some random process
(for example, when trying to find sha-1 preimages, a pre-image is randomly generated and
then hashed), or sometimes actual problems, such as those that arise in hardware verification.
At any case, unlike in ML, Solvers and their heuristics are not generally “trained” to fit a
specific input distribution, and are in fact entirely agnostic with respect to the distribution
of their input, at least explicitly.

In theory, its quite possible there exists a superior branching heuristics that dominates
VSIDS on every problem instance, which can be arrived at through training. In practice
though, it is not at all clear what training set is representative of “all industrial problems”,
and so throughout this work, we explicitly limit ourselves to learning heuristics for specific
families of problem distributions. We roughly follow the “no free lunch” intuition [1] (the
formal theorems themselves are not applicable to our case, but we feel the intuition is still a
useful illustration). No single heuristic is going to dominate in solving all instances of an
NP-hard problem. The more we constrain the problem space, the better specific heuristic can
be learned. Arguably, VSIDS already constrains the problem space to industrial problems, so
our intuition can be thought of as taking this trend further.

That said, when it comes to CS, it is not very useful to train on some problem instances
drawn at random from distribution D only to be able to solve some other problems from D.
The normal ML notion of generalization doesn’t help us here. Informally, we want to be able
to train on “easy” problems, and learn something that helps us solve “hard” problems that
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are similar to the easy ones, but, well, harder. We will make this concept more concrete in
the experimental section.

3.3 Method

In this section we describe how we cast the problem of learning better branching heuristics for
backtracking search algorithms as a Reinforcement Learning (RL) problem, a family of learning
algorithms that have demonstrated great success lately in learning to play combinatorial
games such as Chess and Go [127]. We start with some background on how RL works, then
show how to map our problem to the RL framework, and discuss the challenges that arise of
it.

Constraint Solvers as RL Problems

RL

Reinforcement Learning is a more general optimization procedure than the supervised learning
we’ve seen before. Like NN, RL was also inspired by biological systems, but at the level
of the organism (rather then neural networks in the brain). It assumes an Agent taking
actions within an Environment. For each action the agent takes it observes how the action
effected the environment, and it receives a Reward. This process repeats in a loop (see
Fig. 3.3), either a finite or infinite number of steps, which produces an episode. We can turn
finite episodes in an MDP to infinite ones by adding a a dead-end node that loops to itself,
so sometimes (for mathematical convenience) we choose to assume all episodes are infinite.
The agent is is trying, through its actions, to maximize the sum of rewards it gets from the
environment over the episode.

More formally, we consider an environment E which is modeled as a Markov Decision
Process (MDP) over discrete time steps and accumulates reward. An MDP is a 5-tuple of
states S, action space A, transition probabilities function P : S×A→ P(S), reward function
R : S × A× S → R, and initial state distribution ρ0 ∈ P(S). The agent interacts with the
environment by implementing a function that gets an observation from the environment,
and returns an action. In our context, the observation is simply the state, and we use Ot, St
interchangeably.1 This function is called a (stochastic) policy - A mapping from observations
to probability distributions over the actions π : S → P(A).

The combined evolution of the policy and the environment throughout the episode
produces a trajectory,formally a sequence of states and actions τ = (s0, a0, s1, a1, . . . ). The
reward of a trajectory is the sum of rewards over the timesteps, R(τ) :=

∑
t rt. The trajectory

τ itself can be seen as a random variable over the randomness of both the policy and the

1The terminology comes from Partially-Observed MDP, and is commonly used for MDPs as well in the
RL literature
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Figure 3.3: The RL loop. At time step t, the agent gets from the environment an observation
Ot and a reward Rt. It produces an action At.

environment. Assuming its length is T , its probability is:

P (τ |π) = ρ0(s0)
T−1∏
t=0

P (st+1|st, at)π(at|st) (3.1)

The expected return of a policy is defined as J(π) = E
τ∼π

[R(τ)], and the goal of RL algorithms

is to find the optimal policy, π∗ = argmax
π

J(π).

RL Algorithms

We will only go over the very basics of the RL algorithms we use, and direct the interested
reader to [137] for details. In order to understand the intuition behind RL, we need to go over
a few more related concepts. The Value Function of a policy π assigns a score to a state s,
its “value”, which is the expected cumulative reward the agent gets from following π from s:

V π(s) = E
τ∼π

[R(τ)|s0 = s] (3.2)

The closely related Action-Value function gives a value to each state-action tuple, which is
the expected return when starting in state s with action a, and continuing according to π:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] (3.3)



CHAPTER 3. LEARNING BRANCHING HEURISTICS FOR QBF 53

There are also the optimal versions of the value and value-action functions, which simply
assume we start from a given state s (or a tuple (s, a)), and continue according to the optimal
policy:

V ∗(s) = max
π

E
τ∼π

[R(τ)|s0 = s] (3.4)

Q∗(s, a) = max
π

E
τ∼π

[R(τ)|s0 = s, a0 = a] (3.5)

We will be using model-free RL, in which the algorithm doesn’t have to know the transition
function/distribution of the MDP (Although, a CS has a known, deterministic model. We
will say more of this at the end of the chapter). There are in general two flavours of RL
algorithms in this space, Q-Learning (QL) and Policy Gradient (PG). QL algorithms try to
learn a Q-function (another name for the value-action function) that solves the γ-discounted
Bellman equation for the optimal policy, which is:

V ∗(s) = max
a

E
s′∼P

[R(s, a, s′) + γV ∗(s′)] (3.6)

Q∗(s, a) = E
s′∼P

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(3.7)

Once we have the optimal Q function, extracting the optimal policy from it is easy - for
each state s we simply choose the action that maximizes Q∗: π∗(s) = max

a
Q∗(s, a).

Policy Gradient algorithms work differently, by directly optimizing a parametrized policy
πθ. They do this by approximating the gradient of the expected return dJ(πθ)

dθ
, and then

proceeding with gradient ascent. Approximating the gradient is done with the “log-derivative
trick”, as follows:

∇θJ(πθ) =

= ∇θ

∫
τ

P (τ |θ)R(τ)

=

∫
τ

∇θP (τ |θ)R(τ)

=

∫
τ

P (τ |θ)∇θ logP (τ |θ)R(τ) Log-derivative trick

= E
τ∼πθ

[∇θ logP (τ |θ)R(τ)]

= E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)R(τ)

]
(3.8)

With this last expression it is straight-forward to estimate the gradient. All we have to
do is sample a bunch of trajectories from the current policy πθ, and average their gradients.
Note, that in both algorithms the transition probabilities of the environment itself are either
cancelled out or not used to begin with.
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Problem Definition

Mapping our domain to the RL framework is straightforward on the one hand, yet a bit
tricky to formalize:

• Our state space S is the infinite set of all potential partial states of a solver when
working on any possible CNF formula.

• Formally speaking, our action space A is also infinite. For every given state, the agent,
which plays the part of the branching heuristics, has to pick one variable (and polarity)
from the unassigned variables. It can be seen as a disjoint union of ]

s∈S
As, where As is

the discrete set of unassigned variables in state s.

• Since a CS is deterministic, the transition function is deterministic, and follows the
rules of the specific solver. The only random part is the initial state, which is the choice
of the formula. During training, this will be uniformly sampled from the training set.

• We use a reward function that resembles that of a maze-solving puzzle. We give the
agent a small negative reward for every branching decision it takes, and a large positive
reward on the last step for “winning”. If the formula wasn’t solved by some pre-defined
maximum number of decisions we abort it, and it ends up with negative overall returns
(the cost of the steps, with no winning reward). This reward structure encourages the
agent to solve the formula in as few decisions as possible.

3.4 Implementation

We implement our method using the 2-QBF solver Cadet as the environment, and a model
based on the GNN architecture described in Sec. 2.3. We start with a short discussion of
QBF and Cadet in particular, and then describe our architecture.

QBF & Cadet

QBF extends propositional Boolean logic by quantifiers, which are statements of the form
“for all x” (∀x) and “there is an x” (∃x). The formula ∀x. ϕ is true if, and only if, ϕ is true
if x is replaced by 0 (false) and also if x is replaced by 1 (true). The semantics of ∃ arises
from ∃x. ϕ = ¬∀x.¬ϕ. Whereas SAT is the canonical NP-complete decision problem, QBF2

is the canonical PSPACE-complete problem, the class of languages that can be decided in
polynomial space and unlimited time by a non-deterministic turing machine. Indeed, every
SAT problem can be viewed as a QBF of the simplest complexity, by preceding it with an
existential quantifier on all variables. We say that a QBF is in prenex normal form if all
quantifiers are in the beginning of the formula. WLOG, we will only consider QBF that are

2technically, the decision problem is called TQBF, but we use QBF for clarity.
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in prenex normal form and whose propositional part is in CNF. Further, we assume that for
every variable in the formula there is exactly one quantifier in the prefix. An example QBF
in prenex CNF is ∀x.∃y. (x ∨ y) ∧ (¬x ∨ y).

We focus on 2QBF, a subset of QBF that admits only one quantifier alternation. WLOG
we can assume that the quantifier prefix of formulas in 2QBF consists of a sequence of
universal quantifiers ∀x1 . . . ∀xn, followed by a sequence of existential quantifiers ∃y1 . . . ∃ym.
While 2QBF is less powerful than QBF, it is a useful class in itself, and we can encode into it
many interesting applications from verification and synthesis, e.g. program synthesis [132, 4].

After the success of CDCL for SAT, CDCL-like algorithms have been explored for QBF
as well [45, 82, 105, 107]. We focus on CADET, a solver that implements Incremental
Determinization a generalized CDCL backtracking search algorithm [105, 107]. Instead of
considering only Booleans as values, the Incremental Determinization algorithm assigns and
propagates on the level of Skolem functions. We provide more details on Cadet in App. B.1,
but for our purposes its enough to consider it as a generalized CDCL algorithm, which
branches on variables and learns clauses. The reason why Incremental Determinization is
particularly suitable to explore learning approaches is that its individual steps are significantly
slower than competing QBF algorithms and that it takes much fewer steps to solve formulas.
This is beneficial both due to the running time of NN as explained in Sec. 3.2, and also for
optimization reasons - fewer steps means shorter episodes, which in RL means lower variance,
and faster training time.

Architecture

Our model gets an observation, consisting of a formula and the state of the solver, and selects
one of the formula’s literals (= a variable and a Boolean value) as its action. The model
has two components: An encoder that produces an embedding for every literal, and a policy
network that rates the quality of each literal based on its embedding. We give an overview
of the architecture in Fig. 3.4, describe the encoder in Sec. 3.4 and the policy network in
sec. 3.4.

Encoder

For an encoder we used the CLIG implementation of the GNN described in Sec. 2.3. For
each variable v, the variable label v ∈ RλV , with λV = 7, indicates whether the variable is
universally or existentially quantified, whether it currently has a value assigned, and whether
it was selected as a decision variable already on the current search branch. We use the
variable label for both of its literals and by vl we denote the label of the variable of l. For
each clause c, the clause label c ∈ R is a single scalar (in {0, 1}), indicating whether the
clause was original or derived during conflict analysis. See Appendix B.3 for details.

Literal embeddings have dimension δL = 16 and clause embeddings have dimension
δC = 64. The GNN computes the embeddings over τ rounds. We define the initial literal
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Figure 3.4: Sketch of the architecture for a formula ϕ with n variables vi and m clauses. sg
is the global state of the solver, A is the adjacency matrix, and vi and ci are the variable
and clause labels.

embedding as l0 = 0, and for each round 1 ≤ t ≤ τ , we define the literal embedding lt ∈ RδL

for every literal l and the clause embedding ct ∈ RδC for every clause c ∈ C as follows:

ct = ReLU

(∑
l∈c

WL[v>l , l
>
t−1, l̄

>
t−1] + BL

)

lt = ReLU

(∑
c,l∈c

WC [c>, c>t ] + BC

)

The trainable parameters of our model are indicated as bold capital letters. They consist
of the matrix WL of shape (2δL + λV , δC), the vector BL of dimension δC , the matrix WC of
shape (δC + λC , δL), and the vector BC of dimension δL.

It is interesting to note that the GNN architecture is quite suited to modeling the CDCL
solving process - new clauses that are learned along the way are represented as changes to
the graph, and facilitate new information pathways in the GNN.

Policy Network

The policy network predicts the quality of each literal based on the literal embedding and the
global solver state. The global solver state is a collection of λG = 5 values that include only
the essential parts of solver state that are not associated with any particular variable or clause.
We provide additional details in Appendix B.2. The policy network thus maps the final literal
embedding [v>l , l

>
τ , l̄

>
τ ] concatenated with the global solver state to a single numerical value
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indicating the quality of the literal. The policy network thus has λV + 2δL +λG inputs, which
are followed by two fully-connected layers. The two hidden layers use the ReLU nonlinearity.
We turn the predictions of the policy network into action probabilities by a masked softmax.
We mask all “illegal” actions, effectively ignoring the embeddings of variables which are
universal, or are assigned already.

Note that the policy network predicts a score for each literal independently. All information
about the graph that is relevant to the policy network must hence flow through the literal
embedding. Since we experimented with graph neural networks with few iterations this means
that the quality of each literal is decided locally. The rationale behind this design is that it is
simple and efficient.

3.5 Experiments

We conducted several experiments to examine whether we can improve the heuristics of the
logic solver CADET through our deep reinforcement learning approach. Throughout the
following experiments, we try to explicitly answer the following questions

Q0 Can we learn to predict good actions for one formula?

Q1 Can we learn to predict good actions for a family of formulas?

Q2 How does the policy trained on short episodes generalize to long episodes?

Q3 How well does the learned policy generalize to formulas from a different family of
formulas?

Q4 Does the improvement in the policy outweigh the additional computational effort? That
is, can we solve more formulas in less time with the learned policy?

Baselines

While there are no competing learning approaches yet, human researchers and engineers have
tried many heuristics for selecting the next variable. As explained in Sec. 3.1, VSIDS is the
best known heuristic for the solver we consider. It has been a dominant heuristic for SAT and
several CDCL-based QBF algorithms for over 20 years now [92, 39, 23, 82, 105]. We therefore
consider VSIDS as the main baseline. In QBF, much like how it works in SAT, VSIDS
maintains an activity score per variable and always chooses the variable with the highest
activity that is still available. The activity reflects how often a variable recently occurred in
conflict analysis. To select a literal of the chosen variable, VSIDS uses the Jeroslow-Wang
heuristic [64], which selects the polarity of the variable that occurs more often, weighted by
the size of clauses they occur in. For reference, we also consider the Random heuristic, which
chooses one of the available actions uniformly at random.
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Data

Synthesized Data

We generated ourselves two random families of problems which we call Boolean and Words.
Boolean is a data set that starts with propositional formulas generated using fuzzsat,

similarly to those described in Sec. 2.4. To turn this kind of propositional formulas into
QBFs,we randomly selected 4 variables to be universally quantified. This resulted in a more
or less even split of true and false formulas. The formulas have 50.7 variables on average.

Words is a data set of random expressions over (signed) bitvectors. The top-level operator
is a comparison (=, ≤, ≥, <, >), and the two subexpressions of the comparison are arithmetic
expressions. The number of operators and leafs in each expression is 9, and all bitvectors
have word size 8. The expressions contain up to four bitvector variables, alternatingly
assigned to be existentially and universally quantified. The formulas are simplified using the
circuit synthesis tool ABC, and then they are turned into CNF using the standard Tseitin
transformation. The resulting formulas have 71.4 variables on average and are significantly
harder for both Random and VSIDS. For example, the first formula from the data set looks
as follows: ∀z.∃x.((x− z) xor z) 6= z + 1, which results in a QBF with 115 variables and 298
clauses. This statement happens to be true and is solved with just 9 decisions using the
VSIDS heuristic.

Non-Synthesized Data

In contrast to most other works in the area, we evaluate our approach over a benchmark
that (1) has been generated by a third party before the conception of this paper, and (2)
is challenging to state-of-the-art solvers in the area. We take a pre-existing set of formulas
assumed to share some common structure, some of them extremely challenging, and we want
to see if by training on the easy ones we can solve more of the hard ones. We consider a set
of formulas representing the search for reductions between collections of first-order formulas
generated by [65], which we call Reductions in the following. Reductions is interesting from
the perspective of QBF solvers, as its formulas are often part of the QBF competition. It
consists of 4608 formulas of varying sizes and with varying degrees of hardness. On average
the formulas have 316 variables; the largest formulas in the set have over 1600 variables and
12000 clauses. We filtered out 2573 formulas that are solved without any heuristic decisions.
We further set aside a test set of 200 formulas, leaving us with a training set of 1835 formulas.

We additionally consider the 2QBF evaluation set of the annual competition of QBF
solvers, QBFEVAL [104]. This will help us to study cross-benchmark generalization.

Training Details

We jointly train the encoder network and the policy network using a version of REIN-
FORCE [156], a simple PG algorithm. We deviate from it only by normalizing the returns
from episodes to expectation zero and variance one. For each batch we sample a single
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formula from the training set, and generate b episodes by solving it multiple times. This bit
is important - sampling different formulas in a single batch adds variance to the training,
because not all formulas are inherently of the same difficulty. In each episode we run Cadet
for up to 400 steps using the latest policy. Then we assign rewards to the episodes and
estimate the gradient. We apply standard techniques to improve the training, including
gradient clipping, normalization of rewards, and whitening of input data.

We assign a small negative reward of −10−4 for each decision to encourage the heuristic
to solve each formula in fewer steps. When a formula is solved successfully, we assign reward
1 to the last decision. In this way, we effectively treat unfinished episodes (> 400 steps) as if
they take 10000 steps, punishing them strongly.

Results

Preliminary Results

Before we started with our full experiments, we wanted to make sure question Q0 is answered
positively - that our model can at least learn how to “navigate” a single formula, one which
VSIDS solves in 11 steps. On this single formula we trained both with REINFORCE, and
Deep Q-Learning. To our surprise, while REINFORCE quickly succeeded in finding a good 6
decision solution and converged on it, the QL algorithm failed to find a good solution. We
conjectured that because the total solution time is highly sensitive to the branching decisions
in Cadet, the Q-function landscape is difficult for QL to learn, and that PG, implementing a
stochastic policy, finds it easier to navigate. At any rate, we proceeded with REINFORCE,
though by no means are certain that QL algorithms can’t work in this domain.

After succeeding in learning to solve one formula, we gradually increased the number of
formulas in the data set. We discovered an interesting behaviour - for a small number of
formulas (we assume how many exactly depends on the model capacity, in our case it was
5-6), the model was able to learn a good solution for them all. As we increased the number,
it started straining, rather than converging it started “forgetting” the solution to one formula
in order to remember another. With 20+ formulas, it seemed to learn nothing, leaving the
average number of decisions mostly unchanged. Only when we trained on a training set of
500 formulas we started to see a clear pattern of improvement over the average number of
decisions for the entire training set. We conjecture this is the point at which the model starts
“generalizing” to the family of problems rather than remembering (or failing to remember) a
solution to a few of them.

Main Results

We trained the model described in Section 4.2 on the Reductions training set. We denote
the resulting policy Learned and present the aggregate results in Figure 3.5 as a cactus plot,
as usual for logic solvers. The cactus plot in Figure 3.5 indicates how the number of solved
formulas grows for increasing decision limits on the test set of the Reductions formulas. In a
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Figure 3.5: Two cactus plots showing how the number of solved formulas from the test set
grows with increasing resource bounds. Left: Comparing the number of formulas solved with
growing decision limit for Random, VSIDS, and our learned heuristic. Right: Comparing
the number of formulas solved with growing wall clock time. Lower and further to the
right is better.

cactus plot, we record one episode for each formula and each heuristic. We then sort the runs
of each heuristic by the number of decisions taken in the episode and plot the series. When
comparing heuristics, lower lines (or lines reaching further to the right) are thus better, as
they indicate that more formulas were solved in less time.

We see that for a decision limit of 400 (dashed line in Fig. 3.5, left), i.e. the decision limit
during training, Learned solved significantly more formulas than either of the baselines. The
advantage of Learned over VSIDS is about as large as VSIDS over purely random choices.
This is remarkable for the field and we can answer Q1 positively.

Figure 3.5 (left) also shows us that Learned performs well far beyond the decision limit of
400 steps that was used during its training. Observing the vertical distance between the lines
of Learned and VSIDS, we can see that the advantage of Learned over VSIDS even grows
exponentially with an increasing decision limit. (Note that the axis indicating the number of
decisions is log-scaled.) We can thus answer Q2 positively.

A surprising fact is that small and shallow neural networks already achieved the best
results. Our best model uses τ = 1, which means that for judging the quality of each variable,
it only looks at the variable itself and the immediate neighbors (i.e. those variables it occurs
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together with in a constraint). The hyperparameters that resulted in the best model are
δL = 16, δC = 64, and τ = 1, leading to a model with merely 8353 parameters. The small
size of our model was also helpful to achieve quick inference times.

Note, this stands in a stark difference to the results of the equivalence and SAT experiments
from the previous chapter, where more iterations improved the results. Performance of GNN
iterations in the RL experiments peaked at about 1-3, and then started declining. We
conjecture this may be because unlike in deciding SAT (and possibly equivalence classes),
there is no message-passing algorithm that “solves” the problem of which literal to branch
on. We are no longer approximating marginal probabilities.

To answer Q3, we evaluated the learned heuristic also on our second data set of formulas
from the QBF solver competition QBFEVAL. Random solved 67 formulas, VSIDS solved 125
formulas, and Learned solved 111 formulas. The policy trained on Reductions significantly
improved over random choices, but does not beat VSIDS. This is hardly surprising, as our
learning approach specialized the solver to a specific—different—distribution of formulas.
Also it must be taken into account that the solver CADET has been tuned to QBFEVAL
over year, and hence may perform much stronger on QBFEVAL than on the Reductions
benchmark.

To answer our last question, Q4, we compare the runtime of CADET in with our learned
heuristic to CADET with the standard VSIDS heuristic. In Fig. 3.5 (right) we see that
for small time limits (up to 10 seconds), VSIDS still solves more formulas than the learned
heuristic. But, for higher time limits, the learned heuristic starts to outperform VSIDS.
For a time limit of 1 hour, we solved 120 formulas with the learned heuristic while only
110 formulas were solved with VSIDS (see right top corner). Conversely, for solving 110
formulas the learned heuristic required a timeout of less than 12 minutes, while VSIDS took
an hour. Furthermore, our learning and inference implementation is written in Python and
not particularly optimized. The NN agent is running in a different process from CADET,
and incurs an overhead per step for inter-process communication and context switches, which
is enormous compared to the pure C implementation of CADET using VSIDS. This overhead
could be easily reduced, and so we expect the advantage of our approach to grow.

Additional Results

For the Boolean Dataset, we generated 5k formulas, and split them into 4k training and 1k
testing formulas. The results are plotted in Figure 3.6, where we see that training a model
on these formulas (we call this model Boolean, like the data set) results in significantly better
performance than VSIDS, and well beyond the original 400 decision limit. The advantage
of the learned heuristic over VSIDS and Random is smaller compared to the experiments
on Reductions in the main part of the paper. We conjecture that this is due to the fact
that these formulas are much easier to begin with, which means that there is not as much
potential for improvement.

In Figure 3.7 we see that training a new model on the Words dataset again results in
significantly improved performance. (We named the model Words, after the data set.)
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Figure 3.6: A cactus plot describing how many formulas from the test set were solved within
growing decision limits on the Boolean test set. Lower and further to the right is better.

Additional Experiments on Generalization to Larger Formulas

An interesting observation that we made is that models trained on sets of small formulas
generalize well to larger formulas from similar distributions. To demonstrate this, we generated
a set of larger formulas, similar to the Words dataset. We call the new dataset Words30, and
the only difference to Words is that the expressions have size 30. The resulting formulas have
186.6 variables on average. This time, instead of training a new model, we test the model
trained on Words (from Figure 3.7) on this new dataset.

In Figure 3.8, we see that the overall hardness (measured in the number of decisions
needed to solve the formulas) has increased a lot, but the relative performance of the heuristics
is still very similar. This shows that the heuristic learned on small formulas generalizes
relatively well to much larger/harder formulas.

In Fig. 3.5, we have already observed that the heuristic also generalizes well to much
longer episodes than those it was trained on. We believe that this is due to the “locality” of
the decisions we force the network to take: The graph neural network approach uses just
one iteration, such that we force the heuristics to take very local decisions. Not being able
to optimize globally, the heuristics have to learn local features that are helpful to solve a
problem sooner rather than later. It seems plausible that this behavior generalizes well to
larger formulas (Fig. 3.8) or much longer episodes (Fig. 3.5).
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Figure 3.7: A cactus plot describing how many formulas from the test set were solved within
growing decision limits on the Words test set. Lower and further to the right is better.

3.6 More Related Work

Independent from our work, GNNs for Boolean logic have been explored in NeuroSAT [121],
where the authors use it to solve the SAT problem directly. While using a similar neural
architecture, the network is not integrated in a state-of-the-art logic solver, and does not
improve the state of the art in performance. Selsam and Bjørner [119] recently extended
NeuroSAT to use its predictions in a state-of-the-art SAT solver. In contrast to their work,
we integrate GNNs much tigher into the solver and train the heuristics directly through
reinforcement learning. Thus allow deep learning to take direct control of the solving process.
Also, we focus on QBF instead of SAT, which strongly affects the runtime tradeoffs between
spending time on “thinking” about a better decision versus executing many “stupid” decisions.

Amizadeh, Matusevych, and Weimer [5] suggest an architecture that solves circuit-SAT
problems. Unlike NeuroSAT, and similar to our approach, they train their model directly to
find a satisfying assignment by using a differentiable “soft” satisfiability score as their loss.
However, like NeuroSAT, their approach aims to solve the problem from scratch, without
leveraging an existing solver, and so is difficult to scale to state-of-the-art performance. They
hence focus on small random problems. In contrast, our approach improves the performance
of a state-of-the-art algorithm. Furthermore, our learned heuristic applies to SAT and UNSAT
problems alike.

Yang et al. [160] extended the NeuroSAT architecture to 2QBF problems. In contrast to
our work, they do not embed their GNN model in a modern DPLL solver, and instead try to
predict good counter-examples for a CEGAR solving approach. They focus on formulas with
18 variables, which are trivial for state-of-the-art solvers. Chen and Yang [32] showed that a
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Figure 3.8: A cactus plot describing how many formulas were solved within growing decision
limits on the Words30 test set. Lower and further to the right is better. Note that unlike in
the other plots, the model Words was not trained on this distribution of formulas, but on
the same Words dataset as before.

pure GNN approach is unable to solve Boolean formulas when they are unsatisfiable, which
in our work is addressed by combining GNNs with a logic reasoning engine.

Reinforcement learning has been applied to other logic reasoning tasks. Kaliszyk et al.
[66] recently explored learning linear policies for tableaux-style theorem proving. Kurin et al.
[75] follow a similar approach to ours for SAT solvers, but only evaluate on small synthetic
formulas and do not improve the overall performance of the underlying SAT solver. Kusumoto,
Yahata, and Sakai [76] applied reinforcement learning to propositional logic in a setting
similar to ours; just that we employ the learning in existing strong solving algorithms, leading
to much better scalability. Balunovic, Bielik, and Vechev [13] use deep reinforcement learning
to improve the application of high-level strategies in SMT solvers, but do not investigate a
tighter integration of deep learning with logic solvers. Also other works on combinatorial
search explored the use of GNNs (some trained with reinforcement learning) for problems
such as random SAT [162], coloring graphs [55], and MILP [42].

Most previous approaches that applied neural networks to logical formulas used LSTMs
or tree models syntax-tree of formulas [26, 58, 3, 83, 41, 34, 31] or classical ML models [43,
66, 135]. Instead, we suggest a GNN approach, based on a graph-view on formulas in CNF.
Recent work suggests that GNNs appear to be a good architecture for logics [100, 154]. [14,
54, 159] provide a learning environments around interactive theorem provers.

Other competitive QBF algorithms include expansion-based algorithms [21, 103], CEGAR-
based algorithms [62, 61, 106], circuit-based algorithms [71, 141, 60, 59], and hybrids [63,
142]. Recently, [60] successfully explored the use of (classical) machine learning techniques to
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address the generalization problem in QBF solvers.

3.7 Conclusions

We presented an approach to improve the heuristics of a backtracking search algorithm
for Boolean logic through deep reinforcement learning. Our approach brings together the
best of two worlds: The superior flexibility and performance of intuitive reasoning of neural
networks, and the ability to explain (prove) results in formal reasoning. The setting is new
and challenging to reinforcement learning; QBF is a very general, combinatorial problem class,
featuring an unbounded input-size and action space. We demonstrate that these problems
can be overcome, and that our method reduces the overall execution time of a competitive
QBF solver by a factor of 10 after training on similar formulas.

This work demonstrates the huge potential that lies in the tight integration of deep
learning and logical reasoning algorithms, and hence motivates more aggressive research
efforts in the area. Our experiments suggest two challenges that we want to highlight: (1)
We used very small neural networks, and—counterintuitively—larger neural networks were
not able to improve over the small ones in our experiments. (2) The performance overhead
due to the use of neural networks is large; however we think that with more engineering effort
we could be significantly reduce this overhead.
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Chapter 4

Learning for Model Counting

In previous chapters we’ve seen how to represent Boolean logical formulas in a way that
allows for processing by NN, and the class of model architectures suitable for such formulas.
We then showed how to cast the DPLL-based algorithm of the the 2QBF solver Cadet as an
MDP, a kind of a game between the environment and the branching Heuristic, and how to
leverage the graph representation of formulas to automatically learn this heuristic.

In this chapter, first of all, we show that this technique is not limited to the specific 2QBF
problem, and demonstrate that it can achieve substantial improvements over the state of
the art in the different, more difficult (from the perspective of computational complexity)
constraint problem of Model Counting. Furthermore, we begin to expand our point of view
beyond CNF formulas CS process, and into the higher-level problem domains from which
they are encoded. We argue that the information lost during the encoding to CNF can be
incorporated into the learning process, and show that it has great potential for improving
solvers. We also concentrate on one specific problem domain and try to make sense of what
the learned heuristic is actually learning, when examined in the original problem domain.

4.1 Background

#SAT

Notation

We use the notation from Sec. 2.3, and add a few more formula-centric definitions, which will
be convenient when discussing the #SAT version of the DPLL algorithm. We denote the
set of literals and clauses of a CNF formula φ by L(φ) and C(φ), respectively. As before, we
assume that all formulas are in CNF.

A truth assignment for any formula φ is a mapping of its variables to {0, 1} (false/true).
Thus there are 2n different truth assignments when φ has n variables. A truth assignment π
satisfies a literal ` when ` is the variable v and π(v) = 1 or when ` = ¬v and π(v) = 0. It
satisfies a clause when at least one of its literals is satisfied. A CNF formula φ is satisfied
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when all of its clauses are satisfied under π in which case we call π a satisfying assignment
for φ.

The #SAT problem for φ is to compute the number of satisfying assignments.

#SAT Algorithms

DPLL-based #SAT solvers [143, 116, 98] are called Exact model counters. There are also
approximate model counters with different degrees of probabilistic guarantees [30, 90, 125],
from none at all to full Probably-Approximately-Correct (PAC) algorithms which return a
count with an ε-bounded error (ratio) with probability of 1 − δ. Probabilistic algorithms
are beyond our scope, and from now on unless otherwise noted on we concentrate on exact
solvers.

The simplest algorithm for #SAT is to extend DPLL to make it explore the full set of
truth assignments. This is the basis of the CDP solver presented in [24], shown in Algorithm 1.
In particular, when the current formula contains an empty clause it has zero models, and
when it contains no clauses each of the remaining k unset variables can be assigned true or
false so there are 2k models (line 6).

Algorithm 1 DPLL extended to count all solutions (CDP)

1: function CDP(φ)
2: if φ contains an empty clause then
3: return 0
4: if φ contains no clauses then
5: k = # of unset variables
6: return 2k

7: Pick a literal l ∈ φ
8: return CDP(UP(φ, l)) + CDP(UP(φ, ¬l))

Figure 4.1: An example Clause-Literal Inci-
dence Graph (CLIG) for a formula with two
components: (x1∨¬x4)∧(¬x1∨¬x2)∧(x3∨x5).

This algorithm is not very efficient, run-
ning in time 2Θ(n) where n is the number of
variables in the input formula. Note that as
in DPLL, the algorithm is actually a class of
algorithms each determined by the procedure
used to select the next literal to branch on.
The complexity bound is strong in the sense
that no matter how the branching decisions
are made, we can find a sequence of input
formulas on which the algorithm will take
time exponential in n as the formulas get
larger.However, we can improve on this naive
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algorithm by exploiting the way the prob-
lem decomposes into components, as first
suggested in [17] and used in the Relsat solver.

More formally, two sets of clauses are called disjoint if they share no variables. A
component C ⊂ C(φ) is a subset of φ’s clauses that is disjoint from its complement C(φ)−C.
In a CVIG representation this coincides with a maximal connected component of the graph.
In CLIG representation, because the components were defined on variables and the graph
is defined on literals, a component over variables can span multiple graph components over
literals, as seen in Fig. 4.1. Although most formulas initially consist of only onecomponent,
as variables are set by branching decisions and clauses are removed, the reduced formulas
will often break up into multiple components.

The main observation is that each component can be solved independently. They can
be thought of as different formulas, inverting the intuition behind batching of adjacency
matrices described in Sec. 2.3. The maximal disjoint connected components of formula φ, C1,
. . . , Ck, can be efficiently computed, and then we have: COUNT(φ) =

∏k
i=1 COUNT(Ci).

Incorporating this observation into CDP is shown in Algorithm 2.

Algorithm 2 Using Components

1: function Relsat(φ)
2: Pick a literal l ∈ φ
3: #l = CountSide(φ, l)
4: #¬l = CountSide(φ, ¬l)
5: return #l + #¬l

6: function CountSide(φ, l)
7: φl = UP(φ, l)
8: if φl contains an empty clause then
9: return 0

10: if φl contains no clauses then
11: k = # of unset variables
12: return 2k

13: K = findComponents(φl)
14: return

∏
κ∈K Relsat(κ)

Breaking the formula into components can yield considerable speedups depending on n0,
the number of variables needed to be set before the formula is broken into components. If
we consider a hypergraph in which every variable is a node and every clause is a hyperedge
over the variables mentioned in the clause, then the branch-width [111] of this hypergraph
provides an upper bound on n0. As a result we can obtain a better upper bound on the run
time of Relsat of nO(w) where w is the branch-width of the input’s hypergraph. However,



CHAPTER 4. LEARNING FOR MODEL COUNTING 69

this run time will only be achieved if the branching decisions are made in an order that
respects the branch decomposition with width w. In particular, there exists a sequence of
branching decisions achieving a run time of nO(w). Computing that sequence would require
time nO(1)2O(w) [110], hence a run time of nO(w) can be achieved.

The final main element added is component caching [11, 12], which exploits the fact
that, depending on decomposition to components (which depends on branching order),
the same sub-components appear at different points in the search tree. That gives us the
#DPLLCache algorithm in Algorithm 3 on which modern #SAT solvers are based. It has
a better upper bound of 2O(w), which again can be achieved with a nO(1)2O(w) computation
of an appropriate sequence of branching decisions.

Algorithm 3 Component Caching DPLL

1: #` = CountSide(φ, `)
2: function #DPLLCache(φ)
3: if inCache(φ) then
4: return cacheLookUp(φ)

5: Pick a literal ` ∈ L(φ)
6: #` = CountSide(φ, `)
7: #¬` = CountSide(φ, ¬`)
8: addToCache(φ, #` + #¬`)
9: return #` + #¬`

10: function CountSide(φ, `)
11: φ` = UP(φ, `)
12: if φ` contains an empty clause then
13: return 0
14: if φ` contains no clauses then
15: k = # of unset variables
16: return 2k

17: K = findComponents(φ`)
18: return

∏
κ∈K #DPLLCache(κ)

In practice, the branch-width of most instances is very large, making a run time of
2O(w) infeasible. Computing a branching sequence to achieve that run time is also infeasible.
Fortunately, in practical instances unit propagation is also very powerful. This means that
making only a few decisions ( < w) often allows unit propagation to set w or more variables
thus breaking the formula apart into separate components. Furthermore, most instances
are falsified by a large proportion of their truth assignments. This makes clause learning an
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effective addition to #SAT solvers, as with it the solver can more effectively traverse the
non-solution space.

In sum, for #SAT solvers the branching decisions try to achieve complex and sometimes
contradictory objectives. Making decisions that split the formula into larger components
near the top of the search tree (i.e., after only a few decisions are made) allows greater
speedups, while generating many small components near the bottom of the search trees (i.e.,
after many decision are made) does not help the solver. Making decisions that generate
the same components under different branches allows more effective use of the cache. And
making decisions that allow the solver to learn more effective clauses allows the solver to
more efficiently traverse the often large space of non-solutions.

For that reason, as in the case of QBF, the intuition behind the branching heuristics
in #SAT are not as well understood as in the SAT case. We focus on the exact solver
SharpSAT [143] which is based on Algorithm 3 augmented with clause learning. SharpSAT

uses the VSADS heuristic [115], which is a linear combination of a heuristic aimed at making
clause learning effective (VSIDS) and a count of the number of times a variable appears in
the current formula.

Evolution Strategies

Evolution Strategies (ES) are a class of zeroth order black-box optimization algorithms [18,
155]. Inspired by natural evolution, a population of parameter vectors (genomes) is perturbed
(mutated) at every iteration, giving birth to a new generation. The resulting offspring are
then evaluated by a predefined fitness function. Those offspring with higher fitness score will
be selected for producing the next generation.

We adopt a version of ES that has shown to achieve great success in the standard RL
benchmarks [114]: Let f : Θ→ R denote the fitness function for a parameter space Θ, e.g.,
in an RL environment, f computes the stochastic episodic reward of a policy πθ. To produce
the new generation of parameters of size n, Salimans et al. [114] uses an additive Gaussian

noise with standard deviation σ to perturb the current generation: θ
(i)
t+1 = θt + σε(i), where

ε(i) ∼ N (0, I). We then evaluate every new generation with fitness function f(θ
(i)
t+1) for all

i ∈ [1, . . . , n]. The update rule of the parameter is as follows,

θt+1 = θt + η∇θEθ∼N (θt,σ2I)[f(θ)]

≈ θt + η
1

nσ

n∑
i

f(θ
(i)
t+1)ε(i),

where η is the learning rate. The update rule is intuitive: each perturbation ε(i) is weighted
by the fitness of the corresponding offspring θ

(i)
t+1. We follow the rank-normalization and

mirror sampling techniques of Salimans et al. [114] to scale the reward function and reduce
the variance of the gradient, respectively.
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4.2 Method

We formalize the problem of learning the branching heuristic for #DPLLCache as a Markov
Decision Process (MDP), similar to how we did in Sec. 3.3. The environment is now SharpSAT,
and because every component is solved independently by #DPLLCache, the input to the
policy is only the current component rather than the entire formula graph. The objective
function is again to reduce the number of decisions the solver makes while solving the counting
problem and so we use the same reward function:

R(s) =

1
if s is a terminal state with
“instance solved” status

−rpenalty otherwise

If not finished, episodes are aborted after a predefined max number of steps, without receiving
the termination reward.

Evolution Strategies vs RL

One problem that became apparent during the training process of Cadet described in Chapter 3
was the dependence of training time to convergence on the average length of episodes, which
in turn depends on both the problem’s “inherent difficulty”1, and the branching policy.

Part of this dependence on episode length is unavoidable. Longer episodes contain more
information, and at the very least it takes a linear amount of work to process it. However,
part of it is a property of RL algorithms, and as shown in Vemula, Sun, and Bagnell [151], the
exploration complexity of an action-space exploration RL algorithm (e.g, Q-Learning, Policy
Gradient) increases with the size of the action space and the problem horizon. The intuition
behind this is quite simple - All RL algorithms use (pseudo) randomness for exploration of
the solution space. In the case of the Policy Gradient algorithm that we use, this randomness
is implicitly injected through the estimation of the policy gradient in Eq. 3.8. To compute
the gradient we sample a batch of on-policy “rollouts”. This means generating episodes by
running the current policy on a formula, and on each time step sample an action according
to the action distribution the model outputs (remember, a stochastic policy is a function
π : S → P(A) from observation to distribution over actions). The randomness we inject is
therefore clearly a function of the number of actions taken and the entropy of the distribution
sampled on every step, which usually correlates with the size of the action space A. This
translates into a larger variance in the policy gradients estimation, and therefore longer
training time.

On the other hand, a parameter-space exploration algorithm like ES is independent of
episode length or action space size. It injects the randomness directly into model parameters
space, and is in fact entirely oblivious to the entire MDP formulation - the policy and the

1We leave this vague for now, but it is not difficult to think of formal measures such as length of optimal
branching order
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environment are a black box from the ES perspective, including the “episode”. ES simply
sees it as a (stochastic) function where a fitness function is evaluated for a given point
in model parameter space. Since both our action space and episode horizon can be quite
large (up to 20,000 and 1,000, respectively), and our model size is relatively modest (a
few thousands of parameters), we decided to turn to parameter-space exploration using ES
algorithm. Therefore, we choose to use a version of ES proposed by Salimans et al. [114] (see
Sec. 4.1) for optimizing our agent. This allowed us to train on much longer episodes than
with Policy Gradient, in a fraction of the training time (an improvement of roughly one order
of magnitude).

Processing SharpSAT Components with GNNs

In the language of Sec. 2.3, we use a CLIG representation with literal tying when given
the current component from SharpSAT. If the initial vector representation are denoted by

h
(0)
c for each clause c ∈ C and h

(0)
l for each literal l ∈ L, both of which are learnable model

parameters. We run the following message passing steps iteratively:

- Literal to Clause (L2C):

h(k+1)
c = A

(
h(k)
c ,
∑
l∈c

[h
(k)
l , h

(k)

l̄
];W

(k)
C

)
, ∀c ∈ C,

- Clause to Literal (C2L):

h
(k+1)
l = A

(
h

(k)
l ,
∑
c,l∈c

h(k)
c ;W

(k)
L

)
, ∀l ∈ L,

where A is a nonlinear aggregation function, parameterized by W
(k)
C for clause aggregation

and W
(k)
L for literal aggregation at the kth iteration. We use an aggregation function

from a recently suggested GNN architecture [157] named Graph Isomorphism Network
(GIN), where they show it has some beneficial expressiveness properties. Specifically, set
A(x, y;W ) = MLP((1 + ε)x+ y;W ), where ε is a hyperparameter.

Semantic Features

In practice, CNF formulas are encoded from a higher level problem domain with additional
semantics. These features of the original problem domain, which we call semantic features,
are all but lost during the encoding process. Classical constraint solvers only process CNF
formulas, and so their heuristics by definition are entirely independent of any specific problem
domain, and only consider internal solver properties, such as variable activities. These internal
solver properties are a function of the CNF representation and internal solver dynamics, and
quite detached from the original problem domain. Thus, it is not unreasonable that semantic
features of the original problem domain could contain additional useful structure that can be
exploited by the low-level solver heuristic.
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One such semantic feature that often naturally arises in real-world problems is time.
Many problems, such as dynamical systems and bounded model checking, are iterative in
nature, with a distinct temporal dimension to them. In the original problem domain, there
is often a state that is evolved through time via repeated applications of a state transition
function. A structured CNF encoding of such problems usually maps every state st to a
set of variables, and adds sets of clauses to represent the dynamical constraints between
every transition (st, st+1). Normally, all temporal information is lost in reduction to CNF.
However, with a learning-based approach, the time-step feature from the original problem
can be readily incorporated as an additional input to the network, effectively annotating each
variable with its time-step. In our experiments, we represented time by appending to each
literal embedding a scalar value (representing the normalized time-step t) before passing it
through the output MLP. We perform an ablation study to investigate the impact of this
additional feature in Sec. 4.4.

Another example is spatial information. For example, many planning problems in
dynamical systems have what amounts to a grid structure (either because they originate
from grid-world problems, or discretized versions of real-world continuous problems). In the
encoding process described above, such spatial structure is entirely shattered as we encode
the high-level grid structure and the system dynamics into a circuit. It is not unreasonable
that preserving the original grid structure and processing it through a separate convolutional
network could help the learning process (for example, suppose a grid world has lots of squares
colored blue to mark “water”. While this information is encoded all over the place in the
CNF representation, a fairly shallow convolutional network can already easily detect it). We
describe this direction as well in the Ablation study.

4.3 Data Generation

Our choice of datasets is guided by a few goals and constraints. First, we try to choose
problems that are application-oriented (“industrial”) rather than random graphs such as
in Yolcu and Póczos [163], Selsam et al. [122], and Kurin et al. [75]. Ideally, from SAT
benchmarks or existing literature. We use families of problems with different properties
(local vs. global connectivity, sequential circuits, etc.) to better evaluate the regime in which
our method is effective. Finally, we use problem families for which there is an available
generative process, which is required to generate “easy” problems for training. To those
ends, we searched SAT and planning benchmarks for problems whose generative processes
were publicly available or feasible to implement. To test the versatility of our method, we
made sure that these problems cover a diverse set of domains: sudoku, blocked n-queens, cell
(combinatorial); sha-1 preimage attack (cryptography); island, grid wrld (planning), bv expr,
it expr (circuits):

• cell(R, n, r): Elementary (i.e., one-dimensional, binary) Cellular Automata are simple
systems of computation where the cells of an n-bit binary state vector are progressed
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through time by repeated applications of a rule R (seen as a function on the state
space). Figure 4.7a shows the evolution grid of rules 9, 35 and 49 for 20 iterations.

Reversing Elementary Cellular Automata: Given a randomly sampled state T , compute
the number of initial states I that would lead to that terminal state T in r applications
of R, i.e.,

∣∣{I : Rr(I) = T}
∣∣. The entire r-step evolution grid is encoded by mapping

each cell to a Boolean variable (n × r in total). The clauses impose the constraints
between cells of consecutive rows as given by R. The variables corresponding to T (last
row of the evolution grid) are assigned as unit clauses. This problem was taken from
SATCOMP 2018 [51].

• grid wrld(s, t): This bounded horizon planning problem from Vazquez-Chanlatte et al.
[150] and Vazquez-Chanlatte, Rabe, and Seshia [149] is based on encoding a grid world
with different types of squares (e.g., lava, water, recharge), and a formal specification
such as “Do not recharge while wet” or “avoid lava”. We randomly sample a grid world
of size s and a starting position I for an agent. We encode to CNF the problem of
counting the number of trajectories of length t beginning from I that always avoid lava.

• sudoku(n, k): Randomly generated partially filled n× n Sudoku problems (n ∈ {9, 16})
with multiple solutions, where k is the number of revealed squares.

Sudoku problems are typically designed to have only one solution but as our goal is to
improve a model counter, we relaxed this requirement to count the number of solutions
instead.

• n-queens(n, k): Blocked N-Queens problem of size n with k randomly blocked squares
on the chess board. This is a standard SAT problem and the task is to count the
number of ways to place the n queens on the remaining n2 − k squares such that no
two queens attack each other.

• sha-1(n, k): SHA-1 preimage attack of randomly generated messages of size n with k
randomly chosen bits fixed. This problem was taken from SATRACE 2019 and we used
the CGen2 tool to generate our instances.

• island(n,m): This dataset was introduced by Geffner and Geffner [44] as a Fully-
Observable Non-Deterministic (FOND) planning problem. There are two grid-like
islands of size n × n, each connected by a bridge. The agent is placed at a random
location in island 1 and the goal is for it to go to another randomly selected location
in island 2. The short (non-deterministic) way is to swim from island 1 to 2, where
the agent may drown, and the long way is to go to the bridge and cross it. Crossing
the bridge is only possible if no animals are blocking it, otherwise the agent has to
move the animals away from the bridge before it can cross it. The m animals are again
randomly positioned on the two grids. We used the generative process of Geffner and
Geffner [44] to encode compact policies for this task in SAT.

2CGEN: https://github.com/vsklad/cgen
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• bv expr(n, d, w): Randomly generated arithmetic sentences of the form e1 ≺ e2, where
≺∈ {≤,≥, <,>,=, 6=} and e1, e2 are expressions of maximum depth d over n binary
vector variables of size w, random constants and operators (+,−,∧,∨,¬,XOR, | · |).
The problem is to count the number of integer solutions to the resulting relation in
([0, 2w] ∩ Z)n.

• it expr(s, i): Randomly generated arithmetic expression circuits of size s (word size
fixed at 8). Effectively implementing a function with input and output of a single word.
This function is composed i times. We choose a random word c, and count the number
of inputs such that the output is less than c. Formally, if the random circuit is denoted
by f , we compute |{x|f i(x) < c}|.

4.4 Experiments

To evaluate our method, we designed experiments to answer the following questions: 1) I.I.D.
Generalization: Can a model trained on instances from a given distribution generalize
to unseen instances of the same distribution? 2) Upward Generalization: Can a model
trained on small instances generalize to larger ones? 3) Wall-Clock Improvement: Can
the model improve the runtime substantially? 4) Interpretation: Does the sequence of
actions taken by the model exhibit any discernible pattern at the problem level? Our
baseline in all comparisons is SharpSAT’s heuristic. Also, to make sure that our model’s
improvements are not trivially attainable without training we tested a Random policy that
simply chooses a literal uniformly at random. We also studied the impact of the trained
model on a variety of solver-specific quality metrics (e.g., cache-hit rate, . . . ), the results of
which are in Appendix ??.

The grid wrld, being both a problem of an iterative nature (i.e., steps in the planning
problem) and with a clear spatial structure, was a natural candidate for testing our hypothesis
regarding the effect of adding the spatial features of Section 4.2. We report the main results
for grid wrld with those features included, and later in this section we perform an ablation
study on their effects.

Experimental Setup For each dataset, we sampled 1,800 instances for training and 200
for testing. We trained for 1000 ES iterations. At each iteration, we sampled 8 formulas
and 48 perturbations (σ = 0.02). With mirror sampling, we obtained in total 96 = 48× 2
perturbations. For each perturbation, we ran the agent on the 8 formulas (in parallel),
to a total of 768 = 96 × 8 episodes per parameter update. All episodes, unless otherwise
mentioned, were capped at 1k steps during training and 100k during testing. The agent
received a negative reward of rpenalty = 10−4 at each step. We used the Adam optimizer [70]
with default hyperparameters, a learning rate of η = 0.01 and a weight decay of 0.005.
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Hardware Infrastructure We used a small cluster of 3 nodes each with an AMD Ryzen
Threadripper 2990WX processor with 32 cores (64 threads) and 128GB of memory. We
trained for an average of 10 hours on a dataset of 1000 instances for each problem. For testing
the wall-clock time we ran the problems sequentially, to avoid any random interference due
to parallelism.

Range of Hyperparameters The model is relatively “easy” to train. The criteria for
choosing the hyperparameters was the performance of generalization on i.i.d test set, i.e,
lowest possible average number of branching decisions. Once calibrated on the first dataset
(cell(35)), we were able to train all models on all datasets without further hyperparameters
tuning. The minimal number of episodes per optimization step that worked was 12. We
tested a few different GNN architectures, and none was clearly superior over the others. We
also varied the number of GNN message-passing iterations but going beyond 2 iterations had
a negative effect (on i.i.d generalization) so we settled on 2. GNN messages were implemented
by an MLP with ReLU non-linearity. The size of literal and clause embeddings were 32 and
the dimensionality of C2L (resp. L2C) messages was 32× 32× 32 (resp. 64× 32× 32). As
mentioned above, we used T = 2 message passing iterations and final literal embeddings were
passed through the MLP policy network of dimensions 32 × 256 × 64 × 1 to get the final
score. When using the extra “time” feature, the first dimension of the decision layer was 33
instead of 32. The initial (T = 0) embeddings of both literals and clauses were trainable
model parameters.

Results

I.I.D. Generalization Table 4.1 summarizes the results of the i.i.d. generalization over
the problem domains of Section 4.3. We report the average number of branching steps on the
test set. Neuro# outperformed the baseline across all datasets. Most notably, on grid wrld,
it reduced the number of branching steps by a factor of 3.0 and on cell, by an average factor
of 1.8 over the three cellular rules.

Figure 4.2 shows cactus plots for all of the i.i.d. benchmark problems. Unsurprisingly,
the improvements on sudoku are relatively modest, albeit consistent across the dataset. On
all cell datasets, and grid wrld, a superlinear growth is observed with Neuro#’s lead over
SharpSAT growing as the problems get more difficult (moving right along the x axis). The
problems of the islandi.i.d dataset all had the same model counts and they were isomorphic
to one another. Because Neuro# operates on the graph of the problem, it was capable of
utilizing this fact and solve all problems in the same number of steps. However we observe
that SharpSAT’s performance is function of variable ids and clauses orderings of the input
CNF, and thus isomorphic problems are solved in different number of steps. Lastly, on
bv expr, Neuro# does better almost universally, except near the 100 problems mark and at
the very end.
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Dataset # vars # claus
es
Rand

om
Shar

pSAT
Neur

o#

sudoku(9, 25) 182 3k 338 220 195(1.1x)
n-queens(10, 20) 100 1.5k 981 466 261(1.7x)
sha-1(28) 3k 13.5k 2,911 52 24(2.1x)
island(2, 5) 1k 34k 155 86 30(1.8x)
cell(9, 20, 20) 210 1k 957 370 184(2.0x)
cell(35, 128, 110) 6k 25k 867 353 198(1.8x)
cell(49, 128, 110) 6k 25k 843 338 206(1.6x)
grid wrld(10, 5) 329 967 220 195 66(3.0x)
bv expr(5, 4, 8) 90 220 1,316 328 205(1.6x)
it expr(2, 2) 82 264 772 412 266(1.5x)

Table 4.1: Neuro# generalizes to unseen i.i.d. test problems often with a large margin
compared to SharpSAT.

(a) sudoku (b) n-queens (c) sha-1 (d) island

(e) cell(9) (f) cell(35) (g) cell(49)

(h) grid wrld (i) bv expr (j) it expr

Figure 4.2: Cactus Plot – Neuro# outperforms SharpSAT on all i.i.d benchmarks (lower and
to the right is better). A cut-off of 100k steps was imposed though both solvers managed to
solve the datasets in less than that many steps.
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Upward Generalization We created instances of larger sizes (up to an order of magnitude
more clauses and variables) for each of the datasets in Section 4.3. We took the models
trained from the previous i.i.d. setting and directly evaluated on these larger instances
without further training. The evaluation results in Table 4.2 show that Neuro# generalized to
the larger instances across all datasets and in almost all of them achieved substantial gains
compared to the baseline as we increased the instance sizes.

Dataset # vars # claus
es
Rand

om
Shar

pSAT
Neur

o#

sudoku(16, 105) 1k 31k 7,654 2,373 2,300 (1.03x)
n-queens(12, 20) 144 2.6k 31,728 12,372 6,272 (1.9x)
sha-1(40) 5k 25k 15k 387 83 (4.6x)
island(2, 8) 1.5k 73.5k 1,335 193 46 (4.1x)
cell(9, 40, 40) 820 4k 39,000 53,349 42,325(1.2x)
cell(35, 192, 128) 12k 49k 36,186 21,166 1,668 (12.5x)
cell(35, 256, 200) 25k 102k 41,589 26,460 2,625 (10x)
cell(35, 348, 280) 48k 195k 54,113 33,820 2,938 (11.5x)
cell(49, 192, 128) 12k 49k 35,957 24,992 1,829 (13.6x)
cell(49, 256, 200) 25k 102k 47,341 30,817 2,276 (13.5x)
cell(49, 348, 280) 48k 195k 53,779 37,345 2,671 (13.9x)
grid wrld(10, 10) 740 2k 22,054 13,661 367 (37x)
grid wrld(10, 12) 2k 6k 100k≤ 93,093 1,320 (71x)
grid wrld(10, 14) 2k 7k 100k≤ 100k≤ 2,234 (–)
grid wrld(12, 14) 2k 8k 100k≤ 100k≤ 2,782 (–)
bv expr(7, 4, 12) 187 474 35,229 5,865 2,139 (2.7x)
it expr(2, 4) 162 510 51,375 7,894 2,635 (3x)

Table 4.2: Neuro# generalizes to much larger problems than what it was trained on, sometimes
achieving orders of magnitude improvements over SharpSAT. Episodes are capped at 100k
steps, which skews averages of SharpSAT downwards.

Figure 4.3 shows this effect for multiple sizes of cell(49) and grid wrld by plotting the
percentage of the problems solved within a number of steps. The superlinear gaps get more
pronounced once we remove the cap of 105 steps, i.e., let the episodes run to completion. In
that case, on grid wrld(10, 12), Neuro# took an average of 1,320 branching decisions, whereas
SharpSAT took 809,408 (613x improvement).

On some datasets, namely cell(49) and grid wrld, Neuro#’s lead over SharpSAT becomes
more pronounced as we test the upwards generalization (using the model trained on smaller
instances and testing on larger ones). Cactus plots of Figure 4.4 show this effect clearly for
these datasets. In each figure, the i.i.d. plot is included as a reference on the left and on the
right the plots for test sets with progressively larger instances are depicted.

Figure 4.5 compares the percentage of the problems solvable by SharpSAT vs. Neuro#

under a given number of steps. Notice the robustness of the learned model in cell(35&49)
and grid wrld. As these datasets get more difficult, SharpSAT either takes more steps or
completely fails to solve the problems altogether, whereas Neuro# relatively sustains its
performance.
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Figure 4.3: Neuro# generalizes well to larger problems. Compare the robustness of Neuro#
vs. SharpSAT as the problem sizes increase. Solid and dashed lines correspond to SharpSAT

and Neuro#, respectively. All episodes are capped at 100k steps.

Wall-Clock Improvement Given the scale of improvements on the upward generalization
benchmark, in particular cell(49) and grid wrld, we measured the runtime of Neuro# vs.
SharpSAT on those datasets (Figure 4.6). On both problems we observe that as Neuro#

widens the gap in the number of steps, it manages to beat SharpSAT in wall-clock. Note
that the query overhead could still be greatly reduced in our implementation through GPU
utilization, loading the model in the solver’s code in C++ instead of making out-of-process
calls to Python, etc.

Model Interpretation

Formal analysis of the learned policy and its performance improvements is difficult, however
we can form some high-level conjectures regarding the behaviour of Neuro# by how well
it decomposes the problem. To interpret Neuro#’s policy at the original problem-level we
focus on cell. This is because encodings to CNF can in general be quite removed from the
original problem domain. Consider grid wrld: the problems are encoded from an MDP to
a state machine, then to a circuit, and finally to CNF, as many new variables are created
along this process. In contrast, cell has a straightforward encoding that directly relates the
CNF representation to an easy-to-visualize evolution grid which coincides with the standard
representation of Elementary Cellular Automata. Our conjecture was that the model learns
to solve the problem from the bottom up. It translates to a policy that starts from the known
state T (bottom row) and tries to “guess” the preimage, row by row from the bottom up
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cell(49, 128, 110) cell(49, 192, 128) cell(49, 256, 200) cell(49, 348, 280)

grid wrld(10, 5) grid wrld(10, 10) grid wrld(10, 12) grid wrld(10, 14)

(a) (b)

Figure 4.4: Cactus Plot: Neuro# maintains its lead over SharpSAT on larger datasets (lower
and to the right is better). A cut-off of 100k steps was imposed. (a) i.i.d. generalization; (b)
Upward generalization of the model trained on cell(49, 128, 110) (top row) and grid wrld(10, 5)
(bottom row) over larger datasets.

through variable assignment. The point being that different preimages can be computed
independently upwards, and indeed, this is how a human would approach the problem.

Heat maps in Fig. 4.7 (c & d) depict the behaviour under SharpSAT and Neuro# respectively.
The heat map aligns with the evolution grid, with the terminal state T at the bottom. The
hotter coloured cells indicate that, on average, the corresponding variable is branched on
earlier by the policy. The cooler colours show that the variable is often selected later or
not at all, meaning that its value is often inferred through UP either initially or after some
variable assignments. That is why the bottom row T and adjacent rows are completely
dark, because they are simplified by the solver before any branching happens. We show the
effect of this early simplification on a single formula per dataset in Figure 4.7 (b). Notice
that in cell(35&49) the simplification shatters the problem space into few small components
(dark triangles), while in cell(9) which is a more challenging problem, it only chips away
a small region of the problem space, leaving it as a single component. Regardless of this,
as conjectured, we can see a clear trend with Neuro# focusing more on branching early on
variables of the bottom rows in cell(9) and in a less pronounced way in cell(35&49). Moreover,
as more clearly seen in the heatmap for the larger problem in Figure 4.8, Neuro# actually
branches early according to the pattern of the rule (!).
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(a) sudoku (b) n-queens (c) sha-1

(d) island (e) cell(9) (f) cell[35]

(g) cell(49) (h) grid wrld (i) bv expr

(j) it expr

Figure 4.5: Neuro# generalizes well to larger problems on almost all datasets (higher and
to the left is better). Compare the robustness of Neuro# vs. SharpSAT as the problem
sizes increase. Solid and dashed lines correspond to SharpSAT and Neuro#, respectively. All
episodes are capped at 100k steps.
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(a) cell(49, 256, 200) (b) grid wrld(10, 12)

Figure 4.6: Cactus plots comparing Neuro# to SharpSAT on cell and grid wrld. Lower and
to the right is better: for any point t on the y axis, the plot shows the number of benchmark
problems that are individually solvable by the solver, within t steps (top) and seconds
(bottom).

Ablation Study

Semantic Features We tested the degree to which the “time” feature contributed to
the upward generalization performance of grid wrld. We compared three architectures with
SharpSAT as the baseline: 1. GNN : The standard architecture proposed in Section 4.2,
2. GNN+Time: Same as GNN but with the variable embeddings augmented with the “time”
feature and 3. Time: Where no variable embedding is computed and only the “time” feature
is fed into the policy network. As depicted in Figure 4.9, we discovered that “time” is
responsible for most of the improvement over SharpSAT. This fact is encouraging, because it
demonstrates the potential gains that could be achieved by simply utilizing problem-level
data, such as “time”, that otherwise would have been lost during the CNF encoding.

We’ve also tested the effect of adding the original spatial information of the grid, in form
of an “image”, which we processed with a convolutional network, and then added to the
input given to the GNN as an independent “blob” of information (much like the global solver
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(a) (b) (c) (d)

Figure 4.7: Contrary to SharpSAT, Neuro# branches earlier on variables of the bottom rows.
(a) Evolution of a bit-vector through repeated applications of Cellular Automata rules. The
result of applying the rule at each iteration is placed under the previous bit-vector, creating
a two-dimensional, top-down representation of the system’s evolution; (b) The initial formula
simplification on a single formula. Yellow indicates the regions of the formula that this
process prunes; (c & d) Variable selection ordering by SharpSAT and Neuro# averaged over
the entire dataset. Lighter colours show that the corresponding variable is selected earlier on
average.

Figure 4.8: Full-sized variable selection heatmap on dataset cell(35, 348, 280). We show the
99th percentile for each row of the heatmap in the last column.
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Figure 4.9: Ablation study on the impact of the “time” feature on upward generalization on
grid wrld(10, 12).

information from the previous chapter). We’ve discovered that unlike the time feature, the
additional spatial information didn’t contribute, and models trained with or without it were
virtually indistinguishable.

Variable Score We mentioned in Section 4.1 that SharpSAT’s default way of selecting
variables is based on the VSADS score which incorporates the number of times a variable v
appears in the current sub-formula, and (a function of the) number of conflicts it took part
in. At every branching juncture, the solver picks a variable among the ones in the current
component with maximum score and branches on one of its literals (see Algorithm 3). As
part of our efforts to improve the performance of our model, we performed an additional
ablation study over that of Section 4.4. Concretely, we measured the effect of including the
variable scores in our model. We start with a feature vector of size 2 for each literal, and
pass it through an MLP of dimensions 2× 32× 32 to get the initial literal embedding. We
tested on cell(49, 256, 200) and grid wrld(10, 12) datasets (Figures 4.10 & 4.11). For both
datasets, the inclusion of the variable scores produced results inferior to the ones achieved
without them! This is surprising, though consistent with what was observed in the QBF
case [78]. It is an intriguing result that repeats itself in two different domains, and leads to
the following two conjectures - 1. VSIDS Activity scores are simply not that useful for CDCL
based solvers that are not SAT solvers. 2. In a learning context, they provide a “cheap”,
short-sighted and easy signal to latch on to, which results in convergence to inferior models.

Comparison with Ganak and Centrality It was recently shown [25] that branching
according to the centrality scores of variable nodes of the CNF graph leads to significant
performance improvements. We obtained their centrality enhanced version of SharpSAT

and compared it with Neuro# trained on specific problem family. We found that, although
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Figure 4.10: Cactus Plot – Inclusion of VSADS score as a feature hurts the upward gener-
alization on cell(49, 256, 200) (lower and to the right is better). A termination cap of 100k
steps was imposed on the solver.

Figure 4.11: Cactus Plot – Ablation study on the impact of the “time” and VSADS fea-
tures over upward generalization on grid wrld(10, 12) (lower and to the right is better). A
termination cap of 100k steps was imposed on the solver.

centrality enhanced SharpSAT, Neuro# retained its orders of magnitude superiority over
it. This indicates that whatever structure Neuro# is exploiting from the graph, it is not
exclusively centrality. Also we compared the performance of Neuro# against the state-of-the-
art probabilistic model counter Ganak [125]. Note that this solver performs the easier task
of providing a model count that is only probably correct within a given error tolerance. Thus
to make the comparison more fair we set the error tolerance of Ganak to a small value of
10−3 and observed that its performance was again inferior to Neuro#. An interesting future
direction would be to investigate if our method could also be used to customize Ganak’s
heuristics.
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(a) cell(49, 256, 200)

(b) grid wrld(10, 12)

Figure 4.12: Radar charts showing the impact of each policy across different solver-specific
performance measures.

Trained Policy’s Impact on Solver Performance Measures

In this section we analyze the impact of Neuro# on solver’s performance through the lens
of a set of solver-specific performance measures. These measures include: 1. Number of
conflict clauses that the solver encounters while solving a problem (num conflicts), 2. Total
(hit+miss) number of cache lookups (num cache lookups), 3. Average size of components
stored on the cache (avg(comp size stored)), 4. Cache hit-rate (cache hit-rate) and
5. Average size of the components that are successfully found on the cache (avg(comp size
hit)).

A conflict clause is generated whenever the solver encounters an empty clause, indicating
that the current sub-formula has zero models. Thus the number of conflict clauses generated
is a measure of the amount of work the solver spent traversing the non-solution space of
the formula. Cache hits and the size of the cached components, on the other hand, give an
indication of how effectively the solver is able to traverse the formula’s solution space. In
particular, when a component with k variables is found in the cache (a cache hit) the solver
does not need to do any further work to count the number of solutions over those k variables.
This could potentially save the solver 2O(k) computations. This 2O(k) worst case time is
rarely occurs in practice; nevertheless, the number of cache hits, and the average size of the
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components in those cache hits give an indication of how effective the solver is in traversing
the formula’s solution space. Additional indicators of solver’s performance in traversing the
solution space are the number of components generated and their average size. Every time
the solver is able to break its current sub-formula into components it is able to reduce the
worst case complexity of solving that sub-formula. For example, when a sub-formula of m
variables is broken up into two components of k1 and k2 variables, the worst case complexity
drops from 2O(m) to 2O(k1) + 2O(k2). Again the worst case rarely occurs (as indicated by the
fact that #SAT solvers do not display worst case performance on most inputs), so the number
of components generated and their average size provide only an indication of the solver’s
effectiveness in traversing the formula’s solution space.

In Figure 4.12 we plot these measures for cell(49, 256, 200) and grid wrld(10, 12). Looking
at the individual performance measures, we see that the Neuro# encounters fewer conflicts
(larger 1/num conflicts), meaning that it is traversing the non-solution space more
effectively in both datasets. The cache measures, indicate that the standard heuristic is able
to traverse the solution space a bit more effectively, finding more components (num cached
lookups) of similar or larger average size. However, Neuro# is able to utilize the cache as
efficiently (with comparable cache hit rate) while finding components in the cache that are
considerably larger than those found by the standard heuristic. In sum, the learnt heuristic
finds an effective trade-off of learning more powerful clauses, with which the solver can more
efficiently traverse the non-solution space, at the cost of a slight degradation in its efficiency
traversing the solution space. The net result in an improvement in the solver’s run time.

Figure 4.13 shows the results of running Bliem and Järvisalo [25]’s centrality-based solver
(henceforth “Cent”) and Ganak on the two datasets that we tested wall-clock time on (i.e.,
cell and grid wrld). We observe that SharpSAT, Cent and Ganak behave more or less in the
same performance regime, whereas Neuro# deviates from the pack and emits the superlinear
performance on the step counts. This results in wall-clock improvements for Neuro#, which
again happens as the problems get more and more difficult.

Discussion

We observed varying degrees of success on different problem families. This raises the question
of what traits make a problem more amenable for improvement via Neuro#. One of the main
contributing factors is the model’s ability to observe similar components many times during
training. In other words, if a problem gets shattered into smaller components either by the
initial simplification (e.g., UP) or after a few variable assignments, there is a high chance that
the model fits to such distribution of components. If larger problems of the same domain
also break down into similar component structures, then Neuro# can generalize well on them.
We visualized this “shattering” phenomena for the cell dataset via heat maps, as can be seen
in Fig. 4.14. This might explain why sequential problems like grid wrld benefit from our
method, as they are naturally decomposable into similar iterations and addition of the “time”
feature demarcates the boundaries between iterations even more clearer.
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(a) cell(49, 256, 200) (b) grid wrld(10, 12)

Figure 4.13: Orders of magnitude reduction in the number of branching steps which translates
to wall-clock improvements as problems get harder. Note, as explained in the text, Python
startup overhead skews results on easy problems.

4.5 Conclusions

We’ve shown in this chapter that our “neural guidence” approach can improve on a state of the
art exact model counter, sometimes in several orders of magnitude, and have conjectured and
experimentally verified that the black-box Evolutionary Strategies optimization algorithms
achieve superior results when compared to RL algorithms in our domain. We’ve introduced
the concept of “Semantic Features”, elements of the problem that are present at the level of
the original problem domain, yet are lost during conversion to CNF, and how keeping them
around can improve the learned heuristics. Finally, we’ve shed some light onto what one such
learned heuristic actually does, interpreting its behaviour in a the specific problem domain of
cellular automata.
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(a) cell(35, 192, 128) (b) cell(49, 192, 128)

Figure 4.14: Clear depiction of Neuro#’s pattern of variable branching. The “Units” plots
show the initial formula simplification the solvers. Yellow indicates the regions of the formula
that this process prunes. Heatmaps show the variable selection ordering by SharpSAT and
Neuro#. Lighter colours show that the corresponding variable is selected earlier on average
across the dataset.
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Chapter 5

Challenges in end-to-end learning for
SAT

In this shorter chapter we describe some of our attempts to adapt our method to SAT solvers.
Unlike the work described in previous chapters we achieved very little success in this context.
We describe some of the challenges we faced and what we discovered, for the benefit of those
who may research it after us, so that they could avoid at least a few pitfalls.

From a practical point of view, SAT is without doubt the most important CSP. Arguably,
it’s due to its relative simplicity. The fact that SAT is relatively simple has two implications.
First, SAT solvers scale to solve problems that are orders of magnitude larger (in terms of
number of variables) than what other more complex solvers can manage. And second, it is
used within some more complex solvers, so improvement to SAT can indirectly improve other
solvers.

In the early days of personal computing, a concept that developed around microprocessor
architecture design was ’speed demons’ vs. ’brainiacs’. Originally, it referred to the trade-off
between clock speed and instructions per cycle, but the metaphor can be carried to the
domain of Constraint Solvers (CS). A SAT solver is a speed demon compared to a QBF solver
like Cadet. What this means is that while Cadet takes an average of less than 104 branching
decisions per second, the popular solver Minisat takes 105-106. This difference in the frequency
of the branching decisions has drastic implications with regard to the implementation of
our method for SAT. We start this short chapter with outlining these implications and the
challenges they pose, and then go over which other approaches in the literature achieved a
degree of success. We then present two possible solution, learning Clause Deletion heuristics,
and scheduling CSIDS activities “intervention”, and describe our partial results.

5.1 The Problem with Speed Demons

One of the main strengths of our method is that it is in some way ’end-to-end’. Both
optimization algorithms we use, Policy Gradient (PG) and Evolutionary Strategies (ES),
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require episodes to be completed at least some of the time in order to learn anything.
Remember, the reward structure we use is somewhat akin to solving a maze - a large positive
reward for solving, and a small negative reward (penalty) for every step taken along the way.
An episodes will be aborted after a fixed number of decisions, without the positive winning
bonus. All aborted episodes therefore achieve the exact same(negative) reward. If a problem
is always aborted regardless of what actions (branching decisions) the policy takes, we gain
absolutely no information from it, and might as well not have included it in training.

In the case of QBF or model counting, we could train on “small” problems, taking
anywhere between 30 and 1000 decisions, which took at most several seconds to complete (or
sometimes abort) through our training loop. The heuristics we learned scaled to be effective
on problems that took up to 100k decisions. In the case of SAT, the math doesn’t add up.
We can still only train on problems of up to around 1000 decisions - the bottleneck is not in
the solver, but rather on the training framework side, which computes forward and backward
passes for a NN. But for SAT, even problems that are considered small (but still resemble
“real” problems) often require many thousands of decisions. At test time, such a learned
heuristic would have to scale not to 100k decisions, but to up to 108 total decisions.

While training constraints are the main problem, there are a few others worth mentioning.
The time it takes to process the CNF graph through a NN depends on its size, regardless
of whether it came from a SAT problem or a QBF. This means that the ratio between the
running time of the original and the learned heuristic depends for the most part of the
absolute running time of the original heuristic. In SAT, where branching decisions are orders
of magnitude faster, the learned heuristic (when measured in wall clock time, not number of
decisions) is comparatively that much worse. Another issue, though less important, is the
absolute size of the CNF graphs. As mentioned above, SAT solvers deal with graphs that
are orders of magnitude larger than the other CS we’ve seen. This means our NN policy
has to process this larger graph. This is not a huge issue in comparison though, because
processing the graph can be parallelized to multiple GPUs by partitioning the graph. It adds
complexity, but is doable.

5.2 Existing Approaches

The only other approach we are aware of that learns heuristics in SAT in an end-to-end
manner is of Kurin et al. [75], where they effectively use a version similar to our “naive”
approach. They get around the training and test time constraints by complementing VSIDS
rather than replacing it. VSIDS is known to take some time to learn reasonable activity scores
for variables, which means its initial decisions are less informed. Their solution therefore was
to only take the first N branching decisions (With N on the order of 10-1000), and then leave
the rest to the standard VSIDS. They show improvement in the number of decisions for some
3-SAT and graph coloring problems, all relatively small (less than 1000 variables). However,
the weakness here is precisely the fact that the NN has only a limited effect on the solver, it
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is uncertain precisely how useful are the first decisions taken within a split second in guiding
a solution process that can take more than an hour, with hundreds of millions of decisions.

The other approaches that address SAT solvers invariably use some sort of a proxy,
through supervised learning, thereby getting around the requirement for completing each
episode. NeuroCore [120] takes a large training set of unsatisfiable problems, and trains
a GNN architecture on predicting which variables take part in the unsatisfiable core of the
problem, extracted from its unsatisfiability proof.1 At run-time, it periodically refocuses the
solver on the (predicted) unsat core variables by directly setting activity values. This method
is based on the domain intuition that it is better to branch on variables that lead to conflicts,
and the authors have shown improvement on a single family of problems from the 2018 SAT
competition. The main advantage of this method is the (relative) ease of training. Problems
are solved and the unsat cores are found in advance, and from there its standard supervised
classification task.

The disadvantages of this method are the standard ones for proxies - instead of directly
learning to optimize the target metric (wall clock time) or a relatively close proxy (number of
propagations, number of branching decisions) it relies on the intuition that it’s best to branch
on variables that lead to conflicts. This makes sense, but only to a point. It is known for
example that not all conflicts are equally useful. Satisfiable problems don’t have unsat cores
at all, and it is not clear that predicting non-existing unsat cores is a good way of finding
variables likely to lead to conflicts. Even in an unsat problem there may be different unsat
cores, and the model was trained on just one of them (for a given problem). In short, we’re
directing the learning agent towards some pre-known domain intuitions rather than try to
learn a heuristic from scratch.

A similar method using more classical multi-armed bandit techniques is presented in Liang
et al. [80], where they modify VSIDS to learn a “learning rate” for variables, roughly
predicting how many conflicts they will participating on producing, cumulatively, over the
solving process.

5.3 Method - Clause Deletion Heuristic

In light of these technical constraints, the approach we’ve taken is to learn a heuristic that is
queried at a lower frequency throughout the SAT solving process.

Clause Deletion in SAT

As mentioned earlier, choosing branching variables is not the only heuristic is a CS. One of
the other heuristics that has a large influence on solver performance is the Clause Deletion
Heuristic. As we recall, Conflict-Driven Clause Learning (CDCL) works by learning new
clauses that summarize conflicts and prevent the solver from searching down entire sub-trees.

1An unsatisfiability proof in SAT is a sequence of resolutions (clause learning is a form of resolution)
leading all the way to an empty clause.
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Every clause learned this way is added to the “Learned Clauses Database”. However, one
complication which we glossed over before is that the solver cannot afford to just keep learning
new clauses and adding them indefinitely. First, their number is too great. Even if the solver
wanted to keep them all, it would soon run out of memory. But beyond that, even with
infinite memory it is not advisable to keep all learned clauses. More clauses cause more
Boolean Constraint Propagation (BCP), and not all of those propagations are productive
(note, these issues are related to why encouraging more conflicts is not always desirable). Not
all learned clauses are of the same quality, and we want to keep only the useful ones. And so,
SAT solvers periodically delete some of the learned clauses, a process that is called Garbage
Collection.

Literal Block Distance As our baseline we take the LBD heuristic [9], one of most popular
heuristics used to delete clauses, and implemented in Minisat and Glucose. It is queried
on a schedule based on the number of learned clauses, and crucially for us, in practice at
a much lower frequency than the branching heuristic, on the order of seconds. For every
learned clause, it derives a single integer, the LBD score, and then drops the half of the
learned clauses with LBD above the median.2 To understand the LBD score, recall that each
assigned variable is also assigned a decision level, which is essentially the level in which it
was assigned. The variable branched on and all variables assigned in the resulting BCP are
assigned the same decision level, which is then increased by one. When reaching a conflict
and backtracking, it decreases. The LBD score of the a learned clause is the number of
different decision levels its variables have, and in Audemard and Simon [9] the authors show
empirically that clauses with low LBD scores are more useful, in that they take place in more
propagations and conflicts.

Action Space for Clause Deletion

Our approach is then to employ a similar method to the one that worked for branching
heuristic, but instead of ranking literals, our model now ultimately has to output a Boolean
decision for every learned clause, telling the solver whether to keep or drop it.

Naive Version - Independent Decisions

The most straightforward solution is a minor modification of the architecture we’ve seen
before. Recall, the Graph Neural Network (GNN) we used computed variable (or literal)
embeddings through multiple iterations composed of two half-iterations each, from variables
(literals) to clauses and back to variables (see Fig. 2.13). While we did not use them directly
for branching heuristic, the GNN also computes clause embeddings. We can just take the
latest learned clauses embeddings, and pass them through a policy network that outputs two
logits per clause (a simple Multi-Layered Perceptron (MLP) will do this), which translate

2To be precise, half of the clauses with LBD score greater than 2, clauses scored 2 are never dropped
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Figure 5.1: Classifying embedded clauses with the Hyperplane approach

to a Bernoulli distribution B(1, pc) per learned clause c. The parameter pc is interpreted as
the probability the model thinks the clause c should be kept. During training, the Policy
Gradient algorithm (see Sec. 3.3) samples a Boolean decision for each clause, and sends back
to the solver a Boolean array of decisions as the action. The environment, a modified glucose
solver, keeps or drops the clauses according to the decisions array.

This solution could work in theory, but it has a serious flaw. As we discussed before
in Sec. 4.2, PG algorithms explore the solution space implicitly by sampling on the action
space. In this naive solution, it means we’re sampling for each clause independently of all the
others. For N clauses, this means the action space is the discrete space 2N , and independent
Bernoulli distributions means we’re flipping N coins per action. When N is in the 103-104

range, this is a lot of randomness to inject into the estimator, which translates to variance,
and leads to extremely slow convergence, if at all. Note, it is in fact entirely equivalent to
replacing every action with N separate actions, one per learned clause, which would leave
us with episodes with length in the tens of thousands of time steps. Nothing is gained by
’coalescing’ the coin flips together into one action.

Dealing with Randomness

Evidently, care must be taken when we define the action of our policy. Let us consider
again what doesn’t work in the naive version. When we sample a decision for each clause
independently, it also means that two identical clauses (there are no identical clauses, but
say, nearly identical) with identical embeddings can result in different decisions. If c1, c2 have
close embeddings, that means pc1 ≈ pc2 . If they happen to be close to 0.5, PG is just as likely
to sample similar decisions for them as it is to sample a different one. This is not how we
want the clause embeddings to work. Surely similar embeddings should be more likely to
result in equal decisions, regardless of what that decision is.

What we’re actually looking for is a classifier. The GNN embeds each clause into
n-dimensional space. As an action then, the agent should output a separating (affine)
Hyperplane, as in Fig. 5.1. Of course, PG must sample in order to explore, and since our
action is the Hyperplane, we have to sample the Hyperplane. The way to do it is to have the
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model output a vector in Rn+1 (where n is the clause embedding dimension), and sample from
a normal distribution around each coordinate.3 Note that this way we bound the randomness
we’re injecting - n-dimensional normal distribution, independent of the number of learned
clauses.

Implementation and Empirical Results

We implemented our model using a similar architecture to that in Sec. 4.2, with Glucose as
an environment. We included a global Solver State with some statistics about the clause
database, and 5 features per variable, including its activity and LBD score. For our tests, we
used the Cellular automata dataset from SATCOMP 2018 described before in Sec. 4.3.

We couldn’t get the training of this model to converge, meaning, even when staying on the
training set, before generalization, the model didn’t improve on the standard LBD heuristic.
Taking a couple of steps back, we decided to simplify the problem, reduce the degrees of
freedom of the policy. Specifically, we dropped the GNN and used the variable features
directly, and still were unable to see any improvement even on the training set itself.

LBD Based Policies

Finally, we decided to use the LBD heuristic itself for further simplification, and learned
to output a dynamic LBD threshold. That is, we created a model that, on every garbage
collection, and based on the global solver state, learned to output two real numbers, a and
b. The solver environment, for each clause c with LBD score Lc, computed the decision
according to the sign of aLc + b. For exploration, we sampled from a normal distribution
around a, b. Note, this simplified version of the model can be thought of as the Hyperplane
solution, where the embedding space is one-dimensional, and the single feature of a clause is
its LBD score.

This simplified version was able to converge on the training set, but improving only very
slightly on LBD. We found we could improve convergence time considerably by outputting a
discrete probability over the possible (reasonable) LBD thresholds. Instead of outputting
2 numbers, we output 29 different numbers that are taken as logits for selecting (through
sampling) an integer between 2 and 30, which is used as the LBD threshold. We found that
a policy with discrete outputs for the threshold could explore the solution space better, and
choose better thresholds. This is quite expected, because when using a continuous action by
sampling from a normal distribution around some mean, the learning process only moves
this mean continuously, and it can easily get stuck in a suboptimal minimum. The discrete
version gets to quickly explore all possible LBD thresholds and converge on beneficial ones.
Still, the gains over standard LBD were small, and no generalization to larger problems was
observed.

3In practice our model now outputs a continuous action
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5.4 Conclusions

When it comes to “speed demons” like SAT solvers, our method faces serious technical
limitations. Learning a branching heuristic is infeasible, and it’s necessary to consider other
Heuristics with a lower query frequency, such as for clause deletion. But decisions for clause
deletion come with their own constraints, especially with regards to size of the action space.
We suggested a few ways to get around this constraint, but achieved only very limited success.

We feel that due to the technical constraints involved with SAT solving there is still a
considerable distance to cross before an end-to-end method like ours could integrate with a
modern solver, and it is still an open question whether this is possible.
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Chapter 6

Conclusions and Further Work

6.1 Conclusion

We set out at the beginning of this thesis to research how to combine techniques from Deep
Learning with modern Boolean Constraint Solvers (CS), thus allowing them to learn from
experience. By the time it comes to a close, this thesis had made the following contributions:

• We presented for the first time1 a Graph Neural Network based representation for logical
formulas, matching the symmetries of such formulas, and demonstrated its applicability
to the task through empirical experiments.

• We presented a method, based on the representation mentioned above, of automatically
learning heuristics in CS for specific families of problems through training, using either
Reinforcement Learning or Evolutionary Strategies. This method can be adapted to
any solver which works with Boolean formulas, subject to some limitations.

• We implemented our method for two different modern solvers, the Quantified Boolean
Formulas solver Cadet, and the Model Counter SharpSAT. Although both are based on
DPLL, they solve different problems of different complexity classes, based on different
intuitions. In both, we demonstrated that our method improves over the state of the
art by up to an order of magnitude on challenging problems.

• We showed how to incorporate some higher-level domain information on top of the
common CNF representation of a problem. We call them Semantic Features, and show
that at least under some circumstances (transition systems) they can have a drastic
effect on solving time.

• We presented an interpretation of the learned heuristics in the context of model counting.
We look both at the solver’s internal metrics, and from the point of view of a specific
higher-level domain, of cellular automata.

1Independently, Selsam et al. [121] came up with a similar version of this architecture at about the same
time.
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• We open-sourced our code2, a framework which supports integration with the solvers
Cadet, SharpSAT, MiniSAT and Glucose through an open-AI compatible interface. On
the RL side, it is compatible with the popular RLLIB framework.3

Limitations Our method works impressively well in solvers where the heuristic is relatively
“heavy”, a common property of both QBF and Model Counting (but also potentially of SMT
and other non-boolean solvers). It is less suited to be used in SAT solvers, where the heuristic
is quick and simple. We have described some approaches that to get around this problem,
but so far they achieved partial success at best, and require further research.

This work lies at the intersection of several lines of research that have drawn interest
recently. From the side of AI, while deep learning techniques have broken new ground over the
last decade, researchers in the field repeatedly confront its limitations. The classic Symbolic
AI of the past is making a comeback, and there are several different attempts to combine
Symbolic and Neural learning in new ways, to the benefit of either or both. We believe the
trend of narrowing the gap between Automatic Reasoning and Neural systems will continue.

Likewise, formal methods and modern ML will also continue to be integrated in both
directions - ML methods that enhance classic formal reasoning, like our work, and in the
opposite direction, formal methods that allow for verifying systems with ML in the loop.
Finally, there are many tools and algorithms in research and industry solving “hard” problems
in practice. We have already reviewed some of the research applying ML to learn heuristics
in some of these tools, and we believe this trend too will continue, where NN will be used to
replace hand-designed heuristics.

6.2 Further Work

We conclude with some notes on promising further directions for research that naturally arise
from the work described in this thesis.

Architecture

We’ve generally discovered that the specific GNN architecture used is not very important,
as in, all “reasonable” encoders, whether based on CVIG or CLIG representation, perform
roughly equally well. Two directions we think are worthwhile to pursue regarding architecture
are solver-recurrent models and transformers:

• GNN models could be said to already be recurrent, since (potentially) the same message-
update transformation is applied a fixed number of times. However, this is not to be
confused with recurrence over the MDP time steps (that is, observation and actions).
This means that when the heuristic is called, it is given not only the current solver

2https://github.com/lederg/learningCNF
3https://docs.ray.io/en/master/rllib.html
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state, but also the last N states and decisions. Formally, if the observation to the
model on step i is Oi, we transform it to (Oi−N , ai−N , . . . , Oi−1, ai−1, Oi). The intuition
is that this allows the heuristic to detect dynamic features of the CNF graph (such as
the variable property of “having been recently branched on”), and implement policies
that take advantage of it. If VSIDS can make use of a variables summarized “history,”
perhaps a learned heuristic can do the same.

• Ever since the Transformer architecture (see App. A.2) was introduced [147] in the
context of machine translation, it has been used to improve on the state of the art on
many language tasks - translation, language modeling, captioning, question answering,
even proving mathematical theorems.

The philosophy behind its use runs somewhat contrary to that of an “induced bias.”
A Transformer takes a fixed-size set of token embeddings and returns the same fixed-
size set of processed embeddings. It induces no pre-defined structure on the input
embeddings - in fact, when processing sequences the linear order over the sequence has
to be specially encoded in the input embeddings (this is called “positional encoding”
and was used in the original Transformer paper). The intuition is that with enough
computation power and data, the transformer can detect the relations between any pair
of embeddings on its own, regardless of the distance (within the sequence) between
them. This added expressiveness comes at a cost though - the Transformer requires
quadratic time (in the size of the input set N) compared to linear time of RNN.

It can be adapted to process graphs by generalizing the concept of positional encoding.
If the position of an element in a sequence is its ordinal number, the “position” of a
node in a graph is its neighborhood. With this in mind, a Transformer can be added to
our branching policy model by defining a maximum problem size N (Transformers can
process sets that are smaller than the fixed size by masking), and using the original
GNN outputs as positional encodings for the Transformer. The main advantage of such
an architecture is that it goes beyond locality - every node gets to see a summary of
the neighborhood of every other node, no matter how “far” they are in the graph. This
could be especially useful for Neuro#. Due to its dependence on caching components,
being able to detect isomorphic neighborhoods in distant parts of the graph can give
the policy hints regarding the resulting partition into components. On the other hand,
a quadratic computation time within the loop of a CS could simply be too slow for our
purposes. Here too, Neuro# is the better candidate, because the model only processes
components rather than the entire graph.

Optimization algorithms

We’ve used both RL and ES for optimization in the context of MDP. Because our main
motivation was to prove the feasibility of the approach, its scope and limitations, we’ve
implemented only the most basic, naive versions of those algorithms. It is known that modern
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RL algorithms like PPO have a sample complexity that is 2-3 times better than vanilla policy
gradient, and it should be relatively straight-forward to achieve faster training time using
them..

Moreover, while for QBF we were not able to get Q-learning based algorithms to work,
Some similar approaches for SAT [75] have demonstrated it can work in principle. Getting
another RL algorithm to work roughly the same as Policy Gradient is not very exciting
in itself, but it becomes important because estimating the Q function opens the way to
implement elements from the AlphaZero algorithm [127]. Specifically, one element, the
Monte-Carlo Tree Search (MCTS). MCTS is a technique that can be used in the settings of
games like Chess and Go, and in fact whenever we have an environment with deterministic,
known dynamics, that is relatively easy to simulate. The normal intuition behind MCTS is
that by expanding the search tree and simulating the “game” (the solution process in a CS)
we can find much better Q values - we project them from the future, sort of like a human
player simulating the game in his head. Here it may be possible to exploit the fact that the
DPLL algorithm is already back-tracking in its nature, and in practical implementations
contains even more backtracking in the form of restarts.

Combine with Portfolio methods

Its been known that different solvers or different (manual) heuristics excel for different families
of problems. Leveraging this fact, SATZilla [158] used a “portfolio” of different solvers (7
in the original paper), and learned a classifier sending each problem to its designated solver
according to its features - a set of graph statistics, and other statistics collected over short
“test runs” of DPLL and Local Search on the problem. For Industrial SAT, portfolio methods
are highly successful.

The idea would be to do something similar, but with a portfolio of learned heuristics,
which could be updated from time to time with new trained models, and in that respect is
more flexible than a set of solvers. One could argue that instead of learning a classifier and
N different heuristics separately we might as well throw more capacity at the original model
and hope that if there’s a useful classification the network will find it on itself. One could
be right, but we feel this is a similar issue to the one we encountered in Sec. 3.2, why not
just learn a heuristic that is “better on everything”? Some empirical results could guide us
forward here.

Encoding-Solving Interaction & Semantic Features

The channel between encoding and solving

As we often repeated, CNF problems do not appear our of thin air, nor (usually) drawn from
a distribution. They are encoded from problems in a higher-level domain, problems that are
actually of interest to practitioners in industry and research. The pattern that has developed
is using a CS as a backend service, seen as a blackbox from the user’s perspective. Encoding
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problems is a bit like compiling code into assembly - every programming language is different
and has its own compiler, but they all output the same (type of) assembly instructions, which
the assembler then takes care of.

From this perspective, The CNF representation is like the assembly language of formal
methods. The encoding process itself is oftentimes hierarchical, implemented in layers.
Arguably, it reflects the structure of the software tools humans use to design and generate
these problems to begin with. An MDP (or even a non-markovian planning) problem like
the grid wrld of Sec. 4.3 is a good example. It was generated using pyAiger [148], a set
of tools for processing combinatorial and sequential circuits. The grid dynamics is encoded
into a circuit, using common components such as boolean operators and vector arithmetic. A
specification in LTL is transformed into a monitor circuit, and the two circuits are composed
together. The resulting circuit is then unrolled into a sequential circuit representing an entire
trajectory, and then encoded into an AIG circuit4 by encoding each of its components in
turn. From an AIG, the Tseitin transformation (or some version of it) takes us to CNF.
Along the way, the language of the encoding becomes more uniform - from grid dynamics
with different properties and specs, inputs and outputs, to a set of components, then to two
Boolean gate type (And & Not), and finally to a list of clauses. This layered approach has a
clear advantage - a solver needs only “know” about clauses and variables, not the endless
mathematical structures defining problems in multitude of domains.

The disadvantage, though, is that the encoding processes losses a lot of information along
the way. Information that could have been used to direct the branching heuristics. For
example, in the same grid world example, knowing how action inputs are ordered in time,
could give us a hint - it is better to branch on variables that represent the earlier inputs to
the system. Indeed, when we added the single feature of the time step to each variable, we
got orders of magnitude improvement.

But the time step is only one semantic feature - there are others that could be useful.
Moreover, the layered approach to encoding means that semantic features from the lower
levels can be added automatically, as part of the encoding framework. the grid example is
but one example of monitoring an MDP, every such problem has a time step feature. Every
problem that is encoded to a circuit and then to CNF has the same circuit-related semantic
features that can be associated with the variables and can potentially provide hints to a
branching policy. It is not difficult to augment pyAiger such that it produces “extended”
CNF files, where each variable has extra annotated features such as time step, whether it is
an input, latch, belongs to the MDP or to its monitor. If we go one level up, we can associate
variables with the high-level component (such as a ripple-carry adder) that generated them.
In effect, this approach widens the channel between the encoding and the solving process,
expanding its “assembly language” beyond the bare CNF representation.

4And-Inverter-Graph is a common representation for circuits, which, as the name hints, is based only on
’And’ and ’Not’ gates.
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Learning to Encode and Solve

Encoding and solving CS problems could be said to follow a pattern of co-evolution. We’ve
seen how to learn heuristics that adapt to the data, but of course, the ’data’ depends (in
part) on the encoding. In practice there is often more than one possible encoding to CNF of
a given domain, and users (of CS) make choices that essentially try to tune the encoding to
the solver.

Why then not to do so jointly? An interesting direction is to train two networks together
on the entire process. One network is incorporated into the encoder, taking decisions about
how to encode. The other is the one we’ve studied here, incorporated into the solver and
taking branching decisions. The same pipeline can be trained end-to-end with some minor
modifications, where the input is the high-level problem, and the episode is the sequence of
encoding decisions followed by the solving decisions.
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pp. 1722–1730.

[31] Xinyun Chen and Yuandong Tian. “Learning to Progressively Plan”. In: CoRR
abs/1810.00337 (2018). arXiv: 1810.00337. url: http://arxiv.org/abs/1810.
00337.

[32] Ziliang Chen and Zhanfu Yang. Graph Neural Reasoning May Fail in Certifying
Boolean Unsatisfiability. 2019. arXiv: 1909.11588 [cs.LG].

[33] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[34] Karel Chvalovsky. “Top-Down Neural Model For Formulae”. In: ICLR. 2019.

[35] Hanjun Dai, Bo Dai, and Le Song. “Discriminative embeddings of latent variable
models for structured data”. In: International conference on machine learning. PMLR.
2016, pp. 2702–2711.

[36] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

[37] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

https://doi.org/10.1613/jair.601
https://doi.org/10.1613/jair.601
https://doi.org/10.1109/ICTAI.2019.00017
https://doi.org/10.1109/ICTAI.2019.00017
https://doi.org/10.1002/rsa.20057
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.00337
http://arxiv.org/abs/1810.00337
http://arxiv.org/abs/1810.00337
https://arxiv.org/abs/1909.11588
https://doi.org/10.1109/CVPR.2009.5206848


BIBLIOGRAPHY 106

[38] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
url: https://www.aclweb.org/anthology/N19-1423.
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Canada. http://papers.nips.cc/paper/7782-learning-task-specifications-
from-demonstrations. 2018, pp. 5372–5382.

[151] Anirudh Vemula, Wen Sun, and J. Andrew Bagnell. “Contrasting Exploration in
Parameter and Action Space: A Zeroth-Order Optimization Perspective”. In: The
22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019,
16-18 April 2019, Naha, Okinawa, Japan. Vol. 89. Proceedings of Machine Learning
Research. http://proceedings.mlr.press/v89/vemula19a.html. PMLR, 2019,
pp. 2926–2935.

[152] Athanasios Voulodimos et al. “Deep learning for computer vision: A brief review”. In:
Computational intelligence and neuroscience 2018 (2018).

[153] Martin J. Wainwright and Michael I. Jordan. “Graphical Models, Exponential Families,
and Variational Inference”. In: Found. Trends Mach. Learn. 1.1–2 (Jan. 2008), pp. 1–
305. issn: 1935-8237. doi: 10.1561/2200000001. url: https://doi.org/10.1561/
2200000001.

[154] Mingzhe Wang et al. “Premise Selection for Theorem Proving by Deep Graph Embed-
ding”. In: NIPS. 2017.

[155] Daan Wierstra et al. “Natural Evolution Strategies”. In: J. Mach. Learn. Res. 15.1
(2014). http://dl.acm.org/citation.cfm?id=2638566, pp. 949–980.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.5281/zenodo.1326224
https://doi.org/10.5281/zenodo.1326224
https://doi.org/10.5281/zenodo.1326224
http://arxiv.org/abs/1903.09354
http://arxiv.org/abs/1903.09354
https://arxiv.org/abs/1903.09354
http://papers.nips.cc/paper/7782-learning-task-specifications-from-demonstrations
http://papers.nips.cc/paper/7782-learning-task-specifications-from-demonstrations
http://proceedings.mlr.press/v89/vemula19a.html
https://doi.org/10.1561/2200000001
https://doi.org/10.1561/2200000001
https://doi.org/10.1561/2200000001
http://dl.acm.org/citation.cfm?id=2638566


BIBLIOGRAPHY 115

[156] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

[157] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. https://openreview.net/forum?id=ryGs6iA5Km. OpenReview.net, 2019.

[158] Lin Xu et al. “SATzilla: portfolio-based algorithm selection for SAT”. In: Journal of
artificial intelligence research 32 (2008), pp. 565–606.

[159] Kaiyu Yang and Jia Deng. “Learning to Prove Theorems via Interacting with Proof
Assistants”. In: arXiv preprint arXiv:1905.09381 (2019).

[160] Zhanfu Yang et al. “Graph Neural Reasoning for 2-Quantified Boolean Formula
Solvers”. In: arXiv preprint arXiv:1904.12084 (2019).

[161] Zhilin Yang et al. “Xlnet: Generalized autoregressive pretraining for language under-
standing”. In: arXiv preprint arXiv:1906.08237 (2019).
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Appendix A

Additional NN Architectures and
General Lore

A.1 Auto-Encoders

Auto-Encoders [72] are a family of architectures that through unsupervised training learn
to represent the distribution of some data. The intuition behind the architectures is for the
network to try to reconstruct the input on its outputs, using a simple MSE loss. The tricky
part is that the input is somehow constrained or corrupted, and so in order to reconstruct
the original, the network must learn good representations of the distribution of inputs.

The simplest autoencoder is an MLP (n, k, n), where k < n. The small k creates an
information bottleneck in the network, and forces it to learn a compact representation, in
effect learning lossy compression. Other variants constrain the middle layer not by its width
but by enforcing sparseness. Yet other variants corrupt the input with random noise during
training rather than constraining it.

A.2 Attention

Attention is a mechanism used to learn how to ’attend’ to parts of some larger whole. Take
for example translating a sentence from English to French. We generate the french translation
one word at a time, and as we generate every word in turn, we have to look at different parts
of the English sentence. The same can be done for generating sentences to caption images.
As we generate the words in the caption, we attend to different relevant parts of the image.

Formally, we have a set of (m, l)-dimensional key-value tuples {(K1, V1), . . . , (Kn, Vn)},
given a Query vector Q ∈ Rm, we can compute an attention mask as Softmax({a1 =<
Q,K1 >, . . . , an =< Q,Kn >}), where < ·, · > is inner product in Rm. With the mask, the
result of attending by Q over {(K1, V1), . . . , (Kn, Vn)} is

∑n
i=1 aiVi. It is important to note

that n, the number of keys/values, is not fixed. This makes attention the general way to
combine any set of vectors into one.
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A.3 Gating Mechanisms

Gating mechanisms were developed in the context of RNNs and their dual problem of vanishing
gradient / representing identity. The two most common examples are Long Short-Term
Memory (LSTM) networks [53] and Gated Recurrent Unit (GRU) [33], and whenever RNN is
mentioned, in practice it is one of these two. The intuition is easiest to understand from the
equations for GRU taking a previous state ht−1 and input xt to produce the next state ht:

zt = σg(Wzxt + Uzht−1 + bz) (A.1)

rt = σg(Wrxt + Urht−1 + br) (A.2)

ĥt = φh(Whxt + Uh(rt � ht−1) + bh) (A.3)

ht = (1− zt)� ht−1 + zt � ĥt (A.4)

Where � is the Hadamard product, a pointwise product between elements of matrices
of equal dimensions, Wz,Wr,Wh, Uz, Ur, Uh, bz, br, bh are learned parameter matrices, and σg
is a Sigmoid. Given the previous state ht−1, ĥt is the “update candidate”. In Eq. A.4 we
see that the output ht is a (pointwise) convex combination of the previous state and the
new update candidate, where the zt, called the “update gate”, a matrix of elements in [0, 1],
decides for each element how much of the old state is kept vs. how much of the new state is
taken.

What this gating trick allows for is easily passing-through the hidden state - all that
it has to do is make sure zt is close to zero. In contrast, if the new state ht is computed
directly as the output of some network operating on the previous state U(ht−1), the network
U has to work extremely hard (in terms of arriving at good parameters) to be able to merely
“do-nothing” and pass the information. Thus, gating in architectures like LSTM and GRU
ease the flow of information (and the flow of gradients back), allowing for longer RNNs to be
trained.

A.4 Auto-Diff

Before autodiff, doing ML was hard. You had to compute by hand the gradients of your
model in order to do back-propagation. Take for example the softmax function (y1, y2, y3) =
σ(x1, x2, x3), specifically, yi = exi

ex1+ex2+ex3
. You are responsible for computing both σ(x0) (for

some x0 ∈ R3) and its gradient ∂σ(x)
∂x

∣∣∣
x=x0

, a 3× 3 matrix of partial derivatives.

Auto-diff frameworks such as those implemented in TensorFlow1 or PyTorch2 make this
computation for you automatically. They include hundreds of function components that can

1https://www.tensorflow.org/.
2https://pytorch.org/
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be composed into a computation graph. Each component implements both evaluation of
the function at a point, which is called the forward pass, and the evaluation of the gradient
at that point. Combining this with the back-propagation algorithm (which is essentially
function composition) allows the user to seamlessly compute gradients of entire computation
graphs.
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Appendix B

Additional Information for Chapter 3

B.1 Additional details about Cadet

B.2 Global Solver State

1. Current decision level

2. Number of restarts

3. Restarts since last major restart

4. Conflicts until next restart

5. Ratio of variables that already have a Skolem function to total variables. Formula is
solved when this reaches 1.
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B.3 Literal Labels

Here we describe the details of the variable labels presented to the neural network described
in Section 4.2. The vector v consists of the following 7 values:

y0 ∈ {0, 1} indicates whether the variable
is universally quantified,

y1 ∈ {0, 1} indicates whether the variable
is existentially quantified,

y2 ∈ {0, 1} indicates whether the variable
has a Skolem function already,

y3 ∈ {0, 1} indicates whether the variable
was assigned constant True,

y4 ∈ {0, 1} indicates whether the variable
was assigned constant False,

y5 ∈ {0, 1} indicates whether the variable
was decided positive,

y6 ∈ {0, 1} indicates whether the variable
was decided negative, and

B.4 The QDIMACS File Format

QDIMACS is the standard representation of quantified Boolean formulas in prenex CNF.
It consists of a header “p cnf <num variables> <num clauses>” describing the number of
variables and the number of clauses in the formula. The lines following the header indicate
the quantifiers. Lines starting with ‘a’ introduce universally quantified variables and lines
starting with ‘e’ introduce existentially quantified variables. All lines except the header are
terminated with 0; hence there cannot be a variable named 0. Every line after the quantifiers
describes a single clause (i.e. a disjunction over variables and negated variables). Variables
are indicated simply by an index; negated variables are indicated by a negative index. Below
give the QDIMACS representation of the formula ∀x. ∃y. (x ∨ y) ∧ (¬x ∨ y):

p cn f 2 2
a 1 0
e 2 0
1 2 0
−1 2 0

There is no way to assign variables strings as names. The reasoning behind this decision
is that this format is only meant to be used for the computational backend.
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B.5 Hyperparameters and Training Details

We trained a model on the reduction problems training set for 10M steps on an AWS server
of type C5. We trained with the following hyperparameters, yet we note that training does
not seem overly sensitive:

• Literal embedding dimension: δL = 16

• Clause embedding dimension: δC = 64

• Learning rate: 0.0006 for the first 2m steps, then 0.0001

• Discount factor: γ = 0.99

• Gradient clipping: 2

• Number of iterations (size of graph convolution): 1

• Minimal number of timesteps per batch: 1200
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