
Secure Multi-threading in Keystone Enclaves

Stephan Kaminsky

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-136

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-136.html

May 17, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

Secure Multi-threading in Keystone Enclaves 
 

by Stephan Kaminsky 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Dawn Song 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Krste Asanovic 
Second Reader 

 
 

(Date) 

������������������
�����	���������������������������

���������

Krste Asanovic
5/17/2021



Secure Multi-threading in Keystone Enclaves
Stephan Kaminsky

University of California Berkeley
skaminsky115@berkeley.edu

ABSTRACT
There has been a growing popularity of running applications

in Enclaves. Enclaves protect an application and its data against
a un-trusted and possibly malicious operating system. Because of
this, trusted execution environments have been created to com-
bat this such as Intel’s SGX and ARM TrustZone. As the enclave
market has begun to mature, there has been a shift in research to
integrate existing legacy applications in enclaves to protect them
in the cloud [2]. Some of these enclave platforms such as SGX are
limited on the size of their enclaves due to hardware limitations
while other platforms like ARMTrustZone only have a single secure
zone. Keystone is another framework which creates customizable
TEEs based on the RISC-V architecture. It does not share the same
listed limitations as SGX or TrustZone though currently does not
support an enclave running on multiple harts. This limits enclaves
which want to be secure and performant. This paper analyzes the
different approaches of secure multi-threading in Intel’s SGX and
ARM TrustZone to design a model for secure multi-threading in
Keystone Enclaves. The design is robust enough to allow for sup-
port of thread isolation inside an enclave which is useful in edge
computing networks.

1 INTRODUCTION
Trusted execution environments (TEEs) have been growing in

popularity to protect sensitive code and data. Projects such as Haven
have been working on integrating legacy applications inside of SGX
enclaves to protect them from computation in the cloud [2]. As
code is pushed into enclaves to help protect its execution and data,
multithreading can be difficult to implement thus performance can
be hurt. This is a problem as many applications are now relying on
multithreading to improve the performance.

Performance programming relies onmultiple parts to ensure that
the code is executed correctly. This requires that synchronization
and scheduling do not attempt to exploit latent vulnerabilities in
the code. Additionally, giving full control over scheduling to the
operating systemmay allow it tomanipulate the code into executing
a different path than it normally would have. This is an issue since
the enclave’s purpose is to protect the data and general execution
from the operating system.

In this paper, we show a modification to the Keystone framework
to enable secure multithreading in RISC-V operating systems. We
propose a method for the Security Monitor (SM) to delegate control
to an enclaves supervisor for enclave scheduling to decrease the
size of the SM in addition to allowing the enclaving to managing
its own synchronization. This model also prevents a malicious
operating system for scheduling enclave threads in its own ways as
the enclave supervisor determines which enclave thread it wants to
execute when CPU cycles are given to it. Additionally, this model
allows for an enclave to not be limited to a static number of threads
in its execution.

The approach outlined in this paper pushes a lot of decisions to
an enclave for how it wants to manage its own CPU cycles. Intel’s
SGX has a static number of threads which must be defined as entry
points for an enclave [11]. This model gives the scheduling control
to the operating system which may then be able to exploit synchro-
nization bugs in the enclave. Additionally, SGX has some of the
synchronization primitives controlled inside the operating system
which may make an enclave enter critical sections with multiple
threads. Our model keeps all of the scheduling and synchronization
decisions inside of the individual enclave to prevent the operating
system from gaining too much control over the enclaves control
flow. ARM’s TrustZone does allow for a separate secure operating
system to schedule trusted threads. The problem with this model is
there are only two zones, a secure zone and an untrusted zone. The
Keystone model which we propose will allow for each enclave to
have its own trusted zone so that bugs in one thread will be unable
to affect other enclave threads.

This paper is structured as follows. We first review the related
work in how other TEEs handle scheduling in enclaves in addition
to vulnerabilities to their designs. We then review the existing Key-
stone structure and build upon the design to enable multithreading
to be possible in this framework. We next review the requirements
we need based off of some vulnerabilities which were found in
the other platforms. Next, we review how each of the components
needs to be modified so that it will be able to support multithread-
ing correctly. We then evaluate how this design follows all of the
requirements we set out to complete. Finally, we review future ideas
we have to add to this model.

2 RELATEDWORK
As chips reach limits to how much faster they can become each

year, programmers are forced to find other methods to increase
performance. Multi-threading has become one popular and efficient
method to improve performance. Because multi-threading can cre-
ate big improvements in a programs performance, different related
enclave platforms implemented their own take on multi-threading.

2.1 Intel SGX
Intel SGX allows developers to secure enclaves which are isolated

contexts inside their applications [11]. This isolation protects the
applications data from being viewed by other processes running on
that same machine. To deploy an enclave, an application developer
would use the SGX SDK.

Intel SGX and the SDK have support for multithreading and other
synchronization mechanisms. Enclaves must have at least one entry
point at which it may be entered. SGX supports multithreading
by having multiple entry points which are allowed to be entered
concurrently. Because of having a static number of entry points on
initialization, an SGX enclave has a static number of threads which
it may run.



Stephan Kaminsky

SGX offers synchronization such as mutexes and condition vari-
ables. SGX developed a hybrid approach for managing these prim-
itives. This means that lock variables are maintained inside the
enclave while system calls are outside. This means that synchro-
nization primitives may results in an enclave exit [11].

Additionally, the operating system has fine control over when
an enclave runs. It can also send signals which will stop an enclave
at a current point and return control to the operating system. It
also may control which thread will be executing in an enclave.

These features give the operating system control over different
aspects of the enclave. The operating system is able to start and stop
SGX enclaves, it has full control before ecalls to SGX enclaves and
during when and SGX enclave makes an OCall, and the operating
system is able to interrupt and resume any SGX thread.

Given these abilities of the operating system, it may be able to
manipulate the execution of an enclave. Since enclaves may now
run with multiple threads, they may have some typical synchro-
nization bugs such as atomicity violations, order violations, and
data races. For example, an attacker would just have to find an
exploitable synchronization bug, interrupt and schedule specific
enclave threads, and then determine experimentally when to in-
terrupt and schedule enclave threads [11]. This can be done quite
precisely with page faults though is also able to be done by sending
Linux signals to transfer control flow back to the operating system
[11].

Since the operating system has full control over the enclaves
running threads, it can also exploit the order in which threads are
scheduled to manipulate a machine learning model. The operat-
ing system can poison asynchronous training models which are
executing inside an enclave by pausing the execution of a thread
while the learning rate is very high and only rerunning it when the
global learning rate is much lower [8]. This causes a sharp change
to which feature would be selected, causing the model to point to a
possibly adversary controlled label.

2.2 ARM TrustZone
ARM’s TrustZone is another model for creating secure enclaves.

They achieve this by have two separate operating systems, a se-
cure operating system and an untrusted operating system [7]. This
model does fix some of the vulnerabilities which have been shown
in SGX as the untrusted operating system does not have full control
of which secure application is executing in the secure OS’s environ-
ment. A problem with this model is a vulnerability in the secure
operating system which is exploited by a malicious secure task may
be able to get access to another secure tasks data. While this is not
idea. ARM TrustZone was a step in the right direction to give TEEs
while giving the ability to multithread.

3 KEYSTONE
Keystone is another model of creating TEEs in RISC-V. It cur-

rently does not support multiple harts from executing a single
enclave at this time.

3.1 RISC-V Privileged Modes
RISC-V defines 4 different privilege levels: MachineMode, Hyper-

visor Mode, Supervisor Mode, and User Mode (these are ordered

Figure 1: An illustration of PMP in the RISC-Vmemory hier-
archy. Picture from Krste Asanovic, UC Berkeley CS152, pre-
sented 2019. [1]

from most privileged to least privileged) [10]. To create a system
which is able to securely create TEEs, Keystone utilizes machine,
supervisor, and user mode. We provide a description of all three
privileges.

3.1.1 Machine Mode. RISC-V Machine mode has access to all in-
structions. It also has access to special Control and Status Registers
which control the system and give vital system information [10].

M-mode also controls the PMPs and ioPMPs to contain the active
context inside a physical partition. Figure 1 depicts where in the
memory hierarchy the the PMP validation lives. When the machine
boots up, M-mode has access to the entire system. M-mode can
restrict access for different privilege levels to have access to regions
of memory. The PMP address encodes the address of a contiguous
physical region and include configuration bits to specify the r-w-x
permissions, and two addressing mode bits. It can even restrict M-
mode access to regions which can only be reset with a machine reset
[1]. This system is helpful as PMPs can be dynamically swapped to
run different security contexts on a hart. The important thing to
note is there are separate PMP contexts per hart meaning different
harts can have different security contexts. Additionally, I/O devices
have a set of ioPMPs which will restrict their DMA to specific
regions similar to how the PMPs in each hart operate [1].

In Keystone, we have created a small and lightweight Security
Monitor (SM) which keeps PMP entries in sync and manages all
enclave operations.

3.1.2 Hyper-visor Mode. At the time of writing this paper, the
Hyper-visor Mode specification has not been finalized yet [10].
Eventually when it has been finalized, Keystone will need the equiv-
alent of the Security Monitor in the Hyper-visor as well especially
since there will be a need to virtualize the PMP registers if there
are multiple supervisors running on the system. Future work in
determining the best model will be completed after the specification
has been finalized.

3.1.3 Supervisor Mode. The supervisor is equivalent to the mode
an OS executes in. It has privileged access to modify the page table,
page-in and page-out, flush the TLB, set interrupts, and more. It is
not able to accesses physical memory addresses which violate the
CPU’s PMP entries nor is it able to change the PMP entries. This



Secure Multi-threading in Keystone Enclaves

means that the OS can no longer access an enclave’s memory once
the Security Monitor has created an enclave.

Keystone adopts a model of giving the OS full control over the
resources given to an enclave on creation and also having execution
time control over the enclave. The SM will set interrupts so that
it can still allow the enclave to run for a specified amount of time.
There are some security implications with this model such as some
well known single-stepping attacks in other platforms which could
also target this model [3]. Because of that, the SM has a minimum
for what a timer for an enclave can be to make single stepping
attacks much more difficult.

3.1.4 User Mode. A traditional application runs in this mode. It has
the most limited access to the instruction set. In Keystone, enclaves
have a user mode component which is the enclave application.
Enclaves also have a supervisor component (runtime) which allows
for the application to access the SBI interface that can trap into the
SM.

3.2 Keystone Attack Model
The Keystone framework must trust the PMP specification as

well as the PMP and RISC-V hardware implementations to be bug-
free. There is another group currently working on formally verify-
ing the Keystone Security Monitor (SM). A developer using Key-
stone can trust the SM only after verifying the SM measurement is
correct, signed by trusted hardware, and has the expected version.
The enclave application (eapp) only trusts the SM and runtime (the
supervisor component of an enclave), the runtime trusts the SM,
and the SM only trusts the hardware. [5]

Keystone was written so that it can operate under different threat
models, each requiring different defense mechanisms. Keystone’s
goal is to protect the confidentiality and integrity of all the enclave
code and data at all points during execution. They break down the
four classes of attackers as [5]:

(1) Physical Attacker: They can intercept, modify, or replay
signals which leave the chip. Assumed to not be able to
modify components inside the chip package.

(2) Software Attacker: They can control host applications,
the untrusted OS, and network communications. They can
launch adversarial enclaves, arbitrarily modify any memory
not protected by TEE, and add/drop/replay enclave messages.

(3) Side-channel attacker: They can get information by pas-
sively observing interactions between the trusted and un-
trusted components via some side channel.

(4) Denial-of-service attacker: They can take down the en-
clave or host OS. Note that Keystone allows for the OS to
DoS an enclave as it can refuse services to user applications
at any time.

3.3 Keystone Components
Figure 2 depicts the complex overview of they Keystone setup

and privilege levels. Because of the number of privilege levels, Key-
stone is composed of multiple components to create its protection
guarantees.

Figure 2: Keystone overview of the system setup and privi-
lege levels. Includes components such as untrusted host pro-
cesses, the untrusted OS, the security monitor, and multi-
ple enclaves (each with their own runtime and eapp. Picture
from Keystone: An Open Framework for Architecting TEEs,
published 2019. [5]

3.3.1 Security Monitor. The security monitor is the primary com-
ponent which enforces memory isolation. It utilizes the PMP regis-
ters so that different applications are not able to read/write/execute
data from enclaves. Since PMP entries can be dynamically reconfig-
ured during execution, Keystone is able to create a new region or
release a region back to the OS. During the boot of the SM, Keystone
configures the first (highest priority) PMP entry to cover its own
memory regions and then disallows all access to its memory from
all other modes. It then covers the last (lowest priority) entry to
cover all of memory with all permissions so that the OS has default
full permissions to all memory regions which are not otherwise
covered by a PMP entry [5].

Since each core has its own complete set of PMP entries, it is
the job of the SM to also keep other cores PMP entries up to date.
To achieve this, cores are able to send inter-processor interrupts
(IPIs) to each other during execution to immediately stop execution
(when not in M-mode) to update its PMP entries. This ensures no
core will have stale abilities to access newly restricted sections of
memory.

The SM is also responsible for managing the enclave life-cycle.
When the OS wants to create an enclave, it will load the enclave
binary into physical memory, sets up the enclaves page tables and
allocates the physical memory. The OS then tells the SM to create
the enclave in a specific space. The SM will ensure the enclave
binaries are correct, then it will walk the OS-provided page table
to ensure there are no invalid mappings and only unique virtual-
to-physical mappings. The SM will finally has the page contents
along with the virtual addresses and configuration data which is
used to verify the enclave has been correctly loaded [5].

The SM is also in charge of executing an enclave. This means it
needs to set the PMP entries and then transfer control to the en-
clave entry point. Additionally, the SM is responsible for destroying
enclaves. It is important that the tear-down of the SM clears the en-
clave memory region before returning the memory to the OS as to
not leak information. Furthermore, it will free all enclave resources,
PMP entries, and enclave metadata. The SM also supports the easy
integration of optional plugins with different security protections
which are not in the base Keystone.



Stephan Kaminsky

Figure 3: This is the current enclave life cycle inside the SM.
Picture from Stephan Kaminsky Keystone, published 2019.
[4]

3.3.2 Keystone Runtime. The Keystone RT is the supervisor which
runs inside of an enclave. It is a lightweight supervisor which
provides a basic set of call interfaces similar to how the OS provides
a limited set of functions to an application. The RT is responsible
for performing edge calls on an enclave on behalf of the enclave
application’s needs to perform read/writes outside the enclave (i.e.
write to the host’s stdout stream). Additionally, it proxies system
calls to the host OS. Keystone is able to utilize existing defenses to
prevent Iago attacks via this call interface. The benefit of this RT
is it allows for developers to port over their legacy apps without
needing to build their own supervisor to support their existing
applications [5].

3.3.3 Keystone Driver. The Keystone Driver is a Linux driver which
manages the enclaveswhich the OS has launched. It understands the
system call interface to create/run/destroy enclaves. The untrusted
application will interact with it to launch an enclave, of course,
this is assuming the OS permits it. The driver will ensure that any
execution time, which is currently given to the untrusted applica-
tion, will be given to the eapp which the application is executing.
Additionally, the driver ensures that there is an easy interface so
that an eapp can make system calls which need to be serviced either
by the OS or by the untrusted application [5].

3.4 Enclave Life Cycle
Figure 3 depicts the life cycle of an enclave inside of the SM.

The SM has a fixed number of enclaves it can support which is
determined upon the SM boot. Because of this limited size, there

exists a metadata structure created for each enclave. We will refer
to these structures as eids (though eid does refer to the enclave ID).
We will now explore the different stages of an enclave [4].

3.4.1 Invalid. In this state, an enclave structure is un-allocated but
available to be allocated. This state will change to allocated once
the create enclave functions allocates the eid.

3.4.2 Allocated. Once an enclave has allocated the eid, the enclave
structure is said to be allocated. This prevents multiple enclaves
to be initialized to fill the same enclave structure. Once allocated,
the enclave can go to two different states. Either it can go to the
‘Destroying‘ state which may be caused for various reasons such
as a failure to validate and hash the enclave. If the enclave finishes
its validation and hashing, it now becomes ’Fresh’.

3.4.3 Fresh. An enclave enters the fresh state once it has been
hashed and validated from the allocated state. The fresh state in-
dicates that an enclave is ready to be executed but has not been
executed so it will need to be further set up to be able to execute
correctly. From the ’Fresh’ state, an enclave can either go to the
"Destroying" state if destroy enclave is called on it. Otherwise, if
run enclave is called, it will set up the state of the enclave and then
transfer the enclave state into the ’Running’ state.

3.4.4 Running. The running state indicates that the enclave is be-
ing currently executed on at least one hart. It may be entered either
by the run or resume call. Once all threads have been suspended, it
will transfer to the ’Stopped’ state. Do note that the ’Running’ state
is one of the few states which cannot directly go to the destroying
state. This is because there could be disastrous issues if one hart
starts destroying an enclave while the other is executing it. Because
of this, the enclave must be stopped before it is able to be destroyed.

3.4.5 Stopped. The stopped state can only be entered via the exit
or stop enclave functions. It means the enclave has executed at
some time in the future but is not currently executing on any hart
of the CPU. Once stopped, the enclave can then proceed to the
’Running’ state if resume is called on it or if it can destroy itself.

3.4.6 Destroying. An enclave in any state other than ’Invalid’ (be-
cause it doesn’t make sense to destroy something which is already
destroyed) and ’Running’ (you should not be able to destroy an
enclave which is currently executing on another hart) can go to the
Destroying state. An enclave will be brought into the ’destroying’
state immediately at the start of the destroy enclave function. This
is meant to prevent an enclave which is being destroyed to suddenly
start executing. In this step, the SM will clear all of the enclave
memory, free any enclave resources, and finally clear the enclave
eid so that it may be reused in the future. Once destroy enclave
completes, the eid goes to the ’Invalid’ state.

3.5 Keystone Current Limitations
Keystone offers a great initial framework for creating, validating,

and securing enclaves. Even with all of that, it is currently is lacking
the ability to allow multiple harts to enter a single enclave. Addi-
tionally, the current design of Keystone requires that the SM keeps
track of every single thread for every enclave. This can significantly



Secure Multi-threading in Keystone Enclaves

bloat our trusted computing base which can make it more difficult
to verify in addition to requiring a larger amount of memory.

Another issue with the design of Keystone is the lack of ability
for the enclave supervisor to set pending interrupts for itself. This
design severely limits any ability for the enclave supervisor to do
any scheduling of its own.

4 DESIGN
4.1 Requirements

AsynchShock[11] and Game of Threads[8] have shown some
of the pitfalls of giving too much control to the operating system.
Because of that, we must look at what we will require our system
to be able to protect against.

➊ The operating system should not be able to control the
page tables of an enclave when an enclave is executing. This
will prevent the operating system from learning about where inside
an enclave, the enclave is at in its execution.

➋ The enclave will have a constant and well defined entry
points which do not change from enclave to enclave or dur-
ing the execution of the enclave. This requirement forces the
operating system to not be able to pick and chose what part of the
enclaves code it will be continuing to execute.

➌ The attacker will not be able to control which thread is
running or pause out specific threads. This is so the operating
system will be unable to force an enclave to preserve values which
may have already been confirmed as fine to use but will cause
unexpected side effects if ran later in the code.

➍ All synchronization must happen inside the enclave.
This will make it so the operating system is not able to maliciously
modify primitives which will cause multithreading invariants the
enclave is relying on to be violated.

➎ The enclave should not be limited to a certain number
of static threads nor should the operating system be able
to determine how many threads are executing if that is un-
wanted by the enclave. This requirement gives the enclaves flex-
ibility in their runtime and gives programmers more flexibility in
how they design their EAPP.

4.2 Security Monitor
The goal for the security monitor was to abstract out as much

about multithreading as possible. The goal is to reduce the trusted
computing base while still enforcing all security guarantees which
where previously given. To do so, the way how we view the enclave
lifecycle had to change to support the case of having multiple harts
running at the same time.

4.2.1 Enclave Metadata. The enclave metadata block contains a lot
of useful information about an enclave. This includes the current
state it is in, saved registers which can be restored when it is run-
ning, and other metadata. This model works great if you only have
one thread executing at a time in an enclave. This does take up a
decent amount of space as you need to save all of the registers when
halting an enclave. Additionally, this model increases the trusted
computing base as the Security Monitor now has to handle the full
context switch, since it now has to handle saving or restoring the
enclaves registers before it enters the enclave. Given the current

model, an approach to enabling multi-hart execution would require
us to either ➊ statically allocate N harts of save space per enclave
or ➋ dynamically allocate space in the Security monitor, such as
a linked list where a node holds a pointer to the next saved thread
data in addition to the save data for a thread.

Approach ➊ still allows us to give an enclave dynamic thread
allocation which is a goal of this project. The issue is the number
of simultaneous threads which it can have has a static limit which
the Security Monitor will have to be fully aware of and decide on
when the machine boots. This creates limitations for an enclave
which may want to execute many threads.

Approach ➋ removes the static allocation limitation of ➊ as
we would be able to allow an enclave to have virtually unlimited
thread executing in addition to not requiring all the static data to
be allocated on boot.1

These approaches have limitations for an enclave. Since the Se-
curity Monitor has to manage the threading, it needs to understand
more about an enclave. The Security Monitor now must decide
which thread should be executed next or it can give that control to
the enclave such as the model of SGX. This is not advised as shown
by the attacking thread scheduling [8][11]. These approaches also
increase the trusted computing base which can lead to an increase
in size of the SecurityMonitor in addition to more possible locations
to have bugs.

While there are drawbacks to these approaches, they does have
some benefits which should be noted. They would keep the enclave
sizes smaller as the enclave does not need to support its own sched-
uler. Additionally, it does not have the extra overhead required to
save a thread on an interrupt as we would have to re-enter the
enclave when interrupted to save the thread before we return back
to the host.

Even with these benefits, its limitations make these approaches
less than ideal. Another model is to push all of the thread allocation
and scheduling to the enclave. This approach would require the
Security Monitor to save the address of the entry point for the
enclave whichwill be (re)enteredwhenever the enclave is scheduled
to execute or continue executing. The Security Monitor also keeps
track of a second entry point which would be executed to handle
interrupts.2

4.2.2 Enclave Life Cycle. The enclave lifecycle is designed to ensure
that only valid operations happen on an enclave. There would be a
vulnerability if you could destroy an enclave at the same time as it is
running in another core. This could cause it to change its execution
behavior externally, something not specifically done by the enclave
itself, which breaks one of the invariants of our enclaves. Thus,
special care has to be done to ensure that multiple harts running
does not leak data.

Not all stages needed to be changed to have a secure enclave
lifecycle. So long as the stage is atomically checked and changed,
1This is virtually unlimited as the Security Monitor has a fixed allocated size on
boot. What this allows is for a smaller amount of data to be allocated in the Enclave
metadata list as it would point to dynamically allocated nodes of a linked list per
enclave containing the thread information.
2This handles both cases where the enclave scheduled an interrupt which fired and
the case where the OS scheduled interrupt was fired. The enclave supervisor is given
free reign on deciding how it wants to handle those cases so long as it returns back
to the Security Monitor before the watchdog timer interrupt occurs if it was an OS
interrupt.



Stephan Kaminsky

there should not be issues of multiple harts performing some op-
eration on an enclave which should only have one hart executing
on it. For example, an enclave enters the Allocated stage after the
SM attempts to allocate an enclave ID by searching the enclave
metadata list for an enclave in the Invalid state. Once it finds one, it
changes to the allocated state. If multiple harts are running create
enclave at the same time, the spin-lock surrounding the check will
prevent multiple from allocating the same enclave. Additionally the
state change to Allocated happens before the spin-lock is released
so that two harts are unable to grab the same enclave metadata
block.

The next state which can be affected by multiple harts attempt-
ing to start an enclave is the transition from the Fresh state to
the Running state. Because the run_enclave call performs some
important enclave setup stuff not performed by create_enclave ,
it is important that it is executed only once. To accomplish this,
when this function is called, it grabs a lock and the searches for the
enclave (because it is passed in an enclave ID). Once it finds the
enclave ID, it will check to see if it is in the Fresh stage. If it is in
the fresh stage, it will change the state to Running and then incre-
ment a thread counter. This is important as we now need to keep
track of how many harts are currently executing the same enclave.
Finally, we release the lock once we have done the verification to
ensure that only one hart can perform the check and state change,
if needed, at a time. If we failed to meet those checks, due to two
different harts executing run_enclave on the same enclave, we will
return up with an error saying the enclave was not Fresh. Thus this
system will ensure that we only have a single hart ever execute
run_enclave for the current enclaves lifecycle (until it eventually
becomes Invalid).

The next two states are Running and Stopped. They needed some
changes to support multiple harts executing them. Since it would
be bad if we attempted to destroy a running enclave, when a hart
calls stop_enclave, it will decrement a thread counter. Only if the
thread counter reaches 0 will the enclave transition to the Stopped
state. Otherwise it will stay in the running state as at least one
other hart is executing within the enclave.

We finally have the Destroying state. This state can only be
entered when an enclave is in the Stopped state as that means no
hart is actively executing that enclave. This state must also only
have one thread executing it at a time otherwise wemay leak data or
cause undefined execution behavior. To solve this issue, we acquire
the enclave lock, check that the enclave is in the Stopped state, and
finally change the state to Destroying before we release that lock.
Since the Destroying state can only be entered via that mechanism,
we do not need to worry about another hart entering that state as
it may only enter that if the enclave is in the Stopped state. Once
it is has completed destroying the enclave, it will deallocate the
enclave metadata block by changing the state to Invalid. Thus we
have concluded the lifecycle of an enclave as it is back to a state
which can be allocated.

4.2.3 Interrupts. Giving the enclave the ability to set interrupts
is important to allow for the enclave’s supervisor to manage its
own threads. There are some limitations and careful considerations
whichmust be made so that the enclave is unable to take control of a
hart. To do this, we multiplex our interrupts so that the enclave can

set its own interrupt which will be delivered to itself. Additionally,
we also need to handle the original interrupt which the OS had set
for the enclave.

The idea is for each enclave to have an interrupt entry point
which the SM will enter if an interrupt has been made. There will
be two types of timer interrupts which it will be handling. The first
type of timer interrupt is one set by the enclave itself to manage
its own scheduling. This interrupts is essentially delegated to the
enclave so that it can process the interrupt.

The other type of interrupt would be one set by the OS to request
the hart back from the enclave. In this case, the SM will set a new,
short timer interrupt known as awatchdog timer interrupt and enter
the SM’s interrupt handler. The SM alerts the enclaves supervisor
that this is a switch back interrupt. This will then allow for the
SM to run the small bit of code necessary for copying and saving
the threads data in addition to returning back to the SM. Once it
returns back to the SM, the SM will finish resetting the state and
return back to the host. If the enclave does not return back to the
SM before the watchdog timer interrupt occurs, the enclave will be
viewed as being delinquent and abruptly destroyed before returning
to the OS.

By default, the only interrupt which is ever set is by the SM
given what the host requests.3 Given just this interrupt, when it is
triggered in this model, it will enter the enclave’s interrupt handler
and tell it to save its state and return so it can return control to the
OS. The model proposed here allows for the enclaves supervisor
to set its own interrupt. If an enclave sets an interrupts, the SM
will have to verify that the time which the interrupt will happen is
before when the OS’s interrupt will occur.4 If the time which the
enclave supervisor requested is before the original interrupt, the
OS interrupt time will be saved so that the next interrupt can be
the time given by the supervisor. When the SM has to handle an
interrupt, it will check to see if there exists a saved OS time for an
interrupt, if it see that one exists, it had determined the interrupt is
set by the supervisor of the enclave and will forward the interrupt
to the enclave to handle. If the OS’s saved timer interrupt is not
there, then it has determined it is the OS who set the interrupt and
the enclave needs to be saved and then control should be returned
to the host. If the supervisor requests an interrupt which is after
the OS interrupt, then the interrupt is ignored (and the enclave is
notified). This is done so that the SM does not need to store state
about an enclave/thread which is running in the enclave.

4.3 Enclave Supervisor
The enclave supervisors also needed to be adapted to support

multithreading.

4.3.1 Entry Points. The enclave supervisor will now have two
different entry points. The first entry point will bewhere the enclave
will set up and run itself. When this entry point is called, the enclave
supervisor will execute the scheduler which will pull a thread off of
the scheduling queue to then execute. It will also, possibly, schedule

3Note that Keystone requires that an enclave is allowed to run for a minimum time to
prevent single stepping an enclave.
4In addition to a small amount of time to prevent senseless repeated interrupts by an
enclave right before the existing OS interrupt. This small amount of time is to allow
the scheduler to successfully schedule another thread before the interrupt would occur.



Secure Multi-threading in Keystone Enclaves

an interrupt so that it can switch its own threads if the OS gives
the enclave a lot of time to execute.

The second entry point will handle all of the interrupts which the
enclave must handle. Mainly, it will have to deal with two different
interrupts: the enclave received an interrupt set by ➊ itself or
➋ the OS. If the enclave set its own interrupt and it was triggered,
then the supervisor will simply save the current thread data to it
thread control block and then execute the scheduler to pick the next
thread to activate. If the interrupt was set by the OS, the enclave
supervisor will then save the current executing thread’s data to the
thread control block and return back to the SM so that it can return
to the OS.

4.3.2 Scheduler. Since the scheduler is completely abstracted away
from the SM, its implementation can be to however the EAPP author
wants. An example scheduler is a simple round-robin priority sched-
uler which supports multiple queues so that we can set threads on
the blocked or available to execute queue. This two queue approach
helps ensure that a blocked thread does not waste CPU cycles. The
priority aspect of this scheduler helps ensure that synchronization
does not cause deadlock or other slowdowns for happening as the
priority of a thread may be elevated if it holds a lock which another,
higher priority, thread may be requesting. Blocked threads may
be caused by the attempt to acquire a lock which is already held
or an OCALL which needs to be made. The EAPP author has the
flexibility to design it as they need.

When the scheduler is entered, it will schedule a thread and set
a timer interrupt with the SM. The SM will return if that timer
interrupt is successfully saved or if it failed. If it failed, this allows
the scheduler to decide what it wants to do next as the OS has
a sooner interrupt than the scheduler. The default behavior is to
ignore that it failed and act as if it is a success and run the thread
for the smaller time-slice.

An optimization can be made to ensure senseless enclave super-
visor interrupts are not given if there is only one thread running.
To do this, the enclave’s scheduler will not schedule an interrupt on
the hart if it detects that only one thread exists (both in the ready
and blocked queues). If there is only one thread, than an interrupt
will not assist it. Once the enclave thread makes a call to create a
new thread, the scheduler will then set an interrupt for the hart so
that it can switch between threads. This approach will always work
in giving more optimal timings as the currently executing thread is
the only method to add additional threads to execute in the current
model. Because of this, we can prevent an enclave from wasting
time switch between a single thread.

4.3.3 Interrupts. The enclave supervisor now has to be fully aware
of certain types of interrupts. Specifically, we may have an interrupt
which was triggered by the scheduler and an interrupt which is
triggered by the OS. When the enclave is entered via the interrupt
handler entry point, it will check to see if the interrupt was an OS
interrupt or an enclave interrupt. If it was an enclave interrupt it
will simply execute the scheduler which will re-queue the existing
thread and execute another one (and set the respective interrupt).
If the interrupt is determined to be from the OS, then it will just
execute the code to save the current thread before returning to the
operating system.

4.3.4 Synchronization. To assist with shared resourceswhich threads
may have, synchronization has been added to assist with this. To
be specific, locks and semaphores which are thread aware exists
to assist performant operation of the eapp. When a thread in the
enclave attempts to acquire a thread, it will call the enclave’s super-
visor to assist it in getting the lock. While this does require some
extra context switching, it gives a benefit of making the scheduler
aware that a thread is now blocked if the requested lock is held.
This allows the scheduler to put the thread on a blocked list so it
does not waste CPU cycles.

5 EVALUATION
Given the design which has been outlined, we will now go

through and show how we have implemented each of the require-
ments we set out to have.

➊ The operating system should not be able to control the
page tables of an enclave when an enclave is executing. This
is an important requirement which could give a malicious operating
system vital information about what the enclave is currently doing.
The Keystone framework already solves this problem by isolating
an enclave with its own supervisor which will manage the page
table for it. The operating system will initially set up the page table
and give the free pages though all of that is validated when the
enclave is initialized. Once the enclave is initialized, the operating
system is no longer able to modify it which means it will not be
able to gain access or change control flow of an executing enclave.

➋ The enclave will have a constant and well defined en-
try points which do not change from enclave to enclave or
during the execution of the enclave. This requirement forces
uniformity in addition to decreasing the SM’s size as it does not
need to do a lot of extra computation or use extra space depending
on what the enclave wants to do. In this model, the SM is actually
reduced in size and complexity as it no longer needs to keep track of
every register for every enclave. It only needs to know the specific
entry points and enter them when it wants to give CPU time to
an enclave. This also gives the enclave much more free will in its
ability to schedule its own threads without having to do massive
communication with the SM. The SM, which is our TCB, now can
be much smaller which means it is easier to validate in addition to
having fewer moving parts.

➌ The attacker will not be able to control which thread is
running or pause out specific threads. This goal is achieved by
forcing all of the scheduling to happen inside of an enclave. The
enclave supervisor has its own scheduler which will allow for its
own, non-manipulated choice in what thread should execute. The
operating system is only able to give CPU time to an enclave as
a whole instead of specifying that the CPU time is for a specific
thread. In addition, this model abstracts the threading from the SM
as well as the SM no longer needs to worry about keeping track of
which registers to restore when allowing an enclave to continue to
execute.

➍ All synchronization must happen inside the enclave.
Since an enclave has its own supervisor which has its own scheduler,
all synchronization primitives are held inside the enclave. Since
the enclaves supervisor is in charge of scheduling, it can safely and
quickly manage critical areas of the code as to not allow for the



Stephan Kaminsky

operating system to manipulate the enclave into entering critical
sections with multiple threads.

➎ The enclave should not be limited to a certain number
of static threads nor should the operating system be able
to determine how many threads are executing if that is un-
wanted by the enclave. In this model, the SM only needs to know
about the entry points of an enclave. It does not need to understand
how many threads or what threads should be executing inside an
enclave. The only thing the SM keeps track of is how many CPU
harts are executing a single enclave as to ensure that the enclave
does not enter a state which it should not be in. The enclave su-
pervisor is the one managing its own threads which means it may
have as many threads as its own scheduler allows. In the model
proposed in this paper, there are no limits to the number of threads
which may be executing. In addition, if the enclave wants to hide
the number of threads it has from the operating system, if the oper-
ating system was to give more harts than the enclave had threads,
the enclave could hold the extra harts for the normal amount of
time as to not leak to the operating system information such as
that.

6 FUTUREWORK
For future work, we plan on adding configurable full isolation

via virtual memory to enclave threads. This is a relatively easy
feature to add as the enclave is already running in supervisor and
user mode. The supervisor would be the one to manage the virtual
memory so that individual threads are properly protected from
each-other. This has useful application in edge computing[9][6]
as one can isolate multiple lambda functions from each-other for
more performant operations.

7 CONCLUSION
This paper presents a model which can be used to allow for

secure multithreading in Keystone enclaves with minimal overhead.
The approach used helps decrease the trusted computing base as
some of the work which had to be done in the SM has been moved
to the enclave. This helps shrink our trusted computing base in the
SM which helps make verification easier. Our analysis shows that
this new model allows for enclave to run multiple threads which an
operating system is not able to maliciously control and manipulate.
This allows for Keystone to support richer EAPPS with no changes
to the SM as the scheduling has been fully delegated to the enclave’s
supervisor while still maintaining our security requirements.

REFERENCES
[1] Krste Asanovic. 2019. Lecture 9 – Virtual Memory.

https://inst.eecs.berkeley.edu/ cs152/sp19/lectures/L09-VirtualMemory.pdf.
[2] Andrew Baumann,Marcus Peinado, and GalenHunt. 2014. Shielding Applications

from an Untrusted Cloud with Haven. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 267–283. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/baumann

[3] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 991–1008. https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck

[4] Stephan Kaminsky. 2019. Keystone SM Enclave Life-cycle.

[5] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20). https://arxiv.org/pdf/1907.10119.pdf.

[6] Nitesh Mor, Richard Pratt, Eric Allman, Kenneth Lutz, and John Kubiatowicz.
2019. Global Data Plane: A Federated Vision for Secure Data in Edge Computing.
In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). 1652–1663. https://doi.org/10.1109/ICDCS.2019.00164

[7] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Com-
prehensive Survey. ACM Comput. Surv. 51, 6, Article 130 (Jan. 2019), 36 pages.
https://doi.org/10.1145/3291047

[8] Jose Rodrigo Sanchez Vicarte, Benjamin Schreiber, Riccardo Paccagnella, and
Christopher W. Fletcher. 2020. Game of Threads: Enabling Asynchronous Poi-
soning Attacks. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (Lau-
sanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 35–52. https://doi.org/10.1145/3373376.3378462

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge Computing: Vision and
Challenges. IEEE Internet of Things Journal 3, 5 (2016), 637–646. https://doi.org/
10.1109/JIOT.2016.2579198

[10] AndrewWaterman and Krste Asanovi´c. 2019. The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture (document version 1.12-draft ed.). RISC-V
Foundation.

[11] NicoWeichbrodt, A. Kurmus, Peter R. Pietzuch, and R. Kapitza. 2016. AsyncShock:
Exploiting Synchronisation Bugs in Intel SGX Enclaves. In ESORICS.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/ICDCS.2019.00164
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3373376.3378462
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198

	Abstract
	1 Introduction
	2 Related Work
	2.1 Intel SGX
	2.2 ARM TrustZone

	3 Keystone
	3.1 RISC-V Privileged Modes
	3.2 Keystone Attack Model
	3.3 Keystone Components
	3.4 Enclave Life Cycle
	3.5 Keystone Current Limitations

	4 Design
	4.1 Requirements
	4.2 Security Monitor
	4.3 Enclave Supervisor

	5 Evaluation
	6 Future Work
	7 Conclusion
	References



