
Towards Achieving Stronger Isolation in Serverless

Computing

Saurav Chhatrapati

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-141

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-141.html

May 18, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards Achieving Stronger Isolation in Serverless Computing

by Saurav Chhatrapati

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Joseph M. Hellerstein
Research Advisor

(Date)

* * * * * * *

Professor Natacha Crooks
Second Reader

(Date)

May 16th, 2021

Joe Hellerstein
May 16, 2021

Towards Achieving Stronger Isolation in Serverless Computing

by

Saurav Chhatrapati

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Masters of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph M. Hellerstein, Chair
Professor Natacha Crooks

Spring 2021

Towards Achieving Stronger Isolation in Serverless Computing

Copyright 2021
by

Saurav Chhatrapati

1

Abstract

Towards Achieving Stronger Isolation in Serverless Computing

by

Saurav Chhatrapati

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

The recent rise in popularity of serverless computing has brought forth new challenges in
determining the right consistency model for applications. Previous work has studied how
to bring scalable, transactional isolation to serverless computing, but has been insufficient
at preventing several consistency anomalies. To address this problem, we would like to
guarantee stronger transactional isolation for serverless computing in a scalable manner.

In this thesis we present tasc, a transactional shim for serverless applications. tasc offers
flexibility in interposing between most commodity FaaS platforms and cloud storage engines.
It providers stronger transactional isolation by guaranteeing snapshot isolation. tasc de-
couples transaction management from data management and uses modified read and commit
protocols to provide scalable snapshot isolation. We demonstrate that tasc has compara-
ble overhead to other serverless consistency shims, and manages to scale to thousands of
transactions per second.

i

To my parents, and my sister.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Consistency in Serverless Computing . 1
1.2 Towards Stronger Transactional Isolation . 2
1.3 Thesis Overview . 2

2 Background 3
2.1 Atomicity in Serverless Computing . 3
2.2 Read Atomic Isolation . 3
2.3 Snapshot Isolation . 4
2.4 Comparing Read Atomic Isolation and Snapshot Isolation 4
2.5 Challenges . 7

3 Achieving Scalable Transactional Isolation 9
3.1 API . 9
3.2 Definitions . 10
3.3 System Architecture . 11
3.4 Protocols . 14
3.5 Guarantees . 20
3.6 Scalability . 22

4 Fault Tolerance 27
4.1 Fault Detection . 27
4.2 Failure Cases and Correctness . 27

5 Evaluation 32
5.1 Overhead . 32
5.2 Scalability . 34

iii

5.3 Recovering from Failure . 36

6 Conclusion 41
6.1 Future Work . 41
6.2 Related Works . 42

Bibliography 43

iv

List of Figures

3.1 tasc system architecture. 12

4.1 The finite state machine diagram for the transaction manager. 29

5.1 Median and 99th percentile latency for tasc over Anna with varying number of writes

in a transaction. Compared with aft over Anna and Anna directly. Numbers are

reported from running 1,000 transactions. 34
5.2 Median and 99th percentile latency for tasc over Anna with varying number of reads

in a transaction. Compared with aft over Anna and Anna directly. Numbers are

reported from running 1,000 transactions. 35
5.3 Median and 99th percentile latency for tasc and aft over Anna. We vary the skew of

the data access distribution to demonstrate the effects of contended workloads. . . . 36
5.4 Abort rate for tasc as data access distribution skew is varied. 37
5.5 Throughput of tasc and aft as a function of the cluster size. Cluster size of 1 for

tasc includes 2 transaction managers, 3 version indexers, and 1 executor. Cluster size

of 1 for aft includes 1 aft node. 38
5.6 Time series of throughput of tasc as a version indexer is added in response to a high

contention workload. 39
5.7 Time series of throughput of tasc during version indexer failure and recovery. . . . 40

v

List of Tables

3.1 tasc offers a simple transactional key-value store API. 10
3.2 Version Indexer internal API. 13

vi

Acknowledgments

I would like to thank everyone who has made this thesis possible through their support and
guidance.

First, I would like to thank my advisor, Professor Joe Hellerstein, for providing me with
an opportunity to join his research group at the RISE Lab when I was just a first year
undergraduate exploring my interests in computer science. He provided constant advice and
feedback throughout my time at Berkeley. Through his insightful questions and passion for
research he was able to steer my work in the right direction. I would also like to thank
Professor Natacha Crooks for her feedback on this thesis.

Vikram Sreekanti was my mentor from the very beginning of my time as a researcher and
I am grateful that he took a chance on me. He provided constant guidance and much of this
thesis is a result of discussions with him.

Taj Shaik was my partner for my research work over the past year and I would like to
thank him for all of the time and effort he has put into this thesis.

Finally, I would like to thank my friends and family for their constant encouragement. I
am especially grateful for the support of my parents and my sister, Suhani.

1

Chapter 1

Introduction

Today, cloud providers offer serverless computing through Functions-as-a-Service (FaaS)
platforms. Serverless applications are decomposed into modular components that are chained
together through function composition. Functions rely on shared storage for communication,
but as the number of chained functions increases, so does the likelihood of exposing partial
updates to shared storage due to failure. AWS Lambda and Azure Functions address this
problem by retrying the entire function composition on failure, and also allow clients to send
retry requests when they experience a timeout [2, 15]. Since functions might be executed
multiple times, developers must proactively address this at-least-once execution guarantee
by writing idempotent functions [16]. However, idempotence is not sufficient for correct fault
tolerance in distributed systems due to partial updates that can be leaked.

In order to understand the insufficiency, consider a function f that updates two keys, k
and j. If function f fails after writing a new version of k, the entire function will be retried
and eventually both k and j will get updated. However, a concurrent function g could have
issued a read request right after the failure, and would have seen the new version of k and
the old version of j. This scenario is defined as a fractured read. Therefore, idempotent
programs are not sufficient and atomicity becomes necessary for FaaS execution in order to
prevent partial updates from being visible.

1.1 Consistency in Serverless Computing

Atomicity can be guaranteed through traditional database transactions that encapsulate
serverless functions, but choosing a consistency level that provides high performance, scales
up and down in response to a dynamic workload, and prevents critical consistency anomalies
becomes challenging [12]. Serializability prevents many consistency anomalies, but is known
to have bottlenecks that limit its scalability [5, 6]. Previous work [19] demonstrates that
read atomic isolation, introduced in [3], is extremely performant and scalable. However, read
atomic isolation still fails to prevent certain consistency anomalies that make it difficult for
developers to reason about their applications. We outline these anomalies in §2.4. Thus, we

CHAPTER 1. INTRODUCTION 2

turn to snapshot isolation, introduced in [4], as it prevents many consistency anomalies in
order to intuitively allow programmers to reason about their application and scales reason-
ably well [18]. We choose to compromise between read atomic isolation and serializability,
because of snapshot isolation’s widespread adoption in industry by database vendors, which
has made it a familiar consistency model for programmers [17].

1.2 Towards Stronger Transactional Isolation

Our goal in this thesis is to provide a performant serverless shim that offers stronger trans-
actional isolation for widely-used FaaS platforms and storage systems. We present tasc, a
scalable shim for serverless computing that enforces snapshot isolation. tasc can be inter-
posed between most commodity FaaS platforms (e.g. AWS Lambda, Azure Functions) and
cloud storage systems (e.g. AWS DynamoDB, AWS S3, Google Cloud BigTable). We make
no consistency assumptions about the underlying storage layer, but do require persistence.
The contributions of this thesis are the following:

• The design of tasc, a low-overhead, scalable serverless shim that enforces snapshot
isolation and is flexible enough to work with several commodity compute and storage
offerings.

• A new combination of read atomic and snapshot isolation protocols to guarantee snap-
shot isolation for shared, distributed storage systems.

• A modified 2PC protocol that works in an environment with dynamic membership and
guarantees atomicity and durability (with snapshot isolation).

• A detailed evaluation of tasc, demonstrating it incurs low latency penalties and scales
to thousands of transactions per second.

1.3 Thesis Overview

The rest of this thesis is organized as follows. In chapter §2, we provide a detailed overview
of read atomic isolation and snapshot isolation, and compare the consistency anomalies each
isolation level proscribes. In chapter §3, we introduce tasc’s API, system architecture, and
protocols, formally outline its guarantees, and discuss tasc’s process for scaling up and
down. In chapter §4, we describe how tasc correctly recovers from all failures. Chapter
§5 presents an in-depth evaluation of tasc’s overhead, scalability, cost, and fault tolerance.
Finally, chapter §6 provides a discussion about related and future work.

3

Chapter 2

Background

In this chapter, we describe prior work on providing atomic fault tolerance through trans-
actions for FaaS systems (§2.1), compare consistency anomalies prevented by read atomic
isolation and snapshot isolation (§2.4), and explain the technical challenges for providing
snapshot isolation for serverless applications (§2.5).

2.1 Atomicity in Serverless Computing

Prior work in [19] introduced an Atomic Fault Tolerance shim, aft, that encapsulates mul-
tiple function requests into a single transaction to provide fault tolerance for serverless appli-
cations without leaking partial updates. aft has low overhead due to its guarantee of read
atomicity, which is a coordination-free isolation level. The aft system provides important
foundations that tasc extends to provide stronger transactional isolation, while maintaining
similar low overhead.

2.2 Read Atomic Isolation

Read atomic isolation was introduced by Bailis et al. in [3] and addresses the fractured read
scenario discussed in §1 by ensuring that transactions do not see partial updates. Bailis
et al. define read atomic isolation as: “[A system that] prevents fractured reads anomalies
and also prevents transactions from reading uncommitted, aborted, or intermediate data.”
Bailis et al. continue that a fractured read occurs when, “... transaction Ti writes versions
xm and yn (in any order, with x possibly but not necessarily equal to y), [and] Tj [later]
reads version xm and version yk, and k < n.” Read atomic isolation can be achieved
without sacrificing scalability, because its enforcement of update atomicity does not require
coordination. However, it fails to prevent a number of consistency anomalies, which makes it
difficult for developers to understand the execution of their application. We defer discussion
of these anomalies to §2.4.

CHAPTER 2. BACKGROUND 4

2.3 Snapshot Isolation

Snapshot isolation [4] provides an isolation level that uses multi-versioned data storage to
achieve semantics nearly as strong as serializability with increased concurrency. In snap-
shot isolation, transactions are assigned a begin timestamp when they begin and a commit
timestamp when they commit. Snapshot isolation guarantees that when a transaction Ti
with a begin timestamp, bi, performs a read, it sees updates from all transactions Tj with
a commit timestamp, cj, such that cj < bi. In other words, each transaction reads from
a snapshot of the committed data at the time of its begin timestamp. Snapshot isolation
is typically implemented using multi-version concurrency control (MVCC), which involves
creating new versions of each data item at commit time. Thus, reads involve determining
the valid version of a data item to read based on the rule above. Additionally, snapshot
isolation follows first-committer-wins, which means at commit time a transaction aborts if a
concurrent transaction has written to any of the same keys. The differences between snap-
shot isolation and read atomic isolation can best be explained by comparing the consistency
anomalies that they prevent. We outline them next in §2.4.

2.4 Comparing Read Atomic Isolation and Snapshot

Isolation

Bailis et al. formally state that “A system provides [read atomic isolation] if it prevents frac-
tured reads phenomena and also proscribes phenomena G0, G1a, G1b, G1c (i.e., prevents
transactions from reading uncommitted, aborted, or intermediate versions).” The phenom-
ena Bailis et al. refer to are defined by Adya in [1]. In order to prove that snapshot isolation
is at least as strong of a consistency level as read atomic isolation, we rely on Adya’s formal
model:

Definition 1 (Read-Dependency) Transaction Tj directly read-depends on Ti if transac-
tion Ti writes some version xi and Tj reads xi.

Definition 2 (Antidepends) Transaction Tj directly antidepends on Ti if transaction Ti
reads some version xk and Tj writes x’s next version (after xk) in the version order.

Definition 3 (Write-Depends) Transaction Tj directly write-depends on Ti if Ti writes a
version xi and Tj writes x’s next version (after xi) in the version order.

Definition 4 (Direct Serialization Graph) We define the Direct Serialization Graph (DSG)
arising from a history H, denoted by DSG(H) as follows. Each node in the graph corre-
sponds to a committed transaction and directed edges correspond to different types of direct
conflicts. There is a read dependency edge, write dependency edge, or antidependency edge
from transaction Ti to transaction Tj if Tj reads/writes/directly antidepends on Ti.

CHAPTER 2. BACKGROUND 5

The undesirable isolation phenomena are derived from Adya’s dependency definitions as
follows:

Definition 5 (G0: Write Cycles) A history H exhibits phenomenon G0 if DSG(H) con-
tains a directed cycle consisting entirely of write-dependency edges.

Definition 6 (G1a: Aborted Reads) A history H exhibits phenomenon G1a if H con-
tains an aborted transaction Ta and a committed transaction Tc such that Tc reads a version
written by Ta.

Definition 7 (G1b: Intermediate Reads) A history H exhibits phenomenon G1b if H
contains a committed transaction Ti that reads a version of an object xj written by transaction
Tf , and Tf also wrote a version xk such that j < k.

Definition 8 (G1c: Circular Information Flow) A history H exhibits phenomenon G1c
if DSG(H) contains a directed cycle that consists entirely of read-dependency and write-
dependency edges.

With the formal definitions above, we can continue with our proof.

Theorem 1 Snapshot isolation provides read atomic isolation.

Proof. We prove by showing that snapshot isolation prevents each of the phenomena that
read atomic isolation also prevents.

G0. Assume that for a history H, its DSG(H) contains a directed cycle consisting en-
tirely of write-dependency edges. This implies that there must exist two transactions Ti
and Tj, such that Ti write-depends on Tj and Tj write-depends on Ti. These transactions
must have been running concurrently, but snapshot isolation checks for write-write conflicts
at commit time and will only allow one of the transactions to commit, typically the one to
commit first. Therefore, this is a contradiction and snapshot isolation prevents phenomenon
G0.

G1a. In snapshot isolation, a transaction Ti can only read versions written by a committed
transaction Tj, such that the commit-timestamp of Tj is less than the begin-timestamp of Ti.
Therefore, snapshot isolation prevents phenomenon G1a.

G1b. Under snapshot isolation, a transaction Ti can overwrite itself for an object x. Once
Ti commits, only its most recent write to x will be made visible to other transactions. This
prevents another transaction Tj from reading Ti’s intermediate write to x. Therefore, snap-
shot isolation prevents phenomenon G1b.

G1c. Assume that for a history H, its DSG(H) contains a directed cycle consisting en-
tirely of read-dependency and write-dependency edges. Therefore, there must exist two

CHAPTER 2. BACKGROUND 6

transactions, Ti and Tj, such that Ti read-depends on Tj and Tj write-depends on Ti. If Ti
read-depends on Tj, then Ti must have begun after Tj had committed under the definition
of snapshot isolation. However, if Tj write-depends on Ti, Tj must have performed a write
of x that was the next version after xi and thus Tj must have begun after Ti had committed.
This is a contradiction, which implies that snapshot isolation prevents phenomena G1c.

Since snapshot isolation proscribes all of the phenomena that read atomic isolation pro-
scribes, snapshot isolation guarantees read atomic isolation. �

Not only does snapshot isolation prevent the same consistency anomalies as read atomic
isolation, snapshot isolation also prevents certain anomalies that read atomic isolation fails
to prevent. The following sections discuss these anomalies (§2.4.1-§2.4.3).

2.4.1 Lost Updates

Consider the following transaction history H1:

T1: r(x0); w(x1)
T2: r(x0); w(x2)

This is considered a lost update, because T1 and T2 concurrently modify x, which causes the
second committer to overwrite the changes made by the first committer.

Theorem 2 Read atomic isolation does not proscribe lost updates.

Proof. Read atomic isolation does not prevent lost updates, because there is no conflict
checking that occurs at commit time. �

On the other hand, snapshot isolation prevents lost updates, because at commit time
it checks for transactions that concurrently write to the same object, and would abort all
except one of the transactions.

2.4.2 Missing Dependencies

Consider the following transaction history H2:

T3: r(x1) w(y3)
T4: r(x0) r(y3)

This is an example of the missing dependencies anomaly. T3’s write of y can be influenced
by its read of x. T4’s read of y depends on the value that T3 wrote for y. Since T4 read y3,
it misses the dependency of x1 influencing y3, since it also read x0.

Theorem 3 Read atomic isolation does not proscribe missing dependencies.

CHAPTER 2. BACKGROUND 7

Proof. Constructing the DSG of history H2 shows that the only edge is a read-dependency
edge from T4 to T3. Since there are no cycles in DSG(H2), clearly phenomena G0 and G1c
can not detect the missing dependencies anomaly. In addition, the lack of aborted reads
(G1a) and intermediate reads (G1b), since T4 reads y after T3 has committed, implies that
read atomic isolation does not prevent missing dependencies. �

On the other hand, snapshot isolation does protect against missing dependencies by
ensuring that all reads come from the same consistent snapshot of the system as of the
T.begin-ts of the transaction. Therefore, it would not be possible for T4 to read y3 if T3
had not committed before T4 began.

2.4.3 Predicate-Many-Preceders

The predicate-many-preceders (PMP) anomaly occurs when a transaction observes different
versions resulting from the same predicate read. Consider the following transaction history
H3 with a predicate P .

T1 : r{P : x, y} r{P : x, y, z}
T2: w(z|z ∈ P)

When T1 first performs a predicate read of P , it reads keys {x, y}, but a write by T2 where z
satisfies the predicate P causes T1 to read {x, y, z} the second time it performs the predicate
read.

Theorem 4 Read atomic isolation does not proscribe predicate-many-preceders.

Proof. Constructing DSG(H3) shows that there is an antidependency edge from T1 to T2
and a read-dependency edge from T1 to T2. There is no cycle in the DSG, therefore G0
and G1c can not detect the predicate-many-preceders anomaly. There are also no aborted
reads (G1a) or intermediate reads (G1b) in H3, since T2 is committed before T1 performs its
second read. Therefore, read atomic isolation does not prevent predicate-many-preceders. �

On the other hand, snapshot isolation prevents it by enforcing which versions of a key
are visible to each transaction based on its T.begin-ts. This would prevent T1 from getting
two different views of the database when it performs the same predicate read twice.

2.5 Challenges

Committing transaction T under snapshot isolation’s involves checking for write-write con-
flicts with concurrent transactions as described in §2.3. Once T passes the conflict checking,
T ’s writes must be made atomically visible to other transactions to prevent fractured reads.
In a single machine implementation, T ’s writes can trivially be made atomically visible to
other transactions, since all transactions are processed by the same machine.

CHAPTER 2. BACKGROUND 8

However, systems like tasc must scale as the workload changes, which means that multi-
ple machines will be executing transactions at the same time. This introduces two challenges:

1. Commit latency is dependent on how long it takes for all machines in the system to
check for conflicts and make writes visible to other transactions.

2. A committed transaction’s writes must be made atomically visible across all machines
in the system.

These challenges motivate the design of tasc, which we introduce next in §3.

9

Chapter 3

Achieving Scalable Transactional
Isolation

In this chapter, we discuss how tasc provides stronger isolation for serverless computing
through a scalable transactional shim. We first present the system API (§3.1), architec-
ture (§3.3), and protocols (§3.4). Then, we formally state the guarantees tasc provides
(§3.5). Finally, we discuss how tasc can autoscale up and down as the underlying serverless
application’s workload changes dynamically (§3.6).

3.1 API

tasc provides a transactional key-value store API shown in Table 3.1. The typical tasc
client is a serverless function or chain of functions (i.e., AWS Lambda invocation(s)). To
achieve atomicity, tasc requires clients to encapsulate their storage operations within a
transaction.

Start. Clients start a new transaction by calling StartTransaction(), which returns a glob-
ally unique transaction ID. We refer to the transaction ID as TID . It is defined as follows:
〈uuid, nodeID〉, where uuid is a unique local identifier and nodeID is a globally unique iden-
tifier for the node that generates the TID . The node use its local clock to generate a begin
timestamp that is used for read (§3.4.1) and commit (§3.4.3) operations to ensure snapshot
isolation. tasc does not require clocks to be synchronized for correctness. In §3.3 we discuss
which tasc component is responsible for generating the TID and begin timestamp.

Get / Put. Clients can read and write with the Get() and Put() API calls. As a mecha-
nism to ensure transactional isolation, writes are maintained in transaction-private storage
by tasc until the transaction commits.

Abort. Clients can decide to abort transactions by calling AbortTransaction(). This will

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 10

API Description
StartTransaction() -> txid Starts a new transaction and returns a transac-

tion ID.
Get(txid, key) -> value Retrieves key in the context of the transaction

keyed by txid.
Put(txid, key, value) Performs an update for transaction txid.
AbortTransaction(txid) Aborts transaction txid and discards any up-

dates made by it.
CommitTransaction(txid) Commits transcation txid and persists its up-

dates; only acknowledges after all data and
metadata has been persisted.

Table 3.1: tasc offers a simple transactional key-value store API.

lead tasc to discard any writes that have been previously buffered for the transaction.

Commit. Clients must commit transactions by calling CommitTransaction(), which atom-
ically makes their writes visible to other transactions.

3.2 Definitions

In our notation, a transaction’s T ’s TID is denoted by its subscript; transaction Ti has TID i.
We say that Ti is newer than Tj if i > j. As described in §2.3, under snapshot isolation each
transaction is associated with two timestamps: a begin timestamp and a commit timestamp.
We refer to Ti’s begin timestamp as Ti.begin-ts and its commit timestamp as Ti.commit-
ts.

A key without a subscript refers to any version of that key and ki is a version of k that
was written by transaction Ti. Key versions are hidden from users; clients make requests to
read and write keys, and tasc determines which versions are compatible with each request.
A key version ki is defined as: 〈k, Ti.commit-ts, i〉. Thus, two key versions ki and kj
are first compared by ki.commit-ts and kj.commit-ts (i.e., the commit timestamps of the
transactions that wrote the key versions). In the unlikely event when the commit timestamps
are equal, tasc compares ki.tid and kj.tid (i.e. the TIDs of the transactions), which are
guaranteed to be unique as TID ’s are globally unique. Each key logically has an initial
NULL version (which need never be stored) and zero or more non-NULL versions written by
transactions.

We define a transaction Ti’s readset, Ti.readset, as the set of all key versions read by
Ti. Similarly, Ti’s writeset, Ti.writeset, is the set of all key versions written by Ti if and
only if Ti is committed. For a key version ki we define its cowritten set, ki.cowritten, as
Ti.writeset. In other words, a key version’s cowritten set is the writeset of the transaction
that wrote that key version.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 11

As described earlier in §2.5, atomic visibility is challenging to enforce for snapshot iso-
lation in a distributed environment. In order for tasc to prevent fractured reads (§1), we
rely on the concept of an Atomic Readset defined by Sreekanti et al. in [19], and present it
below.

Definition 9 (Atomic Readset) Let R be a set of key versions read by a transaction T .
R is an Atomic Readset if ∀ki ∈ R, ∀mi ∈ ki.cowritten,mj ∈ R⇒ j ≥ i.

In other words, consider a transaction T with readset R and assume T wants to read key
m. Suppose there is key version ki previously read by T (i.e. ki ∈ R) that was cowritten
with key version mi. This means there is a committed transaction Ti that wrote k and m.
Thus, T cannot read any version of m that is older than i; otherwise, a fractured read would
occur. Note that Atomic Readsets only provide a lower bound on the version of a key that
a transaction can read. tasc computes upper bounds during the read protocol (§3.4) based
on snapshot isolation.

Other than forming Atomic Readsets and enforcing snapshot isolation, tasc offers a
couple other useful guarantees for application developers. We briefly define them here.
Read Your Writes. Guaranteeing read your writes involves ensuring that transactions
read the most recent version of a key it previously wrote. Read your writes does not apply
if the transaction has not previously written the key.
Repeatable Reads. Repeatable reads requires that if a transaction reads key version ki,
all subsequent reads of k should also return ki (until the transactions writes k, from which
point the read your writes policy applies).

3.3 System Architecture

The system design for tasc is motivated by the dynamic workloads of serverless applications
it is meant to support. In fact, it is crucial for any serverless shim to enable fine-grained
tracking of resources in order for an autoscaling policy engine to transparently provision
resources [7, 13]. One of tasc’s major design principles is the decoupling of the two types of
state any transactional store must track: transaction metadata and data. Figure 3.1 shows
an overview of the system architecture. The following sections (§3.3.1-§3.3.2) introduce the
core components of tasc.

3.3.1 Transaction Manager

Transaction managers are responsible for storing transaction metadata. In order to provide
snapshot isolation, transaction managers keep track of the transaction ID, begin timestamp,
and commit timestamp for each transaction they are in charge of. When clients make tasc
API calls, the requests are initially sent to a transaction manager, which then communicates
and coordinates with the other components as necessary. Clients interact with the same

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 12

Figure 3.1: tasc system architecture.

transaction manager for the entire transaction. For a transaction Ti, the responsible trans-
action manager uses a write buffer, Ti.writebuffer, to hold any writes until Ti commits
or aborts. The transaction manager also tracks the transaction’s readset, Ti.readset, and
the cowritten set, ki.cowritten, for each key version ki in the readset in order to maintain
an Atomic Readset as defined above in Definition §9.

Since it can be inefficient to access each ki.cowritten, transaction managers use a map
called the Ti.cowrittenmap. For each key version kj in Ti.readset, and for each key m
in kj.cowritten, there is a map entry for m in Ti.cowrittenmap. The value in the map
is the maximum key version of m found across all of the cowritten sets, as this provides
the lower bound for the version of m that Ti is allowed to read to ensure atomic readsets.
Consider the following example to understand how Ti.cowrittenmap is determined.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 13

API Description
Read(txid, key) -> keyVersion Determines the valid key version for transaction

txid to read key.
Validate(txid, writeset) -> value Determines whether or not transaction txid can

commit.
Finish(txid, outcome) Finishes transaction txid based on its final

outcome.

Table 3.2: Version Indexer internal API.

Let Ti.readset = {k1, j2}, k1.cowritten = {a1, b1}, and j2.cowritten = {b2, c2}.
This means there will be an entry for keys a, b, and c in Ti.cowrittenmap. Determining
Ti.cowrittenmap[a] and Ti.cowrittenmap[c] is trivial since there is only one version of
each key across all the cowritten sets for a key in Ti.readset. For Ti.cowrittenmap[b],
we store the maximum (i.e. newest) version of b found across all of the cowritten sets for a
key in Ti.readset, which is b2. Thus, Ti.cowrittenmap = {a : a1, b : b2, c : c2}.

3.3.1.1 Transaction Manager Load Balancer

tasc uses a load balancer to load balance StartTransaction API calls across the transaction
managers. After the transaction manager that handles the StartTransaction request returns
its address in the response, the client can send subsequent request directly to the transaction
manager.

3.3.2 Version Indexer

Version indexers track which versions ki exist for each key k. They maintain a committed
key version index and a pending key version index to track which key versions exist for
committed and pending transactions. Committed transactions have completed the commit
process, while pending transactions are still undergoing the commit process. The version
indexers use this information to perform two important task. The first task is to determine
the key version a transaction Ti should read based on Ti.begin-ts and Ti.readset. The
second task is to validate whether or not a transaction can commit based on snapshot
isolation’s rules described in §2.3. Table 3.2 shows the internal version indexer API, which
is used by other tasc components during the read and commit protocols discussed in §3.4

3.3.2.1 Version Indexer Routing Layer

In order to minimize the number of nodes that are involved in the commit protocol (§3.4),
tasc shards the key version indexes across the version indexers. Our tasc implementation
uses the Anna KVS [21] hash ring to perform hash partitioning. The hash ring allows for

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 14

simple routing queries to lookup which version indexer is in charge of a particular key. For
the remainder of this thesis, we refer to the version indexer routing layer as the virl.

3.3.3 Executor

Executors are a stateless component that receive transaction outcomes (i.e. commit or
abort) from transaction managers and notify the relevant version indexers. We defer further
discussion about executors to §3.4.3.

3.3.4 Monitor and Cluster Manager

The monitor is responsible for collecting various performance metrics from each component
in the cluster, which it then provides to the cluster manager. The cluster manager uses the
statistics from the monitor to feed to its autoscaling policy engine, which determines when
tasc components should be added or removed from the cluster. The cluster manager is then
responsible for overseeing the scaling process, which we discuss further in §3.6.

3.4 Protocols

In this section we present details on how tasc performs reads (§3.4.1), writes (§3.4.2), com-
mits (§3.4.3), and aborts (§3.4.4). When a client makes the relevant API call for transaction
Ti, the request is sent directly to the transaction manager that handled the StartTransaction
API call for Ti.

3.4.1 Read Protocol

When the transaction manager receives a read request for transaction Ti and key k, it first
checks if k ∈ Ti.writebuffer (i.e. read your writes applies) or k ∈ Ti.readset (i.e.
repeatable reads applies). If read your writes applies, the transaction manager returns the
value stored in Ti.writebuffer. If repeatable reads applies, the transaction manager must
fetch the key version found in Ti.readset from storage. As an optimization, transaction
managers can maintain a read cache to improve the performance of repeatable reads.

When neither of the above cases applies, the transaction manager sends a read request to
the appropriate version indexer. The transaction manager first uses the virl to lookup the
version indexer responsible for key k. As an optimization, transaction managers can store an
virl cache. In §3.6 we discuss when and how an virl cache would need to invalidate entries
in the event that version indexers join or leave the cluster. Before sending a read request to
the version indexer, the transaction manager uses Ti.cowrittenmap to determine if there
exists a lower bound for the version of k that Ti can read based on Definition 9. Then,
the transaction manager sends a read request to the version indexer with the following
parameters: k, Ti.readset, T.begin-ts, and the lower bound if it exists.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 15

The version indexer takes the read request parameters to form the lower bound (if it
exists) and the upper bound. The upper bound is Ti.begin-ts, as snapshot isolation requires
that Ti can only read updates from a committed transaction Tj, such that Tj.commit-ts
< Ti.begin-ts. The version indexer then uses k.committed-kvi, which is the set of key
versions of k found in the committed key version index (§3.3.2), to determine the key versions
kj that exist within the bounds. Version indexers return the most recent version of k that
falls within the bounds.

Suppose the version indexer finds a candidate key version ka that falls within the com-
puted bounds. The version indexer must also verify that Ti.readset ∪ ka is an Atomic
Readset per Definition 9. This involves ensuring that @ma ∈ ka.cowritten, such that
mb ∈ Ti.readset and a < b. We show below that there always exists a key version ki that
satisfies the upper bound and Atomic Readset requirements 1.

Theorem 5 Given k /∈ Tj and Tj, ∃ki, such that (1) Ti.commit-ts < Tj.begin-ts and (2)
Tj.readset ∪ ki is an Atomic Readset.

Proof. Assume by induction that Tj.readset is an Atomic Readset. Every key k in tasc has
an initial key version kNULL. Condition (1) is guaranteed since TNULL.commit-ts < Tj.begin-
ts. Condition (2) is guaranteed by showing that kNULL satisfies the Atomic Readset require-
ment from Definition 9. The requirement ∀mNULL ∈ kNULL.cowritten, ml ∈ Tj.readset
=⇒ l ≥ NULL is trivially held true, since kNULL.cowritten ∈ ∅. Thus, Tj.readset ∪ kNULL
is an Atomic Readset and both conditions are satisfied. �

On the other hand, due to the challenges presented in §2.5 regarding implementing snap-
shot isolation in a distributed environment, it is possible that there does not exist a key
version, ki that satisfies the lower bound provided in the read request. Version indexers ad-
dress this case by blocking the request and periodically checking to see if newer key versions
have been added to k.committed-kvi. The indexer will finally timeout and return NULL.
We leave the decision to retry the read request to the client. We revisit this scenario in
§3.5.4 and present a mitigation strategy.

Once the version indexer has identified a valid key version ki, it returns the following
information: ki and ki.cowritten. The transaction manager uses this information to
update Ti.cowrittenmap as necessary. For each mi ∈ ki.cowritten, the transaction
manager updates Ti.cowrittenmap if m 6∈ Ti.cowrittenmap ∨ Ti.cowrittenmap[m] <
mi. In other words, the transaction manager adds mi if no other key in Ti.readset was
cowritten with m or if mi is newer than the existing key version for m in Ti.cowrittenmap.
Finally, the transaction manager uses ki to fetch the value from storage and returns it to
the client 2. As an optimization, the transaction managers maintain a read cache to improve

1Note that for efficiency, tasc does not track ki.cowritten for each key k; instead, indexers simply
use Ti.writeset to determine ki.cowritten. As an optimization, version indexers maintain a transaction
writeset cache.

2Recall that tasc clients have no notion of a key version, and simply receive a value (or NULL) in response
to Get API calls.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 16

Algorithm 1 TransactionManagerRead: For a key k and transaction Ti, return the value
for kj such that snapshot isolation is enforced and that the readset R combined with kj does
not violate Definition 9.
Input: k,R,WriteBuffer, CowrittenMap,BeginTS, storage
1: if k ∈WriteBuffer then // read-your-write applies
2: return WriteBuffer[k]

3: if k ∈ R then // repeatable-reads applies
4: return storage.Get(R[k])

5: // Determines lower bound for Ti to read k
6: lower := NULL

7: if k ∈ CowrittenMap then
8: lower = CowrittenMap[k]

9: ktarget, ktarget.cowritten := IndexerRead(k, R, BeginTS, lower)
10: // Updates CowrittenMap to determine future lower bounds correctly
11: for mj ∈ ktarget.cowritten do
12: if m /∈ CowrittenMap ∨mj > CowrittenMap[m] then
13: CowrittenMap[m] = mj

14: if ktarget == NULL then
15: return NULL

16: // Update readset
17: R = R ∪ ktarget
18: return storage.Get(ktarget)

read performance. The entire read algorithm that takes place at the transaction manager
and version indexer is shown in Algorithms 1 and 2 respectively.

3.4.2 Write Protocol

When a transaction manager receives a write request for transaction Ti with key k and value
v, it simply adds the write to Ti.writebuffer, overwriting a previous write of k by Ti if
one already exists. Ti’s writes stay in Ti.writebuffer on the transaction manager until Ti
commits (§3.4.3) or aborts (§3.4.4). If the transaction manager fails before Ti commits, Ti
will abort and all writes will be lost, requiring the client to redo the entire transaction. We
defer discussion of failure and recovery to §4.

3.4.3 Commit Protocol

When a transaction manager receives a commit request for transaction Ti, it first generates a
timestamp for Ti.commit-ts. Committing read-only transactions (i.e. Ti.writeset ∈ ∅) is
trivial, as there are no updates to make visible to other transactions in the system. Therefore,
the transaction manager can simply return committed to the client and mark Ti’s metadata
for garbage collection (§6.1). For transactions that perform writes, the transaction manager

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 17

Algorithm 2 VersionIndexerRead: For a key k and transaction Ti, return the key version
kj and its cowritten set such that snapshot isolation is enforced and that the readset R
combined with kj does not violate Definition 9.

Input: k,R,BeginTS, lower, storage
1: committedV ersions := k.committed-kvi
2: candidateV ersions := sort(filter(committedV ersions, kv ≥ lowerBound))
3: for v ∈ candidateV ersions.reverse() do
4: if v.commitTS ≥ beginTS then
5: continue
6: valid := True
7: for mj ∈ kv.cowritten do
8: if mj ∈ R ∧ j < v then
9: valid = False

10: break
11: if valid then
12: return kv, kv.cowritten

13: return NULL, ∅ // No valid versions found

must begin a commit protocol with the relevant version indexers to determine whether
or not Ti can commit. The transaction manager first queries the virl to determine the
version indexer responsible for each key k in Ti.writebuffer. As mentioned in §3.4.1, the
transaction managers can maintain an virl cache, which requires additional maintenance
discussed in §3.6.

After having determined the complete set of relevant indexers, the transaction manager
acts as the coordinator in a Two Phase Commit (2PC) protocol with the version indexers
as participants [10]. 2PC requires that the set of participants does not change one the
protocol begins, but due to tasc’s autoscaling feature, it is possible that the set of version
indexers in the cluster changes during the commit process. We defer discussion about how
tasc achieves correctness despite a dynamically changing set of version indexers to §3.6.3.
As described in §3.3.2.1, the decoupling of transaction metadata and key version metadata
across transaction managers and indexers, along with the sharding of key version indexes
across the version indexers, allows tasc’s commit protocol to scale by pruning the participant
set to only the relevant version indexers. A naive snapshot isolation implementation would
require consensus of all nodes in the cluster to commit a transaction: data storage nodes as
well as coordination handling nodes.

3.4.3.1 Phase One

In the first phase of commit, the transaction manager sends a validate request to the rele-
vant version indexers with the following parameters: TID , Ti.begin-ts, Ti.commit-ts, and
Kx. We define Kx as the set of relevant keys for the version indexer Ix (i.e. all keys k ∈
T.writeset, such that Ix is responsible for k).

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 18

The version indexer validates if Ti can commit by checking for concurrent write conflicts
as described in §2.3. For each key k ∈ Kx, the version indexer checks each key version
kj in k.pending-kvi and k.committed-kvi. Ti cannot commit if ∃kj, kj.commit-ts ≥
Ti.begin-ts ∧ kj.commit-ts ≤ Ti.commit-ts. In other words, Ti cannot commit if a
concurrent transaction Tj writes to a key in Ti.writeset and attempts to commit first. If
the indexer finds no conflicts, for each key k ∈ Kx, it inserts ki into k.pending-kvi and
writes the updated k.pending-kvi to storage for persistence. Note that version indexers
use locks on the pending and committed key version indexes to ensure atomicity across
validation requests. We discuss in §4 why it is important to persist pending and committed
version indexes to storage when they are modified. Once k.pending-kvi has been written
to storage, the version indexer can respond to the transaction manager with a yes vote.
Otherwise, if the version indexer finds a conflict, it does not need to modify (or write to
storage) k.pending-kvi and responds to the transaction manager with a no vote. The
version indexer validation algorithm for the commit protocol is shown in Algorithm 3.

The transaction manager blocks until it receives all yes votes from the indexers or until
it receives the first no vote. The transaction manager will also decide to abort if it reaches
a timeout waiting for a response from an indexer. We defer discussion about how indexers
correctly recover from failure to §4.

3.4.3.2 Phase Two

Commit Optimization. In traditional 2PC, the coordinator collects responses from the
participants and then sends out another round of messages to all participants about the
final outcome of the transaction. The coordinator then waits for an ack from each of
the participants before notifying the client about the transaction outcome. While Phase 1
of tasc’s commit protocol involves all necessary participants, tasc delegates Phase 2 to
a single executor, which was introduced earlier in §3.4.3.2. The motivation for replacing
all participants (i.e. relevant version indexers) with a single executor is to minimize the
communication and coordination cost.

tasc is able to use this modified Phase 2 due to a few key observations that have to
do with snapshot isolation semantics. The transaction manager can respond to the client
that a Ti has committed or aborted once the following steps occur: 1) relevant version
indexers validate Ti, 2) Ti.writebuffer is persisted to storage (if Ti committed), 3)
Ti.outcome is persisted to storage, and 4) eventually, yet definitively, version indexers
are notified about Ti.outcome, causing them to persist their updated committed (and
pending) version indexes, which allow Ti’s updates to be made visible to other transactions
(if Ti committed). Note that Step 4 is not actually required by snapshot isolation, but is a
liveness guarantee that ensures freshness of reads. Step 1 is guaranteed to be complete once
all Phase 1 responses are received from the version indexers. Steps 2 and 3 are guaranteed
to be complete once the appropriate writes are made at the storage layer. Step 4 provides
us with some flexibility, due to the keyword eventually.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 19

Consider the following to understand why tasc’s consistency guarantees are not depen-
dent on how long it takes for Ti’s updates to be made visible to other transactions. We refer
to this time to visibility as Ti.tt-visibility. Snapshot isolation does not prevent trans-
actions from reading stale data. In fact, it would be correct for all transactions to read
kNULL for each key k, since that would trivially satisfy snapshot isolation and Atomic Read-
set requirements, as stated in Theorem 5. However, such a system with Ti.tt-visibility
=∞ would not be useful for any meaningful application. Therefore, tasc aims to minimize
Ti.tt-visibility, while taking advantage of this relaxed constraint.

Executor. Executors act as de facto coordinators for the second round of tasc’s com-
mit protocol. Each executor maintains a list of transactions it is working on. We refer to
this list as the active-list and it is persisted at the storage layer. The location of each
executor’s active-list is configured when the executor starts and it remains fixed across
failures. No tasc component or the client needs to know which executor is in charge of a
particular transaction. In fact, the executors are stateless and can be autoscaled at will. We
defer discussion about scaling executors to §3.6.2 and discuss their fault tolerance in §4.2.3.

Notifying the Client. Once the transaction manager decides on Ti.outcome and has
completed Step 3 from above, it sends a finish request to an executor3 with the follow-
ing parameters: TID , Ti.outcome, and Ti.writeset. The executor appends TID to the
active-list, writes the updated active-list to storage, and responds with an ack. At
that point, the transaction manager responds to the client with Ti.outcome.

The client does not observe the latency of the rest of the actions the executor takes for
Ti, as they are off of the critical path. The transaction manager writes Ti.complete to stor-
age, but this can occur after the client has been notified about Ti.outcome. Ti.complete
indicates that the executor has acked the finish request, and is only used to speed up the
process for recovering from failure (§4.2.1).

Finishing the Transaction. After sending an ack to the transaction manager, the ex-
ecutor will perform its own lookup using the virl to determine which version indexers are
relevant for Ti. This lookup is necessary as the virl’s hash ring may have changed due
to version indexers joining or leaving the cluster. We defer discussion on version indexer
membership change to §3.6. The executor then sends a finish request to each version indexer
with the following parameters: TID , Ti.outcome, Kx, and Ti.writeset (if the outcome
is committed). The definition for Kx is the same as the one provided in round one of the
commit protocol (§3.4.3.1).

When a version indexer receives a finish request with T.outcome = committed,
∀ki ∈ Kx, it copies ki from k.pending-kvi to k.committed-kvi and writes the updated
k.committed-kvi to storage. At that point, Ti’s writes are visible to other transactions,

3tasc has an executor load balancer to load balance finish requests from transaction managers to the
executors.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 20

Algorithm 3 Validate: Given transaction Ti and Ti.writeset, returns whether or not Ti
can commit.
Input: WriteSet, BeginTS,CommitTS, storage
1: // Check for write-write conflicts with pending and committed transactions
2: for k ∈WriteSet do
3: versions := k.pending-kvi ∪ k.committed-kvi
4: versions = filter(versions, v.commitTS ≥ BeginTS ∧ v.commitTS ≤ CommitTS)
5: if versions 6= ∅ then
6: return False
7: // No conflicts found
8: for k ∈WriteSet do
9: insert(k.pending-kvi, ki) // Mark Ti’s writes as pending

10: storage.Put(k + ”pkvi”,k.pending-kvi) // Write pending index to storage

11: return True

which concludes step 4 defined above. Note that the read protocol described in §3.4.1 ensures
that read atomic sets are maintained and snapshot isolation is guaranteed even if version
indexers stall for a long time. The version indexer will also add Ti.writeset to its transac-
tion writeset cache, as described in §3.4.1. For both cases T.outcome = committed and
T.outcome = aborted, ∀ki ∈ Kx, the version indexer removes ki from k.pending-kvi
and writes the updated k.pending-kvi to storage. The version indexer finally responds
with an ack.

Once the executor receives an ack from all version indexers, it removes TID from the
active-list and writes the updated active-list to storage. The executor will keep re-
sending finish requests to version indexers it does not receive an ack from, which ensures
Step 4 from above.

3.4.4 Abort Protocol

When a transaction manager receives an abort request for transaction Ti, it simply changes
the status of Ti from running to aborted, in order to prevent clients from unintentionally
making subsequent operations on aborted transactions. All of the transaction metadata for
Ti can be safely deleted either immediately or via a background garbage collector along with
any writes in Ti.writebuffer, which will not be visible to any other transaction.

3.5 Guarantees

In this section, we formally present the guarantees tasc provides (§3.5.1-§3.5.3). We also
discuss a potential downfall for reads and offer a mitigation strategy (§3.5.4).

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 21

3.5.1 Preventing Dirty Reads

tasc prevents dirty reads by ensuring that writes are visible only after commit; before
commit they are buffered at the transaction manager. Line 1 from Algorithm 2 ensures
that for a key k, transactions will only read committed versions of k that are found in
k.committed-kvi.

Users may be concerned about the memory requirements to buffer all transaction writes at
the transaction manager, especially for long-running transactions with large writes (as tasc
does not place any restriction on the size of the write). However, tasc can proactively write
intermediary data to storage without any concern that dirty reads will occur. Key version ki
can be identified in storage by knowing k and Ti’s TID . In fact, as an optimistic optimization,
data can be preemptively written to storage to minimize the time the transaction manager
must wait for storage writes at commit time.

3.5.2 Preventing Fractured Reads

Algorithms 1 and 2 show the read protocol, which prevents fractured reads.

Theorem 6 Given k, R = Ti.readset, and Rnew = Ti.readset after Algorithms 1 and 2
are executed, Rnew is an Atomic Readset, as defined in Definition 9.

Proof. We prove by induction on the size of R.
Base Case. Before the first read is issued, R is empty and trivially an Atomic Readset.

After Algorithms 1 and 2 are invoked for the first read, Rnew contains a single key version,
ktarget, so Theorem 6 holds; Rnew is an Atomic Readset.

Inductive hypothesis. Let R be an Atomic Readset up to this point in the transaction,
and let ktarget be the key version found by Algorithm 2. We show that Rnew is also an
Atomic Readset. We must show that (1) ∀li ∈ R, ki ∈ li.cowritten ⇒ target ≥ i, and (2)
∀ltarget ∈ ktarget.cowritten, li ∈ R⇒ i ≥ target.

Line 8 of Algorithm 1 and line 2 of Algorithm 2 ensure (1), because the lower bound of
target is computed from the largest TID in R that modified k. Lines 7-10 of Algorithm 2
check if each version satisfies case (2). We iterate through all of the cowritten keys of each
candidate version. If any cowritten key is in R, we declare the candidate version valid if and
only if the cowritten key’s version is not newer than the version in R. If there are no valid
versions, we return NULL �

3.5.3 Preventing the Same Consistency Anomalies as Snapshot
Isolation

tasc prevents the same consistency anomalies as snapshot isolation, which we outlined
previously in §2.3, by enforcing snapshot isolation’s rules for reads and commits. Lines
4-5 of Algorithm 2 show that transaction Tj will read key version ki if Ti.commit-ts <

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 22

Tj.begin-ts. Lines 2-6 of Algorithm 3 show that a transaction Ti will only commit if there
is not a concurrent transaction Tj (i.e. Tj.commit-ts ≥ Ti.begin-ts ∧ Tj.commit-ts ≤
Ti.commit-ts), where key k ∈ Ti.writeset ∧ k ∈ Tj.writeset.

3.5.4 Read Liveness Downfall

As mentioned in §3.4.1, it is possible that an indexer is unable to find a valid key version ki
that satisfies the lower bound provided in the read request. Consider the following example.

Suppose initially that k.committed-kvi = {k0} and m.committed-kvi = {m0}4. As-
sume that indexer Ik is responsible for k and Im is responsible for m. Transaction T1 writes
to k and m and is able to commit. Therefore, an executor will send a finish request to Ik
and Im to commit T1, which involves moving the key version from the pending key version
index to the committed key version index for the respective key. Another transaction T2,
with T2.readset = ∅, reads k and then reads m. We consider two cases:

(1) If Ik processes T2’s read request before Ik processes the finish request for T1, T2 will end
up reading k0.

(2) Otherwise, T2 will read k1.

If case (1) applies, T2 must read m0, because {k0,m1} does not form an Atomic Readset
as defined in Definition 9. Likewise, if case (2) applies, T2 must read m1, because {k1,m0}
does not form an Atomic Readset. The problem arises in case (2) if Im has not yet received
or processed the finish request for T1. In that case, Im will find that m.committed-kvi
= {m0}. Therefore, as described in §3.4.1, Im will have to block until m1 is added to
m.committed-kvi, or it must return that no valid versions were found for m (i.e. it
returns NULL).

While this scenario is very unlikely in practice when the system is running without any
failures, the probability increases when indexers start to fail. Therefore, it is necessary to
minimize the recovery time for indexers. We defer discussion to §4 for the steps that need
to take place to detect indexer failure and to restart the node. An optimization that can
be made is to have standby-by replicas of indexers that are ready to immediately take over
in the event of failure. This would add overhead to the commit protocol, by requiring that
updates to the pending and committed key version indexes are made persistent to both
storage and the replica indexers, but would make reads more resilient to this downfall.

3.6 Scalability

tasc is intended to be used by serverless applications that have dynamic workloads; there-
fore, it is necessary to discuss how tasc scales up (and down). We consider when and how

4Note that each key has an initial version NULL that we do not show here.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 23

to scale each component of tasc in §3.6.1-§3.6.3. In our implementation, the cluster man-
ager uses a naive autoscaling policy. Different autoscaling policies can be plugged in, but
discussion about autoscaling policies is beyond the scope of this thesis.

3.6.1 Scaling Transaction Managers

As the number of transactions or the frequency of operations increases in tasc, new trans-
action managers can be added to the cluster. Adding transaction managers does not require
any coordination, as it only involves notifying the transaction manager load balancer about
the new node. Once the new transaction manager is added to the load balancer, new transac-
tions will be sent to it. Scaling down the number of transaction managers is more challenging,
because shutting down a node with active transactions would result in them getting aborted.
Therefore, the first step to take to remove transaction manager M from the cluster is to re-
move it from the transaction manager load balancer. Once that occurs, no new transactions
will be sent to M . Then, M can be safely shut down once all of its active transactions have
completed. The cluster manager logs any soft state to the storage layer in case it fails while
waiting for the transaction manager to complete its active transactions.

3.6.2 Scaling Executors

Scaling the number of executors simply involves starting a new executor and adding it to the
executor load balancer described in §3.4.3. At that point, transaction managers will begin
sending finish requests to the new executor. Scaling down the number of executors is similar
to the equivalent process for transaction managers. Removing executor E from the cluster
first involves removing E from the executor load balancer. Then, E can be shut down once
its active-list becomes empty. The cluster manager logs any soft state to the storage layer
in case it fails while waiting for the executor to have an empty active-list.

3.6.3 Scaling Version Indexers

The indexers are the most difficult component of tasc to scale, because there is a need for
coordination. It is important to understand how the virl performs routing to the indexers
to understand the steps that are necessary to add or remove a version indexer. As described
in §3.3.2.1, the virl consists of a hash ring. The hash ring ensures that if I1 and I2 are part
of the hash ring before any changes, there does not exists a key k, such that I1 is responsible
for k before the change and I2 is responsible for k after the change. This is important as
it minimizes the amount of ownership change that occurs for version indexers with respect
to the keys they are in charge of. We now consider how ownership of keys changes when
indexers are added to and removed from the cluster.

Let X be the set of version indexers in the cluster before any changes. When version
indexer Ij is added to the virl’s hash ring, it is possible ∀Ii ∈ X, ∃ key k, such that Ii was

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 24

responsible for k before the hash ring changed and Ij is responsible for k after the hash ring
changed.

Again, let X be the set of version indexers in the cluster before any changes. When
version indexer Ij is removed from the virl’s hash ring, it is possible ∀Ii ∈ X, ∃ key k, such
that Ij was responsible for k before the hash ring changed and Ii is responsible for k after
the hash ring has changed.

Since the hash ring must change when version indexers are added to or removed from
the cluster, we introduce an epoch number. The epoch number is provided to each version
indexer when it starts, as well as to the the virl. When transaction managers make a routing
lookup request to the virl, they are provided the current epoch number, and store it with
entries in the router cache if the optimization described in §3.4.1 is applied. In addition,
when transaction managers make requests to the version indexers, they must provide the
epoch number returned by the virl for the corresponding routing lookup request. We also
introduce the following rule at the version indexers that if the version indexer’s epoch number
is greater than the request’s epoch number, the version indexer immediately responds with
invalid epoch. This allows transaction managers to invalidate routing cache entries from
previous epochs. If the request’s epoch number is greater than the version indexer’s epoch
number, the version indexer simply drops the request. Finally, each version indexer also
tracks how many active requests they have for each epoch.

The following steps are taken when a new version indexer I is added to the cluster. The
cluster manager logs any soft state to the storage layer in case it fails during the process.

1. The cluster manager creates a new version indexer I, which is configured with the current
epoch number.

2. The cluster manager sends 〈epoch change, ε〉 to the virl to change the epoch number
to ε.

3. The cluster manager sends 〈add indexer, I〉 to the virl, which then adds I to the hash
ring.

4. The cluster manager sends 〈epoch change, ε〉 to all current version indexers to change
the epoch number to ε.

5. The cluster manager waits for all current version indexers to finish all active requests
from the previous epoch number.

6. The cluster manager sends 〈epoch change, ε〉 to I. At this point, I will begin processing
requests, as earlier, it had an epoch number smaller than any requests that may have been
sent to it.

Theorem 7 Given key k and a version joining indexer I, such that version indexer Ik is
responsible for k before I is added to the virl hash ring and I is responsible for k after I
is added to the virl hash ring, it is not possible for Ik and I to simultaneously process a
request for k.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 25

Proof. Let the previous epoch number be ε0 and the new epoch number be ε1. The
ε0 hash ring will route requests for k to Ik, while the ε1 hash ring will route requests to I.
There are two cases to consider:

1. Ik receives a request for k before step 4. In this case, Ik is guaranteed to have finished
processing all such requests for k by the end of step 5.

2. Ik receives a request for k after step 4. In this case, Ik now has an epoch number of ε1, but
these requests have an epoch number of ε0 (otherwise they would not have been routed
to Ik); therefore, Ik will simply drop the requests as described above.

Since Ik is guaranteed to finish processing all of its requests for k by the end of step 5, and
I will not begin processing requests for k (or any other key) until step 6, it is guaranteed
that Ik and I will not simultaneously process a request for k. �

The following steps are taken when a version indexer Ik is removed from the cluster. The
cluster manager logs any soft state to the storage layer in case it fails during the process.

1. The cluster manager sends 〈epoch change, ε〉 to the virl to change the epoch number
to ε.

2. The cluster manager sends 〈remove indexer, Ik〉 to the virl, which then removes Ik
from the hash ring.

3. The cluster manager waits for Ik to finish all active requests from the previous epoch
number.

4. The cluster manager sends 〈epoch change, ε〉 to all indexers (except Ik) to change the
epoch number to ε.

5. The cluster manager shuts down Ik.

Theorem 8 Given key k and a departing version indexer Ik, such that version indexer Ik
is responsible for k before Ik is removed from the virl hash ring and Ij is responsible for k
after Ik is removed from the virl hash ring, it is not possible for Ik and Ij to simultaneously
process a request for k.

Proof. Let the previous epoch number be ε0 and the new epoch number be ε1. The
ε0 hash ring will route requests for k to Ik, while the ε1 hash ring will route requests to Ij.
There are two cases to consider:

1. Ij receives a request for k before step 4. In this case, Ij still has epoch number ε0, but
the request has epoch number ε1, so the request is dropped.

2. Ij receives a request for k after step 4. In this case, Ij processes the request, because its
epoch number is now ε1 and is equal to that of the request.

CHAPTER 3. ACHIEVING SCALABLE TRANSACTIONAL ISOLATION 26

Since Ik is guaranteed to finish processing all of its requests for k by the end of step 3, and
Ij will not begin processing requests for k until step 4, it is guaranteed that Ik and Ij will
not simultaneously process a request for k. �

Theorems 7 and 8 guarantee that for each key k, only one version indexer will be respon-
sible for it at a time, which ensures the safety and correctness of tasc’s scaling process for
indexers.

27

Chapter 4

Fault Tolerance

Now, we turn to guaranteeing fault tolerance for the tasc protocols introduced previously in
§3. To prove safety we must ensure that tasc prevents dirty reads, fractured reads, and reads
in violation of snapshot isolation in the presence of failure, and durability is guaranteed. tasc
prevents dirty reads by ensuring that writes are visible only after commit; before commit
they are buffered at the transaction manager. tasc prevents fractured reads and ensures all
reads follow snapshot isolation through the read protocol described in §3.4.1. Demonstrating
durability is more involved; therefore, we dedicate the rest of this chapter to proving that
once a client learns that Ti has committed, Ti’s updates are guaranteed to be persistent and
visible to other transactions.

4.1 Fault Detection

Before discussing the various failure cases that can occur in tasc, we introduce the process
used to detect failure. tasc is deployed using Kubernetes [14], a cluster management tool
with its own fault detector. We rely on Kubernetes’ default policy of restarting failed pods
for all core tasc components: transaction managers, version indexers, and executors. We
defer studying the impact of failure detection and recovery on tasc’s performance to §5.

4.2 Failure Cases and Correctness

In order to prove durability, we consider failures at each component: transaction manager,
version indexer, and executor in the following sections (§4.2.1-§4.2.3).

4.2.1 Transaction Manager Failures

We rely on the finite state machine diagram shown in Figure 4.1 to guide our discussion
about transaction manager failure and recovery. One of the assumptions we make in tasc
is that if the transaction manager responsible for transaction Ti fails before the client is

CHAPTER 4. FAULT TOLERANCE 28

able to send a Commit API call, all state for Ti is lost and the transaction is aborted.
Clients can detect that a transaction manager has failed either through a broken connection,
since our implementation uses gRPC [11] for communication between clients and transaction
manager, or through an observed timeout. If the failure is detected during a Commit API
call, the client must initiate the Transaction Resolution Process, which we refer to as the trp.

The trp involves the following steps:

1. The client detects that transaction manager Mi has failed during the Commit API call
for transaction Ti.

2. The client contacts the transaction manager load balancer (§3.3.1.1) to discover a new
transaction manager Mj.

3. The client sends an inquiry request to Mj to learn about the outcome of Ti.

4. Mj checks if Ti.outcome has been written to storage (completion of Step 3 in Figure 4.1),
and if it does it checks if Ti.complete has been written to storage (completion of Step
5 in Figure 4.1). One of the following three cases will apply, and we identify which states
from Figure 4.1 they correspond to.

a. If Ti.outcome does not exist, that means Ti must be aborted, because Mi did not
finish writing Ti.writeset to storage. Therefore, Mi did not send any finish request to
an executor for Ti. As a hint for future resolution efforts, Mj will write Ti.outcome
to storage with the value aborted, and to recover resources Mj will send a finish
request to an executor for Ti. Once the ACK from the executor is received, Mj will
write Ti.complete to storage before notifying the client that Ti has aborted.

This case corresponds to failure during states 1-3.

b. If Ti.outcome exists, but Ti.complete does not exist, it is possible that Mi failed
before sending a finish request to an executor. Therefore, Mj will send a finish request
for Ti to an executor to ensure that all version indexers learn about Ti.outcome and
take the appropriate steps. Even if Mi had managed to send out the finish request
to an executor, it is safe for the version indexers to receive redundant messages about
Ti.outcome, since the version indexer finish process is idempotent, as described in
§3.4.3. Finally, Mj can respond to the client with Ti.outcome.

This case corresponds to failure during state 4.

c. If Ti.complete exists, Mj simply responds to the client with Ti.outcome.

This corresponds to failure after state 5.

The enumeration of the above cases proves that tasc will eventually and correctly can
correctly recover from the failure of transaction managers through the trp. Importantly,
note that the trp is idempotent and reentrant: it works properly regardless of when or how
often it is invoked.

CHAPTER 4. FAULT TOLERANCE 29

Figure 4.1: The finite state machine diagram for the transaction manager.

4.2.2 Version Indexer Failures

When Kubernetes detects that a version indexer has failed, it will simply restart the pod.
Restarting the version indexer pod does not require any changes at the virl, because Ku-
bernetes ensures that pods have the same cluster IP upon restart. The cluster IP addresses
are the ones that are provided by the virl to the transaction managers on lookup requests.
We consider two cases for version indexer failure:

1. If a version indexer fails before sending out its vote to the transaction manager, the
transaction manager will observe a timeout and decide to abort the transaction. Even
if the version indexer had managed to update the pending key version index(es) and
persisted them to storage, the second phase of the commit protocol will ensure that the
version indexer ultimately aborts the transaction, which means the relevant key versions
will be deleted from the pending key version indexes.

CHAPTER 4. FAULT TOLERANCE 30

2. If a version indexer fails after it has sent its vote to the transaction manager, tasc ensures
that the version indexer will take the appropriate action during the second phase of the
commit protocol, as the executor for the transaction will keep resending finish requests
until the version indexer is restarted and performs the action.

By persisting the pending key version indexes to storage before sending the transaction
manager its vote, the version indexer ensures that conflicting transactions are not allowed to
commit and that ultimately the transaction’s updates are visible if the transaction manager
decides to commit. Similarly, the version indexer persists the updated committed key version
index before responding with an ACK to the executor when processing a finish request for
a committed transaction. Therefore, tasc is able to guarantee that if a client learns that
transaction Ti has committed, the appropriate key version indexes will be updated and
persistently stored even if relevant version indexers fail.

An important consideration to make is what happens to tasc’s operations between the
time that a version indexer fails and restarts. We briefly discuss each operation below.

Read. If the version indexer Ik for key k fails, reads for k will be unavailable until Ik
restarts. However, an optimization tasc can perform is if the transaction manager M ob-
serves that Ik is unresponsive, M can send the read request for k to another version indexer
Ij. It is safe for Ij to perform the read request for k, as the version indexer simply needs to
fetch k.committed-kvi from storage (§3.4.1). Since Ij does not modify k.committed-kvi,
it will not conflict with any operations Ik resumes when it restarts. The correctness of this
process can also be exploited for performance gain in the absence of failures.

Write. Writes are unaffected, because they do not involve the version indexer and are
buffered at the transaction manager as described in §3.4.2.

Commit. If version indexer Ik fails, we only need to consider the commit impact on a
transaction Ti such that k ∈ Ti.writeset. Otherwise, Ik would not be involved in the
commit process for Ti and the commit can proceed as normal. We now consider two cases
for version indexer failure given the condition above applies.

1. If the transaction manager M is in state 1-2 from Figure 4.1 when Ik fails, transaction Ti
will abort since M will observe a timeout while waiting for Ik’s validation vote. Note this
means that all new transactions that attempt to write to a key managed by Ik are doomed
to abort while Ik is down. As a ”pessimistic” optimization, the transaction managers can
be warned of the state of Ik and abort such transactions preemptively upon any write
attempt to reduce wasted resource utilization.

2. If the transaction manager M is in state 3-6 from Figure 4.1 when Ik fails, that means
Ik has already sent its validation vote to M . Therefore, Ik’s failure does not affect the
commit process for Ti. Even if Ik remains in the failed state when the executor for Ti sends

CHAPTER 4. FAULT TOLERANCE 31

a finish request, the outcome of Ti will be correct, as the executor will keep resending the
finish request until it receives a response as described in §3.4.3.

4.2.3 Executor Failures

There are two cases for an executor to fail when it is performing a finish request of transaction
Ti.

1. The executor fails before receiving all relevant version indexers’ ACKs, which prevents
it from deleting the TID from the active-list (§3.4.3), and persisting the updated
active-list to storage.

In this case, the restarted executor will notice that the TID for Ti is still in the active-
list due to the bootstrapping process described in §3.4.3. Thus, the executor will resend
finish requests to all relevant version indexers, which will result in version indexers per-
forming the correct action. The finish requests are idempotent at the version indexers, so
it is safe for a version indexer to receive multiple finish requests for the same transaction.

2. The executor fails after receiving all relevant version indexers’ ACKs, which prevents it
from deleting the TID from the active-list, and persisting the updated active-list
to storage.

In this case, the version indexers are guaranteed to have taken the correct action since all
ACKs were received. Therefore, there is no further action to be taken for Ti.

32

Chapter 5

Evaluation

In this chapter, we provide a detailed evaluation of tasc. In order to measure tasc’s
overhead of enforcing snapshot isolation, we compare its performance to aft [19], which
provides read atomic isolation, a weaker consistency model. Since both shims offer flexibility
to run on various serverless storage backends, we configured them to run on anna kvs [21],
a highly performant, scalable cloud key-value store that provides eventual consistency. To
replicate the serverless application environment, the clients were AWS Lambda invocations
in all experiments.

First, we measure tasc’s performance overhead compared to aft and anna kvs (§5.1).
Then, we evaluate tasc’s scalability (§5.2) by carefully studying the impact of scaling each
core tasc component described in §3. Finally, we measure tasc’s ability to recover quickly
from failure (§5.3).

tasc is implemented in under 3,000 lines of codes and is deployed using Kubernetes [14].
We use a stateless load balancer to route StartTransaction (§3.1) requests to transaction
managers in a round-robin manner. All experiments were run in the us-east-1a AWS
availability zone (AZ). Each transaction manager, indexer, and executor ran on a c5.2xlarge

EC2 instance with 8vCPUs (4 physical cores) and 16GB of RAM.

5.1 Overhead

We measure the performance overheads of tasc in comparison to aft when running both
shims on top of anna kvs. In all of our experiments, we measure the latency observed
by serverless clients (i.e. AWS Lambda invocation), and do not include any overhead cost
Functions-as-a-Service platforms may incur in creating the clients.

5.1.1 Transaction Latency

We first compare the cost of writing to tasc interposed on anna kvs to the the cost of
writing to aft interposed on anna kvs and to the cost of writing to anna kvs directly.

CHAPTER 5. EVALUATION 33

Figure 5.1 shows the median and 99th percentile latencies for write-only transactions with 1,
5, and 10 writes respectively. As expected, writes to anna kvs scale linearly. The overhead
of aft and tasc is largely attributed to the round trip time (RTT) of three API calls
(Start, Write, and Commit) involved in the transaction. tasc is able to closely match aft’s
performance for writes. The additional latency penalty of tasc can be attributed to the
RTT between the transaction manager and the indexer, as well as the cost of persisting the
pending version indexes to storage. It is also important to note that tasc writes data and
pending version indexes to storage in parallel, which allows it to scale better than linearly
as the number of writes in a transaction increases.

We next compare the cost of reading from tasc interposed on anna kvs to the the cost
of reading from aft interposed on anna kvs and to the cost of reading from anna kvs
directly. Figure 5.2 shows the median and 99th percentile latencies for read-only transactions
performing 1, 5, and 10 reads respectively. Again, as expected, reads from anna kvs scale
linearly. Once again, both aft and tasc have an overhead cost that is partially attributed
to the RTT of the transaction’s API calls. The latency penalty of tasc in comparison to aft
increases linearly as the number of reads increases, by a factor of about 3×, because tasc’s
read protocol (§3.4.1) involves fetching metadata, such as the committed version indexes of
the keys being read and the transaction writeset of each candidate key version, from storage.

5.1.2 Data Skew

We now focus on evaluating the effect of the workload’s access skew on tasc’s performance.
In this experiment, each transaction performed 1 read and 1 write. We measured 3 Zip-
fian distributions: 1.0 (lightly contended), 1.5 (moderately contended), and 2.0 (heavily
contended). Figure 5.3 shows the median and 99th percentile latencies of tasc and aft
at various Zipfian distributions. tasc’s latency decreases as the workload becomes more
contended, because the committed version indexes are cached at the indexer after the first
access.

As described in §2.3, snapshot isolation aborts transactions that write to keys previously
written to by a concurrent transaction. Thus, we next study the impact of workload con-
tention level on the abort rate. In this experiment, we deployed 5 parallel clients to perform
1000 transactions each consisting of 3 writes. Figure 5.4 shows the percent of transactions
that abort for the various Zipfian distributions. As expected, the abort rate increases expo-
nentially as the workload becomes highly contended. At a high level, this result is not specific
to tasc: it’s simply the pitfall that arises when using snapshot isolation to protect highly-
contended transactions. For extremely high contention, other transactional techniques may
be required that more explicitly sequentialize the transactions being issued [8].

CHAPTER 5. EVALUATION 34

Figure 5.1: Median and 99th percentile latency for tasc over Anna with varying number of writes
in a transaction. Compared with aft over Anna and Anna directly. Numbers are reported from
running 1,000 transactions.

5.2 Scalability

In this section, we focus on evaluating how well tasc scales, as that is a crucial aspect of
any system meant to support serverless applications with dynamic workloads.

5.2.1 Determining Optimal Cluster Configuration

For systems like aft, where there is only one component, evaluating scalability amounts to
measuring the peak throughput as the number of servers are increased. However, in tasc,
there are three core components: transaction managers, version indexers, and executors,
that need to be configured. Therefore, it is necessary to first identify the target ratio of
each component with respect to each other by measuring the component’s impact on the
overall throughput of the system. We make the assumption that each component has a linear
relationship with the overall throughput of the system, so we use linear regression to model
tasc’s throughput as a function of the count of each core component. We derived a target
ratio of 2 transaction managers, 3 version indexers, and 1 executor.

CHAPTER 5. EVALUATION 35

Figure 5.2: Median and 99th percentile latency for tasc over Anna with varying number of reads
in a transaction. Compared with aft over Anna and Anna directly. Numbers are reported from
running 1,000 transactions.

5.2.2 Cluster Scalability

Using the linear relationship we derived, we define a tasc cluster size of 1 to consist of 2
transaction managers, 3 version indexers, and 1 executor. On the other hand, an aft cluster
size of 1 simply consists of 1 aft node. Figure 5.5 shows how the peak throughput changes
as we increase the cluster size for tasc and aft. From the results we see that aft is able
to scale within 90% of its ideal slope, and tasc is able to scale within 80% of its ideal slope.
Furthermore, tasc is able to seamlessly scale to over 15,000 transactions per second. We
originally intended to demonstrate tasc’s scalability beyond 15,000 transactions per second,
but were restricted by AWS resource limits.

5.2.3 Cluster Change

Since tasc is meant to support serverless workloads, it is important to measure how quickly
tasc is able to scale up its cluster and what the impact on throughput is during that period
of time. As described in §3.6, scaling up transaction managers and executors does not require
any coordination, so we focus on the interesting case of adding an indexer to the cluster.
In this experiment, we begin with a moderately contended workload; then, we transition

CHAPTER 5. EVALUATION 36

Figure 5.3: Median and 99th percentile latency for tasc and aft over Anna. We vary the skew
of the data access distribution to demonstrate the effects of contended workloads.

to a highly contended workload and add a new indexer to the cluster. Figure 5.6 shows
our results. tasc’s throughput falls for a short period of time, due to the scaling process
described in §3.6.3, but it quickly returns the point before the the highly contended workload
began.

5.3 Recovering from Failure

In this experiment, we measure tasc’s ability to recover quickly from failure. We focus
on failure of an indexer to demonstrate what happens to the throughput between the time
of failure and when the indexer is able to recover. Figure 5.7 shows our results. tasc’s
throughput becomes 0 for a small period of time following the crash, but is able to pick back
up as the indexer recovers quickly following the recovery process described in §4.2.2.

CHAPTER 5. EVALUATION 37

Figure 5.4: Abort rate for tasc as data access distribution skew is varied.

CHAPTER 5. EVALUATION 38

Figure 5.5: Throughput of tasc and aft as a function of the cluster size. Cluster size of 1 for
tasc includes 2 transaction managers, 3 version indexers, and 1 executor. Cluster size of 1 for aft
includes 1 aft node.

CHAPTER 5. EVALUATION 39

Figure 5.6: Time series of throughput of tasc as a version indexer is added in response to a high
contention workload.

CHAPTER 5. EVALUATION 40

Figure 5.7: Time series of throughput of tasc during version indexer failure and recovery.

41

Chapter 6

Conclusion

In this thesis, we presented tasc, a low-overhead transactional shim with strong consistency
for serverless computing. tasc interposes between commodity FaaS platforms and storage
engines to provide snapshot isolation. tasc adds minimal overhead to existing serverless ar-
chitectures, while providing atomicity, durability, and strong consistency. We introduced an
architecture that decouples transaction metadata from data, allowing each tasc component
to scale independently and ultimately support thousands of transactions per second.

6.1 Future Work

Although we have provided a strong consistency serverless shim, there are still future avenues
of work to consider.

Garbage Collection. In our current implementation of tasc, we don’t have a garbage
collection for old transactions. With a proper garbage collector optimized for snapshot isola-
tion, it would be possible to estimate the oldest running transaction in a system and reduce
the state that needs to be stored on transaction managers and version indexers, as well the
amount of data stored in the storage layer.

Considering Other Consistency Models. We demonstrate that snapshot isolation pro-
vides stronger isolation for serverless transactions than previous work, while having compa-
rable overheads. However, snapshot isolation is not sufficient for a number of applications
that require strict serializability [9], which suggests the need to investigate providing even
stronger levels of consistency for serverless transactions.

Autoscaling Policy. Our current implementation does not have a robust autoscaling
policy. A more comprehensive autoscaling engine could make decisions that optimize for
maximum performance and minimum cost.

CHAPTER 6. CONCLUSION 42

6.2 Related Works

Serverless Consistency. The rise of serverless computing has led to a need to provide
stronger consistency for serverless computing. AFT [19] provides read atomic isolation,
which is a weaker form of consistency than snapshot isolation, but is able to provide better
performance due to a lack of coordination cost. Beldi [22] offers serializable transactions for
serverless computing by using 2 phase locking and using shared storage as a log.

In-Memory Stores. There has been a recent trend in considering new architectures and
principles in the design of in-memory storage systems. Meerkat [20] is a replicated, in-
memory, transactional system that focuses on ensuring that non-conflicting transactions do
not share resources, which is similar to tasc’s principle of decoupling state across its various
components.

43

Bibliography

[1] A. Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. Tech. rep. USA, 1999.

[2] Azure Functions. https://azure.microsoft.com/en-us/services/functions/.

[3] Peter Bailis et al. “Scalable Atomic Visibility with RAMP Transactions”. In: Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014, pp. 27–38. isbn: 978-1-4503-2376-5.
doi: 10.1145/2588555.2588562. url: http://doi.acm.org/10.1145/2588555.
2588562.

[4] Hal Berenson et al. “A Critique of ANSI SQL Isolation Levels”. In: SIGMOD Rec.
24.2 (May 1995), pp. 1–10. issn: 0163-5808. doi: 10.1145/568271.223785. url:
https://doi.org/10.1145/568271.223785.

[5] E. Brewer. “CAP twelve years later: How the “rules” have changed”. In: Computer
45.2 (Feb. 2012), pp. 23–29. issn: 0018-9162. doi: 10.1109/MC.2012.37.

[6] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made live: an
engineering perspective”. In: Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing. ACM. 2007, pp. 398–407.

[7] Erwin van Eyk et al. “The SPEC Cloud Group’s Research Vision on FaaS and Server-
less Architectures”. In: Proceedings of the 2nd International Workshop on Serverless
Computing. WoSC ’17. Las Vegas, Nevada: Association for Computing Machinery,
2017, pp. 1–4. isbn: 9781450354349. doi: 10.1145/3154847.3154848. url: https:
//doi.org/10.1145/3154847.3154848.

[8] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. “High Performance Trans-
actions via Early Write Visibility”. In: Proc. VLDB Endow. 10.5 (Jan. 2017), pp. 613–
624. issn: 2150-8097. doi: 10.14778/3055540.3055553. url: https://doi.org/10.
14778/3055540.3055553.

[9] Alan Fekete et al. “Making Snapshot Isolation Serializable”. In: ACM Trans. Database
Syst. 30.2 (June 2005), pp. 492–528. issn: 0362-5915. doi: 10.1145/1071610.1071615.
url: https://doi.org/10.1145/1071610.1071615.

https://azure.microsoft.com/en-us/services/functions/
https://doi.org/10.1145/2588555.2588562
http://doi.acm.org/10.1145/2588555.2588562
http://doi.acm.org/10.1145/2588555.2588562
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/568271.223785
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/1071610.1071615

BIBLIOGRAPHY 44

[10] J. N. Gray. “Notes on data base operating systems”. In: Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1978, pp. 393–481. doi: 10.1007/3-540-08755-
9_9. url: https://doi.org/10.1007/3-540-08755-9_9.

[11] gRPC: A high performance, open source universal RPC framework. https://grpc.
io/.

[12] Theo Haerder and Andreas Reuter. “Principles of Transaction-Oriented Database Re-
covery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), pp. 287–317. issn: 0360-0300. doi:
10.1145/289.291. url: https://doi.org/10.1145/289.291.

[13] Eric Jonas et al. Cloud Programming Simplified: A Berkeley View on Serverless Com-
puting. Tech. rep. UCB/EECS-2019-3. EECS Department, University of California,
Berkeley, Feb. 2019. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/
EECS-2019-3.html.

[14] Kubernetes: Production-Grade Container Orchestration. http://kubernetes.io.

[15] AWS Lambda. https://aws.amazon.com/lambda/.

[16] Make a Lambda Function Idempotent. https://aws.amazon.com/premiumsupport/
knowledge-center/lambda-function-idempotent/.

[17] Yi Lin et al. “Snapshot Isolation and Integrity Constraints in Replicated Databases”.
In: ACM Trans. Database Syst. 34.2 (July 2009). issn: 0362-5915. doi: 10.1145/

1538909.1538913. url: https://doi.org/10.1145/1538909.1538913.

[18] Masoud Saeida Ardekani et al. “On the Scalability of Snapshot Isolation”. In: Euro-Par
2013 Parallel Processing. Ed. by Felix Wolf, Bernd Mohr, and Dieter an Mey. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 369–381. isbn: 978-3-642-40047-6.

[19] Vikram Sreekanti et al. “A Fault-Tolerance Shim for Serverless Computing”. In: Pro-
ceedings of the Fifteenth European Conference on Computer Systems. EuroSys ’20. Her-
aklion, Greece: Association for Computing Machinery, 2020. isbn: 9781450368827. doi:
10.1145/3342195.3387535. url: https://doi.org/10.1145/3342195.3387535.

[20] Adriana Szekeres et al. “Meerkat: Multicore-Scalable Replicated Transactions Follow-
ing the Zero-Coordination Principle”. In: Proceedings of the Fifteenth European Con-
ference on Computer Systems. EuroSys ’20. Heraklion, Greece: Association for Com-
puting Machinery, 2020. isbn: 9781450368827. doi: 10.1145/3342195.3387529. url:
https://doi.org/10.1145/3342195.3387529.

[21] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. “Autoscaling Tiered
Cloud Storage in Anna”. In: Proc. VLDB Endow. 12.6 (Feb. 2019), pp. 624–638. issn:
2150-8097. doi: 10.14778/3311880.3311881. url: https://doi.org/10.14778/
3311880.3311881.

[22] Haoran Zhang et al. “Fault-tolerant and transactional stateful serverless workflows”.
In: 14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20). 2020, pp. 1187–1204.

https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://grpc.io/
https://grpc.io/
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://kubernetes.io
https://aws.amazon.com/lambda/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://doi.org/10.1145/1538909.1538913
https://doi.org/10.1145/1538909.1538913
https://doi.org/10.1145/1538909.1538913
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387529
https://doi.org/10.1145/3342195.3387529
https://doi.org/10.14778/3311880.3311881
https://doi.org/10.14778/3311880.3311881
https://doi.org/10.14778/3311880.3311881

	saurav-ms-titlepage (2)
	Saurav_MASTERS_THESIS (1)
	Contents
	List of Figures
	List of Tables
	Introduction
	Consistency in Serverless Computing
	Towards Stronger Transactional Isolation
	Thesis Overview

	Background
	Atomicity in Serverless Computing
	Read Atomic Isolation
	Snapshot Isolation
	Comparing Read Atomic Isolation and Snapshot Isolation
	Challenges

	Achieving Scalable Transactional Isolation
	API
	Definitions
	System Architecture
	Protocols
	Guarantees
	Scalability

	Fault Tolerance
	Fault Detection
	Failure Cases and Correctness

	Evaluation
	Overhead
	Scalability
	Recovering from Failure

	Conclusion
	Future Work
	Related Works

	Bibliography

