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Abstract

A Curiosity-Driven Approach for Generating Textual Descriptions of Environments

by

Xinyun(Lily) Zhang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Generating textual descriptions of environments in reinforcement learning can be di�cult,
especially in the absence of explicit signal for recognizing the relationships within them. In
this work, we propose a curiosity-driven approach for collecting the trajectories necessary
for generating textual descriptions of environments. We formulate the task of finding the
exploration policy as a two-player game between the policy and a forward model which
predicts state transitions. In addition, we propose a meta-training scheme allowing them
to adapt to changes in the environment. We also propose a text generation scheme that
helps to generate natural language descriptions from trajectories. Finally, we evaluate our
model in the RTFM domain [65], in which two monster and weapon pairs exist. The agent
is expected to learn a policy that helps it to figure out all the monster and weapon relation
pairs through interaction with the environment and generate a descriptive natural language
document that summarizes all the environment dynamics.
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Chapter 1

Introduction

Environment dynamics are defined as the non-stationary elements in the environment that
are essential to decision making. For instance, imagine a healthcare robot is expected to
pick up a specific kind of medicine for a patient. The robot needs to know which person
needs which kind of medicine in order to pick up the correct one, and what the patient needs
can vary over time due to his or her health conditions. Similarly, in a game environment, a
player is expected to pick up a specific weapon to kill a monster. The player needs to know
which weapon can kill the monster in order to complete the task, and the weapon that can
kill the monster can vary in di↵erent rounds of the game. In our work, we propose a method
that can generate textual descriptions of environment dynamics in a game setting.
Generating textual descriptions of environment dynamics can be useful for real-world many
applications. For example, the document can serve as a guide for an agent in game, which
helps with generalization to new environment instances [65]. It can also be used to generate
a safety guide for humans when a robot explores a dangerous environment, such as a wild
forest, or a battlefield.
Prior work on generating textual descriptions has been limited to recognizing elements in
fixed environments. For instance, image [58, 62, 63, 23, 30, 10] and video captioning [56, 64,
60, 61, 29] have been studied for years, but have been limited to recognizing key elements in
a static setting. There is a clear need for a method for generating textual descriptions of a
dynamic environment from an agent’s trajectories.
We propose a learning framework for generating textual descriptions of environment dynam-
ics from an agent’s trajectories, which includes an exploration policy to collect informative
trajectories, and a text generator to produce the natural language description. Environment
dynamics are defined as the key relationships that need to be identified in order for the agent
to accomplish the goal. For instance, in our environment, environment dynamics is defined
as all the monster and weapon killing relation pairs in the environment. Since it’s not always
possible to define a specific reward function for every environment, we would like the agent
to explore the environment in a self-supervised manner, so that this policy can be easily
generalized to new environments. To do so, We assume the agent is curious, which is an
intrinsic behavior of humans, and propose an approach for the agent to learn an exploration
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policy. We also propose a meta-training scheme to help with the learning, which helps the
agent quickly learn given a novel set of dynamics. We aim to show that the learnt explo-
ration policy successfully recognizes key dynamics of the environment. Finally, we propose
a method to generate the natural language description of environment dynamics from the
agent’s trajectories. We have demonstrated that our text generation approach outperforms
the baseline approach by generating documents that have higher BLEU scores.
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Chapter 2

Related Work

2.1 Language Grounding

Language grounding refers to finding correspondences between language and non-linguistic
modalities, such as images, videos, games, etc. It is essential to many tasks, such as image
captioning [58, 62, 63, 23, 30, 10], video captioning [56, 64, 60, 61, 29], visual question
answering [1, 32, 15], video question answering [28], instruction following [3, 40, 14, 5],
instruction generation [9], policy learning given text that conveys domain knowledge [7,
39], game playing [59], etc. In [65], the agent learns a policy that can be generalized to
new environment instances given a text description about environment dynamics and a
goal, which combines high-level instruction following and learning from domain knowledge.
Inspired by Zhong’s work, we aim to do the reverse of the task, in which the agent is
expected to generate a text description about the environment dynamics by interacting with
the environment.

2.2 Learning by Interaction for Embodied Agents

Work on embodied agents has made huge progress in recent years. Early works used logical
representations of the environment without real-world perception [33, 8], and assumed no
interaction with the environment. Later works used RGB cameras to capture real world
images or simulated environments to enable more realistic perception [50, 16]. Recent works
start to treat agents not as passive executors, but as active learners that can interact with
the environment, such as [66, 18, 38], or humans [55, 48]. In our work, we enable the agent
to learn by interacting with a simulated game environment.
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2.3 Curiosity-Driven Exploration

Curiosity-driven exploration is a well-studied topic in the reinforcement learning. An overview
of the topic was given in [41, 42]. When the extrinsic reward is extremely sparse, or it is
not possible to construct a shaped reward function, the agent’s intrinsic motivation or cu-
riosity to discover novel states becomes essential. Within the curiosity-driven exploration
framework, agents are encouraged to take actions that result in states that are surprising.
A variety of intrinsically motivated reinforcement learning algorithms are proposed in recent
years, including [36, 6, 22, 44, 49], etc. We choose to adapt the curiosity-driven learning
approach proposed by [44], which generates an intrinsic reward signal based on the di�culty
of predicting the consequence of the agent’s own actions. The harder it is to predict the
resulting state, the higher the reward is, since the di�culty of predicting the resulting state
indicates the level of surprise brought by the action.

2.4 Meta Learning

Meta learning has been an active research area for recent years, which has been successfully
applied to many problems, including few-shot learning [57, 53, 46], continual learning [52, 47,
37], unsupervised learning [34], curiosity-driven learning [2], and neural architecture search
[67, 19]. Common meta learning approaches include learning an optimization scheme for
updating model parameters [4, 31], learning good parameter initialization for fast adaption
[12, 13, 24], and learning through external memory updates [27]. We choose to adapt the
external memory approach proposed by [27], and use the hidden state of an LSTM as the
external memory to support meta learning.
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Chapter 3

Task

3.1 Summary of the Task in Zhong et al. 2020

In the Read to Fight Monsters (RTFM) task proposed by Zhong et al. [65], the agent
is presented with text that summarizes environment dynamics, the goal, and environment
observations. Environment dynamics include all the monster and weapon relationships (E.x.
Weapon 1 can kill Monster 1, Weapon 2 can kill Monster 2) and team assignment of each
monster (E.x. Monster 1 belongs to Group 1, Monster 2 belongs to Group 2). the written
goal contains the target group that we want the agent to destroy. By reading the document,
the agent needs to perform the subsequent actions of identifying the target team, identifying
the monsters that belongs to the team, identifying which monster is in the world, identifying
which weapon is e↵ective in killing the monster, picking up the appropriate weapon, and
killing the monster. In each episode, the environment consists of a sample of groups, monsters
and weapons. To ensure the agent does not learn by memorizing, the environment dynamics
di↵er every episode.

3.2 Our Task

Our task is the reverse version of the RTFM task. As opposed to having an agent complete
the goal by reading the document, we would like to have an agent that navigates through the
environment and then generates the document that describes the environmental dynamics
through interaction with the environment (more precisely, by learning to pick up di↵erent
weapons to try battling with the monsters). We remove the team assignment since it’s not
possible for an agent to learn in an episode, and we also remove the goal since the goal
should be specified by the game maker. Therefore, our target document only consists of the
environment dynamics, which are all the monster and weapon pairs.
Mathematically, we have a 4 ⇥ 4 grid world, an agent, two monsters denoted by M1 and
M2, and two weapons denoted by W1 and W2. The document D summarizes the killing
relationships, which are W1 kill M1 and W2 kill W2, and W1, W2, M1, M2 are di↵erent in
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Figure 3.1: RTFM Environment [65]

each episode. At each timestep t, A is given environment observation ot, which summarizes
the locations of the agent, monsters and weapons. It is also given its inventory it, which
contains the weapons the agent currently holds (which is limited to 1 in our case), and the
agent’s position pt. Given the agent’s trajectories {ot, it, pt}t0, we expect to generate the text
that describes the relationships W1 kills M1, W2 kills M2 in natural language.

Our task consists of two subtasks:

1. first, use self-supervised method to learn exploration policy for environment dynamics

2. then, collect the agent’s trajectories using the exploration policy learnt in task 1, and
then transform agent trajectories to textual description of environment dynamics
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Chapter 4

Model for Learning an Exploration
Policy

We propose a model similar to GAN [17], which consists of a policy generator and a forward
model that acts as the discriminator. Let (s, a) denote a state-action pair, with state space
S and action space A. Define policy generator as: ⇡: S ! A. Define forward model as: µ:
S ⇥ A ! S. Define di↵ as a measure of di↵erence between two states. Define re as the true
state output. Define ✓ as the parameters for policy generator, and � as the parameters for
forward model. We frame the learning process as:
min
✓

max
�

- di↵(re(s, ⇡(s)) k µ(s, ⇡(s)))

4.1 Forward Model

The forward model takes in a state-action pair (s, a) and predicts the next state s’. In order
to minimize the di↵erence between the real state and the predicted state, the state output
should be as similar to the real state as possible. In other words, the forward model tries to
output the next state precisely.

4.2 Policy Generator

The policy generator takes in a state s and predicts the best action the agent should take a.
The action should help to maximize the di↵erence between the real state and the predicted
state by the forward model, which means that it should output the action that confuses the
forward model the most, so that the forward model doesn’t know what the next state is
after taking this action. In other words, the forward model serves as a measure of how well
the agent knows about current environmental dynamics, and the policy generator tries to
generate a policy which guides the agent to explore the remaining environmental dynamics
that the forward model doesn’t know about.
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4.3 Meta Training and Model Architecture

Our goal is to make the learning process within each environment dynamics faster and faster.
Therefore, we propose a meta-learning scheme to train both the forward model and the policy
generator.

Motivation for Meta Training

There are two levels of learning happening. The lower level of learning is instance learning.
Within a single set of dynamics, the model should learn all the weapon and monster pairs
by remembering past experience. At the higher level of learning, the model should learn
to learn each environment dynamics faster whenever it encounters a new set of dynamics.
Therefore, the problem can be framed as a meta-learning problem. Within each dynamics,
we use LSTM hidden states to remember all the past experience. Between every set of
dynamics, the model updates its weights to learn faster whenever it encounters a new set of
dynamics.

Data Collection for Forward Model

We frame the training of the forward model as a supervised learning problem. We begin with
data collection. Using a random exploration policy, we collect all trajectories happen within
the same environment dynamics as a single data point, which is a M ⇥ N matrix, where M
= number of dynamics, N = number of episodes per dynamics ⇥ number of timesteps per
episode. Let each state be a tuple of st = (ot, it, pt). Let each trajectory be a tuple of (st�1,
at, st). For every environment dynamics, we start with an empty list, and subsequently
append the trajectory happen at each timestep to the list. For each data point, the list of
(st�1, at) is the input, and the list of (st) is the label.

Algorithm 1 Data Collection Algorithm for Forward Model

INITIALIZE dataset = []
for every environment dynamics do
data = []
for every episode do
for every timestep do
st�1 = [ot�1, it�1, pt�1]
take action
st = [ot, it, pt]
data += [(st�1, at), st]

end for
end for
dataset += [data]

end for
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Architecture of the Forward Model

We first concatenate at with st�1, and then process the combined vector through an LSTM
and two additional linear layers to get the target output state.

Training the Forward Model

We reset the hidden state of LSTM for each data point. In other words, we reset it for each
environmental dynamics.
We frame the measurement of the di↵erence between real and predicted observation as a
multi-label classification problem. We represent both the original and the target observation
as binary vectors, with 1 indicating some monster or weapon is present and 0 otherwise. We
frame that of the inventory in the same way. We use BCE with logits loss as a measurement
of error for both observation and inventory, and the loss are denoted by Lobs and Linv

respectively. Since the agent can only be on one of the grid cells at a time, we frame the
measurement of the di↵erence between real and predicted agent’s position as a single-label
classification problem. The input is the relative original position, and the label is the absolute
target position. We use the cross entropy loss, and the loss is denoted by Lpos. We calculate
the total loss by adding up the three separate losses from observation, inventory, and the
agent’s position, which is denoted by Ltotal, so that:
Ltotal = Lobs + Linv +Lpos

Architecture of the Policy Generator

The policy generator implements actor critic [26], using a LSTM with a MLP feature ex-
tractor. The MLP feature extractor consists of a shared layer, and non-shared layers for the
value network and the policy network.

Training the Policy Generator

We consider two settings of training. In the first setting, We first fully train the forward
model, and then meta-train the policy generator. In the second setting, we jointly train the
forward model and the policy generator from scratch. At each environmental dynamics, we
initialize a zero hidden state. At each timestep, we feed last state, hidden state and action
into the forward model to get a prediction of current state, and an updated hidden state.
Then we get the di↵erence between the prediction and true current state, and award the
policy generator this value.
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Algorithm 2 Meta-Training Algorithm for Policy Generator

for every environmental dynamics do
hidden state = []
for every episode do
for every timestep do
st�1 = [ot�1, it�1, pt�1]
take action
st = [ot, it, pt]
intrinsic reward, hidden state = di↵(forward model(st�1, at, hidden state), st)
agent reward = intrinsic reward

end for
end for

end for
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Chapter 5

Model for Text Generation

We use a Seq2Seq model [54] for transforming the agent trajectories to text description. The
model typically consists of an encoder for encoding context and a decoder for generating the
resulting sequence.

5.1 Data Collection

We collected agent trajectories using a pre-trained model from the RTFM repository. Each
data point consists of all the steps with the same environment dynamics, which share the
same wiki document that describes the environment dynamics. Each step is recorded with
the observation, the inventory, and the positions of every cell relative to the position of the
agent, normalized by the width and height of the grid world.

5.2 Architecture and Training of the Seq2Seq Model

We first fuse the observation ot and inventory it through a fusion module, and then feed
the fused vector through the encoder, and use the output hidden state as the initial hidden
state for the decoder. For each wiki, we remove the last word and add a “START” token in
the beginning as input to the decoder, using the original wiki as the output target. We use
teacher forcing in training, and greedy decoding in evaluation.

Fusion Module

A fusion module is in charge of fusing all the given information and producing a dense vector,
in this case it should process the observation and inventory. In the original work [65], it also
processes the wiki and goal. We try using two versions of fusion modules: the fusion module
of the CNN baseline model and that of the FiLM baseline model from [65], with the removal
of wiki document that describes environment dynamics and goal as input.
The fusion module of the CNN baseline model consists of 5 layers of convolutions with
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channels of 16, 32, 64, 64, and 64, with residual connections from the 3rd layer to the 5th
layer. The initial inputs to the network are the concatenation of observation and inventory,
and the agent’s relative positional feature. At each convolutional layer, we feed in the output
from the previous layer and the agent’s relative positional feature. The inventory is encoded
using a bidirectional LSTM before being fed into the network.
The fusion module of the FiLM baseline replaces the convolutional layers in the CNN model
with a FiLM layer from [45], which has been shown to be highly e↵ective for visual reasoning.
FiLM layer can be used to transform a neural network’s architecture, conditioned on an
arbitrary input. In [65], the combined text which consists of the document D that describes
environment dynamics, inventory i, and goal G are used to modulate observation o and
position p features. Since the agent doesn’t know D and G, we used i to modulate o and p
features.
We choose not to use the fusion module in txt2⇡, which is the third option of model in [65],
because it focuses on capturing three-way interactions between the goal, document describing
environment dynamics, and environment observations. However, we don’t want to feed in
the goal and the wiki document, so the model isn’t suitable for our case.
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Chapter 6

Experimental Setup for Learning an
Exploration Policy

This section describes the details of the experimental setup for learning an exploration policy
for environment dynamics.

6.1 Environment

The environment we evaluate on is similar to the environment of the ’Read to Fight Monster’
task described in [65], with stationary monsters and no group assignments. In the 4 ⇥ 4
grid world, two monsters (M1, M2), two weapons (W1, W2) are present. Each weapon can
be used to kill one of the monsters respectively. An agent is presented in the environment.
The agent has a inventory, which can hold one weapon. There are five actions available for
the agent: LEFT, RIGHT, UP, DOWN, PICKUP. If an agent is on a cell with a weapon on
it, it can choose to pick it up or not. If the agent chooses to pick up a new weapon with
an old weapon already in its backpack, the agent will automatically drop the old weapon
and replace it with the new one. If the agent steps on the same cell with a monster with an
appropriate weapon in its inventory, it will automatically kill the monster. If it encounters a
monster with an empty backpack, or with an inappropriate weapon in its backpack, nothing
will happen. If the agent attempts to step o↵ the grid, nothing will happen.
The environment is built in Stable Baselines [21], a deep reinforcement learning framework
based on OpenAI Baselines [11]. For each environment dynamics we collect 300 timesteps
across episodes, and each episode within it terminates either when the agent discovers all
the weapon and monster relationship pairs, which are 4 pairs in this case (W1 can kill M1,
W2 can kill M2, W1 cannot kill M2, W2 cannot kill M1), or when the maximum number of
30 steps is exceeded. The number of pairs of relationships discovered by the agent is tracked
by a knowledge vector. The knowledge vector is initialized with a zero vector of length 4,
and if a relationship is discovered by the agent, the corresponding component of the vector
will be set to 1. In the settings when external rewards are used, the agent gets a reward of
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+1 whenever a component of the knowledge vector is set to 1.

6.2 Visualization of the Environment

We use PyGame, a game programming python library, to visualize the environment. In
order to create a realistic setting, we render images of monsters, weapons and a robot onto
the grid world. Visualization helps with qualitatively evaluating the model.

6.3 Dataset for the Forward Model

To ensure each episode has the same length, we modified the termination condition a little
bit. Di↵erent from the environment in training setting, each episode only terminates when
it reaches the maximum number of steps of 30, but not when it discovers all the killing
relationship pairs. We conduct the experiments with 2 settings. In the first setting, Each
300 steps, which consists of 10 episodes, is collected as a single data point with the same
environment dynamics. In the second setting, each 600 steps, which consists of 20 episodes
is collected as a single data point. Due to memory limits, the dataset is not collected at
once. In the 300 steps setting, we collect 8000 data points each time, while in the 600 steps
setting, we collect 4000 data points each time. We recollect new dataset every 30 training
epochs.
Class imbalance problem: We’ve noticed that there is an imbalance between the number
of successful killing events and the number of unsuccessful killing events(the events when the
agent attempts to kill a monster with the wrong weapon and doesn’t succeed). Initially, since
we only force an episode to contain at least one killing event by ignoring those that don’t
have one, the number of killing events far exceed non-killing events. To address this issue,
we alternate between gathering episodes with killing events and episodes with non-killing
events, which ensures a balance of killing and non-killing events in our dataset.
We also ensure that the environment dynamics that have appeared in the training set do
not appear in the test set.

6.4 Training Details

For training the forward model, we use standard supervised learning approach with the
ADAM optimizer [25].
We integrate the forward model as part of the environment and use it to calculate the
intrinsic reward for the exploration policy at every timestep. In the joint training setting,
we update it every environment dynamics with the ADAM optimizer. We use di↵erent deep
reinforcement learning algorithms in Stable Baselines to train the policy network, including
A2C [35], Double-DQN [20] and PPO [51]. We use a custom policy network to integrate
an LSTM network to process the sequence of data, and tune it by modifying the number of
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layers for the policy network and value network respectively. The final number of layers is
64 for both the policy network and value network.

6.5 Baseline Methods for Overall Training

Model with Extrinsic Reward: This baseline model rewards the agent extrinsically.
Whenever the agent identifies a new killing relation pair, we give the agent +1 reward.
Model with Intrinsic Reward Only + Separate Training: This model rewards the
agent intrinsically. At each step, we reward the agent with the loss returned by the forward
model, which measures the di↵erence between the predicted state and the real state. We
first fully train the forward model, and then plug it in the policy generator without further
training.
Model with Intrinsic Reward Only + Joint Training: This model also rewards the
agent intrinsically in the same way as the previous model does. The di↵erence is that,
instead of plugging in a fully-trained forward model to the policy generator, we jointly train
both the models from scratch. Within each episode, we update the hidden state of both the
policy generator and the forward model. Between each environment dynamics, we update
the parameters of both models.

6.6 Baseline Methods for Forward Model

To test whether the number of episodes is enough for the model to learn the environment
dynamics, We compare the performance of learning from 10 episodes vs learning from 20
episodes.
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Chapter 7

Experimental Setup for Text
Generation

This section describes the details of the experimental setup for generating text descriptions
from trajectories.

7.1 Dataset

We conduct our experiment with a training dataset consisting of 40000 data points, collected
using the RTFM github repo with a pre-trained txt2⇡ model, which is the model with best
performance in [65] that captures interactions between observations from the environment,
goal and document using FiLM2 layers, which is also proposed in [65]. Using the best-
performing model to generate trajectories ensures the collected trajectories contain useful
information. Each data point consists of trajectories with the same environment dynamics.
Data points have varying lengths, so we pad the data with zeros to the same maximum length
in the dataloader. We extract observation (’name’), inventory (’inv’), descriptive document
(’wiki’) and the relative position matrix (’rel pos’) from the trajectories.
The test dataset contains 200 data points. We also ensure the environment dynamics that
have appeared in training set do not appear in the test set.

7.2 Baseline Methods

Model with Zero Hidden State: This baseline model removes the e↵ect of the encoder,
and consequently removes the e↵ect of the trajectories.
Model with Hidden State from the Trajectories: This model first process the trajec-
tories via the encoder, and uses the hidden state from encoder as the initial hidden state for
the decoder.
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7.3 Details of the Model

For the model with hidden state from the trajectories, we first feed the observation, inventory
and the relative position matrix via the fusion module, and get a resulting vector of size
batch size ⇥ 1 ⇥ 400. Then we process the resulting vector via the LSTM encoder, getting
a hidden state. Finally, we feed the wiki document with ’START’ token added in the front
and last word removed via the LSTM decoder, and initialize the hidden state as the hidden
state from encoder. The encoder only consists of an LSTM layer, while the decoder consists
of a word embedding layer, an LSTM layer, a linear layer that transforms the vector into
the size of the vocabulary (263 in this case, which is measured by extracting the vocabulary
from the RTFM github repo), and then a softmax function which gives us the word with the
highest probability.
For the model with zero hidden state, we set the hidden state to a tuple of zero tensors before
passing to the decoder, so that the decoder gets no information about the trajectories.

7.4 Evaluation Metric

The performance of the model is measured with BLEU score, which is a method for the
automatic evaluation of machine translation [43]. The goal of the BLEU score is to compare
machine translations against human-generated translations. BLEU score ranges from 0 to 1.
The higher the score is, the more similar the predicted sequence is to the target sequence.
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Chapter 8

Experiments

8.1 Performance of Model for Learning an
Exploration Policy

Performance of Model with Extrinsic Reward vs Intrinsic Reward

Figure 8.1: Graph of the number of monster/weapon pairs learnt by the model within 300
steps using extrinsic vs intrinsic reward. The model with extrinsic reward performs better
than the model with intrinsic reward.

We compare the performance of the model with extrinsic reward with the one with
intrinsic reward only. For the model with intrinsic reward, We choose the one with pre-
trained forward model plugged in policy generator over the jointly trained one, since the
first one achieves better experimental result. In the experiment, we record how many pairs
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of monster, weapon relation can be discovered within 300 steps, which consists of 10 episodes,
each with a maximum of 30 steps. Environment dynamics remains the same within the 300
steps. We expect the model with extrinsic reward to outperform the one with intrinsic
reward, and the result confirms that. The result is confirmed by Figure 8.1. We can observe
that as the number of training dynamics increased, the number of monster and weapon
pairs discovered by the agent within 300 steps finally converge to 4, which is the maximum
number of monster and weapon pairs in a 2 agents ⇥ 2 weapons setting with extrinsic reward.
However, the number of monster and weapon pairs discovered by the agent does not increase
over time in the setting with intrinsic reward, which is left for further diagnosis in the next
experiments.

Intrinsic Reward over Time

Figure 8.2: Graph of the intrinsic reward of plugging pre-trained forward model in policy
generator. Reward first increases and later converges, which complies with the fact that the
number of monster/weapon pairs learnt by the model within 300 steps using intrinsic reward
fails to increase after a short time.

We graph the intrinsic reward over time to see the overall trend. If the model with
intrinsic reward works ideally, the intrinsic reward should increase over time. Figure 8.2
shows that the intrinsic reward initially increases over time, but then stays constant later.
This complies with the fact that the number of monster and weapon pairs identified by the
agent within a fixed time length does not increase over time.

Performance of the Joint Training Model

In the previous settings, we plug in the fully-trained forward model in the policy generator.
In this experiment, we jointly train both the forward model and the policy generator from
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Figure 8.3: Graph of the number of monster/weapon pairs learnt by the model within 300
steps using jointly training of forward model and policy generator. The number first decreases
and later converges at a low level, which is worse than the performance of the model with
pre-trained forward model plugged in policy generator.

Figure 8.4: Graph of the intrinsic reward of jointly trained forward model and policy gener-
ator. Reward first increases and later converges.

scratch, updating the parameters of each model every environment dynamics. To our sur-
prise, the number of monster and weapon pairs identified by the agent first decreases over
time, and then converge at a low level. Intrinsic reward in this setting follows similar pattern
to the one in the previous setting, in which it first increases and then stays constant after
convergence.
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Quantitative Performance of the Forward Model

Figure 8.5: Graph of the error of forward model over time. The number of pickup error stays
constant, which meets our expectation. The number of pickup error also stays constant,
which is unexpected, since we expect the number to decrease over time.

We want to check whether the reason for causing the above unexpected result is with the
forward model. We fully train a forward model, and then measure its error rate in killing
events and pickup events over the episodes with the same environment dynamics. We expect
the pickup error rate to stay constant over time, since the e↵ect of PICKUP does not vary
across dynamics and the model should already know ”PICKUP” action means picking up a
weapon after enough training. On the other hand, we expect the killing error rate to decrease
over episodes, since the killing relationships do vary across dynamics. At the beginning, the
model does not know about any environment dynamics, and consequently, is expected to
make errors on whether a weapon is able to kill a monster. After the model has viewed
some episodes, in which it learns which weapon can kill which monster (if a weapon can be
used to kill a monster, the monster will disappear if the agent steps on the monster with
the weapon in its backpack), it should make fewer killing prediction mistakes. Figure 8.5
shows the pickup and killing error rate of a fully-trained forward model with 10 episodes per
environment dynamics. Pickup error rate remains stable as expected, while killing error rate
does not decrease over time, which is unexpected.
One concern that this result raises is that 10 episodes may not be enough for the model to
learn the environment dynamics. To test this hypothesis, we fully trained the forward model
with 20 episodes per environment dynamics. The experimental result shows that the killing
error stays around 0.24 and pickup error rate stays around 0.06, both are nearly constant
without a decreasing trend, which is similar to the previous setting. The result indicates
that the forward model needs further diagnosis.
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Qualitative Performance of the Forward Model

Besides quantitative evaluation, we also qualitatively evaluate the performance of the model.
We render observations at each timestep using PyGame. The result complies with the
quantitative evaluation, which shows that the agent can pick up the weapon almost every
time with ”PICKUP” action. However, the killing error does not decrease very much as the
number of episodes increases. Most of the time, killing is completed successfully. However,
sometimes the model can foresee a successful killing before viewing any other episodes, which
is unexpected. Sometimes the agent holds an appropriate weapon but the model prediction
doesn’t kill the monster after it views the same killing happened in previous episodes, which
is also unexpected. The result is shown in figs. 8.6 and 8.7

8.2 Performance of Model for Text Generation

We evaluate the performance of the models quantitatively and qualitatively. The experimen-
tal result indicates that the model with hidden state from the trajectories outperforms the
model with zero hidden state. The BLEU score of the best performing model with hidden
state from the trajectories is 0.65, while that of the best performing model with zero hidden
state is 0.38.

Qualitatively, the model with hidden state from the trajectories has a roughly consistent
performance in terms of the weapon and monster pairs, while the model with zero hidden
state has very inconsistent performance, some are good but some are bad. The inconsistent
performance can be explained by the fact that a model without any information given from
the trajectories is likely to select random weapon and monster pairs, although it can predict
the correct structure since the structure of the wiki document is fixed. The results are shown
below:

Example of good performance from zero hidden state model:
prediction: gleaming beat cold, shimmering beat fire, grandmasters beat lightning, blessed
beat poison, panther are order of the forest, panther are rebel enclave, panther are star al-
liance.
groundtruth: blessed beat cold, shimmering beat fire, grandmasters beat lightning, gleaming
beat poison, panther are order of the forest, jaguar are rebel enclave, wolf are star alliance.
BLEU score: 0.7198173100035995

Example of bad performance from zero hidden state model:
prediction: dagger, panther are rebel enclave, panther are star alliance.
groundtruth: gleaming beat cold, blessed beat fire, grandmasters beat lightning, shimmering
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beat poison, wolf are order of the forest, panther are rebel enclave, jaguar are star alliance.
BLEU score: 0.11018078282769957

Example of performance from the trajectories’ hidden state model:
prediction: gleaming beat cold, shimmering beat fire, grandmasters beat lightning, blessed
beat poision, wolf are order of the forest, wolf are rebel enclave, wolf are star alliance.
groundtruth: shimmering beat cold, gleaming beat fire, gramdmasters beat lightning, blessed
beat poison, jaguar are order of the forest, panther are rebel enclave, wolf are star alliance.
BLEU score: 0.7198173100035995
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(a) real environment at t=0

(b) real environment at t=1

(c) model prediction at t=1

Figure 8.6: Example of successful killing. At t=1, the monster is killed in real environment,
and it is also killed in the model prediction.
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(a) real environment at t=0

(b) real environment at t=1

(c) model prediction at t=1

Figure 8.7: Example of unsuccessful killing. At t=1, the monster is killed in real environment,
but in the model prediction the monster is still alive.
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Chapter 9

Conclusion

We proposed a curiosity-driven approach for generating textual descriptions of environment
dynamics, which is a task that hasn’t been tackled before. In detail, we framed the task of
learning an exploration policy for trajectory collection as a two-player game, and proposed a
self-supervised learning approach to solve it, which allows generalization to new environments
by eliminating the need of designing a reward function for each specific environment. We
also proposed a framework to transform agent trajectories to textual descriptions, which
performs more consistently and reaches a higher BLEU score than the baseline method.
Further directions for future work include enabling end-to-end learning of the whole process.
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