
GamesmanPuzzles: A Leap Into the Puzzles Domain

Anthony Ling
Dan Garcia, Ed.
Joshua Hug, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-146

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-146.html

May 21, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Prof. Dan Garcia, who gave me this opportunity to develop something truly
special in the last 2 years.

Prof. Joshua Hug, for agreeing to be the second reader and giving me
advice to improve my work.

My fellow members of the GamesmanPuzzles group, who helped
contribute Puzzles and advice on the package.

Mark Presten (https://github.com/mpresten) implemented Peg Solitaire and
the Command Line Interface (CLI) in the “Results” section.

Arturo Olvera (https://github.com/arturoolvera) implemented N-Puzzle and
designed Figure 3.

The GamesCrafters group, who supported me in integrating
GamesmanPuzzles into GAMESMAN.

My friends and family, who supported my education throughout it all.

GamesmanPuzzles: A Leap Into the Puzzles Domain

by Anthony Ling

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California
at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II .

Approval for the Report and Comprehensive Examination:

Committee:

Teaching Professor Dan Garcia
Research Advisor

(Date)

* * * * * * *

Teaching Professor Joshua Hug
Second Reader

(Date)

Abstract

Puzzles are one-person “games”, with the player execu�ng moves in a problem state. The goal is for the

player to reach a winning state and avoid losing states, if they exist. GamesmanPuzzles is a system

designed to strongly solve the Puzzle by finding the remoteness values of every reachable posi�on,

perform analysis, and allow the puzzle to be played. This so�ware has a Python interface, and is built on

top of Professor Dan Garcia’s GAMESMAN project, which strongly solves two-player games and

provides powerful func�onality such as analysis tools and a graphical game playing interface.

GamesmanPuzzles was developed as an effort to expand the intellectual convex hull of the

GamesCra�ers computa�onal game theory research and development group into the domain of puzzles.

It does so by providing func�onality for playing and solving Puzzles, as well as integra�ng Puzzles into the

GAMESMAN ecosystem. By providing tutorial material for newcomers, we hope this will serve as a

resource for future development.

2

Acknowledgements

● Prof. Dan Garcia, who gave me this opportunity to develop something truly special in the last 2

years.

● Prof. Joshua Hug, for agreeing to be the second reader and giving me advice to improve my

work.

● My fellow members of the GamesmanPuzzles group, who helped contribute Puzzles and

advice on the package.

○ Mark Presten (h�ps://github.com/mpresten) implemented Peg Solitaire and the

Command Line Interface (CLI) in the “Results” sec�on.

○ Arturo Olvera (h�ps://github.com/arturoolvera) implemented N-Puzzle and designed

Figure 3.

● The GamesCra�ers group, who supported me in integra�ng GamesmanPuzzles into

GAMESMAN .

● My friends and family, who supported my educa�on throughout it all.

3

https://github.com/mpresten
https://github.com/arturoolvera

Abstract 2

Acknowledgements 3

1. Introduc�on 6

2. Background 8

2.1 Puzzles 8

2.1.1 Value Classifica�on 10

2.1.2 Solving Puzzles 12

Symmetries 14

2.1.3 Variants 14

2.2 GamesmanPuzzles Group 14

2.3 GAMESMAN Frontend and Backend APIs 15

2.3.1 GamesmanUni 15

2.3.2 GamesCra�ersUWAPI 15

3. Programming Model, Architecture, and Implementa�on 16

3.1 Puzzles 16

3.1.1 String Representa�ons 17

3.1.2 Moves 17

3.1.3 Primi�ves 18

3.1.4 Default Posi�ons and Solu�ons 19

3.1.5 Symmetries 19

3.2 Solvers 19

3.3 Backend Server 20

3.4 Players 20

3.5 Curriculum 21

3.5.1 Tutorial (2 weeks) 21

3.5.2 Design (1 week) 21

3.5.3 Development (2 weeks) 22

4. Results 23

4

4.1 Puzzles 25

4.1.1 Example: Towers of Hanoi 25

4.1.2 Example: Lights Out 26

4.1.3 Example: N Puzzle 27

4.1.4 Example: Peg Solitaire 28

4.2 Solvers 29

4.2.1 GeneralSolver 29

4.2.2 Solver Wrappers 29

Rela�ve Performance 30

4.3 Players 31

4.4 Curriculum 32

5. Future Work 33

5.1 Addi�onal Puzzles 33

5.2 Randomized Star�ng Posi�ons 33

5.3 Forwards Moves Solver 33

5.4 Binary Extensions 34

5.5 Distributed Compu�ng 34

5.6 Addi�onal Documenta�on 34

6. Conclusion 35

References 36

Appendix 38

A.1 Puzzle Func�onality 38

A.2 Puzzle Base Class 39

A.3 ServerPuzzle Base Class 44

A.4 Hanoi Puzzle implementa�on 46

A.5 Solver Base Class 52

A.6 Code to Generate Solver Graphs 53

A.7 Server Puzzle Assignment (Design part) 55

A.8 Server Puzzle Assignment (Develop part) 57

5

1. Introduc�on

GamesCra�ers is an undergraduate research and development group formed by Professor Dan Garcia in

2001 with the purpose to solve two-player games using combinatorial and computa�onal game theory. It

was built on top of the GAMESMAN project. GAMESMAN was originally developed by Prof. Garcia in

1990 as an effort to provide an open-source architecture for encoding, solving, analyzing, and playing

games. Users simply need to define game modules in order to access the full func�onality of the library,

such as a graphical or command line interface [11].

GamesmanPuzzles adds to the GAMESMAN project by expanding the GamesCra�ers group into the

domain of puzzles, one-player games. Similarly, we aim to provide powerful func�onality for puzzles

similar to how GAMESMAN provides powerful func�onality for games. We first proposed the

GamesmanPuzzles project in the spring of 2020 [8]. During that �me, the GamesCra�ers group,

established by UC Berkeley Professor Dan Garcia, had the following ac�ve projects:

● GamesmanClassic , a collec�on of games encoded and solved in C and based on Professor

Garcia’s original Gamesman Masters Thesis [5].

● GamesmanUni , an online web GUI [10].

● GamesmanJava , a parallel solver using Apache Spark [7].

This project sa�sfies the following key requirements that were iden�fied through our �me in

GamesCra�ers:

● Build an applica�on that strongly solves Puzzles: This is based on the original ideals of the

GamesCra�ers group and the GAMESMAN project.

● Simple to develop and easy to build upon: GamesCra�ers is largely an undergraduate student

organiza�on, and new members o�en have li�le or no programming experience. It is beneficial
6

to create a project that follows a simple programming model and is coded in a language that

many students at UC Berkeley would understand, which in this case is Python. The project’s main

feature is the collec�on of Puzzles, so adding more Puzzles must be possible with limited

guidance.

● Be relevant to GamesCra�ers applica�ons: There are many GamesCra�ers projects that are

o�en discon�nued either due to lack of relevancy or lack of support. Integra�on with the main

GAMESMAN applica�ons ensures relevancy in the unforeseen future.

● Rela�vely performant: The goals of this project is to create the founda�ons and interfaces for

solving Puzzles and project integra�on, so op�mizing for performance is not a major focus.

However, it can be a focus in the future, and Puzzles should be able to be solved in a reasonable

amount of �me.

7

2. Background

2.1 Puzzles

Puzzles aren’t new to GAMESMAN. Between 2008 and 2010, many students contributed �me and effort

into authoring code that would solve and play puzzles [2, 3, 4]. However, due to an unfortunate server

crash, lack of documenta�on, and student interest, development was discon�nued. Our goal with

GamesmanPuzzles is to provide a simple and powerful package that will have con�nued support in the

unforeseen future.

A “Puzzle” can be defined as the following:

- A discrete set of states . This represents every possible "board state" for a Puzzle. Loading…

- A discrete set of forward moves for every state . Each move maps a state Loading… Loading…

 to another state , which can be represented as a func�on on the state Loading… Loading…

 s.t. . This represents all the moves that can be made for any given "board Loading… Loading…

state" of a puzzle.

- A discrete set of solu�on states . This represents the primi�ve states an agent playing Loading…

would like to reach.

- A discrete set of backwards moves for every state . It performs similar Loading… Loading…

func�onality as a forward move , but performs the inverse opera�on. Loading…

An example of a popular Puzzle would be the Towers of Hanoi. Each state of this Puzzle is represented by

the arrangement of the Puzzle, while the act of moving discs from one rod to another represents a

move. The Towers of Hanoi puzzle tradi�onally begins with three rods in a line and a stack of Loading…

differently shaped disks on the le�most rod, ordered by size of the disk (smallest on the top, largest on

8

the bo�om). The goal is to move all the discs onto the rightmost rod. This is done by moving the

topmost disk of any stack of a rod onto the stack of another rod. The disk can only be placed either on

the floor of the rod or on top of a disk that is bigger than it [17].

Figure 1 : Visualiza�on of all of possible posi�ons of Hanoi, variant 2 disks, 3 rods. The remoteness is indicated by the numbers

on the right. The green rectangle represents the star�ng posi�on.

The remoteness of a Puzzle is defined to be the minimum number of moves to reach the Loading…

solu�on state. Figure 1 shows each possible posi�on of Towers of Hanoi with 3 rods and 2 disks. Each

posi�on is organized in layers split by the do�ed lines. The numbers on the right represent the

remoteness values of all posi�ons in the layer. The remoteness is calculated recursively; it is the

minimum of the remoteness of all child posi�ons (all the posi�ons the current posi�on can reach in one

move) plus 1. For example, the star�ng posi�on of this Puzzle (indicated by the green rectangle) has two

possible moves, one to a posi�on with remoteness 3 and to another posi�on with remoteness 2. Since

9

min(2,3) + 1 = 3, we set the remoteness of the star�ng posi�on to be 3. The process of assigning

remoteness values will be detailed more in the “Solving Puzzles” subsec�on.

2.1.1 Value Classifica�on

We define two Puzzle categories. Depending on the type, the classifica�on of posi�ons differs. All Puzzles

listed will be defined later in the “Results” sec�on.

● Always-winnable Puzzles: The most common Puzzle type, the formal defini�on is that there is a

path to the solu�on state from all posi�ons (reachable by the ini�al posi�on). Example Puzzles

include Towers of Hanoi and Lights Out.

● Not-always-winnable Puzzles: The formal defini�on is that is a path from the ini�al posi�on to

the solu�on state, but there is not necessarily a path from all posi�ons (reachable by the ini�al

posi�on) to the solu�on state. Example Puzzles include Peg Solitaire and Chair Hopping.

We classify posi�ons and moves differently based on which type of Puzzle is being solved. This is to allow

players to know which moves are op�mal when interac�ng with a visualiza�on (i.e. GamesmanUni). As

a visual, winning moves are colored in green, �eing moves are colored in yellow, and losing moves are

colored in red.

In an Always-winnable Puzzle, every posi�on is a winning posi�on. Moves that lower the current

remoteness are classified as winning moves, moves that maintain the same remoteness are classified as

�eing moves, and moves that raise the current remoteness are classified as losing moves.

In a Not-always-winnable puzzle, posi�ons that cannot reach a solu�on state in any sequence of moves

are classified as losing posi�ons, while every other posi�on is a winning posi�on. Moves that lower the

current remoteness are classified as winning moves, and moves that maintain or raise the remoteness

are classified as �eing moves. Moves that lead to a losing posi�on are classified as losing moves.

10

Figure 2: Example of Peg Solitaire in GamesmanUni displaying the colors of moves. Peg Solitaire is a Not-always-winnable Puzzle,

meaning the red move will result in a losing posi�on.

11

2.1.2 Solving Puzzles

Figure 3: A visualiza�on of the backwards pass for solving the Towers of Hanoi. Figure designed by Arturo Olivera.

Our algorithm a�empts to strongly solve the puzzle by finding the remoteness of every possible state, as

follows:

● If the solu�on states of a Puzzle are not known, iden�fy those solu�on states by using BFS (i.e.

forwards pass) on a defined star�ng state, usually the posi�on from

generateStartPosition . Ini�alize the remoteness of all solu�on states to 0, and add all

solu�on states to our “fron�er” (those just labeled as having remoteness R).

● Start by ini�alizing Breadth First Search (BFS) on every solu�on state (i.e. backwards pass)

. For every state examined by BFS, we exhaus�vely search the en�re state Loading… Loading…

space reachable through backwards moves . Loading…

● The BFS proceeds forward in “waves”, at each round expanding out from the fron�er, labeling

the newest previously-unlabeled posi�ons, and replacing the fron�er with these new posi�ons.

● Ini�alize the “next fron�er” to empty. For all states reachable in one backward move from the

fron�er (posi�ons with remoteness R), if the state has not been labeled yet and is not a

symmetry (defined below), set the remoteness to R+1 and add it to the next fron�er (once this

12

step is done, replace the fron�er with the next fron�er). Con�nue un�l the previous step adds

no new states to the fron�er.

States that aren't able to reach solu�ons are classified as losing posi�ons. As stated before, this allows

for the convenient traversal of an agent through a puzzle towards a solu�on.

Figure 4: Demonstra�ng how a puzzle is solved. The bo�om-most blue node is the solved posi�on and the nodes connec�ng it

are solvable posi�ons with decreasing remoteness (indicated by decreasing shades of blue). The red nodes are unsolvable

posi�ons.

13

Symmetries

Symmetries are defined as posi�ons that share the same remoteness. By reducing posi�ons to

symmetries, we reduce the number of posi�ons needed to be traversed by the solver algorithm. Some

symmetry reduc�on techniques include flipping or rota�ng boards in 2D puzzles. Figure 5 demonstrates

an example of a symmetry in Hanoi.

Figure 5: Both of these posi�ons in Hanoi have the same remoteness and have been encoded in Hanoi to share the same hash

value.

2.1.3 Variants

Puzzles can have mul�ple variants , which are Puzzles that have similar rulesets with a major difference.

For instance, the default Towers of Hanoi variant can have 3 rods and 3 disks, but a variant can have a

differing amount of disks or rods (i.e. 5 disks, 10 rods). Variants allow for the reuse of exis�ng code to

create an en�rely new Puzzle.

2.2 GamesmanPuzzles Group

The GamesmanPuzzles group is a subgroup of GamesCra�ers, which focuses on projects involving the

Puzzle domain (mainly the development of the GamesmanPuzzles project). It was founded in Fall 2019

by the establishment of the GamesmanPuzzles project and had 7 members during its two year period.
14

Members first join the GamesCra�ers group and then are given the choice to choose one of its

subgroups. Newcomers in the GamesmanPuzzles are tasked with a 5-week onboarding assignment to

develop and explore how to develop Puzzles (described in Programming Model, Architecture, and

Implementa�on).

2.3 GAMESMAN Frontend and Backend APIs

2.3.1 GamesmanUni

GamesmanUni is a GamesCra�ers project that serves to provide GUIs and analysis for games on the

internet in the form of web applica�ons. It provides two major features:

● Integra�on of many GamesCra�ers projects into our HTML server.

● Conversion of backend Games/Puzzles into automa�c GUIs, dictated by GamesCraftersUWAPI

[6].

Before, GamesmanUni only supported regular two-player Games, and didn’t have any support for

Puzzles. Our contribu�on to GamesmanUni is the addi�on of Puzzles to the GamesmanUni server,

including GUI genera�on and the Visual Value History (VVH) [10].

2.3.2 GamesCra�ersUWAPI

GamesCrafters Universal Web API is a GamesCra�ers project that defines a standard and connects

GamesCra�ers projects together under one web API [6]. This is the medium where GamesmanUni

accesses game data such as remoteness and posi�on values. Other than being a step into integra�ng

Puzzles into GamesmanUni , adding Puzzles into GamesCraftersUWAPI allows for future frontend

applica�ons to access Puzzles and integrate them into their systems as well.

15

3. Programming Model, Architecture, and

Implementa�on

Figure 6: The System Design of GamesmanPuzzles

GamesmanPuzzles core func�onality implements a puzzle-Solver programming abstrac�on and follows

the Python object-oriented programming (OOP) model.

3.1 Puzzles

A Puzzle object represents the abstrac�on of a puzzle state, as discussed in the “Mo�va�ons and

Requirements” sec�on. Towers of Hanoi with 3 disks and 3 rods will be used as an example for all of the

example func�onality. Much of the func�onality described below is available for review in Appendix A.1.

16

3.1.1 String Representa�ons

Puzzles support string representa�ons to indicate the current state for user and developer interac�ons .

There are two modes of string representa�on, each define the mode keyword argument in

toString(mode) :

● “minimal” provides a url-friendly representa�on, which is used in the backend server.

● “complex” is a mul�-line string representa�on resembling ASCII art. It is the default behavior of

__str__ .

For example, Puzzles support the following methods:

● toString(mode) takes in a mode keyword argument and supports two modes .

● fromString(puzzle_string) takes in a minimal string and returns a Puzzle object.

● __str__ the built-in method for string representa�on that can be defined by any Python object

and is called when print is called. Default is the complex string.

As an example, the star�ng posi�on of the three-disk Towers of Hanoi puzzle is when all the disks are

stacked on the le�most rod. The minimal string representa�on is “7-0-0” , where each number

represents the disks on the rod. This can be further visualized by represen�ng each number in binary,

where the index of each bit represents the type of disk and the value represents whether the disk is on

that rod. Another example is “6-1-0”, where the string representa�on indicates the two larger disks on

the le�most rod while the smallest disk in the middle.

3.1.2 Moves

Puzzle objects follow the abstrac�on of a puzzle and are immutable objects. They are able to generate

possible forward moves to next states as well as generate backgrounds moves to previous states.

17

● generateMoves(movetype) generates moves from the current posi�on and is able to

generate forwards and backwards moves based on the movetype .

● doMove(move) executes a move on the current posi�on and returns the resul�ng state a�er

the move is made.

For example, in Appendix A.1, calling generateMoves on the star�ng posi�on (printed as “7-0-0”)

produces {(0, 1), (0, 2)} and doMove on move (0, 1) produces a new Hanoi object (printed as “6-1-0”).

3.1.3 Primi�ves

Solvers need to know whether a posi�on has reached the set of solu�ons and whether there are any

possible moves le�. Essen�ally, it asks “is the puzzle over?”. If so, and we’ve achieved the solu�on,

return a “win”, otherwise return a“lose”. If the puzzle is not over, return “undecided”.

● primitive returns the following strings:

○ “win” indicates that the posi�on is at a solu�on state.

○ “undecided” indicates that the posi�on is not at a solu�on state and s�ll has possible

moves.

○ “lose” indicates that the posi�on is not at a solu�on state and does not have any

possible moves

For example, in Appendix A.1, calling primitive on Hanoi with three disks on the le�most rod

(“7-0-0”) returns “undecided” while on Hanoi with three disks on the rightmost rod (“0-0-7”) returns

“win”.

18

3.1.4 Default Posi�ons and Solu�ons

Puzzles must generate a star�ng posi�on of the puzzle to allow players a star�ng posi�on when playing

the Puzzle. When generateSolutions is not defined in a Puzzle, the solver uses the star�ng posi�on

to find the solu�ons states as described in 2.1.2.

● generateStartPosition(variant) returns the star�ng posi�on of the puzzle based on the

variant

● generateSolutions (op�onal) returns the solu�on states of the puzzle

For example, in Appendix A.1, calling generateStartPosition on variant “3_3” (3 disks, 3 rods) will

produce Hanoi with three disks on the le�most rod (“7-0-0”), while calling generateSolutions will

return a list of solu�on states. In Hanoi, that solu�on state is when all three disks are on the rightmost

rod (“0-0-7”).

3.1.5 Symmetries

Puzzle objects support symmetries by allowing Puzzles posi�ons that have the same remoteness value

have the same “hash” value. This can be defined by any Puzzle by overwri�ng the __hash__ func�on

and defining an algorithm to detect those symmetries. Hanoi handles symmetries through reindexing

and reduc�on. This process is described in 3.1 Advanced Hashing Techniques in the GamesmanPuzzles

tutorial [9].

3.2 Solvers

A Solver object solves a Puzzle object through the process described in Mo�va�ons and Requirements.

Once a Puzzle is solved, the Solver is able to determine the remoteness of any Puzzle object that shares

the same Puzzle and variant. It is also possible to perform analysis on the Puzzle, such as determining

19

the number of posi�ons that has to be traversed or the maximum remoteness of the Puzzle. Solvers are

also able to be persistent by storing their remoteness data structure into a file, then by saving the file

into local storage. Another Solver of the same type can access the file for reusability. Solvers that are

integrated into the system must support a minimal API, which can be viewed in Appendix A.5.

● __init__ The ini�aliza�on of the solver, anything that has to be ini�alized can be called here.

● solve Solves the puzzle, normally by finding and storing the remoteness values of all posi�ons

of a Puzzle.

● getRemoteness(position) Returns the remoteness of the position .

3.3 Backend Server

In addi�on to the regular Python API, we also have a backend web API communica�ng using JSON files.

This results in adding addi�onal func�onality for each Puzzle object, crea�ng a new type called a

ServerPuzzle. ServerPuzzles mainly differ from regular Puzzle types through the inclusion of metadata, as

well as user input valida�on and type methods for Puzzle object genera�on. The backend server is

powered by a simple script and u�lizes the Python Flask library. It runs Solvers and Puzzles, which are

managed by an object known as the PuzzleManager.

3.4 Players

For local user interac�on, Player types were introduced. Player objects are able to take in a Puzzle object

and op�onally a Solver object, and users are able to interact with the Player such as inpu�ng moves or

viewing analysis of the Puzzle object.

20

3.5 Curriculum

As part of a major requirement, it must be easy to develop in GamesmanPuzzles in order to ensure

relevance. As such, there is a major emphasis on documenta�on and in-depth tutorials for future

developers. For all newcomers to GamesmanPuzzles , an onboarding stage is ini�ated. The number of

weeks next to each stage signifies the expected number of weeks to complete that stage, but the en�re

process is flexible based on the student’s schedule. It’s important to note that curriculum was distributed

over remote learning due to the COVID-19 pandemic, and thus the �ming may differ in an in-person

se�ng.

3.5.1 Tutorial (2 weeks)

Students are given 2 weeks to read over an in-depth tutorial into developing a Puzzle and a Solver. The

tutorial consists of 8 pages of implemen�ng Hanoi and 4 pages of developing a basic GeneralSolver. The

pages are stored in GitHub as Markdown files. These tutorials are meant to provide students a greater

understanding of how GamesmanPuzzles works as well as how to develop a Puzzle or Solver [9].

The tutorial provides all of the code in the complete implementa�on and splits it into different func�ons.

It explains what each of the func�ons does, as well as any core concepts they fulfill. Students complete

their own implementa�on of Hanoi by copying the segments of code and execu�ng the final result with

commands given.

3.5.2 Design (1 week)

Students are given a task to design their own Puzzle and create a writeup lis�ng requirements to fulfill.

This writeup serves mul�ple purposes; one, it gives the project leader understanding of the student’s

21

current knowledge of the Puzzle as well as a chance to clear up any misconcep�ons. Two, it provides

addi�onal documenta�on for the Puzzle for future developers to look on.

The proper�es of the Puzzle as required in the writeup:

● Puzzle name

● Puzzle ID : A simple iden�fier of a puzzle

● Puzzle visual : Picture of a physical example of a Puzzle

● Descrip�on : Short descrip�on of Puzzle

● Posi�on : The string representa�on of a Puzzle

● Moves : Types of moves as well as string representa�on of a move

● Variants : Include a default variant with a posi�on limit to ensure feasible solving �mes

● Op�miza�on (op�onal): Methods to improve solving �mes further

A�er the Design write-up, it is reviewed by other GamesCra�ers and commented on for improvements.

Once the review process is completed, the Development assignment starts. This assignment can be

viewed in raw Markdown in Appendix A.7.

3.5.3 Development (2 weeks)

Students are given a task to develop their own Puzzle based on their Design document, as well as

integrate it directly into GamesmanPuzzles. Students are asked to take inspira�on from previous

implementa�ons of Puzzles as well as their experiences in the Tutorial stage.

The assignment also requires students to work on tests, as a way to test correctness as well for future

use. The tes�ng framework used for tes�ng is pytest, and its correctness is maintained through TravisCI.

The assignment can be viewed in raw Markdown in Appendix A.8.

22

4. Results

As of the �me of wri�ng, GamesmanPuzzles currently supports the following:

● 10 Puzzles

● 1 in-memory Solver

● 3 persistent Solver wrappers

● 1 Command Line Interface

● 1 Backend server implementa�on as well as 1 Frontend integra�on

23

Figure 7: An analysis of all thePuzzles currently in GamesmanPuzzles

24

Name Variant Always-
winnable?

Default
Remoteness

Max
Remoteness

Number of
Posi�ons (w/o
symmetries)

Number of
Posi�ons
(w/ symmetries)

Towers of
Hanoi

3 rods, 1 disk Yes 1 1 2 3

Towers of
Hanoi

3 rods, 2 disk Yes 3 3 5 9

Towers of
Hanoi

3 rods, 3 disk Yes 7 7 14 27

Towers of
Hanoi

3 rods, 8 disk Yes 255 255 3281 6561

Towers of
Hanoi

4 rods, 3 disk Yes 5 5 15 64

N Puzzle 4 Yes N/A 6 12 12

N Puzzle 9 Yes N/A 31 181440 181440

Lights Out 2x2 Yes 4 4 16 16

Lights Out 3x3 Yes 5 9 512 512

Lights Out 4x4 Yes 4 7 4096 4096

Peg Solitaire Triangle of
side 5

No 13 13 13935 16384

Chair Hopping 10 No 35 35 476 2772

Bishops 5x4 board, 2
bishops

Yes 18 19 100 1260

Bishops 7x4 board, 2
bishops

Yes 12 12 972 6006

Bishops 7x6 board, 3
bishops

Yes 16 16 26566 1085250

Rubiks 2x2x2 Cube Yes N/A 14 3674160 3.24 * 10 15

4.1 Puzzles

There are 10 puzzles that have been implemented in our collec�on. The following examples describe

example Puzzles. Appendix A.1 showcases the func�onality of Puzzles in Python, while Figure 7 details all

the results from solving these Puzzles.

4.1.1 Example: Towers of Hanoi

Figure 8: A visualiza�on of the Towers of Hanoi

Towers of Hanoi was one of the first Puzzles to be implemented in GamesmanPuzzles and was known

for its simplicity and convenience in Fall 2019. The maximum remoteness for any 3-rod puzzle can be

easily calculated through a simple equa�on: , where is the number of disks. Loading… Loading…

It consists of a number of rods and different size disks. Disks can move from one rod to another with the

restric�on that larger disks cannot be placed on top of smaller disks. The goal of this Puzzle is to move all

of the disks from the le�most rod towards the rightmost rod [17].

This Puzzle is used in mul�ple examples, such as providing the benchmarking for Solver performance and

being chosen as the Puzzle to be implemented in the tutorial. It has yet to receive a frontend GUI.

25

4.1.2 Example: Lights Out

Figure 9: The Lights Out, 3 x 3 variant, displayed on GamesmanUni

Lights Out is a Puzzle involving a 2D grid of Lights. The player is able to switch a Light’s state by selec�ng

a Light and switching the state of the Light and its 4-way adjacent Lights. All of the Lights are ini�ally lit

up and the goal is to have all of the Lights off [15]. Its development and front-end implementa�on was

done in Spring 2020.

This puzzle also supports a frontend GUI hosted by GamesmanUni . The GUI itself displays a 2D grid

filled with 1s and 0s, where 1s indicate a Light being on while 0s indicate a Light being off. Players can

select any square in the grid to execute a move.

26

4.1.3 Example: N Puzzle

Figure 10: The N Puzzle, 3x3 variant, displayed on GamesmanUni

N Puzzle (also known as 16 Puzzle, 15 Puzzle) is a Puzzle involving a 2D grid of numbers with one slot

open. Numbers adjacent to the slot can slide into the open slot, The goal is to order all the numbers row

by row [14]. The GamesmanPuzzles implementa�on was developed by Arturo Olvera in Spring 2020,

while the front end implementa�on was developed by Anthony Ling in Spring 2021.

This puzzle also supports a frontend GUI hosted by GamesmanUni . The GUI itself displays a 2D grid

filled with numbers and an open slot. Arrows indicate where a number can be moved to fill in a slot.

27

4.1.4 Example: Peg Solitaire

Figure 11: Peg Solitaire, Regular variant, displayed on GamesmanUni

Peg Solitaire (also known as Triangular Peg Solitaire) is a Puzzle with 14 pegs on a triangular board with 5

pegs on a side. Moves consist of jumping a peg over an adjacent peg into a hole two posi�ons away; the

“jumped-over” peg is then removed from play. The goal of the Puzzle is to leave the board with only one

peg remaining [16]. The GamesmanPuzzles implementa�on and front end implementa�on was

developed by Mark Presten in Spring 2020.

This puzzle also supports a frontend GUI hosted by GamesmanUni . The GUI itself displays a 2D grid,

with half of the grid filled with 1s. Each block can jump over another block by using arrows indica�ng a

jump, and players select these arrows to execute a move. At the �me of this wri�ng, the “AutoGUI”

feature of GamesmanUni did not support triangular boards, so we “sheared” our triangular board to the

le� to live within its rectangular framework.

28

4.2 Solvers

There is 1 in-memory solver that was implemented and 3 persistent solver wrappers.

● GeneralSolver

● PickleSolver

● IndexSolver

● SQLiteSolver

4.2.1 GeneralSolver

The GeneralSolver is our main solver algorithm used to solve Puzzles. As described in the process of

solving Puzzles in Background, GeneralSolver supports both Backward passing and Forward passing, as

well as querying remoteness values and posi�on values. Forward passing is ini�alized if there are no

defined solu�on states and generateSolutions doesn’t return any posi�ons.

4.2.2 Solver Wrappers

PickleSolver , IndexSolver , and SQLiteSolver are Solver wrappers around GeneralSolver that allow

for persistence. All three of them store the remoteness values in a local file; the main difference

between all three of them is how they store the remoteness values in local files.

● PickleSolver directly dumps the remoteness dic�onary as a Python object into a Pickle file

(Pickle is a standard Python library that supports object serializa�on) [12].

● IndexSolver stores a byte array, with each index of the byte array being the hash value of the

posi�on. This solver indicates a need for a �ght hash func�on.

● SQLiteSolver u�lizes the sqlitedict for persistence and stores the remoteness values in a

SQLite file [13].

29

Rela�ve Performance

Figure 12: Time taken and File Size as a func�on of the Number of Posi�ons, executed on Towers of Hanoi

We compared the performance and size of files between our solvers. SQLiteSolver was the least

performant in both �me taken and file size, while PickleSolver and IndexSolver was compe��ve in

those fields. One should note that IndexSolver’s file size varies depending on the hash func�on. A

subop�mal hash func�on may result in larger file sizes.

30

4.3 Players

Figure 13: Command Line Interface of Towers of Hanoi. Shown in the figure is the “complex” string representa�on of Hanoi with

possible moves to make, followed by possible Winning and Tieing moves.

We have one implementa�on of a Command Line Interface for local playing. It was developed by

Anthony Ling and Mark Presten in Fall 2019. It displays the string representa�on returned by the

__str__ func�on and solver informa�on for the best moves and remoteness values. Moves can be

executed by specifying the index of the move displayed.

31

4.4 Curriculum

Out of the 10 Puzzles in our system, 3 of the puzzles (Bishops, TopSpin and N-Queens) were developed

under the assignment structure. During the tutorial stages, most of the problems involved finding bugs

with the example code, which were quickly resolved and fixed in the tutorial.

The Design stage proved invaluable to both students and the project lead. The project lead was able to

share �ps regarding poten�al design flaws, such as an incorrect number of posi�ons possible for a

variant or an una�rac�ve string representa�on.

The Development stage was the most difficult, with most students asking the project lead ques�ons

regarding programming errors and missing details required in a Puzzle implementa�on. While some of

these errors were due to student error, other errors showed crucial details missing from the

documenta�on.

32

5. Future Work

5.1 Addi�onal Puzzles

As a major feature of GamesmanPuzzles and the fundamental goal of our project (as depicted through

our implementa�on of the curriculum), we wish for future members of GamesmanPuzzles to con�nue

developing more Puzzles and adding them into the system, such as Klotski, Sokoban, WayOut, SnakeBird,

or even their own Puzzles! Adding more Puzzles will increase the richness and func�onality of the

project.

5.2 Randomized Star�ng Posi�ons

Users o�en �re of star�ng from the same posi�on. Puzzles like N-Puzzle don’t have a defined star�ng

posi�on in literature, so introducing randomized star�ng posi�ons could allow players to interact with

Puzzles in new and innova�ve ways. An example implementa�on would use the solver to discover all the

possible posi�ons then map those posi�ons to remoteness values. The solver would need to be able to

generate random star�ng posi�ons for each remoteness value to allow the user a chance to change

difficulty.

5.3 Forwards Moves Solver

We wish to make the API more minimal by defining a Solver that is able to solve Puzzles without defined

backwards moves. This would not only place less burden on the developer but also make

GamesmanPuzzles more flexible to more Puzzles.

33

5.4 Binary Extensions

As part of the requirements, Python was used as the language of choice. The intent was due to Python

being an easier language for newcomers to GamesCra�ers to understand due to their background. As a

side effect however, much of the codebase remains unop�mized and unsuitable for large puzzles with

more than 10 7 posi�ons.

Performance can increase using the inherent speedup of binary extensions onto CPython, which allows

Python to access C func�ons. Cython is also known to be a good and simpler alterna�ve but is not as

flexible as CPython.

5.5 Distributed Compu�ng

GamesCra�ers o�en deals with games that have nearly 10 10 posi�ons, which are infeasible to be solved

using a single computer. Expanding solver func�onality to work on mul�ple machines would be

beneficial, such as u�lizing the Message Passing Interface (MPI) directly through binary extensions or the

mpi4py Python library. U�lizing the UPC++ libraries for a global shared hash table is also another

possibility.

5.6 Addi�onal Documenta�on

While the procedure to develop a Puzzle has been well documented (the tutorial), there are addi�onal

aspects that s�ll need further explana�on as indicated by the results of the curriculum. In order to

ensure familiarity with GamesmanPuzzles, more documenta�on and student tes�ng is necessary.

34

6. Conclusion

This paper introduces GamesmanPuzzles, a collec�on of Puzzles bundled together in a simple yet

powerful Python interface. It was developed as an effort to expand the GamesCra�ers group into the

domain of Puzzles, and provides func�onality similar to its predecessor project, GAMESMAN . It does

so by providing func�onality for playing and solving Puzzles, as well as integra�ng Puzzles It a�empts to

foster development of Puzzles beyond the scope described in this report by providing introductory

material for newcomers to con�nue development. Through our efforts, we hope the GamesmanPuzzles

is poised to be a big part of GamesCra�ers in the future.

35

References

1. GamesCra�ers. (n.d.). GamesCra�ers . GamesCra�ers. h�p://gamescra�ers.berkeley.edu/

2. The GamesCra�ers Group. (2008, November). Fa2008Puzzles . GamesCra�ers Wiki.

h�ps://nyc.cs.berkeley.edu/wiki/Fa2008Puzzles

3. The GamesCra�ers Group. (2010, November 28). GamesmanWeb/PythonPuzzles . GitHub.

h�ps://github.com/GamesCra�ers/GamesmanWeb/tree/master/PythonPuzzles

4. The GamesCra�ers Group. (2010, December 23). Puzzle Writeup Fall 2010 . GamesCra�ers Wiki.

h�ps://nyc.cs.berkeley.edu/wiki/Puzzle_Writeup_Fall_2010

5. The GamesCra�ers Group. (2021). GamesmanClassic . GitHub.

h�ps://github.com/GamesCra�ers/GamesmanClassic

6. The GamesCra�ers group. (2021). GamesCra�ersUWAPI . GitHub.

h�ps://github.com/GamesCra�ers/GamesCra�ersUWAPI

7. The GamesmanJava Group. (2021). GamesmanJava . GitHub.

h�ps://github.com/GamesCra�ers/GamesmanJava

8. The GamesmanPuzzles Group. (2021, April 10). GamesmanPuzzles . GitHub.

h�ps://github.com/GamesCra�ers/GamesmanPuzzles

9. The GamesmanPuzzles Group. (2021, April 10). GamesmanPuzzles Tutorial . GitHub.

h�ps://github.com/GamesCra�ers/GamesmanPuzzles/tree/master/guides/tutorial

10. The GamesmanUni Group. (2021). GamesmanUni . GitHub.

h�ps://github.com/GamesCra�ers/GamesmanUni

11. Garcia, D. D. (1990). GAMESMAN [A finite, two-person, perfect-informa�on game generator].

GamesCra�ers.

h�ps://people.eecs.berkeley.edu/~ddgarcia/so�ware/gamesman/GAMESMAN.pdf

36

http://gamescrafters.berkeley.edu/
https://nyc.cs.berkeley.edu/wiki/Fa2008Puzzles
https://github.com/GamesCrafters/GamesmanWeb/tree/master/PythonPuzzles
https://nyc.cs.berkeley.edu/wiki/Puzzle_Writeup_Fall_2010
https://github.com/GamesCrafters/GamesmanClassic
https://github.com/GamesCrafters/GamesCraftersUWAPI
https://github.com/GamesCrafters/GamesmanJava
https://github.com/GamesCrafters/GamesmanPuzzles/tree/master/guides/tutorial
https://github.com/GamesCrafters/GamesmanPuzzles/tree/master/guides/tutorial
https://github.com/GamesCrafters/GamesmanUni
https://people.eecs.berkeley.edu/~ddgarcia/software/gamesman/GAMESMAN.pdf

12. Python So�ware Founda�on. (2021, May 16). pickle - Python object serializa�on . Python 3.9.5

Documenta�on. h�ps://docs.python.org/3/library/pickle.html

13. Rehurek, R., Escobar, V. R., Usov, A., Swaminathan, P., & Quast, J. (2020, October 9). sqlitedict --

persistent dict, backed-up by SQLite and pickle . GitHub.

h�ps://github.com/RaRe-Technologies/sqlitedict

14. Wikipedia. (2021). 15 Puzzle . Wikipedia. h�ps://en.wikipedia.org/wiki/15_puzzle

15. Wikipedia. (2021). Lights Out (game) . Wikipedia.

h�ps://en.wikipedia.org/wiki/Lights_Out_(game)

16. Wikipedia. (2021). Peg solitaire . Wikipedia. h�ps://en.wikipedia.org/wiki/Peg_solitaire

17. Wikipedia. (2021, May 15). Tower of Hanoi . Wikipedia.

h�ps://en.wikipedia.org/wiki/Tower_of_Hanoi

37

https://docs.python.org/3/library/pickle.html
https://github.com/RaRe-Technologies/sqlitedict
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/Lights_Out_(game)
https://en.wikipedia.org/wiki/Peg_solitaire

Appendix

A.1 Puzzle Func�onality

Here’s example code demonstra�ng how to interact with Puzzles.

38

>>> from puzzlesolver.puzzles import Hanoi
>>> puzzle = Hanoi() # Equivalent to Hanoi(variant={rod_variant : 3, disk_variant : 3})
>>> puzzle = Hanoi.generateStartPosition("3_3") # Equivalent to the previous line
>>> puzzle = Hanoi.fromString("7-0-0") # Equivalent to the previous line
>>> print(Hanoi().toString(mode= "minimal"))
7-0-0
>>> print(puzzle)
 A | |
 B | |
 C | |

 0 1 2
>>> puzzle.generateMoves()
{(0 , 1), (0 , 2)}
>>> print(puzzle.doMove((0 , 1)))
 | A |
 B | |
 C | |

 0 1 2
>>> print(puzzle.primitive())
undecided
>>> puzzle = Hanoi.generateSolutions()[0] # The solution state of Hanoi
>>> puzzle = Hanoi.fromString("0-0-7") # Equivalent to the previous line
>>> print(puzzle)
 | | A
 | | B
 | | C

 0 1 2
>>> print(puzzle.primitive())
win
>>> from puzzlesolver.solvers import GeneralSolver
>>> solver = GeneralSolver(puzzle) # Initializing Solver object with Puzzle
>>> solver.solve() # Solving the Puzzle
>>> solver.getRemoteness(Hanoi.fromString("7-0-0"))
7
>>> solver.getRemoteness(Hanoi.fromString("0-0-7"))
0

A.2 Puzzle Base Class

This is the Puzzle Base Class for all Puzzles defined in the GamesmanPuzzles system.

39

These are general functions that you might want to implement if you are to use the
PuzzlePlayer and the GeneralSolver
from ...util import classproperty, depreciated
import progressbar
import warnings

class Puzzle :

 ###
 # Background data
 ###

 id = None
 auth = None
 name = None
 desc = None
 date = None

 ###
 # Intializer
 ###

 def __init__ (self):
 """Returns an instance of a Puzzle. Board state of the Puzzle
 should be a Puzzle returned from ̀generateStartPosition`
 """
 pass

 ###
 # Variants
 ###

 @property
 def variant (self):
 """Returns a string defining the variant of this puzzleself.

 Example: '5x5', '3x4', 'reverse3x3'
 """
 return "NA"

 @classmethod
 def generateStartPosition (cls, variantid):
 """Returns a Puzzle object containing the start position.

 Outputs:

40

 - Puzzle object
 """
 raise NotImplementedError

 ###
 # String representations
 ###

 def toString (self, mode= "minimal"):
 """Returns the string representation of the Puzzle based on the type.

 If mode is "minimal", return the serialize() version
 If mode is "complex", return the printInfo() version

 Inputs:
 mode -- "minimal", "complex"

 Outputs:
 String representation -- String"""

 if mode == "minimal" and hasattr(self, "serialize"):
 return self.serialize()
 if mode == "complex" and hasattr(self, "printInfo"):
 return self.printInfo()
 return "No string representation available"

 def __str__ (self):
 """Returns the toString representation in "complex" mode

 Returns

 str
 self.toString(mode="complex")
 """
 return self.toString(mode= "complex")

 ###
 # Gameplay methods
 ###

 def primitive (self):
 """If the Puzzle is at an endstate, return PuzzleValue.SOLVABLE or
PuzzleValue.UNSOLVABLE
 else return PuzzleValue.UNDECIDED

 PuzzleValue located in the util class. If you're in the puzzles or solvers directory
 you can write from ..util import *

 Outputs:
 Primitive of Puzzle type PuzzleValue
 """
 raise NotImplementedError

41

 def doMove (self, move):
 """Given a valid move, returns a new Puzzle object with that move executed.
 Does nothing to the original Puzzle object

 NOTE: Must be able to take any move, including ̀undo` moves

 Raises a TypeError if move is not of the right type
 Raises a ValueError if the move is not in generateMoves

 Inputs
 move -- type defined by generateMoves

 Outputs:
 Puzzle with move executed
 """
 raise NotImplementedError

 def generateMoves (self, movetype= "legal"):
 """Generate moves from self (including undos)

 Inputs
 movetype -- str, can be the following
 - 'for': forward moves
 - 'bi': bidirectional moves
 - 'back': back moves
 - 'legal': legal moves (for + bi)
 - 'undo': undo moves (back + bi)
 - 'all': any defined move (for + bi + back)

 Outputs:
 Iterable of moves, move must be hashable
 """
 raise NotImplementedError

 ###
 # Solver methods
 ###

 def __hash__ (self):
 """Returns a hash of the puzzle.
 Requirements:
 - Each different puzzle must have a different hash
 - The same puzzle must have the same hash.

 Outputs:
 Hash of Puzzle -- Integer

 Note: How same and different are defined are dependent on how you implement it.
 For example, a common optimization technique for reducing the size of key-value
 pair storings are to make specific permutations of a board the same as they have
 the same position value (i.e. rotating or flipping a tic-tac-toe board).

42

 In that case, the hash of all those specific permutations are the same.
 """
 raise NotImplementedError

 @property
 def numPositions (self):
 """Returns the max number of possible positions from the solution state.
 Main use is for the progressbar module.
 Default is unknown length, can be overwritten
 """
 return None

 def generateSolutions (self):
 """Returns a Iterable of Puzzle objects that are solved states.
 Not required if noGenerateSolutions is true, and using a CSP-implemented solver.

 Outputs:
 Iterable of Puzzles
 """
 return []

 ###
 # Player methods
 ###

 def playPuzzle (self, moves):
 """Default playPuzzle method uses indices to chose which
 move to play."""

 print("Possible Moves:")
 for count, m in enumerate(moves):
 print(str(count) + " -> " + str(m))
 print("Enter Piece: ")
 index = int(input())
 if index == '' :
 return "BEST"
 elif index >= len(moves):
 return "OOPS"
 else :
 return moves[index]

 ###
 # Number representation
 ###

 def __add__ (self, other):
 """Equivalent to doMove, can only add moves together

 Parameters

 other : "Move"
 Custom defined Puzzle move

43

 Returns

 Puzzle
 Puzzle instance with move executed
 """
 return self.doMove(other)

 def __radd__ (self, other):
 """Reverse add (same as __add__)

 Parameters

 other : "Move"
 Custom defined Puzzle move

 Returns

 Puzzle
 Puzzle instance with move exectuted
 """
 return self.doMove(other)

 def __repr__ (self):
 return "<{} object with {}>" .format(self.__class__.__name__,
self.toString(mode= "minimal"))

 ###
 # Depreciated methods
 ###

 def printInfo (self):
 """Prints the string representation of the puzzle.
 Can be custom defined"""

 return str(self)

A.3 ServerPuzzle Base Class

This is the ServerPuzzle Base Class for specific Puzzles to support server func�onality.

44

from ...util import PuzzleException, classproperty, depreciated
from . import Puzzle

class ServerPuzzle (Puzzle):

 ###
 # Variants
 ###

 @classproperty
 def variants (cls):
 """A Collections object that holds all the supported variants
 that a Puzzle will support.
 """
 return {}

 @classproperty
 def test_variants (cls):
 """
 Same as variants, except for testing purposes
 """
 return {}

 ###
 # Deserialization
 ###

 @classmethod
 def fromString (cls, positionid):
 """Returns a Puzzle object based on "minimal"
 String representation of the Puzzle (i.e. ̀toString(mode="minimal")`)

 Example: positionid="6-1-0" for Hanoi creates a Hanoi puzzle
 with two stacks of discs ((3,2) and (1))

 Must raise a TypeError if the positionid is not a String
 Must raise a ValueError if the String cannot be translated into a Puzzle

 NOTE: A String cannot be translated into a Puzzle if it leads to an illegal
 position based on the rules of the Puzzle

 Inputs:
 positionid - String id from puzzle, serialize() must be able to generate it

 Outputs:

45

 Puzzle object based on puzzleid and variantid
 """
 if hasattr(cls, "isLegalPosition"):
 if not isinstance(positionid, str):
 raise TypeError("PositionID must be type str")
 if not cls.isLegalPosition(positionid):
 raise ValueError("PositionID could not be translated into a puzzle")
 if hasattr(cls, "deserialize"):
 return cls.deserialize(positionid)
 raise NotImplementedError

 ###
 # Depreciated Methods
 ###

 @depreciated("serverPuzzle.serialize is depreciated. See serverPuzzle.fromString")
 def serialize (self):
 """Returns a serialized based on self

 Outputs:
 String Puzzle
 """
 return str(self)

 @classmethod
 @depreciated("serverPuzzle.deserialize is depreciated. See puzzle.toString")
 def deserialize (cls, positionid):
 """Returns a Puzzle object based on positionid

 Example: positionid="3_2-1-" for Hanoi creates a Hanoi puzzle
 with two stacks of discs ((3,2) and (1))

 Inputs:
 positionid - String id from puzzle, serialize() must be able to generate it

 Outputs:
 Puzzle object based on puzzleid and variantid
 """

 raise NotImplementedError

 @classmethod
 @depreciated("isLegalPosition is depreciated")
 def isLegalPosition (cls, positionid, variantid=None):
 """Checks if the positionid is valid given the rules of the Puzzle cls.
 This function is invariant and only checks if all the rules are satisified
 For example, Hanoi cannot have a larger ring on top of a smaller one.

 Outputs:
 - True if Puzzle is valid, else False
 """
 raise NotImplementedError

A.4 Hanoi Puzzle implementa�on

This is an implementa�on of Hanoi demonstra�ng an example implementa�on of a Puzzle.

46

"""Game for Tower of Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
"""

from copy import deepcopy
from . import ServerPuzzle
from ..util import *
from ..solvers import IndexSolver

def ffs (num):
 """Helper function to return the index of the LSB.
 For the 0 case, return ̀float('inf')`
 """
 output = (num & -num).bit_length() - 1
 output = output if output != -1 else float('inf')
 return output

class Hanoi (ServerPuzzle):

 id = 'hanoi'
 auth = "Anthony Ling"
 name = "Towers of Hanoi"
 desc = """Move smaller discs ontop of bigger discs.
 Fill the rightmost stack."""
 date = "April 2, 2020"

 variants = ["2_1"]
 variants += ["3_1" , "3_2" , "3_3" , "3_4" , "3_5" , "3_6" , "3_7" , "3_8"]
 variants += ["4_1" , "4_2" , "4_3" , "4_4" , "4_5" , "4_6"]
 variants += ["5_1" , "5_2" , "5_3" , "5_4"]

 test_variants = ["3_1" , "3_2" , "3_3"]

 def __init__ (self, variantid=None, variant=None):
 """Returns the starting position of Hanoi based on variant first, then
 variantID. By default it follows "3_3"

 Inputs
 - (Optional) variantid: string
 - (Optional) variant: dict

 Outputs
 - A Puzzle of Hanoi
 """
 self.rod_variant = 3

47

 self.disk_variant = 3
 if variant:
 if not isinstance(variant, dict):
 raise TypeError("Variant keyword argument is not of type dict")
 if "rod_variant" not in variant:
 raise ValueError("Variant keyword argument does not contain rod_variant")
 if "disk_variant" not in variant:
 raise ValueError("Variant keyword argument does not contain disk_variant")
 self.rod_variant, self.disk_variant = variant["rod_variant"],
variant["disk_variant"]
 elif variantid:
 if not isinstance(variantid, str):
 raise TypeError("VariantID is not of type str")
 strlist = variantid.split("_")
 if len(strlist) != 2 :
 raise ValueError("Invalid variantID")
 self.rod_variant = int(strlist[0])
 self.disk_variant = int(strlist[1])

 self.rods = [2 ** self.disk_variant - 1] + [0] * (self.rod_variant - 1)

 @property
 def variant (self):
 """Returns the variant of the Puzzle

 Outputs:
 - Variant : str
 """
 return "{}_{}" .format(self.rod_variant, self.disk_variant)

 @property
 def numPositions (self):
 """Returns the upperbound number of possible hashes

 Outputs:
 - numPositions : int
 """
 return self.rod_variant ** self.disk_variant

 def __hash__ (self):
 """Returns the reduced hash of the Puzzle

 Outputs:
 - hash : int
 """

 # Except for the last rod, sort all the rods in descending order by size
 rodscopy = self.rods[: -1]
 rodscopy.sort(reverse= True)

 # Hash calculation is the sum of the:
 # rod index of a disk * rod_variant ** disk size

48

 # over all disks
 output = 0
 for i in range(len(rodscopy)):
 rod = rodscopy[i]
 j = 0
 while rod != 0 :
 mod = rod % 2
 output += mod * (i + 1) * self.rod_variant ** j
 j += 1
 rod = rod >> 1
 return output

 def toString (self, mode= "minimal"):
 """Returns the string representation of the Puzzle based on the type.

 If mode is "minimal", return the serialize() version
 If mode is "complex", return the printInfo() version

 Inputs:
 mode -- "minimal", "complex"

 Outputs:
 String representation -- String"""

 if mode == "minimal" :
 return "-" .join([str(rod) for rod in self.rods])
 elif mode == "complex" :
 output = ""
 for j in range(self.disk_variant):
 for rod in self.rods:
 output += " " * 3
 if (rod >> j) % 2 == 1 : output += chr(j + 65)
 else : output += "|"
 output += "\n"
 output += "----" * (self.rod_variant) + "---\n"
 output += " " + " " .join(str(i) for i in range(0 , self.rod_variant))
 return output
 else :
 raise ValueError("Invalid keyword argument 'mode'")

 @classmethod
 def fromString (cls, positionid : str):
 """Returns a Puzzle object based on "minimal"
 String representation of the Puzzle (i.e. ̀toString(mode="minimal")`)

 Example: positionid="6-1-0" for Hanoi creates a Hanoi puzzle
 with two stacks of discs ((3,2) and (1))

 Must raise a TypeError if the positionid is not a String
 Must raise a ValueError if the String cannot be translated into a Puzzle

 NOTE: A String cannot be translated into a Puzzle if it leads to an illegal

49

 position based on the rules of the Puzzle

 Inputs:
 positionid - String id from puzzle, serialize() must be able to generate it

 Outputs:
 Puzzle object based on puzzleid and variantid
 """
 if not isinstance(positionid, str):
 raise TypeError("PositionID is not type str")

 rod_strings = positionid.split("-")
 if not rod_strings:
 raise ValueError("PositionID cannot be translated into Puzzle")

 try :
 rods = [int(rod) for rod in rod_strings]
 except ValueError:
 raise ValueError("PositionID cannot be translated into Puzzle")

 sum_rods = sum(rods) + 1
 if sum_rods & -sum_rods != sum_rods:
 raise ValueError("PositionID cannot be translated into Puzzle")

 newPuzzle = Hanoi(variant={
 "rod_variant" : len(rods),
 "disk_variant" : sum_rods.bit_length() - 1 })
 newPuzzle.rods = rods
 return newPuzzle

 def __repr__ (self):
 """Returns the string representation of the Puzzle as a
 Python object
 """
 return "Hanoi(board={})" .format(self.toString())

 def primitive (self):
 """If the Puzzle is at an endstate, return PuzzleValue.SOLVABLE or
PuzzleValue.UNSOLVABLE
 else return PuzzleValue.UNDECIDED

 PuzzleValue located in the util class. If you're in the puzzles or solvers directory
 you can write from ..util import *

 Outputs:
 Primitive of Puzzle type PuzzleValue
 """
 if self.rods[-1] != 2 ** self.disk_variant - 1 :
 return PuzzleValue.UNDECIDED
 return PuzzleValue.SOLVABLE

 def doMove (self, move):

50

 """Given a valid move, returns a new Puzzle object with that move executed.
 Does nothing to the original Puzzle object

 NOTE: Must be able to take any move, including ̀undo` moves

 Raises a TypeError if move is not of the right type
 Raises a ValueError if the move is not in generateMoves

 Inputs
 move -- type defined by generateMoves

 Outputs:
 Puzzle with move executed
 """

 if not isinstance(move, tuple) and \
 len(move) != 2 and \
 isinstance(move[0], int) and \
 isinstance(move[1], int):
 raise TypeError("Invalid type for move")

 if move not in self.generateMoves():
 raise ValueError("Move not possible")

 newPuzzle = Hanoi(variantid=self.variant)
 rods = self.rods.copy()

 lsb_index = ffs(rods[move[0]])
 assert lsb_index != float('inf')
 rods[move[0]] = rods[move[0]] - (1 << lsb_index)
 rods[move[1]] = rods[move[1]] + (1 << lsb_index)
 assert sum(rods) == 2 ** self.disk_variant - 1
 newPuzzle.rods = rods
 return newPuzzle

 def generateMoves (self, movetype= "all"):
 """Generate moves from self (including undos).
 NOTE: For Hanoi, all moves are bidirectional, so movetype doens't matter

 Inputs
 movetype -- str, can be the following
 - 'for': forward moves
 - 'bi': bidirectional moves
 - 'back': back moves
 - 'legal': legal moves (for + bi)
 - 'undo': undo moves (back + bi)
 - 'all': any defined move (for + bi + back)

 Outputs:
 Iterable of moves, move must be hashable
 """
 moves = set()

51

 rods = list(map(ffs, self.rods))
 for i in range(len(rods)):
 for j in range(len(rods)):
 if rods[i] < rods[j]:
 moves.add((i, j))
 return moves

 def generateSolutions (self):
 """Returns a Iterable of Puzzle objects that are solved states.
 Not required if noGenerateSolutions is true, and using a CSP-implemented solver.

 Outputs:
 Iterable of Puzzles
 """
 puzzle_string = "0-" * (self.rod_variant - 1)
 puzzle_string += str(2 ** self.disk_variant - 1)

 return [self.fromString(puzzle_string)]

 @classmethod
 def generateStartPosition (cls, variantid, variant=None):
 """Returns the starting position of Hanoi based on variant first, then
 variantID. Follows the same functionality as __init__

 Inputs
 - (Optional) variantid: string
 - (Optional) variant: dict

 Outputs
 - A Puzzle of Hanoi
 """
 return Hanoi(variantid, variant)

A.5 Solver Base Class

This is the base Solver class for all Solvers in GamesmanPuzzles .

52

#These are general functions that you might want to implement if you are to use the
PuzzlePlayer
from ..util import *

class Solver :

 def __init__ (self, puzzle, **kwargs):
 """Creates a Solver object initialized with puzzle

 Inputs
 puzzle -- the puzzle to be solved on
 """
 raise NotImplementedError

 def solve (self, *args, **kwargs):
 """Solves the puzzle initialized in the init function
 """
 raise NotImplementedError

 def getRemoteness (self, puzzle, **kwargs):
 """Finds the remoteness of the puzzle

 Inputs:
 puzzle -- the puzzle in question

 Outputs:
 remoteness of puzzle
 """
 raise NotImplementedError

 # Built-in functions
 def getValue (self, puzzle, **kwargs):
 """Returns solved value of the puzzle

 Inputs
 puzzle -- the puzzle in question

 Outputs:
 value of puzzle
 """
 remoteness = self.getRemoteness(puzzle, **kwargs)
 if remoteness == PuzzleValue.MAX_REMOTENESS: return PuzzleValue.UNSOLVABLE
 return PuzzleValue.SOLVABLE

A.6 Code to Generate Solver Graphs

This is the code to generate the Figure 12 graphs.

53

from puzzlesolver.puzzles import Hanoi
from puzzlesolver.solvers import GSolver, SQLSolver, ISolver, PSolver

import time
variants = ["3_%i" % i for i in range(1 , 11)]
pos_num = [Hanoi.generateStartPosition(variantid=variant).numPositions for variant in
variants]
def timeit (solve_cls, dir_path= "/tmp/puzzles/"):
 arr_handle = []
 for variant in variants:
 print("Solving variant: %s " % variant, end= "")
 start = time.time()
 puzzle = Hanoi.generateStartPosition(variant)
 if dir_path:
 solver = solve_cls(puzzle, dir_path=dir_path)
 else :
 solver = solve_cls(puzzle)
 solver.solve()
 length = time.time() - start
 arr_handle.append(length)
 print("Took %f seconds" % length)
 print("Done")
 return arr_handle
print("General")
general = timeit(GSolver, None)
print("SQL")
sql = timeit(SQLSolver)
print("Index")
index = timeit(ISolver)
print("Pickle")
pickle = timeit(PSolver)
import matplotlib.pyplot as plt
plt.loglog(pos_num, general, label= "General" , color= "blue")
plt.loglog(pos_num, sql, label= "SQLite" , color= "red")
plt.loglog(pos_num, pickle, label= "Pickle" , color= "green")
plt.loglog(pos_num, index, label= "Index" , color= "orange")
plt.xlabel("Number of Positions")
plt.ylabel("Time Taken")
plt.title("Time Taken solving for a Number of Positions")
plt.legend();
pickle_size = [16 , 28 , 64 , 172 , 496 , 1698 , 5345 , 16284 , 55662 , 173800]
index_size = [4 , 12 , 36 , 108 , 324 , 872 , 2916 , 8748 , 26244 , 78732]
sql_size = [12288 , 12288 , 12288 , 12288 , 12288 , 24576 , 57344 , 143360 , 438272 , 1323008]

import matplotlib.pyplot as plt

54

plt.loglog(pos_num, sql_size, label= "SQLite" , color= "red")
plt.loglog(pos_num, pickle_size, label= "Pickle" , color= "green")
plt.loglog(pos_num, index_size, label= "Index" , color= "orange")
plt.xlabel("Number of Positions")
plt.ylabel("File size")
plt.title("File Size after solving for a Number of Positions")
plt.legend();

A.7 Server Puzzle Assignment (Design part)

This is the Design assignment given out to students during the 5-week tutorial.

55

Server Puzzle Assignment (Design part)
Alright, now it's time to take the training wheels off and develop your own ServerPuzzle.
Your assignment is to design and develop a ServerPuzzle based on the tutorials and format
set up in GamesmanPuzzles.

Before developing the ServerPuzzle, you must visualize how your Puzzle would work. What
should be the default variant? How many positions must be hashed? How will the puzzle
progress?

This design process will be represented with a writeup. You must submit the writeup in PDF
form. Include these in your writeup:

- Your name/Team names
- Puzzle
 - Puzzle Name
 - Puzzle ID
 - Simple identifier of a Puzzle. (Example: 'hanoi')
 - Puzzle Visualization
 - A picture of the Puzzle.
 - Must match default Variant
 - Short Description of Puzzle
 - About 1-2 paragraphs
 - Should contain how to play and win.
 - State why you think it's a good addition to GamesmanPuzzles
- Position
 - Position representation (Check Example A below)
- Moves
 - The type of Legal moves in the Puzzle
 - Forward, Bidirectional, or Both
 - Move representation (Check Example A below)
 - Moves should be represented as a tuple with two entries.
 - You should represent complex entries as single numbers or letters.
- Variants (Must have at least two Variants, including the default Variant)
 - Variant Name
 - Number of possible positions
 - Also include calculation
 - A Default Variant should have a small minimum remoteness (5-20 moves) and be easy to
solve (10000 positions at max). You wouldn't have any problems solving it multiple times.
- (Optional) Optimization
 - Example topic: Reduced number of positions with Hash tricks

[//]: # "Submit your writeup in the shared Google Drive folder by the listed time
(10/21/20). The Google Drive link will be posted on Slack."

Examples

56

Example-A:
The Tower of Hanoi board can be represented in this String representation:
```   
[[3,   2,   1],   [],   []]   
```   
A move can be represented as a tuple with Whole Numbers. For example, a move from the first
rod to the second rod can be represented as:
```   
(0,   1)   
```   
Another example is chess. A white knight move can be represented as
```py   
("b1",   "c3")   
```   


A.8 Server Puzzle Assignment (Develop part)

This is the Develop assignment given out to students during the 5-week tutorial.

57

Server Puzzle Assignment (Develop part)
Now that you have a general idea of what kind of Puzzle you want to implement, it is time to
develop!. Similar to how you implemented Hanoi, implement your ServerPuzzle and follow the
[tutorial steps](../tutorial). You may refer to the already existing puzzles
([Hanoi](../../puzzlesolver/puzzles/hanoi.py)) for guidance.

Testing
You are also responsible for implementing test sets following the format, located in
`GamesmanPuzzles/tests/puzzles/test_<your_puzzle_name here>`.

- ̀testHash()`
 - Tests the expected behavior of the hash function on the puzzle states.
- ̀testSerialization()`
 - Tests if serialization and deserialization works both ways.
- ̀testPrimitive()`
 - Tests if the start state and end state outputted the right primitives.
- ̀testMoves()`
 - Tests a specific scenario and checks if the moves inputted resulted in the expected
state, generated moves, and expected invalid moves.
- ̀testPositions()`
 - Tests the default start state and finish positions matches the expected
serializations.
- ̀testValidation()`
 - Tests four invalid serializations and checks if it raises an error.
- ̀testServerPuzzle()`
 - Tests server functionality by trying out a series of inputs.

 You are EXPECTED to take much inspiration from the [example test suite of
Hanoi](../../tests/puzzles/test_Hanoi.py).

 To run your tests, execute in the GamesmanPuzzles directory:
```   
pytest   --cov   puzzlesolver   
```   
Submit this project by creating a pull request to the Master branch. Refer to
[Contributing](../Contributing.md) for more info.

Additional Steps and Tips To Consider
- A real ServerPuzzle should not be using GeneralSolver as its main solver, as each request
for the remoteness of a position for our server would have the GeneralSolver solve the
puzzle. Consider using one of our persistence solvers like SqliteSolver or IndexSolver. The
hash used in the tutorial should NOT be used for IndexSolver.
- Files should be placed properly in their respected directories. Refer to [Where To Put My
Stuff](../wheretoputmystuff.md) for more info. You should also adjust your dependencies
based on the location of the file.

58

