
Hardware Accelerators for Graph Convolutional

Networks

Kareem Ahmad

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-148

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-148.html

May 21, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

Hardware Accelerators for Graph Convolutional Networks 
 

by Kareem Ahmad 
 
 

 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Sophia Shao 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Borivoje Nikolic 
Second Reader 

 
 

(Date) 

Sophia Shao



Hardware Accelerators for Graph Convolutional Networks

Kareem Ahmad
(Dated: May 21, 2021)

Most datasets in real-world systems have relationships that are not Euclidean in nature, and are
instead best described using graphs. The development of Graph Convolutional Networks (GCNs)
has proven to be an efficient approach to learning on graph-structured data. Due to the sparse
nature of graphs, however, traditional systolic-array based matrix-algebra accelerators do not achieve
high levels of utilization when running inference on GCNs. In this paper, we characterize the
performance of GCNs in terms of its four major operations: dense direct memory access (dDMA),
sparse direct memory access (sDMA), dense-dense matrix multiplication (GeMM), and sparse-dense
matrix multiplication (SpMM), laying the groundwork for adding efficient GCN support to Gemmini,
a configurable systolic-array based GeMM accelerator. We also propose the addition of a sparse-to-
dense decompression DMA Engine to Gemmini, providing a reference implementation in Spike—the
RISC-V ISA-level simulator—and C tests.

I. INTRODUCTION

Many real-world datasets have relationships that are
best described by a graph. Just as 2D convolutions take
advantage of the relationship between adjacent pixels
to learn efficiently, efficient learning on graph-structured
datasets requires taking advantage of the relationships
between nodes in the dataset. This is more intuitive in
the case of a citation network. A citation network, like
the citeseer or cora datasets, is a graph where each node
is an article and edges represent citations from one pa-
per to another. Each article, or node, has a vector of
features, typically produce by a bag-of-words encoding.
Citation networks are often used to train GCNs to clas-
sify articles by subject category, and it is here that the
benefits of a GCN over DNNs or other neural networks
becomes apparent. A DNN trained on a citation net-
work, will learn how to classify articles based solely on
their features, but a GCN—which fundamentally takes
into account the connections between nodes—will learn
to classify articles not only based on their own content,
but also based on the the content of the papers they cite.
In short, by using the edge weights of a graph as a notion
of proximity and generalizing the idea of convolutions to
graphs, we enable efficient learning on graph-structured
datasets. In this manner, GCNs enable solving a vast ar-
ray of problems including article classification in citation
networks [3], author recognition [9, 4], rating prediction
for recommendation systems [8], graph classification [4],
and more.

In this thesis, we begin with an overview of graph-
convolutions in Section II, motivating the choice of for-
ward propagation rules, and examining the general struc-
ture of a GCN. Next, in Section III, we provide an
overview of the current state of hardware accelerators for
GCNs, before delving into the theoretical performance
of a GCN on systolic-array based accelerators in Section
IV. In Section V, we propose a new sparse-to-dense DMA
decompression engine for Gemmini, with a software in-
terface and spike implementation. We provide baseline
performance numbers for GCNs in the current Gemmini
as well as predicted performance with sDMA and SpMM

implementations in Section VI. Finally, in Section VII
we provide closing remarks and discuss the future work
in this research.

II. GRAPH CONVOLUTIONS

The problem when trying to construct a graph convolu-
tion by mapping a 2D convolution onto a graph, is that
unlike an image where the structure around any given
pixel is regular, the structure around a node can be ar-
bitrarily complex. For example, there no limit on the
degree of a node in a graph, nor are there notions of di-
rection associated with an edge. As such, all edges are
more or less equal except for their weights when avail-
able. In addition, unlike a traditional 2D convolution
where inference is done on the whole, a graph convolu-
tion must preserve structure of a graph, lest information
about the original nodes be lost. As a result, we need to
reconsider what a convolution is fundamentally trying to
do.

In the 2D case, a convolution is a way of collecting in-
formation from adjacent pixels into a single unit—a sin-
gle pixel becomes a weighted sum of the adjacent pixels.
Thus, defining a convolution on a graph requires a notion
of proximity between nodes. The most natural choice
here is an adjacency matrix, so we represent our graphs
with an adjacency matrix, A ∈ RN×N , and a feature ma-

trix, F (i) ∈ RN×H(i)

. Since we must preserve the struc-
ture of the graph, the weights of the convolution can only
act on and change the number of features associated with
a node. To this end, we represent the weights in a graph

convolution as a matrix W (i) ∈ RH(i)×H(i+1)

, where H(i)

is the number of input features and H(i+1) is the num-
ber of output features. Since we must group information
from adjacent nodes before applying the weight matrix,
we may consider summing over the features of neighbor-
ing nodes by premultiplying features with the adjacency
matrix:

F (i+1) = AF (i)W (i). (1)

While this convolution does account for the graph



2

structure, it places more weight on nodes of a higher
degree. We can adjust for this by changing our sum to
an average; that is, by premultiplying the adjacency with
the inverse of the degree matrix.

F (i+1) = D−1AF (i)W (i). (2)

This better expresses the idea of a graph convolution,
but has the flaw of not considering a node’s own features.
This can be remedied by adding the identity matrix to
the normalized adjacency matrix:

F (i+1) =
(
IN +D−1A

)
F (i)W (i). (3)

This definition can be further improved by using the
“renormalization trick” proposed by Kipf et. al. [3]:

F (i+1) = D̃− 1
2 ÃD̃− 1

2F (i)W (i), (4)

where Ã is the adjacency matrix including self-loops, and
D̃ is the degree matrix including self-loops. This is the
convolution we use moving forward, and can be simplified
into two operations if we precompute Â = D̃− 1

2 ÃD̃− 1
2 .

F (i+1) = ÂF (i)W (i). (5)

A GCN, then, is simply a network built up of graph-
convolution layers and nonlinear activations. In a typical
GCN, Â is sparse, while both F and W are dense. As
a result, each graph convolution becomes a SpMM fol-
lowed by a GeMM. Since the number of input features
is typically larger than the number of output features,
Â(FW ) will usually be the more efficient ordering. It
should be noted, however, that there are times when F
is sparse. The input features to a GCN, for example, are
often ultra-sparse (have density less than 1%), such as the
bag-of-words embedding of articles in a citation network.
In some cases, a ReLU activation layer can also cause the
output features of a layer to become sparse, as negative
values get clamped to zero. These cases however, have
more moderate sparsity on the order of 50%. In these
cases, the Â(FW ) ordering is still preferable, and both
matrix multiplications become SpMM. Another object of
note is that while the renormalized adjacency matrix, Â
is very sparse, it’s sparsity typically follows a power-law
distribution [2]. That is to say that the distribution of
rows with x non-zero elements is proportional to x−β for
a constant β > 0. This fact usually requires some sort of
load balancing in hardware accelerators targeting GCNs.
This distribution for the first 1000 entries of the citeseer
citation-network dataset is shown in Figure 1.

III. BACKGROUND

A number of accelerators have been developed target-
ing SpMM [2, 10, 5, 7], and while their architectures may
seem quite varied, they tend to share a similar high-level

FIG. 1. Power law distribution of non-zeros in the renormal-
ized adjacency matrix for the first 1000 entrees of the citeseer
dataset.

organization as shown in fig. 2. The core of each of these
accelerators is an array of Processing Engines (PEs), that
is fed from local memory through a local DMA engine.
This local DMA engine often doubles as, or works closely
with, a task allocation unit. For the purposes of this anal-
ysis we will group the two into a unified local-DMA and
task-distribution unit. Each accelerator’s local memory
is typically connected to main memory through another
(global) DMA engine. Depending on the context in which
the accelerator was developed, it may also contain other
specialized peripheral circuitry, such dedicated scaling or
ReLU units.

FIG. 2. The high level organization of sparse accelerators.

In this section, we will examine three accelerators tar-
geting some form of sparse matrix multiply, two of which
specifically address the power-law distribution of adja-
cency matrices.



3

A. AWB-GCN

The first accelerator of interest, AWB-GCN, specifi-
cally targets GCNs and focuses entirely on SpMM, argu-
ing that the 70% density typically observed in output
features is sparse enough to ignore GeMM [2]. The core
of the AWB-GCN accelerator consists of a 1D array of
PEs fed by a Task Distributor Queue (TDQ). The TDQ is
fed from two memories: a Sparse Matrix Memory (SpM-
MeM) containing ultrasparse matrices in the CSC format
and a Dense Column Memory (DCM) containing dense
and moderately sparse matrices. The decision to store
moderately sparse memories in dense format was moti-
vated by the fact that below a certain sparsity there is
more overhead storing a matrix in a sparse format than
there is to keep them in dense format. The PE array
feeds into a third memory, the accumulator, which col-
lects and accumulates outputs from the PEs until they
are ready to be written back to another memory.

The dataflow in this accelerator is based on a column-
wise product, as one column of output is generated at a
time:

C = A ·B (6)

C[:, i] =
∑
k

B[k, i] ·A[:, i], (7)

where A is sparse, B is dense, and C is the out-
put. The TDQ distributes the workload over each col-
umn of A. That is PE0 may compute C[0 : 2, 0] =∑2
k=0B[k, 0] · A[0 : 2, 0], while PE1 computes C[3 :

4, 0] =
∑4
k=3B[k, 0] · A[3 : 4, 0] and so on. In addi-

tion to the basic task of workload scheduling, the TDQ
monitors each PE and rebalances the workload for opti-
mal performance. Depending on whether A is sparse or
ultra-sparse, one of two different TDQs will be used, the
first pulling A from DCM and the second pulling A from
SpMMeM. The overall function of both TDQs remains
the same, though the implementations differ due to the
different input types.

To manage address workload imbalances due to power-
law distributions—which causes some columns to be
much denser than others, the accelerator includes an ar-
biter unit that manages workload distribution and bal-
ancing over groups of PEs. To manage what the authors
call “evil rows,” rows that are too dense to be balanced by
the other techniques, the accelerator also includes row-
remapping support. All of this—the TDQs, the arbiter,
the autotuner that detects “evil rows—” everything be-
tween the memories and PE array, comprises what we
have termed the local DMA.

B. MatRaptor

The second accelerator in our analysis, MatRaptor fo-
cuses on a sparse-sparse matrix multiply (SpGeMM),

taking a row-wise approach similar to AWB-GCN’s
column-wise product [10]:

C = A ·B (8)

C[i, :] =
∑
k

A[i, k] ·B[k, :], (9)

where both A and B are sparse, and C is the output.
In MatRaptor, each PE operates on a full row of A pro-
ducing a full row of the output C. Each PE contains
three 4KB queues that are used to store partial products
for a row, and each PE manages its own multiply-merge
rhythm.

To prevent having to halt PEs when rows inevitably
do not have the same sparsity, MatRaptor elects to have
the PEs operate asynchronously, each receiving a new
workload once the old one is complete in a round-robin
fashion. With asynchronous PE operation, comes the po-
tential for memory channel conflicts when two PEs try
to access data in the same bank. This is resolved by the
development of a new sparse format: C2SR. This for-
mat is something akin to a hardware-aware CSR format,
wherein each row is mapped to a unique channel. The
result is that no two PEs ever need to access the same
memory channel for matrices A or C. Since the allocation
of rows to channels is a direct function of their sparsity,
this arrangement also solves the power-law distribution
problem.

The increased complexity of PEs in MatRaptor and
tailored sparse format results in a more straightforward
DMA that is spared the task of assigning workloads—
since rows are inherently assigned to PEs in the C2SR
format. The DMA in MatRaptor consists of a crossbar
connecting the PE array and two arrays of Sparse Matrix
Loaders to a high-bandwidth memory (HBM). Each PE
has its own dedicated loaders for the A and B matrices
and writes its own outputs directly to the HBM.

C. SIGMA

The final accelerator in this overview is SIGMA, a gen-
eralized matrix-multiply accelerator focused on DNNs.
The design of SIGMA is focused on being able to run
GeMM and SpGeMM efficiently on regular and irreg-
ularly shaped matrices. Like the other accelerators,
SIGMA consists of a 1D array of PEs, and like MatRap-
tor they are more complex than PEs in a traditional sys-
tolic array. Each PE consists of a 1D array of multipliers
connected to an adder reduction tree. The inputs to the
PE are routed through a benes distribution network to
the multipliers to construct a flexible fabric. This flexi-
ble fabric allows the accelerator to support a near infinite
number of dataflows, at the cost of a much more com-
plex local DMA. With its focus on DNNs however, the
design of the accelerator ignores ultra-sparse matrices,
and elects to use a bitmap storage format for its sparse
matrices.



4

FIG. 3. Architecture of the Gemmini Accelerator, figure from
Genc et. al. [1]

D. Relation to our Work

Despite the variety in the target kernels and the con-
text of these accelerators, they all share a similar high-
level organization. Each accelerator consists of a 1D ar-
ray of PEs of varying complexity. This processing array
is fed by a local DMA that interfaces with local mem-
ory and manages workload distribution. The outputs
of the processing array feed directly into a local mem-
ory. This high-level organization is similar to Gemmini,
a configurable generator for systolic-array-based matrix
multiplication accelerators written in Chisel [1].

The Gemmini architecture, shown in fig. 3, includes
a DMA Engine that connects the L2 cache of the host
system to the accelerator’s scratchpad. This feeds input
matrices to the systolic array, which is currently capa-
ble of output-stationary and weight-stationary dataflows.
Outputs from the array can be accumulated in the Accu-
mulator SRAM, which functionally serves as an extension
of the scratchpad memory. The generator can be config-
ured to include additional units including a transposer,
a ReLU unit, and a scaling unit for quantized models,
if desired. The main difference between Gemmini and
the high-level organization of other accelerators is the re-
placement of the systolic with a 1D array of PEs. While
the systolic array in Gemmini is fed from two sides, with
inputs propagating from one PE to another, the 1D array
of PEs in sparse accelerators is fed by and feeds into the
the local DMA directly. This difference can be bridged
by adding connections between each PE in the systolic
array directly to the local DMA, essentially providing an
option to flatten the array, and creating a DMA that can
feed the resulting array. In this context, it is not diffi-
cult to envision adding configuration options to Gemmini
that would enable SpMM support.

IV. CHARACTERIZING THE COMPUTATION

Moving forward, we will consider GCNs consisting of
two renormalized graph convolution layers, with ReLU
as the nonlinear activation:

Out = σ
(
Â · σ

(
Â · FW0

)
W1

)
, (10)

where σ is the ReLU function, Fin is the number of input
features, H is the number of features in the hidden layer,
Fout is the number of output features, W1 ∈ RFin×H

are the weights of the first layer, and W2 ∈ RH×Fout are
the weights of the second layer. Unless explicitly stated,
we will use a subset of the citeseer dataset containing
the first 1000 articles, with Fin = 3703, H = 300 and
Fout = 6.

Since Gemmini supports running ONNX models [6]
and Pytorch supports exporting ONNX models, we chose
to use the sparse format that Pytorch uses—the COO
format—for all of our sparse matrices. The COO format
represents sparse matrices with two tensors: a 1D tensor
containing all nonzero values, and a 2D tensor giving the
coordinates of each corresponding nonzero value.

Indices =

[
r1 r2 r3 . . . rn
c1 c2 c3 . . . cn

]
(11)

V alues =
[
v1 v2 v3 . . . vn

]
(12)

It is worth noting that the differences between COO,
CSR, CSC, and similar sparse formats are not significant
enough to fundamentally change these results.

In a GCN there are four primary operations: sDMA,
dDMA, SpMM, and GeMM. The sparse DMA is used to
load the renormalized adjacency matrix and input fea-
tures, while the dense DMA is used to load the weight
matrices and the outputs of the previous layer. It should
be noted that even if the previous layer’s outputs are
sparse, using a dDMA may still be more efficient than a
sDMA, due to the overhead of storing index arrays. The
exact crossover point depends on the types used for stor-
ing indices and values, but is typically around 50% to
66% density. For this analysis, however, we will assume
that the outputs of each layer are indeed dense. As for
SpMM, this is used for both matrix multiplications in
the first layer, and the multiplication of the adjacency in
all subsequent layers. Meanwhile the product of features
and weights F (i)W (i) will use GeMM in all but the first
layer.

Figure 4 shows the total time spent per operation on
our example 2-layer GCN. For this GCN the number of
hidden features is 300, data is stored as 32-bit floating
point, and indices are stored as 32-bit integers. We as-
sume 100% utilization of a 16×16 systolic array. The slow
DMA bars reflect a typical worst-case memory through-
put of 8 bytes per cycle, while the fast DMA reflects the
typical best case of 16 bytes per cycle. At this data point,
we can see that the runtime of the GCN is dominated by
sparse multiplications when SpMM is not supported, fol-
lowed by sparse dma when sDMA is unsupported. We



5

FIG. 4. Cycles spent per operation on a 2-layer GCN using a
1000 node subset of the citeseer dataset.

can also see that dense multiplications are relatively in-
significant as parts of this computation. This is mainly
due to the fact that of the four matrix multiplications in
this 2-layer GCN only one is a GeMM, and a relatively
small one at that. In GCNs with more layers, dense ma-
trix multiplications are expected to weight more heavily,
though they will remain not as important as SpMM and
sDMA.

To get a better understanding of how the properties
of the GCNs and systolic arrays affect the relative im-
portance of implementing sDMA and SpMM, we plot
a few key parameters against the cycles consumed by
each operation. In particular we are interested in the
cycles consumed by sDMA and SpMM when these oper-
ations are not implemented—that is when these opera-
tions must run on their dense counterparts—in compar-
ison to the cycles consumed by dDMA and GeMM. To
distinguish between the cycles consumed by sDMA and
SpDMA when run on their dense counterparts and when
properly implemented, we refer to the former “as dense”.
Except for the analyzed parameter, the following tests
use the same GCN and systolic array configuration used
above. These tests assume perfect overlap of DMA and
matrix-multiplication, a scratchpad size of 128KB, an ac-
cumulator size of 32KB, an L2 cache size of 512KB, and
a DMA speed of 8 bytes per cycle.

In Figure 5, we consider the effect of hidden layer size
on these four operations. When neither SpMM nor a
sparse DMA are implemented, we see that for small hid-
den layers the runtime is dominated by the dense loading
of sparse matrices, in particular the large adjacency ma-
trix. The size of these matrices, however, is unaffected
by the size of the hidden layer, so when the hidden layer

FIG. 5. Cycles per operation as a function of hidden-
layer size. Note that sDMA dominates for small hidden-
layers and SpMM dominates in large ones.

FIG. 6. Cycles per operation as a function of systolic
array size. Note that SpMM dominates in small arrays and
sDMA dominates in large arrays.

grows in size, so does the runtime of the GeMM between
the output of the first layer and the weights of the second
layer. The final sparse multiplication also grows propor-
tionally to the size of the hidden layer. As a result, we end
up with a crossover point where runtime switches from
being limited by the lack of sDMA, to being limited by
the lack of SpMM. If we increase the size of the input
graph, we shift this point to the right, as our adjacency
matrix grows proportionally.

In Figure 6 we observe a similar pattern when consid-
ering the dimensions of the systolic array itself. While
the speed at which we can perform matrix multiplication
grows by the square of the dimension of the systolic array,
the amount of data that needs to be moved in and out re-
mains unchanged. As a result, large systolic arrays suffer
more heavily from under-utilization due to a slow DMA,
while smaller arrays find themselves compute-limited.



6

FIG. 7. Roofline Model for a 16 × 16 systolic array.

Putting the entire system together, we observe pre-
dicted roofline models in figs. 7 and 8 for a 16 × 16 and
32× 32 systolic array respectively. Here, we plot perfor-
mance of each matrix multiplication in eq. (10) in three
cases: with sDMA available, with SpMM available, and
with both available. When both optimizations are im-
plemented, we find that we hit the roofline limits in all
multiplications except M4 due to its extremely narrow
second argument. We are generally memory bandwidth
limited in these cases, since a 16× 16 floating point sys-
tolic array can consume 128 bytes of data per cycle and
Gemmini’s only receives 16 bytes per cycle in the best-
case. These memory limits persist even when using 8-bit
integers, which reduces memory consumption of the ar-
ray to 32 bytes per cycle. When either sparse operation is
not implemented, however, we fail to reach the roofline
presented by the system architecture, and instead find
ourselves limited by inefficient DMA or matrix multipli-
cation. As before, we see that smaller systolic arrays are
typically limited by inefficient compute, while larger ar-
rays are limited by inefficient DMA, and it takes both
optimizations to approach the roofline limits.

V. SPIKE DMA IMPLEMENTATION

In this work we focus on laying the groundwork for a
sparse DMA that decompresses sparse formats (specif-
ically the COO format) writing them to the Gemmini
scratchpad in dense format. The typical flow for adding
new functionality into Gemmini begins with defining the
software interface, creating software model of the imple-
mentation in Spike—the RISC-V ISA Simulator—, and
verifying that implementation with baremetal C tests.

FIG. 8. Roofline Model for a 32 × 32 systolic array.

The Spike implementation and baremetal tests will then
serve as the golden reference when developing and veri-
fying RTL.

A. Software Interface

The software interface for the sparse DMA is imple-
mented as a pair of custom RISC-V instructions. The
first instruction configures Gemmini with the addresses
of data and index arrays. The second instruction starts
the DMA and provides Gemmini with the start row
and column indices, the number of rows and columns
to load, and the scratchpad address to write the dense
expansion. These two instructions are bundled into a
macro gemmini extended mvin sparse coo(dataAddr,
indexAddr, scratchpadAddr, startCol, cols,
startRow, rows) to simplify software implementation.

B. DMA Algorithm

The expanding DMA algorithm is fairly straightfor-
ward. We iterate through the row and column ranges
of interest checking if each coordinate can be found in
the index array. If the coordinate is found, we write
the corresponding data value to the correct location in
scratchpad or accumulator SRAMs. If the coordinate is
not found, a zero is written. A simplified version of the
algorithm is included below.

function SparseConfigure(dataAddr, indexAddr)
gemminiState.dataAddr ← dataAddr
gemminiState.indexAddr ← indexAddr

end function

function SparseMvinCOO(spAddr, data)



7

dataAddr ← gemminiState.dataAddr
indexAddr ← gemminiState.indexAddr
toAccumulator ← spAddr[31]
accumulate← spAddr[30]
baseSpAddr ← spAddr[28 : 0]

cols← spAddr[47 : 32]
rows← spAddr[63 : 48]
colStart← data[15 : 0]
rowStart← data[31 : 16]
nextRow ← ReadDram(indexAddr)
indexAddr ← indexAddr + indBytes
nextCol← ReadDram(indexAddr)

for row ∈ {rowStart→ rowStart+ rows} do
for col ∈ {colStart→ colStart+ cols} do

block ← col / DIM
spCol← col % DIM
value← 0
if row = nextRow&col = nextCol then

value← ReadDram(dataAddr)
dataAddr ← dataAddr + dataBytes
indexAddr ← indexAddr + indBytes
nextRow ← ReadDram(indexAddr)
indexAddr ← indexAddr + indBytes
nextCol← ReadDram(indexAddr)

end if
spAddr ← baseSpAddr+row+block∗DIM
if toAccumulator then

WriteAcc(spAddr, spCol,
accumulate, value)

else
WriteSp(spAddr, spCol, value)

end if
end for

end for
end function

VI. BASELINE RESULTS

As a proof of concept, and to get baseline numbers,
we run the 2-layer GCN described in section IV with
H = 300 on the first 1000 nodes of the citeseer dataset.
This GCN uses dense operations for all matrices involved
and was written in PyTorch and exported to ONNX. The
runner for the ONNX models was written in C based on
the work of Prakash [6], and compiled for FireSim. The
ONNX model was then run on a 16× 16 Gemmini FP32
configuration at 30MHz. The results of these baseline
tests are summarized in Table II.

Testing in FireSim—an FPGA accelerated cycle-
accurate simulation platform—revealed an interesting is-
sue: it appears that the ONNX model incurs significant
overhead beyond the necessary matrix multiplications.
As a systolic array, Gemmini should easily have at least
30% utilization on GeMM, but to end up with a mere
0.03% indicates that something else is going on. The root

MAC Cycles (Dense) 5541797
MAC Cycles (Sparse) 47817
ONNX Model Cycles 16158006157

ONNX Dense Utilization 0.03%
ONNX Sparse Utilization 0%

TABLE I. Baseline FireSim Results: ONNX Model

MAC Cycles (Dense) 5541797
MAC Cycles (Sparse) 47817

Predicted Cycles 6569430
Predicted Dense Utilization 84.35%

Baremetal Cycles 10942891
Baremetal Dense Utilization 50.64%
Baremetal Sparse Utilization 0.44%

TABLE II. Baseline FireSim Results: Series of Matmuls

cause of this issue is currently unknown. The ONNX
model is known to be functionally correct, and infer-
ence on the GCN through ONNX has been consistently
successful. Running the same binaries in Spike yields
similar results, indicating that the overhead is not part
of the matrix-multiplication, as Spike has tendencies to
under-estimate the cycle counts of multi-cycle CISC-like
instructions. To circumvent this issue with the ONNX
models and obtain reasonable baseline numbers, we de-
cided to model the GCN as through its component matrix
multiplications in C.

The results from the C model, shown in table II,
reach 50% utilization when treating all multiplications
as dense. This is not too far off from the predicted uti-
lization of 84% when considering that the prediction as-
sumed perfect overlap, and may have used different tiling
dimensions. When we do account for the sparsity of the
adjacency matrix and input features, however, this uti-
lization drops significantly to about 0.4%. With the im-
plementation of the sDMA proposed in Section V, we
predict that this utilization will jump 0.8%. This may
seem insignificant, but if we look at this GCN in the con-
text of Figure 5, we notice that this GCN, having 300 fea-
tures in its hidden layer, is dominated by SpMM rather
than sDMA. This same GCN, when run on a theoretical
Gemmini with SpMM support, would have a predicted
utilization of 1.1%. With both sDMA and SpMM sup-
port, the theoretical utilization jumps to 31%, revealing
the importance of both operations working in tandem.

VII. FUTURE WORK

The immediate next steps for this research include the
implementing the proposed sparse-to-dense DMA in RTL
and integrating it into the Gemmini architecture. An
efficient implementation of the DMA will need to send
requests for sparse index-data pairs in batches. A buffer
will be necessary to buffer memory responses, since re-



REFERENCES 8

quests may return out of order. The simplest DMA will
only write to the scratchpad in order, but a trade can
be made for efficiency as writes to the scratchpad can
be done as soon as two consecutive index-value pairs are
known.

After the implementation and verification of the ex-
panding DMA, the next steps would be adding SpMM
support to Gemmini. This will require making choices
about how complex the sparse-capable PEs should be, or
if the complexity will be shouldered by the local DMA.
More complex PEs may reduce dense performance when
Gemmini is configured to support both, while a more
complex DMA will be more prone to RTL errors and may
be more difficult to manage, since the local DMA also
plays the role of task allocation. Depending on the com-
plexity of the PEs and the chosen dataflow, the connec-
tion between the PE array and the accumulator may need
to become more complex, possibly resembling a crossbar.

The architectural choices involved in adding SpMM
support will seriously influence each other, and can be
heavily informed by the choice of sparse format. In
this regard, the C2SR format paired with a row-wise
product approach is quite promising in its ability to
dramatically simplify the complexity of the DMA engine
and task allocation. Since our interest concerning GCNs
is focused on SpMM and not SpGeMM, the complexity
of PEs can be much simpler than the MatRaptor PE
design, as the density of the second argument removes
the need for merging partial sums. With this approach,
changes to PE and accumulator design would be rela-
tively straightforward, and the main challenge would
probably be revolve around Gemmini’s ability switch
between SpMM and GeMM at runtime, as SpMM prefers
seeing a 1D array of PEs, while GeMM prefers a 2D array.

REFERENCES

[1] Hasan Genc et al. “Gemmini: An Agile Systolic
Array Generator Enabling Systematic Evaluations
of Deep-Learning Architectures”. In: arXiv preprint
arXiv:1911.09925 (2019).

[2] Tong Geng et al. “AWB-GCN: A Graph Convolutional
Network Accelerator with Runtime Workload Rebalanc-
ing”. In: arXiv e-prints, arXiv:1908.10834 (Aug. 2019),
arXiv:1908.10834. arXiv: 1908.10834 [cs.DC].

[3] Thomas N. Kipf and Max Welling. “Semi-Supervised
Classification with Graph Convolutional Networks”. In:
International Conference on Learning Representations
(ICLR). 2017.

[4] Omer Nagar et al. “Quadratic GCN for Graph Classi-
fication”. In: (Apr. 2021). eprint: https://arxiv.org/
pdf/2104.06750v1.pdf.

[5] Subhankar Pal et al. “OuterSPACE: An Outer Product
Based Sparse Matrix Multiplication Accelerator”. In:
2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 2018, pp. 724–
736. doi: 10.1109/HPCA.2018.00067.

[6] Pranav Prakash. “End-to-end Model Inference and
Training on Gemmini”. In: (May 2021). eprint: https:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/

EECS-2021-37.pdf.

[7] Eric Qin et al. “SIGMA: A Sparse and Irregular GEMM
Accelerator with Flexible Interconnects for DNN Train-
ing”. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 2020,
pp. 58–70. doi: 10.1109/HPCA47549.2020.00015.

[8] Luana Ruiz et al. “Invariance-Preserving Localized Ac-
tivation Functions for Graph Neural Networks”. In:
IEEE Transactions on Signal Processing 68 (2020),
pp. 127–141. issn: 1941-0476. doi: 10.1109/tsp.2019.
2955832. url: http://dx.doi.org/10.1109/TSP.2019.
2955832.

[9] Santiago Segarra et al. “Attributing the Authorship of
the Henry VI Plays by Word Adjacency”. In: Shake-
speare Quarterly 67.2 (Apr. 2016), pp. 232–256. issn:
0037-3222. doi: 10 . 1353 / shq . 2016 . 0024. eprint:
https://academic.oup.com/sq/article- pdf/67/

2/232/26707288/sq0232.pdf. url: https://doi.org/
10.1353/shq.2016.0024.

[10] Nitish Srivastava et al. “MatRaptor: A Sparse-Sparse
Matrix Multiplication Accelerator Based on Row-Wise
Product”. In: 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 2020,
pp. 766–780. doi: 10.1109/MICRO50266.2020.00068.


