
Automatic Detection of Interesting Cellular Automata

Qitian Liao

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-150

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-150.html

May 21, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

First I would like to thank my faculty advisor, professor Dan Garcia, the
best mentor I could ask for, who graciously accepted me to his research
team and constantly motivated me to be the best scholar I could. I am also
grateful to my technical advisor and mentor in the field of machine learning,
professor Gerald Friedland, for the opportunities he has given me. I also
want to thank my friend, Randy Fan, who gave me the inspiration to write
about the topic. This report would not have been possible without his
contributions. I am further grateful to my girlfriend, Yanran Chen, who cared
for me deeply. Lastly, I am forever grateful to my parents, Faqiang Liao and
Lei Qu: their love, support, and encouragement are the foundation upon
which all my past and future achievements are built.

Automatic Detection of Interesting Cellular Automata

by Qitian Liao

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of

Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Daniel D. Garcia
Research Advisor

5/10/2021

(Date)

* * * * * * *

Professor Gerald Friedland
Second Reader

5/10/2021

(Date)

Abstract

A cellular automaton consists of a grid of cells, and the grid can be in any �nite num-

ber of dimensions. Each cell is in one of a �nite number of states, and evolves with

respect to time steps according to a set of evolution rules based on the previous states

of its neighbors and itself [21]. The evolution rules are applied iteratively for as many

steps as desired to produce new generations. There are many possible con�gurations;

this report speci�cally explores two-dimensional outer totalistic cellular automata us-

ing the Moore neighborhood with decay, meaning that sick cells are not able to re-

cover and have to move one step closer to death at each generation.

The challenge when searching for interesting patterns in two-dimensional cellular

automata is a huge parameter search space. The number of possible combinations

of rule parameters can easily exceed 218. Our research focused on adjusting the rules

to �nd new, interesting spaceships (oscillating translators that move across the grid).

Existing research has not discovered a clear pattern among rules that generate space-

ships.

Manually searching for the interesting rules would be unrealistic, but fortunately, the

introduction of neural networks has revolutionized a variety of tedious classi�cation

tasks. This report explores the use of neural networks to detect interesting cellular au-

tomata rules, speci�cally Recurrent Neural Networks (RNN), Convolutional Neu-

ral Networks (CNN), feature extraction, entropy analysis, and other techniques. We

then put the trained machine learners into practice and detected several new rules

with only three states. We discovered an entire family of spaceships of di�erent peri-

ods, as well as many other interesting results.

i

Acknowledgement

Throughout my years at UC Berkeley, I met many amazing friends, peers, and men-

tors, all of whom have contributed to my accomplishments and progress. It is very

important for me to recognize all the people who have helped me during my gradu-

ate studies and the completion of this report. First I would like to thank my faculty

advisor, professor Dan Garcia, the best mentor I could ask for, who graciously ac-

cepted me to his research team in my undergraduate years and constantly motivated

me to be the best scholar I could. He has always been enthusiastic about my work

and gave me tremendous support and encouragement. As a busy person, he always

made time for me whenever I needed discussion or feedback, and his comments en-

lightened me in many ways when writing this report. I am also grateful to my techni-

cal advisor and mentor in the �eld of machine learning, professor Gerald Friedland,

for the opportunities he has given me and the invaluable guidance during the weekly

meetings. I would also like to thank my fellow graduate student and friend, Randy

Fan, who gave me the inspiration to write about the topic. Parts of this report were

adapted from an unpublished class project report Randy and I worked on during our

graduate years. This report would not have been possible without his contributions.

To my girlfriend, Yanran Chen, who supported me in every way possible during the

pandemic. My life would have been mundane without her immeasurable love and

constant company. Lastly, I am forever grateful to my parents, Faqiang Liao and Lei

Qu: their love, support, and encouragement are the foundation upon which all my

past and future achievements are built.

ii

List of Figures

1.1 Neighborhood con�guration . 2

1.2 Transitional state diagram of the Game of Life 3

1.3 Spaceships in the Game of Life 5

1.4 Examples of famous spaceships 6

1.5 “Instant birth, gradual death, no recovery” Model 7

2.1 Wolfram’s rule 30 . 11

3.1 Example of a generated frame . 16

3.2 Stitched square grid . 18

3.3 Examples of stitched images . 19

3.4 Entropy pattern distribution . 22

4.1 One-period spaceships . 25

4.2 A non-spaceship that looks like one 26

4.3 Two-period spaceships . 27

4.4 Tagalongs of the two-period spaceships 27

4.5 Similar two-period spaceship . 28

4.6 Extended two-period spaceships 28

4.7 Tagalongs of four-period spaceships 31

4.8 Three four-period spaceships . 32

4.9 Another three four-period spaceships 33

4.10 Eight-period spaceships . 34

4.11 Tagalongs of eight-period spaceships 34

4.12 Frankenstein spaceships . 35

4.13 A four-period rake . 35

4.14 An eight-period rake . 36

4.15 Another eight-period rake . 37

4.16 The new Life . 38

4.17 Destroyed spaceships in collision 39

4.18 Example of a “combined spaceship” 39

4.19 Example of a “murdered spaceship” 40

4.20 Another example of a “murdered spaceship” 40

iii

4.21 A rocket spaceship . 41

4.22 Example of a “combined spaceship” 42

4.23 Example of a “murdered spaceship” 43

5.1 Possible cellular automata state transitional diagrams 47

iv

List of Tables

3.1 Structure of the RNN . 17

3.2 Structure of the CNN . 21

v

Contents
Abstract i

Acknowledgement ii

List of Figures iii

List of Tables v

1 Introduction 1

2 Related Work 10

3 Methodology 14

3.1 Dataset Generation . 14

3.2 Sequence Training with RNN . 16

3.3 Data Preprocessing, Feature Extraction, Training with CNN 18

3.4 Entropy Analysis . 21

4 Spaceship Discoveries 23

4.1 Spaceships in three-state cellular automata 23

4.2 Spaceship collision behaviors in three-state cellular automata 38

4.3 Other interesting discoveries . 40

5 Future Work 44

6 Conclusion 50

7 References 52

A Appendix 55

A.1 Cellular Automata Generation Algorithm 55

A.2 The 35 Selected Interesting Rules 56

A.3 Frame Extraction . 57

A.4 Recurrent Neural Network Implementation 57

A.5 Image Stitching Function . 57

A.6 Image Feature Extraction with NASNet-Large 58

A.7 Image Feature Extraction with Image Pixels 59

A.8 Convolutional Neural Network Implementation 59

A.9 Image Cross-Entropy Computation 60

A.10 Maximum Memory Capacity Prediction 60

A.11 Spaceship Image and GIF generation 61

vi

A.12 Initial con�guration of the gliders 63

A.12.1 Code for �gure 1.3, the Game of Life 63

A.12.2 Code for �gure 1.3, the light-weight spaceship 63

A.12.3 Code for �gure 1.3, the mid-weight spaceship 64

A.12.4 Code for �gure 1.3, the heavy-weight spaceship 64

A.12.5 Code for �gure 4.1 . 64

A.12.6 Code for �gure 4.2 . 65

A.12.7 Code for �gure 4.3 . 65

A.12.8 Code for �gure 4.3 . 66

A.12.9 Code for �gure 4.3 . 66

A.12.10 Code for �gure 4.3 . 66

A.12.11 Code for �gure 4.3 . 66

A.12.12 Code for �gure 4.5 . 67

A.12.13 Code for �gure 4.6 (1/5) 67

A.12.14 Code for �gure 4.6 (2/5) 67

A.12.15 Code for �gure 4.6 (3/5) 67

A.12.16 Code for �gure 4.6 (4/5) 68

A.12.17 Code for �gure 4.6 (5/5) 68

A.12.18 Code for �gure 4.8 (1/6) 68

A.12.19 Code for �gure 4.8 (2/6) 68

A.12.20 Code for �gure 4.8 (3/6) 69

A.12.21 Code for �gure 4.9 (4/6) 69

A.12.22 Code for �gure 4.9 (5/6) 70

A.12.23 Code for �gure 4.9 (6/6) 70

A.12.24 Code for �gure 4.10 (1/2) 70

A.12.25 Code for �gure 4.10 (2/2) 71

A.12.26 Code for �gure 4.12 (1/2) 71

A.12.27 Code for �gure 4.12 (2/2) 72

A.12.28 Code for �gure 4.13 . 72

A.12.29 Code for �gure 4.14 . 73

A.12.30 Code for �gure 4.15 . 74

A.12.31 Code for �gure 4.16 . 74

vii

A.12.32 Code for �gure 4.17 . 74

A.12.33 Code for �gure 4.18 . 74

A.12.34 Code for �gure 4.19 . 75

A.12.35 Code for �gure 4.20 . 75

A.12.36 Code for �gure 4.21 . 76

A.12.37 Code for �gure 4.22 . 76

A.12.38 Code for �gure 4.23 . 77

viii

Chapter 1 Introduction 1

1 Introduction

Merriam-Webster de�nes a cellular automaton as follows [16]:
cellular automaton, sel-yuh-ler aw-tom-uh-ton
[noun]
an element in a computer simulation composed of semi-autonomous interact-
ing elements, speci�cally: any of such elements that are visualized on a com-
puter screen as square or hexagonal cells comprising an array, grid, or lattice,
that are controlled by similar but separate software routines or hardware de-
vices, that can exist in a number of states, that are in�uenced by the states of
their neighbors, and that are used to simulate diverse complex systems.

The most common con�gurations are the von Neumann and the Moore neighbor-

hoods shown in Figure 1.1, which include the surrounding four and eight cells respec-

tively. There are three types of two-dimensional cellular automata rules [1]: totalistic

rules depend only on the states of the cells in the neighborhood, outer totalistic rules

also depend on the state of the center cell, and growth totalistic rules make any cell

that becomes live remain live forever. Cellular automata have attracted much atten-

tion among scientists and have been regarded by Stephen Wolfram as the “new kind

of science” [1].

We normally restrict ourselves to systems whose behavior we can readily understand

and predict because otherwise, we cannot be sure that the system will do what we

want. However, unlike carefully engineered machinery, everything in nature is funda-

mentally made of particles �owing in space with arbitrary rules. Cellular automaton,

like nature, operates under no such constraints of predictability or controllability.

Applying a simple cellular automaton rule to a simple initial con�guration can lead

to a result that shows an immense level of complexity. The most fascinating aspect of

it is that it seems to involve generating something from nothing, a practice that hu-

mans are simply not used to. Therefore, because of the resemblance between cellular

automata and nature, it is natural to think of their dynamics as a micro-world where

the cells constitute their own ecosystems.

Chapter 1 Introduction 2

Arguably the most famous cellular automaton is John Conway’s the Game of Life

that was initially revealed to the public in a 1970 Scienti�c American article [14]. The

Game of Life is a two-dimensional cellular automaton with two possible states, alive

and dead, using the Moore neighborhood and the following set of rules [20]:

1. Any live cell with two or three live neighbors survives.

2. Any dead cell with three live neighbors becomes a live cell.

3. All other live cells die in the next generation. All other dead cells stay dead.

Figure 1.1: The von Neumann neighborhood (on the left) includes the
surrounding four cells of the center cell. The Moore neighborhood (on
the right) includes the surrounding eight cells of the center cell.

Since there are two possible states in the Game of Life, the live cells satisfying the sur-

vival rule and the dead cells satisfying the born rule will be alive in the next generation,

and the remaining cells will all be dead. The probability of surviving and being born

is 2
9

and 1
9

respectively. The evolution rule is often visualized using cellular automaton

state transition diagrams, where each vertex on the graph represents one of the states,

and each directed edge represents a viable evolution from one state to another. The

probability of that transition, if available, will be highlighted on the edge. Figure 1.2

shows the transitional state diagram of the Game of Life.

Chapter 1 Introduction 3

Figure 1.2: Transitional state diagram of the Game of Life. The probabil-
ity of the transition followed by the speci�c satisfying state requirements
in parentheses is highlighted on the corresponding edge. For example, the
edge connecting the dead state to the live state represents the action of a cell
being born, which has a 1

9 chance of occurring (only when exactly three live
cells surrounded it in the previous step).

Cellular automata become much more complicated and interesting when there are

more than two possible states. In this case, apart from the live (i.e, healthy) and dead

cells, there are also transitional dying cells (i.e., sick cells) in between and we are free

to implement new rules to de�ne how all of these states transition to other states.

In the rest of the report, healthy and live cells refer to the same thing and are thus

used interchangeably. These newly added rules, combined with the survival and born

rules, constitute a new set of evolution rules.

Some of the most frequent patterns generated by the rules are “still life”, which are

static patterns that do not change between generations, and “oscillators”, which are

periodic patterns that return to their initial state after a �nite number of generations

[21]. While these patterns are fun, the feature that makes the Game of Life so well-

known is undoubtedly the discovery of “spaceships” [23]. Spaceships, also known as

translating oscillators or “�sh”, are automata that travel by looping through a short

series of iterations and end up in a new location after each cycle returns to the original

con�guration [18]. They are usually considered the most interesting pattern and are

widely used for modeling complicated nonlinear systems in computational science,

physics, chemistry, and biology [21]. If we think of cellular automata as an ecosystem,

then the spaceships are a unique kind of independent life form within. Finding space-

Chapter 1 Introduction 4

ships can potentially help us answer questions like how accurately we are simulating

biological life, or whether our arti�cial life forms can adapt to a changing environ-

ment.

Period and speed are the two frequently-utilized metrics to describe a spaceship. Pe-

riod refers to the number of ticks a pattern must iterate through before returning to

its initial con�guration [20]. The speed of the spaceship is expressed in terms of the

metaphorical “speed of light”, c [17, 19]. The speed of light is a propagation rate across

the grid of exactly one step, either horizontally, vertically, or diagonally, per genera-

tion. Since a cell can only in�uence its nearest neighbors, the speed of light is the

upper bound to the speed at which any pattern can move. Generally, if the spaceship

in a two-dimensional automaton is translated by (x, y) after n generations, then the

speed v is de�ned as:

v =
max (|x|, |y|)

n
c

The most famous spaceship found by Conway is the �rst one in Figure 1.3 with a pe-

riod of 4 and a speed of c
4

, as it takes four generations for a given state to be translated

by one cell diagonally. There are many other cellular automata rules besides the Game

of Life that can produce spaceships. Figure 1.4 shows some of the famous spaceships

and glider generators, a pattern with a main part that repeats periodically, like an oscil-

lator, and that also periodically emits spaceships [24], that have been generated with

other sets of rules featured in Cellular Automata Rules Lexicon [6].

Chapter 1 Introduction 5

(1) (2) (3) (4) (5)

↘

(1) (2) (3) (4) (5)

→

(1) (2) (3) (4) (5)

−→

(1) (2) (3) (4) (5)

−→

Figure 1.3: Spaceships generated by the Game of Life “2,3/3/2” rule. The
top is the original spaceship �rst found by Conway. The rest are the light-
weight, mid-weight and heavy-weight spaceships respectively. All four
spaceships have a period of four. The light-weight, mid-weight and heavy-
weight spaceship have a speed of c

2 , as it takes four generations for a given
state to be translated by two cells. Code is provided in A.12.1, A.12.2,
A.12.3, A.12.4.

Chapter 1 Introduction 6

(1) (2)

(3) (4)

Figure 1.4: Four examples of discovered glider generators with di�erent
rules. They are “Brian’s Brain” with rule “/2/3” (top left), “Burst” with rule
“0,2,3,5,6,7,8/3,4,6,8/9” (top right), “Brain6” with rule “6/2,4,6/3” (bot-
tom left), and “Star Wars” with rule “3,4,5/2/4” (bottom right) [6].

The spaceships in Figure 1.4 belong to the category of outer totalistic generations of

two-dimensional cellular automata and are generated using the Moore neighborhood

with decay. In other words, they use the “Instant birth, gradual death, no recovery”

model depicted in Figure 1.5.

Chapter 1 Introduction 7

Figure 1.5: ”Instant birth, gradual death, no recovery” Model. Healthy
cells can get sick. Sick cells are not able to recover, and they will be one step
closer to death at each step. Dead cells cannot be born sick.

The behavior of sick cells under this model is deterministic as they are not able to

recover and can only approach one step closer to death at each step. The healthy cells

that do not satisfy the survival rule will become sick and inevitably enter the path of

gradual death. Hence, we do not need extra parameters to categorize the behavior of

sick cells. Speci�cally, like the Game of Life, three parameters constitute the rules of

the model:

1. The survival rule that determines which of the live cells survive in the next step.

2. The born rule that determines which of the dead cells are born in the next step.

3. The number of total possible states.

The canonical way to represent the evolution rules of the generations is “S/B/C”,

where S, B, and C represents the survival rule, the born rule, and the count of states

cells can have respectively [6]. Hence, the Game of Life can be summarized as the

“2,3/3/2” rule.

Not all rules are able to produce beautiful results like the ones in Figure 1.4. In fact,

the results from most of the rules turn out to be unappealing. Con�gurations under

some rules always die out, while others might lead to explosive growth. It is worth not-

ing that spaceships exist for many unstable rules, especially those that lead to explosive

growth. However, in this case, there is no real value in exploring them because they

often disappear quickly and move around recklessly without clear patterns. There-

Chapter 1 Introduction 8

fore, we shall only consider spaceships for stable rules that exhibit bounded growth

and eventually yield a �nite number of gilders. One potential problem is that there

may be some carefully constructed initial con�guration within an interesting rule

that could lead to explosive growth or stasis [2]. However, statistically it has an ex-

tremely low probability if the initial con�guration is randomly generated. In this re-

port, we decided to de�ne the rules that satisfy these requirements using the “Instant

birth, gradual death, no recovery” model with the Moore neighborhood as interest-

ing. Speci�cally, the de�nition of interesting rules in this report includes:

1. It uses the Moore neighborhood.

2. It uses the “Instant birth, gradual death, no recovery” model, which means the

evolution rule consists of the survival rule, the born rule, and the number of

possible states.

3. Random initial con�gurations will always eventually stabilize (i.e., non-static

and non-explosive).

4. It produces a �nite number of spaceships.

All the remaining rules in the same model that lead to stasis, noise with no discernible

patterns moving across the screens, or some patterns other than spaceships, are classi-

�ed as boring. Finding out what the interesting rules are and what the spaceships look

like is a daunting task. Under most circumstances, it is impossible to tell whether the

rule is interesting or boring just by looking at the parameters of the rules. Further-

more, in one single case where we have a total of 10 possible states (i.e., 8 sick states),

there are 29 survival rules and 29 born rules, which already leads to a total of 218 com-

binations of rules. Given the fact that we may also want to explore rules with other

numbers of total states, this eventually becomes an impossible task if it needs to be

done by hand. That led us to explore automated detection of interesting rules so that

users do not have to manually go through the process.

This report explores the possibility of using deep neural networks to detect these in-

Chapter 1 Introduction 9

teresting cellular automata rules. Deep neural networks, a branch of machine learn-

ing, are computational algorithms that can extract information from complicated

data to detect patterns or trends which are too convoluted for human brains and

other computer software. The most unique property of neural networks is that once

trained, they can learn and adapt to new situations on their own. In this way, their

learning process resembles the cognitive development of the human brain, which

is made of neurons, the fundamental building unit for information transmission.

These characteristics make neural networks much better candidates than humans to

distinguish the interesting rules in cellular automata. We will train the neural net-

work on a dataset consisting of samples of interesting and boring rules so that the

machine learner can gradually recognize the decisive properties that distinguish in-

teresting from boring rules. After the training, validating, and testing processes, our

machine learner would be ready to dive into the remaining search space of rules that

have not yet been classi�ed and collect the interesting ones. The best part about it

is that humans do not need to be involved in the exploration process at all, which is

the most tedious and time-consuming step. All we have to do is manually inspect the

rules that have been classi�ed as interesting by our machine learner and record the

spaceships within the patterns if they have been classi�ed correctly.

Speci�cally, we �rst built the dataset from scratch by programming the generation al-

gorithm and applying data augmentation to selected known rules. We used Recurrent

Neural Networks (RNN), Convolutional Neural Networks (CNN), feature extrac-

tion, entropy analysis, and other techniques to help �nd interesting rules that gener-

ate spaceships. We then put the trained machine learners into practice and detected

several new rules with only three states. We discovered an entire family of spaceships

of di�erent periods, Frankenstein spaceships, the new Life, and many other interest-

ing results.

Chapter 2 Related Work 10

2 Related Work

John Conway, regarded as the father of cellular automata and the “founder of life”,

�rst described this elegant mathematical model of computation in 1970. From his

famous rules of the Game of Life emerged a �ve-celled organism that moves diago-

nally across the grid. This discovery has attracted a group of fanatics who dedicated

themselves to constructing rules in hopes of spotting new life forms. However, there

has not been a systematic method of identifying interesting rules and the progress of

searching has been rather slow.

The hype for cellular automata reached its peak when Stephen Wolfram published

“A New Kind of Science” in 2002, which is also regarded as the encyclopedia of cellu-

lar automata [1]. In the book, he introduced a large variety of cellular automata with

many arbitrary rules that generate interesting results. However, the most important

lesson from his book is that complexity arises from simplicity and there is incredi-

ble richness in the computational universe. Even the simplest rule can produce the

most complicated and unpredictable behavior. The vast space of the computational

universe and the scarcity of the discovered rules gives us the potential to mine the

interesting rules and harness them for our purposes. Wolfram describes the process

of looking for something interesting in the space of cellular automata as very di�er-

ent from our accustomed approach of building models step by step while ensuring

that we have control over their behaviors. He makes the rather counterintuitive claim

that we should not try building anything at all. Instead, we should just de�ne what we

want and then search for it in the computational universe. It is sometimes very easy

and fast to �nd what we want. For example, Wolfram quickly came across with rule 30

[22] in Figure 2.1, which is a one-dimensional cellular automata rule with two states

and later became one of the best-known generators of apparent randomness, just by

enumerating the rules. However, in other cases, it might take much longer, like it

took Wolfram millions of attempts to �nd the simplest universal Turing machine.

Chapter 2 Related Work 11

Figure 2.1: Wolfram’s Rule 30 [22].

The justi�cation he makes for his claim is that when one looks at what the cellular

automata is doing, one does not comprehend how it really works. Just like nature,

one might be able to analyze some of its parts and be impressed with how smart they

are, but it would be extremely hard to understand the full picture. Wolfram claims by

the laws of computational irreducibility that we had to do an irreducible number of

computations to �gure out precisely what the generated patterns look like. In other

words, there are no shortcuts and the only viable method is to do a full-sized simula-

tion. Therefore, it is radically di�erent from exact science where we normally predict

the behaviors of the models by solving mathematical equations. Hence, it is in vain

to even attempt to manipulate or systematically build a cellular automata rule which

generates the desired pattern.

Nevertheless, despite the unpredictable nature of cellular automata, there have been

some approaches to �nd interesting two-dimensional cellular automata rules contain-

ing spaceships. The most naı̈ve is to repeatedly create random neighborhood rules

and inspect if it generates an interesting result. This method only works for lower

dimensional cellular automata (speci�cally one-dimension), whose parameter search

space is relatively small. In this case, we can brute force all the possible sets of rules

Chapter 2 Related Work 12

and manually inspect which ones are interesting after the generations are saved. How-

ever, when it comes to higher-dimensional cellular automata, even a two-dimensional

one, the parameter search space becomes gigantic, and most rules would not produce

spaceships. Hence, this method becomes ine�cient and random as the experiment

turns into a pure matter of luck. Another approach is to make slight modi�cations to

known interesting rules, such as John Conway’s the Game of Life, to generate similar

or re�ned patterns. This speci�cally involves modifying one or two of the parameters

while leaving the rest unchanged. However, this practice usually leads to a radically

di�erent result than the original because the interesting rules are not necessarily clus-

tered together in the parameter search space. Consequently, this method turns out to

be not much more promising than the �rst. Nevertheless, despite their randomness

and ine�ectiveness, the two methods mentioned above are commonly used to �nd

rules containing spaceships.

A more systematic method to �nd spaceships is introduced by Andrew Wuensche in

Collision-Based Computing [3]. He proposed that this could be achieved by mea-

suring the variance of input entropy over time. The method also allows automatic

“�ltering” of cellular automata space-time patterns to show up spaceships and related

emergent con�gurations more clearly. He claimed that cellular automata dynamics

are shown to exhibit some approximate correlations with global measures on conver-

gence in attractor basins, characterized by the distribution of in-degree sizes in their

branching structure, and to the rule parameter Z .

There are also some computational methods to determine the type of the generated

cellular automata. For example, Christopher Langton created a cellular automata

lambda value that is computed based on the number of cells that have been born

at that time step and dividing it by the total number of cellular automata cells [12].

This formula generates a decimal value between 0 and 1. The endpoints of the inter-

val, 0 and 1, correspond to the static patterns and explosive growth respectively. Based

on his classi�cation, a lambda value within 0.1 and 0.15 indicates an interesting rule

Chapter 2 Related Work 13

that requires further investigation. However, the most well-known classi�cation of

cellular automata is introduced by Stephen Wolfram, which consists of four di�erent

classes: automata in which patterns stabilize into homogeneity, automata in which

patterns evolve into mostly stable or oscillating structures, automata in which pat-

terns evolve into chaos, and automata in which patterns become extremely complex

[21]. Based on his classi�cation, the fourth class is potentially computational universal

and worth investigating. But neither Langton nor Wolfram established a connection

between the classi�cations and the rules themselves.

None of these described methods have been proven to be reliable as they usually �nd

noise or stasis. Therefore, detecting spaceships in two-dimensional outer totalistic

cellular automata is an unsolved problem and this report will introduce the poten-

tial of neural networks to detect interesting rules. The main idea is that we will build

machine learners, which are much more computationally capable than humans and

other programs, to help determine whether the rules would be interesting. If we think

of the parameter space as an ocean, then an interesting rule is like a particular depth

and the spaceships are the �sh at that depth. Instead of randomly choosing a depth

and inspect whether �sh can survive, we can quickly scan a vast volume of the sea

and inspect those depths that have �sh swimming in it. Given su�cient computers

and memory, we have the potential to detect all the interesting rules containing space-

ships.

Interestingly, Wolfram also described an uncanny systematic resemblance between

neural networks and cellular automata in his book [1]. The parameters in neural net-

works are never explicitly set or engineered but are generated automatically. Similar

things happen with cellular automata as the patterns are never arti�cially constructed.

What di�erentiates between the two is that in neural networks there are learning pro-

cesses, where the weights are improving according to rules of linear algebra and cal-

culus. However, in cellular automata, the parameters of the rules are not necessarily

improving, and one is forced to enumerate all possibilities.

Chapter 3 Methodology 14

3 Methodology

We �rst collected the two-dimensional cellular automata data that the machine learner

could use for training, validation, and testing. This entailed designing and imple-

menting a data-collection pipeline from scratch to generate a sequence of raw frames

for each of the patterns. Then we tested several models and analyzed for the best

results. We trained the data with di�erent models including RNN and CNN, and

performed hyperparameter tuning, image feature extraction, and entropy analysis.

3.1 Dataset Generation

The foremost step was to program the cellular automata evolution algorithm, which

computes the states of each cell in the next generation based on the rules and the

current con�guration. The logic follows the rules in the “Instant birth, gradual death,

no recovery” model: in the next generation, the live cells that satisfy the survival rule

and the dead cells that satisfy the born rule will be alive, the live cells that do not satisfy

the survival rule will become sick, the cells that are in the dying transitional (sick)

states will move one step closer to death, and the remaining dead cells that do not

satisfy the born rule will remain dead. The survival rule, born rule, the total number

of possible states, and the neighborhood were passed in as parameters. The speci�c

implementation of the algorithm can be found in Section A.1.

We were able to keep track of the evolution of all cells in the grid in each genera-

tion using the evolution algorithm. With the help of CellPyLib, which is a python

package supporting the visualization of two-dimensional, k-color, adjustable neigh-

bor cellular automata, we could save the evolution as a sequence of frames. However,

we still needed to collect known rules so that we could pass them into the algorithm

and train our machine learner on the generated sequence of frames later. To obtain

boring rules, we manually went through random examples and collected those that

died out immediately, generated static noise or boring non-spaceship patterns. Enu-

Chapter 3 Methodology 15

meration proved to be quite e�ective because most rules fall under the category of

boring, and we easily collected 105 boring rules using this method. Interesting rules,

on the other hand, are more rare, and thus were harder to �nd. Hence, we borrowed

existing examples provided in Cellular Automata Rules Lexicon and recorded those

with spaceships. Eventually, we successfully collected 35 rules that can be subjectively

classi�ed as interesting. The set of interesting rules we included in our dataset is de-

scribed in Section A.2.

Because of the limited number of rules that we classi�ed, we decided to apply data

augmentation to increase the size of the dataset to a reasonable size exceeding 1,000.

Since we also wanted to maintain a 50/50 split of the two patterns for training pur-

poses, we reused each boring and interesting rule 10 and 30 times with di�erent ran-

dom initial con�gurations. Consequently, we generated a total of 1050 boring and

1050 interesting patterns. For each of the patterns, we recorded 140 consecutive gen-

erations as grayscale frames using CellPyLib, which was usually more than enough

for the patterns to stabilize. The living and dead cells were in black and white re-

spectively. The remaining sick cells were assigned with a grayscale color in between

depending on their speci�c state. Figure 3.1 shows an example of a generated frame.

This happened to be the most time-consuming step as it took roughly �ve hours to go

through the lexicons and record the interesting ones, and another 12 hours to generate

the frames.

Chapter 3 Methodology 16

Figure 3.1: Frame 107 of a boring rule “1,5,8/2/7” with a random initial
con�guration.

3.2 Sequence Training with RNN

After building the dataset from scratch, we were ready to start testing di�erent ma-

chine learners and analyze the results. Unlike other image classi�cation tasks like dis-

tinguishing between cats and dogs, our classi�cation task contains extra temporal in-

formation. Speci�cally, the sequence in which the frames were generated represents

the evolution of cellular automata with respect to time, so the frames could not be

processed in random order. It is very similar to a video classi�cation task from this per-

spective. Hence our �rst approach was to use a Recurrent Neural Network (RNN),

as an RNN can e�ectively connect information obtained from previous frames to the

present frame. However, one potential problem was that RNNs only work if the gap

between the relevant information and the place it is needed is small. In our case, we

might need to include many consecutive frames because spaceships sometimes span

across a large number of time steps. Therefore, we decided to use a Long Short-term

Memory network (LSTM), which is a special kind of RNN capable of learning long-

term dependencies and thus a perfect �t for our sequence classi�cation task [5]. Since

the initial con�guration was totally random, we believed under most circumstances

the starting generations of the cellular automata were highly randomized and would

Chapter 3 Methodology 17

not re�ect the eventual pattern accurately. Therefore, we decided to start training the

LSTM at the 80th frame, where the patterns were reasonably solidi�ed. Each sample

consisted of 41 (from 80th to 120th) consecutive frames, and each frame was of size

300× 300 and has 1 channel as it is grayscale. The 41 selected frames were congregated

into a list and the LSTM would process the entire list as one sample. The frame ex-

traction code can be found in Section A.3. We hoped that the machine learner would

consider the existence of spaceships as the decisive trait during the training process.

We tested many architectural parameters and structures to create the best model. One

failed attempt was stacking a Conv2D layer on top of an LSTM layer. We thought this

might work because a Conv2D layer is capable of capturing image features and LSTM

can detect temporal correlations across the frames. However, the results were subop-

timal and the correlation between time and space features was not captured properly

by stacking the layers. Therefore, we eventually used a convolutional LSTM network,

which di�erentiates itself from a normal LSTM in the way that it has convolutional

structures in both the input-to-state and state-to-state transitions and research has

shown that a ConvLSTM2D layer is better at capturing spatiotemporal information

[4]. Our results did improve signi�cantly after we made this change. Furthermore, we

also tried di�erent �lter sizes, dropout rates, kernel sizes, and activations. Eventually,

we used the structure described in Table 3.1 for our machine learner. The amount of

time it took to train the model depended greatly on the number of training epochs

and the size of the dataset, but it would not exceed an hour in our case.

ConvLSTM2D 64 �lter output space, 3×3 �lters, 15% dropout

max pooling (2, 2) pooling kernels, 15% dropout

dense layer 256 nodes, ReLU activation, 15% dropout

dense layer 64 nodes, ReLU activation, 15% dropout

dense layer 2 nodes, softmax activation

Table 3.1: Structure of the RNN

The machine learner was able to achieve 93% training accuracy and 91% testing ac-

Chapter 3 Methodology 18

curacy on the testing set with 10% interesting data. The test recall is 98%, indicating

the majority of interesting con�guration has been correctly labeled as such. The high

accuracy score indicates the success of the machine learner.

3.3 Data Preprocessing, Feature Extraction, TrainingwithCNN

In the previous approach, we used RNN, speci�cally LSTM to train the models,

which successfully processed the underlying temporal relationship of the frames. An

alternative method we tried was to use a Convolutional Neural Network (CNN) by

treating the frames as a typical image classi�cation task. However, in this case, we

needed to recon�gure our dataset of sequences of frames into trainable images before-

hand. We also had to ensure that these recon�gured images in some way preserved the

temporal information. To satisfy these requirements, we decided to stitch the images

in a predetermined order into a square grid as shown in Figure 3.2. We hoped that

the machine learner would be able to recognize the underlying relationship between

the frames.

Figure 3.2: Example of sequence of frames in the stitched image if nine of
them are included.

Another challenge we faced was to decide which frames should be included in the

stitched image. To increase the algorithm’s robustness and to control better for in-

teresting con�gurations that have some seemingly uninteresting frames interspersed

throughout their evolutions, we created two additional parameters: the starting frame

and the number of frames to be included. We tested many possible numerical values

of the two parameters to discover the best combination. Figure 3.3 shows two exam-

Chapter 3 Methodology 19

ples of the stitched images, one represents a boring rule while the other represents an

interesting rule.

Figure 3.3: Examples of stitched up images. (Left) Nine frames are
stitched together, which are generated by a boring rule “6/0,5,6,9/8”. All
frames are noise. (Right) Sixteen frames are stitched together, which are
generated interesting rule “2/2/8”. By comparing the frames in the top left
and the bottom right corner, we could see the pattern translating to the
right, which indicates a spaceship.

Since stitching frames is an uncanonical method of classifying cellular automata pat-

terns, we wanted to measure the learnability of the stitched images using Brainome.ai

[9] before we built the model. Because Brainome.ai accepts labeled data in CSV

format, we needed to do feature extraction to the stitched images as the �nal pre-

processing step. We �rst used a pre-trained NASNet-Large Model, which is a CNN

that is trained on more than a million images from the ImageNet database [10]. For

each of the stitched images, the model returned 1000 selected features. We then fed

the data into Brainome.ai and obtained corresponding information about Decision

Trees and Neural Networks. The expected generalization using Decision Tree is 2.05

bits/bit and using a Neural Network is 0.19 bits/bit. The decision tree has 1,026 pa-

rameters, and the estimated memory equivalent capacity for neural networks is 11,034

parameters. This overwhelming memory equivalent capacity indicated that the neu-

ral network would be extremely over�tting, which means that the features extracted

Chapter 3 Methodology 20

were barely learnable by the neural network. This poor result was reasonable in ret-

rospect because the NASNet-Large model is speci�cally used for classifying and ex-

tracting features from images of common-life objects, and cellular automata patterns

is not one of its targets.

As our previous feature extraction method with NASNet-Large model was unsuc-

cessful, we decided to directly use the pixels of the stitched images as features. We fed

the data into Brainome.ai and learned that the estimated memory equivalent capacity

for neural networks is 3217 parameters, which was much better than the previous re-

sult even though the risk of over�tting persisted. Nevertheless, this gave us su�cient

con�dence to proceed with model training.

As raw data, these images were quite large given the RAM allocation of 12 Gigabytes

by Google Colab [11]. Running the notebook tended to crash the kernel so we settled

for lower resolution and downsampled the pixel images to 300×300. This tradeo�

allowed us to manipulate and do machine learning on the data without too much

computational expense. As a �nal preprocessing step, the [0, 255] valued matrices rep-

resenting the images were normalized using simple division to [0, 1]. This improved

performance greatly in practice. Many of the model architectures we tried produced

sub-baseline results before this step. The next part of the optimization process was

a question of model architecture and hyperparameter tuning. We tried many things

to create the best model, which included altering the convolutional �lter size, adding

batch normalization, adding dense layers at the output, pooling the kernel size, mod-

ifying the type of pooling, and tweaking the dropout.

We found that the greatest improvements happened after adding dropout and batch

normalization. There was also a signi�cant increase in accuracy after increasing the

convolutional �lter size of the �rst convolutional layer to 5×5 from 3×3. We believed

this is because 3×3 is too small to capture much of the complexity of the interesting

con�gurations. Given a 3×3 window, many of the interesting shapes looked like noise.

Chapter 3 Methodology 21

We tried many things that did not work in addition to those that did. Increasing

the pooling kernel size, using average pooling instead of max pooling, increasing the

number of �lters in the convolutional layers (from 64 in each), and increasing the

second convolutional layer’s �lter size from 3×3 to 5×5, all resulted in worse perfor-

mance by the validation accuracy metric. We found that increasing the epochs past

30 resulted in over�tting. Eventually, we used the architecture described in Table 3.2.

The amount of time it took to train the model depended greatly on the number of

training epochs and the size of the dataset, but it would not exceed an hour in our

case.

The machine learner was able to achieve 93.44% training accuracy and 84.12% testing

accuracy on the testing set with 10% interesting data. The test recall is 100%, indicating

every interesting con�guration has been correctly labeled as such.

Conv2D
64 �lter output space, 5×5 �lters, ReLU activation.

Batch normalization prior to ReLU

max pooling (2, 2) pooling kernels, 15% dropout

Conv2D
64 �lter output space, 3×3 �lters, ReLU activation.

Batch normalization prior to ReLU

max pooling (2, 2) pooling kernels, 15% dropout

dense layer 64 nodes, ReLU activation, 15% dropout

dense layer 10 nodes, ReLU activation, 15% dropout

output layer 1 node, sigmoid activation

Table 3.2: Structure of the CNN

3.4 Entropy Analysis

Due to the varying degrees of information density in cellular automata patterns, en-

tropy is an adequate measure to use since there is likely a correlation between the label

(boring and interesting) and the degree of randomness in the images created by the

Chapter 3 Methodology 22

cellular automata. There are many existing research on this topic and the common

consensus is that the problem of computing or even approximating the topological

entropy of a given cellular automata is algorithmically undecidable [7, 8]. Therefore,

we decided to try something that has not yet been attempted before. Namely, we

computed the cross-entropy values of the stitched images generated in the prepro-

cessing step of Section 3.3. In this case, boredom can be understood as either static

or complete noise, which correspond to extremely low and high entropy values.

We iterated through all the stitched frames and computed their entropies using the

cross-entropy algorithm, then plotted the entropy values of the boring and interesting

images in Figure 3.4.

Figure 3.4: Entropy distribution of boring (left) and interesting (right)
patterns.

Boring images had entropy values that spread roughly evenly from 0.0 to 3.5, with a

small gap between 0.5 and 0.75. Many had entropy values close to 0.0, which is rea-

sonable because they would likely correspond to patterns that die out. On the other

hand, interesting images had entropy values concentrated in the 0.0 to 2.0 range, es-

pecially between 0.5 and 0.75. This intuitively makes sense because interesting images

had less noise and entropy compared to boring images on average. It should be noted

the minimum entropy for boring images was 0.0 while the minimum entropy for in-

teresting images was 0.0318. This is because frames that had no live cells were always

labeled as boring. The entropy values suggest adding features identifying if the image

entropy is above 2.0 or equals to exactly 0 may be bene�cial for the model accuracy.

Chapter 4 Spaceship Discoveries 23

4 Spaceship Discoveries

After we �nished training the machine learners, we put them into practice and used

them to classify patterns and �nd spaceships in those that are interesting. Since cellu-

lar automata with two possible states, like the Game of Life, have already been widely

explored, we focused mainly on those with three states. We ran the machine learner on

the sequences of frames generated from random combinations of survival and born

rules, and then manually inspected the few rules which the learner classi�ed as inter-

esting. Overall this was a very time-consuming process since for each new rule, we had

to generate a sequence of frames so that the machine learner can have something to

train on. However, we believed that the situation could be ameliorated in the future

thanks to the process being entirely parallelizable. More relavant information is dis-

cussed in Section 5. The evolution of the spaceships in this section will be provided as

a sequence of �gures. The numbers give the generations and the exact movement of

each is depicted by its shifting position in the enclosing grids. Code used to generate

the �gures can be found in Sections A.11 and A.12.

4.1 Spaceships in three-state cellular automata

Our machine learner has found several new interesting rules with three states (the

dead state, the live state, and one sick state) that have not been previously discovered,

which are “4,6/2/3”, “4/2,4/3”, “4,6/2,4/3”, “2,4,6/2,4/3”, “4/2,5/3”, “3,6/2,6/3”, and

“5,6/2,6/3”. The common trait of these newly discovered rules is that dead cells will

be born with two alive cells in their neighborhoods. These rules all generate the same

family of spaceships, where the members are all led by a two-by-two spaceship and

followed with a distinct tagalong, where tagalong is de�ned as a pattern that is not a

spaceship itself but can be attached to the back of a spaceship to form a larger space-

ship [17]. We decided to call this two-by-two leading structure the “leading block”

(top left corner in Figure 4.1). The leading block is the smallest found spaceship in

Chapter 4 Spaceship Discoveries 24

all patterns with three possible states. It has a period of one and a speed of c. Since

all members in the family are led by the leading block, they all have a uniform speed

of c. However, the members can have di�erent periods. The one-period members

have zero or more one-by-two blocks (we named it the supplemental block), which

are the smallest possible tagalongs, attached to either side of the leading block. We

can enumerate the number of one-period spaceships with at most two supplemen-

tal blocks. There is one member with no supplemental block attached, namely the

leading block, two members with one, and ten members with two. These spaceships

are shown in Figure 4.1. There are in�nitely many one-period members in the family

because any arbitrary number of supplemental blocks can be attached.

However, one caveat is that there are some patterns, like the one shown in 4.2, that

have the supplemental blocks attached to the leading block but are not actually space-

ships. This means that the tagalongs are very delicate and the slightest di�erence in

their structure can lead to a massive change in the eventual outcome. Most patterns

that have almost the same tagalong as one of the basic forms with only a few di�erent

cells will not turn out to be a spaceship. Thus, it is very hard to arti�cially engineer

a spaceship and it proves Wolfram’s philosophy that we should not try to build any-

thing at all.

Chapter 4 Spaceship Discoveries 25

↑

Figure 4.1: All one-period members with zero, one, or two supplemental
blocks of the spaceship family that appears in rules “4,6/2/3”, “4,6/2,4/3”,
“2,4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”. Code is provided in A.12.5.

Chapter 4 Spaceship Discoveries 26

↑

Figure 4.2: A pattern that is not a spaceship in rules “4,6/2/3”,
“2,4,6/2,4/3”, “4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3” despite consisting of
the leading block and three supplemental blocks. However, it does trans-
form into another two-period spaceship in four steps. Code is provided in
A.12.6.

We also found many family members with a period of two. Their structures are more

complicated since their tagalongs are no longer entirely made of the supplemental

blocks. They emit one unit of vanishing ”exhaust” when moving across the grid,

whereas the rest of their body remains unchanged. We have discovered �ve most ba-

sic two-period spaceships that appear in rules “4,6/2/3”, “4,6/2,4/3”, “2,4,6/2,4/3”,

“3,6/2,6/3”, and “5,6/2,6/3” in Figure 4.3, each with a distinct tagalong. For simplic-

ity, they will be referred to as “two-period spaceship A, B, C, D, and E” in the rest of

the report. Furthermore, we have also observed some two-period spaceships that have

the exact same tagalongs as the �ve basic forms. For example, in Figure 4.5 is another

spaceship that looks virtually the same as the “two-period spaceship E” and only dif-

fers in the way that its tagalong is relatively moved towards the right by one unit. We

have already seen such room for diversity in the one-period members. Additionally,

like the one-period members, there are also in�nitely many two-period spaceships

in the family. Their tagalongs can get arbitrarily large as they can have a connecting

bridge consisting of any arbitrary number of supplemental blocks between the basic

tagalong and the two-by-two leading block. However, all of these tagalongs are essen-

tially extensions of one of the �ve most basic forms in Figure 4.4. This means that

Chapter 4 Spaceship Discoveries 27

their tagalongs can be reduced by stripping away one or more supplemental blocks.

Figure 4.6 depicts some possible extensions of the basic �ve two-period spaceships.

A

(1) (2) (3)

−→

B

(1) (2) (3)

−→

C

(1) (2) (3)

−→

D

(1) (2) (3)

−→

E

(1) (2) (3)

−→

Figure 4.3: The �ve basic two-period members of the spaceship fam-
ily that exist for rules “4,6/2/3”, “4,6/2,4/3”, “2,4,6/2,4/3”, “3,6/2,6/3”,
“5,6/2,6/3”. For simplicity, they are referred to as “two-period spaceship A,
B, C, D, and E” respectively. Code is provided in A.12.7, A.12.8, A.12.9,
A.12.10, and A.12.11.

(1) (2) (3)
(4)

(5)

Figure 4.4: The �ve basic tagalongs of two-period spaceships.

Chapter 4 Spaceship Discoveries 28

(1) (2) (3)

−→

Figure 4.5: The spaceship that is almost the same as “two-period spaceship
E” except its tagalong is moved relatively towards right by one unit. Code
is provided in A.12.12.

(1) (2) (3)

−→

(1) (2) (3)

−→

(1) (2) (3)

−→

(1) (2) (3)

−→

(1) (2) (3)

−→

Figure 4.6: Examples of extended two-period members of the spaceship
family that exist for rules “4,6/2/3”, “4,6/2,4/3”, “2,4,6/2,4/3”, “3,6/2,6/3”,
“5,6/2,6/3”. Their tagalongs are the same as the �ve basic forms in Figure
4.4 except there is an additional supplemental block connecting them to
the leading block. The leading block is like the tractor towing something
behind it and this one simply has a longer tow cable. Other extended mem-
bers have more connecting supplemental blocks and thus even longer tow
cables. Code is provided in A.12.13, A.12.14, A.12.15, A.12.16, and A.12.17.

Chapter 4 Spaceship Discoveries 29

We have also found family members with a period of four. Super�cially, they do not

look much di�erent from the two-period members except their tagalongs are larger

and more complicated. They emit a more noticeable and larger amount of vanishing

exhaust when they move across the grid. We identi�ed six basic four-period members

shown in Figure 4.8 and 4.9, each with a distinct tagalong in Figure 4.7. For sim-

plicity, they will be referred to as “four-period spaceship A, B, C, D, E and F” in the

rest of the report. The longest period members we found are the ones with periods

of eight in Figure 4.10. We have discovered a total of two such spaceships, which we

will name as “eight-period spaceship A” and “eight-period spaceship B”. Their taga-

longs are depicted in Figure 4.11. Super�cially, there is an uncanny resemblance be-

tween “eight-period spaceship A” and “four-period spaceship C”, and “eight-period

spaceship B” and “four-period spaceship A”. The two eight-period spaceships both

generate a maximum of ten units’ exhaust. We believe it is highly likely that there

are more with unique tagalongs that are yet undiscovered, as they are more rare and

thus much harder to �nd than the other members in the family. With the same ar-

gument we made with the two-period spaceships, there are in�nitely many four and

eight-period spaceships in the family.

The family members introduced so far have only one tail. However, these space-

ships, unlike normal species in real life, have unlimited potential to mutate, combine,

and have arbitrarily complex structures. However, some members in the family have

found a way to combine a few basic tagalongs to form a larger one. Figure 4.12 shows

two Frankenstein spaceships whose tagalong is a combination of the basic forms we

have introduced earlier. One combines “two-period spaceship C” and “four-period

spaceship A”. The other combines “two-period spaceship A” and two “four-period

spaceship B”s. Their existence proves that two or more tagalongs can be combined to

form a larger tagalong. The period of the resulting Frankenstein spaceship is deter-

mined by the longer period of its components. The diversity of the family members

is thus beyond imaginable as the tagalongs can get arbitrarily complex and it is impos-

Chapter 4 Spaceship Discoveries 30

sible to enumerate all possibilities.

The most interesting family members we found are rakes, which are cellular automata

that leave behind a trail of non-vanishing debris of a stream of spaceships [18]. Their

structures are much more complex than the other family members. We have observed

a total of three rakes, one with a period of four and two with eight in Figure 4.13, 4.14,

and 4.15. For simplicity, they will be referred to as “rake A, B, and C” in the rest of the

report. Their periods are equivalent to the number of steps it takes them to generate

a new spaceship. All three rakes generate a stream of one-period spaceships, whose

moving directions are not the same as the rakes. Rake A generates a stream of two-

by-two leading blocks, which moves in the opposite direction as the rake itself. Rake

B generates a stream of one-period members with one supplemental block, which

also moves in the opposite direction as the rake itself. Rake C generates a stream of

one-period members with two supplemental blocks, which move perpendicular to

the rake.

We discovered one special spaceship depicted in Figure 4.16 that does not contain the

leading block and hence is not a member of the family. It maintains a total of three live

and three sick cells in all generations. Furthermore, the spaceships we have introduced

so far either traverse horizontally or vertically. But just like Conway’s the Game of Life

spaceship, this spaceship moves diagonally across the grid with a period of four. Its

speed is also c
4

, since it takes four generations for a given state to be translated by one

cell. We decided to call this the new Life with three states.

Chapter 4 Spaceship Discoveries 31

(1) (2) (3)
(4) (5)

(6)

Figure 4.7: The six basic tagalongs of the four-period spaceships.

Chapter 4 Spaceship Discoveries 32

↑

A

(1) (2) (3) (4) (5)

B

(1) (2) (3) (4) (5)

C

(1) (2) (3) (4) (5)

Figure 4.8: Three of the six basic four-period members of the space-
ship family. All these spaceships exist for rules “4,6/2/3”, “4,6/2,4/3”,
“2,4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”. For simplicity, they are referred to
as “four-period spaceship A, B, and C” respectively. Code is provided in
A.12.18, A.12.19, A.12.20.

Chapter 4 Spaceship Discoveries 33

↑

D

(1) (2) (3) (4) (5)

E

(1) (2) (3) (4) (5)

F

(1) (2) (3) (4) (5)

Figure 4.9: The other three of the six basic four-period members of
the spaceship family. The �rst one exists for “4,6/2/3”, “4,6/2,4/3”,
“2,4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”, the other two only exist for
“4,6/2/3”, “3,6/2,6/3”, “5,6/2,6/3”. For simplicity, they are referred to as
“four-period spaceship D, E, and F” respectively. Code is provided in
A.12.21, A.12.22, and A.12.23.

Chapter 4 Spaceship Discoveries 34

(1) (2) (3)

A

(4) (5) (6)

−→

(7) (8) (9)

(1) (2) (3)

B

(4) (5) (6)

−→

(7) (8) (9)

Figure 4.10: Two eight-period members of the spaceship family that exists
for rules “4,6/2/3”, “4,6/2,4/3”, “4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”. For
simplicity, they will be referred to as “eight-period spaceship A” and “eight-
period spaceship B”. They resemble “four-period spaceship C” and “four-
period spaceship A” respectively. They both emit a maximum of ten units’
exhaust. Code is provided in A.12.24, and A.12.25.

(1) (2)

Figure 4.11: The basic tagalongs of the two eight-period spaceships.

Chapter 4 Spaceship Discoveries 35

↑

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5)

Figure 4.12: Two Frankenstein spaceships with two and three tails that ex-
ists for rules “4,6/2/3”, “3,6/2,6/3”, “5,6/2,6/3”. Both have periods of four.
The top combines “two-period spaceship C” and “four-period spaceship
A”. The bottom combines “two-period spaceship A” and two “four-period
spaceship B” s. Code is provided in A.12.26, and A.12.27.

↑

(1) (2) (3) (4) (5)

Figure 4.13: A four-period rake that exists for rules “4,6/2/3”, “3,6/2,6/3”,
“5,6/2,6/3”. For simplicity, it will be referred to as “rake A”. It generates a
leading block every four steps. Code is provided in A.12.28.

Chapter 4 Spaceship Discoveries 36

↑

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Figure 4.14: An eight-period rake that exists for rules “6/2/3”, “4,6/2/3”,
“5,6/2,6/3”. For simplicity, it will be referred to as “rake B”. It generates a
one-period family member with one supplemental block every eight steps.
Code is provided in A.12.29.

Chapter 4 Spaceship Discoveries 37

↑

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 4.15: An eight-period rake that exists for rule “6/2,4,6/3”. For sim-
plicity, it will be referred to as “rake C”. It generates a one-period mem-
ber with two supplemental blocks every eight steps. Code is provided in
A.12.30.

Chapter 4 Spaceship Discoveries 38

↙
(1) (2) (3) (4) (5)

Figure 4.16: The new Life with three states that exists for rules “4,6/2/3”,
“4,6/2,4/3”, “2,4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”, and “3/2,5/3”. It moves
diagonally with a speed of c

4 . Code is provided in A.12.31.

4.2 Spaceship collision behaviors in three-state cellular automata

Collisions between spaceships are very common on a two-dimensional grid. The col-

lisions, however, are not of physical nature. When that happens, a chemistry-like

reaction will take place between them. Their internal structures become intertwined

with each other and temporarily unrecognizable from their previous forms. Eventu-

ally, the patterns become clearer, and a new equilibrium has been reached. There are

three most frequent cases.

1. Shown in Figure 4.17, the two spaceships are simultaneously destroyed com-

pletely in the collision, leaving the grid empty.

2. Shown in Figure 4.18, the collision generates a new spaceship that has a di�er-

ent structure.

3. Shown in Figure 4.19 and 4.20, one of the two spaceships is “murdered” during

the process, which means exactly one spaceship survives unscathed after the

collision, while the other completely disappears. This is like the survival of the

�ttest in the animal world and the classic ”who would win, a giant squid or a

killer whale, a crocodile or a cheetah” questions where only one can survive.

Generally, it is very di�cult to predict the outcome when two spaceships collide with

each other and there are edge cases that are not included. However, the three listed

cases constitute the majority.

Chapter 4 Spaceship Discoveries 39

(1) (2) (3) (4)

Figure 4.17: Two leading blocks in rule “4,6/2/3” collide with each other
head on and are both destroyed in three steps, leaving the grid completely
empty. Code is provided in A.12.32.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 4.18: Example of a “combined spaceship” that appears in rules
“4,6/2/3”, “3,6/2,6/3”, “5,6/2,6/3”. Two new Life’s collide and they gener-
ate a fundamental block (an interesting demonstration of simplicity com-
ing from complexity). Code is provided in A.12.33.

Chapter 4 Spaceship Discoveries 40

(1) (2) (3) (4)

Figure 4.19: Example of a “murdered spaceship” that appears in rules
“4,6/2/3”, “4,6/2,4/3”, “4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”. Two identical
one-period members of the spaceship family with one supplemental block
collide with each other, and only the bottom one survived the clash. Code
is provided in A.12.34.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 4.20: Example of a “murdered spaceship” that appears in rules
“4,6/2/3”, “4,6/2,4/3”, “4,6/2,4/3”, “3,6/2,6/3”, “5,6/2,6/3”. A fundamen-
tal block spaceship collides with the new Life. The fundamental block is
murdered in three steps. Code is provided in A.12.35.

4.3 Other interesting discoveries

As the number of states increases, the complexity of the spaceships increases corre-

spondingly. In cellular automata with four possible states, we have found a more

visually appealing rake like a spaceship emitting gas in Figure 4.21. The rake has a pe-

riod of two and a speed of c. It generates a constant stream of one-period spaceships,

one every two steps.

Chapter 4 Spaceship Discoveries 41

↑

(1) (2) (3) (4) (5)

Figure 4.21: A rake that appears in rule “3,4,5/2/4”. It has a period of two
and a speed of c. It generates a constant stream of one-period spaceships,
one every two steps. Code is provided in A.12.36.

We have also identi�ed similar interactions between spaceships when they collide.

There are countless cases where the two spaceships are both destroyed during the pro-

cess. On the other hand, the other two cases are much rarer. We recorded one case of

each kind in Figure 4.22 and Figure 4.23.

Chapter 4 Spaceship Discoveries 42

hello
(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12)

Figure 4.22: Example of a “combined spaceship” that appears in rule
“3/2/4”. Code is provided in A.12.37.

Chapter 4 Spaceship Discoveries 43

(1) (2) (3) (4)

(5) (6) (7)

Figure 4.23: Example of a “murdered spaceship” that appears in rule
“3/2/4”. The bottom left spaceship murders the top right one in six steps.
Code is provided in A.12.38.

Chapter 5 Future Work 44

5 Future Work

So far this entire research has been performed in Google Colab using Python. How-

ever, once the pipeline has been properly set up, the entire process is highly paral-

lelizable and thus can be run on many machines simultaneously. This can greatly

increase the e�ciency of the pipeline and minimize the overall time required for de-

tecting more interesting rules. Eventually, we plan to migrate the code to C, which

should speed up the process of simulation by at least a factor of 45 [15].

Furthermore, this report is only exploring cellular automata in the “instant birth,

gradual death, no recovery” model, which is arguably the simplest model. This means

that live (healthy) cells, once they fall sick, can never recover and can only be one

step closer to death at each generation. However, there are many other viable models

(shown in Figure 5.1) where the sick cells can have other outcomes, and additional

rules are required to de�ne the achievable behavior of the sick cells. Even though

we cannot engineer the behavior of the cells directly, we can arti�cially engineer the

models to simulate various real-life scenarios and harness them for our purposes. One

simple example is that if we want the cells to imitate the basic behavior of human be-

ings, then the sick cells should be allowed to remain on the same level of sickness or

recover. If we also want to include the possible scenario of a deadly virus able to kill

a healthy person instantly, then any sick and healthy cells should be allowed to die

at any generation. We can even construct an imaginary chaotic world where all the

cells are allowed to go to any other state at any generation. This report only studied

one model, but there are many other possibilities we have not even enumerated, all

of which are worth exploring and might contain spaceships and other “life” forms we

have never dreamed of.

Chapter 5 Future Work 45

(1) “Instant birth, gradual death, no recovery” Model. Live (healthy)
cells can get sick. Sick cells are not able to recover, and they will be one
step closer to death at each step. Dead cells are always born healthy and
cannot be born sick.

(2) “Instant birth, gradual death, stay sick, no recovery” Model. Live
cells can get sick. Sick cells are not able to recover, and they will be either
one step closer to death or stay the same at each step. Dead cells cannot
be born sick.

(3) “Gradual birth, gradual recovery” Model. Live cells can get sick. Sick
cells can recover, and they can be one step closer to either death or life
at each step. Dead cells will be born sick.

(4) “Gradual birth, stay sick, gradual recovery” Model. Live cells can
get sick. Sick cells can recover, and they can be one step closer to either
death or life or stay the same at each step. Dead cells will be born sick.

Chapter 5 Future Work 46

(5) “Instant birth, gradual death, gradual recovery” Model. Live cells
can get sick. Sick cells can recover, and they will be one step closer to
either death or life at each step. Dead cells cannot be born sick.

(6) “Instant birth, gradual death, stay sick, gradual recovery” Model.
Live cells can get sick. Sick cells can recover, and they will be one step
closer to death or life or stay the same at each step. Dead cells cannot be
born sick.

(7) “Instant birth, gradual and instant death, gradual recovery” Model.
Live cells can get sick. Sick cells can recover, and they can be one step
closer to either death or life at each step. But they can also die imme-
diately in the next step, imitating sudden death in real life. Dead cells
cannot be born sick.

Chapter 5 Future Work 47

(8) “Instant birth, gradual and instant death, stay sick, gradual recovery”
Model. Live cells can get sick. Sick cells can recover, and they can be one
step closer to either death or life or stay the same at each step. But they
can also die immediately in the next step, imitating sudden death in real
life. Dead cells cannot be born sick.

(9) “Instant birth, any-level sicker, gradual recovery” Model. Live cells
can get sick. Sick cells can recover as they can get one step closer to life
at each step. Sick cells can also get sicker to any worse levels including
death at each step. Dead cells cannot be born sick.

(10) “Instant birth, any-level sicker, stay sick, gradual recovery” Model.
Live cells can get sick. Sick cells can recover as they can get one step
closer to life at each step. They can also get sicker to any worse levels
including death at each step. They can also stay the same. Dead cells
cannot be born sick.

Figure 5.1: Examples of possible cellular automaton state transition di-
agrams ranked from the simplest to the most complicated. The vertices
labeled with “s” represent the sick states.

Even within the current “instant birth, gradual death, no recovery” model we are ex-

ploring, there is still a huge potential search space. This report mostly explores cel-

Chapter 5 Future Work 48

lular automata with three states: the live (healthy) state, the dead state, and one sick

state. We have identi�ed a family of spaceships and the new Life, but there could be

more that have not yet been found. Besides, one barely understands what cellular au-

tomata would look like if there are more than three possible states, i.e., if two or more

sick states are included. We still do not know the answer to the questions like how

many interesting rules are there, or what the spaceships would look like, or if there

is any correlation between the rule and the structure of the spaceships. It is expected

that as the number of sick cells increases, so would the complexity of the patterns and

spaceships. The discovery of the beautiful rocket-like rake in Figure 4.21 gives us con-

�dence that it is highly likely that there are more visually appealing spaceships with

more states. Furthermore, this report focuses solely on spaceships and only classi�es

those rules that generate spaceships as interesting. However, there are many other in-

teresting patterns in cellular automata that are worth investigating. For example, we

can follow the same steps to �nd rules that generate oscillators.

An alternative future direction of this research is to perform temperature simulation

with cellular automata. Namely, the closest analogy with cellular automata in real

life is arguably particles and their behavior is controlled by temperature, which acts

as the neighborhood rules in the space of cellular automata. For example, the parti-

cles are static in an environment of absolute zero. Hence, one possible direction of

this research is to create neighborhood rules in cellular automata to simulate gradient

temperature; one might �nd creatures huddling around ”hot springs”.

One other limitation of the current study is the relatively small size of the dataset.

Because of the scarcity of cellular automata rules that have been classi�ed, we had to

perform data augmentation to make the dataset large enough for the machine learner.

Speci�cally, we ran the same set of rules with random initial con�gurations to obtain

diversi�ed data. Ideally, this step could be skipped if we had su�ciently many classi-

�ed rules available. Finding boring rules is relatively easier since they are the majority.

The di�cult part is �nding the interesting ones, which would require much time and

Chapter 5 Future Work 49

labor. There are only a limited few provided by the Cellular Automata Lexicon and

other sources [6], and the rest is constituted of an inde�nitely long process of ran-

dom guessing and brute-forcing. Theoretically, a good way to quickly enlarge our

dataset is to use the machine learner we just trained to detect or at least narrow down

more interesting rules and include them in the dataset. With more available data, the

machine learner is expected to be more robust and perform better. Another poten-

tial method to improve the performance of the machine learner is to invest more in

hyperparameter tuning and include the results from entropy analysis as features.

In Wolfram’s 15-year view on “A New Kind of Science” [13], he claimed that with

every passing year, he understood more about what the book was really about and

why it was so important. The core of the book would go far beyond science and

into many areas that will be increasingly important in de�ning our whole future.

The book was fundamentally about something profoundly abstract: the theory of

all possible theories, and the universe of all possible universes. For Wolfram, one of

the biggest achievements was the realization that one can explore such fundamen-

tal things concretely—by doing actual experiments in the computational universe of

possible programs. And in the end, we have a collection of what might at �rst seem

like quite alien pictures made just by running very simple such programs. This report

covers only a tip of an iceberg and points to the direction of doing systematic and con-

trolled experiments in the in�nite universe of theories and possibilities. There is so

much left unknown, and so much to learn.

Chapter 6 Conclusion 50

6 Conclusion

Despite the large amount of e�ort and study that has been put into cellular automata,

there is still much that is unknown. The space of possible rules is in�nite, so the task

of determining the interesting ones that leads to spaceships is pertinent to the contin-

ued development of cellular automata theory. Spaceships have piqued the interest of

many researchers since they literally represent life, and have proven to be bene�cial to

many biology and physics models [21]. Currently, there is no systematic method to

automatically detect interesting rules. Existing methods are either too ine�cient and

expensive due to the enormous search space, or they are relatively fast but with poor

accuracy. This report explores the possibility of using neural networks to �nd inter-

esting rules in the “instant birth, gradual death, no recovery” model using the Moore

neighborhood. Due to their capability to automatically learn and adapt during the

training phase, they have the potential to approach the task that is too expensive for

human labor and normal computer programs.

We created the data generation algorithm to compute the state of each cell at every

step. After collecting the known interesting and boring rules from lexicons, we ap-

plied data augmentation to create a su�ciently large training and testing set by re-

running the rules with di�erent initial con�gurations. Each of the outcomes was

recorded using the python packageCellPyLib as a sequence of grayscale frames. The

�rst several generations were ignored because they depended highly on the initial con-

�guration and therefore did not re�ect the �nal stable pattern accurately. With many

possible ways to explore the dataset, our �nal production pipeline used RNN, CNN,

feature extraction, and entropy analysis.

The RNN approach resembles a video classi�cation task. Each pattern is represented

by its corresponding sequence of frames and each sequence is treated as one single

instance. We performed hyperparameter tuning and eventually decided to use Con-

vLSTM2D, which led to the best accuracy. CNN on the other hand is the best at clas-

Chapter 6 Conclusion 51

sifying images. Therefore, we had to stitch some of the frames together into one con-

gregated image in advance. Each of the stitched images was considered as an instance.

Di�erent selections of frames that were included in the image have been tested. How-

ever, since this is an uncanonical approach, we wanted to �nd out the learnability

of our dataset using Brainome.ai. To achieve this, we performed feature extraction

using a pre-trained NASNet-Large CNN Model that is trained on a million images

from the ImageNet database. For each of the instances, the machine learner extracts

1000 features and puts them in an organized CSV �le. However, the results shown

by Brainome.ai were suboptimal. Therefore, we eventually used the image pixels di-

rectly as features and this time, Brainome.ai showed us promising results. This gave

us su�cient con�dence to proceed with model training.

After the models are properly trained with extensive hyperparameter tuning, we used

them to classify rules with three states and random survival and born rules and �nd

spaceships in those that are classi�ed as interesting. We discovered a handful of new

interesting rules and found an entire family of spaceships, the new Life, and several

rakes.

Based on the conclusions of this study, we think neural networks are adequate to

be used to detect interesting cellular automata rules. The results that our machine

learner found were undoubtedly interesting and worth further exploration.

Chapter 7 References 52

7 References

[1] Wolfram S. ANew Kind of Science. Wolfram Media, Champaign Il, 2002.

[2] Bays C. Gliders in Cellular Automata. In: Meyers R. (eds) Encyclopedia

of Complexity and Systems Science. Springer, New York, NY, 2009. DOI:

https://doi.org/10.1007/978-0-387-30440-3 249.

[3] Wuensche A. Finding Gliders in Cellular Automata. In: Adamatzky

A. (eds) Collision-Based Computing. Springer, London, 2002. DOI:

https://doi.org/10.1007/978-14471-0129-1 13.

[4] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong,

Wang-chun Woo. Convolutional LSTM Network: A Machine Learning Ap-

proach for Precipitation Nowcasting. 2015, arXiv:1506.04214 [cs.CV].

[5] Christopher O. Understanding LSTMNetworks. 2015,

https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[6] Cellular Automata Lexicon.

http://psoup.math.wisc.edu/mcell/rullex gene.html.

[7] D’amico M, Manzini G, Margarac L. On computing the entropy of cellular au-

tomata. In: Theoretical Computer Science Volume 290, Issue 3, 3 January 2003,

Pages 1629-1646. DOI: https://doi.org/10.1016/S0304-3975(02)00071-3.

[8] P. Hurd L, Kari J, Culik K.The topological entropy of cellular automata is uncom-

putable. In: Ergodic Theory and Dynamical Systems, Volume 12, Issue 2, June

1992, pp. 255 - 265. DOI: https://doi.org/10.1017/S0143385700006738.

[9] Brainome - measure and improve the learnability of your data. (2021, April 14).

Retrieved May 10, 2021.

https://www.brainome.ai/.

Chapter 7 References 53

[10] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition (pp. 248–255).

[11] Google Colaboratory. (n.d.). Retrieved May 10, 2021.

https://colab.research.google.com.

[12] David J.Eck. Introduction to The Edge of Chaos. Department of Mathematics

and Computer Science, Hobart and William Smith Colleges.

http://math.hws.edu/xJava/CA/EdgeOfChaos.html.

[13] Wolfram S. ANew Kind of Science: A 15-Year View. May 16, 2017.

https://writings.stephenwolfram.com/2017/05.

/a-new-kind-of-science-a-15-year-view/.

[14] Martin G. MATHEMATICAL GAMES The fantas-

tic combinations of John Conway’s new solitaire game

”life”. In Scienti�c American 223 (October 1970): 120-123.

https://www.ibiblio.org/lifepatterns/october1970.html.

[15] Xie P. How Slow is Python Compared to C.

https://medium.com/codex/how-slow-is-python-compared-to-c-3795071ce82a

[16] “Cellular automaton.” Merriam-Webster.com Dictionary. (2021, May 10).

Merriam-Webster.

https://www.merriam-webster.com/dictionary/cellular%20automaton.

[17] Spaceship (cellular automaton). (2021, April 23). In Wikipedia.

https://en.wikipedia.org/wiki/Spaceship (cellular automaton).

[18] Rake (cellular automaton). (2021, January 13). In Wikipedia.

https://en.wikipedia.org/wiki/Rake (cellular automaton).

Chapter 7 References 54

[19] Speed of light (cellular automaton). (2020, April 12). In Wikipedia.

https://en.wikipedia.org/wiki/Speed of light (cellular automaton).

[20] The Game of Life. (2021, April 21). In Wikipedia.

https://en.wikipedia.org/wiki/The Game of Life.

[21] Cellular automaton. (2021, April 26). In Wikipedia.

https://en.wikipedia.org/wiki/Cellular automaton.

[22] Rule 30. (2021, January 13). In Wikipedia.

https://en.wikipedia.org/wiki/Rule 30.

[23] Glider (Conway’s Life). (2021, April 20). In Wikipedia.

https://en.wikipedia.org/wiki/Glider (Conway’s Life).

[24] Gun (cellular automaton). (2021, January 31). In Wikipedia.

https://en.wikipedia.org/wiki/Gun (cellular automaton).

Chapter A Appendix 55

A Appendix

All of the written code and generated gifs can be found at the GitHub repository:

https://github.com/Liaoqitian/MLCA.

A.1 Cellular Automata Generation Algorithm
1 def generate(neighborhood ,max_state ,survive_arr ,born_arr):

2 center_cell = neighborhood [1][1]

3 live_cells_count = np.sum((neighborhood == max_state).

astype(int))

4 if center_cell == max_state:

5 for num_neighbors in survive_arr:

6 if live_cells_count - 1 == num_neighbors:

7 return center_cell

8 return center_cell - 1

9 else if center_cell != 0 and center_cell != max_state:

10 return center_cell - 1

11 else:

12 for num_neighbors in born_arr:

13 if total == num_neighbors:

14 return max_state

15 return 0

• Input: The neighborhood (a two-dimensional array), the total number of states,

the survival rule (a one-dimensional array), and the born rule (a one-dimensional

array).

• Output: The state of the center cell in the next generation.

• Description: Computes the state of the center cell in the next generation.

• Example call:
1 neighborhood = [[0, 0, 0], [0, 1, 1], [0, 0, 0]]

2 max_state = 2

3 survive_arr = [2, 3]

4 born_arr = [3]

5 generate(neighborhood , max_state , survive_arr , born_arr)

6 # returns 0

Chapter A Appendix 56

A.2 The 35 Selected Interesting Rules

Survival

Rules

Death

Rules

Number

of States

3, 4, 5 2, 4 25

6 2, 4, 6 3

0, 2, 3, 5,

6, 7, 8
3, 4, 6, 8 9

2, 3, 5, 6,

7, 8
3, 4, 6, 8 9

2 1, 3 21

0, 3, 5, 6,

7, 8

2, 4, 5, 6,

7, 8
7

0, 3, 5, 6,

7, 8

2, 4, 5, 6,

7, 8
5

3, 4, 5 3 6

3 2 4

3, 4, 5 3, 4 6

3, 4, 6, 7 2, 6, 7, 8 6

0, 3, 4, 6,

7
2, 5 6

2, 3 3, 4 8

0, 3, 4, 5 2, 6 6

3, 4, 5
3, 4, 6, 7,

8
5

Survival

Rules

Death

Rules

Number

of States

2, 4, 5 3, 6, 8 2

2, 3, 6, 7 3, 4, 5, 7 5

3, 4, 6, 7 2, 5 6

6 2 3

1, 2, 5 3, 6 2

3, 4, 6, 7 2 4

N/A 2 3

2 2 8

2, 3 2 8

2, 3 3 2

2, 3 3, 6 2

2, 3, 8 3, 6, 8 2

2, 3, 8 3, 5, 7 2

2, 5, 6 2, 4, 5 5

3, 4, 5 2 4

4, 5, 6, 7 2, 3, 5, 8 5

3 2, 5 3

0 2, 6 4

0, 4, 7, 8 2, 3, 5, 6 5

3, 4, 5 2, 6 5

Chapter A Appendix 57

A.3 Frame Extraction
1 def frame_extraction(file_path):

2 frames_list = []

3 for x in range(80, 120):

4 image = cv2.imread(file_path+str(x)+".png", cv2.

IMREAD_GRAYSCALE)

5 image = cv2.resize(image , (IMG_SIZE , IMG_SIZE))

6 frames_list.append(image)

• Input: a �le path of a folder containing the images.

• Output: a list of images.

• Description: appends a selection of images of a pattern into a list.

A.4 Recurrent Neural Network Implementation
1 model = Sequential ()

2 model.add(ConvLSTM2D(filters = 64, kernel_size = (5, 5),

return_sequences = False , data_format = "channels_last",

input_shape = X.shape [1:]))

3 model.add(Activation("relu"))

4 model.add(MaxPooling2D(pool_size =(2, 2)))

5 model.add(Dropout (0.15))

6 model.add(Flatten ())

7 model.add(Dense (256, activation="relu"))

8 model.add(Dropout (0.15))

9 model.add(Dense (64, activation="relu"))

10 model.add(Dropout (0.15))

11 model.add(Dense(2, activation = "softmax"))

12 model.add(Activation("sigmoid"))

13 model.compile(loss=’categorical_crossentropy ’, optimizer=opt

, metrics =["accuracy"])

• Input: nothing

• Output: an RNN model

• Description: detailed implementation of the RNN.

A.5 Image Stitching Function
1 def stitch_images(file_path , file_name , start_frame ,

num_frames , save_DIR):

2 images = [Image.open(image) for image in [file_path + "/

" + file_name + str(x) + ".png" for x in range(

start_frame , start_frame + num_frames)]]

3 widths , heights = zip(*(i.size for i in images))

Chapter A Appendix 58

4 dimension = int(math.sqrt(num_frames))

5 total_width = int(sum(widths) / dimension)

6 total_height = int(sum(heights) / dimension)

7 new_image = Image.new("RGB", (total_width , total_height)

)

8 for index in range(0, num_frames):

9 image = images[index]

10 new_image.paste(image , ((index \% dimension) *

image.size[0], math.floor(index / dimension) * image.size

[1]))

11 save_DIR = save_DIR + "combined_" + file_name + ".png"

12 new_image.save(save_DIR)

13 return

• Input: a �le path leading to the images, the name of the �le, the starting frame, the

number of frames, the path to save the output.

• Output: nothing.

• Description: stitches a selection of images together into a square.

A.6 Image Feature Extraction with NASNet-Large
1 model_name="nasnetalarge"

2 model=pretrainedmodels.__dict__[model_name](num_classes

=1000, pretrained=’imagenet ’)

3 model.eval()

4 load_img = utils.LoadImage ()

5 tf_img = utils.TransformImage(model)

6 features_file = open("file.csv", "ab")

7 feature_data = []

8 for i in range(len(image_paths)):

9 input_img = load_img(image_paths[i])

10 input_tensor = tf_img(input_img)

11 input_tensor = input_tensor.unsqueeze (0)

12 input = torch.autograd.Variable(input_tensor ,

requires_grad=False)

13 output_logits = model(input)

14 output_features = model.features(input)

15 output_logits = model.logits(output_features)

16 output_logits = output_logits [0]. detach ().numpy ()

17 row_data = np.append(output_logits , labels[i])

18 feature_data = np.append(feature_data , row_data)

• Input: a �le path leading to the images.

• Output: 1000 extracted features for each of the image.

• Description: extract features from images with NASNet-Large.

Chapter A Appendix 59

A.7 Image Feature Extraction with Image Pixels
1 def extract_features(IMAGE_DIR):

2 img_array = cv2.imread(IMAGE_DIR , cv2.IMREAD_GRAYSCALE)

3 feature = np.reshape(new_array ,(new_array.shape [0]*

new_array.shape [1]))

4 feature_extraction_data.append ([feature , class_num])

• Input: a �le path leading to the images.

• Output: a number of extracted features depending on the size of the image.

• Description: extract features from images with pixles.

A.8 Convolutional Neural Network Implementation
1 model = keras.Sequential ()

2 model.add(Conv2D (64, (5, 5), input_shape=tempx.shape [1:]))

3 model.add(BatchNormalization ())

4 model.add(Activation("relu"))

5 model.add(MaxPooling2D(pool_size =(2, 2)))

6 model.add(Dropout (0.15))

7

8 model.add(Conv2D (64, (3, 3)))

9 model.add(BatchNormalization ())

10 model.add(Activation("relu"))

11 model.add(MaxPooling2D(pool_size =(2, 2)))

12 model.add(Dropout (0.15))

13

14 model.add(Flatten ())

15 model.add(Dense (64))

16 model.add(Activation("relu"))

17 model.add(Dropout (0.15))

18

19 model.add(Dense (10))

20 model.add(Activation("relu"))

21 model.add(Dropout (0.15))

22

23 model.add(Dense (1))

24 model.add(Activation("sigmoid"))

25 model.compile(loss="binary_crossentropy", optimizer="rmsprop

", metrics =["accuracy"])

• Input: nothing

• Output: a CNN model

• Description: detailed implementation of the CNN.

Chapter A Appendix 60

A.9 Image Cross-Entropy Computation
1 def COMPUTE_ENTROPY(signal)

2 lensig = signal.size

3 symset = list(set(signal))

4 probpab = [np.size(signal[signal == i]) /(1.0* lensig) for

i in symset]

5 entropy = np.sum([p * np.log2 (1.0 / p) for p in propab

])

6 return entropy

7

8 label_entropies = {’Boring ’: [], ’Interesting ’: []}

9 for i, instance in enumerate(X):

10 instance_1d = instance.ravel ()

11 entropy = compute_entropy(instance_1d)

12 label_id = y[i]

13 if label_id == 0:

14 label_entropies[’Boring ’]. append(entropy)

15 else:

16 label_entropies[’Interesting ’]. append(entropy)

• Input: individual images.

• Output: cross-entropy value of images.

• Description: computes the cross-entropy value of the patterns. The entropy val-

ues are divided into interesting and boring for further analysis.

A.10 MaximumMemory Capacity Prediction
1 data: array of length i containing vectors x with

dimensionality d

2 labels: a column containing 0 or 1

3 function COMPUTE_MEC(data , labels)

4 thresholds = 0

5 loop over i: table[i] = \sigma x[i][d], label[i]

6 sorted table = sort(table , key = column 0)

7 class = 0

8 loop over i: if not sortedtable[i][1] == class then

9 class = sortedtable[i][1]

10 thresholds = thresholds + 1

11 end

12 maxcapreq = threshold * d + thresholds + 1

13 expcapreq = log2 (threshold + 1) * d

14 return maxcapreq , expcapreq

• Input: labeled data

• Output: the maximum and expected capacity requirement of the machine learner.

Chapter A Appendix 61

• Description: computes the maximum and expected memory capacity of the ma-

chine learner.

A.11 Spaceship Image and GIF generation
1 import matplotlib.pyplot as plt

2 from matplotlib import colors

3 import numpy as np

4 import os

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import imageio

8

9 def count_neighbors(data , i, j):

10 res = 0

11 max_state = number_states - 1

12 if i > 0 and data[i - 1][j] == max_state:

13 res += 1

14 if i < len(data) - 1 and data[i + 1][j] == max_state:

15 res += 1

16 if j > 0 and data[i][j - 1] == max_state:

17 res += 1

18 if j < len(data [0]) - 1 and data[i][j + 1] == max_state:

19 res += 1

20 if i > 0 and j > 0 and data[i - 1][j - 1] == max_state:

21 res += 1

22 if i > 0 and j < len(data [0]) - 1 and data[i - 1][j + 1]

== max_state:

23 res += 1

24 if i < len(data) - 1 and j > 0 and data[i + 1][j - 1] ==

max_state:

25 res += 1

26 if i < len(data) - 1 and j < len(data [0]) - 1 and data[i

+ 1][j + 1] == max_state:

27 res += 1

28 return res

29

30 def evolve(data , survival_arr , born_arr):

31 copy = [[0 for j in range(length)] for i in range(width)

]

32 max_state = number_states - 1

33 for i in range(width):

34 for j in range(length):

35 if data[i][j] > 0 and data[i][j] < max_state:

36 copy[i][j] = data[i][j] - 1

37 else:

38 count = count_neighbors(data , i, j)

39 if data[i][j] == max_state and count in

survival_arr:

40 copy[i][j] = data[i][j]

Chapter A Appendix 62

41 if data[i][j] == max_state and count not in

survival_arr:

42 copy[i][j] = data[i][j] - 1

43 elif data[i][j] == 0 and count in born_arr:

44 copy[i][j] = max_state

45

46 filenames = []

47 length = len(data [0])

48 width = len(data)

49

50 for step in range(period):

51 if number_states == 3:

52 cmap = colors.ListedColormap ([’white’, ’gray’, ’

black ’])

53 bounds = [-0.5 ,0.5 ,1.5 ,2.5] # White: 0, Gray: 1,

Black: 2

54 elif number_states == 4:

55 cmap = colors.ListedColormap ([’white’, ’lightgray ’,

’gray’, ’black ’])

56 # White:0, lightgray :1, Gray:2, Black :3

57 bounds = [-0.5 ,0.5 ,1.5 ,2.5 ,3.5]

58 norm = colors.BoundaryNorm(bounds , cmap.N)

59 fig , ax = plt.subplots ()

60 ax.imshow(data , cmap=cmap , norm=norm)

61

62 # draw gridlines

63 ax.grid(which=’major’, axis=’both’, linestyle=’-’, color

=’k’, linewidth =2)

64 ax.set_xticks(np.arange(-.5, length , 1));

65 ax.set_yticks(np.arange(-.5, width , 1));

66

67 frame1 = plt.gca()

68 frame1.axes.xaxis.set_ticklabels ([])

69 frame1.axes.yaxis.set_ticklabels ([])

70 plt.rcParams["figure.figsize"] = (20 ,20)

71 plt.savefig(f’{step}.png’, bbox_inches=’tight’)

72 filenames.append(f’{step}.png’)

73

74 plt.tick_params(axis = "x", which = "both", bottom =

False , top = False)

75 data = evolve(data , survival_arr , born_arr)

76

77 with imageio.get_writer(’mygif.gif’, mode=’I’, duration =

0.5) as writer:

78 for filename in filenames:

79 image = imageio.imread(filename)

80 writer.append_data(image)

• Input: the initial con�guration, the number of states, the survival rule, the born

rule, and the number of generations.

Chapter A Appendix 63

• Output: a set of images whose number depends on the number of generations

and a gif.

• Description: visualize the generations of cellular automata with four or fewer states

with images and gif.

A.12 Initial con�guration of the gliders

This section contains a list of initial con�gurations and the corresponding parameters

of the spaceships mentioned in this report. One can pass these as parameters into the

function in Section A.11 to reproduce the images and gif.

A.12.1 Code for �gure 1.3, the Game of Life

1 survival_arr = [2, 3]

2 born_arr = [3]

3 number_states = 2

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 1, 0, 0, 0],

8 [0, 0, 0, 0, 1, 0, 0],

9 [0, 0, 1, 1, 1, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0]

12]

A.12.2 Code for �gure 1.3, the light-weight spaceship

1 survival_arr = [2, 3]

2 born_arr = [3]

3 number_states = 2

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 1, 1, 1, 1, 0, 0, 0],

9 [0, 1, 0, 0, 0, 1, 0, 0, 0],

10 [0, 0, 0, 0, 0, 1, 0, 0, 0],

11 [0, 1, 0, 0, 1, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 0]

13]

Chapter A Appendix 64

A.12.3 Code for �gure 1.3, the mid-weight spaceship

1 survival_arr = [2, 3]

2 born_arr = [3]

3 number_states = 2

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],

10 [0, 1, 0, 0, 0, 0, 1, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

12 [0, 1, 0, 0, 0, 1, 0, 0, 0, 0],

13 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

15]

A.12.4 Code for �gure 1.3, the heavy-weight spaceship

1 survival_arr = [2, 3]

2 born_arr = [3]

3 number_states = 2

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],

10 [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

12 [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],

13 [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

15]

A.12.5 Code for �gure 4.1

1 survival_arr = [6]

2 born_arr = [2,4,6]

3 number_states = 3

4 period = 2

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0],

9 [0, 0, 2, 2, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],

10 [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

Chapter A Appendix 65

13 [0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0],

14 [0, 2, 1, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0],

15 [0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0],

16 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0],

17 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

18 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

19 [0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0],

20 [0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0],

21 [0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0],

22 [0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0],

23 [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

24 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

25 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

26 [0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0],

27 [0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0],

28 [0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0],

29 [0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],

30 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0],

31 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

32 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

33 [0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

34 [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

35 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

36 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

37 [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

38 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

39 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

40]

A.12.6 Code for �gure 4.2

1 survival_arr = [6]

2 born_arr = [2,4,6]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0],

11 [0, 0, 2, 2, 0, 0],

12 [0, 2, 1, 1, 2, 0],

13 [0, 1, 0, 0, 1, 0],

14 [0, 0, 2, 0, 0, 0],

15 [0, 0, 1, 0, 0, 0],

16 [0, 0, 0, 0, 0, 0]

17]

A.12.7 Code for �gure 4.3

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 1, 1, 0],

11 [0, 0, 2, 0, 0, 0],

12 [0, 2, 1, 2, 0, 0],

13 [0, 1, 0, 1, 0, 0],

14 [0, 0, 2, 0, 0, 0],

15 [0, 0, 0, 0, 0, 0]

16]

Chapter A Appendix 66

A.12.8 Code for �gure 4.3

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0],

9 [0, 0, 2, 2, 0],

10 [0, 0, 1, 1, 0],

11 [0, 2, 0, 0, 0],

12 [0, 1, 2, 0, 0],

13 [0, 0, 1, 2, 0],

14 [0, 2, 0, 1, 0],

15 [0, 1, 2, 0, 0],

16 [0, 0, 0, 0, 0]

17]

A.12.9 Code for �gure 4.3

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 1, 1, 0],

11 [0, 0, 2, 0, 0, 0],

12 [0, 0, 1, 0, 0, 0],

13 [0, 2, 0, 2, 0, 0],

14 [0, 1, 0, 1, 2, 0],

15 [0, 0, 1, 0, 1, 0],

16 [0, 2, 1, 0, 0, 0],

17 [0, 0, 0, 0, 0, 0]

18]

A.12.10 Code for �gure 4.3

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 0, 1, 1, 0],

11 [0, 0, 0, 2, 0, 0, 0],

12 [0, 0, 0, 1, 0, 0, 0],

13 [0, 0, 2, 0, 2, 0, 0],

14 [0, 2, 1, 2, 1, 2, 0],

15 [0, 1, 0, 2, 0, 1, 0],

16 [0, 0, 0, 0, 0, 0, 0]

17]

A.12.11 Code for �gure 4.3

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 1, 1, 0],

11 [0, 0, 2, 0, 0, 0],

12 [0, 0, 1, 0, 0, 0],

13 [0, 2, 0, 2, 0, 0],

14 [0, 1, 2, 1, 0, 0],

15 [0, 0, 2, 0, 0, 0],

16 [0, 0, 0, 0, 0, 0],

17 [0, 1, 0, 1, 0, 0],

18 [0, 0, 2, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0]

20]

Chapter A Appendix 67

A.12.12 Code for �gure 4.5

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 2, 2, 0],

10 [0, 0, 2, 1, 1, 0],

11 [0, 0, 1, 0, 0, 0],

12 [0, 2, 0, 2, 0, 0],

13 [0, 1, 2, 1, 0, 0],

14 [0, 0, 2, 0, 0, 0],

15 [0, 0, 0, 0, 0, 0],

16 [0, 1, 0, 1, 0, 0],

17 [0, 0, 2, 0, 0, 0],

18 [0, 0, 0, 0, 0, 0]

19]

A.12.13 Code for �gure 4.6 (1/5)

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 0, 1, 1, 0],

11 [0, 0, 0, 2, 0, 0, 0],

12 [0, 0, 0, 1, 0, 0, 0],

13 [0, 0, 2, 0, 0, 0, 0],

14 [0, 2, 1, 2, 0, 0, 0],

15 [0, 1, 0, 1, 0, 0, 0],

16 [0, 0, 2, 0, 0, 0, 0],

17 [0, 0, 0, 0, 0, 0, 0]

18]

A.12.14 Code for �gure 4.6 (2/5)

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 1, 1, 0],

11 [0, 0, 2, 0, 0, 0],

12 [0, 0, 1, 0, 0, 0],

13 [0, 2, 0, 0, 0, 0],

14 [0, 1, 2, 0, 0, 0],

15 [0, 0, 1, 2, 0, 0],

16 [0, 2, 0, 1, 0, 0],

17 [0, 1, 2, 0, 0, 0],

18 [0, 0, 0, 0, 0, 0]

19]

A.12.15 Code for �gure 4.6 (3/5)

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 0, 1, 1, 0],

11 [0, 0, 0, 2, 0, 0, 0],

12 [0, 0, 0, 1, 0, 0, 0],

13 [0, 0, 2, 0, 0, 0, 0],

14 [0, 0, 1, 0, 0, 0, 0],

15 [0, 2, 0, 2, 0, 0, 0],

16 [0, 1, 0, 1, 2, 0, 0],

17 [0, 0, 1, 0, 1, 0, 0],

18 [0, 2, 1, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0]

20]

Chapter A Appendix 68

A.12.16 Code for �gure 4.6 (4/5)

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 2, 2, 0],

10 [0, 0, 0, 0, 0, 1, 1, 0],

11 [0, 0, 0, 0, 2, 0, 0, 0],

12 [0, 0, 0, 0, 1, 0, 0, 0],

13 [0, 0, 0, 2, 0, 0, 0, 0],

14 [0, 0, 0, 1, 0, 0, 0, 0],

15 [0, 0, 2, 0, 2, 0, 0, 0],

16 [0, 2, 1, 2, 1, 2, 0, 0],

17 [0, 1, 0, 2, 0, 1, 0, 0],

18 [0, 0, 0, 0, 0, 0, 0, 0]

19]

A.12.17 Code for �gure 4.6 (5/5)

1 survival_arr = [4]

2 born_arr = [2]

3 number_states = 3

4 period = 3

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 2, 2, 0],

11 [0, 0, 0, 0, 1, 1, 0],

12 [0, 0, 0, 2, 0, 0, 0],

13 [0, 0, 0, 1, 0, 0, 0],

14 [0, 0, 2, 0, 0, 0, 0],

15 [0, 0, 1, 0, 0, 0, 0],

16 [0, 2, 0, 2, 0, 0, 0],

17 [0, 1, 2, 1, 0, 0, 0],

18 [0, 0, 2, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0],

20 [0, 1, 0, 1, 0, 0, 0],

21 [0, 0, 2, 0, 0, 0, 0],

22 [0, 0, 0, 0, 0, 0, 0]

23]

A.12.18 Code for �gure 4.8 (1/6)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 2, 1, 0, 0, 0],

15 [0, 2, 1, 0, 2, 0, 0],

16 [0, 1, 0, 2, 1, 0, 0],

17 [0, 0, 2, 2, 0, 0, 0],

18 [0, 0, 1, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0]

20]

A.12.19 Code for �gure 4.8 (2/6)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 2, 1, 2, 0, 0],

15 [0, 2, 1, 0, 1, 0, 0],

16 [0, 1, 0, 2, 0, 0, 0],

17 [0, 0, 2, 0, 0, 0, 0],

18 [0, 0, 1, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0]

20]

Chapter A Appendix 69

A.12.20 Code for �gure 4.8 (3/6)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 0, 2, 1, 2, 0, 0],

15 [0, 0, 2, 1, 0, 1, 0, 0],

16 [0, 2, 1, 0, 2, 0, 0, 0],

17 [0, 1, 0, 2, 0, 0, 0, 0],

18 [0, 0, 2, 1, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0, 0]

20]

A.12.21 Code for �gure 4.9 (4/6)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 0, 1, 0, 0, 0],

15 [0, 0, 2, 0, 2, 0, 0],

16 [0, 0, 1, 2, 1, 0, 0],

17 [0, 2, 0, 2, 0, 2, 0],

18 [0, 1, 0, 0, 0, 1, 0],

19 [0, 0, 2, 0, 2, 0, 0],

20 [0, 0, 1, 2, 1, 0, 0],

21 [0, 0, 0, 2, 0, 0, 0],

22 [0, 0, 0, 0, 0, 0, 0],

23 [0, 0, 0, 0, 0, 0, 0]

24]

Chapter A Appendix 70

A.12.22 Code for �gure 4.9 (5/6)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 2, 1, 0, 0, 0],

15 [0, 0, 1, 0, 2, 0, 0],

16 [0, 2, 0, 2, 1, 2, 0],

17 [0, 1, 2, 2, 0, 1, 0],

18 [0, 0, 1, 0, 2, 0, 0],

19 [0, 2, 1, 0, 1, 0, 0],

20 [0, 0, 0, 2, 0, 0, 0],

21 [0, 0, 0, 0, 0, 0, 0]

22]

A.12.23 Code for �gure 4.9 (6/6)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 0, 2, 1, 0, 0, 0],

15 [0, 0, 2, 1, 0, 2, 0, 0],

16 [0, 2, 1, 0, 0, 1, 0, 0],

17 [0, 1, 0, 2, 1, 0, 0, 0],

18 [0, 0, 2, 1, 1, 2, 0, 0],

19 [0, 0, 0, 0, 2, 0, 0, 0],

20 [0, 0, 0, 0, 2, 0, 0, 0],

21 [0, 0, 0, 1, 0, 1, 0, 0],

22 [0, 0, 0, 0, 2, 0, 0, 0],

23 [0, 0, 0, 0, 0, 0, 0, 0],

24 [0, 0, 0, 0, 1, 0, 0, 0],

25 [0, 0, 0, 0, 2, 0, 0, 0],

26 [0, 0, 0, 0, 1, 0, 0, 0],

27 [0, 0, 0, 0, 0, 0, 0, 0]

28]

A.12.24 Code for �gure 4.10 (1/2)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 9

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0],

15 [0, 0, 0, 0, 0, 0, 2, 2, 0],

16 [0, 0, 0, 0, 0, 0, 1, 1, 0],

17 [0, 0, 0, 0, 0, 2, 0, 0, 0],

18 [0, 0, 0, 0, 2, 1, 2, 0, 0],

Chapter A Appendix 71

19 [0, 0, 0, 2, 1, 0, 1, 0, 0],

20 [0, 0, 2, 1, 0, 2, 0, 0, 0],

21 [0, 2, 1, 0, 2, 0, 0, 0, 0],

22 [0, 1, 0, 2, 1, 0, 0, 0, 0],

23 [0, 0, 2, 2, 0, 0, 0, 0, 0],

24 [0, 0, 1, 0, 0, 0, 0, 0, 0],

25 [0, 0, 0, 0, 0, 0, 0, 0, 0]

26]

A.12.25 Code for �gure 4.10 (2/2)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 9

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

15 [0, 0, 0, 0, 0, 0, 0, 2, 2, 0],

16 [0, 0, 0, 0, 0, 0, 0, 1, 1, 0],

17 [0, 0, 0, 0, 0, 0, 2, 0, 0, 0],

18 [0, 0, 0, 0, 0, 2, 1, 0, 0, 0],

19 [0, 0, 0, 0, 2, 1, 0, 0, 0, 0],

20 [0, 0, 0, 2, 1, 0, 2, 0, 0, 0],

21 [0, 0, 2, 1, 0, 2, 1, 0, 0, 0],

22 [0, 2, 1, 0, 2, 2, 0, 0, 0, 0],

23 [0, 1, 0, 2, 1, 0, 0, 0, 0, 0],

24 [0, 0, 2, 2, 0, 0, 0, 0, 0, 0],

25 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

26 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

27]

A.12.26 Code for �gure 4.12 (1/2)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0, 0],

Chapter A Appendix 72

10 [0, 0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 2, 2, 0, 0, 0, 0],

12 [0, 0, 0, 1, 1, 0, 0, 0, 0],

13 [0, 0, 2, 0, 0, 0, 0, 0, 0],

14 [0, 0, 1, 0, 0, 0, 0, 0, 0],

15 [0, 2, 0, 2, 0, 0, 0, 0, 0],

16 [0, 1, 0, 1, 2, 0, 0, 0, 0],

17 [0, 0, 1, 0, 1, 0, 0, 0, 0],

18 [0, 2, 1, 0, 0, 2, 0, 0, 0],

19 [0, 0, 0, 0, 0, 1, 2, 0, 0],

20 [0, 0, 0, 0, 2, 0, 1, 2, 0],

21 [0, 0, 0, 0, 1, 2, 0, 1, 0],

22 [0, 0, 0, 0, 0, 2, 2, 0, 0],

23 [0, 0, 0, 0, 0, 0, 1, 0, 0],

24 [0, 0, 0, 0, 0, 0, 0, 0, 0],

25 [0, 0, 0, 0, 0, 0, 0, 0, 0]

26]

A.12.27 Code for �gure 4.12 (2/2)

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

15 [0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0],

16 [0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 0, 0, 0, 0, 0],

17 [0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0],

18 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0],

19 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

20 [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0],

21 [0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0],

22 [0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0],

23 [0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0],

24 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0],

25 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

26 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

27]

A.12.28 Code for �gure 4.13

Chapter A Appendix 73

1 survival_arr = [4,6]

2 born_arr = [2]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 2, 2, 0],

12 [0, 0, 0, 0, 0, 1, 1, 0],

13 [0, 0, 0, 0, 2, 0, 0, 0],

14 [0, 0, 0, 2, 1, 0, 0, 0],

15 [0, 0, 2, 1, 0, 2, 0, 0],

16 [0, 2, 1, 0, 0, 1, 0, 0],

17 [0, 1, 0, 2, 1, 0, 2, 0],

18 [0, 0, 2, 2, 0, 2, 1, 0],

19 [0, 0, 1, 0, 0, 0, 0, 0],

20 [0, 0, 0, 0, 0, 0, 0, 0],

21 [0, 0, 0, 0, 0, 0, 0, 0],

22 [0, 0, 0, 0, 0, 0, 0, 0],

23 [0, 0, 0, 0, 0, 0, 0, 0]

24]

A.12.29 Code for �gure 4.14

1 survival_arr = [6]

2 born_arr = [2]

3 number_states = 3

4 period = 9

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0],

15 [0, 2, 2, 0, 0, 0, 0, 0],

16 [0, 1, 1, 0, 0, 0, 0, 0],

17 [0, 0, 0, 2, 0, 0, 0, 0],

18 [0, 0, 2, 1, 2, 0, 0, 0],

19 [0, 0, 1, 0, 1, 2, 0, 0],

20 [0, 2, 0, 2, 0, 1, 2, 0],

21 [0, 1, 2, 2, 2, 0, 1, 0],

22 [0, 0, 1, 0, 1, 0, 0, 0],

23 [0, 2, 1, 0, 1, 1, 0, 0],

24 [0, 0, 2, 0, 0, 0, 0, 0],

Chapter A Appendix 74

25 [0, 0, 2, 1, 1, 0, 0, 0],

26 [0, 0, 0, 1, 0, 0, 0, 0],

27 [0, 0, 0, 0, 0, 0, 0, 0]

28]

A.12.30 Code for �gure 4.15

1 survival_arr = [6]

2 born_arr = [2,4,6]

3 number_states = 3

4 period = 9

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

15 [0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

16 [0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

17 [0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

18 [0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

19 [0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

20 [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

21 [0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0],

22 [0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0],

23 [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

24 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

25]

A.12.31 Code for �gure 4.16

1 survival_arr = [6]

2 born_arr = [2,4,6]

3 number_states = 3

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 1, 2, 0, 0, 0],

8 [0, 0, 0, 0, 1, 0, 0],

9 [0, 0, 0, 2, 1, 2, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0]

12]

A.12.32 Code for �gure 4.17

1 survival_arr = [4, 6]

2 born_arr = [2]

3 number_states = 3

4 period = 4

5 data = [

6 [0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0],

8 [0, 1, 2, 0, 2, 1, 0],

9 [0, 1, 2, 0, 2, 1, 0],

10 [0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0]

12]

A.12.33 Code for �gure 4.18

Chapter A Appendix 75

1 survival_arr = [4, 6]

2 born_arr = [2]

3 number_states = 3

4 period = 8

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

13 [0, 0, 0, 1, 0, 0, 2, 0, 2, 0],

14 [0, 0, 0, 2, 2, 0, 1, 1, 0, 0],

15 [0, 1, 0, 1, 0, 0, 2, 0, 0, 0],

16 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0],

17 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

18 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

20]

A.12.34 Code for �gure 4.19

1 survival_arr = [4, 6]

2 born_arr = [2]

3 number_states = 3

4 period = 4

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 1, 2, 0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 1, 2, 0, 0, 0, 0],

10 [0, 0, 0, 1, 2, 0, 2, 2, 0],

11 [0, 0, 0, 0, 0, 0, 1, 1, 0],

12 [0, 0, 0, 0, 0, 2, 0, 0, 0],

13 [0, 0, 0, 0, 0, 1, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0]

15]

A.12.35 Code for �gure 4.20

1 survival_arr = [4, 6]

2 born_arr = [2]

3 number_states = 3

4 period = 8

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0],

9 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

Chapter A Appendix 76

10 [0, 1, 2, 0, 2, 1, 2, 0, 0, 0, 0],

11 [0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

14]

A.12.36 Code for �gure 4.21

1 survival_arr = [3, 4, 5]

2 born_arr = [2]

3 number_states = 4

4 period = 5

5 data = [

6 [0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0],

11 [0, 0, 3, 3, 0, 0],

12 [0, 0, 3, 3, 0, 0],

13 [0, 3, 2, 2, 3, 0],

14 [0, 0, 3, 3, 0, 0],

15 [0, 0, 0, 0, 0, 0],

16 [0, 0, 0, 0, 0, 0],

17 [0, 0, 0, 0, 0, 0],

18 [0, 0, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0]

20]

A.12.37 Code for �gure 4.22

1 survival_arr = [3]

2 born_arr = [2]

3 number_states = 4

4 period = 12

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

10 [0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

11 [0, 2, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

12 [0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

Chapter A Appendix 77

13 [0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0]

15]

A.12.38 Code for �gure 4.23

1 survival_arr = [3]

2 born_arr = [2]

3 number_states = 4

4 period = 7

5 data = [

6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

8 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0],

9 [0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0],

10 [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0],

11 [0, 0, 0, 0, 0, 1, 1, 3, 0, 0, 0, 0, 0],

12 [0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0],

13 [0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

15 [0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0],

16 [0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0],

17 [0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0],

18 [0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0],

19 [0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0],

20 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

21]

	Title page
	Qitian Liao Thesis
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Related Work
	Methodology
	Dataset Generation
	Sequence Training with RNN
	Data Preprocessing, Feature Extraction, Training with CNN
	Entropy Analysis

	Spaceship Discoveries
	Spaceships in three-state cellular automata
	Spaceship collision behaviors in three-state cellular automata
	Other interesting discoveries

	Future Work
	Conclusion
	References
	Appendix
	Cellular Automata Generation Algorithm
	The 35 Selected Interesting Rules
	Frame Extraction
	Recurrent Neural Network Implementation
	Image Stitching Function
	Image Feature Extraction with NASNet-Large
	Image Feature Extraction with Image Pixels
	Convolutional Neural Network Implementation
	Image Cross-Entropy Computation
	Maximum Memory Capacity Prediction
	Spaceship Image and GIF generation
	Initial configuration of the gliders
	Code for figure 1.3, the Game of Life
	Code for figure 1.3, the light-weight spaceship
	Code for figure 1.3, the mid-weight spaceship
	Code for figure 1.3, the heavy-weight spaceship
	Code for figure 4.1
	Code for figure 4.2
	Code for figure 4.3
	Code for figure 4.3
	Code for figure 4.3
	Code for figure 4.3
	Code for figure 4.3
	Code for figure 4.5
	Code for figure 4.6 (1/5)
	Code for figure 4.6 (2/5)
	Code for figure 4.6 (3/5)
	Code for figure 4.6 (4/5)
	Code for figure 4.6 (5/5)
	Code for figure 4.8 (1/6)
	Code for figure 4.8 (2/6)
	Code for figure 4.8 (3/6)
	Code for figure 4.9 (4/6)
	Code for figure 4.9 (5/6)
	Code for figure 4.9 (6/6)
	Code for figure 4.10 (1/2)
	Code for figure 4.10 (2/2)
	Code for figure 4.12 (1/2)
	Code for figure 4.12 (2/2)
	Code for figure 4.13
	Code for figure 4.14
	Code for figure 4.15
	Code for figure 4.16
	Code for figure 4.17
	Code for figure 4.18
	Code for figure 4.19
	Code for figure 4.20
	Code for figure 4.21
	Code for figure 4.22
	Code for figure 4.23

