
Enabling Verifiable Execution of Distributed Secure

Enclave Platforms

Saharsh Agrawal
Karen Tu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-153

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-153.html

May 21, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
To my always supportive friends and family.



 
 

Enabling Verifiable Execution of Distributed Secure Enclave Platforms 
 

by Saharsh Agrawal 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Raluca Ada Popa 
Research Advisor 

 
 

(Date) 
 

 
* * * * * * * 

 
 
 

Professor Ion Stoica 
Second Reader 

 
 

(Date) 

May 18, 2021

May 20, 2021



Enabling Verifiable Execution of Distributed Secure Enclave Platforms

by

Saharsh Agrawal

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master’s

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Raluca Ada Popa, Chair
Professor Ion Stoica

Spring 2021



Enabling Verifiable Execution of Distributed Secure Enclave Platforms

Copyright 2021
by

Saharsh Agrawal



3

To my always supportive friends and family.



1

Abstract

Enabling Verifiable Execution of Distributed Secure Enclave Platforms

by

Saharsh Agrawal

Master’s in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Raluca Ada Popa, Chair

Outsourcing data computations to a cloud provider is a common way to process large
datasets. However, a user might not trust the cloud provider with sensitive data, and
enclaves are a promising way to ensure data confidentiality and integrity. For distributed
applications, code that a↵ects data flow but not the data contents can be placed outside
of the enclave; the execution of the data flow can be verified to have happened correctly.
However, there are no existing frameworks to perform this verification.

We propose an execution flow verification library. Our library contributes (i) a way to
securely log inputs and outputs of enclave functions, (ii) a verification strategy based on a
ruleset specification and (iii) automatic API integration and ruleset generation. This saves
developers from having to write their own custom application-specific verification code. Our
library provides data flow integrity at the cost of a reasonable code footprint of about 500
lines and a latency overhead of roughly 3%.

An orthogonal line of research over the past several years has been blockchain and distributed
ledger platforms, some with smart contract capabilities. Supporting private data and com-
putation on such platforms using secure enclaves (e.g. Intel SGX) has become of interest as
of late. Hyperledger Fabric Private Chaincode (FPC) is one such project; however it cur-
rently lacks a way to prevent speculative execution since the previous mechanism to prevent
this (explicit barrier placed on-chain) is no longer feasible due to design constraints imposed
by the Hyperledger Fabric maintainers. We demonstrate how our verification system is use-
ful for synchronizing peers and preventing speculative execution in FPC by using runtime
verification as the barrier instead.



i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1

2 Background 3
2.1 Secure Enclaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Enclave Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Smart Contracts and Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Techniques for Smart Contract Privacy . . . . . . . . . . . . . . . . . . . . . 5

3 Related Work 6
3.1 Untrusted Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Enclave Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Enclave Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Private Smart Contracts via Secure Enclaves . . . . . . . . . . . . . . . . . . 8

4 Hyperledger Fabric Private Chaincode (FPC) 9
4.1 Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Hyperledger FPC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Speculative Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Issues with Initial FPC Design . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Sealed-Bid Auction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Threat Model 13
5.1 Abstract Enclave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Adversary Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 System Overview 15
6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



ii

7 System Design 18
7.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 Execution Flow Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Extending Hyperledger FPC 24

9 Implementation 26
9.1 Core System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 Evaluation 28
10.1 Library Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.3 Opaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.4 Hyperledger FPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 Limitations & Future Work 34
11.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12 Conclusion 36

Bibliography 37

A API 42
A.1 API Code Snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Opaque: Example API Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Hyperledger FPC: Example API Usage . . . . . . . . . . . . . . . . . . . . . 44

B Ruleset 45
B.1 Ruleset JSON Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



iii

List of Figures

4.1 Hyperledger Fabric Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Initial FPC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Updated FPC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Distributed data analysis enclave-based application architecture after integrating
our verification library and deployment. . . . . . . . . . . . . . . . . . . . . . . 16

7.1 Example of ECALL execution flow split into rounds. . . . . . . . . . . . . . . . 22



iv

List of Tables

10.1 Lines of code across verification library files. . . . . . . . . . . . . . . . . . . . . 29
10.2 Evaluation of our library’s performance using Query 13 from the TPC-H bench-

marking test suite in Opaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.3 Evaluation of Hyperledger FPC augmented with verification system; we test four

scenarios, each of which was repeated 10 times. . . . . . . . . . . . . . . . . . . 33



v

Acknowledgments

Firstly, I want to extend a huge thank you to my research advisor Raluca Ada Popa for taking
a chance on me and bringing me into the RISELab security group; my academic experience
has been greatly enriched from all of the di↵erent opportunities I’ve been able to experience
as a result. Thank you also to Wenting Zheng and Rishabh Poddar who initially proposed
the core project idea and dedicated their time and energy towards guiding us throughout
the initial phases of the project; I look forward to continue working with you all over the
next several years!

A huge thanks to Karen Tu for being an amazing research partner, not only for this
report but also for several of the graduate classes we both took together; you were always
incredibly understanding, and I could not have completed our various assignments, projects,
and this report without you. I would also like to thank Ion Stoica for his feedback on an early
iteration of this project as part of a class submission and for serving as a second reader for
this report. Thank you also to Je↵rey Chen who assisted greatly with the original iteration
of this project! I would also like to thank Mic Bowman and the Hyperledger FPC Team for
their initial guidance on the problem setting and identifying where and how a verification
integrity mechanism could be useful for FPC.

I also want to express immense gratitude to all of the lifelong friends I have made while
at Berkeley; you have all made my time at Berkeley extremely memorable and will have a
special place in my heart forever. To all of my other friends and loved ones beyond Berkeley
who kept in touch even when I didn’t and were understanding of my work schedule over the
past several months, I truly appreciate your love and support.

Finally, I would not be at this stage in my academic career today without the lifelong
support and sacrifices of my grandparents, parents – Ambika and Sanjay – and my little
sister – Aashi – who have been cheering me on my entire life; all of this is for you.



1

Chapter 1

Introduction

When running complicated data analysis over large datasets, it is common practice to
outsource the computation to a third party cloud computing provider. However, sometimes
for legal reasons, data cannot be read by third parties, such as a hospital’s patient data.
Additionally, with increasing concern over data privacy and potentially malicious third party
cloud computing providers, there is a need for a way to outsource data analysis without
compromising data security. Hardware enclaves provide a trusted execution environment
that provides data confidentiality and integrity. Only security sensitive code is placed into
the enclave, greatly reducing the trusted computing base.

There are several tools that port entire existing applications into an enclave [5], but this is
not always a good idea because many applications are not hardened for side channel attacks.
In addition, placing an entire application within the enclave results in an unnecessarily
large trusted computing base. Only security sensitive code needs to be placed within the
enclave; all of the other code can be placed outside. Civet [49] and Glamdring [31] partition
applications into trusted and untrusted code in order to reduce the trusted computing base.
All code that accesses sensitive data or a↵ects data flow is considered trusted code and placed
into the enclave.

Secure enclaves have large potential to be used for outsourcing data analysis, which is
often distributed for large datasets or complicated analysis. The existing partitioning solu-
tions, Civet and Glamdring, are not targeted for distributed applications, and for distributed
applications they would not optimally partition the code. Scheduling and communication
code a↵ect data flow, and Civet/Glamdring would place such code inside of an enclave.
However, it is possible to place scheduling and communication code outside of the enclave
as long as it can be verified that such code executed correctly, as done in VC3 [41] and
Opaque [56]. This is possible because in distributed data analysis applications, a job is bro-
ken down into several tasks that are distributed across nodes. The piece of code that breaks
down the job into smaller tasks is placed in the enclave, while the code that distributes
the tasks and communicates encrypted data is placed outside. The problem is that existing
distributed enclave-based applications have custom verification mechanisms which require
significant manual e↵ort to implement and are not easily transferable to other distributed



CHAPTER 1. INTRODUCTION 2

enclave-based applications.
Aside from distributed data analysis tasks, secure enclaves have also recently seen usage

in blockchain and distributed ledger platforms for enabling the secure/ confidential execu-
tion of smart contracts containing private data. Fabric Private Chaincode (FPC) [9] is a
proposal to extend the Hyperledger Fabric permissioned blockchain platform with secure
enclaves by executing chaincode inside of enclaves such that the peer node on which the
chaincode is executing cannot view function inputs and execution. While the original design
of FPC included an additional trusted ledger enclave component that was used to provide
proof of consensus around blockchain state values, the current design of FPC removes this
component as it replicated a large portion of the peer validation logic inside of an enclave,
resulting in redundant and unmaintainable code. Removing the trusted ledger component
requires an alternate method for synchronizing peer nodes and preventing malicious peers
from performing speculative execution to learn private information.

In this report, we present a verification library that aims to assist developers of distributed
enclave-based applications verify the proper execution of code outside of the enclave. Given
a partitioned codebase for a distributed enclave application, our library can be used to
verify data flow integrity and enforce code invariants. Within each enclave function, the
developer uses our library to create an AuditLogEntry each time that function is called.
During program execution, based on the data flow rules and ECALL constraints specified
by the developer, the audit logs are cross-checked with the rules to make sure that all data
computation tasks were completed. We show in an example of integrating our library with
a distributed data analysis application that the API calls result in about 3% of latency
overhead, and we also demonstrate the usability of this verification system with Hyperledger
FPC to serve as a barrier in order to maintain execution integrity and disallow speculative
execution.

This report was partially written in collaboration with another Master’s student, Karen
Tu. All discussion of private smart contracts and extending Hyperledger Fabric Private
Chaincode with this verification system is my own work. The sections that I wrote completely
independently are listed below.

• 2.3: Smart Contracts and Blockchain,

• 2.4 Techniques for Smart Contract Privacy

• 3.4: Private Smart Contracts via Secure Enclaves

• 4: Hyperledger Fabric Private Chaincode (FPC)

• 8: Extending Hyperledger FPC

• 10.4: Hyperledger FPC

All other sections have been written collaboratively, aside from portions of the sections
which have to do with smart contracts or Hyperledger FPC.



3

Chapter 2

Background

2.1 Secure Enclaves

In many modern cloud computing models and services, applications are often deployed in
untrusted environments such as public clouds which are controlled by third-party providers.
As the underlying infrastructure is unknown (i.e. OS and hypervisor) these environments
and their hosts are untrusted. Trusted Execution Environments can help mitigate these
threats as they support memory and execution isolation of code and data from the untrusted
environment.

2.1.1 Intel SGX

Intel’s Software Guard Extensions (SGX) [24] help to protect the confidentiality and
integrity of application code and data (running on hardware that supports SGX) even in
the presence of an attacker with control over all software (OS, hypervisor, and BIOS). SGX
provides a trusted execution environment called an enclave. Enclave code and data reside in
the enclave page cache (EPC) and are protected by an on-chip memory encryption engine
which encrypts and decrypts cache lines in the EPC that are written to and fetched from
memory. Only application code executing inside the enclave can access the EPC. While
non-enclave code cannot access the EPC, enclave code is free to access memory outside the
enclave.

Furthermore, the Intel SGX SDK provides a feature Remote Attestation which allows the
client (the Challenger in Figure 1) to verify that their code has been set up properly in the
enclave and that the host has not tampered with the enclave in any way. This way, the host
cannot modify or otherwise modify the contents of enclaves without being detected by the
client. Thus, Intel SGX protects against the general class of attacks known as Iago attacks
that occur when a malicious OS exploits an application by subverting the assumptions of
correct non-malicious OS behavior.

It is up to the enclave developer to define the interface between the trusted code (that
goes in the enclave) and the untrusted code (outside the enclave). A call into the enclave is



CHAPTER 2. BACKGROUND 4

known as an enclave entry call (ECALL) whereas a call from within the enclave to transfer
execution control to outside the enclave is known as an outside call (OCALL). Both ECALLs
and OCALLs induce performance overhead as the processor needs to marshal and unmarshal
parameters and maintain SGX’s security guarantees.

2.2 Enclave Partitioning

While it is possible to execute entire applications inside enclaves by adding system support
in the form of a library OS, this is not entirely desirable. Placing all application code inside
the enclave creates a large trusted computing base (TCB) which violates the principle of
least privilege. To solve this issue, many enclave programs are partitioned where trusted
and untrusted code is delineated such that only security sensitive functions and code are
placed inside of the enclave. The degree to which the enclave is partitioned is up to the
discretion of the enclave developer.

However, partitioned enclave programs have a greater amount of untrusted code. This
leaves a larger attack surface for a malicious host to call the wrong ECALL, pass in incorrect
parameters, replay old ECALLs, drop messages, etc. This is the problem that we aim to
address - in partitioned enclave-based services, the enclave application needs some sort of
verification mechanism in the trusted code in order to ensure that the untrusted host does not
abuse the partitioning to tamper with or otherwise disrupt the application program’s enclave
execution. In other words, we want execution integrity for the application’s untrusted code
that the host runs. We aim to provide a general framework that can provide a verification
mechanism for any such partitioned enclave program that requires minimal e↵ort from the
application developer to integrate.

2.3 Smart Contracts and Blockchain

First proposed by Szabo in 1994, a smart contract is ”a set of promises, specified in digital
form, including protocols within which the parties perform on these promises” [46]. Smart
contracts today are primarily discussed in the context of blockchains/ distributed ledger
platforms and are used to enforce various protocols upon the invocation of transactions on
the underlying distributed ledger platform.

Some of the most common smart contract platforms today are Ethereum and Hyperledger
Fabric. Ethereum is a public distributed ledger but also has support for creating private
networks with restricted participation as well. Hyperledger Fabric is a permissioned network
(restricts access to participation and chaincode functionality via access control list) with a
consensus mechanism that relies on ordering as opposed to proof-of-work/ proof-of-stake as
in Ethereum. These di↵er from several other well-known distributed ledger platforms such
as Bitcoin which do not have support for the type of Turing-complete execution logic that
smart contracts provide; instead Bitcoin features only a simple stack-based programming



CHAPTER 2. BACKGROUND 5

language for managing payment transactions and does not feature Turing complete smart
contract capabilities.

Smart contract state and execution is often replicated across several or all nodes in the
distributed system for verification purposes. However, performing verification requires that
contract state and user inputs are public, thus drastically limiting the range of applications
that smart contracts can be utilized for. Thus, enabling private smart contracts is essential
for expanding the utility of the technology.

2.4 Techniques for Smart Contract Privacy

There have been several e↵orts to bring confidentiality to smart contract execution atop
public ledger systems, as this would enable many more use cases. Bitcoin is often touted as
being anonymous, however it only provides pseudo-anonymity as transaction graph analysis
can reveal link between transactions which can eventually also reveal a user’s identity if
linked to a known exchange/ wallet address. There is also no confidentiality for transaction
amounts. Zerocash [6], a fork of Bitcoin, solves the problem of anonymity in payment
transactions by not including origin, destination, or amount information in the transaction,
and instead using zero-knowledge proofs to prove the correctness of a transaction. Monero/
CryptoNote [52] achieves something similar by using ring signatures to hide the sender,
receive, and amount of a transaction. However, like Bitcoin, these platforms only seek to
provide transaction-level anonymity and lack support for general purpose Turing-complete
programming in the form of smart contracts.

Extending zero-knowledge proofs to enable private smart contracts has several challenges,
including that multi-party computation is not supported with this design and that currently
zero-knowledge protocols have high computational complexity for the prover and require a
costly trusted setup.

Another strategy that has been explored by several works [8, 25] for enabling private
smart contracts has been to privately execute smart contracts o↵-chain, meaning that peers/
nodes in the network do not directly execute the smart contract; rather, the smart contract
logic is invoked by a single node (or some subset of nodes) and the resulting state transition
is signed and submitted to the rest of the network.

A final strategy that has been explored is the use of trusted hardware in the form of
trusted execution environments/ secure enclaves (e.g. Intel SGX) to execute smart contracts
in a secure region of memory protected from the rest of the machine and attested to by a
remote attestation process. Such an approach is much more e�cient than computationally-
complex cryptographic approaches such as using zero-knowledge proofs, but it is also more
vulnerable in the case of malicious hardware providers. Section 3.4 discusses several related
works in the area of achieving private smart contracts via secure enclaves.



6

Chapter 3

Related Work

3.1 Untrusted Cloud

CryptDB [39], MrCrypt [47], BlindSeer [37], Monomi [50], and [2] use cryptographic tools
such as homomorphic encryption without any trusted hardware to provide data confidential-
ity on an untrusted cloud. Encrypting data alone is not enough for distributed data analysis
applications which require complex functionalities beyond simple queries and thus need some
way to ensure execution flow integrity for computations.

Virtual Ghost [17] uses compiler instrumentation and run-time checks to create a pro-
tected region of memory. Flicker [34], MUSHI [55] use TPMs (Trusted Platform Modules).
The drawback of TPMs compared to TEEs (trusted execution environments) such as SGX
is that TPMs provide many cryptographic tools, but do not allow developers to run their
own code within the TPM. SeCage [32], InkTag [20], and Sego [27] rely on virtualization.
Using virtualization techniques such as hypervisors typically result in large TCBs; using
TEEs reduces the TCB size greatly.

3.2 Enclave Frameworks

Haven [5], Graphene-SGX [48], and Occlum [44] provide libOS’s that run within enclaves,
thus making it possible to put entire applications inside of an enclave, and thus have e↵ec-
tively no untrusted code (besides the code that creates the enclave and calls into it). The
main problem with this approach is the resulting large trusted computing base and conse-
quently a large attack surface. Another major issue with porting legacy applications into
SGX is that SGX is vulnerable to side channel attacks [53, 11, 42, 19].

SCONE [4] and Ryoan [21] isolate containers and sandboxes, respectively, inside of an
enclave. Similar to libOS’s, this allows developers to run their unmodified applications within
an enclave. Although the TCBs are certainly smaller than those of the libOS’s, they are still
unnecessarily large. The purpose of an enclave is to run security-sensitive code; all other
code should be placed outside.



CHAPTER 3. RELATED WORK 7

Panoply [28] enforces a strong integrity property for the inter-enclave interactions, ensur-
ing that the execution of the application follows the legitimate control and data-flow even
if the OS misbehaves. While Panoply puts all security sensitive code inside the TCB of
the application, we aim to reduce the size of the TCB by bringing certain code outside the
enclave by augmenting the application with an additional verification mechanism.

Civet [49] and Glamdring [31] automatically partition enclave applications (Java and C
respectively) into trusted and untrusted components using annotations and code analysis.
The problem is that for distributed applications, these frameworks would put all data-flow
related code (such as a scheduler) into the enclave, which is not necessary.

3.3 Enclave Applications

EnclaveDB [40] is a database engine that places all sensitive data into enclaves. To
maintain data integrity, it keeps a database log. ObliDB [18] is also an enclave database,
but it uses oblivious algorithms to hide access patterns which incurs a large overhead. Visor
[38] is a video analytics platform using a TEE across CPUs and GPUs, using Graphene
[48] for certain video processing modules. There is limited partitioning in Visor; the GPU
resource manager is untrusted, but most of the code is inside the TEE. Similar to Visor, the
above applications are not focused on reducing the TCB so much of the code base is inside
of the enclave.

3.3.1 Distributed Enclave Applications

Di↵erent distributed applications have common functionality that a↵ect data flow such
as schedulers and communication code, which can be placed outside of the enclave as long
as the data flow is logged so it can be verified as correct.

VC3 [41] runs on Hadoop within SGX enclaves. Verification is performed by workers
sending information about data inputs and outputs to a master node. Opaque [56] is a data
analytics platform built on Spark SQL. Spark SQL’s query plans are DAGs, where the edges
represent data flow and the nodes each represent a computation task. In Opaque’s design,
verifying the dataflow, even though the job scheduler is considered untrusted, is done during
runtime. Each worker node will only execute a task if it has received all required inputs.
This is an improvement over VC3’s design, which requires worker nodes to all communicate
with a master node. Both VC3 and Opaque are manually partitioned and have custom
verification logic. Currently, there is no simple way for developers of distributed enclave-
based applications to implement dataflow integrity.

PySpark-SGX [29] is PySpark built on top of Scone [4] so that it can run in an SGX
enclave. It is similar to Opaque as it uses core Spark components, but unlike Opaque, the
scheduler is placed inside of the enclave. Another problem is that building on top of Scone
includes Scone as part of the TCB.



CHAPTER 3. RELATED WORK 8

3.4 Private Smart Contracts via Secure Enclaves

The primary technique we are concerned with for this paper is the use of trusted hardware
in conjunction with smart contract platforms. Several works have explored such avenues of
research.

In Hawk [26], on-chain privacy is achieved by encrypting state updates on the blockchain,
using zero-knowledge proofs to enforce correct contract execution and relying on a third-
party manager which may be implemented either with trusted hardware such as Intel SGX
or replaced with a multi-party computation to execute the smart contract. ShadowEth [54]
is built atop the public Ethereum blockchain and seeks to provide privacy for all three of
smart contract code, contract execution, and internal contract state by using a combination
of secure enclaves, encryption, and secure communication channels. Ekiden [16] presents a
TEE-blockchain hybrid system that separates enclave-enabled compute nodes from consensus
nodes which maintain the underlying blockchain and do not require trusted hardware.

Private Data Objects (PDOs) [8] is a solution that enables parties to privately run smart
contracts o↵-chain in Intel SGX secure enclaves and then submit a transaction to the dis-
tributed ledger containing information about the new smart contract state for validation
(signature is checked).

Finally, Hyperledger Fabric [1] is a permissioned, consortium blockchain platform for
which there has been a recent proposal termed Fabric Private Chaincode (FPC) [9] to bring
privacy to Hyperledger Fabric by running chaincode inside of Intel SGX enclaves. See Chap-
ter 4 for a dedicated discussion of Hyperldger Fabric/ Fabric Private Chaincode.



9

Chapter 4

Hyperledger Fabric Private
Chaincode (FPC)

4.1 Hyperledger Fabric

Hyperledger Fabric is a permissioned blockchain platform with support for smart con-
tracts in the form of chaincode. A Fabric network is comprised of peers, clients, and an order-
ing service. Unlike Bitcoin, Ethereum, and several other public ledgers, Fabric does not use
proof-of-work or proof-of-stake consensus; rather, consensus of transactions is achieved by
the execute-order-validate architecture. Under this architecture, transaction proposals are
made and then executed on some subset of peer nodes (endorsers), and then the transaction
is sent for ordering to the ordering service. The ordering service will broadcast the trans-
action to all peers who then validate the state update by checking it against the chaincode
endorsing policy and ensuring that the ordering does not invalidate prior transactions.

Figure 4.1: Hyperledger Fabric Architecture



CHAPTER 4. HYPERLEDGER FABRIC PRIVATE CHAINCODE (FPC) 10

Figure 4.2: Initial FPC Architecture Figure 4.3: Updated FPC Architecture

4.2 Hyperledger FPC Design

Confidentiality in blockchain platforms is a trait that is often desired but not straight-
forward to achieve given the nature of blockchains which replicate data and computation
across many nodes in the network. The lack of a confidential method to execute smart
contract logic and manage data has precluded many use-cases from being implemented atop
blockchains.

Hyperledger Fabric Private Chaincode (FPC) enables the execution of chaincodes using
Intel SGX for Hyperledger Fabric by protecting the privacy of chaincode data and computa-
tion from potentially untrusted peers. The initial version of FPC as specified in [9] augments
the base Hyperledger Fabric design by adding a chaincode enclave that executes a particular
chaincode running inside SGX and a trusted ledger enclave that performs transaction vali-
dation and stores the ledger state in the form of hashes of each key-value pair in the ledger
state. In the untrusted part of the peer, FPC adds an enclave registry that maintains a list
of all the chaincode enclaves and an enclave transaction validator that validates transactions
executed by a chaincode enclave. Figure 4.2 [22] depicts the augmented Hyperledger Fabric
peer under this initial FPC design.

For a full in-depth explanation of the FPC design, view [9].

4.3 Speculative Execution

Fabric uses the execute-order-validate paradigm in which a peer executes a transaction
before consensus on the order is reached. The initial execution of chaincode prior to ordering
is speculative and does not a↵ect the blockchain world state. Hence, the transaction can be



CHAPTER 4. HYPERLEDGER FABRIC PRIVATE CHAINCODE (FPC) 11

executed multiple times (provided that the peer performs state rollback) with di↵erent user-
inputs provided. Such speculative execution may allow a malicious peer to glean confidential
information about the application state.

One way to guard against speculative execution is by using barriers. A barrier is some
piece of information committed to the blockchain world state indicating when a certain point
in the code execution has been reached. Since we can make various chaincode functionality
contingent on the presence of the barrier, this allows applications to prevent rollbacks across
the barrier and simulate an order-execute design [9].

4.4 Issues with Initial FPC Design

The initial design of FPC included a trusted ledger enclave to be placed inside an enclave.
However, the trusted ledger replicates a large portion of the peer validation logic, resulting in
redundant and unmaintainable code according to feedback provided to the FPC development
team. Figure 4.3 [23] displays the updated FPC architecture .

Without the trusted ledger enclave, there is no way for the chaincode to ascertain whether
certain state has been committed to the blockchain ledger or if it is only present locally on
the peer. Hence, preventing speculative execution via a barrier is not applicable in this
scenario since the authenticity of the barrier cannot be checked.

The following section describes a particular example of an application running on the
Hyperledger Fabric blockchain, how speculative execution may be prevented by the use of
a barrier, and the challenges in achieving this as a result of the FPC design changes. The
purpose of applying our verification system to FPC is to attempt to synchronize connections
between the peers in a way that allows for detecting speculative execution by a malicious
peer.

4.5 Sealed-Bid Auction

Consider a sealed-bid auction on a blockchain where bids are kept secret and winner
revealed only after auction is closed (but before the auction is evaluated) and a barrier
is placed on ledger. The auction chaincode can check that a barrier has been placed on-
chain before evaluating the auction results, and refuse to do so if no barrier is present.
However, without a trusted ledger enclave, the issue of speculative execution arises again
since the existence of a barrier can be faked by a malicious peer and the chaincode enclave
will have no way to verify whether or not it is legitimate. With a fake barrier, the peer
could induce the chaincode enclave to evaluate the auction, learn the results, perform a
state rollback to submit more bids, and then repeat this process until the peer ultimately
learns the value of the current highest bid. Our proposed approach is to use the results of
runtime-verification as a barrier ; the verification takes place inside of a verification enclave
and we check that extraneous/ malicious ECALLs were not made and that the appropriate



CHAPTER 4. HYPERLEDGER FABRIC PRIVATE CHAINCODE (FPC) 12

conditions for placing a barrier on-chain were met. Section 10.4 discusses the sealed-bid
auction example in FPC with our verification system in more detail.



13

Chapter 5

Threat Model

We describe the model of secure enclaves that we consider, the capabilities of the adver-
sary, and the attacks which are in/out-of-scope. We take inspiration from [45] in which the
authors present a formalization of idealized enclave platforms, including a formal model of
enclave programs and the adversary.

5.1 Abstract Enclave Model

We have designed our system using an abstract model of a hardware enclave that user
applications can enter and exit during program execution. Our abstract model of a hardware
enclave assumes the following enclave operations at minimum: launch, destroy, enter,

exit, attest. Given such an enclave, we are able to apply our proposed run-time veri-
fication system to detect adversary actions which attempt to compromise the integrity of
enclave application execution in the partitioned/ distributed setting.

In practice, hardware enclaves are susceptible to side channel attacks [53, 43, 13, 15] and
software-based attacks [19, 51, 30]. Protecting against these vulnerabilities is beyond the
scope of our threat model and are not considered as impacting our idealized abstract enclave
model. Solutions to these attacks are complementary and are partially addressed in [14, 10,
35, 33].

This abstract enclave model may still fail to provide any security guarantees in the case
of poorly-written enclave applications which lack confidentiality and may inadvertently leak
data via network and memory accesses. For such applications, the developer must first secure
any sources of inadvertent data leakage in order to utilize our verification system, as our
system will not make an existing non-secure application (application logic leaks information
about data) secure. The enclave application developer must implement data confidentiality
by encrypting the outputs of ECALLs and obscuring lengths of output results by providing
the appropriate padding for data.

The focus of our work is to provide integrity for partitioned enclave applications by
making it easier to write verification logic; we do not provide any additional mechanisms to



CHAPTER 5. THREAT MODEL 14

make an existing non-secure application more confidential.

5.2 Adversary Actions

Formally, our scenario involves a client, an untrusted host (the adversary) that supports
SGX, and an application running on this untrusted host. In our real world scenario, this
untrusted host has the capability to both observe and tamper without being detected [2]. We
define observation as the ability of the adversary to view any output as well as any memory
access patterns via side channel attacks. We define tampering as being able to pause the
enclave at any time to execute arbitrary instructions that modify the state of the enclave,
the enclave’s input, and launch or destroy enclaves. The problem we aim to solve is to
reduce this real world scenario to our ideal world scenario where the adversary only has the
ability to observe undetected - any attempts to tamper will be detected by our verification
mechanism.

We make the assumption that the developers will write applications that protect against
side channel attacks, as several hardware enclave platforms have known side channel attacks.
Denial of service attacks are also out of scope, as an untrusted service provider can easily
drop a client’s messages and requests.



15

Chapter 6

System Overview

The overarching goal of this system is to reduce developer e↵ort required for bringing
inter-enclave execution verification to their applications. To achieve this, we make the fol-
lowing contributions:

• We model the enclave application execution flow as a directed acyclic graph (DAG).

• We augment the enclave TCB by writing an in-enclave library of verification primitives
containing various data structures, cryptographic primitives, and communication code
needed for enabling audit logging and verification.

• We provide a JSON ruleset configuration template to the client for indicating the
expected execution flow.

• For a developers of applications with many enclave functions, we provide a script to
automatically insert the necessary verification library API calls.

6.1 Architecture

We present the overall application architecture in Figure 6.1 for a distributed data anal-
ysis enclave-based application that uses our verification library and has been deployed into
the cloud. In this section we, also describe all parties involved in a distributed application
that uses our verification library.



CHAPTER 6. SYSTEM OVERVIEW 16

Figure 6.1: Distributed data analysis enclave-based application architecture after integrating
our verification library and deployment.

6.1.1 Application Developer

The application developer is the one who either writes a distributed data analysis appli-
cation from scratch, or finds an existing one to modify and run in an enclave. The developer
is the party who will directly use our verification library. In Figure 6.1, the driver, scheduler,
and workers are all written by the developer, while the verifier/ verification server is part of
our verification library. The driver is the component of the application that receives client
requests and splits up the request into data computation tasks that can be assigned to the
workers. The scheduler distributes the workload of data computation tasks to the workers.
A more detailed workflow for the developer is described in Section 7.2.



CHAPTER 6. SYSTEM OVERVIEW 17

6.1.2 Client

The client directly uses the data analysis application created by the developer, and thus
indirectly uses our verification library. The client is a trusted party; they are the ones who
want to keep their data confidential.

6.1.3 Untrusted Cloud

The cloud is a third party service provider that the developer uses to run their distributed
data analysis application. The cloud provides a cluster of virtual machines that support
running Intel SGX enclaves. The untrusted host in Figure 6.1 corresponds to a single VM
in the cloud, and each VM can have multiple enclaves.



18

Chapter 7

System Design

In this section, we explain the design details and decisions for our verification library.
We describe the API, the workflow for how to use it, and how the execution flow is verified.

7.1 API

i n i t a u d i t l o g ( . . . ) // I n i t i a l i z e s aud i t l o g entry ; invoked at s t a r t o f ECALL

l o g i npu t da t a ( . . . ) // Computes hashes f o r data prov ided as input to ECALL

l og output data ( . . . ) // Computes hashes f o r data ou tpu t t ed by ECALL

s end aud i t l o g ( . . . ) // Sends aud i t l o g to v e r i f i c a t i o n s e r v e r

Listing 7.1: The above API is made available to the developer.

The developer adds these API calls inside of the function definitions of the ECALLs that need
to be verified. The two API calls init_audit_log and log_input_data are called in the
beginning of an ECALL, while log_output_data and send_audit_log are called at the end.
For details about API return values and parameters, a fully commented code snippet of the
API can be found in the appendix A.1. A valid concern to have is that we are increasing the
trusted computing base, by making the API calls within the ECALL functions definitions.
The alternative solution is to modify the code function where the ECALL is called. However,
ECALLs are made in untrusted code, and the verification code must be running inside of
an enclave. Therefore, we either have to turn the API calls into additional ECALLs, or
have the API calls made within the ECALL itself. Because of the overhead of marshaling
inputs/outputs as well as context switching every time an ECALL is made, we decided to
have the API calls made within the ECALL function definitions.

7.2 Workflow

Below we describe the general expected workflow for a developer who wishes to use our
verification library. We assume that the developer handles data confidentiality, but needs
our library for execution flow integrity.



CHAPTER 7. SYSTEM DESIGN 19

1. The developer writes a distributed data analysis application with a scheduler and driver
as described in 6.1.1.

2. The developer partitions their application into trusted and untrusted code; only secu-
rity sensitive code is trusted code.

3. The developer integrates our verification library by:

a) Importing our verification library in the files with ECALL (enclave function)
definitions for the ECALLs that a↵ect execution flow integrity.

b) Extending data structures that contain sensitive data and are the types of param-
eters passed into ECALLs that a↵ect execution flow integrity with the Iterator-
Interface class. This allows our verification library to iterate through the chunk
of data elements passed into an ECALL, one element at a time.

c) Adding API calls to the ECALL function definitions; this can be done manually,
or with the script we provide.

d) Specifying a ruleset JSON file for which enclave functions correspond to specific
data operations that the client can submit and how the inputs and outputs enclave
functions related to each other.

4. Developer deploys application into the cloud to be used by clients.

7.3 Execution Flow Verification

We first discuss several design propositions for verifying correct execution flow to show
how we came to our current verification design. Then we present our runtime verification
process.

7.3.1 Design Tradeo↵s

Keeping in mind our API as specified in 7.1, an audit log is created for every ECALL. In
order to verify execution flow, we only need to make sure that no data was dropped or added.
Enclaves are trusted, so we can be sure that the audit logs are trusted. The untrusted hosts
that the enclaves are running on could refuse to send the audit logs, but this equivalent to
a DoS attack which is outside of our threat model.

Design 1

The simple strawman solution is that for each ECALL, store all of the data that is
processed in the audit log. While this solution is simple and easy to understand, it is not
practical. Our verification library is targeting distributed data analysis applications, which
typically process large amounts of data. Therefore, logging the data itself is a huge waste of



CHAPTER 7. SYSTEM DESIGN 20

memory. In enclaves this is an even bigger problem as enclaves have limited memory; this
strategy would cause massive overheads from page swaps.

Design 2

A more memory e�cient solution is to store some sort of identifier for the chunk of data
that the ECALL is processing. We can either require that the developer assigns an identifier
to every data element, or we can include a hash function in our library to create an identifier
for each data element.

The problem with this solution is that it makes the simplifying assumption that the
output of one ECALL will directly be used as the input of another ECALL; this is not a
safe assumption to make. In a collection of encrypted data elements, it is reasonable to
expect that data operations will be applied to the individual data elements. For example,
in a collection of encrypted row data (e.g. an encrypted data frame in Spark), encryption
occurs at the granularity of individual rows as opposed to on the entire data frame/ table.
Any transformations which modify the underlying plain-text data must take place inside of
an enclave and not in the untrusted code. However, there are modifications to the data in
untrusted code that are allowed such as combining and splitting up encrypted blocks. As a
concrete example, in Opaque [56], collect is used in the untrusted code to aggregate chunks
of encrypted data.

One way we can verify execution flow despite modifications of data in the untrusted code,
is if we assume that each enclave knows which rows it will receive ahead of time. Considering
how a typical distributed application scheduler works and how a specific task is not meant to
be tied to a particular worker node, this is an unreasonable assumption. Therefore, we must
be able to perform integrity checking over the smallest unit of data present in the application
(e.g. rows, arbitrary bytes, etc). This means that the developer to provide some way for our
verification library to iterate over the smallest unit of data; each ECALL processes multiple
units of data.

Post-Verification vs. Runtime Verification

In early design discussions, we proposed a post-verification approach in which a list of
audit log entries from within each enclave would be serialized and sent to a verifier (which
could be the client’s computer, a worker enclave, or a dedicated verifier enclave) for post-
verification after the execution has finished for a client’s data computation. We ultimately
shifted away from a post-verification approach after identifying the following constraints:

• Limited Enclave Memory: Enclaves have limited memory and the initial post-verification
approach introduced an additional enclave context in which the audit logs are stored.

• Missing Early-Termination: With a post-verification approach, program execution
must finish before audit logs can be aggregated and checked for discrepancies. This
prevents early-termination and potentially results in wasted compute resources.



CHAPTER 7. SYSTEM DESIGN 21

We shifted to a runtime verification approach, knowing that it would likely result in ad-
ditional latency at the end of each round and communication overhead, but with better
memory and resource usage.

7.3.2 Runtime Verification

AuditLogEntry

The primary data structure that we use in our library is an AuditLogEntry. We use
hashing instead of having IDs because it is simpler than requiring developers to assign an ID
to each data element. If the developer’s application does not already contain code logic with
data IDs, it is not trivial to implement. If the developer’s application does contain data ID
code logic, di↵erent developers may have di↵erent data types for their data IDs, making it
di�cult to implement a generalized verification library.

struct AuditLogEntry {
int ECALL id ;

u i n t 64 t ∗∗ i nput data hashe s ;

u i n t 64 t ∗∗ i nput supp data hashes ;

u i n t 64 t ∗∗ output data hashes ;

u i n t 64 t ∗∗ output supp data hashes ;

}

The AuditLogEntry struct specfied above contains a field for ECALL_id and several fields
containing the hashes of the various input and output data associated with the ECALL.
These hash fields are used by the verifier node during run-time verification to check whether
it correlates with the developer specified ruleset.

Ruleset

The ruleset is a developer specified JSON which contains the ECALL metadata, such as
ECALL to ECALL ID mappings, which parameters of each ECALL are data sources to be
verified, the type of data source, and the rules. The rules are specified for each operation; an
operation is a data computation that the client can make in the application. For example,
join and sort would be two di↵erent operations. For a complete example of a ruleset JSON
file, refer to the appendix B.1.

A rule consists of an equal sign (=) where on each side, the following format is used to
represent how the data from one ECALL in a specific round should be combined:

[single | union | each] ECALL_{ecall ID} [input | supp_input |

output | supp_output]_{parameter index} round_{round number}.

The first element (single, union, or each) represents how many times the ECALL is
made in that round. single means that the ECALL is made once. union means that the
ECALL is made multiple times in that round, and the data specified by the third element



CHAPTER 7. SYSTEM DESIGN 22

(input, supp input, etc.) should be unioned together. each means that the ECALL is made
multiple times, but across all ECALLs in that round, the data specified by the third element
is the same. The second element specifies the ECALL ID (the ecall function name to ID
mapping is also specified in the ruleset file). The third element specifies which data type
is being checked, as well as it’s index in the ECALL’s parameter list. The final element
specifies the round number that the ECALL is made.

The following list shows some example rules.

• single ECALL_0 supp_output_0 round_2 = single ECALL_3 input_4 round_3

• union ECALL_0 output_1 round_0 = single ECALL_1 input_4 round_1

• union ECALL_0 output_1 round_2 = each ECALL_3 input_4 round_5

• union ECALL_0 supp_output_1 round_2 = union ECALL_3 input_4 round_5

We define a round as a set of ECALLs within the execution flow for a particular data
operation which have no dependencies amongst each other. An example of an ECALL
execution flow split into rounds is shown in Figure 7.1. Because of the way we define a
round, we cannot support programs with cyclical ECALL dependencies. We can support
any program with an ECALL execution flow that can be formulated as a DAG (this includes
MapReduce style programs). This is a reasonable constraint because well known distributed
data-analysis applications such as Hadoop and Spark have execution flows are DAGs.

Figure 7.1: Example of ECALL execution flow split into rounds.

Verification Process

One enclave is responsible for verifying the audit logs after each round. This enclave
runs a verification server to receive audit logs from all of the worker processes running in
other enclaves. The first thing that the verification enclave receives is the input rows into
round 0 from the trusted driver in the application. Upon receiving an AuditLogEntry, the
verification server stores it until all audit logs for the current round are received. The verifier



CHAPTER 7. SYSTEM DESIGN 23

knows that a round has completed when it has received the correct number of audit logs.
Besides round 0, where the input data elements are provided by the trusted driver, the
verifier can use the ruleset to calculate the number of audit logs to expect and thus know
when a round ends to start verification. To perform verification at the end of a round, the
verifier enclave obtains the relevant rules for the ECALLs in the current round from the
developer specified ruleset and cross-checks the relevant audit logs with the rules.

The runtime-verification serves as an implicit barrier in the code; in other words, the
verification server will not receive any audit logs from a subsequent round until it has finished
processing all audit logs from the current round and has notified the relevant enclaves that
the audit log has been verified. This is because if verification fails at any round, then the
verification server notifies all of the enclaves.

The verification server is stateful and can retain audit logs from prior rounds in order to
corroborate them with the current round’s logs. Prior round state is maintained depending
on the specification provided in the ruleset logic. For example, in Figure 7.1 ECALL 3 in
round 2 needs the results of ECALL 1 from round 0, so the verification node must keep the
relevant output of ECALL 1 until the end of round 2.

7.4 Optimizations

7.4.1 Automatic API Integration

We provide a script to make it even easier to integrate our API; it can be tedious to
manually create the list of pointers to the data sources, and to manually specify the counts
of each type of data source. If each ECALL has the same parameters, then the same API
calls are made within each ECALL function definition. For example, in Opaque, all of the
ECALLs have arguments input_rows and output_rows as input and output data sources,
respectively. The same code is copied to the beginning and end of each ECALL, and the only
di↵erence between the ECALLs are the supplementary data sources, which can be specified
in the ruleset JSON file. The script automatically adds in the API calls at the beginning
and end of the ECALLs based on the data source metadata provided in the ruleset JSON
file.



24

Chapter 8

Extending Hyperledger FPC

Our motivation for extending FPC with our verification system is to overcome the issue
of the chaincode enclave being unable to trust that consensus has been achieved around any
barriers placed on the blockchain. In order to extend FPC with our verification system, we
make the following modifications:

1. Add audit log generation code to the single ecall_cc_invoke ECALL

2. Specify ruleset for a sample FPC chaincode

3. Port the verification server logic to Fabric chaincode

There is a single top-level ECALL present in FPC, ecall_cc_invoke(...), which is
a wrapper ECALL used to run all chaincode functionality within enclaves. The ecall_-

cc_invoke(...) function takes in an t_shim_ctx_t ctx struct as argument which is used
to extract the wrapped chaincode function name and its parameter list. Prior to runtime,
the chaincode developer is required to implement an invoke() function in their chaincode
that gets called by the top-level ecall_cc_invoke(...) ECALL. Unlike in Opaque, instead
of adding the audit log generation code to the top-level ECALL, we instead add it to the
developer-specified implementation of the invoke function call for the specific chaincode.
As a result, we do not attempt to use our automatic ECALL transfer script. It is added in
almost the same way as is done for Opaque (see Appendix section A.3).

The ruleset that is specified for any sample application seeking to enforce verifiable bar-
riers in code needs to specify the dependencies between chaincode function calls in order
to determine whether the appropriate condition has been met in order to place a barrier
(the result of performing runtime verification) on-chain. This can include information about
ECALL ordering and specify restrictions on certain sequences of ECALLs being invoked. An
example of what such a ruleset may contain for a sample FPC application is discussed in
Section 10.4. The current ruleset format primarily deals with data flow by tracking inputs
and outputs of ECALLs. For verifying barriers in FPC, we are more concerned with which
ECALLs were invoked during a particular round. We adjust the ruleset specification slightly
to account for this requirement.



CHAPTER 8. EXTENDING HYPERLEDGER FPC 25

In order to make minimal changes to Fabric, we implement the verification server as a
peer running chaincode that contains the verification logic. We also use the blockchain as the
communication layer rather than using out-of-band communication, such as a separate SSL
connection originating and terminating within enclaves (for Opaque, we do use a separate
SSL connection). Once audit logs are generated after an ECALL invocation, a chaincode-to-
chaincode invocation is made by the application chaincode to the verification chaincode. The
results of the verification for a given round will then be published to the blockchain along
with a signature and freshness values. Since we are using the underlying blockchain for
communication, we would typically need proof that the send_audit_log transaction and
corresponding state update was actually committed to the blockchain. However, without
the trusted ledger component (which had to be removed from the FPC design due to code
redundancy and maintainability concerns), the chaincode enclave cannot get proof that the
audit log state was actually committed to the blockchain. However, the chaincode enclave
can still access the ledger and world state via the shim library present, and by enforcing that
the verification chaincode includes a signature over its verification results, the peer cannot
falsify verification results. This will require adding signature-checking capabilities to the
application chaincode. Note that the result of the runtime verification serves as the barrier
which was specified in Section 4.3.



26

Chapter 9

Implementation

9.1 Core System

Our verification system has minimal dependencies and is comprised of:

1. The core in-enclave verification library which is implemented in C++. We utilize
xxHash [12], a fast (non-cryptographic) hash algorithm in order to e�ciently compute
unique identifiers for individual pieces of data passed to an ECALL to be processed by
our audit log generation code an inserted into the AuditLogEntry.

2. A verification server which accepts incoming audit logs from all enclaves that is also
implemented in C++ in order to be able to easily run inside of an enclave. The
developer specified rulesets (which are used for performing run-time verification) are
registered with the verification server and are specified as JSON objects which contain
information about which ECALLs are associated with a particular program execution
and what logic to apply to check whether an audit log is valid.

3. A Python script which utilizes the Python bindings for libclang (a library that simpli-
fies analyzing C/C++/ObjC code) in order to parse C++ code to output a transformed
EDL file and ECALL implementation file. This script implements the optional opti-
mizations; developers can either use this script or manually change the EDL file and
ECALL implementation file.

Communication between the executing enclaves and the verification server occurs at the
end of each round via an SSL connection which begins and terminates within enclaves.
This was achieved by modifying the attested_tls example [36] provided as part of the
OpenEnclave SDK. MbedTLS [3] is used for all cryptographic prerequisites needed for es-
tablishing the SSL connection. We use the boost::serialization library [7] to serialize
the AuditLogEntry data structure prior to sending it over the network.

For the Hyperledger Fabric setting, rather than using a separate SSL connection, we rely
on the underlying blockchain communication mechanism to transmit audit logs by invoking



CHAPTER 9. IMPLEMENTATION 27

chaincode functions and storing the logs in the world state for various chaincodes and peers
to access rather than explicitly sending audit logs between peers. This allows us to minimize
the changes made to Hyperledger Fabric and the to peer nodes participating in the system.

The OpenEnclave SDK is also used for remote attestation, generating trusted-untrusted
enclave interface from EDL file via oeedger8r tool, and other tasks typically associated with
operating enclaves, but these should be handled separately by the developer writing the
enclave application. As a result, the entire SDK is within the TCB of the enclaves, but our
system does not directly utilize much of the provided SDK functionality.

Our core verification library is under 500 lines of code. Adding support for SSL connec-
tions adds about 600 lines each for the worker enclave and the verification server enclave.
Our codebase is open source and available at: https://github.com/saharshagrawal/

verified-enclaves

https://github.com/saharshagrawal/verified-enclaves
https://github.com/saharshagrawal/verified-enclaves


28

Chapter 10

Evaluation

For all evaluation we used SGX-enabled VMs on the Azure Confidential Computing cloud
with plan 18 04-lts-gen2 running Ubuntu 18.04 each with 2 vCPUs and 8 GiB of RAM. We
first evaluate the impact of our library on the TCB. Then we discuss the performance of
the verification and communication in our library. Finally, we evaluate several API calls
from our library on a single application, Opaque. We only tested our library on Opaque
because secure enclaves are yet to become widely adopted, so there are a limited number of
distributed data enclave-based applications.

10.1 Library Size

One primary goal of our verification library is to help developers reduce their TCB by
moving code sections such as the scheduler and communication outside of the enclave. The
table 10.1 contains the lines of code for di↵erent files in our library. We show that our
verification library adds very little to the TCB; there are about 500 total lines of code,
which is small enough to easily audit to make sure it is not malicious. The lines of code for
ecall_init_verifier are an estimate, because integrating this ECALL includes modifying
the interface code between the application and the enclave; the lines of code needed to do
this depend on the application implementation. The estimate is based on the lines of code
needed to modify Opaque.



CHAPTER 10. EVALUATION 29

File/Function Name Description Lines of Code

Audit.cpp audit log API 180

Verifier.cpp code run by the verifier enclave 270

IteratorInterface.cpp class that data sources must inherit to be
compatible with our library

7

ecall init verifier send the number of data elements expected as
input for round 0 to the verifier

⇡25

Total ⇡ 482

Table 10.1: Lines of code across verification library files.

10.2 Communication

In order for worker enclaves to send audit log entries to the verification server enclave,
we must establish a secure communication channel. As mentioned in Chapter 7, an SSL
connection is established between each worker enclave and the verification server by adapting
the in-enclave client-server code provided in the attested_tls sample included as part of
the OpenEnclave SDK.

Currently, we launch a new SSL client every time an audit log needs to be sent from
a particular enclave and MbedTLS is used to configure the connection. A potential opti-
mization here may be to use the same SSL connection within an enclave to send multiple
audit logs rather than creating a new connection each time. We present timing data for the
communication overhead involved in a specific ECALL in Opaque in the subsequent section.

10.3 Opaque

We tested the init_audit_log, log_input_data, and log_output_data API calls of
our verification library on the latest released version of Opaque; this version of Opaque
does not have any execution flow integrity implemented. The following results were ob-
tained by adding audit log generation functionality to the non_oblivious_sort_merge_-

join ECALL and then running query 13 of the TPC-H benchmarking test suite which
tests left outer join (which is implemented using non_oblivious_sort_merge_join in
Opaque). The non_oblivious_sort_merge_join processes 165,000 total rows as input par-
titioned across 2 vCPUs/ enclaves where each enclave processes approximately half of the
total number of input rows.

Below are the modifications we make to Opaque to integrate our library:



CHAPTER 10. EVALUATION 30

• We extended the data source data structure in Opaque, class RowReader with the
IteratorInterface class. The lines of code added are minimal; a mere five lines of code
were added to FlatbuffersReaders.h, where RowReader is defined.

• We defined a ruleset JSON file with 25 lines

• We added the API calls to the ECALL definition in NonObliviousSortMergeJoin.cpp,
which only took 15 lines of code; the code sample can be found in A.3. Opaque is an
example of an application where the API calls have to be manually inserted. We could
not use our script as described in Section 7.4.1 to automatically modify the ECALL
definition, because our script assumes that pointers to the data sources’ data structures
are passed in as parameters. However, in Opaque, the data source’ data structure is
initialized within the ECALL from two of the ECALL parameters.

The latency incurred by our API calls is shown in the following table (since our node has
2 vCPUs, the computation is distributed across 2 enclaves where each enclave processes ap-
proximately 80,000 table rows; we present only the max timings measured for each portion):

Overhead (ms)

Log Input Data 12

Log Output Data 27

Ruleset Processing 0.12

Log Transmission 450

Verification 424

Total 913.12

Table 10.2: Evaluation of our library’s performance using Query 13 from the TPC-H bench-
marking test suite in Opaque

The Log Transmission timing value in table 8.2 is computed by serializing and sending
a single audit log to the verification server running on the same physical node. This is a
reasonable communication pattern, as it is entirely feasible for the verification server enclave
to be running on the same physical node that worker enclaves are running on. Currently, we
do not measure the communication overhead of transmitting audit logs across physical nodes
since di↵ering network conditions can result in high variability in timing measurements.



CHAPTER 10. EVALUATION 31

The API call for initializing the audit log is not included because it has negligible over-
head. Without our verification library, this test suite takes about 29 seconds on average to
complete. Therefore, our library adds roughly 3% of overhead.

The overhead from ruleset processing is minimal, as it does not take much to initialize
variables and parsing through the JSON file. It is even faster because the non_oblivious_-
sort_merge_join ECALL does not have any explicit rules in the ruleset JSON file. Most of
Opaque’s operations that a client can use only have one round and one ECALL. Such opera-
tions only have the implicit rule that the initial data values sent by the trusted driver code to
the verifier matches the input data to that one ECALL. ON the other hand, verification has
the biggest overhead; this makes sense, as it requires iterating over every data element. The
only step for verification of operation non_oblivious_sort_merge_join was to check that
the initial data values match the input data to the ECALL. non_oblivious_sort_merge_-
join is an operation that has one round and one ECALL; only the implicit rule (as described
in the previous paragraph) needed to be checked. The timing of checking this implicit rule is
equivalent to checking any rule where one side of the equality has a non-single data source.
For example, checking that the rule (union of the output of ECALL_1 in round 0 is equal
to the union of the input of ECALL_2 in round 1) would take the same amount of time as
the implicit rule, assuming that for both rules n data elements are iterated over to be cross
checked.

10.4 Hyperledger FPC

The sample application that is tested with Hyperledger Fabric Private Chaincode is the
sealed-bid auction which was briefly discussed in 4.5. Recall that the sealed-bid auction
results are only evaluated once all bids are placed and the auction is closed, thus placing
a barrier (some piece of information which indicates that the auction has been closed) on-
chain to prevent speculative execution from occurring. The sealed-bid auction chaincode
supports the following functions: init, create, submit, close, eval. For evaluating
the verification system with FPC, we want to prevent the scenario where a bidder invokes
the submit function followed by the close and eval functions, learns the results of the
auction, and then colludes with the peer to perform a local state rollback, and then repeats
the same ECALLs with a di↵erent bid value for the submit call multiple times in order to
learn what the previous highest bid value is.

Removing the trusted ledger component from FPC makes it di�cult to verify the exis-
tence of the barrier on-chain, and thus we evaluate our modified FPC design with runtime
verification to determine if it can provide similar functionality as the trusted ledger compo-
nent and barrier for this use-case.

Much of the process of integrating our library with Hyperldger FPC is similar to the
proces for Opaque. Below are the modifications we make to Hyperledger FPC to evaluate
our library:



CHAPTER 10. EVALUATION 32

1. We write a FPCReader class which is overloaded and able to accept a shim_ctx_ptr_t

value or a uint8* pointer as input. This is used to parse the inputs and outputs to
the invoke ECALL for a particular chaincode. Appendix A.3 displays a code snippet
containing audit log generation code which uses the FPCReader class.

2. We define a minimal ruleset specification for the sealed-bid auction sample containing
rules which instruct the verification chaincode to remember the set of ECALLs that
have been invoked by a particular bidder thus far and to vail to verify if an invalid
sequence of ECALLs is detected from a particular bidder (e.g. submit followed by
eval followed by submit).

3. We port the in-enclave verification server from the Opaque evaluation to Fabric chain-
code by adding a following the sample auction chaincode example and implement the
invoke function call. The verification chaincode additionally has a publish_results

function which adds the verification results and a signature over the results to the
world state.

Since Hyperledger FPC is not designed for the type of large-scale data analysis workloads
that Opaque is meant for, performing timing analysis on individual blockchain operations
does not yield any significant results. Instead, we discuss the number of lines that needed
to be added to Hyperledger FPC to integrate with the verification system and also repeat
experiments multiple times in order to see the e↵ects of verification.

We evaluate the auction sample in FPC with two peers in a permissioned network with
both the auction chaincode installed as well as the verification chaincode installed on each
peer. This is needed in order to perform chaincode-to-chaincode invocations. We also set the
chaincode endorsement policy for the verification chaincode to only require a single endorser,
which can just be the peer that the code executes on. Since any world state updates made
by the verification chaincode will contain a unforgeable signature, unless the peer performs
a denial-of-service (which is outside of the threat model) and refuses to forward the verifier’s
state update transaction, the verification result (which serves as a barrier) will become visible
to all other chaincode enclaves.

The verification logic (which was 270 LoC as enclave code in Opaque) contains 373
LoC in FPC since we must additionally implement the invoke(...) function call and
add code to perform blockchain state updates. We augment the auction chaincode ECALL
implementation file in FPC by adding 20 LoC of audit log generation code.

Upon receiving audit logs (encrypted and published to world state by auction chaincode
enclave), the verification chaincode runs, references the specified ruleset and successfully
checks that no bidder called an invalid sequence of ECALLs (specifically, submit was not
called again after close and eval without the auction being reinitialized first).

Below we present the latency incurred by augmenting FPC with verification logic. We
test by considering four scenarios, in each of which a di↵erent order and set of ECALLs are
performed. For example, test scenario #3 initializes and creates an auction, submits num_-
rounds number of unique bids, closes the auction, and evaluates the auction. We modify



CHAPTER 10. EVALUATION 33

the four tests slightly by repeating each sequence 10 times in order to be able to more
easily detect the e↵ects of the latency introduced by the verification library. The full list of
test scenarios and the associated set of operations can be viewed at https://github.com/
hyperledger/fabric-private-chaincode/blob/main/integration/auction_test.sh.

Scenario FPC Timing (s) FPC Timing w/ Verification (s) Time Delta (s)

1 13.21 15.36 2.15

2 16.12 20.84 4.72

3 29.35 34.21 4.86

4 15.77 19.59 3.82

Average Latency 3.89

Table 10.3: Evaluation of Hyperledger FPC augmented with verification system; we test four
scenarios, each of which was repeated 10 times.

The average latency found is 3.89 seconds for 10 invocations of each scenario. We can
observe that the latency introduced is proportional to the number of ECALLs made in each
scenario. For instance, scenarios 1 and 4 have the fewest number of ECALLs and, as a result
they have a smaller latency introduced. For each ECALL in the system, the additional
latency introduced is approximately the same since very small amounts of data are being
processed in each audit log generation code block. As a result, only the number of ECALLs
invoked has an e↵ect here. The more fine-grained breakdown of individual verification steps
is omitted here, as it is very similar to the one shown in the Opaque evaluation section above.

The minimal lines of code added and the reasonable overhead (typically around 15%)
show that our verification system is able to integrate with FPC and provide basic barrier
functionality without the need for a trusted ledger component.

https://github.com/hyperledger/fabric-private-chaincode/blob/main/integration/auction_test.sh
https://github.com/hyperledger/fabric-private-chaincode/blob/main/integration/auction_test.sh


34

Chapter 11

Limitations & Future Work

11.1 Limitations

The two key limitations of our approach are (1) the latency introduced at the end of each
round due to runtime-verification and (2) the need for a manual ruleset specification.

The current system design has additional latency in each round proportional to the
number of ECALLs executed during that round and the amount of data processed by each
ECALL in addition to any constant network overhead terms. This is due to implicit barrier
induced by runtime verification which makes the code blocking until a round has been verified.

Requiring developers to manually specify any sort of rules is susceptible to unintentional
errors and can be time-consuming. In some cases, specifying such a ruleset for a particular
class of applications may even be impossible.

Additionally, we can only support C/C++ applications, or applications such as Opaque
that import native C function definitions. This is a limitation of using Intel SGX enclaves;
it is not possible to run other languages in the enclaves, unless we utilize something similar
to a libOS.

The bulk of the latency overhead comes from the verification step, because the verifier
iterate through all data elements passed as inputs and outputs to the ECALLs. This is
especially bad for large datasets, as the underlying data analysis application already iterates
over all of the data to perform computations.

One of the goals of this project is to make it easier for the enclave application developer
to build applications with support for execution integrity for partitioned and distributed
applications. However, the requirement of a manual ruleset specification hinders this goal.

11.2 Future Work

In an attempt to address the latency concerns, we can adjust the round verification fre-
quency so that instead of performing verification every round, verification is only performed
every k number of rounds. This would require informing both the worker enclaves and the



CHAPTER 11. LIMITATIONS & FUTURE WORK 35

verification server about the modified frequency so that it knows to retain logs for all those
rounds. This may not be possible if there is limited memory on the verification server (since
it is also running inside an enclave). In the extreme case where granularity is adjusted to
the maximum number of rounds, this approach would begin to resemble a post-verification
approach whose limitations were described in 7.3.1. Another way to address the latency
overhead is to target the problem of iterating through all of the elements during verification.
The overhead could be significantly reduced if we expose the logging for one element at a
time in an API call to avoid double iteration over the data elements.

In our evaluation of Opaque, we run computation and verification on a single physical
node. Opaque supports distributing computation across many physical nodes as it is built
atop Spark SQL and Spark supports several cluster managers (e.g. Mesos, Kubernetes). Such
cluster managers typically provide some form of fault tolerance, but we must evaluate further
the usage of secure enclaves with such cluster managers and determine what modifications
may be needed to our verification system to support non-manual node management.

As mentioned in 7.3.2, our library currently supports a limited number of types of rules.
In the future, we aim to support rules that capture more complicated data relationships
between ECALL inputs and outputs. In the evaluation of the auction chaincode in Hyper-
ledger FPC, we construct a basic ruleset which instructs the verifier to retain state regarding
which ECALLs were made and to fail to verify if an inappropriate sequence of ECALLs
was detected. Enhancing the verifier with support for performing more complex analysis
on ECALLs made and the relationships between ECALLs themselves will be of value in
supporting a broader range of applications. Additionally, we may also want to support a
distributed verification mechanism for load balancing purposes.

We apply our verification system to Hyperledger FPC, but other distributed ledger plat-
forms could benefit with such a system as well if they are extended to support secure enclaves.
For the purposes of this report, we only evaluate the auction chaincode sample; evaluating
applications with more execution paths may require adding support for discriminating be-
tween di↵erent types of barriers placed on-chain.

Another direction for future work is to integrate our library with more distributed data
analysis enclave-based applications beyond Opaque to make sure that the library generalizes
well to work with a wide variety of applications. Even while integrating our library with
Opaque, we realized that parts of our initial design were flawed. For example, we originally
assumed that the inputs to ECALLs are the data sources, but for Opaque this is not true -
the data sources are initialized inside of the ECALL based on the ECALL parameters.



36

Chapter 12

Conclusion

In this report, we present a runtime verfication system for partitioned and distributed
secure enclave applications in the form of an in-enclave verification library in order to save
time and e↵ort for developers who otherwise would need to write custom execution flow
integrity code logic for each new enclave application. We also provide optimizations to
automate parts of the workflow to further decrease the developer e↵ort required. We integrate
our library into an existing distributed, encrypted data analytics platform (Opaque) to
show that it not only has a reasonable code footprint but also a low latency overhead.
We additionally discuss the value of performing confidential computation atop blockchain/
smart contract platforms to enable a wider range of applications than are presently possible
and demonstrate how to extend one such platform (Hyperledger FPC) with our runtime
verification system to synchronize code execution between peer nodes and prevent speculative
execution from occurring. We show that our library is practical to use and has modest
overhead while providing flexibility and convenience for the developer.



37

Bibliography

[1] Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains”. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys
’18. Porto, Portugal: Association for Computing Machinery, 2018. isbn: 9781450355841.
doi: 10.1145/3190508.3190538. url: https://doi.org/10.1145/3190508.
3190538.

[2] Panagiotis Antonopoulos et al. “Azure SQL Database Always Encrypted”. In: Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’20. Portland, OR, USA: Association for Computing Machinery, 2020,
pp. 1511–1525. isbn: 9781450367356. doi: 10.1145/3318464.3386141. url: https:
//doi.org/10.1145/3318464.3386141.

[3] ARMmbed. mbedtls. https://github.com/ARMmbed/mbedtls. 2021.

[4] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”. In: OSDI.
2016.

[5] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications from
an Untrusted Cloud with Haven”. In: 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14). Broomfield, CO: USENIX Association,
Oct. 2014, pp. 267–283. isbn: 978-1-931971-16-4. url: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/baumann.

[6] Eli Ben Sasson et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”.
In: 2014 IEEE Symposium on Security and Privacy. 2014, pp. 459–474. doi: 10.1109/
SP.2014.36.

[7] Boost. Boost Serialization. https://www.boost.org/doc/libs/1_75_0/libs/
serialization/doc/index.html.

[8] Mic Bowman et al. Private Data Objects: an Overview. 2018. arXiv: 1807 . 05686
[cs.CR].

[9] Marcus Brandenburger et al. Blockchain and Trusted Computing: Problems, Pitfalls,
and a Solution for Hyperledger Fabric. 2018. arXiv: 1805.08541 [cs.DC].

[10] Marcus Brandenburger et al. Rollback and Forking Detection for Trusted Execution En-
vironments using Lightweight Collective Memory. 2017. arXiv: 1701.00981 [cs.DC].

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1145/3318464.3386141
https://github.com/ARMmbed/mbedtls
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://www.boost.org/doc/libs/1_75_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_75_0/libs/serialization/doc/index.html
https://arxiv.org/abs/1807.05686
https://arxiv.org/abs/1807.05686
https://arxiv.org/abs/1805.08541
https://arxiv.org/abs/1701.00981


BIBLIOGRAPHY 38

[11] Ferdinand Brasser et al. “Software Grand Exposure: SGX Cache Attacks Are Practi-
cal”. In: 11th USENIX Workshop on O↵ensive Technologies (WOOT 17). Vancouver,
BC: USENIX Association, Aug. 2017. url: https://www.usenix.org/conference/
woot17/workshop-program/presentation/brasser.

[12] Stephan Brumme. xxHash. https://github.com/stbrumme/xxhash. 2018.

[13] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution”. In: 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018, pp. 991–1008. isbn:
978-1-939133-04-5. url: https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck.

[14] Guoxing Chen et al. “Racing in Hyperspace: Closing Hyper-Threading Side Channels
on SGX with Contrived Data Races”. In: 2018 IEEE Symposium on Security and
Privacy (SP). 2018, pp. 178–194. doi: 10.1109/SP.2018.00024.

[15] Guoxing Chen et al. “SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Specu-
lative Execution”. In: 2019 IEEE European Symposium on Security and Privacy (Eu-
roSP) (June 2019). doi: 10.1109/eurosp.2019.00020. url: http://dx.doi.org/
10.1109/EuroSP.2019.00020.

[16] Raymond Cheng et al. “Ekiden: A platform for confidentiality-preserving, trustworthy,
and performant smart contracts”. In: 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE. 2019, pp. 185–200.

[17] J. Criswell, Nathan Dautenhahn, and V. Adve. “Virtual ghost: protecting applications
from hostile operating systems”. In: Proceedings of the 19th international conference
on Architectural support for programming languages and operating systems (2014).

[18] Saba Eskandarian and Matei Zaharia. “An Oblivious General-Purpose SQL Database
for the Cloud”. In: CoRR abs/1710.00458 (2017). arXiv: 1710.00458. url: http:
//arxiv.org/abs/1710.00458.

[19] Johannes Götzfried et al. “Cache Attacks on Intel SGX”. In: Proceedings of the 10th
European Workshop on Systems Security. EuroSec’17. Belgrade, Serbia: Association for
Computing Machinery, 2017. isbn: 9781450349352. doi: 10.1145/3065913.3065915.
url: https://doi.org/10.1145/3065913.3065915.

[20] Owen S. Hofmann et al. “InkTag: Secure Applications on an Untrusted Operating
System”. In: SIGPLAN Not. 48.4 (Mar. 2013), pp. 265–278. issn: 0362-1340. doi:
10.1145/2499368.2451146. url: https://doi.org/10.1145/2499368.2451146.

[21] Tyler Hunt et al. “Ryoan: A Distributed Sandbox for Untrusted Computation on Secret
Data”. In: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, Nov. 2016, pp. 533–549. isbn: 978-
1-931971-33-1. url: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/hunt.

https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://github.com/stbrumme/xxhash
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/SP.2018.00024
https://doi.org/10.1109/eurosp.2019.00020
http://dx.doi.org/10.1109/EuroSP.2019.00020
http://dx.doi.org/10.1109/EuroSP.2019.00020
https://arxiv.org/abs/1710.00458
http://arxiv.org/abs/1710.00458
http://arxiv.org/abs/1710.00458
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/2499368.2451146
https://doi.org/10.1145/2499368.2451146
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt


BIBLIOGRAPHY 39

[22] hyperledger. Hyperledger Fabric Private Chaincode. https://github.com/hyperledger/
fabric-private-chaincode. 2021.

[23] hyperledger. Hyperledger Fabric Private Chaincode. https://github.com/hyperledger/
fabric-private-chaincode. 2021.

[24] “Intel Software Guard Extensions (SGX)”. In: url: https://software.intel.com/
en-us/isaextensions/intel-sgx/.

[25] Harry Kalodner et al. “Arbitrum: Scalable, private smart contracts”. In: 27th {USENIX}
Security Symposium ({USENIX} Security 18). 2018, pp. 1353–1370.

[26] Ahmed Kosba et al. “Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts”. In: 2016 IEEE Symposium on Security and Privacy (SP).
2016, pp. 839–858. doi: 10.1109/SP.2016.55.

[27] Youngjin Kwon et al. “Sego: Pervasive Trusted Metadata for E�ciently Verified Un-
trusted System Services”. In: Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’16. Atlanta, Georgia, USA: Association for Computing Machinery, 2016,
pp. 277–290. isbn: 9781450340915. doi: 10.1145/2872362.2872372. url: https:
//doi.org/10.1145/2872362.2872372.

[28] Dat Le, Shruti Tople, and Prateek Saxena. “Panoply: Low-TCB Linux Applications
with SGX Enclaves”. In: Jan. 2017. doi: 10.14722/ndss.2017.23500.

[29] Do Le Quoc et al. “SGX-PySpark: Secure Distributed Data Analytics”. In: The World
Wide Web Conference. WWW ’19. San Francisco, CA, USA: Association for Comput-
ing Machinery, 2019, pp. 3564–3563. isbn: 9781450366748. doi: 10.1145/3308558.
3314129. url: https://doi.org/10.1145/3308558.3314129.

[30] Sangho Lee et al. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. 2017. arXiv: 1611.06952 [cs.CR].

[31] Joshua Lind et al. “Glamdring: Automatic Application Partitioning for Intel SGX”.
In: 2017 USENIX Annual Technical Conference (USENIX ATC 17). Santa Clara, CA:
USENIX Association, July 2017, pp. 285–298. isbn: 978-1-931971-38-6. url: https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/lind.

[32] Yutao Liu et al. “Thwarting Memory Disclosure with E�cient Hypervisor-enforced
Intra-domain Isolation”. In: Oct. 2015. doi: 10.1145/2810103.2813690.

[33] Sinisa Matetic et al. “ROTE: Rollback Protection for Trusted Execution”. In: Pro-
ceedings of the 26th USENIX Conference on Security Symposium. SEC’17. Vancouver,
BC, Canada: USENIX Association, 2017, pp. 1289–1306. isbn: 9781931971409.

[34] Jonathan M. McCune et al. “Flicker: An Execution Infrastructure for Tcb Minimiza-
tion”. In: SIGOPS Oper. Syst. Rev. 42.4 (Apr. 2008), pp. 315–328. issn: 0163-5980.
doi: 10.1145/1357010.1352625. url: https://doi.org/10.1145/1357010.
1352625.

https://github.com/hyperledger/fabric-private-chaincode
https://github.com/hyperledger/fabric-private-chaincode
https://github.com/hyperledger/fabric-private-chaincode
https://github.com/hyperledger/fabric-private-chaincode
https://software.intel.com/en-us/isaextensions/intel-sgx/
https://software.intel.com/en-us/isaextensions/intel-sgx/
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/2872362.2872372
https://doi.org/10.1145/2872362.2872372
https://doi.org/10.1145/2872362.2872372
https://doi.org/10.14722/ndss.2017.23500
https://doi.org/10.1145/3308558.3314129
https://doi.org/10.1145/3308558.3314129
https://doi.org/10.1145/3308558.3314129
https://arxiv.org/abs/1611.06952
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/1357010.1352625
https://doi.org/10.1145/1357010.1352625
https://doi.org/10.1145/1357010.1352625


BIBLIOGRAPHY 40

[35] Oleksii Oleksenko et al. “Varys: Protecting SGX Enclaves from Practical Side-Channel
Attacks”. In: Proceedings of the 2018 USENIX Conference on Usenix Annual Techni-
cal Conference. USENIX ATC ’18. Boston, MA, USA: USENIX Association, 2018,
pp. 227–239. isbn: 9781931971447.

[36] OpenEnclave. OpenEnclave Sample attestedtls. https://github.com/openenclave/
openenclave/tree/master/samples/attested_tls. 2021.

[37] Vasilis Pappas et al. “Blind Seer: A Scalable Private DBMS”. In: 2014 IEEE Sympo-
sium on Security and Privacy (2014), pp. 359–374.

[38] Rishabh Poddar et al. “Visor: Privacy-Preserving Video Analytics as a Cloud Service”.
In: 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 1039–1056. isbn: 978-1-939133-17-5. url: https://www.usenix.org/
conference/usenixsecurity20/presentation/poddar.

[39] Raluca Ada Popa et al. “CryptDB: Protecting Confidentiality with Encrypted Query
Processing”. In: Proceedings of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles. SOSP ’11. Cascais, Portugal: Association for Computing Machinery,
2011, pp. 85–100. isbn: 9781450309776. doi: 10.1145/2043556.2043566. url: https:
//doi.org/10.1145/2043556.2043566.

[40] Christian Priebe, Kapil Vaswani, and Manuel Costa. “EnclaveDB: A Secure Database
Using SGX”. In: 2018 IEEE Symposium on Security and Privacy (SP). 2018, pp. 264–
278. doi: 10.1109/SP.2018.00025.

[41] Felix Schuster et al. “VC3: Trustworthy data analytics in the cloud using SGX”. In:
2015 (July 2015), pp. 38–54. doi: 10.1109/SP.2015.10.

[42] Michael Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache
Attacks”. In: CoRR abs/1702.08719 (2017). arXiv: 1702.08719. url: http://arxiv.
org/abs/1702.08719.

[43] Michael Schwarz et al. ZombieLoad: Cross-Privilege-Boundary Data Sampling. 2019.
arXiv: 1905.05726 [cs.CR].

[44] Youren Shen et al. “Occlum: Secure and E�cient Multitasking Inside a Single Enclave
of Intel SGX”. In: vol. abs/2001.07450. 2020. arXiv: 2001.07450. url: https://
arxiv.org/abs/2001.07450.

[45] Pramod Subramanyan et al. “A Formal Foundation for Secure Remote Execution of En-
claves”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’17. Dallas, Texas, USA: Association for Computing Ma-
chinery, 2017, pp. 2435–2450. isbn: 9781450349468. doi: 10.1145/3133956.3134098.
url: https://doi.org/10.1145/3133956.3134098.

[46] Nick Szabo. Smart contracts. 1994.

[47] Sai Tetali et al. “MrCrypt: Static Analysis for Secure Cloud Computations”. In: vol. 48.
Nov. 2013, pp. 271–286. doi: 10.1145/2544173.2509554.

https://github.com/openenclave/openenclave/tree/master/samples/attested_tls
https://github.com/openenclave/openenclave/tree/master/samples/attested_tls
https://www.usenix.org/conference/usenixsecurity20/presentation/poddar
https://www.usenix.org/conference/usenixsecurity20/presentation/poddar
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.1109/SP.2015.10
https://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
https://arxiv.org/abs/1905.05726
https://arxiv.org/abs/2001.07450
https://arxiv.org/abs/2001.07450
https://arxiv.org/abs/2001.07450
https://doi.org/10.1145/3133956.3134098
https://doi.org/10.1145/3133956.3134098
https://doi.org/10.1145/2544173.2509554


BIBLIOGRAPHY 41

[48] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX”. In: 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17). Santa Clara, CA: USENIX Association, July 2017, pp. 645–
658. isbn: 978-1-931971-38-6. url: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/tsai.

[49] Chia-che Tsai et al. “Civet: An E�cient Java Partitioning Framework for Hardware
Enclaves”. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 505–522. isbn: 978-1-939133-17-5. url: https://www.
usenix.org/conference/usenixsecurity20/presentation/tsai.

[50] Stephen Tu et al. “Processing Analytical Queries over Encrypted Data”. In: vol. 6.
Mar. 2013, pp. 289–300. doi: 10.14778/2535573.2488336.

[51] Jo Van Bulck et al. “Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution”. In: Proceedings of the 26th USENIX Confer-
ence on Security Symposium. SEC’17. Vancouver, BC, Canada: USENIX Association,
2017, pp. 1041–1056. isbn: 9781931971409.

[52] Nicolas Van Saberhagen. CryptoNote v 2.0. 2013.

[53] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems”. In: 2015 IEEE Sympo-
sium on Security and Privacy. 2015, pp. 640–656. doi: 10.1109/SP.2015.45.

[54] Rui Yuan et al. “Shadoweth: Private smart contract on public blockchain”. In: Journal
of Computer Science and Technology 33.3 (2018), pp. 542–556.

[55] Ning Zhang et al. “MUSHI: Toward Multiple Level Security cloud with strong Hard-
ware level Isolation”. In: MILCOM 2012 - 2012 IEEE Military Communications Con-
ference. 2012, pp. 1–6. doi: 10.1109/MILCOM.2012.6415698.

[56] Wenting Zheng et al. “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform”. In: 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). Boston, MA: USENIX Association, Mar. 2017, pp. 283–298.
isbn: 978-1-931971-37-9. url: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/zheng.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://doi.org/10.14778/2535573.2488336
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/MILCOM.2012.6415698
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng


42

Appendix A

API

A.1 API Code Snippet

Listing A.1: Verification API
/∗∗
∗ I n i t i a l i z e a new AuditLogEntry .

∗
∗ @param e c a l l i d id number corresponding to the curren t e c a l l

∗ @return a po in t e r to the i n i t a l i z e d AuditLogEntry

∗/
AuditLogEntry∗ i n i t a u d i t l o g ( int e c a l l i d ) ;

/∗∗
∗ Logs the input data o f an e c a l l .

∗
∗
∗/

void l o g i npu t da t a ( AuditLogEntry∗ entry ,

u i n t 64 t ∗ i npu t da ta po in t e r s , int num input data ,

u i n t 64 t ∗ i nput supp data po in t e r s , int num supp input data ) ;

/∗∗
∗ Logs the output data o f an e c a l l .

∗
∗ @param entry

∗ @param ou t pu t d a t a po i n t e r s

∗ @param num output data

∗ @param ou t pu t s upp da t a po i n t e r s

∗/
void l og output data ( AuditLogEntry∗ entry ,

u i n t 64 t ∗ output data po in t e r s , int num output data ,

u i n t 64 t ∗ output supp data po inte r s , int num supp output data ) ;

/∗∗
∗ Sends an aud i t l o g to the v e r i f i e r enc lave .



APPENDIX A. API 43

∗
∗ @param entry po in t e r to the AuditLogEntry

∗/
void s end aud i t l o g ( AuditLogEntry∗ entry ) ;

A.2 Opaque: Example API Usage

An example of how to add our verification library API calls into Opaque’s ecall_non_-
oblivious_sort_merge_join function.

Listing A.2: Modified ecall non oblivious sort merge join
void non ob l i v i o u s s o r t me r g e j o i n (

u i n t 8 t ∗ j o i n expr , s i z e t j o i n exp r l e ng th ,

u i n t 8 t ∗ input rows , s i z e t input rows l ength ,

u i n t 8 t ∗∗ output rows , s i z e t ∗ output rows l ength ) {

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
struct AuditLogEntry∗ l og = i n i t a u d i t l o g ( 1 ) ;

int num input data = 1 ;

RowReader r2 ( BufferRefView<tu ix : : EncryptedBlocks>(

input rows , i nput rows l eng th ) ) ;

u i n t 64 t i npu t da t a po i n t e r s [ num input data ] = {( u i n t 64 t )&r2 } ;
int num supp input data = 0 ;

u i n t 64 t ∗ i npu t supp da ta po in t e r s = 0 ;

l o g i npu t da t a ( log , i npu t da ta po in t e r s , num input data ,

i nput supp data po in t e r s , num supp input data ) ;

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−

˜ EXISTING CODE ˜

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
RowReader r3 ( BufferRefView<tu ix : : EncryptedBlocks>(

∗output rows , ∗ output rows l ength ) ) ;

int num output data = 1 ;

u i n t 64 t ou tpu t da ta po in t e r s [ num output data ] = {( u i n t 64 t )&r3 } ;
int num supp output data = 0 ;

u i n t 64 t ∗ output supp data po in t e r s = 0 ;

l og output data ( log , output data po in t e r s , num output data ,

output supp data po inte r s , num supp output data ) ;

s e nd aud i t l o g ( l og ) ;

f r e e a u d i t l o g ( log , num input data , num supp input data ,

num output data , num supp output data ) ;

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
}



APPENDIX A. API 44

An example of how to add our verification library API calls into Opaque’s ecall_non_-
oblivious_sort_merge_join function.

A.3 Hyperledger FPC: Example API Usage

Listing A.3: Modified ecall non oblivious sort merge join
int invoke ( u i n t 8 t ∗ response , u i n t 32 t max response len ,

u i n t 32 t ∗ a c tua l r e s pon s e l e n , s h im c tx p t r t ctx ) {

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
struct AuditLogEntry∗ l og = i n i t a u d i t l o g ( 1 ) ;

int num input data = 1 ;

FPCReader fpc In ( ctx ) ;

u i n t 64 t i npu t da t a po i n t e r s [ num input data ] = {( u i n t 64 t )& fpc In } ;
int num supp input data = 0 ;

u i n t 64 t ∗ i npu t supp da ta po in t e r s = 0 ;

l o g i npu t da t a ( log , i npu t da ta po in t e r s , num input data ,

i nput supp data po in t e r s , num supp input data ) ;

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−

˜ EXISTING CODE ˜

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
FPCReader fpcOut ( re sponse ) ;

int num output data = 1 ;

u i n t 64 t ou tpu t da ta po in t e r s [ num output data ] = {( u i n t 64 t )&fpcOut } ;
int num supp output data = 0 ;

u i n t 64 t ∗ output supp data po in t e r s = 0 ;

l og output data ( log , output data po in t e r s , num output data ,

output supp data po inte r s , num supp output data ) ;

s e nd aud i t l o g ( l og ) ;

f r e e a u d i t l o g ( log , num input data , num supp input data ,

num output data , num supp output data ) ;

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
}



45

Appendix B

Ruleset

B.1 Ruleset JSON Example

{
” e c a l l i d ” : {

” e c a l l n o n o b l i v i o u s s o r t m e r g e j o i n ” : 0

} ,
” op e r a t o r i d ” : {

” nonObl iv iousSortMergeJoin ” : 0

} ,
” e c a l l d a t a s o u r c e c o un t s ” : [

{
” e c a l l i d ” : 0 ,

” input ” : 1 ,

” supp input ” : 0 ,

” output ” : 1 ,

” supp output ” : 0

}
] ,

” r u l e s e t s ” : [

{
” op e r a t o r i d ” : 0 ,

” e c a l l i d s ” : [ 0 ] ,

”num rounds” : 1 ,

” r u l e s ” : [ ]

}
]

}


	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Secure Enclaves
	Enclave Partitioning
	Smart Contracts and Blockchain
	Techniques for Smart Contract Privacy

	Related Work
	Untrusted Cloud
	Enclave Frameworks
	Enclave Applications
	Private Smart Contracts via Secure Enclaves

	Hyperledger Fabric Private Chaincode (FPC)
	Hyperledger Fabric
	Hyperledger FPC Design
	Speculative Execution
	Issues with Initial FPC Design
	Sealed-Bid Auction

	Threat Model
	Abstract Enclave Model
	Adversary Actions

	System Overview
	Architecture

	System Design
	API
	Workflow
	Execution Flow Verification
	Optimizations

	Extending Hyperledger FPC
	Implementation
	Core System

	Evaluation
	Library Size
	Communication
	Opaque
	Hyperledger FPC

	Limitations & Future Work
	Limitations
	Future Work

	Conclusion
	Bibliography
	API
	API Code Snippet
	Opaque: Example API Usage
	Hyperledger FPC: Example API Usage

	Ruleset
	Ruleset JSON Example


