
Digital System Design and Fullchip Integration for

Asynchronous Stochastic Neural Accelerator

Adhiraj Datar

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-161

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-161.html

June 13, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Digital System Design and Fullchip Integration
for Asynchronous Stochastic Neural Accelerator

by Adhiraj Datar

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Sayeef Salahuddin
Research Advisor

(Date)

* * * * * * *

Professor Yakun Sophia Shao
Second Reader

(Date)

Sophia Shao

sayeef@berkeley.edu
Signature

Digital System Design and Fullchip Integration

for Asynchronous Stochastic Neural Accelerator

Adhiraj Datar

May 2021

Abstract

Several NP-hard combinatorial optimization problems such as vehi-
cle routing, optimal graph traversal and automatic ASIC place-and-route
have direct practical applications. However, as the demand for highly
scaled processing of these problems grows, traditional sequential and syn-
chronous processor-based solutions incur exponential processing penalties
and fail to keep up in performance. This project outlines the Parallel
Asynchronous Stochastic Sampling Optimizer (PASSO) — a novel neu-
ral accelerator based on the Ising model that demonstrates a theoretical
250x power and 3x performance speedup over state-of-the-art systems on
a 100-node Max-Cut problem. Specifically, this work highlights the de-
sign choices and implementation of the digital configuration, sampling
and data streamout systems in the PASSO accelerator. In addition, the
report covers the physical design and integration of the chip at the top
level which was performed to submit the first PASSO design (PASSOv1)
for tapeout in the GlobalFoundries 12LP process in April 2021.

1

Acknowledgements

I would like to acknowledge the entire project team including Saavan
Patel, Philip Canoza and Steven Lu for their dedicated work in making
this project a reality. Furthermore, I would like to thank Professor Sayeef
Salahuddin for his sponsorship and excellent guidance for this project and
my undergraduate research, and Professor Sophia Shao for her invaluable
feedback and support to the entire project team.

In addition, I would like to thank Harrison Liew, Vighnesh Iyer, and
Ioannis Karageorgos for their continued advice which was vital in making
the PASSOv1 chip tapeout possible.

Furthermore, I would like to thank the Design Technology Architec-
ture and Co-Optimization team at GlobalFoundries for providing essen-
tial standard cell and memory IP required to physically implement this
project.

I would also like to thank Nirmaan Shanker and Suraj Cheema for
supporting my undergraduate research.

Mostly, I would like to family and in particular my parents for sup-
porting me throughout my education.

2

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Outline . 4

2 Background 5
2.1 Ising Model . 5
2.2 Related Works . 6
2.3 Parallel Asynchronous Stochastic Sampling Optimizer (PASSO) . 7
2.4 Mixed-Signal Neural Node Design 9

3 Digital Core-Logic Design 11
3.1 Requirements and Specifications 13
3.2 Configuration . 14
3.3 Neuron state sampling . 15
3.4 Neuron sample streamout . 18

4 Physical Implementation 20
4.1 Overview . 20
4.2 Physical Design Considerations 22
4.3 Chip Parameters . 22

5 Conclusion and Future Work 22

3

1 Introduction

1.1 Motivation

As the demand for data processing at high scales continues to increase, tradi-
tional computing architectures find it difficult to keep up with the growing com-
plexity of the most difficult computing problems. Many optimization problems
with practical applications such as vehicle routing, optimal traversal through a
graph, or automatic ASIC place and route are considered NP-hard optimiza-
tion problems. In other words, the computational difficulty of these problems
increases exponentially with the scale of the problem to be optimized. Current
computing heuristics used to solve these problems mostly rely on centralized,
clock driven approaches where processors source instructions from memory and
evaluate these sequentially to get an optimization to the presented problem.
This approach scales poorly with size since it is limited by its clock driven
sequential processing that gives up on much of the inherent parallelism often
present in physical optimization problems, and is reliant on programmers to ef-
ficiently design algorithms that can be distributed across multiple von-neumann
computing cores.

Recent work from the Salahuddin group has implemented decentralized, in-
trinsically parallel computing architectures to get around the von-neumann bot-
tleneck. In these decentralized computing systems, each processing component
has its own memory unit and performs computations stochastically using asyn-
chronous, event-driven local interactions with other spatially correlated process-
ing components. The most recent asynchronous stochastic processor designed
by the group is based on a system known as the Ising model, which uses a
distributed fabric of binary neurons with local neighbor-to-neighbor interaction
strengths that optimizes problems by finding a minimum energy state. This pro-
cessor - the “Parallel Asynchronous Stochastic Sampling Optimizer” (PASSO)
- is a distributed, stochastic, asynchronous processor capable of efficient hard-
ware based sampling and stochastic parallel updates and has applications in
solving many NP-hard optimization problems such as the integer factorization,
travelling salesman, boolean SAT, max-cut problems and many more.

This work focuses on the design and implementation of the synchronous dig-
ital systems used to configure and sample the PASSO processor as well as the
back-end ASIC physical design and chip level integration of the PASSO proces-
sor performed to tape-out the first version of the PASSO processor (PASSOv1)
in the GlobalFoundries GF14LPP/12LP process in April 2021.

1.2 Outline

First, this report briefly outlines some prior work performed in this area, includ-
ing some earlier attempts at NP-hard optimization problem acceleration. Then,
the report describes a summary of the PASSO architecture and provides a brief
overview of the Ising model accelerator analog neuron architecture and design
previously developed by other students in the Salahuddin group at Berkeley.

4

Figure 1: Potential advantages of an asynchronous decentralized compute fabric
towards solving scaled optimization problems.

Next, the report describes in detail the digital functions and systems re-
quired to configure the PASSOv1 processor with local interaction weights and
biases and to synchronously sample the updated states of the neurons generated
through local interactions within the PASSOv1 processor. In this section, the
report describes the architecture and circuit level design choices used to imple-
ment all of the required synchronous digital features of the PASSOv1 processor
and includes functional verification of each of these digital systems.

Lastly, the report details the back-end physical ASIC design of the PASSOv1
processor. This includes the synthesis and place-and-route of the core, as well
as the top level integration of the entire chip including timing closure, power
planning, and interfacing with the IO. Finally, the report contains a brief plan
for further work to be done on the PASSOv1 processor in the coming months.

2 Background

2.1 Ising Model

An Ising model system physically represents the behavior of magnetic objects
in the field of statistical mechanics. Specifically, the model consists of a lat-
tice of binary spins (neurons) that asynchronously update their state in parallel
through local interactions between neighboring spins. This form of comput-
ing uses an interaction coefficient between connected spins that updates the
spin state stochastically in an asynchronous, spatially correlated, and massively
parallel manner.

The optimization problem encoded in each Ising computer is to find the
configuration of spinsin the lattice that minimizes the energy of the entire sys-
tem. This is an instance of a combinatorial problem that the Ising system solves
through distributed and highly parallel interaction/event-driven state updates.

5

Figure 2: Schematic description and applications of a Ising model ground-state-
search process.

As a result, the model lends itself very well to many NP-hard optimization
problems such as the integer factorization, travelling salesman, boolean SAT,
max-cut problems and many more [1].

In general, a two-step process is used to solve an NP-hard optimization prob-
lem on an Ising computer. The first step involves converting the optimization
problem to an equivalent formulation the solution of which corresponds to find-
ing the minimum energy state (ground-state) of the Ising machine used to solve
the problem. This step generates a set of interaction weights and biases that
encodes the optimization problem to be solved in the Ising machine used to solve
the problem. The next step uses the Ising machine itself to find the minimum
energy configuration of the neurons. Once the minimum energy configuration
is achieved, the state encoded within the Ising computer gives the solution to
the original NP-hard optimization problem.

2.2 Related Works

Several studies have proposed to accelerate optimization related calculations
using the Ising system and other physical non von-neumann approaches. Some
of these are implemented as digital asynchronous systems. Yamaoka, et al. [1]
implemented an Ising machine chip that integrates 20K spin units and uses
asynchronous random pulses applied to the spin states to escape local min-
ima and converge to the global Ising machine energy minimum (ground-state
search) in a parallel and asynchronous manner. Aramon, et al. [2] presents
a digital annealer to solve fully connected optimization problems. This digital
annealer performs a modified simulated annealing algorithm with parallel trials

6

run on custom CMOS hardware to achieve a two-orders-of-magnitude speedup
for fully connected non-sparse spin glass problems over traditional single-core
implementations of simulated annealing.

Some other approaches used to implement Ising machines use analog elec-
tronics to model neuron interactions and perform state updates. Wang, et al.
[3] presents the realization of Ising machines using coupled nonlinear oscillators
with logical values encoded in the phase states of the oscillators. This oscillator
based machine is capable of solving ground state search optimization problems
and has been demonstrated with max-cut and half adder problem solutions.
Ahmed, et al. [4] report a probabilistic self annealing compute fabric consisting
of a network of 560 spin units. These spin units are implemented as an array
of 28x20 bistable ring oscillators that interact with 6 neighboring spin units in
a hexagonal lattice to perform ground-state searches and solve NP-hard combi-
natorial optimization problems.

Another set of related works that implements Ising machines to solve NP-
hard optimization problems relies on novel physics and devices. Inagaki, et a. [5]
present an all-to-all coupled Ising model compute fabric with 2048 spin units.
These spin units are realized using degenerate optical parametric oscillators
(DOPOs) that encode states in a bistable 0 or π phase state.

While all of these related studies showcase implementations of NP-hard com-
binatorial optimization problem solving using Ising machines, the system de-
scribed in this report is fundamentally different from each of them. The PASSO
architecture outlined in this report features mixed signal neurons with intrinsic
noise integration and stochastic parallel update capacity which allows for mas-
sively parallel, efficient hardware based sampling with a low memory overhead
and an algorithmic guarantee of convergence to the optimization problem. This
architecture is discussed in the following subsection.

2.3 Parallel Asynchronous Stochastic Sampling Optimizer
(PASSO)

The PASSOv1 architecture allows for massively parallel asynchronous neuron
state updates based solely on local interactions between neurons. The systolic
array implemented in the PASSOv1 chip consists of 256 bistable mixed-signal
neurons arranged in a 16x16 square grid. Each of these neurons is connected to
local neighbors in a king’s move configuration. In other words, each neuron’s
state is a stochastic function based on its interaction with the states of the
8 immediately adjacent neurons and the weights and biases that describe the
interaction of each pair of connected neurons.

A key feature of the PASSOv1 processor is that the neuron states are not
sampled synchronously in subsets on a global system clock. Rather, the state
sampling is a continuous and asynchronous process which intrinsically occurs
for every neuron in the chip. As a result, the stochastic state updates too are
asynchronous and intrinsically parallel since each neuron in the systolic array can
update its state asynchronously and in parallel with all the neurons in the chip.
The processor can be programmed with a stationary set of weights and biases

7

Figure 3: Summary of related works, showing Digital Annealer from Fujitsu [1],
Hitachi 1k spin subarray [2], oscillator based systems presented in [3] and [4],
and ”new physics” based systems such as the optical oscillator Ising machine
[5] and the quantum annealer presented in [6].

for the neurons which allows for low static memory overhead at runtime. The
structure of the neurons and sampling architecture also allows for multiplier-free
synapses and fixed point computations, which eliminates one of the significant
challenges faced by annealing algorithms which require high precision.

In the PASSOv1 chip, each neuron/spin unit contains an integrated noise
source. The integration of noise into the spin unit itself allows local generation
and usage of noise that does not rely on having a global noise path or a chip
level input for noise unlike many of the related works referenced on Ising ma-
chine implementations. This form of noise generation with a dedicated, in-situ
noise source for each neuron that has no dependence on global chip-level paths
allows for highly distributed and asynchronous stochastic processing. One of the
biggest advantages of this approach is that each neuron in the chip can update
completely in parallel, independently of any global or synchronous paths in the
chip. As a result, the optimization evaluation of the PASSOv1 chip is truly only
limited by local interactions with neighboring neurons and the associated paths.
This extremely high level of distributed parallelism and asynchronicity provides
extremely large speedups (on the order of 1-2 magnitudes) over traditional syn-
chronous optimization algorithms which update node states in a synchronous
and sequential manner. Figure 4 shows a simulation of the parallel asynchronous
processing architecture on a 150-node max cut problem. From the time series
data, the PASSO asynchronous algorithm exhibits a 150 times speedup over the
synchronous version since it can update several nodes in parallel and relies on

8

Figure 4: Simulated processing of 150-node max-cut problem on PASSOv1
shows an expected 150x performance speedup over a synchronous digital im-
plementation.

distributed local interactions to converge to an energy minimum rather than
using global paths and sequential clocked processing.

The PASSOv1 chip consists of 256 neurons arranged in a 16x16 grid with
numbered rows and columns as shown in figure 5. At the top level, the PASSO
chip has functionalities to program the chip with a set of weights and biases that
encode a trained problem within the 256 neurons in the chip so that it can per-
form inference optimizations. The chip also implements a ready-valid handshake
to begin sampling the asynchronously updated states on a synchronous sampling
clock and stream the states out from an on-chip SRAM buffer. In addition, the
chip has separate top-level reset signals for the neurons, the weight/bias con-
figurations, and the digital sample streamout circuitry. Finally, the PASSOv1
chip also contains a small test cluster of 4 all-to-all connected neurons that will
be used to perform direct programming, sampling and electrical measurements
on the test cluster. The detailed implementation of each of these digital sys-
tems is the main work presented in this project report and is covered in detail
in section 3 of the report. Figure 5 shows a top level view of the architecture
and connectivity of the 256 neuron systolic array implemented on the PASSOv1
chip.

2.4 Mixed-Signal Neural Node Design

The PASSOv1 chip requires a node that can update asynchronously and in
distributable, parallel fashion. The chip achieves this spin unit functionality
with a mixed-signal neuron and synapse circuit. This node used in the processor
has been developed by three students in the Salahuddin group—Saavan Patel,
Steven Lu, and Philip Canoza—over the course of the PASSOv1 chip tapeout.
The following section contains a very brief summary of the node circuit as
background information for the project.

The node is a mixed-signal circuit that interacts with its 8 neighboring states

9

Figure 5: PASSOv1 architecture showing labeling of neuron rows and columns,
relative location of interspersed digital configuration and sampling systems for
column 1, and example of ”king’s move” connectivity of the neuron at row 14,
column 5.

10

(denoted by the vector ~h). The interaction is described by a set of weights and
biases that are encoded into the configuration of every neuron. Specifically,
the weights (denoted as the 8x8 matrix W) are a set of eight 8-bit vectors that
describe the interaction of the neuron with each of its neighbors respectively, and
the bias of each neuron (denoted as an 8-bit number bv) represents the tendency
of the neuron state to take on a binary value of 1. Finally, each neuron has 2
clamp bits which can be used to force the state of a particular neuron to a 0 or
a 1. As a result, the complete configuration of each neuron can be encoded by
a set of 74 bits: 64 bits for the interaction weights, 8 bits for the neuron bias,
and 2 bits for the output clamp signals. Specifically, each neuron in the chip
has a probably of assuming a state of 1 that is given by:

P (sj = 1|s) = σ(
∑
i 6=j

[Wijsi + bj])

Through this relation, the node circuit is implemented as an asynchronous
accumulation and activation operation. The accumulation function (

∑
i6=j [Wijsi+

bj])) is performed in the synapse subcircuit and the probabilistic activation func-
tion (P (sj = 1|s) = σ[. . .]) is performed in the neuron subcircuit.

The neuron subcircuit is implemented using a noise generator and amplifier
which takes shot noise from on-chip CMOS devices and amplifies it using a
differential amplifier. This amplified noise is then compared with the output
signal of the neuron’s synapse in a sigmoidal comparator which results in a
stochastic state output for the neuron.

The synapse circuit is implemented as a digital scale-and-accumulate adder
block where the input neighboring states ~h are scaled by WT

j and added to
the bias bj . Finally, the 7-bit digital state encoding is converted to an analog
voltage that is passed into the sigmoidal comparator of the neuron.

Figure 6 shows a schematic representation of the node circuit showing the
division of the stochastic node operation between the neuron and the synapse
subcircuits. Figure 7 shows a stochastic time series of a simulated neuron where
the three time series graphs represent 3 different input voltages Vin to the sig-
moid comparator of the neuron. Figure 8 shows the layout of the node circuit.
In this manner, the PASSOv1 processor implements the required functionality
of the node circuit.

3 Digital Core-Logic Design

The main work presented in this project is the design and implementation of
each of the digital systems required to configure the nodes of the chip, and the
top-level integration of the entire PASSOv1 chip to get the design ready for
the GF12LP multi-project wafer tapeout in April 2021. The following section
details the digital functions required for the implementation of the chip and the
design choices that were made in implementing the logic of these digital systems.

11

Figure 6: Schematic of node circuit showing division of stochastic operation
between neuron and synapse subcircuits.

Figure 7: Time series of neuron switching activity with different synapse volt-
ages.

Figure 8: Node circuit layout in GF12LP.

12

3.1 Requirements and Specifications

The core of the PASSOv1 chip consists of 256 spin unit “nodes” arranged in
a 16x16 square grid. Each of these nodes is connected to its 8 immediately
adjacent nodes and updates its state asynchronously using a probabilistic func-
tion of the states of the adjacent nodes and precoded weights and biases that
are programmed to the neuron for a corresponding combinatorial optimization
problem.

In order to effectively use the PASSOv1 chip and interpret the inference data
generated by the Ising machine, the following digital features and specifications
are required on-chip to generate meaningful data and interface the chip with an
external test board and computer so that the generated data can be effectively
processed and analyzed:

• Chip configuration: In order to encode a combinatorial optimization prob-
lem in the processor and solve it, 74 aforementioned configuration bits (64
weights, 8 biases and 2 clamps) need to be encoded properly into every
neuron in the chip. In addition, there are a total of 32 trimmable cur-
rent biases on-chip that require a 7-bit configuration. Finally, there are
3 additional bits in the full-chip configuration that encode the number of
neurons sampled on each sampling cycle and the frequency of neuron sam-
pling for data streamout from the chip. The first digital function required
in the processor is the implementation of a system that allows a user to
configure the processor to solve a particular trained problem by loading
all these configuration bits into the appropriate memory elements in the
fabric so that the processor can use these to perform the ground-state
search on the defined problem.

• Neuron state sampling: The 256 neurons in the PASSOv1 processor are
capable of stochastically updating their state asynchronously and fully in
parallel using only local interactions with neighboring node states. How-
ever, in order to transfer data off of the chip to a test board for the
purposes of data collection, processing and analysis, the asynchronously
generated neuron states need to be sampled on a sampling clock. The neu-
ron state sampling system is responsible for collecting samples of a user
defined subset of neurons in the chip at runtime in such a way that the
samples can identifiably be streamed out of the chip. The ideal sampling
frequency of the neurons is determined by the autocorrelation time of the
node circuit, which is a timescale at which sequential samples obtained
from a single neuron state still have a probabilistic correlation with each
other. The nominal autocorrelation time for the node circuit described
in section 2 has been determined to be roughly 300MHz. The ideal sam-
pling scheme would be able to sample all neuron states continuously at a
frequency of 300MHz and stream these from the PASSOv1 processor to a
test board. However, because of I/O limitations, such a sampling scheme
is unrealistic to implement. Instead, the sampling scheme implemented in
this work consists of a configurable neuron state sampling scheme that can

13

sample a variable number of neurons at different frequencies, ranging from
16 neurons at a frequency of 300MHz to all 256 neurons at a frequency of
18.75MHz (with a fixed throughput of 4.8Gsamples/second).

• Neuron sample streamout: Finally, the digital systems on the chip need
to transfer the collected samples off chip to the test board and external
CPU for processing and analysis. Since the data transfer is limited by
I/O pinout and speeds, the sampling frequency requirements are met by
sampling the neuron states to get combinatorial optimization problem
solution states in burst mode, writing the data to an SRAM buffer on a
fast sampling clock (at a fixed throughput of 4.8Gsamples/second), and
reading the data out of the SRAM buffer serially on a slower I/O clock
that can meet pinout and I/O speed requirements.

To achieve this functionality under the given specifications, separate con-
figuration, sampling and streamout systems are designed and implemented in
RTL. The sample and streamout circuits operate together whereas the configu-
ration circuitry operates completely independently of the sample and streamout
systems. The following subsections describe the design choices and implementa-
tions of each of the three core digital systems that implement this functionality.

3.2 Configuration

The configuration system is responsible for programming a particular problem
onto the PASSOv1 processor. Simulated training for a physical optimization
problem generates a set of neuron interaction weights and biases that maps the
problem onto the ground-state energy search of an Ising model system. These
generated weights and biases then need to be written into the processor for the
neuron interactions to occur in a manner that appropriately solve the problem.

The chip configuration system is implemented using a slave-serial bitstream
input protocol that is commonly used as a device programming methodology on
FPGAs and other reconfigurable fabrics. In this mode, the configuration is held
in a shift chain of configuration latches which is supplied by an off-chip bitstream
input and control signals that propagate the entire config bitstream through all
the configuration latches in the chip one bit at a time per clock cycle. While
a JTAG implementation was initially considered for the configuration system,
it was removed from the design of the final chip since it would add additional
complexity to the tapeout and there were no plans to use the additional features
of the JTAG protocol during either chip testing or operation.

The configuration shift register chain consists of a total of 19171 bits. The
breakdown of these configuration bits is as follows:

• Neuron configuration bits: 18944

• Current bias configuration bits: 224

• Sampling configuration bits: 3

14

The 74 configuration bits assigned to each neuron are encoded in the follow-
ing order:

• config[73:10]: interaction weights (8x8 matrix)

• config[9:2]: neuron bias (8-bit number)

• config[1]: clamp bit to force output to logical 1

• config[0]: clamp bit to force output to logical 0

The processor configuration chain is formed by sequentially connecting con-
figuration latches for neurons and current biases together with the intermediate
nodes providing configuration values to the synapse and biasing circuits (creat-
ing a serial-input parallel-output shift register chain). The configuration shift
register uses an off-chip active low shift enable signal and a configuration clock of
1MHz. In addition, the configuration system contains an echo of the shift chain
output back to the test board for validation purposes. To ensure timing clo-
sure and skew-induced errors along the off-chip and on-chip configuration signal
paths, the configuration shift register uses opposite edge capture as is standard
with the slave-serial programming protocol. The microcontroller updates the
configuration bitstream input on the negative edge of the configuration clock
and the bitstream is captured and propagated on-chip on the positive edge of
the configuration clock.

3.3 Neuron state sampling

The 256 neurons in the PASSOv1 processor are capable of stochastically updat-
ing their state asynchronously and fully in parallel using only local interactions
with neighboring node states. However, in order to transfer data off of the chip
to a test board for the purposes of data collection, processing and analysis,
the asynchronously generated neuron states need to be sampled on a sampling
clock. Ideally, the sampling system will be able to collect samples from each
of the neurons at the autocorrelation frequency of the neuron (the timescale
at which consecutive samples collected from the neuron have a probabilistic
correlation). However, because of spatial and I/O bandwidth limitations, the
PASSOv1 processor instead implements a configurable neuron state sampling
scheme that outputs samples at a fixed rate of 4.8Gsamples/second.

The configurable sampling scheme uses a set of 3 config bits passed in through
the configuration bitstream by the user to denote a specific subset of rows of
the 256-neuron array that are then selected to be sampled by the sampling
circuitry. Specifically, the sampling configuration bus causes the following rows
to be sampled at the respective clock frequency based on their value.

• 3’b000: sample only row 1 at 300MHz

• 3’b001: sample rows 1-2 at 150MHz

• 3’b010: sample rows 1-4 at 75MHz

15

• 3’b011: sample rows 1-8 at 37.5MHz

• 3’b100: sample all rows (1-16) at 18.75MHz

Each of these configurations produces a fixed throughput of 16 samples at
a frequency of 300MHz. To implement this behavior for sampling the neuron
states, each column of neurons operates independently to generate one sample
at a frequency of 300MHz that is one of the bits in a 16-bit sample out bus
generated at the end of the sampling circuitry. As a result, we can describe
the entirety of the sampling circuit by just looking at one column and how the
samples along that column are generated. The clock used to sample the neuron
states is a fixed 300MHz clock called “tclk”.

The sampling circuitry of each column uses a modified scan flop architecture
with a chain of length 16 featuring serial scan output and a parallel load option
(16-bit PISO scan chain). It has a mux at the input of each register to determine
whether the register chain should perform the parallel load or continue to shift
the current samples on the chain. In order to sample the entire subset of selected
neurons (refer to the config sampling map) on the same tclk positive edge, the
parallel load enable signal is asserted with the periodicity of 300

n MHz where n is
the number of sampled rows. In other words, the signal that loads all selected
neuron states into the scan chain of each column is raised high for 1 tclk cycle
per n tclk cycles by the 3 sampling configuration bits in the chip configuration
bitstream.

The samples are then shifted along the scan chain on the n intermediate tclk
edges between consecutive parallel load signal assertions. In order to increase
the margin of tolerance for race conditions between the load signal and the
propagation of samples through the scan chain, the samples are shifted into the
scan chain on the negative edge of tclk. Although this cuts the setup margin
in half, the margin of 1.5ns is still more than enough to achieve setup timing
closure, and this scenario prevents the possibility of a hold time violation causing
a loaded sample to race through the scan chain of a neuron column. At the end
of the scan chain, the samples are recaptured on the positive edge of tclk to be
used in the streamout circuitry.

This “sampling column circuit” is reproduced across each column in the chip,
from columns 1 through 16. Once the sampling process is started, the 16-bit
sample bus formed by the serial scan chain outputs of each of the sample columns
will be populated with the samples from each row one at a time, starting with
row 1, then moving up to row n and finally resetting back to row 1, restarting
the sampling sequence. Each set of samples produced from rows 1 through n
will be captured on a sampling register at the exact same tclk positive edge
and as a result, a full set of samples from rows 1 through n will be temporally
correlated with each other.

The generation of parallel sample load signal is implemented with a series of
decentralized counters with one counter present at each neuron. Therefore, we
want to make sure that each of these counters is in phase and receives the reset
signal at the same time. In order to effectively achieve this, the sampling system
builds a reset tree that pipelines the reset to each row with a delay of 1 tclk

16

Figure 9: Modified parallel-in/serial-out scan chain architecture with periodic
load operation based on sampling configuration used to implement the sampling
column circuit. The sampling system is created by reproducing this chain across
16 neuron columns and a fingerprint generator.

cycle. In order to offset the determinate, synchronous delay in reset reception
by each row, the load signal generator for each row is initialized to a different
value (15 for row 1, down to 1 for row 15) so that they each count down to
0 on the same tclk cycle after initialization and stay in phase for subsequent
sampling cycles. The topmost row (row 16) does not have a counter and a scan
flop since there is no shift input to load into this register. In this architecture,
If the sampling system is set to sample a smaller subset of rows than all 16, the
samples present on any scan chain nodes further above the topmost sampled will
be flushed out since the parallel load operation will be triggered before these
samples can propagate down towards the output net of the sample column.

In order to deterministically map the 16-bit sample to a specific row and
account for off-by-one misalignments incurrent during startup, an identifying
signal is generated in parallel with the samples that encodes which row is cur-
rently being sampled at the output of the sample tile. This signal is called the
“fingerprint” and it uniquely identifies to which row a set of 16 samples belongs.

In this setup, the fingerprint and the sample signals will always be parallel
with each other, forming a parallel 17-bit bus. The fingerprint signal follows an
identical datapath to each sample column but it’s inputs are always hard-coded
in the fixed pattern of “01 000 111 0000 1111” starting from row 1 up to row 16.
For each subset of sampling (1 row, 2 rows, 4 rows, 8 rows, 16 rows), only the
first n digits of the fingerprint signal will repeat every sampling cycle just as the
first n rows are sampled from depending on the 3 sampling configuration bits.
The key feature of the fingerprint signal is that it forms a unique pattern for any

17

power of 2. Hence, each k-th bit of the 16-bit fingerprint signal is associated with
the k-th row. To identify which row a set of 16 samples is from, the position
of the fingerprint signal bit (out of the 16 bits in the fingerprint pattern) in
parallel with the 16 samples needs to be determined. If the current value of the
fingerprint bit is found to be in the k-th position (out of 16) of the fingerprint
pattern, the corresponding set of 16 samples will be from the k-th row of the
chip.

3.4 Neuron sample streamout

On each tclk positive edge (300MHz frequency), the sampling system generates
a set of 16 samples and a fingerprint signal corresponding to those 16 samples.
The streamout system consists of an SRAM buffer that holds samples from the
sampling system and an arbitrating FSM that asserts the control signals for the
SRAM and performs clock domain crossings between the faster write clock (tclk,
300MHz) and the slower IO clock (ioclk, 20MHz). In addition, the streamout
system also implements a 16-bit SPI transmitter to serialize and output the
collected samples as a serial bitstream (since the number of IO bumps disallows
16-bit parallel output). Finally, the streamout tile also implements a ready-valid
handshake between the test board and the PASSOv1 chip that begins a cycle
of neuron state sampling and streamout in burst-mode operation, generating
a total of 128kBits (corresponding to 27µ s asynchronous evaluation time) of
neuron state data to analyze per sample and streamout cycle.

Using the SRAM buffer, the processor can operate in a burst-mode format
where the external control signals (chip-level inputs) can begin a sampling and
streamout cycle. This cycle collects samples at a 4.8Gsample/second throughput
until the SRAM is completely filled with samples, and then sequentially reads
SRAM addresses at a much slower clock that can easily be supported by the used
IO libraries and IP. Since the 16-bit sample bus is serialized before transmission
out of the chip at a rate of 20MHz, the samples need to be read out of the
SRAM at a frequency of 20

16 = 1.25 MHz. This 1.25MHz clock used to read from
the SRAM is generated by dividing ioclk (20MHz) using a clock divider and is
named ioclk d16. The streamout algorithm is as follows:

18

Algorithm 1: Burst-Mode Streamout Cycle

Initialize SRAM write and read addresses to 0;
Wait for receipt of early receiver-ready signal from µC on test board;
while SRAM write address < 8192 do

On tclk (300MHz) positive edge, write 16-bit sample bus generated
by sample tile and 1-bit fingerprint to SRAM;

Increment SRAM write address by 1;

end
Assert streamout data transmitter-valid signal;
while SRAM read address < 8192 do

On ioclk d16 (1.25MHz) positive edge, read 17-bit
sample+fingerprint signal from SRAM;

Serialize and output parallel signal extracted from SRAM using
on-chip SPI transmitter;

Hold streamout data transmitter-valid signal high;
Increment SRAM read address by 1;

end
De-assert streamout data transmitter-valid signal;
Reset counters and addresses to prepare for next streamout cycle.

Looking at the streamout algorithm, it is apparent that the execution of a
single burst-mode sample and streamout cycle involves a ready-valid handshake
and clock domain crossings between the sample write clock (tclk) and the sample
read clock (ioclk d16). In order to realize this in practice, an arbiter FSM is
designed and implemented that is responsible for making sure that the ready-
valid handshake is executed properly between the off-chip test controller and the
PASSOv1 processor. In addition, the arbiter FSM also handles all the required
clock domain crossings between tclk and ioclk d16 and ensures that at all times,
the appropriate signals are applied to the SRAM to make sure that the correct
operation necessitated by the streamout algorithm is performed. The SRAM
used in the chip is a true dual-port SRAM configured as a simple dual-port
SRAM generated using the GF12LP ARM SRAM memor compiler where port
A is tied to tclk and exclusively used for writing to the SRAM and port B is
tied to ioclk d16 and exclusively used for reading samples from the SRAM.

The streamout control FSM consists of two coupled FSMs, one of which
updates state on tclk and handles the SRAM write-related signals and the other
which updates on ioclk d16 and handles the SRAM read-related signals. All
clock domain crossings are handled by using synchronized state pointers of the
coupled FSMs to make decisions regarding FSM state updates and assigning
the SRAM signals based on the FSM states. Both FSMs have a 2-bit state with
the state mapping with 4 states: IDLE (00), START (01), RUN (11) and STOP
(10). The FSM transition sequence is described as follows:

19

Algorithm 2: Streamout Control FSM State Transition

1 Initialize read and write FSM states to IDLE. Reset read and write
addresses to 13’b0;

2 On receiving the rx-ready signal, transition write FSM to START state;
3 Transition write FSM to RUN state;
4 During write RUN state: assert port A SRAM write enable, +1 write

address per tclk cycle until write address = 8192;
5 Transition write FSM to STOP state. De-assert SRAM write enable;
6 Transition read FSM to START state;
7 Transition read FSM to RUN state;
8 During read RUN state: assert port B SRAM read enable, +1 read

address per ioclk d16 cycle until read address = 8192;
9 Transition read FSM to STOP state. De-assert SRAM read enable;

10 Reset write FSM to IDLE state;
11 Reset read FSM to IDLE state;

All state pointers are evaluated as a 1-bit boolean signal and synchronized
before being referred to across clock domains. Similarly, the ready valid signals
are synchronized to tclk and ioclk d16 as inputs and synchronized to ioclk while
being output from the chip.

From the output of the SRAM, a 16-bit SPI transmitter serializes the 16-
bit sample bus read from the SRAM on ioclk d16 to a serial bus on ioclk and
drives the bus out of the chip. The fingerprint signal in common with each of
these 16 samples is held at its constant value over the period of the serialization
and output from the chip as a top-level pinout. In this manner, the streamout
system is designed to transfer neuron state samples in bursts of 128kBit sets at
a constant sampling frequency of 4.8Gsamples/second.

4 Physical Implementation

4.1 Overview

The PASSOv1 processor consists of a binary spin network of 256 neurons. On
the top level, the main output generated by the PASSOv1 chip is a distribution
of sampled values of the states of a subset of the neurons at period points in
time. In application, the top level inputs to the processor are designed to be
programmed in by an FPGA that interfaces with a host computer. The FPGA
to chip interface is established through a simple PCB and the inputs to the chip
are applied directly. After the application of the proper input signals, the host
computer will receive a probability distribution of states that can be analyzed
to obtain a solution to the optimization problem programmed into the chip.

The chip is implemented in the GlobalFoundries GF12LP process with a
die area of 4mm2 (2mm x 2mm). The chip interfaces with the test board
socket using C4 (flip chip) SNAG180 IO bumps. Under the manufacturing and

20

Figure 10: Schematic representation of the streamout system containing the
control FSM, SRAM buffer and sample output serializer.

Figure 11: Planned evaluation setup of PASSOv1 processor.

packaging constraints, 64 IO bumps arranged in a 8x8 with a pitch of 230µm
were able to be instantiated over the chip area.

In order to use the PASSOv1 processor, the chip is first reset by applying
the analog, configuration and digital system reset signals from the controller.
Next, the streamout receiver ready signal is raised, which starts the sampling
and streamout algorithm described in the previous section. When the streamout
transmitter data-valid signal is detected to go high at the test board, the test
board begins writing the stream of samples coming from the chip to a DRAM
memory on the FPGA. After the cycle is finished, the collected sample data is
transmitted from the FPGA’s on-board memory to the host computer through
an AXI4 host interface. After this data transfer, the collected probability density
distribution can be analyzed and used to infer solutions to the combinatorial
optimization problem programmed into the chip.

21

4.2 Physical Design Considerations

The chip is implemented on a 2mm x 2mm die (4mm2 area). Figure 13 depicts
the floorplan of the PASSOv1 chip as implemented. The core of the chip consists
of the 256 neuron grid where each neuron has an area of approximately 50µm
×35µm. The configuration latches are interspersed among the 256 neuron core
as are the sampling column circuits which sample the neuron states. The SRAM
buffer and streamout logic are located at towards the bottom section of the chip.
The test cluster containing 4 neurons and 2 current biases is located towards
the bottom-left of the chip. The C4 IO bumps are arranged in a 8x8 grid over
the chip area as showed in figure 12.

The chip was integrated in a mixed top-down and bottom-up approach.
First, the synapse circuit was hardened as a macro using digital logic synthesis
using Cadence Genus and automatic place-and-route using Cadence Innovus.
The hardened synapse macro was integrated with the full-custom neuron circuit
to develop the node or full neuron that formed the building block of the systolic
array presented in this work. The 256 neuron core along with all of the digital
and test systems and the IO drivers and bumps were integrated full flat in a
digital-on-top flow which resulted in the final chip.

In order to preserve neuron signal integrity, rigid constraints of delay, tran-
sition, and routing capacitance were included to constrain inter-neuron routing
and asynchronous behavior. The neuron state was synchronized to a sampling
clock with a series of 3 synchronizing registers and the transition at the asyn-
chronous node was constrained to be at least 2 orders of magnitude faster than
the highest expected switching frequency of a neuron. This arrangement de-
terministically prevents metastable neuron states from propagating through the
sampling circuitry and also highly reduces the changes of a state being corrupted
due to synchronous sampling of an asynchronous signal.

4.3 Chip Parameters

After integrating the chip in a digital-on-top flow with Cadence Innovus stan-
dard cell driven place-and-route, the chip was DRC cleaned and optimized for
congestion, routability, and power consumption. In addition, the chip was make
compliant with all level 1 pattern matching, metrology, MAS and MOB related
GlobalFoundries 12LP rules, along with making sure that the design was passing
signoff level timing closure and power checks. Table 1 shows a brief summary
of the most significant chip metrics from the final implementation of the chip.

5 Conclusion and Future Work

The PASSOv1 processor implements a stochastic mixed-signal neuron capable
of updating its state asynchronously and massively in parallel constrained only
by local neighbor-to-neighbor interactions with complete independence from

22

Figure 12: PASSOv1 processor C4 bump assignment. More than half of the
available bumps are conserved for power/ground supply.

Figure 13: Die shot of final PASSOv1 processor design submitted to tapeout in
April 2021.

23

PASSOv1 Chip Parameters
Chip Parameter Value
Number of Nodes 256
Chip Area 2mm x 2mm = 4mm2

Core Area 0.8mm x 1.3mm = 1.04mm2

Power (est) 22 mW
Nominal Auto-correlation Frequency 300 MHz
Intrinsic Frequency 170 MHz
Configuration Time (est) 25 ms
Synapse Speed 2 GHz
Sample Cycle Duration (est) ≈1 ms
Connectivity King’s Move

Table 1: Key PASSOv1 Chip Metrics After Physical Implementation

any global chip-level synchronous signals, memories or timing paths. This dis-
tributed processing fabric has been demonstrated to hold a 250x power and
3x performance speedup over state of the art systems in the 100 node max-cut
problem. The work presented in this report begins by outlining the requirements
and specifications of the digital support circuitry that is required to sample the
neurons in parallel on a sampling clock and stream the generated samples to an
external test board connected to a host interface where the probability distribu-
tion of neuron states can be processed and analyzed to solve the optimization
problem configured into the PASSOv1 processor.

At the end of this project in April 2021, the final design of the PASSOv1
processor was made compliant with all GF12LP tapeout rules and the design
was submitted to GlobalFoundries as part of a multi-project wafer. The full
process of testing, validating and benchmarking the PASSOv1 processor will
continue on and occur after the termination of this MS degree. Specifically, the
PASSOv1 wafers will be fabricated in Fall 2021 and the resulting dies belonging
to the team will be packaged using a third party vendor. In parallel, a test
board will be designed to hold a packaged PASSOv1 processor and interface
with an FPGA and host microprocessor that will be able to run algorithms on
the fabricated PASSOv1 processor and analyze the retrieved data. This process
will continue on into the better part of the year and possibly into the year 2022
as well. Furthermore, the team within the Salahuddin group has plans for next
generation chips based on the PASSO architecture that will aim to achieve more
complex systems with additional performance boosts over the PASSOv1 chip.
This project and the work contained therein demonstrates a promising starting
point for a project and architecture that demonstrates promise to significantly
accelerate the processing of NP-hard combinatorial optimization problems.

24

References

[1] M. Hayashi, M. Yamaoka, C. Yoshimura, T. Okuyama, H. Aoki and H.
Mizuno, ”An Accelerator Chip for Ground-State Searches of the Ising
Model with Asynchronous Random Pulse Distribution,” 2015 Third In-
ternational Symposium on Computing and Networking (CANDAR), 2015,
pp. 542-546, doi: 10.1109/CANDAR.2015.64.

[2] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura and H.
Katzgraber, ”Physics-Inspired Optimization for Quadratic Unconstrained
Problems Using a Digital Annealer,” Frontiers in Physics (Vol. 7), 2019,
pp. 48, doi: 10.3389/fphy.2019.00048

[3] T. Wang and J. Roychowdhury, ”Oscillator-based Ising Machine,” arXiv
preprint, arXiv:1709.08102

[4] I. Ahmed, P. -W. Chiu and C. H. Kim, ”A Probabilistic Self-Annealing
Compute Fabric Based on 560 Hexagonally Coupled Ring Oscilla-
tors for Solving Combinatorial Optimization Problems,” 2020 IEEE
Symposium on VLSI Circuits, 2020, pp. 1-2, doi: 10.1109/VLSICir-
cuits18222.2020.9162869.

[5] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo,
A. Marandi, P. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Take-
nouchi, K. Aihara, K. Kawarabayashi, K. Inoue, S. Utsunomiya and H.
Takesue, ”A coherent Ising machine for 2000-node optimization problems,”
Science 04 Nov 2016, Vol. 354, Issue 6312, pp. 603-606, doi: 10.1126/sci-
ence.aah4243

[6] M. Nielson, Xilinx 7 series FPGA Application Note,
https://www.xilinx.com/support/documentation/application notes/xapp583-
fpga-configuration.pdf

25

