
Models of Ice Skating for the Development of Robotic

Ice Skating Gaits

Deirdre Quillen
Sarah Dean

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-162

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-162.html

June 15, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I'm grateful for Sarah Dean's support and guidance during this project.



Models of Ice Skating for the Development of Robotic Ice

Skating Gaits

Deirdre Quillen, Sarah Dean

November 2020



Ice skating is a dynamic, creative movement with many possible gaits. There are some,
but not many examples of ice skating robots, and even fewer ice skating bipedal robots.
For bipedal robotic locomotion, there are standard canonical simple models such as the
spring loaded inverted pendulum (SLIP model) and the compass model, which are used to
analyze the simplest cases of walking and running. However, for ice skating on a surface,
these models are insufficient for generating skating gaits of the kind used by humans. Using
a simple controllable non-holonomic model of an ice skate that can slide along a single
direction, with friction in the perpendicular direction, we demonstrate how we can use
trajectory optimization to generate skating gaits. Additionally we use a hybrid trajectory
optimization framework to generate gaits on a simulated bipedal robot.

1 Introduction

Skating is a form of locomotion which takes advantage of a low-friction surface for gliding,
while using higher friction contacts to generate forward velocity. It is both a highly efficient
mode of travel and a beautiful and graceful sport. Skating gaits are used by human athletes
in ice skating, roller skating/blading, and cross-country skiing. Figure skating and roller
dancing further exploit these mixed friction characteristics to perform precise and artistic
skating motions like spinning and jumping, while hockey players and roller derby skaters
rely on agility for competitive play. Interestingly, there is no animal in the wild that ice
skates for locomotion, however humans have been ice skating for thousands of years.

The key element for all of these skating settings is ground contact with mixed char-
acteristics: low friction along the longitudinal direction of the foot, and high friction in
the lateral direction. In roller skating, this is due to the rotational axis of the wheels; in
cross-country skiing, glide wax ensures a low friction contact with the snow while ski edges
allow for pushing; and in ice skating a thin blade cuts across the ice. The importance of
exploiting the anisotropic friction of the ground contact makes skating an interesting setting
for robotic control and dynamic planning.

Ice skating in particular makes for a rich dynamic setting. The friction contact exhibits
the highest extremes, with a very low gliding friction but a very high lateral friction due
to the cut of the blade. Compared with roller skating, where the slip characteristics of
the wheels play a role, and cross country skiing, where skis are several feet long, agility
in ice skating relies most directly on exploiting the contact forces. As a result, the range
of possible skating motions is quite high, with many possible methods for forward (and
backwards) locomotion, as well as a well-defined catalog of skating moves that figure skaters
are judged by.

Designing gaits on a surface where slipping is possible presents unique challenges—most
bipedal walking gait are designed using a constraint that the foot does not slip once contact
is made with the ground. In a trajectory optimization framework for generating walking
gaits, this constraint significantly reduces the search space for walking gaits. In skating, by
contrast, a slipping motion is desired.

To confront this challenge we use non-holonomic dynamical equations to model the
skating contact. Using non-holonomic equations, we do not need to use a constraint to
enforce that the skate does not slip perpendicular to the blade—rather this constraint is
inherently enforced based on our choice of parameterization of the system. For this work,
we target a “slaloming” gait, a one-legged skating gait where the skater keeps one skate on
the ice at all times and generates momentum by moving their center of mass and turning
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side-to-side. Our question is how to build a simple model of ice skating that is physically
realistic enough for robotics purposes. We present a simple model of a single ice skate on a
surface with infinite friction perpendicular to the blade and zero friction along the direction
of the blade. We use a direct collocation framework to generate gaits using this model, and
use these trajectories generated by trajectory optimization to derive a simple controller for
this ice skating model.

2 Related Work

There is a long history of studying the physics of ice skating. Many works focus on the low
friction contact with the ice during gliding, with experimental studies dating back to as early
as the 1930s [2]. The physical principles underlying the slipperiness of ice are complex, and
require accounting for heat transfer [3] characteristics and fluid dynamics. Surprisingly, there
is recent scientific disagreement about the exact mechanisms of this slipperiness, resolved in
part by modern experimental studies at the molecular level [4]. However, the macroscopic
behavior of ice skates can be described [5] with simpler blade- and temperature-dependent
models of sliding friction.

Another body of literature focuses more broadly on the movement of the skater. Biome-
chanical studies propose dynamic models of speed skating [6], roller skating [7], and jumping
[8] in figure skating. These works experimentally evaluate model accuracy towards the goal
of understanding human performance and preventing athletic injury. The Chaplygin sleigh
is a simplified 2D skater model classically studied [9] in the field of nonholonomic mechan-
ics, which seeks instead a more fundamental understanding of the trajectories of dynamical
systems.

There is a body of work on the modelling and design of skating robots, many of which
focus on statically-stable robots with more than two legs. Perhaps one of the earliest is the
four legged Roller Walker [11] which could either walk or roller skate and was developed in
the 90s. Skating gaits for multi-legged robots have been developed as part of an optimization-
based design framework [12], leading to an example of a quadruped robot that can locomote
across ice using a position controller synthesized through Gauss-Newton like method. Roller
and ice skating have also been successfully implemented [13] via motion planning and force
control on the quadruped ANYmal robot. There is also a quadruped skating robot [15] with
passive wheels using hand-design controllers, trajectory optimization, and reinforcement
learning.

For bipedal locomotion, some settings do not require a skating gait for propulsion, like
bipedal downhill skiing robots (of which there are several examples [17]) or the development
of agile roller skating moves downhill using hierarchical MPC [18]. Many works consider
the development of skating gaits for small sized robots, including a hand-tuned ice- and
roller-skating gait for a DARwIn humanoid robot [22] and ZMP-based motion planning
roller skating gait [23]. As far as we could find, there is one human-sized example [24] of
bipedal roller skating, where a gait results from COM stabilization using a novel contact
wrench cone. Finally, there has been work [25] in Computer Graphics to design dynamically
feasible skating trajectories based on videos of human figure skaters, but it is restricted to
simulation.

Bipedal locomotion is of course widely studied, but the majority of work [26] focuses on
walking and running gaits. Classical approaches lean on simple models for intuition around
control strategies and deriving insights about robustness. For walking, this is the linear
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inverted pendulum [27], while for running, it is the spring-loaded inverted pendulum [28].
Both models can be simply analyzed in two dimensions while still capturing relevant walking
phenomena; however, 3D extensions [29] are also studied. The literature on bipedal robot
locomotion also studies the problem of slippery surfaces, though usually with the goal of
mitigation [30] and robustness rather than exploitation, as we seek for skating.

3 The Skating Model

To understand the dynamics of skating, we first analyzed a simple model that captured the
necessary dynamics for realistic skating gaits. The Chaplygin sleigh is a classical model
where there is a rigid body attached to a blade in two dimensions. The blade constrains the
system to have a velocity in the direction parallel to the blade. The system is non-holonomic
because the velocity constraint is not deriveable from a position constraint. The Chaplygin
sleigh essentially models in two dimensions a skate with 0 friction along the direction of the
blade and infinite friction horizontal to the blade, where the blade is always constrained to
have contact with the ice.

Figure 1: The Chaplygin sleigh model. The knife blade is in contact with the ground and
constrains the velocity of the sleigh to be parallel with the knife blade.

We study a modified form of the Chaplygin sleigh system where in addition to the
sleigh body, there is another moveable body that is attached to the sleigh which maybe be
controlled (see figure 2). The moveable mass represents the skater’s body’s center of mass
which can be moved with respect to the blade. By shifting weight from side-to-side and
forward and back, the skater can generate momentum.

Figure 2: The Chaplygin sleigh model with a moveable mass attached. Here the knife is
illustrated as a wheel, but the model is the same as in Figure 1, with the addition of a mass
separate from the sleigh body mass which can move in relation to the sleigh body.
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We use the equations of motion and parameterization from [19]. For the equations of
motion below, the notation is the following (see figure 3): (x, y) is the position of the blade,
(a, b) is the position of the moving mass relative to the skate, θ is the angle of the skate,
p1 is the angular momentum and p2 is the projection of the linear momentum along the
direction of the blade. See Figure 3.

Figure 3: The coordinate system for the Chapyglin sleigh with a moving mass.

The knife blade constraint is

−ẋ sin θ + ẏ sin θ = 0

Defining Ω1 as the angular velocity of the platform, and Ω2 the component of the linear
velocity along the blade, Ω3 the velocity of the platform orthogonal to the blade, these
satisfy [19]

Ω1 =
(M +m)p1 +mbp+ 2

(M +m)(I +ma2) +Mmb2

Ω2 =
mbp1 + (I +ma2 +mb2)p2

(M +m)(I +ma2) +Mmb2

the equations of motion are

ṗ1 = −maΩ1Ω2 ṗ2 = maΩ2
1 (1)

θ̇ = Ω1 ẋ = Ω2 cos θ (2)

ẏ = Ω2 sin θ (3)

4 Gait Generation with Direct Collocation

We would like to use the simple skating model above to model an ice skating gait called
one-legged slaloming. In one-legged slaloming, the skater stands on one leg, and generates
momentum by alternating turns left and right, shifting the center of mass to turn. Slaloming
is a gait that is unlike any walking gait, since the skate stays on the ice and uses the slipping
motion to move forward. That the gait is one-legged made it more straightforward to apply
the Chaplygin with moving mass model, since that model has only a single skate.

We use an optimization framework to generate an initial swizzling gait for the Chaply-
gin sleigh. We use direct collocation to optimize for a swizzling trajectory subject to the
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dynamics. Direct collocation is a trajectory optimization method where the input u is ap-
proximated by first-order polynomial splines, and the state is approximated by third-order
polynomial splines. The dynamics constraints are enforced at the piecewise spline points.
The additional direct collocation constraints are that the derivative of the splines at the
collocation points match the dynamics.

We define (x, y) locations for the extreme points on the curve of the desired swizzle tra-
jectory which we will call (x∗0, y

∗
0), (x∗1, y

∗
1), . . . , (x∗n, y

∗
n) at times t0 . . . tn. The cost function

for the optimization is then

C = R0 ∗ ||u||22 +

n∑
i=1

R1((x(ti)− x∗(ti))
2 + (y(ti)− y∗(ti))

2)

where R0, R1 are weights chosen to weigh the input magnitude cost versus the position costs.
The optimization is constrained by the dynamics constraints as in equations 1 - 3. We

add an additional constraint to prevent cusps in the trajectory. Cusps are a sudden change
in the sign of the linear velocity. Note from equations 2 and 3 that ẋ, ẏ change signs when
Ω2 changes signs. Therefore we add the constraint on the direct collocation knot points that

Ω2 ≥ c

where c is some small constant, in this case c = .01. We also have constraints for the
initial and final state, on the full state (p1, p2, θ, x, y, ȧ, ḃ). The remaining constraints in the
optimization are the direct collocation constraints.

Although the optimization framework above was fairly straightforward, what was not
immediately obvious was how to choose the points (x∗0, y

∗
0), (x∗1, y

∗
1), . . . , (x∗n, y

∗
n), the extreme

points of the slalom. However from [19], we can provide high level characteristics of a zero-
input trajectory given the initial condition. When the initial conditions are a = 0 and
(M + m)p1 + mbp2 6= 0 and zero input is applied after that, then the trajectory will be
circular. Using this, we chose initial conditions such that with zero input the trajectory
would be circular. We then use the radius of that circle and the velocities at the extreme
points on the turns to choose the target points for the optimization. Using these target
points, the trajectory optimization is able to return a slaloming trajectory where the center
of mass moves naturally, without moving too far from the skate. Note that although it
is physically unrealistic, the center of mass is not constrained to stay close to the gait.
However, by putting a cost on the input magnitude, the center of mass stays close to the
skate without this constraint.

The resulting gait is illustrated in Figure 4. Although the turns are not perfectly sym-
metrical, we can see in the right figure that the moveable mass (analogous to an ice skater’s
body) leans in relation to the blade to facilitate turning. The moveable mass leans on the
outer edge of the turn at the beginning of the turn to initiate the turn, and then leans back
to the inside of the turn to complete the turn. This model suggests how the center of mass
may be controlled to complete ice skating slaloming gaits.

5 Gait Design with Hybrid Trajectory Optimization

In addition to designing a slaloming gait, we also tried to design the common skating gait
where one foot is in contact with the ground at the time, while the other is lifted. For this
gait, we worked with a simulated bipedal robot Cassie. Cassie is a bipedal walking robot
with 20 degrees of freedom, with five actuated motors and two passive joints.
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Figure 4: Generated slaloming gaits returned by the direct collocation method. In the
figure on the right, the colored rectangles are the sleigh body position and the stars are the
positions of the mass that can move freely in relation to the sleigh body.

This gait, while more similar to typical bipedal walking gaits in some respects, presents
challenges to our previous trajectory optimization technique. In the slaloming gait, where
the feet are always in contact with the ground, which limits the search space for the trajec-
tory optimization. However, for a more walking-like gait, we must also design when the feet
are in and out of contact with the ground. Trajectory optimization through contact is a
significantly harder problem due to the increased physical complexity of the many possible
interactions between the feet and the ground. A method we use to confront this challenge
is hybrid trajectory optimization. A hybrid dynamical system is a system that exhibits
both continuous and discrete dynamics. For designing walking gaits, we will have different
hybrid “modes” of contact which correspond to the kind of contact at different times in the
gait. Prior to the optimization, we specify the order of the modes, that is, the order of the
contacts of each foot, and the optimization returns a gait following this specification.

We use the FROST [21] toolkit to perform hybrid trajectory optimization on the bipedal
Cassie robot. FROST is an opensource MATLAB toolkit for peforming hybrid trajectory
optimization and simulation, particularly for locomotion.

We build off of previous work [20] that has developed walking gaits for Cassie using this
framework. For the normal walking gait, we design two modes, a left stance and a right
stance. There are guard conditions for left foot impact and right foot impact which trigger
switching between the two modes. The optimization problem consists of a cost function

Lj = ||ui(t)||2

where ui being the control inputs of each joint, and Lj being the integral over time of the
cost for stance j. Additional constraints for the optimization are [20]

• Fixed time duraction of 0.4 seconds.

• Swing goot clearance of 15 cm.

• Ground reaction forces respect the friction cone and ZMP condition.

• Zero swing foot horizontal speed at impact.

• The two steps are symmetric on the left and ride side.

• Torso remains upright within degree limit.
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To design a bipedal skating gait, we start with the optimization for the walking gait but
make some changes. In particular, we change the friction model for the toe so that the toe
of foot is frictionless. Although this friction model is not fully realistic for skating, it was a
first step in designing a skating-like gait. We change the guard, the condition for switching
between the right stance and the left stance, so that upon impact of a foot, the foot will
slide forward.

The optimization cost is the same is the same as above, with the stance constraints for
the skating-like gait are the following, with distances in meters:

• Average velocity in x-axis of 0.1, average velocity in the y axis of 0.1.

• Average swing toe velocity within [-.02, 0.02].

• Toe-to-toe distance, [-0.4, 0.1].

• Average pitch of 0◦, 0◦yaw, hip abduction [-70◦, 70◦], hip rotation [-70◦, 70◦].

• Pelvis to toe distance constrained within [0.5, 1.0].

The gait which is solution to the optimization is illustrated below in Figure 5. In the
gait, the robot moves forward by sliding each foot out and to the front at a time. While this
is a first step towards creating a skating gait, the robot isn’t using a skating blade to push
forward as in human skating. Instead the robot using the tip of the toes, the only part of
the foot that has contact with friction (somewhat like a toe pick on figure skating skates),
to push forward.

Figure 5: In this gait, the robot starts with even feet. It then slides forward the right foot,
then plants the right foot and slides forward the left foot.

6 Conclusion

In this work, we investigated different models of skating particularly for designing bipedal
skating gaits. We investigated a simple 2D non-holonomic system in which we can model the
swizzling gait. Further work could be done in that direction to design feedback controllers
for a swizzling gait. For a concrete robotic system we used hybrid trajectory optimization to
design a different skating gait, where the robot slides forward one skate at a time. Additional
work could be done to adapt the swizzling gait from before to this robotic system. In
both works we investigate setting up optimization problems and modeling friction for the
development of skating gaits.
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