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Approximation Bounds for Sparse Programs

Armin Askari

Abstract. We show that sparsity constrained optimization problems over low dimensional spaces tend to have
a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on
the duality gap, and an efficient primalization procedure to recover feasible points satisfying these
bounds. These error bounds are proportional to the rate of growth of the objective with the target
cardinality, which means in particular that the relaxation is nearly tight as soon as the target
cardinality is large enough so that only uninformative features are added.

1. Introduction. We study optimization problems with low rank data and sparsity con-
straints, written

(P-CON) pcon(k) , min
‖w‖0≤k

f(Xw) +
γ

2
‖w‖22,

in the variable w ∈ Rm, where X ∈ Rn×m is assumed low rank, y ∈ Rn, γ > 0 and k ≥ 0. Here,
‖ · ‖0 stands for the l0-norm (cardinality) of its vector argument. We also study a penalized
formulation of this problem written

(P-PEN) ppen(λ) , min
w

f(Xw) +
γ

2
‖w‖22 + λ‖w‖0

in the variable w ∈ Rm, where λ > 0. We provide explicit upper and lower bounds on
pcon(k) and ppen(λ) that are a function of the bidual problem and the numerical rank of X.
We also provide a tractable procedure to compute primal feasible points w that satisfy the
aforementioned bounds. We first begin with the case where f(·) is convex and show how to
extend the results to the case when f(·) is non-convex.

Related literature. In a general setting (P-CON) and (P-PEN) are NP-hard [1]. A very
significant amount of research has been focused on producing tractable approximations and on
proving recovery under certain conditions. This is the case in compressed sensing for example,
where work stemming from [2, 3] shows that `1 like penalties recover sparse solutions under
various conditions enforcing independence among sparse subsets of variables of cardinality at
most k.

The convex quadratic case (i.e. f(Xw) = ‖Xw − y‖22 = w>Qw + 2y>w + y>y with
X>X = Q) has been heavily studied. [4] for example relax (P-CON) to a non-convex quadrat-
ically constrained quadratic program (QCQP) for which they invoke the S-procedure to arrive
at a convex problem; they also draw a connection between their semidefinite relaxation and
a probabilistic interpretation to construct a simple randomized algorithm. In [5], the authors
obtain a semidefinite programming (SDP) relaxation of the problem. They also consider the
cardinality-penalized version of (P-CON) and use a convex relaxation that is connected with
the reverse Huber penalty. In [6], the authors compute the biconjugate of the cardinality-
penalized objective in one dimension and in the case when Q is identity matrix, and compare
the minimum of their problem using a penalty term inspired from the derivation of the bi-
conjugate. In [7, 8, 9], the authors take advantage of explicit structure of Q (e.g. when Q is
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2 A. ASKARI

rank one) to arrive at tighter relaxations of (P-CON) by considering convex hulls of perspec-
tive relaxations of the problem. They additionally study the case when there is a quadratic
penalty on consecutive observations for smoothness considerations. In [10], the authors show
the equivalence between many of the formulations derived in the above papers and provide
scalable algorithms for solving the convex relaxations of (P-CON). In [11], the authors take
a different approach by looking at the Lagrangian dual of the problem and decoupling the
ellipsoidal level sets by considering separable outer approximations of the quadratic program
defining the portfolio selection problem. The non-convex quadratic case has also been studied.
Namely, it is a well known fact that a quadratic optimization with one quadratic constraint
has zero duality gap and can be solved exactly via SDP even when the quadratic forms are
non-convex (see e.g. [12, Appendix B]).

The Shapley-Folkman theorem, used to construct our bounds, was derived by Shapley and
Folkman and first published in [13]. In [14], the authors used the theorem to derive a priori
bounds on the duality gap in separable optimization problems, and showcased applications
such as the unit commitment problem. Extreme points of the set of solutions of a convex
relaxation are then used to produce good approximations and [15] describes a randomized
purification procedure to find such points with probability one.

Contributions. While the works listed above do produce tractable relaxations of problems
(P-CON) and (P-PEN) they do not yield a priori guarantees on the quality of these solutions
(outside of the sparse recovery results mentioned above) and do not handle the generic low
rank case. Our bounds are expressed in terms of the value of the bidual, the desired sparsity
level and the rank of X, which is often low in practice.

Here, we use the Shapley-Folkman theorem to produce a priori bounds on the duality gap
of problems (P-CON) and (P-PEN). Our convex relaxations, which are essentially interval
relaxations of a discrete reformulation of the sparsity constraint and penalty, produce both
upper and lower approximation bounds on the optima of problems (P-CON) and (P-PEN).
These relaxations come with primalization procedures, that is, tractable schemes to construct
feasible points satisfying these approximation bounds. Furthermore, these error bounds are
proportional to the rate of growth of the objective with the target cardinality k, which means,
in feature selection problems for instance, that the relaxations are nearly tight as soon as k is
large enough so that only uninformative features are added.

1.1. Notation. For a vector u ∈ Rm, let D(u) = diag(u1, . . . , um). Let M † denote the
pseudoinverse of the matrix M . For a closed function f(x), let f∗(y) , maxx x

>y−f(x) denote
the convex conjugate and let f∗∗(x) be the biconjguate (the conjugate of f∗(x)). Throughout
the paper, we will assume f is closed. If we additionally assume f is convex, then f∗∗ = f
(see e.g. [16, Prop. 6.1.1]). For simplicity, we will drop the explicit dependence of y in our
objective and simply write f(Xw) instead.

2. Bounds on the Duality Gap of the Constrained Problem. We derive upper and lower
bounds on the constrained case (P-CON) in this section. The penalized case will follow from
similar arguments in Section 3. In both sections we assume f(·) is convex and show in Section
3.3 how the results change when f(·) is non-convex. We begin by forming the dual problem.
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2.1. Dual Problem. Note that the constrained problem is equivalent to

pcon(k) = min
v,u∈{0,1}m

f(XD(u)v) +
γ

2
v>D(u)v : 1>u ≤ k(2.1)

in the variables u ∈ Rm and u ∈ {0, 1}m, where D(u) = diag(u1, . . . , um), using the fact
D(u)2 = D(u). Rewriting f(·) using its fenchel conjugate and swapping the outer min with
the inner max to get a dual, we have dcon(k) ≤ pcon(k) by weak duality, with

dcon(k) = max
z
−f∗(z) + min

v,u∈{0,1}m
γ

2
v>D(u)v + z>XD(u)v : 1>u ≤ k

in the variable z ∈ Rn. Solving the inner minimum over v, we have v∗ = − 1
γD(u)†D(u)X>z.

Plugging this back into our problem, we get

dcon(k) = max
z
−f∗(z) + min

u∈{0,1}m
− 1

2γ
z>XD(u)D(u)†D(u)X>z : 1>u ≤ k

Noting that D(u)D(u)†D(u) = D(u) and that z>XD(u)D(u)†D(u)X>z is increasing with u,
we have

dcon(k) = max
z,ζ
−f∗(z)− 1

2γ
sk(ζ ◦ ζ) : ζ = X>z

where sk(·) denotes the sum of top k entries of its vector argument (all nonnegative here).

2.2. Bidual Problem. Rewriting sk(·) in variational form, we have

p∗∗con(k) = dcon(k) = max
z

min
u∈[0,1]m

−f∗(z)− 1

2γ
z>XD(u)D(u)†D(u)X>z : 1>u ≤ k

Note this is equivalent to realizing that the inner minimization in u in the previous section
could be computed over the convex hull of the feasible set since the objective is in fact linear
in u. Using convexity and Sion’s minimax theorem we can exchange the inner min and max
to arrive at

p∗∗con(k) = min
u∈[0,1]m

max
z
−f∗(z)− 1

2γ
z>XD(u)D(u)†D(u)X>z : 1>u ≤ k

Since D(u)D(u)†D(u) � 0 for all feasible u, we have using conjugacy on the quadratic form

p∗∗con(k) = min
u∈[0,1]m

max
z

min
v
−f∗(z) +

γ

2
v>D(u)v + z>XD(u)v : 1>u ≤ k

Switching the inner min and max again, using the definition of the biconjugate of f(·) and
the relation that f = f∗∗ since f(·) is closed and convex, we get

p∗∗con(k) = min
v,u∈[0,1]m

f(XD(u)v) +
γ

2
v>D(u)v : 1>u ≤ k(BD-CON)
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While (BD-CON) is non-convex, setting ṽ = D(u)v means it is equivalent to the following
convex program

(2.2) p∗∗con(k) = min
ṽ,u∈[0,1]m

f(Xṽ) +
γ

2
ṽD(u)†ṽ : 1>u ≤ k

in the variables ṽ, u ∈ Rm, where ṽ>D(u)†ṽ is jointly convex in (ṽ, u) since it can be rewritten
as a second order cone constraint. To compute (u∗, v∗), we solve the above problem and set
v∗ = D(u∗)†ṽ∗. Note also that (BD-CON) is simply the interval relaxation of the (P-CON).
In fact, in the analysis that follows, we only rely on (BD-CON) and not the dual.

2.3. Duality Gap Bounds and Primalization. We now derive explicit upper and lower
bounds on the optimum of (P-CON) as a function of the rank of the data matrix X and detail
a procedure to compute a primal feasible solution that satisfies the bounds. An equivalent
analysis will follow for the penalized case.

Theorem 2.1. Suppose X = UrΣrV
>
r is a compact, rank-r SVD decomposition of X. From

a solution (v∗, u∗) of (BD-CON) with objective value t∗, with probability one, we can construct
a point with at most k + r + 2 nonzero coefficients and objective value OPT satisfying

(Gap-Bound) pcon(k + r + 2) ≤ OPT ≤ p∗∗con(k) ≤ pcon(k)

by solving a linear program written

(2.3)

minimize c>u

subject to f(Urz
∗) +

∑m
i=1 ui

γ
2v
∗2
i = t∗∑m

i=1 ui ≤ k∑m
i=1 ui`iv

∗
i = z∗

u ∈ [0, 1]m

in the variable u ∈ Rm where c ∼ N (0, Im), z∗ = ΣrV
>
r D(u∗)v∗.

Proof. Making the variable substitution ΣrV
>
r D(u)v = z, (BD-CON) can be rewritten as

p∗∗con(k) = min
v,u∈[0,1]m

f(Urz) +
γ

2
v>D(u)v : 1>u ≤ k, ΣrV

>
r D(u)v = z

and in epigraph form as

minimize t

subject to

tk
z

 ∈
f(Urz)

R+

0

+
∑m

i=1 ui

γ2v2i1
`ivi


u ∈ [0, 1]m

in the variables t ∈ R, z ∈ Rn and v, u ∈ Rm where `i is the ith column of ΣrV
>
r . Note the

above is equivalent to

minimize t

subject to

tk
z

 ∈
f(Urz)

R+

0

+
∑m

i=1Co

0,

γ2v2i1
`ivi
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in the variables t ∈ R, z ∈ Rn and v ∈ Rm. The Shapley Folkman Theorem [13] shows that
for any

x ∈
m∑
i=1

Co

0,

γ2v2i1
`ivi


there exists some ū ∈ [0, 1]m such that

x =
∑
i∈S

ūi

γ2v2i1
`ivi

+
∑
i∈Sc

ūi

γ2v2i1
`ivi


where S = {i | ūi 6= {0, 1}} and |S| ≤ r + 2. Let (t∗, z∗, v∗, u∗) be optimal for (BD-CON).
Then there exists s1 ≥ 0 such that t∗

k − s1
z∗

 =

f(Urz
∗)

0
0

+
m∑
i=1

Co

0,

γ2v∗2i1
`iv
∗
i


From above, we know there exists ūi that satisfies these equality constraints, with at most
r + 2 non-binary entries. In fact, we can compute this ū by solving a linear program. To see
this, given optimal (t∗, z∗, v∗, u∗) for the epigraph reformulation of (BD-CON), consider the
following linear program

(2.4)

minimize c>u

s.t f(Urz
∗) +

∑m
i=1 ui

γ
2v
∗2
i = t∗∑m

i=1 ui ≤ k∑m
i=1 ui`iv

∗
i = z∗

u ∈ [0, 1]m

in the variable u ∈ Rm, where c ∼ N (0, Im). The problem is feasible since u∗ is feasible.
This is a linear program with 2m+ r + 2 constraints, of which m will be saturated at a non-
degenerate basic feasible solution. This implies that at least m−r−2 constraints in 0 ≤ u ≤ 1
are saturated with probability one, so at least m − r − 2 coefficients of ui will be binary at
the optimum.

Now, we primalize as follows: given (t∗, z∗, v∗, ū) where ū is a non-degenerate basic feasible
solution of the LP in (2.3), let S = {i | ūi 6∈ {0, 1}} and define{

ṽi = ūiv
∗
i , ũi = 1 i ∈ S

ṽi = v∗i , ũi = ūi i ∈ Sc

We now claim that (z∗, ṽ, ũ) is feasible for the primal problem pcon(k+r+2) and has objective
value smaller than p∗∗con(k). By construction, ũ ∈ {0, 1}m and 1>ũ = ‖ũ‖0 ≤ k + r + 2.
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Furthermore, we have

z∗ =
m∑
i=1

ūi`iv
∗
i

=
∑
i∈S

ūi`iv
∗
i +

∑
i∈Sc

ūi`iv
∗
i

=
∑
i∈S

ũi`iṽi +
∑
i∈Sc

ũi`iṽi

hence (z∗, ṽ, ũ) is feasible for pcon(k + r + 2) in (2.2) and reaches an objective value OPT
satisfying

t∗ = f(Urz
∗) + γ

2

(
m∑
i∈S

ūiv
∗2
i +

m∑
i∈Sc

ūiv
∗2
i

)

≥ f(Urz
∗) + γ

2

(
m∑
i∈S

ū2i v
∗2
i +

m∑
i∈Sc

ūiv
∗2
i

)

= f(Urz
∗) + γ

2

(
m∑
i∈S

ũiṽi
2 +

m∑
i∈Sc

ũiṽ
2
i

)
≡ OPT

Since (z∗, ṽ, ũ) is feasible for pcon(k + r + 2) we have pcon(k + r + 2) ≤ OPT and the result
follows.

This means that the primalization procedure will always reconstruct a point with at most
k+ r+ 2 nonzero coefficients, with objective value at most pcon(k)−pcon(k+ r+ 2) away from
the optimal value pcon(k). Note that this bound does not depend on the value of γ > 0 which
could be arbitrarily small and could simply be treated as a technical regularization term.

3. Bounds on the Duality Gap of the Penalized Problem. The analysis for the penalized
case is very similar to that of the constrained case. We start with deriving the dual problem.

3.1. Dual Problem. The penalized problem is equivalent to

ppen(λ) = min
v,u∈{0,1}m

f(XD(u)v) +
γ

2
v>D(u)v + λ1>u(3.1)

in the variables u, v ∈ Rm. Rewriting f using its fenchel conjugate, switching the min and
max, and solving the minimization over v we have

dpen(λ) = max
z
−f∗(z) + min

u∈{0,1}m
− 1

2γ
z>XD(u)D(u)†D(u)X>z + λ1>u,

Using

min
u∈{0,1}m

− 1

2γ
z>XD(u)D(u)†D(u)X>z + λ1>u =

m∑
i=1

min
(

0, λ− 1
2γ (X>z)2i

)
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the dual problem then becomes

dpen(λ) = max
z
−f∗(z) +

m∑
i=1

min
(

0, λ− 1
2γ (X>z)2i

)
with dpen(λ) ≤ ppen(λ).

3.1.1. Bidual. Rewriting the second term of our objective in variational form we have

p∗∗pen(λ) = d∗(λ) = max
z

min
u∈[0,1]m

−f∗(z)− 1

2γ
z>XD(u)D(u)†D(u)X>z + λ1>u

Performing the same analysis as for the constrained case (c.f. Section 2.2), we get

p∗∗pen(λ) = min
v,u∈[0,1]m

f(XD(u)v) +
γ

2
v>D(u)v + λ1>u(BD-PEN)

in the variables u, v ∈ Rm, which can be recast as a convex program as above.

Corollary 3.1. Suppose X = UrΣrV
>
r is a compact, rank-r SVD decomposition of X. From

a solution (v∗, u∗) of (BD-PEN) with objective value t∗, with probability one, we can construct
a point with objective value OPT satisfying

(Gap-Bound-Pen) p∗∗pen(λ) ≤ ppen(λ) ≤ OPT ≤ p∗∗pen(λ) + λ(r + 1)

by solving a linear program written

(3.2)

minimize c>u

s.t f(Urz
∗) +

∑m
i=1 ui

γ
2v
∗2
i + λui = t∗∑m

i=1 ui`iv
∗
i = z∗

u ∈ [0, 1]m

in the variable u ∈ Rm where c ∼ N (0, Im) and z∗ = ΣrV
>
r D(u∗)v∗.

Proof. The primalization procedure is analogous to the constrained case, the only dif-
ference being the linear program becoming (3.2). We then get the chain of inequalities
in (Gap-Bound-Pen) which means that starting from an optimal point of (BD-PEN) the
primalization procedure will generate a feasible point with objective value at most λ(r + 1)
larger than that of the original problem (P-PEN).

3.2. Connections with other Relaxations. We first draw the connection between the
penalty term in the bidual and the reverse Huber penalty. The reverse Huber function is
defined as

B(ζ) =
1

2
min

0≤ν≤1
ν +

ζ2

ν

=

|ζ| if |ζ| ≤ 1

ζ2 + 1

2
o.w
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We have

min
u∈[0,1]m
1>u≤k

x>D(u)−1x = max
t>0

n∑
i=1

tB
( |xi|√

t

)
− 1

2
tk

There is a direct connection between the second representation of (BD-CON) (based on
the variable substitution ṽ = D(u)v) and the well-known perspective based relaxation [17] (a
similar argument can also be made for (BD-PEN)). Note that (P-CON) is equivalent to

min
x,u,v

f(x) + 1>v : u ∈ {0, 1}m, 1>u ≤ k, uivi ≥ x2i , i = 1, . . . ,m

To see this, assume that x is optimal for (P-CON). If u encodes the sparsity pattern of x,
we simply set vi = x2i so we have 1>v = x>x and that triplet (x, u, v) is feasible for the
above problem. Similarly, if (x, u, v) are optimal for the above representation, then xi = 0 if
ui = 0 and x2i = vi otherwise. Similarly, 1>v = x>x and x is feasible for (P-CON). Relaxing
u ∈ {u | u ∈ [0, 1]m, 1>u ≤ k} and replacing f∗∗ with f results in the perspective relaxation
of the problem which is equivalent to (BD-CON).

3.3. Extension to Non-Convex Setting. The gap bounds derived above can be extended
to the case when f is non-convex. Starting from (P-CON) and following the structure of
(BD-CON), consider the relaxation

p∗∗con(k) = min
v,u∈[0,1]m

f∗∗(XD(u)v) +
γ

2
v>D(u)v : 1>u ≤ k

where f(·) in (BD-CON) has been replaced by its convex envelope f∗∗(·) (i.e. the largest
convex lower bound on f). By construction, this constitutes a lower bound on (P-CON).
The analysis follows the same steps as in the proof of Theorem 2.1, replacing f with f∗∗

everywhere. The only bound that changes is pcon(k + r + 2) ≤ OPT since the objective
defining OPT uses f∗∗ while that defining pcon(k + r+ 2) uses f . For a non-convex function,
we can define the lack of convexity ρ(f) = supw f(Xw) − f∗∗(Xw) with ρ(f) ≥ 0. We then
have −ρ(f) ≤ f∗∗(Urz∗)− f(Urz

∗) and then chain of inequalities in (Gap-Bound) becomes

pcon(k + r + 2)− ρ(f) ≤ OPT ≤ p∗∗con(k) ≤ pcon(k)

The exact same analysis and reasoning can be applied to the penalized case to arrive at

p∗∗pen(λ)− ρ(f) ≤ ppen(λ)− ρ(f) ≤ OPT ≤ p∗∗pen(λ) + λ(r + 1)

4. Quadratically Constrained Sparse Problems. In this section, we consider a version of
(P-CON) where the `2 penalty is replaced by a hard constraint. The explicit `2 constraint
proves useful to get tractable bounds when solving approximate versions of (P-CON) where
X has low numerical rank (see Section 5). We follow the same analysis as before and derive
similar duality gap bounds and primalization procedures. We omit some steps of the analysis
for brevity and refer the reader to Sections 2 and 3 for more details. We assume f is convex
and can extend the analysis to the non-convex setting using the same arguments in Section
3.3 (for brevity we omit this). We wish to point out that there is nothing enlightening about
the proofs in this section and on a first pass the reader can skip directly to Section 5.
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4.1. `2–`0 Constrained Optimization. As before, we first derive dual and bidual problems
in the quadratically constrained case.

4.1.1. Dual. Note that the `2-constrained problem is equivalent to

p∗con(k) = min
v,u∈{0,1}m

f(XD(u)v) : 1>u ≤ k, v>D(u)v ≤ γ

where D(u) = diag(u1, . . . , um) and we use the fact D(u)2 = D(u). Rewriting f using its
fenchel conjugate, introducing a dual variable η for the `2 constraint, swapping the outer min
with the inner max via weak duality, and solving the minimum over v we have

d∗con(k) = max
z,η≥0

−f∗(z)− ηγ

2
+ min
u∈{0,1}m

− 1

2η
z>XD(u)D(u)†D(u)X>z : 1>u ≤ k

where d∗con(k) ≤ p∗con(k). This further reduces to

d∗con(k) = max
z,η≥0

−f∗(z)− ηγ

2
− 1

2η
sk(ζ ◦ ζ) : ζ = X>z

where sk(·) denotes the sum of top k entries of its vector argument. Note the problem is
convex since the latter term is the perspective function of sk(ζ ◦ ζ).

4.1.2. Bidual. Rewriting sk(·) in variational form, we have that

p∗∗con(k) = d∗con(k) = max
z,η≥0

min
u∈[0,1]m

−f∗(z)− ηγ

2
− 1

2η
z>XD(u)D(u)†D(u)X>z : 1>u ≤ k

Swapping the min and max, and using the Fenchel conjugate of the quadratic form we have

p∗∗con(k) = min
u∈[0,1]m

max
z,η≥0

min
v
−f∗(z)− ηγ

2
+
η

2
v>D(u)v + z>XD(u)v : 1>u ≤ k

Switching the inner min and max again and using the definition of the biconjugate conjugate
of f(·) and computing the maximum over η, we arrive at

(4.1) p∗∗con(k) = min
v,u∈[0,1]m

f(XD(u)v) : 1>u ≤ k, v>D(u)v ≤ γ

which can be rewritten as a convex program (c.f. Section 2.2).

Corollary 4.1. Suppose X = UrΣrV
>
r is a compact, rank-r SVD decomposition of X. From

a solution (v∗, u∗) of (4.1) with objective value t∗, with probability one, we can construct a
point with objective value OPT satisfying

(Gap-Bound2) p∗con(k + r + 2)− ρ(f) ≤ OPT ≤ p∗∗con(k) ≤ p∗con(k)

by solving a linear program written

(4.2)

minimize c>u
subject to

∑m
i=1 ui ≤ k∑m
i=1 uiv

∗2
i ≤ γ∑m

i=1 ui`iv
∗
i = z∗

u ∈ [0, 1]m

in the variable u ∈ Rm, where c ∼ N (0, Im) and (t∗, v∗) are optimal for the bidual, with
z∗ = ΣrV

>
r D(u∗)v∗.
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Proof. Following the analysis in Section 2, let X = UrΣrV
>
r be a compact, rank-r SVD

decomposition of X. Making the variable substitution ΣrV
>
r D(u)v = z, our bidual can be

rewritten in epigraph form as

minimize t

subject to


t
k
γ
z

 ∈

f(Urz)
R+

R+

0

+
∑m

i=1Co

0,


0
1
v2i
`ivi




u ∈ [0, 1]m

in the variables t ∈ R, z ∈ Rn and v, u ∈ Rm, where `i is the ith column of ΣrV
>
r . Note that

From the Shapley Folkman lemma [13], there exists some ū ∈ [0, 1]m such that

x =
∑
i∈S

ūi


0
1
v2i
`ivi

+
∑
i∈Sc

ūi


0
1
v2i
`ivi


where S = {i | ūi 6= {0, 1}} and |S| ≤ r + 2 (note we disregard the first entry of the vector
and hence it ir r + 2 and not r + 3). Now, let (t∗, z∗, v∗, u∗) be optimal for the bidual. That
means, there exists s1, s2 ≥ 0 such that

t∗

k − s1
γ − s2
z∗

 =

f(Urz
∗)

0
0

+
m∑
i=1

Co

0,


0
1

v∗
2

i

`iv
∗
i




From above, we know there exists ūi that satisfies the above vector equality with at most r+2
non-binary entries. We can compute this ū via the linear program in (4.2). We then primalize
precisely as before to arrive at the chain of inequalities

p∗con(k + r + 2) ≤ OPT ≤ p∗∗con(k) ≤ p∗con(k)

which is the desired result.

4.2. `2 Constrained, `0 Penalized Optimization. The analysis for the penalized case is
very similar to that of Section 3.

4.2.1. Dual. The penalized problem is equivalent to

p∗pen(λ) = min
v,u∈{0,1}m

f(XD(u)v) + λ1>u : v>D(u)v ≤ γ(4.3)

Using the fenchel conjugate of f , introducing a dual variable η for the `2 constrain, using weak
duality and computing the minimization over v we have

d∗pen(λ) = max
z,η≥0

−f∗(z)− ηγ

2
+ min
u∈{0,1}m

− 1

2η
z>XD(u)D(u)†D(u)X>z + λ1>u
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Using the fact

min
u∈{0,1}m

− 1

2η
z>XD(u)D(u)†D(u)X>z + λ1>u =

m∑
i=1

min
(

0, λ− 1
2η (X>z)2i

)
the dual problem becomes

d∗pen(λ) = max
z
−f∗(z)− ηγ

2
+

m∑
i=1

min
(

0, λ− 1
2η (X>z)2i

)
with d∗pen(λ) ≤ p∗pen(λ). The term 1

2η (X>z)2i is jointly convex since it can be recast as a second

order cone constraint using the fact that z2i /η ≤ t⇐⇒
∥∥∥ [ zi
t− η

] ∥∥∥
2
≤ 1

2(t+ η).

4.2.2. Bidual. Rewriting the second term of our objective in variational form we have

p∗∗pen(λ) = d∗(λ) = max
z,η≥0

min
u∈[0,1]m

−f∗(z)− ηγ

2
− 1

2γ
z>XD(u)D(u)†D(u)X>z + λ1>u

Performing the same analysis as for the constrained case, we have that

p∗∗pen(λ) = min
v,u∈[0,1]m

f(XD(u)v) + λ1>u : v>D(u)v ≤ γ(4.4)

which can be recast as a convex program (c.f. Section 2.2).

Corollary 4.2. Suppose X = UrΣrV
>
r is a compact, rank-r SVD decomposition of X. From

a solution (v∗, u∗) of (BD-PEN) with objective value t∗, with probability one, we can construct
a point with objective value OPT satisfying

(Gap-Bound-Pen-l2) p∗∗pen(λ) ≤ ppen(λ) ≤ OPT ≤ p∗∗pen(λ) + λ(r + 1)

by solving a linear program written

(4.5)

minimize c>u
s.t f∗∗(Urz

∗) + λui = t∗∑m
i=1 uiv

∗2
i ≤ γ∑m

i=1 ui`iv
∗
i = z∗

u ∈ [0, 1]m

in the variable u ∈ Rm with z∗ = ΣrV
>
r D(u∗)v∗.

Proof. The primalization procedure is analogous to the constrained case with the only
difference being the linear program becoming (4.5). Performing the same analysis as for
the penalized case, we have the chain of inequalities in (Gap-Bound-Pen-l2).
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5. Tighter Bounds using the Numerical Rank. The duality gap bounds detailed above
depend on r, the rank of the matrix X, which is an unstable quantity. In other words, a very
marginal change in X can have a significant impact on the quality of the bounds. In what
follows, we will see how to improve these bounds when the matrix X is approximately low
rank. This will allow us to bound the duality gap using the (stable) numerical rank of X.

Starting from the `2 − `0 constrained formulation, we formulate a perturbed version

(5.1)

p∗con(k,X, δ) = min f(z; y)
s.t. Xw = z + δ,

‖w‖0 ≤ k
‖w‖22 ≤ γ

in the variables w ∈ Rm and z ∈ Rn, where δ ∈ Rn is a perturbation parameter. Let

X = Xr + ∆X, RankXr = r,

be a decomposition of the matrix X. For notational convenience, we set p∗con(k,X) =
p∗con(k,X, 0). We have the following result.

Proposition 5.1. Let w?r be the optimal solution of p∗con(k,Xr, 0) and ν∗r the dual optimal
variable corresponding to the equality constraint, and write (w?, ν?) the corresponding solutions
for p∗con(k,X, 0). We have

(5.2) p∗con(k,X, 0)− ν∗T∆Xw?r ≤ p∗con(k,Xr, 0) ≤ p∗con(k,X, 0)− ν∗Tr ∆Xw?.

and the exact same bound when we start with the `2 constrained, `0 penalized formulation.

Proof. Suppose w?r is an optimal solution of problem p∗con(k,Xr, 0), then w?r is also a feasible
point of problem p∗con(k,X,∆Xw?r) because

(Xr + ∆X)w?r = z + ∆Xw?r

by construction. Since the two problems share the same objective function, this means
p∗con(k,Xr,∆Xw

?
r) ≤ p∗con(k,Xr, 0). Now, weak duality yields

p∗con(k,X,∆Xw?r) ≥ p∗con(k,X, 0)− ν?T∆Xw?r

and
p∗con(k,Xr, 0) ≤ p∗con(k,Xr,−∆Xw?)− ν?Tr ∆Xw?.

We conclude using as above the fact that if w? is an optimal solution of problem p∗con(k,X, 0),
then w? is also a feasible point of problem p∗con(k,Xr,∆Xw

?) because Xrw
? = z − ∆Xw?

which yields p∗con(k,Xr,−∆Xw?) ≤ p∗con(k,X, 0) and the desired result. In the proof we
only used weak duality and the equality constraint in p∗con(k,X, δ) to arrive at the result.
Consequently, the exact same proof and bounds hold for p∗pen(λ,X, δ).

We are now ready to combined the bound in Proposition 5.1 with the bounds derived in
Section 4.
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Proposition 5.2. Let w?r be the optimal solution of p∗con(k,Xr) and ν∗r the dual optimal
variable corresponding to the equality constraint, and write (w?, ν?) the corresponding solutions
for p∗con(k,X). Futhermore, let ζr =

√
γ‖∆X>ν∗r‖2 and ζ =

√
γ‖∆X>ν∗‖2. We have

(5.3) − ζr − ζ + p∗∗con(k + r + 2, Xr) ≤ OPT ≤ pcon(k,X)− ζ ≤ p∗∗con(k,Xr)

Similarly, for p∗pen(λ,Xr) we have

(5.4) − ζr − ζ + p∗∗pen(λ,Xr) ≤ ppen(λ,X)− ζ ≤ OPT ≤ p∗∗pen(λ,Xr) + λ(r + 1)

Proof. Starting from pcon(k,X) = pcon(k,X) − pcon(k,Xr) + pcon(k,Xr), upper and lower
bounding pcon(k,X)−pcon(k,Xr) using Proposition (5.1) and the Cauchy-Schwarz inequality,
and using the bounds derived in Section 4 the result follows. The proof for the penalized case
is identical.

6. Experiments.

6.1. Experiment 1: Duality gap bounds. In this experiment, we generate synthetic data
to illustrate the duality gap bounds derived in Sections 2 and 3. We plot these bounds for the
f(Xw; y) = 1

2n‖Xw− y‖22 (linear regression) and f(Xw; y) = 1
n

∑n
i=1 log(1 + exp(−yi(x>i w)))

(logistic regression). Note that both functions are convex and closed; hence f∗∗ = f and
ρ(f) = 0. Specifically, we generate samples X ∈ R1000×100 with rank(X) = 10 by first
generating Xij ∼ N (0, 1) and then taking a rank-10 SVD. We generate β ∈ R100 with βi ∼
N (0, 25) and ‖β‖0 = 10. In the case of `2 loss, we set y = Xβ + ε and for the logistic loss
we set y = 2Round(Sigmoid(Xβ + ε)) − 1 ∈ {−1, 1}n where εi ∼ N (0, 1). For both models
we add a ridge penalty γ

2‖w‖22 with γ = 0.01. For the regression task, we use a `0-penalty
while for the classification task, we use a `0-constraint. Figure 1 shows the primalized optimal
values as well as the upper and lower bounds derived earlier. When running the primalization
procedure, we pick twenty random linear objectives and show the standard deviation in the
value OPT.

Note that there are no error bars around OPT despite having solved the primalization
linear program with 20 different random linear objectives for each value of the regularization
parameter (λ or k). This strongly indicates that our feasible set for the linear program is
actually a singleton (which was verified by changing the linear objective to arbitrary convex
objectives and noting the arg min was identical each time). In this case, the solution is identical
to the solution that can be inferred from the bidual (since we know the linear program is
feasible since the solution of the bidual satisfies the constraints). As a result, primalization
simply reduces to rounding the bidual solution to make it primal feasible. Furthermore, note
that in the left plot of Figure 1, we know that the true value p∗pen(λ) must lie somewhere
between OPT (red line) and p∗∗ (blue line) and that this gap decreases as λ decreases. This is
also apparent in the right plot of Figure 1 as the marginal importance of the features decreases
as k increases.

6.2. Experiment 2: Numerical rank bounds. In this experiment, we plot the bounds
outlined by Proposition 5.2 that combine Shapley Folkman with numerical rank bounds. We
generate X ∈ R1000×100 with bell shaped singular values using the make low rank matrix
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Figure 1: Experiment 1 (Left) Linear regression with a `0-penalty. (Right) Logistic regres-
sion with a `0-constraint.

function in sklearn [18] to get a numerical rank of 10. We then generate β and y as in
Experiment 1 for the `2 loss. As was used to derive the numerical rank bounds, we use a
constraint ‖w‖22 ≤ γ with γ = 30 instead of a ridge penalty. We consider the `0-penalized case
and fix three values of λ : 10−4, 10−3, 10−2. In Figure 2, we show how the bounds change as
we vary the rank of our approximation Xr from 1 to 100. While running the primalization
procedure, we pick a random linear objective 20 times and show the standard deviation in the
value of OPT.

From Proposition 5.2, we know that ppen(λ,X) lies between the red and blue lines. For
small values of λ (e.g. λ = 10−4) we see that as the rank increases this gap is essentially zero.
This means in the case of λ = 10−4 taking a rank 20 approximation of the data matrix or
a rank 100 matrix and doing the procedure highlighted in Section 4 results in two different
solutions that are both essentially optimal. Both plots at the bottom of Figure 2 highlight
a trade-off in choosing the numerical rank, a lower rank improves the duality gap while it
coarsens the objective function approximation, and vice-versa, this is further illustrated in
the experiment below.

6.3. Experiment 3: Numerical Rank Bounds on Natural Data Sets. In this experiment,
we generate the same plot as in Experiment 2 but now with real data. Specifically, we use
the Leukemia data [19] with n = 72 binary responses and m = 3751 features. We scale the
data matrix X and then plot the difference between the upper and lower bounds (duality gap)
and the difference between the primalized upper bound and lower bounds (primalized gap) in
Figure 3 under a logistic loss with λ = 0.1 and γ = 50.
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